Science.gov

Sample records for affect stability binding

  1. Stability of the Octameric Structure Affects Plasminogen-Binding Capacity of Streptococcal Enolase

    PubMed Central

    Law, Ruby H. P.; Casey, Lachlan W.; Valkov, Eugene; Bertozzi, Carlo; Stamp, Anna; Jovcevski, Blagojce; Aquilina, J. Andrew; Whisstock, James C.; Walker, Mark J.; Kobe, Bostjan

    2015-01-01

    Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation. PMID:25807546

  2. Mutations in CypA Binding Region of HIV-1 Capsid Affect Capsid Stability and Viral Replication in Primary Macrophages.

    PubMed

    Setiawan, Laurentia C; van Dort, Karel A; Rits, Maarten A N; Kootstra, Neeltje A

    2016-04-01

    Mutations in the cyclophilin A (CypA) binding region in the HIV-1 capsid affect their dependency on the known HIV-1 cofactor CypA and allow escape from the HIV-1 restriction factor Trim5α in human and simian cells. Here we study the effect of these mutations in the CypA binding region of capsid on cofactor binding, capsid destabilization, and viral replication in primary cells. We showed that the viral capsid with mutations in the CypA binding region (CypA-BR) interacted efficiently with CypA, but had an increased stability upon infection as compared to the wild-type capsid. Interestingly, the wild-type virus was able to infect monocyte-derived macrophages (MDM) more efficiently as compared to the CypA-BR mutant variant. The lower infectivity of the CypA-BR mutant virus in MDM was associated with lower levels of reverse transcription products. Similar to the wild-type virus, the CypA-BR mutant variant was unable to induce a strong innate response in primary macrophages. These data demonstrate that mutations in the CypA binding site of the capsid resulted in higher capsid stability and hampered infectivity in macrophages.

  3. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection.

    PubMed

    Mair, Caroline M; Ludwig, Kai; Herrmann, Andreas; Sieben, Christian

    2014-04-01

    Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus. Adaptation to different hosts in vitro was shown to require mutations within HA altering the receptor binding and/or fusion behavior of the respective virus strain. Human adapted influenza virus strains (H1N1, H3N2, H2N2) as well as recent avian influenza virus strains (H5, H7 and H9 subtypes) which gained the ability to infect humans mostly contained mutations in the receptor binding site (RBS) of HA enabling increased binding affinity of these viruses to human type (α-2,6 linked sialic acid) receptors. Thus, the receptor binding specificity seems to be the major requirement for successful adaptation to the human host; however, the RBS is not the only determinant of host specificity. Increased binding to a certain cell type does not always correlate with infection efficiency. Furthermore, viruses carrying mutations in the RBS often resulted in reduced viral fitness and were still unable to transmit between mammals. Recently, the pH stability of HA was reported to affect the transmissibility of influenza viruses. This review summarizes recent findings on the adaptation of influenza A viruses to the human host and related amino acid substitutions resulting in altered receptor binding specificity and/or modulated fusion pH of HA. Furthermore, the role of these properties (receptor specificity and pH stability of HA) for adaptation to and transmissibility in the human host is discussed. This article is part of a Special Issue entitled: Viral Membrane Proteins -- Channels for Cellular

  4. “DNA Binding Region” of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint

    PubMed Central

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K.; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress. PMID:26884712

  5. "DNA Binding Region" of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint.

    PubMed

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress.

  6. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability.

    PubMed

    Law, Sean M; Zhang, Bin W; Brooks, Charles L

    2013-05-01

    Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19-siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile. Copyright © 2013 The Protein Society.

  7. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability

    PubMed Central

    Law, Sean M; Zhang, Bin W; Brooks, Charles L

    2013-01-01

    Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile. PMID:23450521

  8. Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus

    PubMed Central

    Schrauwen, Eefje J. A.; Burke, David F.; Rimmelzwaan, Guus F.; Herfst, Sander; Fouchier, Ron A. M.

    2016-01-01

    Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission. PMID:26792744

  9. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.

    PubMed

    Hjörleifsson, Jens G; Ásgeirsson, Bjarni

    2017-09-07

    The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the Ki for inorganic phosphate (product inhibition) and the KM for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.

  10. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  11. Altered cofactor binding affects stability and activity of human UDP-galactose 4′-epimerase: implications for type III galactosemia

    PubMed Central

    McCorvie, Thomas J.; Liu, Ying; Frazer, Andrew; Gleason, Tyler J.; Fridovich-Keil, Judith L.; Timson, David J.

    2012-01-01

    Deficiency of UDP-galactose 4′-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and inability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD+. p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD+. These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation. PMID:22613355

  12. The SmAP2 RNA binding motif in the 3'UTR affects mRNA stability in the crenarchaeum Sulfolobus solfataricus.

    PubMed

    Märtens, Birgit; Sharma, Kundan; Urlaub, Henning; Bläsi, Udo

    2017-09-06

    Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism in Pro- and Eukaryotes. In this study, a collection of 53 mRNAs that co-purified with Sulfolobus solfataricus (Sso) SmAP2 were surveyed for a specific RNA binding motif (RBM). SmAP2 was shown to bind with high affinity to the deduced consensus RNA binding motif (SmAP2-cRBM) in vitro. Residues in SmAP2 interacting with the SmAP2-cRBM were mapped by UV-induced crosslinking in combination with mass-spectrometry, and verified by mutational analyses. The RNA-binding site on SmAP2 includes a modified uracil binding pocket containing a unique threonine (T40) located on the L3 face and a second residue, K25, located in the pore. To study the function of the SmAP2-RBM in vivo, three authentic RBMs were inserted in the 3'UTR of a lacS reporter gene. The presence of the SmAP2-RBM in the reporter-constructs resulted in decreased LacS activity and reduced steady state levels of lacS mRNA. Moreover, the presence of the SmAP2-cRBM in and the replacement of the lacS 3'UTR with that of Sso2194 encompassing a SmAP2-RBM apparently impacted on the stability of the chimeric transcripts. These results are discussed in light of the function(s) of eukaryotic Lsm proteins in RNA turnover. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  14. Physical factors affecting chloroquine binding to melanin.

    PubMed

    Schroeder, R L; Pendleton, P; Gerber, J P

    2015-10-01

    Chloroquine is an antimalarial drug but is also prescribed for conditions such as rheumatoid arthritis. Long-term users risk toxic side effects, including retinopathy, thought to be caused by chloroquine accumulation on ocular melanin. Although the binding potential of chloroquine to melanin has been investigated previously, our study is the first to demonstrate clear links between chloroquine adsorption by melanin and system factors including temperature, pH, melanin type, and particle size. In the current work, two Sepia melanins were compared with bovine eye as a representative mammalian melanin. Increasing the surface anionic character due to a pH change from 4.7 to 7.4 increased each melanin's affinity for chloroquine. Although the chloroquine isotherms exhibited an apparently strong interaction with each melanin, isosteric heat analysis indicated a competitive interaction. Buffer solution cations competed effectively at low surface coverage; chloroquine adsorption occurs via buffer cation displacement and is promoted by temperature-influenced secondary structure swelling.

  15. Factors Affecting Lateral Stability and Controllability

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Toll, Thomas A

    1948-01-01

    The effects on dynamic lateral stability and controllability of some of the important aerodynamic and mass characteristics are discussed and methods are presented for estimating the various stability parameters to be used in the calculation of the dynamic lateral stability of airplanes with swept and low-aspect-ratio wings.

  16. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  17. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  18. Organic additives stabilize RNA aptamer binding of malachite green.

    PubMed

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis.

  19. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    SciTech Connect

    Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M; Shen, Tongye

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.

  20. On how hydrogen bonds affect foam stability.

    PubMed

    Stubenrauch, Cosima; Hamann, Martin; Preisig, Natalie; Chauhan, Vinay; Bordes, Romain

    2017-02-08

    Do intermolecular H-bonds between surfactant head groups play a role for foam stability? From the literature on the foam stability of various surfactants with C12 alkyl chains but different head groups a clear picture emerges: stable foams are only generated when hydrogen bonds can form between the head groups, i.e. when the polar head group has a hydrogen bond donor and a proton acceptor. Stable foams can therefore be generated with surfactants having a sugar unit, a glycine, an amine oxide (at pH~5), or a carboxylic acid (at pH~pKa) as polar head group. On the other hand, aqueous foams stabilized with surfactants having oligo(ethylene oxide), phosphine oxide, quaternary ammonium, sulfate, sarcosine, amine oxide (at pH≠5), or carboxylic acid (at pH≠pKa) are not very stable. These observations suggest that hydrogen bonds between neighbouring molecules at the surface enhance foam stability. Formation of hydrogen bonds between surfactant head groups gives rise to a short-range attractive interaction that may restrict the surfactant's mobility while providing a more elastic surfactant layer which can counteract deformations. To support our hypothesis we carried out a systematic foaming study of two types of surfactants, one of them being capable of forming H-bonds and the other one not. Generating foams of all surfactants mentioned above with the same foaming conditions we found that stable foams are obtained when the head group is capable of forming intersurfactant H-bonds. The outcome of this study constitutes a new step towards the implementation of H-bonds in the future design of surfactants.

  1. Stability of facial affective expressions in schizophrenia.

    PubMed

    Fatouros-Bergman, H; Spang, J; Merten, J; Preisler, G; Werbart, A

    2012-01-01

    Thirty-two videorecorded interviews were conducted by two interviewers with eight patients diagnosed with schizophrenia. Each patient was interviewed four times: three weekly interviews by the first interviewer and one additional interview by the second interviewer. 64 selected sequences where the patients were speaking about psychotic experiences were scored for facial affective behaviour with Emotion Facial Action Coding System (EMFACS). In accordance with previous research, the results show that patients diagnosed with schizophrenia express negative facial affectivity. Facial affective behaviour seems not to be dependent on temporality, since within-subjects ANOVA revealed no substantial changes in the amount of affects displayed across the weekly interview occasions. Whereas previous findings found contempt to be the most frequent affect in patients, in the present material disgust was as common, but depended on the interviewer. The results suggest that facial affectivity in these patients is primarily dominated by the negative emotions of disgust and, to a lesser extent, contempt and implies that this seems to be a fairly stable feature.

  2. Ligand binding and thermodynamic stability of a multidomain protein, calmodulin.

    PubMed Central

    Masino, L.; Martin, S. R.; Bayley, P. M.

    2000-01-01

    Chemical and thermal denaturation of calmodulin has been monitored spectroscopically to determine the stability for the intact protein and its two isolated domains as a function of binding of Ca2+ or Mg2+. The reversible urea unfolding of either isolated apo-domain follows a two-state mechanism with relatively low deltaG(o)20 values of approximately 2.7 (N-domain) and approximately 1.9 kcal/mol (C-domain). The apo-C-domain is significantly unfolded at normal temperatures (20-25 degrees C). The greater affinity of the C-domain for Ca2+ causes it to be more stable than the N-domain at [Ca2+] > or = 0.3 mM. By contrast, Mg2+ causes a greater stabilization of the N- rather than the C-domain, consistent with measured Mg2+ affinities. For the intact protein (+/-Ca2+), the bimodal denaturation profiles can be analyzed to give two deltaG(o)20 values, which differ significantly from those of the isolated domains, with one domain being less stable and one domain more stable. The observed stability of the domains is strongly dependent on solution conditions such as ionic strength, as well as specific effects due to metal ion binding. In the intact protein, different folding intermediates are observed, depending on the ionic composition. The results illustrate that a protein of low intrinsic stability is liable to major perturbation of its unfolding properties by environmental conditions and liganding processes and, by extension, mutation. Hence, the observed stability of an isolated domain may differ significantly from the stability of the same structure in a multidomain protein. These results address questions involved in manipulating the stability of a protein or its domains by site directed mutagenesis and protein engineering. PMID:10975573

  3. Stability and Change in Affect among Centenarians

    ERIC Educational Resources Information Center

    Martin, Peter; da Rosa, Grace; Margrett, Jennifer A.; Garasky, Steven; Franke, Warren

    2012-01-01

    Much information is available about physical and functional health among very old adults, but little knowledge exists about the mental health and mental health changes in very late life. This study reports findings concerning positive and negative affect changes among centenarians. Nineteen centenarians from a Midwestern state participated in four…

  4. Stability and Change in Affect among Centenarians

    ERIC Educational Resources Information Center

    Martin, Peter; da Rosa, Grace; Margrett, Jennifer A.; Garasky, Steven; Franke, Warren

    2012-01-01

    Much information is available about physical and functional health among very old adults, but little knowledge exists about the mental health and mental health changes in very late life. This study reports findings concerning positive and negative affect changes among centenarians. Nineteen centenarians from a Midwestern state participated in four…

  5. Capsulotomy Size Affects Hip Joint Kinematic Stability.

    PubMed

    Wuerz, Thomas H; Song, Sang H; Grzybowski, Jeffrey S; Martin, Hal D; Mather, Richard C; Salata, Michael J; Espinoza Orías, Alejandro A; Nho, Shane J

    2016-08-01

    To evaluate the effect of capsulotomy size and subsequent repair on the biomechanical stability of hip joint kinematics through external rotation of a cadaveric hip in neutral flexion. Eight fresh-frozen cadaveric hip specimens were used in this study. Each hip was tested under torsional loads of 6 N·m applied by a servohydraulic frame and transmitted by a pulley system. The test conditions were (1) neutral flexion with the capsule intact, (2) neutral flexion with a 4-cm interportal capsulotomy, (3) neutral flexion with a 6-cm capsulotomy, and (4) neutral flexion with capsulotomy repair. Soft tissue was retained during all interventions. Measures indicating joint kinematics (range of motion [ROM], hysteresis area [HA], and neutral zone [NZ]) were obtained for each condition. For all hip specimens, the average ROM, HA, and NZ were calculated relative to the intact capsular state (100%) and expressed in terms of percentage (± SD). The findings for ROM were as follows: intact, 100%; 4 cm, 107.42% ± 5.69%; 6 cm, 113.40% ± 7.92%; and repair, 99.78% ± 3.77%. The findings for HA were as follows: intact, 100%; 4 cm, 108.30% ± 9.30%; 6 cm, 115.30% ± 13.92%; and repair, 99.47% ± 4.12%. The findings for NZ were as follows: intact, 100%; 4 cm, 139.61% ± 62.35%; 6 cm, 169.25% ± 78.19%; and repair, 132.03% ± 64.38%. Statistically significant differences in ROM existed between the intact and 4-cm conditions (P = .039), the intact and 6-cm conditions (P < .0001), the 4-cm and repair conditions (P = .033), and the 6-cm and repair conditions (P < .0001). There was no statistically significant difference between the intact and repair conditions (P > .99) or between the 4- and 6-cm conditions (P = .126). Under laboratory-based conditions, larger-sized capsulotomies were accompanied by increases in all 3 measures of joint mobility: ROM, HA, and NZ at time zero. Complete capsular closure effectively restored these measures when compared with the intact condition

  6. Effects of spermine binding on Taxol-stabilized microtubules

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Regmi, Chola

    Previous studies have shown that polyamines such as spermine present in cells at physiological concentrations can facilitate the polymerization of tubulins into microtubules (MTs). A recent experiment demonstrates that in the presence of high-concentration spermine, Taxol-stabilized MTs undergo a shape transformation into inverted tubulin tubules (ITTs), the outside surface of which corresponds to the inside surface of a regular MT. However, the molecular mechanism underlying the shape transformation of MTs into ITTs is unclear. We perform all atom molecular dynamics simulations on Taxol-stabilized MT sheets containing two protofilaments surrounded by spermine ions. The spermine concentration is varied from 0 to 25mM to match the range probed experimentally. We identify important spermine binding regions on the MT surface and the influence of the spermine binding on the structure and dynamics of MTs. In contrast to Taxol, our results show that spermine binding seems to decrease the flexibility of tubulin proteins, resulting in weaker tubulin-tubulin contacts and promoting the bending of protofilaments into curved protofilaments, inverted rings, and eventually inverted tubules.

  7. Ligand specificity and conformational stability of human fatty acid-binding proteins.

    PubMed

    Zimmerman, A W; van Moerkerk, H T; Veerkamp, J H

    2001-09-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.

  8. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  9. Factors affecting laser-trim stability of thick film resistors

    NASA Technical Reports Server (NTRS)

    Cote, R. E.; Headley, R. C.

    1977-01-01

    Various factors affecting precision of trim and resistor stability were considered. The influence of machine operating parameters on resistor performance was examined and quantified through statistically designed experiments for a Q switched YAG laser system. Laser kerf quality was studied by scanning electron microscopy and related to kerf isolation resistance measurements. A relatively simple production oriented, quality control test is proposed for rapid determination of kerf electrical stability. In addition, the effect of cut design and extent of trim on precision and stability were discussed.

  10. Binding stability of a cross-linked drug: Calculation of an anticancer drug cisplatin-DNA complex

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Zhang, Yong-Li; Prohofsky, E. W.

    1997-05-01

    One of the binding modes of anticancer and antibiotic drugs bound to DNA is the formation of a cross link, i.e., binding is made through the formation of covalent bonds between a binding drug and DNA. In this work we present a computational method to calculate the binding stability of a drug cross linked to DNA. Our method is based on the modified self-consistent harmonic approach in which the disruption probabil- ity of the cross-linked bonds as well as hydrogen bonds is calculated from a statistical analysis of micro- scopic thermal fluctuational motions. A Morse potential with appropriate parameters is used to model the cross-linked covalent bonds. Our method is applied to an anticancer drug cisplatin-DNA oligomer d(CTCTAGTGCTCAC).d(GTGAGCACTAGAG) complex. We calculated the equilibrium binding constant of a cisplatin bound to this DNA oligomer. Our method can also be used to analyze the effect of drug binding on DNA base-pair thermal stability. We find that, despite the disruption of certain interbase H bonds, the thermal fluctuational opening probability Pop of base pairs in the cisplatin binding region is enhanced by the formation of non-Watson-Crick H bonds as well as cross-linked covalent bonds. Although the entire DNA helix is bent by cisplatin binding, the stability of the base pairs outside the binding region is only slightly affected by this deformation.

  11. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility.

    PubMed

    Shelton, Holly; Roberts, Kim L; Molesti, Eleonora; Temperton, Nigel; Barclay, Wendy S

    2013-06-01

    The H5N1 influenza A viruses have circulated widely in the avian population for 10 years with only sporadic infection of humans observed and no sustained human to human transmission. Vaccination against potential pandemic strains is one strategy in planning for future influenza pandemics; however, the success of live attenuated vaccines for H5N1 has been limited, due to poor replication in the human upper respiratory tract (URT). Mutations that increase the ability of H5N1 viruses to replicate in the URT will aid immunogenicity of these vaccines and provide information about humanizing adaptations in H5N1 strains that may signal transmissibility. As well as mediating receptor interactions, the haemagglutinin (HA) protein of influenza facilitates fusion of the viral membrane and genome entry into the host cell; this process is pH dependent. We have shown in this study that the pH at which a panel of avian influenza HA proteins, including H5, mediate fusion is higher than that for human influenza HA proteins, and that mutations in the H5 HA can reduce the pH of fusion. Coupled with receptor switching mutations, increasing the pH stability of the H5 HA resulted in increased viral shedding of H5N1 from the nasal cavity of ferrets and contact transmission to a co-housed animal. Ferret serum antibodies induced by infection with any of the mutated H5 HA viruses neutralized HA pseudotyped lentiviruses bearing homologous or heterologous H5 HAs, suggesting that this strategy to increase nasal replication of a vaccine virus would not compromise vaccine efficacy.

  12. Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability

    PubMed Central

    Lori, Laura; Pasquo, Alessandra; Lori, Clorinda; Petrosino, Maria; Chiaraluce, Roberta; Tallant, Cynthia; Knapp, Stefan; Consalvi, Valerio

    2016-01-01

    Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding. PMID:27403962

  13. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    USDA-ARS?s Scientific Manuscript database

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  14. The structure of affective action representations: temporal binding of affective response codes.

    PubMed

    Eder, Andreas B; Müsseler, Jochen; Hommel, Bernhard

    2012-01-01

    Two experiments examined the hypothesis that preparing an action with a specific affective connotation involves the binding of this action to an affective code reflecting this connotation. This integration into an action plan should lead to a temporary occupation of the affective code, which should impair the concurrent representation of affectively congruent events, such as the planning of another action with the same valence. This hypothesis was tested with a dual-task setup that required a speeded choice between approach- and avoidance-type lever movements after having planned and before having executed an evaluative button press. In line with the code-occupation hypothesis, slower lever movements were observed when the lever movement was affectively compatible with the prepared evaluative button press than when the two actions were affectively incompatible. Lever movements related to approach and avoidance and evaluative button presses thus seem to share a code that represents affective meaning. A model of affective action control that is based on the theory of event coding is discussed.

  15. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.

    PubMed Central

    Risse, B.; Stempfer, G.; Rudolph, R.; Möllering, H.; Jaenicke, R.

    1992-01-01

    Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD

  16. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  17. Heparin binding confers prion stability and impairs its aggregation.

    PubMed

    Vieira, Tuane C R G; Cordeiro, Yraima; Caughey, Byron; Silva, Jerson L

    2014-06-01

    The conversion of the prion protein (PrP) into scrapie PrP (PrP(Sc)) is a central event in prion diseases. Several molecules work as cofactors in the conversion process, including glycosaminoglycans (GAGs). GAGs exhibit a paradoxical effect, as they convert PrP into protease-resistant PrP (PrP-res) but also exert protective activity. We compared the stability and aggregation propensity of PrP and the heparin-PrP complex through the application of different in vitro aggregation approaches, including real-time quaking-induced conversion (RT-QuIC). Transmissible spongiform encephalopathy-associated forms from mouse and hamster brain homogenates were used to seed RT-QuIC-induced fibrillization. In our study, interaction between heparin and cellular PrP (PrP(C)) increased thermal PrP stability, leading to an 8-fold decrease in temperature-induced aggregation. The interaction of low-molecular-weight heparin (LMWHep) with the PrP N- or C-terminal domain affected not only the extent of PrP fibrillization but also its kinetics, lowering the reaction rate constant from 1.04 to 0.29 s(-1) and increasing the lag phase from 12 to 19 h in RT-QuIC experiments. Our findings explain the protective effect of heparin in different models of prion and prion-like neurodegenerative diseases and establish the groundwork for the development of therapeutic strategies based on GAGs. © FASEB.

  18. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  19. Free-surface stability criterion as affected by velocity distribution

    USGS Publications Warehouse

    Cheng-Lung, Chen

    1995-01-01

    This paper examines how the velocity distribution of flow in open channels affects the kinematic and dynamic wave velocities, from which the various forms of the Vedernikov number V can be formulated. When V >1, disturbances created in open-channel flow will amplify in the form of roll waves; when V <1, some (though not all) disturbances will attenuate. A study of the Vedernikov stability criterion reveals that it can be readily deduced within the framework of the kinematic and dynamic wave theories by comparing the kinematic wave velocity to the corresponding dynamic wave velocity. -from Author

  20. Intermembrane contact affects calcium binding to phospholipid vesicles.

    PubMed Central

    Ekerdt, R; Papahadjopoulos, D

    1982-01-01

    Binding of Ca2+ to liposomes composed of phosphatidylserine (PtdSer) was analyzed by potentiometric titrations. Ca2+ binding to large unilamellar PtdSer vesicles was saturable at a stoichiometry of 1:2 (Ca2+/PtdSer). At approximately 6 X 10(-4) M [Ca2+]free, the binding curve exhibited a discontinuity that can be attributed to the formation of a Ca2+/PtdSer complex with a higher affinity. When both Ca2+ and Mg2+ are present, depending on the relative concentrations, Mg2+ can either complete or can enhance Ca2+ binding. Concomitant to the enhanced binding, the vesicle suspension was found to aggregate, suggesting that close contact of membranes is a prerequisite for the abrupt change in affinity. This concept was tested by binding studies with liposomes of mixed composition. It was found that the incorporation of 50 mol% phosphatidylethanolamine (PtdEtn) into PtdSer liposomes produced a similar binding pattern to that of pure PtdSer with a saturable stoichiometry of 1:2 (Ca2+/PtdSer). However, incorporation of 50 mol% phosphatidylcholine (PtdCho) completely abolished the discontinuous shift in affinity and apparent saturation was reached at a stoichiometry of 1:4 (Ca2+/PtdSer). In addition, Ca2+ binding to PtdSer liposomes with 10 mol% galactosylcerebroside was not altered when compared to pure PtdSer, whereas 10 mol% of the glycolipid GL-4 abolished the increased binding. The results are closely correlated with recent findings on the role of the membrane composition in Ca2+-induced fusion of liposomes and argue in favor of a specific Ca2+/PtdSer complex (with 1:2 stoichiometry) forming only at points of close contact between membranes and serving as the trigger for membrane fusion. PMID:6954538

  1. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state

    PubMed Central

    1996-01-01

    The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state

  2. Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides.

    PubMed

    Bailey, Jeffrey K; Shen, Wen; Liang, Xue-Hai; Crooke, Stanley T

    2017-08-09

    Antisense oligonucleotides (ASOs) are versatile tools that can regulate multiple steps of RNA biogenesis in cells and living organisms. Significant improvements in delivery, potency, and stability have been achieved through modifications within the oligonucleotide backbone, sugar and heterocycles. However, these modifications can profoundly affect interactions between ASOs and intracellular proteins in ways that are only beginning to be understood. Here, we report that ASOs with specific backbone and sugar modifications can become localized to cytoplasmic ribonucleoprotein granules such as stress granules and those seeded by the aggregation of specific ASO-binding proteins such as FUS/TLS (FUS) and PSF/SFPQ (PSF). Further investigation into the basis for ASO-FUS binding illustrated the importance of ASO backbone and hydrophobic 2΄ sugar modifications and revealed that the C-terminal region of FUS is sufficient to retain ASOs in cellular foci. Taken together, the results of this study demonstrate that affinities of various nucleic acid binding domains for ASO depend on chemical modifications and further demonstrate how ASO-protein interactions influence the localization of ASOs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Nitrous Oxide Emissions Affected by Biochar and Nitrogen Stabilizers

    NASA Astrophysics Data System (ADS)

    Gao, S.; Cai, Z.; Xu, M.

    2016-12-01

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emissions and N transformations in soil amended with biochar and N transformation inhibitors. The soil was a sandy loam soil and adjusted to 10% soil water content and incubated at 25oC. Biochar amendment at 1% (w/w), Agrotain® Ultra (urease inhibitor), Agrotain® Plus (urease and nitrification inhibitor), and N-Serve® 24 (nitrification inhibitor) as well as another potential nitrification inhibitor, potassium thiosulfate (KTS), at 0.25-1:1 K2O/N ratios (w/w) were tested. Emissions of N2O, soil mineral N species change, and soil pH were determined for 35 days after fertilizers were applied. Biochar, Agrotain® Ultra or Plus, or N-Serve® 24 all effectively reduced N2O emissions by more than 60% as compared to no amendment control. The KTS, however, was only effective in reducing N2O emissions at a high ratio (1:1 K2O/N, w/w). There was a strong correlation between N2O emission and the concentration of nitrite (NO2-) in soil but not other mineral species. All the amendments showed that their effects on N transformation and N2O emissions were completed within a few weeks after application. Laboratory analysis indicated that biochar affected the N dynamics most likely via adsorption of ammonium (NH4+) and the inhibitors by affecting N transformation rate. This research has gained further understanding on how biochar and N stabilizers affect N2O emissions and the knowledge can assist in developing mitigation strategies.

  4. Probing the binding of trypsin to glutathione-stabilized gold nanoparticles in aqueous solution.

    PubMed

    Wang, Gongke; Liu, Xingbing; Yan, Changling; Bai, Guangyue; Lu, Yan

    2015-11-01

    We investigate the interaction of trypsin with glutathione-stabilized Au nanoparticles (NPs) using fluorescence, synchronous fluorescence and ultraviolet (UV) absorption spectroscopy. We find that trypsin binds strongly to the Au NPs with a static quenching mechanism, and that the interaction is characteristic of positive cooperative binding. Furthermore, we determine the binding constants and the thermodynamic parameters, which suggest that the main binding forces between the glutathione-stabilized Au NPs and trypsin are electrostatic interactions and hydrogen bonding. Analysis of UV-vis absorption spectra suggests that aggregation of the Au NPs occurs in the trypsin/Au NPs system, which significantly alters the conformation of the protein.

  5. Factors affecting motorcycle helmet use: size selection, stability, and position.

    PubMed

    Thai, Kim T; McIntosh, Andrew S; Pang, Toh Yen

    2015-01-01

    One of the main requirements of a protective helmet is to provide and maintain appropriate and adequate coverage to the head. A helmet that is poorly fitted or fastened may become displaced during normal use or even ejected during a crash. Observations and measurements of head dimensions, helmet position, adjustment, and stability were made on 216 motorcyclists. Helmet details were recorded. Participants completed a questionnaire on helmet usability and their riding history. Helmet stability was assessed quasistatically. Differences between the dimensions of ISO headforms and equivalent sized motorcyclists' heads were observed, especially head width. Almost all (94%) of the helmets were labeled to be compliant with AS/NZS 1698 (2006). The majority of riders were satisfied with the comfort, fit, and usability aspects of their helmets. The majority of helmets were deemed to have been worn correctly. Using quasistatic pull tests, it was found that helmet type (open-face or full-face) and the wearing correctness were among factors that affected the loads at which helmets became displaced. The forces required to displace the helmet were low, around 25 N. The size of the in-use motorcycle helmets did not correspond well to the predicted size based on head dimensions, although motorcyclists were generally satisfied with comfort and fit. The in vivo stability tests appear to overpredict that helmets will come off in a crash, based on the measured forces, tangential forces measured in the oblique impact tests, and the actual rate of helmet ejection.

  6. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression.

    PubMed

    Busch, Robert; Rinderknecht, Cornelia H; Roh, Sujin; Lee, Andrew W; Harding, James J; Burster, Timo; Hornell, Tara M C; Mellins, Elizabeth D

    2005-10-01

    In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.

  7. Effects of the central potassium ions on the G-quadruplex and stabilizer binding.

    PubMed

    Wang, Zhiguo; Liu, Jun-Ping

    2017-03-01

    Human telomeres undertake the structure of intra-molecular parallel G-quadruplex in the presence of K(+) in eukaryotic cell. Stabilization of the telomere G-quadruplex represents a potential strategy to prevent telomere lengthening by telomerase in cancer therapy. Current work demonstrates that the binding of central K(+) with the parallel G-quadruplex is a coordinated water directed step-wise process. The K(+) above the top G-tetrad is prone to leak into environment and the 5'-adenine quickly flips over the top G-tetrad, leading to the bottom gate of G-tetrads as the only viable pathway of K(+) binding. Present molecular dynamics studies on the two most potent stabilizers RHPS4 and BRACO-19 reveal that the central K(+) has little influence on the binding conformations of the bound stabilizers. But without the central K(+), either RHPS4 or BRACO-19 cannot stabilize the structure of G-quadruplex. The binding strength of stabilizers evaluated by the MM-PBSA method follows the order of BRACO-19> RHPS4, which agrees with the experimental results. The difference in binding affinities between RHPS4 and BRACO-19 is probably related to the ability to form intramolecular hydrogen bonds and favorable van del Waals interactions with G-quadruplex. In the models that have one central K(+) located at the upper/lower binding site, the corresponding top/bottom stacked stabilizers show more favorable binding affinities, indicating the apparent promoting effect of central K(+) on the stabilizer binding. Our findings provide further insights into the regulatory effect of K(+) on the G-quadruplex targeted binding, which is meaningful to the development of G-quadruplex stabilizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Factors affecting storage stability of various commercial phytase sources.

    PubMed

    Sulabo, R C; Jones, C K; Tokach, M D; Goodband, R D; Dritz, S S; Campbell, D R; Ratliff, B W; DeRouchey, J M; Nelssen, J L

    2011-12-01

    phytase activity than when phytases were mixed with the vitamin or VTM premixes. Coated phytases stored in any form had greater (P < 0.01) activity retention than the uncoated phytases at all sampling periods. Results indicate that storage stability of commercially available phytases is affected by duration of storage, temperature, product form, coating, and phytase source. Pure products held at 23°C or less were the most stable. In premixes, longer storage times and higher temperatures reduced phytase activity, but coating mitigated some of these negative effects.

  9. Effects of actin-binding proteins on the thermal stability of monomeric actin.

    PubMed

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Kremneva, Elena V; Lappalainen, Pekka; Levitsky, Dmitrii I

    2013-01-08

    Differential scanning calorimetry (DSC) was applied to investigate the thermal unfolding of rabbit skeletal muscle G-actin in its complexes with actin-binding proteins, cofilin, twinfilin, and profilin. The results show that the effects of these proteins on the thermal stability of G-actin depend on the nucleotide, ATP or ADP, bound in the nucleotide-binding cleft between actin subdomains 2 and 4. Interestingly, cofilin binding stabilizes both ATP-G-actin and ADP-G-actin, whereas twinfilin increases the thermal stability of the ADP-G-actin but not that of the ATP-G-actin. By contrast, profilin strongly decreases the thermal stability of the ATP-G-actin but has no appreciable effect on the ADP-G-actin. Comparison of these DSC results with literature data reveals a relationship between the effects of actin-binding proteins on the thermal unfolding of G-actin, stabilization or destabilization, and their effects on the rate of nucleotide exchange in the nucleotide-binding cleft, decrease or increase. These results suggest that the thermal stability of G-actin depends, at least partially, on the conformation of the nucleotide-binding cleft: the actin molecule is more stable when the cleft is closed, while an opening of the cleft leads to significant destabilization of G-actin. Thus, DSC studies of the thermal unfolding of G-actin can provide new valuable information about the conformational changes induced by actin-binding proteins in the actin molecule.

  10. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  11. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability

    PubMed Central

    Viñas-Castells, Rosa; Frías, Álex; Robles-Lanuza, Estefanía; Zhang, Kun; Longmore, Gregory D.; García de Herreros, Antonio; Díaz, Víctor M.

    2014-01-01

    The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases β-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1. PMID:24157836

  12. Poly(rC) binding proteins mediate poliovirus mRNA stability.

    PubMed Central

    Murray, K E; Roberts, A W; Barton, D J

    2001-01-01

    The 5'-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882-892; TB Parsley, JS Towner, LB Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124-1134). To determine the functional role of these ribonucleoprotein complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribohomopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5'-terminal 7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C) competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C) competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5' cloverleaf RNA and rendered poliovirus mRNA unstable. A 5'-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the stability of poliovirus mRNA by binding to the 5'-terminal cloverleaf structure of poliovirus mRNA. Because of the general conservation of 5' cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf, we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by interactions between PCBPs and 5' cloverleaf RNA. PMID:11497431

  13. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  14. Evolutionary Remodeling of βγ-Crystallins for Domain Stability at Cost of Ca2+ Binding*

    PubMed Central

    Suman, Shashi Kumar; Mishra, Amita; Ravindra, Daddali; Yeramala, Lahari; Sharma, Yogendra

    2011-01-01

    The topologically similar βγ-crystallins that are prevalent in all kingdoms of life have evolved for high innate domain stability to perform their specialized functions. The evolution of stability and its control in βγ-crystallins that possess either a canonical (mostly from microorganisms) or degenerate (principally found in vertebrate homologues) Ca2+-binding motif is not known. Using equilibrium unfolding of βγ-crystallin domains (26 wild-type domains and their mutants) in apo- and holo-forms, we demonstrate the presence of a stability gradient across these members, which is attained by the choice of residues in the (N/D)(N/D)XX(S/T)S Ca2+-binding motif. The occurrence of a polar, hydrophobic, or Ser residue at the 1st, 3rd, or 5th position of the motif is likely linked to a higher domain stability. Partial conversion of a microbe-type domain (with a canonical Ca2+-binding motif) to a vertebrate-type domain (with a degenerate Ca2+-binding motif) by mutating serine to arginine/lysine disables the Ca2+-binding but significantly augments its stability. Conversely, stability is compromised when arginine (in a vertebrate-type disabled domain) is replaced by serine (as a microbe type). Our results suggest that such conversions were acquired as a strategy for desired stability in vertebrate members at the cost of Ca2+-binding. In a physiological context, we demonstrate that a mutation such as an arginine to serine (R77S) mutation in this motif of γ-crystallin (partial conversion to microbe-type), implicated in cataracts, decreases the domain stability. Thus, this motif acts as a “central tuning knob” for innate as well as Ca2+-induced gain in stability, incorporating a stability gradient across βγ-crystallin members critical for their specialized functions. PMID:21949186

  15. Can Taekwondo footwear affect postural stability in young adults?

    PubMed

    Fong, Shirley S M; Ng, Shamay S M

    2013-01-01

    This study aims to investigate the effect of taekwondo footwear on unilateral stance stability and use of postural control strategies and to determine whether taekwondo footwear influences the somatosensory inputs for postural stability and postural strategies in young adults. A quasi-randomized crossover trial was conducted on 33 healthy young adults at a university research laboratory. Independent variables, including shoe conditions (shoes on and shoes off) and visual conditions (eyes open and eyes closed), were taken into account. The center of gravity (COG) sway velocity in unilateral stance and the strategy scores in the sensory organization test were measured. No intervention was given to the participants. There was no significant interaction between the two factors (the shoe and visual conditions) for COG sway velocities (P = .447) and strategy scores (P = .320). The shoe condition was not significant in either COG sway velocity (P = .484) or strategy score (P = .126). The visual condition was significant for COG sway velocity (P < .001) but not for strategy score (P = .573). The mean ± SD COG sway velocity with eyes open was 0.7° ± 0.2°/sec and with eyes closed was 1.7° ± 0.6°/sec (P < .001). Taekwondo footwear is unlikely to affect somatosensory inputs and balance performance in young adults.

  16. Factors affecting binding of galacto ligands to Actinomyces viscosus lectin.

    PubMed Central

    Heeb, M J; Marini, A M; Gabriel, O

    1985-01-01

    The specificity requirements for the binding of Actinomyces viscosus T14V were examined by testing simple sugars, oligopeptides, and glycoproteins as inhibitors of the aggregation of glycoprotein-coated latex beads and washed A. viscosus cells. Lactose was the most inhibitory simple sugar; D-fucose and D-galactose were equally inhibitory, methyl-alpha-D-fucoside was slightly less inhibitory, and L-fucose and raffinose were not inhibitory. The concentration of galactose residues required for 50% inhibition of aggregation was 15 times higher in the form of lactose than in the form of asialoglycoprotein, suggesting an enhancement of lectin binding when galactose residues are clustered. However, when the inhibitory power of bi-, tri-, and tetraantennary asialooligopeptides of alpha 1-acid glycoprotein was compared with that of equivalent concentrations of galactose in the form of lactose, the biantennary form was slightly less effective than lactose, the triantennary form was approximately as effective as lactose, and the tetraantennary form was slightly more effective than lactose. Steric interference may prevent this type of clustering from enhancing lectin binding. The O-linked asialooligopeptides of asialofetuin were 10 times more inhibitory than an equivalent concentration of galactose in the form of N-linked asialooligopeptides. Thus, galactose beta-1----3 linked to N-acetylgalactosamine exhibits greater specificity for the A. viscosus lectin than does galactose beta-1----4 linked to N-acetylglucosamine. These results, taken together with previously reported data, are consistent with a lectin of low affinity, binding enhanced by multivalency, and specificity for beta-linked galactose. PMID:2578122

  17. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus.

    PubMed

    Robinson, Christopher M; Jesudhasan, Palmy R; Pfeiffer, Julie K

    2014-01-15

    Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication, and pathogenesis in mice are equivalent, VP1-T99K poliovirus was unstable in feces following peroral inoculation of mice. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host.

  18. Occlusion of the Ribosome Binding Site Connects the Translational Initiation Frequency, mRNA Stability and Premature Transcription Termination.

    PubMed

    Eriksen, Mette; Sneppen, Kim; Pedersen, Steen; Mitarai, Namiko

    2017-01-01

    Protein production is controlled by ribosome binding to the messenger RNA (mRNA), quantified in part by the binding affinity between the ribosome and the ribosome binding sequence on the mRNA. Using the E. coli lac operon as model, Ringquist et al. (1992) found a more than 1,000-fold difference in protein yield when varying the Shine-Dalgarno sequence and its distance to the translation start site. Their proposed model accounted for this large variation by only a variation in the binding affinity and the subsequent initiation rate. Here we demonstrate that the decrease in protein yield with weaker ribosome binding sites in addition is caused by a decreased mRNA stability, and by an increased rate of premature transcription termination. Using different ribosome binding site sequences of the E. coli lacZ gene, we found that an approximately 100-fold span in protein expression could be subdivided into three mechanisms that each affected expression 3- to 6-fold. Our experiments is consistent with a two-step ribosome initiation model, in which occlusion of the initial part of the mRNA by a ribosome simultaneously protects the mRNA from both premature transcription termination and degradation: The premature termination we suggest is coupled to the absence of occlusion that allows binding of transcription termination factor, possibly Rho. The mRNA stability is explained by occlusion that prevents binding of the degrading enzymes. In our proposed scenario, a mRNA with lower translation initiation rate would at the same time be "hit" by an increased premature termination and a shorter life-time. Our model further suggests that the transcription from most if not all natural promoters is substantially influenced by premature termination.

  19. Occlusion of the Ribosome Binding Site Connects the Translational Initiation Frequency, mRNA Stability and Premature Transcription Termination

    PubMed Central

    Eriksen, Mette; Sneppen, Kim; Pedersen, Steen; Mitarai, Namiko

    2017-01-01

    Protein production is controlled by ribosome binding to the messenger RNA (mRNA), quantified in part by the binding affinity between the ribosome and the ribosome binding sequence on the mRNA. Using the E. coli lac operon as model, Ringquist et al. (1992) found a more than 1,000-fold difference in protein yield when varying the Shine-Dalgarno sequence and its distance to the translation start site. Their proposed model accounted for this large variation by only a variation in the binding affinity and the subsequent initiation rate. Here we demonstrate that the decrease in protein yield with weaker ribosome binding sites in addition is caused by a decreased mRNA stability, and by an increased rate of premature transcription termination. Using different ribosome binding site sequences of the E. coli lacZ gene, we found that an approximately 100-fold span in protein expression could be subdivided into three mechanisms that each affected expression 3- to 6-fold. Our experiments is consistent with a two-step ribosome initiation model, in which occlusion of the initial part of the mRNA by a ribosome simultaneously protects the mRNA from both premature transcription termination and degradation: The premature termination we suggest is coupled to the absence of occlusion that allows binding of transcription termination factor, possibly Rho. The mRNA stability is explained by occlusion that prevents binding of the degrading enzymes. In our proposed scenario, a mRNA with lower translation initiation rate would at the same time be “hit” by an increased premature termination and a shorter life-time. Our model further suggests that the transcription from most if not all natural promoters is substantially influenced by premature termination. PMID:28382022

  20. Effects of ligand binding on the stability of aldo–keto reductases: Implications for stabilizer or destabilizer chaperones

    PubMed Central

    Kabir, Aurangazeb; Honda, Ryo P.; Kamatari, Yuji O.; Endo, Satoshi; Fukuoka, Mayuko

    2016-01-01

    Abstract Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non‐native state. The former ligands are termed “stabilizer chaperones” and the latter ones “destabilizer chaperones.” Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native‐ and non‐native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP+ was absent, inhibitors such as isolithocholic acid stabilized the aldo–keto reductase AKR1A1 upon binding, which showed actually the three‐state folding, but destabilized AKR1B10. In contrast, in the presence of NADP+, they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three‐state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations. PMID:27595938

  1. Balancing protein stability and activity in cancer: a new approach for identifying driver mutations affecting CBL ubiquitin ligase activation

    PubMed Central

    Li, Minghui; Kales, Stephen C.; Ma, Ke; Shoemaker, Benjamin A.; Crespo-Barreto, Juan; Cangelosi, Andrew L.; Lipkowitz, Stanley; Panchenko, Anna R.

    2015-01-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved depicting the protein at different stages of its activation cycle and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than did random non-cancer mutations. We further tested the ability of these computational models assessing the changes in CBL stability and its binding to ubiquitin conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  2. A WD-Repeat Protein Stabilizes ORC Binding to Chromatin

    PubMed Central

    Shen, Zhen; Sathyan, Kizhakke M.; Geng, Yijie; Zheng, Ruiping; Chakraborty, Arindam; Freeman, Brian; Wang, Fei; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2015-01-01

    SUMMARY Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells. PMID:20932478

  3. A WD-repeat protein stabilizes ORC binding to chromatin.

    PubMed

    Shen, Zhen; Sathyan, Kizhakke M; Geng, Yijie; Zheng, Ruiping; Chakraborty, Arindam; Freeman, Brian; Wang, Fei; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2010-10-08

    Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  5. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  6. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    PubMed

    Afek, Ariel; Cohen, Hila; Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B

    2015-08-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  7. Stress- and Rho-activated ZO-1–associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival

    PubMed Central

    Nie, Mei; Balda, Maria S.; Matter, Karl

    2012-01-01

    A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822

  8. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.

    PubMed

    Pivovarova, Anastasia V; Khaitlina, Sofia Yu; Levitsky, Dmitrii I

    2010-09-01

    Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. © 2010 The Authors Journal compilation © 2010 FEBS.

  9. Effects of Metal Ions on Stability and Activity of Hyperthermophilic Pyrolysin and Further Stabilization of This Enzyme by Modification of a Ca2+-Binding Site

    PubMed Central

    Zeng, Jing; Gao, Xiaowei; Dai, Zheng; Tang, Bing

    2014-01-01

    Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na+, Ca2+, or Mg2+ salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca2+-binding sites (Ca1 and Ca2) revealed that the binding of Ca2+ is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca2+-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin. PMID:24561589

  10. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. © 2012 Institute of Botany, Chinese Academy of Sciences.

  11. Substrate ground state binding energy concentration is realized as transition state stabilization in physiological enzyme catalysis.

    PubMed

    Britt, Billy Mark

    2004-09-30

    Previously published kinetic data on the interactions of seventeen different enzymes with their physiological substrates are re-examined in order to understand the connection between ground state binding energy and transition state stabilization of the enzyme-catalyzed reactions. When the substrate ground state binding energies are normalized by the substrate molar volumes, binding of the substrate to the enzyme active site may be thought of as an energy concentration interaction; that is, binding of the substrate ground state brings in a certain concentration of energy. When kinetic data of the enzyme/substrate interactions are analyzed from this point of view, the following relationships are discovered: 1) smaller substrates possess more binding energy concentrations than do larger substrates with the effect dropping off exponentially, 2) larger enzymes (relative to substrate size) bind both the ground and transition states more tightly than smaller enzymes, and 3) high substrate ground state binding energy concentration is associated with greater reaction transition state stabilization. It is proposed that these observations are inconsistent with the conventional (Haldane) view of enzyme catalysis and are better reconciled with the shifting specificity model for enzyme catalysis.

  12. DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA

    PubMed Central

    Du, Yaqing; Topp, Christopher N.; Dawe, R. Kelly

    2010-01-01

    Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically). It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics. PMID:20140237

  13. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.

  14. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12.

    PubMed

    Ueno-Noto, Kaori; Takano, Keiko

    2016-10-05

    Water molecules inside biomolecules constitute integral parts of their structure and participate in the functions of the proteins. Some of the X-ray crystallographic data are insufficient for analyzing a series of ligand-protein complexes in the same condition. We theoretically investigated antibody binding abilities of saccharide ligands and the effects of the inner water molecules of ligand-antibody complexes. Classical molecular dynamics and quantum chemical simulations using a model with possible water molecules inside the protein were performed with saccharide ligands and Human Immunodeficiency Virus 1 neutralizing antibody 2G12 complexes to estimate how inner water molecules of the protein affect the dynamics of the complexes as well as the ligand-antibody interaction. Our results indicate the fact that d-fructose's strong affinity to the antibody was partly due to the good retentiveness of solvent water molecules of the ligand and its stability of the ligand's conformation and relative position in the active site. © 2016 Wiley Periodicals, Inc.

  15. Comparative effects of cryosolvents on tubulin association, thermal stability, and binding of microtubule-associated proteins.

    PubMed

    Pajot-Augy, E

    1993-06-01

    Organic cryosolvents essential for cryopreservation of living cells have a colligative effect on water properties, but also affect cellular structures such as the membrane, actin, or tubulin cytoskeleton. The effects of cryosolvents on actin and its binding proteins are starting to be well investigated. In parallel, tubulin assembly characteristics were investigated comparatively, with 0-30% 1,2-propanediol, dimethyl sulfoxide, or glycerol, and with or without microtubule-associated proteins, at 37 or 4 degrees C. Tubulin association was monitored by spectrometry and sedimentation, providing the concentration in free protein, cold-depolymerizable microtubules, and cold-resistant associations. At 37 degrees C, 1,2-propanediol and dimethyl sulfoxide induce a similar association level and cold stability of the assemblies. Glycerol yields a lower level of tubulin association. Cold stability of the assemblies requires the presence of solvent, the amount of which is modulated by microtubule-associated proteins (MAPs): 15% 1,2-propanediol or dimethyl sulfoxide, decreasing down to 10% with MAPs, or 10% glycerol with MAPs only. At 4 degrees C, some cold-stable association is promoted by 1,2-propanediol or dimethyl sulfoxide above 10-15%, in the presence or absence of MAPs, but not with glycerol. In addition, protein content of the various fractions obtained with MAPs and 30% solvent was examined by densitometry of electrophoresis gels. Cold-labile associations obtained at 37 degrees C with 1,2-propanediol or dimethyl sulfoxide are lacking in tubulin and enriched in tau proteins relative to control or glycerol. Associations formed at 37 degrees C and stable to subsequent cold treatment, or at 4 degrees C, regardless of the solvent, present a large tubulin content, as well as few tau proteins and high-molecular-weight MAPs.

  16. Mothers' affective behavior with infant siblings: stability and change.

    PubMed

    Moore, G A; Cohn, J F; Campbell, S B

    1997-09-01

    To evaluate within-family differences in maternal affective behavior toward siblings, face-to-face interactions were observed between 39 mothers and their firstborn and second-born infants at 2 months of age. Mother and infant affect was coded on a 1-s time base with behavioral descriptors. Mothers were more positive with second-born infants, and second-born infants were more positive than were firstborns. The siblings' affective behaviors were unrelated, but maternal positive affect was both moderately stable between siblings and correlated with each infant's affect. Thus, in the context of stable individual differences in maternal positive affect, siblings experienced unique affective interactions with their mothers as early as 2 months.

  17. Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles.

    PubMed

    Wang, Yufang; Wang, Xiaoyong

    2015-12-01

    This work is to study the potential of particles fabricated from soy protein isolate (SPI) as a protective carrier for quercetin. When the concentration of SPI particles increases from 0 to 0.35 g/L, quercetin gives a gradually increased fluorescence intensity and fluorescence anisotropy. The addition of quercetin can highly quench the intrinsic fluorescence of SPI particles. These results are explained in terms of the binding of quercetin to the hydrophobic pockets of SPI particles mainly through the hydrophobic force together with the hydrogen bonding. The small difference in the binding constants at 25 and 40 °C suggests the structural stability of SPI particles. The relative changes in values of Gibbs energy, enthalpy, and entropy indicate that the binding of quercetin with SPI particles is spontaneous and hydrophobic interaction is the major force. Furthermore, SPI particles are superior to native SPI for improving the stability and radical scavenging activity of quercetin.

  18. Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability

    SciTech Connect

    Huang, Xiao; Gibson, Lydia M.; Bell, Brittnaie J.; Lovelace, Leslie L.; Pea, Maria Marjorette O.; Berger, Franklin G.; Berger, Sondra H.; Lebioda, Lukasz

    2010-11-03

    Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of {approx}27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K{sub m,app} values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F {center_dot} FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K{sub m,app} value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K{sub m,app} values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.

  19. Collisional unfolding of multiprotein complexes reveals cooperative stabilization upon ligand binding

    PubMed Central

    Niu, Shuai; Ruotolo, Brandon T

    2015-01-01

    Cooperative binding mechanisms are a common feature in biology, enabling a diverse range of protein-based molecular machines to regulate activities ranging from oxygen uptake to cellular membrane transport. Much, however, is not known about such cooperative binding mechanisms, including how such events typically add to the overall stability of such protein systems. Measurements of such cooperative stabilization events are challenging, as they require the separation and resolution of individual protein complex bound states within a mixture of potential stoichiometries to individually assess protein stabilities. Here, we report ion mobility-mass spectrometry results for the concanavalin A tetramer bound to a range of polysaccharide ligands. We use collision induced unfolding, a relatively new methodology that functions as a gas-phase analog of calorimetry experiments in solution, to individually assess the stabilities of concanavalin A bound states. By comparing the differences in activation voltage required to unfold different concanavalin A–ligand stoichiometries, we find evidence suggesting a cooperative stabilization of concanavalin A occurs upon binding most carbohydrate ligands. We critically evaluate this observation by assessing a broad range of ligands, evaluating the unfolding properties of multiple protein charge states, and by comparing our gas-phase results with those obtained from calorimetry experiments carried out in solution. PMID:25970849

  20. Role of conserved salt bridges in homeodomain stability and DNA binding.

    PubMed

    Torrado, Mario; Revuelta, Julia; Gonzalez, Carlos; Corzana, Francisco; Bastida, Agatha; Asensio, Juan Luis

    2009-08-28

    The sequence information available for homeodomains reveals that salt bridges connecting pairs 19/30, 31/42, and 17/52 are frequent, whereas aliphatic residues at these sites are rare and mainly restricted to proteins from homeotherms. We have analyzed the influence of salt and hydrophobic bridges at these sites on the stability and DNA binding properties of human Hesx-1 homeodomain. Regarding the protein stability, our analysis shows that hydrophobic side chains are clearly preferred at positions 19/30 and 31/42. This stabilizing influence results from the more favorable packing of the aliphatic side chains with the protein core, as illustrated by the three-dimensional solution structure of a thermostable variant, herein reported. In contrast only polar side chains seem to be tolerated at positions 17/52. Interestingly, despite the significant influence of pairs 19/30 and 31/42 on the stability of the homeodomain, their effect on DNA binding ranges from modest to negligible. The observed lack of correlation between binding strength and conformational stability in the analyzed variants suggests that salt/hydrophobic bridges at these specific positions might have been employed by evolution to independently modulate both properties.

  1. Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization.

    PubMed

    Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui

    2009-12-15

    The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in beta-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that, like Taxol, discodermolide binds to the taxane binding pocket in beta-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and toward the N-terminal H1-S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the alpha-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent beta-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo.

  2. Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents

    NASA Astrophysics Data System (ADS)

    Botta, Maurizio; Forli, Stefano; Magnani, Matteo; Manetti, Fabrizio

    Tubulin targeting agents constitute an important class of anticancer drugs. By acting either as microtubule stabilizers or destabilizers, they disrupt microtubule dynamics, thus inducing mitotic arrest and, ultimately, cell death by apoptosis. Three different binding sites, whose exact location on tubulin has been experimentally detected, have been identified so far for antimitotic compound targeting microtubules, namely the taxoid, the colchicine and the vinka alkaloid binding site. A number of ligand- and structure-based molecular modeling studies in this field has been reported over the years, aimed at elucidating the binding modes of both stabilizing and destabilizing agent, as well as the molecular features responsible for their efficacious interaction with tubulin. Such studies are described in this review, focusing on information provided by different modeling approaches on the structural determinants of antitubulin agents and the interactions with the binding pockets on tubulin emerged as fundamental for antitumor activity.To describe molecular modeling approaches applied to date to molecules known to bind microtubules, this paper has been divided into two main parts: microtubule destabilizing (Part 1) and stabilizing (Part 2) agents. The first part includes structure-based and ligand-based approaches to study molecules targeting colchicine (1.1) and vinca alkaloid (1.2) binding sites, respectively. In the second part, the studies performed on microtubule-stabilizing antimitotic agents (MSAA) are described. Starting from the first representative compound of this class, paclitaxel, molecular modeling studies (quantitative structure-activity relationships - QSAR - and structure-based approaches), performed on natural compounds acting with the same mechanism of action and temptative common pharmacophoric hypotheses for all of these compounds, are reported.

  3. Dynamic stability as affected by the longitudinal moment of inertia

    NASA Technical Reports Server (NTRS)

    Wilson, Edwin B

    1924-01-01

    In a recent Technical Note (NACA-TN-115, October, 1922), Norton and Carrol have reported experiments showing that a relatively large (15 per cent) increase in longitudinal moment of inertia made no noticeable difference in the stability of a standard SE-5A airplane. They point out that G. P. Thomson, "Applied Aeronautics," page 208, stated that an increase in longitudinal moment of inertia would decrease the stability. Neither he nor they make any theoretical forecast of the amount of decrease. Although it is difficult, on account of the complications of the theory of stability of the airplane, to make any accurate forecast, it is the purpose of this report to attempt a discussion of the matter theoretically with reference to finding a rough quantitative estimate.

  4. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore

    NASA Astrophysics Data System (ADS)

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Bublikov, G. S.; Kuznetsova, I. M.; Verkhusha, V. V.; Turoverov, K. K.

    2017-07-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms.

  5. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    SciTech Connect

    Sams, C.F.; Matthews, K.S.

    1988-04-05

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.

  6. Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    PubMed Central

    Klebba, Joseph E.; Galletta, Brian J.; Nye, Jonathan; Plevock, Karen M.; Buster, Daniel W.; Hollingsworth, Natalie A.; Slep, Kevin C.

    2015-01-01

    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification. PMID:25688134

  7. FACTORS AFFECTING DISINFECTION AND STABILIZATION OF SEWAGE SLUDGE

    EPA Science Inventory

    Effective disinfection and stabilization of sewage sludge prior to land application is essential to not only protect human health, but also to convince the public of its benefits and safety. A basic understanding of the key factors involved in producing a stable biosolid product ...

  8. Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.

    PubMed

    Armbruster-Genç, Diana J N; Ueltzhöffer, Kai; Fiebach, Christian J

    2016-04-06

    Recent research yielded the intriguing conclusion that, in healthy adults, higher levels of variability in neuronal processes are beneficial for cognitive functioning. Beneficial effects of variability in neuronal processing can also be inferred from neurocomputational theories of working memory, albeit this holds only for tasks requiring cognitive flexibility. However, cognitive stability, i.e., the ability to maintain a task goal in the face of irrelevant distractors, should suffer under high levels of brain signal variability. To directly test this prediction, we studied both behavioral and brain signal variability during cognitive flexibility (i.e., task switching) and cognitive stability (i.e., distractor inhibition) in a sample of healthy human subjects and developed an efficient and easy-to-implement analysis approach to assess BOLD-signal variability in event-related fMRI task paradigms. Results show a general positive effect of neural variability on task performance as assessed by accuracy measures. However, higher levels of BOLD-signal variability in the left inferior frontal junction area result in reduced error rate costs during task switching and thus facilitate cognitive flexibility. In contrast, variability in the same area has a detrimental effect on cognitive stability, as shown in a negative effect of variability on response time costs during distractor inhibition. This pattern was mirrored at the behavioral level, with higher behavioral variability predicting better task switching but worse distractor inhibition performance. Our data extend previous results on brain signal variability by showing a differential effect of brain signal variability that depends on task context, in line with predictions from computational theories. Recent neuroscientific research showed that the human brain signal is intrinsically variable and suggested that this variability improves performance. Computational models of prefrontal neural networks predict differential

  9. Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules.

    PubMed

    Chen, Liqun; Drake, Matthew R; Resch, Michael G; Greene, Eric R; Himmel, Michael E; Chaffey, Patrick K; Beckham, Gregg T; Tan, Zhongping

    2014-05-27

    The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs.

  10. Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules

    PubMed Central

    Chen, Liqun; Drake, Matthew R.; Resch, Michael G.; Greene, Eric R.; Himmel, Michael E.; Chaffey, Patrick K.; Beckham, Gregg T.; Tan, Zhongping

    2014-01-01

    The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs. PMID:24821760

  11. Does implant design affect primary stability in extraction sites?

    PubMed

    Karl, Matthias; Irastorza-Landa, Ainara

    2017-01-01

    Immediate implant placement and restoration following tooth extraction is desirable for shortening treatment times and maintaining oral structures. With a variety of bone-level implants available on the market, the goal of this in-vitro study was to compare different implant designs. Using a polyurethane foam sandwich model with an intermediate cortical layer, a standardized extraction socket model was created. The following implant systems were assessed: OsseoSpeed EV (Astra), Straumann Bone Level Tapered (BLT), and Nobel Active (NA). Implant stability assessment included implant insertion torque (IT) and implant stability quotient (ISQ). The three implant systems were compared in a statistical analysis based on the two sample tests with the level of significance set at α = .05 and Bonferroni correction for multiple comparisons. The relationship between IT and ISQ was assessed using the Pearson correlation coefficient. IT values were highest for NA implants, with a mean of 36.52 Ncm, which was significantly greater than in BLT (P < .001) and Astra (P < .001). ISQ values were highest for NA, with a mean 53.9, which was significantly higher than for BLT (P < .001) but not for Astra (P = .07). BLT showed significantly lower ISQ as compared to NA (P < .001) and Astra (P < .001). Overall, the IT and ISQ measurements did not correlate. The developed extraction model allowed for consistent measurements of implant stability parameters at a clinically relevant level. Implant design seems to play a relevant role for achieving primary stability in challenging situations. Next evaluation steps should involve testing under dynamic loading conditions.

  12. Platelet (/sup 3/H)imipramine binding in affective disorders: trait versus state characteristics

    SciTech Connect

    Baron, M.; Barkai, A.; Gruen, R.; Peselow, E.; Fieve, R.R.; Quitkin, F.

    1986-06-01

    Platelet (3H)imipramine binding (Bmax) was determined in 67 patients with major affective illness (33 euthymic bipolar, 34 depressed unipolar) and 58 normal control subjects. Bipolar patients had significantly lower Bmax values than did control subjects. The mean Bmax in the unipolar patients was lower than in the control subjects, but the difference was not statistically significant. Dissociation constant (Kd) values did not distinguish patients in either category from control subjects. The significantly lower Bmax in euthymic bipolar patients and the apparent state independence of Bmax in some but not all unipolar patients suggest that platelet imipramine binding may be a trait marker in a subset of affective disorders.

  13. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  14. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-01-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  15. Factors affecting the threading of axle molecules through macrocycles: Binding constants for semirotaxane formation

    PubMed Central

    Clifford, Thomas; Abushamleh, Ahmad; Busch, Daryle H.

    2002-01-01

    The threading of more or less linear axle molecules through macrocyclic molecules, a fundamental process relating to the formation of interlocked molecular structures, has been investigated through the study in acetone of the equilibrium constants for the formation of pseudorotaxanes by NMR methods. The 30 new axle molecules have in common a secondary ammonium group, present as the thiocyanate salt, and an anthracen-9-ylmethyl group, but are rendered unique by the second amine substituent. All rotaxanes involve the well known polyether macrocycle, benzo[24]crown-8. The constants for the binding of axles having linear groups ranging from 2 to 18 carbon atoms show little variation in binding constant but are divided into two groups by their equilibration rates. Those with less than five methylene groups react rapidly on the NMR timescale, whereas those having more than five methylene groups are slow. Branching inhibits binding, but the effect decreases as the branch is moved away from the amine. Phenyl groups weaken binding when close to the amine but strengthen binding when more remote. Some functional groups decrease pseudorotaxane stability (alcohol functions), whereas others increase binding (carboxylic acid groups). PMID:11959934

  16. Binding.

    ERIC Educational Resources Information Center

    Rebsamen, Werner

    1981-01-01

    Categorizes contemporary methods of binding printed materials in terms of physical preservation--hand binding (archival restoration), edition binding (paperback, hardcover), publication binding (magazines), textbook binding (sidesewn), single-sheet binding (loose-leaf, mechanical), and library binding (oversewn, sidesewn). Seven references are…

  17. Feature binding and affect: emotional modulation of visuo-motor integration.

    PubMed

    Colzato, Lorenza S; van Wouwe, Nelleke C; Hommel, Bernhard

    2007-01-28

    The primate cortex represents the external world in a distributed fashion, which calls for a mechanism that integrates and binds the features of a perceived or processed event. Animal and patients studies provide evidence that feature binding in the visual cortex is driven by the muscarinic-cholinergic system, whereas visuo-motor integration may be under dopaminergic control. Consistent with this scenario, we present indication that the binding of visual and action features is modulated by emotions through the probable stimulation of the dopaminergic system. Interestingly, the impact of emotions on binding was restricted to tasks in which shape was task-relevant, suggesting that extracting affective information is not automatic but requires attention to shape.

  18. Antibacterial surfaces by adsorptive binding of polyvinyl-sulphonate-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Vasilev, Krasimir; Sah, Vasu R.; Goreham, Renee V.; Ndi, Chi; Short, Robert D.; Griesser, Hans J.

    2010-05-01

    This paper presents a novel and facile method for the generation of efficient antibacterial coatings which can be applied to practically any type of substrate. Silver nanoparticles were stabilized with an adsorbed surface layer of polyvinyl sulphonate (PVS). This steric layer provided excellent colloidal stability, preventing aggregation over periods of months. PVS-coated silver nanoparticles were bound onto amine-containing surfaces, here produced by deposition of an allylamine plasma polymer thin film onto various substrates. SEM imaging showed no aggregation upon surface binding of the nanoparticles; they were well dispersed on amine surfaces. Such nanoparticle-coated surfaces were found to be effective in preventing attachment of Staphylococcus epidermidis bacteria and also in preventing biofilm formation. Combined with the ability of plasma polymerization to apply the thin polymeric binding layer onto a wide range of materials, this method appears promising for the fabrication of a wide range of infection-resistant biomedical devices.

  19. Folding and stability of the ligand-binding domain of the glucocorticoid receptor

    PubMed Central

    McLaughlin, Stephen H.; Jackson, Sophie E.

    2002-01-01

    A complex pathway involving many molecular chaperones has been proposed for the folding, assembly, and maintenance of a high-affinity ligand-binding form of steroid receptors in vivo, including the glucocorticoid receptor. To better understand this intricate folding and assembly process, we studied the folding of the ligand-binding domain of the glucocorticoid receptor in vitro. We found that this domain can be refolded into a compact, highly structured state in vitro in the absence of chaperones. However, the presence of zwitterionic detergent is required to maintain the domain in a soluble form. In this state, the protein is dimeric and has considerable helical structure as shown by far-UV circular dichroism. Further investigation of the properties of this in vitro refolded state show that it is stable and resistant to denaturation by heat or low concentrations of chemical denaturants. A detailed analysis of the unfolding equilibria using three different structural probes demonstrated that this state unfolds via a highly populated dimeric intermediate state. Together, these data clearly show that the ligand-binding domain of the glucocorticoid receptor does not require chaperones for folding per se. However, this in vitro refolded state binds the ligand dexamethasone only weakly (Kd = 45 μM) compared to the in vivo assembled receptor (Kd = 3.4 nM). We suggest that the role of Hsp90 and associated chaperones is to bind to, and stabilize, a specific conformational state of the receptor which binds ligand with high affinity. PMID:12142447

  20. Binding to F-actin guides cadherin cluster assembly, stability, and movement

    PubMed Central

    Hong, Soonjin; Troyanovsky, Regina B.

    2013-01-01

    The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin–uncoupled adhesive clusters displayed high instability and random motion. Their assembly required a cadherin cis-binding interface. Coupling these clusters with F-actin through an α-catenin actin-binding domain (αABD) dramatically extended cluster lifetime and conferred direction to cluster motility. In addition, αABD partially lifted the requirement for the cis-interface for cluster assembly. Even more dramatic enhancement of cadherin clustering was observed if αABD was joined with cadherin through a flexible linker or if it was replaced with an actin-binding domain of utrophin. These data present direct evidence that binding to F-actin stabilizes cadherin clusters and cooperates with the cis-interface in cadherin clustering. Such cooperation apparently synchronizes extracellular and intracellular binding events in the process of adherens junction assembly. PMID:23547031

  1. Improved surface stability and biotin binding properties of streptavidin coating on polystyrene.

    PubMed

    Ylikotila, Johanna; Välimaa, Lasse; Takalo, Harri; Pettersson, Kim

    2009-05-01

    The ultimate nature of streptavidin to bind biotin tightly is widely utilized in many solid-phase based applications to provide a universal binding surface for biotinylated molecules. However, the preparation of the streptavidin coatings by passive adsorption may heavily alter the binding properties of native streptavidin and may not result in the best possible capture surface for demanding solid-phase assays. By introducing sulphydryl groups through primary amines in the protein, we have activated and conjugated native streptavidin into larger protein polymers resulting in high local binding density when coated on polystyrene. This thiolated streptavidin formed through chemical modification has improved adsorption properties and biotin binding capability, compared to the native streptavidin. When this thiolated streptavidin is coated on polystyrene, a dense surface is formed, which provides up to 3-fold increase in the biotin binding efficiency and improves the surface stability by minimizing the desorption of the adsorbed protein from the surface during incubation. Furthermore, this high-capacity surface is resistant to harsh chemical treatments, such as denaturing conditions or mild reducing conditions. The improved adsorption properties of the thiolated streptavidin allow the coating process to be performed with shorter incubation times (15min), still providing enhanced solid-phase properties, compared to a reference streptavidin surface.

  2. Nox5 Stability and Superoxide Production is Regulated by C-terminal Binding of Hsp90 and Co-Chaperones

    PubMed Central

    Chen, Feng; Haigh, Steven; Yu, Yanfang; Benson, Tyler; Wang, Yusi; Li, Xueyi; Dou, Huijuan; Bagi, Zsolt; Verin, Alexander D.; Stepp, David W.; Csanyi, Gabor; Chadli, Ahmed; Weintraub, Neal L.; Smith, Susan M. E.; Fulton, David J.R.

    2015-01-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone that orchestrates the folding and stability of proteins that regulate cellular signaling, proliferation and inflammation. We have previously shown that Hsp90 controls the production of reactive oxygen species by modulating the activity of Noxes1-3 and 5, but not Nox4. The goal of the current study was to define the regions on Nox5 that bind Hsp90 and determine how Hsp90 regulates enzyme activity. In isolated enzyme activity assays, we found that Hsp90 inhibitors selectively decrease superoxide, but not hydrogen peroxide, production. The addition of Hsp90 alone only modestly increases Nox5 enzyme activity but in combination with the co-chaperones, Hsp70, HOP, Hsp40, and p23 it robustly stimulated superoxide, but not hydrogen peroxide, production. Proximity ligation assays reveal that Nox5 and Hsp90 interact in intact cells. In cell lysates using a co-IP approach, Hsp90 binds to Nox5 but not Nox4, and the degree of binding can be influenced by calcium-dependent stimuli. Inhibition of Hsp90 induced the degradation of full length, catalytically inactive and a C-terminal fragment (aa398–719) of Nox5. In contrast, inhibition of Hsp90 did not affect the expression levels of N-terminal fragments (aa1–550) suggesting that Hsp90 binding maintains the stability of C-terminal regions. In Co-IP assays, Hsp90 was bound only to the C-terminal region of Nox5. Further refinement using deletion analysis revealed that the region between aa490–550 mediates Hsp90 binding. Converse mapping experiments show that the C-terminal region of Nox5 bound to the M domain of Hsp90 (aa310–529). In addition to Hsp90, Nox5 bound other components of the foldosome including co-chaperones Hsp70, HOP, p23 and Hsp40. Silencing of HOP, Hsp40 and p23 reduced Nox5-dependent superoxide. In contrast, increased expression of Hsp70 decreased Nox5 activity whereas a mutant of Hsp70 failed to do so. Inhibition of Hsp90 results in the loss of higher

  3. Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers.

    PubMed

    Jeng, Sunny C Y; Chan, Hedy H Y; Booy, Evan P; McKenna, Sean A; Unrau, Peter J

    2016-12-01

    The effective tracking and purification of biological RNAs and RNA protein complexes is currently challenging. One promising strategy to simultaneously address both of these problems is to develop high-affinity RNA aptamers against taggable small molecule fluorophores. RNA Mango is a 39-nucleotide, parallel-stranded G-quadruplex RNA aptamer motif that binds with nanomolar affinity to a set of thiazole orange (TO1) derivatives while simultaneously inducing a 10(3)-fold increase in fluorescence. We find that RNA Mango has a large increase in its thermal stability upon the addition of its TO1-Biotin ligand. Consistent with this thermal stabilization, RNA Mango can effectively discriminate TO1-Biotin from a broad range of small molecule fluorophores. In contrast, RNA Spinach, which is known to have a substantially more rigid G-quadruplex structure, was found to bind to this set of fluorophores, often with higher affinity than to its native ligand, 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), and did not exhibit thermal stabilization in the presence of the TO1-Biotin fluorophore. Our data suggest that RNA Mango is likely to use a concerted ligand-binding mechanism that allows it to simultaneously bind and recognize its TO1-Biotin ligand, whereas RNA Spinach appears to lack such a mechanism. The high binding affinity and fluorescent efficiency of RNA Mango provides a compelling alternative to RNA Spinach as an RNA reporter system and paves the way for the future development of small fluorophore RNA reporter systems. © 2016 Jeng et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. Cow biological type affects ground beef colour stability.

    PubMed

    Raines, Christopher R; Hunt, Melvin C; Unruh, John A

    2009-12-01

    To determine the effects of cow biological type on colour stability of ground beef, M. semimembranosus from beef-type (BSM) and dairy-type (DSM) cows was obtained 5d postmortem. Three blends (100% BSM, 50% BSM+50% DSM, 100% DSM) were adjusted to 90% and 80% lean points using either young beef trim (YBT) or beef cow trim (BCT), then packaged in high oxygen (High-O(2); 80% O(2)) modified atmosphere (MAP). The BSM+YBT patties had the brightest colour initially, but discoloured rapidly. Although DSM+BCT patties had the darkest colour initially, they discoloured least during display. Metmyoglobin reducing ability of ground DSM was up to fivefold greater than ground BSM, and TBARS values of BSM was twofold greater than DSM by the end of display (4d). Though initially darker than beef cow lean, dairy cow lean has a longer display colour life and may be advantageous to retailers using High-O(2) MAP.

  5. Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments.

    PubMed

    Schmidt, Yvonne; Biniossek, Martin; Stark, G Björn; Finkenzeller, Günter; Simunovic, Filip

    2015-03-01

    Vascularization is essential in bone tissue engineering and recent research has focused on interactions between osteoblasts (hOBs) and endothelial cells (ECs). It was shown that cocultivation increases the stability of osteoblastic alkaline phosphatase (ALP) mRNA. We investigated the mechanisms behind this observation, focusing on mRNA binding proteins. Using a luciferase reporter assay, we found that the 3'-untranslated region (UTR) of ALP mRNA is necessary for human umbilical vein endothelial cells (HUVEC)-mediated stabilization of osteoblastic ALP mRNA. Using pulldown experiments and nanoflow-HPLC mass spectrometry, vimentin was identified to bind to the 3'-UTR of ALP mRNA. Validation was performed by Western blotting. Functional experiments inhibiting intermediate filaments with iminodipropionitrile and specific inhibition of vimentin by siRNA transfection showed reduced levels of ALP mRNA and protein. Therefore, ALP mRNA binds to and is stabilized by vimentin. This data add to the understanding of intracellular trafficking of ALP mRNA, its function, and have possible implications in tissue engineering applications.

  6. The Structure, Stability and Pheromone Binding of the Male Mouse Protein Sex Pheromone Darcin

    PubMed Central

    Phelan, Marie M.; McLean, Lynn; Armstrong, Stuart D.; Hurst, Jane L.; Beynon, Robert J.; Lian, Lu-Yun

    2014-01-01

    Mouse urine contains highly polymorphic major urinary proteins that have multiple functions in scent communication through their abilities to bind, transport and release hydrophobic volatile pheromones. The mouse genome encodes for about 20 of these proteins and are classified, based on amino acid sequence similarity and tissue expression patterns, as either central or peripheral major urinary proteins. Darcin is a male specific peripheral major urinary protein and is distinctive in its role in inherent female attraction. A comparison of the structure and biophysical properties of darcin with MUP11, which belongs to the central class, highlights similarity in the overall structure between the two proteins. The thermodynamic stability, however, differs between the two proteins, with darcin being much more stable. Furthermore, the affinity of a small pheromone mimetic is higher for darcin, although darcin is more discriminatory, being unable to bind bulkier ligands. These attributes are due to the hydrophobic ligand binding cavity of darcin being smaller, caused by the presence of larger amino acid side chains. Thus, the physical and chemical characteristics of the binding cavity, together with its extreme stability, are consistent with darcin being able to exert its function after release into the environment. PMID:25279835

  7. Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories

    SciTech Connect

    Catto, I. ); Lions, P.L.

    1993-01-01

    This paper is the sequel of a previous work where the authors showed a general necessary and sufficient condition for the stability of an arbitrary molecular system (possibly ionized) in the framework of Hartree or Thomas-Fermi type theories. This condition, roughly speaking, meant that certain particular subsystems have to be bound. They show here in particular that this condition reduces for general molecular system with nonnegative excess charge to the binding of all subsystems with the same property. For neutral molecular systems, this reduces to the binding of all neutral subsystems. In both cases, all other subsystems can be bound. They also show that, for the Hartree-Fock and Hartree models, this condition involves only physical subsystems. They use these reduced conditions to conclude about the stability or the binding in some particular cases. This work is also the second of a series devoted to these equations and the authors come back on the binding of neutral systems in Part 3. 18 refs.

  8. Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression

    PubMed Central

    Kintner, Chris

    2017-01-01

    Cooperative transcription factor binding at cis-regulatory sites in the genome drives robust eukaryotic gene expression, and many such sites must be coordinated to produce coherent transcriptional programs. The transcriptional program leading to motile cilia formation requires members of the DNA-binding forkhead (Fox) and Rfx transcription factor families and these factors co-localize to cilia gene promoters, but it is not clear how many cilia genes are regulated by these two factors, whether these factors act directly or indirectly, or how these factors act with specificity in the context of a 3-dimensional genome. Here, we use genome-wide approaches to show that cilia genes reside at the boundaries of topological domains and that these areas have low enhancer density. We show that the transcription factors Foxj1 and Rfx2 binding occurs in the promoters of more cilia genes than other known cilia transcription factors and that while Rfx2 binds directly to promoters and enhancers equally, Foxj1 prefers direct binding to enhancers and is stabilized at promoters by Rfx2. Finally, we show that Rfx2 and Foxj1 lie at the anchor endpoints of chromatin loops, suggesting that target genes are activated when Foxj1 bound at distal sites is recruited via a loop created by Rfx2 binding at both sites. We speculate that the primary function of Rfx2 is to stabilize distal enhancers with proximal promoters by operating as a scaffolding factor, bringing key regulatory domains bound by Foxj1 into close physical proximity and enabling coordinated cilia gene expression. PMID:28103240

  9. Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression.

    PubMed

    Quigley, Ian K; Kintner, Chris

    2017-01-01

    Cooperative transcription factor binding at cis-regulatory sites in the genome drives robust eukaryotic gene expression, and many such sites must be coordinated to produce coherent transcriptional programs. The transcriptional program leading to motile cilia formation requires members of the DNA-binding forkhead (Fox) and Rfx transcription factor families and these factors co-localize to cilia gene promoters, but it is not clear how many cilia genes are regulated by these two factors, whether these factors act directly or indirectly, or how these factors act with specificity in the context of a 3-dimensional genome. Here, we use genome-wide approaches to show that cilia genes reside at the boundaries of topological domains and that these areas have low enhancer density. We show that the transcription factors Foxj1 and Rfx2 binding occurs in the promoters of more cilia genes than other known cilia transcription factors and that while Rfx2 binds directly to promoters and enhancers equally, Foxj1 prefers direct binding to enhancers and is stabilized at promoters by Rfx2. Finally, we show that Rfx2 and Foxj1 lie at the anchor endpoints of chromatin loops, suggesting that target genes are activated when Foxj1 bound at distal sites is recruited via a loop created by Rfx2 binding at both sites. We speculate that the primary function of Rfx2 is to stabilize distal enhancers with proximal promoters by operating as a scaffolding factor, bringing key regulatory domains bound by Foxj1 into close physical proximity and enabling coordinated cilia gene expression.

  10. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder.

    PubMed

    Mc Mahon, Brenda; Andersen, Sofie B; Madsen, Martin K; Hjordt, Liv V; Hageman, Ida; Dam, Henrik; Svarer, Claus; da Cunha-Bang, Sofi; Baaré, William; Madsen, Jacob; Hasholt, Lis; Holst, Klaus; Frokjaer, Vibe G; Knudsen, Gitte M

    2016-05-01

    Cross-sectional neuroimaging studies in non-depressed individuals have demonstrated an inverse relationship between daylight minutes and cerebral serotonin transporter; this relationship is modified by serotonin-transporter-linked polymorphic region short allele carrier status. We here present data from the first longitudinal investigation of seasonal serotonin transporter fluctuations in both patients with seasonal affective disorder and in healthy individuals. Eighty (11)C-DASB positron emission tomography scans were conducted to quantify cerebral serotonin transporter binding; 23 healthy controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding in the summer but in their symptomatic phase during winter, patients with seasonal affective disorder had higher serotonin transporter than the healthy control subjects (P = 0.01). Compared to the healthy controls, patients with seasonal affective disorder changed their serotonin transporter significantly less between summer and winter (P < 0.001). Further, the change in serotonin transporter was sex- (P = 0.02) and genotype- (P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom severity, as indexed by Hamilton Rating Scale for Depression - Seasonal Affective Disorder version scores (P = 0.01). Our findings suggest that the development of depressive symptoms in winter is associated with a failure to downregulate serotonin transporter levels appropriately during exposure to the environmental stress of winter, especially in individuals with high predisposition to affective disorders.media-1vid110.1093/brain/aww043_video_abstractaww043_video_abstract.

  11. Stabilization of Cu(I) for binding and calorimetric measurements in aqueous solution†

    PubMed Central

    Johnson, Destinee K.; Stevenson, Michael J.; Almadidy, Zayed A.; Jenkins, Sharon E.; Wilcox, Dean. E.; Grossoehme, Nicholas E.

    2015-01-01

    Conditions have been developed for the comproportionation reaction of Cu2+ and copper metal to prepare aqueous solutions of Cu+ that are stabilized from disproportionation by MeCN and other Cu+-stabilizing ligands. These solutions were then used in ITC measurements to quantify the thermodynamics of formation of a set of Cu+ complexes (CuI(MeCN)3+, CuIMe6Trien+, CuI(BCA)23−, CuI(BCS)23−), which have stabilities ranging over 15 orders of magnitude, for their use in binding and calorimetric measurements of Cu+ interaction with proteins and other biological macromolecules. These complexes were then used to determine the stability and thermodynamics of formation of a 1 : 1 complex of Cu+ with the biologically important tri-peptide glutathione, GSH. These results identify Me6Trien as an attractive Cu+-stabilizing ligand for calorimetric experiments, and suggest that caution should be used with MeCN to stabilize Cu+ due to its potential for participating in unquantifiable ternary interactions. PMID:26327397

  12. Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories

    SciTech Connect

    Catto, I.; Lions, P.L. )

    1993-01-01

    This paper is the third of a series devoted to the study of the binding of atoms, molecules and ions and of the stability of general molecular systems including molecular ions, in the context of Hartree and Thomas-Fermi type theories. For Thomas-Fermi-von Weizsaecker or Thomas-Fermi-Dirac-von Weizsaecker models, it is proven here that neutral systems can be bound and in view of the results shown in the preceding parts this yields the stability of arbitrary molecules (general neutral molecular systems). For the Hartree and Hartree-Fock models, it is proven that neutral planar systems can be bound and this yields the stability of arbitrary tetraatomic molecules for instance. Various variants and extensions are also considered. 24 refs.

  13. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    PubMed Central

    Keefe, Andrew J.; Jiang, Shaoyi

    2013-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein–substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity. PMID:22169873

  14. Mutations that affect phosphorylation of the adenovirus DNA-binding protein alter its ability to enhance its own synthesis.

    PubMed Central

    Morin, N; Delsert, C; Klessig, D F

    1989-01-01

    The multifunctional adenovirus single-strand DNA-binding protein (DBP) is highly phosphorylated. Its phosphorylation sites are located in the amino-terminal domain of the protein, and its DNA- and RNA-binding activity resides in the carboxy-terminal half of the polypeptide. We have substituted cysteine or alanine for up to 10 of these potential phosphorylation sites by using oligonucleotide-directed mutagenesis. Alteration of one or a few of these sites had little effect on the viability of virus containing the mutated DBP. However, when eight or more sites were altered, viral growth decreased significantly. This suggests that the overall phosphorylation state of the protein was more important than whether any particular site was modified. The reduction in growth correlated with both depressed DNA replication and expression of late genes. This reduction was probably the result of lower DBP accumulation in mutant-infected cells. Interestingly, although the stability of the mutated DBP was not affected, DBP synthesis and the level of its mRNA were depressed 5- to 10-fold for the underphosphorylated protein. These results suggest that DBP enhances its own expression and imply that phosphorylation of the DBP may be important for this function. Similarities to several eucaryotic transcriptional activators, which are composed of negatively charged activating domains and separate binding domains, are discussed. Images PMID:2585602

  15. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.

  16. LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding

    PubMed Central

    Layer, Justin H.; Alford, Catherine E.; McDonald, W. Hayes

    2015-01-01

    LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R320LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens. PMID:26598604

  17. Binding of bivalent ions to actinomycete mannanase is accompanied by conformational change and is a key factor in its thermal stability.

    PubMed

    Kumagai, Yuya; Kawakami, Kayoko; Uraji, Misugi; Hatanaka, Tadashi

    2013-01-01

    The study aimed to define the key factors involved in the modulation of actinomycete mannanases. We focused on the roles of carbohydrate-binding modules (CBMs) and bivalent ions. To investigate the effects of these factors, two actinomycete mannanase genes were cloned from Streptomyces thermoluteus (StManII) and Streptomyces lividans (SlMan). CBMs fused to mannanase catalytic domains do not affect the thermal stability of the proteins. CBM2 of StManII increased the catalytic efficiency toward soluble-mannan and insoluble-mannan by 25%-36%, and CBM10 of SlMan increased the catalytic efficiency toward soluble-mannan by 40%-50%. Thermal stability of wild-type and mutant enzymes was enhanced by calcium and manganese. Thermal stability of SlMandC was also slightly enhanced by magnesium. These results indicated that bivalent ion-binding site responsible for thermal stability was in the catalytic domains. Thermal stability of mannanase differed in the kinds of bivalent ions. Isothermal titration calorimetry revealed that the catalytic domain of StManII bound bivalent ions with a K(a) of 5.39±0.45×10(3)-7.56±1.47×10(3)M(-1), and the catalytic domain of SlMan bound bivalent ions with a K(a) of 1.06±0.34×10(3)-3.86±0.94×10(3)M(-1). The stoichiometry of these bindings was consistent with one bivalent ion-binding site per molecule of enzyme. Circular dichroism spectrum revealed that the presence of bivalent ions induced changes in the secondary structures of the enzymes. The binding of certain bivalent ion responsible for thermal stability was accompanied by a different conformational change by each bivalent ion. Actinomycete mannanases belong to GHF5 which contained various hemicellulases; therefore, the information obtained from mannanases applies to the other enzymes.

  18. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation.

    PubMed

    Casillas-Ituarte, Nadia N; Cruz, Carlos H B; Lins, Roberto D; DiBartola, Alex C; Howard, Jessica; Liang, Xiaowen; Höök, Magnus; Viana, Isabelle F T; Sierra-Hernández, M Roxana; Lower, Steven K

    2017-04-11

    The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands (e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous single nucleotide polymorphisms (SNPs) in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight, 20-mer peptide variants containing amino acids A, H, I, K, N, and Q at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 (FnBR-9) of FnBPA. Experimentally measured bond lifetimes (1/koff ) and dissociation constants (Kd = koff / kon ), determined by mechanically dissociating the Fn-peptide complex at loading rates relevant to the cardiovascular system varied from the lowest-affinity H782A+K786A peptide (0.011 sec, 747 µM) to the highest-affinity H782Q+K786N peptide (0.192 sec, 15.7 µM). These AFM results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q+K786I (Kd(app) = 0.2 to 0.5 µM. as determined by SPR) compared with the lowest-affinity double alanine peptide (Kd(app) = 3.8 µM). Together, these findings demonstrate that amino acid substitutions in FnBR-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA) among clinical isolates of S. aureus that cause endovascular infections.

  19. Stability Affects of Artificial Viscosity in Detonation Modeling

    SciTech Connect

    Vitello, P; Souers, P C

    2002-06-03

    Accurate multi-dimensional modeling of detonation waves in solid HE materials is a difficult task. To treat applied problems which contain detonation waves one must consider reacting flow with a wide range of length-scales, non-linear equations of state (EOS), and material interfaces at which the detonation wave interacts with other materials. To be useful numerical models of detonation waves must be accurate, stable, and insensitive to details of the modeling such as the mesh spacing, and mesh aspect ratio for multi-dimensional simulations. Studies we have performed show that numerical simulations of detonation waves can be very sensitive to the form of the artificial viscosity term used. The artificial viscosity term is included in our ALE hydrocode to treat shock discontinuities. We show that a monotonic, second order artificial viscosity model derived from an approximate Riemann solver scheme can strongly damp unphysical oscillations in the detonation wave reaction zone, improving the detonation wave boundary wall interaction. These issues are demonstrated in 2D model simulations presented of the 'Bigplate' test. Results using LX-I 7 explosives are compared with numerical simulation results to demonstrate the affects of the artificial viscosity model.

  20. Rs2853677 modulates Snail1 binding to the TERT enhancer and affects lung adenocarcinoma susceptibility

    PubMed Central

    Mu, Yanchao; Zhang, Peng; Yao, Zhi; Ma, Zhenyi; Liu, Zhe

    2016-01-01

    Genome wide association studies (GWAS) have shown that SNPs in non-coding regions are associated with inherited susceptibility to cancer. The effect of one single SNP, however, is weak. To identify potential co-factors of SNPs, we investigated the underlying mechanism by which SNPs affect lung cancer susceptibility. We found that rs2853677 is located within the Snail1 binding site in a TERT enhancer. This enhancer increases TERT transcription when juxtaposed to the TERT promoter. The binding of Snail1 to the enhancer disrupts enhancer-promoter colocalization and silences TERT transcription. The high risk variant of rs2853677 disrupts the Snail1 binding site and derepresses TERT expression in response to Snail1 upregulation, thus increasing lung adenocarcinoma susceptibility. Our data suggest that Snail1 may be a co-factor of rs2853677 for predicting lung adenocarcinoma susceptibility and prognosis. PMID:27191258

  1. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  2. Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization

    PubMed Central

    Chaudhry, Charu; Weston, Matthew C; Schuck, Peter; Rosenmund, Christian; Mayer, Mark L

    2009-01-01

    AMPA and kainate receptors mediate fast synaptic transmission. AMPA receptor ligand-binding domains form dimers, which are key functional units controlling ion-channel activation and desensitization. Dimer stability is inversely related to the rate and extent of desensitization. Kainate and AMPA receptors share common structural elements, but functional measurements suggest that subunit assembly and gating differs between these subtypes. To investigate this, we constructed a library of GluR6 kainate receptor mutants and directly measured changes in kainate receptor dimer stability by analytical ultracentrifugation, which, combined with electrophysiological experiments, revealed an inverse correlation between dimer stability and the rate of desensitization. We solved crystal structures for a series of five GluR6 mutants, to understand the molecular mechanisms for dimer stabilization. We demonstrate that the desensitized state of kainate receptors acts as a deep energy well offsetting the stabilizing effects of dimer interface mutants, and that the deactivation of kainate receptor responses is dominated by entry into desensitized states. Our results show how neurotransmitter receptors with similar structures and gating mechanisms can exhibit strikingly different functional properties. PMID:19339989

  3. Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin

    PubMed Central

    Raghuram, Nikhil; Strickfaden, Hilmar; McDonald, Darin; Williams, Kylie; Fang, He; Mizzen, Craig; Hayes, Jeffrey J.; Th’ng, John

    2013-01-01

    Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin. PMID:24100296

  4. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  5. Affect influences feature binding in memory: Trading between richness and strength of memory representations.

    PubMed

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2016-10-01

    Research has shown that long-term memory representations of objects are formed as a natural product of perception even without any intentional memorization. It is not known, however, how rich these representations are in terms of the number of bound object features. In particular, because feature binding rests on resource-limited processes, there may be a context-dependent trade-off between the quantity of stored features and their memory strength. The authors examined whether affective state may bring about such a trade-off. Participants incidentally encoded pictures of real-world objects while experiencing positive or negative affect, and the authors later measured memory for 2 features. Results showed that participants traded between richness and strength of memory representations as a function of affect, with positive affect tuning memory formation toward richness and negative affect tuning memory formation toward strength. These findings demonstrate that memory binding is a flexible process that is modulated by affective state. (PsycINFO Database Record

  6. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA.

  7. Development of an efficient G-quadruplex stabilized thrombin binding aptamer containing 3-carbon spacer molecule.

    PubMed

    Naduvile Veedu, Rakesh; Aaldering, Lukas; Poongavanam, Vasanthanathan; Langkjaer, Niels; Murugan, Arul; Jørgensen, Per Trolle; Wengel, Jesper

    2017-02-02

    Thrombin binding aptamer (TBA) that shows anticoagulant properties is one of the most studied G-quadruplex forming aptamers. In this study, we investigated the impact of different chemical modifications such as Spacer-C3, unlocked nucleic acid (UNA) and 3'-amine-modified UNA (amino-UNA) on the structural dynamics and stability of TBA. All three modifications were incorporated at three different loop positions (T3, T7 and T12) of the TBA G-quadruplex structure rendering a series of TBA variants and studied their stability by thermal denaturation studies, folding by circular dichroism spectroscopy and thrombin clotting time. The results showed that Spacer-C3 introduction at T7 loop position (TBA-SP7) significantly improved the stability and thrombin clotting time while maintaining a similar binding affinity as TBA to thrombin. Detailed molecular modelling experiments provided novel insights to the experimental observation that further supported the efficacy of TBA-SP7. The results of this study could provide valuable information for future designs of TBA analogues with superior thrombin inhibition properties.

  8. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation

    PubMed Central

    Weiffert, Tanja; Ní Mhurchú, Niamh; O’Connell, David; Linse, Sara

    2016-01-01

    Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation. PMID:27812162

  9. Zn2+ selectively stabilizes FdU-substituted DNA through a unique major groove binding motif.

    PubMed

    Ghosh, Supratim; Salsbury, Freddie R; Horita, David A; Gmeiner, William H

    2011-05-01

    We report, based on semi-empirical calculations, that Zn(2+) binds duplex DNA containing consecutive FdU-dA base pairs in the major groove with distorted trigonal bipyramidal geometry. In this previously uncharacterized binding motif, O4 and F5 on consecutive FdU are axial ligands while three water molecules complete the coordination sphere. NMR spectroscopy confirmed Zn(2+) complexation occurred with maintenance of base pairing while a slight hypsochromic shift in circular dichroism (CD) spectra indicated moderate structural distortion relative to B-form DNA. Zn(2+) complexation inhibited ethidium bromide (EtBr) intercalation and stabilized FdU-substituted duplex DNA (ΔT(m) > 15 °C). Mg(2+) neither inhibited EtBr complexation nor had as strong of a stabilizing effect. DNA sequences that did not contain consecutive FdU were not stabilized by Zn(2+). A lipofectamine preparation of the Zn(2+)-DNA complex displayed enhanced cytotoxicity toward prostate cancer cells relative to the individual components prepared as lipofectamine complexes indicating the potential utility of Zn(2+)-DNA complexes for cancer treatment.

  10. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.

    PubMed

    Gimenez, Luis E; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G; Gurevich, Vsevolod V

    2014-07-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.

  11. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes

    PubMed Central

    Gimenez, Luis E.; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G.; Gurevich, Vsevolod V.

    2014-01-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor. PMID:24686081

  12. How much does emotional valence of action outcomes affect temporal binding?

    PubMed

    Moreton, Joshua; Callan, Mitchell J; Hughes, Gethin

    2017-03-01

    Temporal binding refers to the compression of the perceived time interval between voluntary actions and their sensory consequences. Research suggests that the emotional content of an action outcome can modulate the effects of temporal binding. We attempted to conceptually replicate these findings using a time interval estimation task and different emotionally-valenced action outcomes (Experiments 1 and 2) than used in previous research. Contrary to previous findings, we found no evidence that temporal binding was affected by the emotional valence of action outcomes. After validating our stimuli for equivalence of perceived emotional valence and arousal (Experiment 3), in Experiment 4 we directly replicated Yoshie and Haggard's (2013) original experiment using sound vocalizations as action outcomes and failed to detect a significant effect of emotion on temporal binding. These studies suggest that the emotional valence of action outcomes exerts little influence on temporal binding. The potential implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    NASA Astrophysics Data System (ADS)

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-12-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences.

  14. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    PubMed Central

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-01-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences. PMID:28004744

  15. Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State.

    PubMed

    Fourati, Zaineb; Ruza, Reinis Reinholds; Laverty, Duncan; Drège, Emmanuelle; Delarue-Cochin, Sandrine; Joseph, Delphine; Koehl, Patrice; Smart, Trevor; Delarue, Marc

    2017-02-03

    Barbiturates induce anesthesia by modulating the activity of anionic and cationic pentameric ligand-gated ion channels (pLGICs). Despite more than a century of use in clinical practice, the prototypic binding site for this class of drugs within pLGICs is yet to be described. In this study, we present the first X-ray structures of barbiturates bound to GLIC, a cationic prokaryotic pLGIC with excellent structural homology to other relevant channels sensitive to general anesthetics and, as shown here, to barbiturates, at clinically relevant concentrations. Several derivatives of barbiturates containing anomalous scatterers were synthesized, and these derivatives helped us unambiguously identify a unique barbiturate binding site within the central ion channel pore in a closed conformation. In addition, docking calculations around the observed binding site for all three states of the receptor, including a model of the desensitized state, showed that barbiturates preferentially stabilize the closed state. The identification of this pore binding site sheds light on the mechanism of barbiturate inhibition of cationic pLGICs and allows the rationalization of several structural and functional features previously observed for barbiturates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The structure and binding mode of citrate in the stabilization of gold nanoparticles.

    PubMed

    Al-Johani, Hind; Abou-Hamad, Edy; Jedidi, Abdesslem; Widdifield, Cory M; Viger-Gravel, Jasmine; Sangaru, Shiv Shankar; Gajan, David; Anjum, Dalaver H; Ould-Chikh, Samy; Hedhili, Mohamed Nejib; Gurinov, Andrei; Kelly, Michael J; El Eter, Mohamad; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2017-09-01

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by (13)C and (23)Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO(1)) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Au(δ)(+) are observed. (23)Na NMR experiments show that Na(+) ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e(-) L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  17. The structure and binding mode of citrate in the stabilization of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Johani, Hind; Abou-Hamad, Edy; Jedidi, Abdesslem; Widdifield, Cory M.; Viger-Gravel, Jasmine; Sangaru, Shiv Shankar; Gajan, David; Anjum, Dalaver H.; Ould-Chikh, Samy; Hedhili, Mohamed Nejib; Gurinov, Andrei; Kelly, Michael J.; El Eter, Mohamad; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2017-09-01

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by 13C and 23Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO1) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Auδ+ are observed. 23Na NMR experiments show that Na+ ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e- L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  18. The Tubulin Binding Mode of Microtubule Stabilizing Agents Studied by Electron Crystallography

    NASA Astrophysics Data System (ADS)

    Nettles, James H.; Downing, Kenneth H.

    Since tubulin was discovered in 1967, drug probes have been used to manipulate mechanisms of microtubule polymerization and disassembly. In parallel, advances in optical imagery, electron microscopy, along with both electron and X-ray diffraction have provided ability to "see" the molecular underpinning of these machines. Nanoscale mapping of different tubulin polymers formed in the presence of different drugs and cofactors provide a context for examining the dynamic features relevant to their biological activity. Models built from EM maps have been used to understand the binding of stabilizing drugs such as taxanes and epothilones, to predict more effective molecules, and to explain mutation based resistance. Here, we discuss drug binding in the context of different polymeric forms and propose a trigger mechanism associated with microtubules' dynamic instability.

  19. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  20. Haptoglobin Binding Stabilizes Hemoglobin Ferryl Iron and the Globin Radical on Tyrosine β145

    PubMed Central

    Schaer, Dominik J.; Buehler, Paul W.; Wilson, Michael T.; Reeder, Brandon J.; Silkstone, Gary; Svistunenko, Dimitri A.; Bulow, Leif; Alayash, Abdu I.

    2013-01-01

    Abstract Aim: Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and site-directed mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. Results: Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hb-catalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. Innovation: Hp binding decreases both the ferryl iron and free radical reactivity of Hb. Conclusion: Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging. Antioxid. Redox Signal. 18, 2264–2273. PMID:22702311

  1. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-05-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of EiIi, d, and γ, where EiIi and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates.

  2. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines.

    PubMed

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-05-28

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of EiIi, d, and γ, where EiIi and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates.

  3. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hippocampal Binding of Novel Information with Dominant Memory Traces Can Support Both Memory Stability and Change

    PubMed Central

    Voss, Joel L.

    2014-01-01

    Memory stability and change are considered opposite outcomes. We tested the counterintuitive notion that both depend on one process: hippocampal binding of memory features to associatively novel information, or associative novelty binding (ANB). Building on the idea that dominant memory features, or “traces,” are most susceptible to modification, we hypothesized that ANB would selectively involve dominant traces. Therefore, memory stability versus change should depend on whether the currently dominant trace is old versus updated; in either case, novel information will be bound with it, causing either maintenance (when old) or change (when updated). People in our experiment studied objects at locations within scenes (contexts). During reactivation in a new context, subjects moved studied objects to new locations either via active location recall or by passively dragging objects to predetermined locations. After active reactivation, the new object location became dominant in memory, whereas after passive reactivation, the old object location maintained dominance. In both cases, hippocampal ANB bound the currently dominant object-location memory with a context with which it was not paired previously (i.e., associatively novel). Stability occurred in the passive condition when ANB united the dominant original location trace with an associatively novel newer context. Change occurred in the active condition when ANB united the dominant updated object location with an associatively novel and older context. Hippocampal ANB of the currently dominant trace with associatively novel contextual information thus provides a single mechanism to support memory stability and change, with shifts in trace dominance during reactivation dictating the outcome. PMID:24501360

  5. Binding specificity and stability of duplexes formed by modified oligonucleotides with a 4096-hexanucleotide microarray

    PubMed Central

    Timofeev, Edward; Mirzabekov, Andrei

    2001-01-01

    The binding of oligodeoxynucleotides modified with adenine 2′-O-methyl riboside, 2,6-diaminopurine 2′-O-methyl riboside, cytosine 2′-O-methyl riboside, 2,6-diaminopurine deoxyriboside or 5-bromodeoxyuridine was studied with a microarray containing all possible (4096) polyacrylamide-bound hexadeoxynucleotides (a generic microchip). The generic microchip was manufactured by using reductive immobilization of aminooligonucleotides in the activated copolymer of acrylamide, bis-acrylamide and N-(2,2-dimethoxyethyl) acrylamide. The binding of the fluorescently labeled modified octanucleotides to the array was analyzed with the use of both melting profiles and the fluorescence distribution at selected temperatures. Up to three substitutions of adenosines in the octamer sequence by adenine 2′-O-methyl ribosides (Am), 2,6-diaminopurine 2′-O-methyl ribosides (Dm) or 2,6-diaminopurine deoxyribosides (D) resulted in increased mismatch discrimination measured at the melting temperature of the corresponding perfect duplex. The stability of complexes formed by 2′-O-methyl-adenosine-modified oligodeoxynucleotides was slightly decreased with every additional substitution, yielding ∼4°C of total loss in melting temperature for three modifications, as followed from microchip thermal denaturation experiments. 2,6-Diaminopurine 2′-O-methyl riboside modifications led to considerable duplex stabilization. The cytosine 2′-O-methyl riboside and 5-bromodeoxyuridine modifications generally did not change either duplex stability or mismatch resolution. Denaturation experiments conducted with selected perfect duplexes on microchips and in solution showed similar results on thermal stabilities. Some hybridization artifacts were observed that might indicate the formation of parallel DNA. PMID:11410672

  6. Explanation for the high heat stability of thyroxine binding globulin-Chicago.

    PubMed

    Duhan, U; Patston, P

    2010-04-01

    Thyroxine binding globulin-Chicago (TBG-Chicago), a variant of TBG with enhanced heat stability, was isolated at the University of Chicago from a 22 year old subject of an African American lineage. High thermodynamic stability in serine proteinase inhibitors (serpin) is the hallmark of reactive center loop (RCL) inserted conformation and this aspect has not been explored in TBG-Chicago, a serpin molecule. It is hypothesised that the high heat stability of TBG-Chicago is due its loop inserted state. Recombinant (r) TBG-Chicago and normal (r) TBG were expressed in baculovirus system. Stability of the freshly made proteins was assessed on Native- PAGE by: 1. heating at 65 degrees C/30 min; 2. incubating at 37 degrees C/24 h. Susceptibility of the RCL of both the TBG's to endoproteinase cleavage and the ability to accept synthetic RCL mimetic peptide were assessed before and after incubation at 37 degrees C /24 h (SDS-PAGE/ Native PAGE). It was found that rTBG-Chicago aggregates at 65 degrees C, accepts RCL mimetic peptide and is cleaved by endoproteinase. In contrast, rTBG-Chicago that had been incubated at 37 degrees C/24 h showed enhanced heat stability at 65 degrees C, reduced ability to accept synthetic peptide and decreased susceptibility to endoproteinase cleavage (besides having changed mobility on Native gel). The results support the conclusion that freshly isolated TBG-Chicago exists in loop expelled conformation. However at 37 oC, the protein readily converts to a more stable loop inserted conformation and could explain why plasma TBG-Chicago was found to have enhanced heat stability in the 22 year old subject.

  7. A Novel Role of Vimentin Filaments: Binding and Stabilization of Collagen mRNAs ▿

    PubMed Central

    Challa, Azariyas A.; Stefanovic, Branko

    2011-01-01

    The stem-loop in the 5′ untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5′SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5′SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5′SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5′SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies. PMID:21746880

  8. Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 4: Binding of neutral systems for the Hartree model

    SciTech Connect

    Catto, I.; Lions, P.L. )

    1993-01-01

    This paper is the fourth of a series devoted to the study of the stability of general molecular systems in Thomas-Fermi or Hartree type models. In the preceding part, the authors proved the binding of arbitrary neutral systems for Thomas-Fermi type theories and of planar neutral systems for the Hartree model. In this part, they manage to get rid of this restriction and thus prove the binding and the stability of arbitrary neutral systems for the Hartree model. 23 refs.

  9. Biglycan is an extracellular MuSK binding protein important for synapse stability

    PubMed Central

    Amenta, A.R.; Creely, H.E.; Mercado, M.L.; Hagiwara, H.; McKechnie, B. A.; Lechner, B.E.; Rossi, S. G.; Wang, Q.; Owens, R. T.; Marrero, E.; Mei, L.; Hoch, W.; Young, M. F.; McQuillan, D. J.; Rotundo, R. L.; Fallon, J.R.

    2012-01-01

    The receptor tyrosine kinase MuSK is indispensable for nerve-muscle synapse formation and maintenance. MuSK is necessary for pre-patterning of the endplate zone anlage and as a signaling receptor for agrin-mediated postsynaptic differentiation. MuSK-associated proteins such as Dok7, LRP4, and Wnt11r are involved in these early events in neuromuscular junction formation. However, the mechanisms regulating synapse stability are poorly understood. Here we examine a novel role for the extracellular matrix protein biglycan in synapse stability. Synaptic development in fetal and early postnatal biglycan null (bgn-/o) muscle is indistinguishable from wild type controls. However, by 5 wks after birth nerve-muscle synapses in bgn-/o mice are abnormal as judged by the presence of perijunctional folds, increased segmentation and focal misalignment of acetylcholinesterase and AChRs. These observations indicate that previously occupied pre- and post- synaptic territory has been vacated. Biglycan binds MuSK and the levels of this receptor tyrosine kinase are selectively reduced at bgn-/o synapses. In bgn-/o myotubes, the initial stages of agrin-induced MuSK phosphorylation and AChR clustering are normal, but the AChR clusters are unstable. This stability defect can be substantially rescued by the addition of purified biglycan. Together, these results indicate that biglycan is an extracellular ligand for MuSK that is important for synapse stability. PMID:22396407

  10. UV irradiation affects melanocyte stimulatory activity and protein binding of piperine.

    PubMed

    Soumyanath, Amala; Venkatasamy, Radhakrishnan; Joshi, Meghna; Faas, Laura; Adejuyigbe, Bimpe; Drake, Alex F; Hider, Robert C; Young, Antony R

    2006-01-01

    Piperine, the major alkaloid of black pepper (Piper nigrum L.; Piperaceae), stimulates melanocyte proliferation and dendrite formation in vitro. This property renders it a potential treatment for the skin depigmentation disorder vitiligo. However, piperine does not stimulate melanin synthesis in vitro, and treatments based on this compound may therefore be more effective with concomitant exposure of the skin to ultraviolet (UV) radiation or sunlight. The present study investigated the effect of UVA and simulated solar radiation (SSR) on the chemical stability of piperine, its melanocyte stimulatory effects and its ability to bind protein and DNA. Chromatographic and spectroscopic analysis confirmed the anticipated photoisomerization of irradiated piperine and showed the absence of any hydrolysis to piperinic acid. Isomerization resulted in the loss of ability to stimulate proliferation of a mouse melanocyte cell line, and to bind to human serum albumin. There was no evidence of DNA binding by piperine either before or after irradiation, showing the absence of photoadduct formation by either piperine or its geometric isomers. This is unlike the situation with psoralens, which form DNA adducts when administered with UVA in treating skin diseases. The present study suggests that exposure to bright sunlight should be avoided both during active application of piperine to the skin and in the storage of piperine products. If UVA radiation is used with piperine in the treatment of vitiligo, application of the compound and irradiation should be staggered to minimize photoisomerization. This approach is shown to effectively induce pigmentation in a sparsely pigmented mouse strain.

  11. Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions.

    PubMed

    Kishor, Aparna; White, Elizabeth J F; Matsangos, Aerielle E; Yan, Zisui; Tandukar, Bishal; Wilson, Gerald M

    2017-08-25

    Hsp70 is a protein chaperone that prevents protein aggregation and aids protein folding by binding to hydrophobic peptide domains through a reversible mechanism directed by an ATPase cycle. However, Hsp70 also binds U-rich RNA including some AU-rich elements (AREs) that regulate the decay kinetics of select mRNAs and has recently been shown to bind and stabilize some ARE-containing transcripts in cells. Previous studies indicated that both the ATP- and peptide-binding domains of Hsp70 contributed to the stability of Hsp70-RNA complexes and that ATP might inhibit RNA recruitment. This suggested the possibility that RNA binding by Hsp70 might mimic features of its peptide-directed chaperone activities. Here, using purified, cofactor-free preparations of recombinant human Hsp70 and quantitative biochemical approaches, we found that high-affinity RNA binding requires at least 30 nucleotides of RNA sequence but is independent of Hsp70's nucleotide-bound status, ATPase activity, or peptide-binding roles. Furthermore, although both the ATP- and peptide-binding domains of Hsp70 could form complexes with an ARE sequence from VEGFA mRNA in vitro, only the peptide-binding domain could recover cellular VEGFA mRNA in ribonucleoprotein immunoprecipitations. Finally, Hsp70-directed stabilization of VEGFA mRNA in cells was mediated exclusively by the protein's peptide-binding domain. Together, these findings indicate that the RNA-binding and mRNA-stabilizing functions of Hsp70 are independent of its protein chaperone cycle but also provide potential mechanical explanations for several well-established and recently discovered cytoprotective and RNA-based Hsp70 functions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity

    PubMed Central

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-01

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. PMID:27899579

  13. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/.

  14. Influence of water-cellulose binding energy on stability of acetylsalicylic acid.

    PubMed

    Heidarian, Mina; Mihranyan, Albert; Strømme, Maria; Ek, Ragnar

    2006-10-12

    The aim of the present study was to investigate how the energies of water binding in cellulose tabletting excipients influence the availability of moisture to induce hydrolysis of acetylsalisylic acid (ASA). Cellulose powders of varying degree of order, denoted as low-crystallinity cellulose (LCC) and high-crystallinity cellulose (HCC), were produced by treating ordinary microcrystalline cellulose (MCC) in ZnCl(2) solutions of varying concentrations. Microcrystalline cellulose (MCC) and lactose monohydrate were used as reference excipients. The samples were then studied by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry (DSC). Different ratios of each excipient mixed with ASA were stored at 40% RH and 50 degrees C for 35 days to investigate the hydrolytic stability of the mixtures. Stability studies indicated that as concentration of HCC and MCC in binary mixtures with ASA was raised from 1 to 50% (w/w), ASA became increasingly unstable with respect to hydrolysis. Although LCC contained more moisture than the other celluloses, no such trend was observed in the LCC and lactose samples. DSC analysis revealed that each water molecule on the average was bound by more than three hydrogen bonds in the LCC and lactose structures and therefore remained predominantly unavailable to induce hydrolysis. The current study elucidates the necessity of evaluating the energy of water bindings in a pharmaceutical excipient when predicting the excipient's performance in mixtures comprising moisture-sensitive drugs.

  15. Controlled Aggregation and Increased Stability of β-Glucuronidase by Cellulose Binding Domain Fusion.

    PubMed

    Yeom, Soo-Jin; Han, Gui Hwan; Kim, Moonjung; Kwon, Kil Koang; Fu, Yaoyao; Kim, Haseong; Lee, Hyewon; Lee, Dae-Hee; Jung, Heungchae; Lee, Seung-Goo

    2017-01-01

    Cellulose-binding domains (CBDs) are protein domains with cellulose-binding activity, and some act as leaders in the localization of cellulosomal scaffoldin proteins to the hydrophobic surface of crystalline cellulose. In this study, we found that a CBD fusion enhanced and improved soluble β-glucuronidase (GusA) enzyme properties through the formation of an artificially oligomeric state. First, a soluble CBD fused to the C-terminus of GusA (GusA-CBD) was obtained and characterized. Interestingly, the soluble GusA-CBD showed maximum activity at higher temperatures (65°C) and more acidic pH values (pH 6.0) than free GusA did (60°C and pH 7.5). Moreover, the GusA-CBD enzyme showed higher thermal and pH stabilities than the free GusA enzyme did. Additionally, GusA-CBD showed higher enzymatic activity in the presence of methanol than free GusA did. Evaluation of the protease accessibility of both enzymes revealed that GusA-CBD retained 100% of its activity after 1 h incubation in 0.5 mg/ml protease K, while free GusA completely lost its activity. Simple fusion of CBD as a single domain may be useful for tunable enzyme states to improve enzyme stability in industrial applications.

  16. Using DNA duplex stability information for transcription factor binding site discovery.

    PubMed

    Gordân, Raluca; Hartemink, Alexander J

    2008-01-01

    Transcription factor (TF) binding site discovery is an important step in understanding transcriptional regulation. Many computational tools have already been developed, but their success in detecting TF motifs is still limited. We believe one of the main reasons for the low accuracy of current methods is that they do not take into account the structural aspects of TF-DNA interaction. We have previously shown that knowledge about the structural class of the TF and information about nucleosome occupancy can be used to improve motif discovery. Here, we demonstrate the benefits of using information about the DNA double-helical stability for motif discovery. We notice that, in general, the energy needed to destabilize the DNA double helix is higher at TF binding sites than at random DNA sites. We use this information to derive informative positional priors that we incorporate into a motif finding algorithm. When applied to yeast ChIP-chip data, the new informative priors improve the performance of the motif finder significantly when compared to priors that do not use the energetic stability information.

  17. Controlled Aggregation and Increased Stability of β-Glucuronidase by Cellulose Binding Domain Fusion

    PubMed Central

    Kim, Moonjung; Kwon, Kil Koang; Fu, Yaoyao; Kim, Haseong; Lee, Hyewon; Lee, Dae-Hee; Jung, Heungchae; Lee, Seung-Goo

    2017-01-01

    Cellulose-binding domains (CBDs) are protein domains with cellulose-binding activity, and some act as leaders in the localization of cellulosomal scaffoldin proteins to the hydrophobic surface of crystalline cellulose. In this study, we found that a CBD fusion enhanced and improved soluble β-glucuronidase (GusA) enzyme properties through the formation of an artificially oligomeric state. First, a soluble CBD fused to the C-terminus of GusA (GusA-CBD) was obtained and characterized. Interestingly, the soluble GusA-CBD showed maximum activity at higher temperatures (65°C) and more acidic pH values (pH 6.0) than free GusA did (60°C and pH 7.5). Moreover, the GusA-CBD enzyme showed higher thermal and pH stabilities than the free GusA enzyme did. Additionally, GusA-CBD showed higher enzymatic activity in the presence of methanol than free GusA did. Evaluation of the protease accessibility of both enzymes revealed that GusA-CBD retained 100% of its activity after 1 h incubation in 0.5 mg/ml protease K, while free GusA completely lost its activity. Simple fusion of CBD as a single domain may be useful for tunable enzyme states to improve enzyme stability in industrial applications. PMID:28099480

  18. Cytoplasmic-nuclear shuttling of the urokinase mRNA binding protein regulates message stability.

    PubMed

    Shetty, Sreerama

    2002-08-01

    Treatment of small airway epithelial (SAEC) cells or lung epithelial (Beas2B) cells with TNF-alpha or PMA induces urokinase-type plasminogen activator (uPA) expression. Treatment of these cells with TNF-alpha, PMA or cycloheximide but not TGF-beta increased steady-state expression of uPAmRNA. TNF-alpha, PMA or cycloheximide caused 8-10 fold extensions of the uPAmRNA half-life in SAEC or Beas2B cells treated with DRB, a transcriptional inhibitor. These findings suggest that uPA gene expression involves a post-transcriptional regulatory mechanism. Using gel mobility shift and UV cross-linking assays, we identified a 30 kDa uPA mRNA binding protein (uPA mRNABp) that selectively binds to a 66 nt protein binding fragment of uPA mRNA containing regulatory information for message stabilization. Binding of cytoplasmic uPA mRNABp to uPA mRNA was abolished after treatment with TNF-alpha but not TGF-beta. In addition, we found the accumulation of 30 kDa uPAmRNABp in the nuclear extracts of TNF-alpha but not TGF-beta treated cells. The uPA mRNABp starts moving to the nucleus from the cytoplasmic compartment as early as three hours after TNF-alpha treatment. Complete translocation is achieved between 12-24 h, which coincides with the maximal expression of uPA protein effected by cytokine stimulation. Treatment of Beas2B cells with NaF inhibited TNF-alpha-mediated translocation of uPA mRNABp from the cytoplasm to the nucleus and concomitant inhibition of uPA expression. TNF-alpha stabilizes uPA mRNA by translocating the uPA mRNABp from the cytoplasm to the nucleus. Our results demonstrate a novel mechanism governing uPA mRNA stability through shuttling of uPA mRNABp between the nucleus and cytoplasm. This newly identified pathway may have evolved to regulate uPA-mediated functions of the lung epithelium in inflamation or neoplasia.

  19. Conformational stability and DNA binding specificity of the cardiac T-box transcription factor Tbx20.

    PubMed

    Macindoe, Ingrid; Glockner, Laura; Vukasin, Paul; Stennard, Fiona A; Costa, Mauro W; Harvey, Richard P; Mackay, Joel P; Sunde, Margaret

    2009-06-12

    The transcription factor Tbx20 acts within a hierarchy of T-box factors in lineage specification and morphogenesis in the mammalian heart and is mutated in congenital heart disease. T-box family members share a approximately 20-kDa DNA-binding domain termed the T-box. The question of how highly homologous T-box proteins achieve differential transcriptional control in heart development, while apparently binding to the same DNA sequence, remains unresolved. Here we show that the optimal DNA recognition sequence for the T-box of Tbx20 corresponds to a T-half-site. Furthermore, we demonstrate using purified recombinant domains that distinct T-boxes show significant differences in the affinity and kinetics of binding and in conformational stability, with the T-box of Tbx20 displaying molten globule character. Our data highlight unique features of Tbx20 and suggest mechanistic ways in which cardiac T-box factors might interact synergistically and/or competitively within the cardiac regulatory network.

  20. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants.

    PubMed

    Geronimo, Inacrist; Denning, Catherine A; Rogers, W Eric; Othman, Thaer; Huxford, Tom; Heidary, David K; Glazer, Edith C; Payne, Christina M

    2016-06-28

    Cytochrome P450BM3 is a heme-containing enzyme from Bacillus megaterium that exhibits high monooxygenase activity and has a self-sufficient electron transfer system in the full-length enzyme. Its potential synthetic applications drive protein engineering efforts to produce variants capable of oxidizing nonnative substrates such as pharmaceuticals and aromatic pollutants. However, promiscuous P450BM3 mutants often exhibit lower stability, thereby hindering their industrial application. This study demonstrated that the heme domain R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM) is destabilized because of the disruption of hydrophobic contacts and salt bridge interactions. This was directly observed from crystal structures of PM in the presence and absence of ligands (palmitic acid and metyrapone). The instability of the tertiary structure and heme environment of substrate-free PM was confirmed by pulse proteolysis and circular dichroism, respectively. Binding of the inhibitor, metyrapone, significantly stabilized PM, but the presence of the native substrate, palmitic acid, had no effect. On the basis of high-temperature molecular dynamics simulations, the lid domain, β-sheet 1, and Cys ligand loop (a β-bulge segment connected to the heme) are the most labile regions and, thus, potential sites for stabilizing mutations. Possible approaches to stabilization include improvement of hydrophobic packing interactions in the lid domain and introduction of new salt bridges into β-sheet 1 and the heme region. An understanding of the molecular factors behind the loss of stability of P450BM3 variants therefore expedites site-directed mutagenesis studies aimed at developing thermostability.

  1. The use of "stabilization exercises" to affect neuromuscular control in the lumbopelvic region: a narrative review.

    PubMed

    Bruno, Paul

    2014-06-01

    It is well-established that the coordination of muscular activity in the lumbopelvic region is vital to the generation of mechanical spinal stability. Several models illustrating mechanisms by which dysfunctional neuromuscular control strategies may serve as a cause and/or effect of low back pain have been described in the literature. The term "core stability" is variously used by clinicians and researchers, and this variety has led to several rehabilitative approaches suggested to affect the neuromuscular control strategies of the lumbopelvic region (e.g. "stabilization exercise", "motor control exercise"). This narrative review will highlight: 1) the ongoing debate in the clinical and research communities regarding the terms "core stability" and "stabilization exercise", 2) the importance of sub-grouping in identifying those patients most likely to benefit from such therapeutic interventions, and 3) two protocols that can assist clinicians in this process.

  2. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site

    PubMed Central

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p = 0.04). Patients with higher Dnd1 expression level had longer overall survival (p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3′UTR, the stability of Bim-5′UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3′UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3′UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development. PMID:28191469

  3. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site.

    PubMed

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p = 0.04). Patients with higher Dnd1 expression level had longer overall survival (p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  4. The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA.

    PubMed

    López de Silanes, Isabel; Gorospe, Myriam; Taniguchi, Hiroaki; Abdelmohsen, Kotb; Srikantan, Subramanya; Alaminos, Miguel; Berdasco, María; Urdinguio, Rocío G; Fraga, Mario F; Jacinto, Filipe V; Esteller, Manel

    2009-05-01

    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.

  5. Thermodynamics of DNA hairpins: contribution of loop size to hairpin stability and ethidium binding.

    PubMed Central

    Rentzeperis, D; Alessi, K; Marky, L A

    1993-01-01

    A combination of calorimetric and spectroscopic techniques was used to evaluate the thermodynamic behavior of a set of DNA hairpins with the sequence d(GCGCTnGCGC), where n = 3, 5 and 7, and the interaction of each hairpin with ethidium. All three hairpins melt in two-state monomolecular transitions, with tm's ranging from 79.1 degrees C (T3) to 57.5 degrees C (T7), and transition enthalpies of approximately 38.5 kcal mol-1. Standard thermodynamic profiles at 20 degrees C reveal that the lower stability of the T5 and T7 hairpins corresponds to a delta G degree term of +0.5 kcal mol-1 per thymine residue, due to the entropic ordering of the thymine loops and uptake of counterions. Deconvolution of the ethidium-hairpin calorimetric titration curves indicate two sets of binding sites that correspond to one ligand in the stem with binding affinity, Kb, of approximately 1.8 x 10(6) M-1, and two ligands in the loops with Kb of approximately 4.3 x 10(4) M-1. However, the binding enthalpy, delta Hb, ranges from -8.6 (T3) to -11.6 kcal mol-1 (T7) for the stem site, and -6.6 (T3) to -12.7 kcal mol-1 (T7) for the loop site. Relative to the T3 hairpin, we obtained an overall thermodynamic contribution (per dT residue) of delta delta Hb = delta(T delta Sb) = -0.7(5) kcal mol-1 for the stem sites and delta delta Hb = delta(T delta Sb) = -1.5 kcal mol-1 for the loop sites. Therefore, the induced structural perturbations of ethidium binding results in a differential compensation of favorable stacking interactions with the unfavorable ordering of the ligands. PMID:8332464

  6. Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum.

    PubMed

    Ran, Yanchao; Thibodeau, Patrick H

    2017-02-03

    ABC transporters are polytopic membrane proteins that utilize ATP binding and hydrolysis to facilitate transport across biological membranes. Forty-eight human ABC transporters have been identified in the genome, and the majority of these are linked to heritable disease. Mutations in the ABCC6 (ATP binding cassette transporter C6) ABC transporter are associated with pseudoxanthoma elasticum, a disease of altered elastic properties in multiple tissues. Although ∼200 mutations have been identified in pseudoxanthoma elasticum patients, the underlying structural defects associated with the majority of these are poorly understood. To evaluate the structural consequences of these missense mutations, a combination of biophysical and cell biological approaches were applied to evaluate the local and global folding and assembly of the ABCC6 protein. Structural and bioinformatic analyses suggested that a cluster of mutations, representing roughly 20% of the patient population with identified missense mutations, are located in the interface between the transmembrane domain and the C-terminal nucleotide binding domain. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. Stabilization of specific domain-domain interactions via targeted amino acid substitution in the catalytic site of the C-terminal nucleotide binding domain restored proper protein trafficking and cell surface localization of multiple biosynthetic mutants. This rescue provides a specific mechanism by which chemical chaperones could be developed for the correction of ABCC6 biosynthetic defects.

  7. Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli

    PubMed Central

    2004-01-01

    The monomeric D-glucose/D-galactose-binding protein (GGBP) from Escherichia coli (Mr 33000) is a periplasmic protein that serves as a high-affinity receptor for the active transport and chemotaxis towards both sugars. The effect of D-glucose binding on the thermal unfolding of the GGBP protein at pH 7.0 has been measured by differential scanning calorimetry (DSC), far-UV CD and intrinsic tryptophanyl residue fluorescence (Trp fluorescence). All three techniques reveal reversible, thermal transitions and a midpoint temperature (Tm) increase from 50 to 63 °C produced by 10 mM D-glucose. Both in the absence and presence of D-glucose a single asymmetric endotherm for GGBP is observed in DSC, although each endotherm consists of two transitions about 4 °C apart in Tm values. In the absence of D-glucose, the protein unfolding is best described by two non-ideal transitions, suggesting the presence of unfolding intermediates. In the presence of D-glucose protein, unfolding is more co-operative than in the absence of the ligand, and the experimental data are best fitted to a model that assumes two ideal (two-state) sequential transitions. Thus D-glucose binding changes the character of the GGBP protein folding/unfolding by linking the two domains such that protein unfolding becomes a cooperative, two two-state process. A KA′ value of 5.6×106 M−1 at 63 °C for D-glucose binding is estimated from DSC results. The domain with the lower stability in DSC measurements has been identified as the C-terminal domain of GGBP from thermally induced Trp fluorescence changes. PMID:15032747

  8. Expression of the sucrose binding protein from soybean: renaturation and stability of the recombinant protein.

    PubMed

    Rocha, Carolina S; Luz, Dirce F; Oliveira, Marli L; Baracat-Pereira, Maria C; Medrano, Francisco Javier; Fontes, Elizabeth P B

    2007-03-01

    The sucrose binding protein (SBP) belongs to the cupin family of proteins and is structurally related to vicilin-like storage proteins. In this investigation, a SBP isoform (GmSBP2/S64) was expressed in E. coli and large amounts of the protein accumulated in the insoluble fraction as inclusion bodies. The renatured protein was studied by circular dichroism (CD), intrinsic fluorescence, and binding of the hydrophobic probes ANS and Bis-ANS. The estimated content of secondary structure of the renatured protein was consistent with that obtained by theoretical modeling with a large predominance of beta-strand structure (42%) over the alpha-helix (9.9%). The fluorescence emission maximum of 303 nm for SBP2 indicated that the fluorescent tryptophan was completely buried within a highly hydrophobic environment. We also measured the equilibrium dissociation constant (K(d)) of sucrose binding by fluorescence titration using the refolded protein. The low sucrose binding affinity (K(d)=2.79+/-0.22 mM) of the renatured protein was similar to that of the native protein purified from soybean seeds. Collectively, these results indicate that the folded structure of the renatured protein was similar to the native SBP protein. As a member of the bicupin family of proteins, which includes highly stable seed storage proteins, SBP2 was fairly stable at high temperatures. Likewise, it remained folded to a similar extent in the presence or absence of 7.6M urea or 6.7 M GdmHCl. The high stability of the renatured protein may be a reminiscent property of SBP from its evolutionary relatedness to the seed storage proteins.

  9. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2.

    PubMed

    Weng, Jingwei; Gu, Shuo; Gao, Xin; Huang, Xuhui; Wang, Wenning

    2017-04-05

    Maltose transporter MalFGK2 is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily. Upon the binding of its periplasmic binding protein, MalE, the ATPase activity of MalFGK2 can be greatly enhanced. Crystal structures of the MalFGK2-MalE-maltose complex in a so-called "pretranslocation" ("pre-T") state with a partially closed conformation suggest that the formation of this MalE-stabilized intermediate state is a key step leading to the outward-facing catalytic state. On the contrary, crosslinking and fluorescence studies suggest that ATP binding alone is sufficient to promote the outward-facing catalytic state, thereby doubting the role of MalE binding. To clarify the role of MalE binding and to gain deeper understanding of the molecular mechanisms of MalFGK2, we calculated the free energy surfaces (FESs) related to the lateral motion in the presence and absence of MalE using atomistic metadynamics simulations. The results showed that, in the absence of MalE, laterally closing motion was energetically forbidden but, upon MalE binding, more closed conformations similar to the pre-T state become more stable. The significant effect of MalE binding on the free energy landscapes was in agreement with crystallographic studies and confirmed the important role of MalE in stabilizing the pre-T state. Our simulations also revealed that the allosteric effect of MalE stimulation originates from the MalE-binding-promoted vertical motion between MalF and MalG cores, which was further supported by MD simulation of the MalE-independent mutant MalF500.

  10. Influence of the H-site residue 108 on human glutathione transferase P1-1 ligand binding: structure-thermodynamic relationships and thermal stability.

    PubMed

    Quesada-Soriano, Indalecio; Parker, Lorien J; Primavera, Alessandra; Casas-Solvas, Juan M; Vargas-Berenguel, Antonio; Barón, Carmen; Morton, Craig J; Mazzetti, Anna Paola; Lo Bello, Mario; Parker, Michael W; García-Fuentes, Luis

    2009-12-01

    The effect of the Y108V mutation of human glutathione S-transferase P1-1 (hGST P1-1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 --> Val resulted in a 3D-structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H-site) and glutathione binding site (G-site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H-site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (K(d) approximately 0.5 microM) when compared with those of the parent compounds, K(d) (EA) approximately 13 microM, K(d) (GSH) approximately 25 microM. The EA moiety of the conjugate binds in the H-site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the Delta C(p) values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information.

  11. Influence of the H-site residue 108 on human glutathione transferase P1-1 ligand binding: Structure-thermodynamic relationships and thermal stability

    PubMed Central

    Quesada-Soriano, Indalecio; Parker, Lorien J; Primavera, Alessandra; Casas-Solvas, Juan M; Vargas-Berenguel, Antonio; Barón, Carmen; Morton, Craig J; Paola Mazzetti, Anna; Lo Bello, Mario; Parker, Michael W; García-Fuentes, Luis

    2009-01-01

    The effect of the Y108V mutation of human glutathione S-transferase P1-1 (hGST P1-1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 → Val resulted in a 3D-structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H-site) and glutathione binding site (G-site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H-site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (Kd ∼ 0.5 μM) when compared with those of the parent compounds, , . The EA moiety of the conjugate binds in the H-site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the ΔCp values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information. PMID:19780048

  12. The stability and the metal ions binding properties of mutant A85M of CopC.

    PubMed

    Song, Zhen; Dong, Jinlong; Yuan, Wen; Zhang, Caifeng; Ren, Yuehong; Yang, Binsheng

    2016-08-01

    In this work, the mutant A85M of CopC was obtained. The stability of mutant A85M of CopC and the binding properties of metal ions were clarified through various spectroscopic techniques. The binding capacity of A85M to metal ions was measured by fluorescence spectroscopy and UV differential absorbance. The results suggested that Cu(2+) can bind with A85M in 1:1 form, and the constant of A85M was nearly the same as that of CopC. Ag(+) can occupy the Cu(+) binding site located at C-terminal, and the binding constant was (2.64±0.48)×10(6)L/mol. Hg(2+) not only can occupy the Cu(+) binding site located at C-terminal, but also can occupy the Cu(2+) binding site located at N-terminal. The stability of A85M was measured by chemical unfolding experiment. The intermediate was observed in the unfolding pathway of A85M-Cu(2+) induced by urea. In addition, the interaction of SDS with A85M also can result in the formation of the intermediate. The effect of metal ions on the stability of intermediate suggested that the C terminal region of intermediate was unfolded and the N terminal region suffered few effects. Compared with CopC, the stability of A85M was decreased. The main reason was the lower stability of N terminal region. The results of molecular dynamic simulation suggested that when the alanine at 85 site was mutated to methionine, the hydrophobic almost unchanged, but the distance between the phenylalanine at 25 site and tryptophan at 83 site increased because of the spatial effect. And it made the stacking interaction of aromatic rings decreased, which was the main reason for the decreasing stability of N terminal region for A85M.

  13. Binding-induced Stabilization and Assembly of the Phage P22 Tail Accessory Factor gp4

    SciTech Connect

    Olia,A.; Al-Bassam, J.; Winn-Stapley, D.; Joss, L.; Casjens, S.; Cingolani, G.

    2006-01-01

    To infect and replicate, bacteriophage P22 injects its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium. The attachment of phage P22 to the host cell as well as the injection of the viral DNA into the host is mediated by the virion's tail complex. This 2.8 MDa molecular machine is formed by five proteins, which include the portal protein gp1, the adhesion tailspike protein gp9, and three tail accessory factors: gp4, gp10, gp26. We have isolated the tail accessory factor gp4 and characterized its structure and binding interactions with portal protein. Interestingly, gp4 exists in solution as a monomer, which displays an exceedingly low structural stability (T{sub m} 34 {sup o}C). Unfolded gp4 is prone to aggregation within a narrow range of temperatures both in vitro and in Salmonella extracts. In the virion the thermal unfolding of gp4 is prevented by the interaction with the dodecameric portal protein, which stabilizes the structure of gp4 and suppresses unfolded gp4 from irreversibly aggregating in the Salmonella milieu. The structural stabilization of gp4 is accompanied by the concomitant oligomerization of the protein to form a ring of 12 subunits bound to the lower end of the portal ring. The interaction of gp4 with portal protein is complex and likely involves the distinct binding of two non-equivalent sets of six gp4 proteins. Binding of the first set of six gp4 equivalents to dodecameric portal protein yields a gp(1){sub 12}:gp(4){sub 6} assembly intermediate, which is stably populated at 30 {sup o}C and can be resolved by native gel electrophoresis. The final product of the assembly reaction is a bi-dodecameric gp(1){sub 12}:gp(4){sub 12} complex, which appears hollow by electron microscopy, suggesting that gp4 does not physically plug the DNA entry/exit channel, but acts as a structural adaptor for the other tail accessory factors: gp10 and gp26.

  14. How Ala-->Gly mutations in different helices affect the stability of the apomyoglobin molten globule.

    PubMed

    Luo, Y; Baldwin, R L

    2001-05-01

    The apomyoglobin molten globule has a complex, partly folded structure with a folded A[B]GH subdomain; the factors determining its stability are not yet known in detail. Ala-->Gly mutations, made at solvent-exposed positions, are used to probe the role of helix propensity of individual helices in stabilizing the molten globule. Molten globule stability is measured by reversible urea unfolding, monitored both by circular dichroism and by tryptophan fluorescence. Two-state unfolding is tested by superposition of these two unfolding curves, and stability data are reported only for variants which satisfy the superposition test. Results for sites Q8 in the A helix and E109 in the G helix confirm that the helix propensities of the A and G helices both strongly affect molten globule stability, in contrast to results for the G65A/G73A double mutant which show that changing the helix propensity of the E-helix sequence has no significant stabilizing effect. Changing the helix propensity of the B-helix sequence with the G23A/G25A double mutant affects molten globule stability to an intermediate extent, confirming an earlier report that this mutant has increased stability. These results are consistent with the bipartite structure for the molten globule in which the A, G, and H helices are stably folded, while the long E helix is unfolded and the B helix has intermediate stability. Some differences are found in the shapes of the unfolding curves of different mutants even though they satisfy the superposition test for two-state unfolding, and possible explanations are discussed.

  15. Ionic residues of human serum transferrin affect binding to the transferrin receptor and iron release.

    PubMed

    Steere, Ashley N; Miller, Brendan F; Roberts, Samantha E; Byrne, Shaina L; Chasteen, N Dennis; Smith, Valerie C; MacGillivray, Ross T A; Mason, Anne B

    2012-01-17

    Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.

  16. Ionic Residues of Human Serum Transferrin Affect Binding to the Transferrin Receptor and Iron Release

    PubMed Central

    Steere, Ashley N.; Miller, Brendan F.; Roberts, Samantha E.; Byrne, Shaina L.; Chasteen, N. Dennis; Smith, Valerie C.; MacGillivray, Ross T.A.; Mason, Anne B.

    2012-01-01

    Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤ 6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of eleven charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) in TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF/TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367 and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and iron release from the hTF/TFR complex. PMID:22191507

  17. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.

    PubMed

    Shibata, Mikihiro; Yoshitsugu, Maiko; Mizuide, Noriko; Ihara, Kunio; Kandori, Hideki

    2007-06-26

    Bacteriorhodopsin (BR), a membrane protein found in Halobacterium salinarum, functions as a light-driven proton pump. The Schiff base region has a quadrupolar structure with positive charges located at the protonated Schiff base and Arg82, and the counterbalancing negative charges located at Asp85 and Asp212. The quadropole inside the protein is stabilized by three water molecules, forming a roughly planar pentagonal cluster composed of these waters and two oxygens of Asp85 and Asp212 (one from each carboxylate side chain). It is known that BR lacks proton-pumping activity if Asp85 or Asp212 is neutralized by mutation, but binding of Cl- has different functional effects in mutants at these positions. Binding of Cl- to D85T converts into a chloride ion pump (Sasaki, J., Brown, L. S., Chon, Y.-S., Kandori, H., Maeda, A., Needleman, R., and Lanyi, J. K. (1995) Science 269, 73-75). On the other hand, photovoltage measurements suggested that binding of Cl- to D212N restores the proton-pumping activity at low pH (Moltke, S., Krebs, M. P., Mollaaghababa, R., Khorana, H. G., and Heyn, M. P. (1995) Biophys. J. 69, 2074-2083). In this paper, we studied halide-bound D212N mutant BR in detail. Light-induced pH changes in a suspension of proteoliposomes containing D212N(Cl-) at pH 5 clearly showed that Cl- restores the proton-pumping activity. Spectral blue-shift induced by halide binding to D212N indicates that halides affect the counterion of the protonated Schiff base, whereas much smaller halide dependence of the lambdamax than in D85T suggests that the binding site is distant from the chromophore. In fact, the K minus BR difference Fourier-transform infrared (FTIR) spectra of D212N at 77 K exhibit little halide dependence for vibrational bands of retinal and protein. The only halide-dependent bands were the C=N stretch of Arg82 and some water O-D stretches, suggesting that these groups constitute a halide-binding pocket. A strongly hydrogen-bonded water molecule is

  18. An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis.

    PubMed

    Meunier, Sylvain; Shvedunova, Maria; Van Nguyen, Nhuong; Avila, Leonor; Vernos, Isabelle; Akhtar, Asifa

    2015-08-05

    The evolutionary conserved NSL complex is a prominent epigenetic regulator controlling expression of thousands of genes. Here we uncover a novel function of the NSL complex members in mitosis. As the cell enters mitosis, KANSL1 and KANSL3 undergo a marked relocalisation from the chromatin to the mitotic spindle. By stabilizing microtubule minus ends in a RanGTP-dependent manner, they are essential for spindle assembly and chromosome segregation. Moreover, we identify KANSL3 as a microtubule minus-end-binding protein, revealing a new class of mitosis-specific microtubule minus-end regulators. By adopting distinct functions in interphase and mitosis, KANSL proteins provide a link to coordinate the tasks of faithful expression and inheritance of the genome during different phases of the cell cycle.

  19. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach

    PubMed Central

    Ketterer, Simon; Fuchs, David; Weber, Wilfried; Meier, Matthias

    2015-01-01

    Fluorogenic RNAs that are based on the complex formed by 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) derivatives and the RNA aptamer named Spinach were used to engineer a new generation of in vitro and in vivo sensors for bioanalytics. With the resolved crystal structure of the RNA/small molecule complex, the engineering map becomes available, but comprehensive information regarding the thermodynamic profile of the molecule is missing. Here, we reconstructed the full thermodynamic binding and stability landscapes between DFHBI and a truncated sequence of first-generation Spinach. For this purpose, we established a systematic screening procedure for single- and double-point mutations on a microfluidic large-scale integrated chip platform for 87-nt long RNAs. The thermodynamic profile with single base resolution was used to engineer an improved fluorogenic spinach generation via a directed rather than evolutional approach. PMID:26400180

  20. STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA.

    PubMed

    Chen, An-Jou; Paik, Ji-Hye; Zhang, Hailei; Shukla, Sachet A; Mortensen, Richard; Hu, Jian; Ying, Haoqiang; Hu, Baoli; Hurt, Jessica; Farny, Natalie; Dong, Caroline; Xiao, Yonghong; Wang, Y Alan; Silver, Pamela A; Chin, Lynda; Vasudevan, Shobha; Depinho, Ronald A

    2012-07-01

    Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFβR2 and the TGFβ signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QKI-miR-20a-TGFβ pathway expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.

  1. Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populations.

    PubMed

    Andersen, Oivind; Wetten, Ola Frang; De Rosa, Maria Cristina; Andre, Carl; Carelli Alinovi, Cristiana; Colafranceschi, Mauro; Brix, Ole; Colosimo, Alfredo

    2009-03-07

    A major challenge in evolutionary biology is to identify the genes underlying adaptation. The oxygen-transporting haemoglobins directly link external conditions with metabolic needs and therefore represent a unique system for studying environmental effects on molecular evolution. We have discovered two haemoglobin polymorphisms in Atlantic cod populations inhabiting varying temperature and oxygen regimes in the North Atlantic. Three-dimensional modelling of the tetrameric haemoglobin structure demonstrated that the two amino acid replacements Met55beta1Val and Lys62beta1Ala are located at crucial positions of the alpha1beta1 subunit interface and haem pocket, respectively. The replacements are proposed to affect the oxygen-binding properties by modifying the haemoglobin quaternary structure and electrostatic feature. Intriguingly, the same molecular mechanism for facilitating oxygen binding is found in avian species adapted to high altitudes, illustrating convergent evolution in water- and air-breathing vertebrates to reduction in environmental oxygen availability. Cod populations inhabiting the cold Arctic waters and the low-oxygen Baltic Sea seem well adapted to these conditions by possessing the high oxygen affinity Val55-Ala62 haplotype, while the temperature-insensitive Met55-Lys62 haplotype predominates in the southern populations. The distinct distributions of the functionally different haemoglobin variants indicate that the present biogeography of this ecologically and economically important species might be seriously affected by global warming.

  2. Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populations

    PubMed Central

    Andersen, Øivind; Wetten, Ola Frang; De Rosa, Maria Cristina; Andre, Carl; Carelli Alinovi, Cristiana; Colafranceschi, Mauro; Brix, Ole; Colosimo, Alfredo

    2008-01-01

    A major challenge in evolutionary biology is to identify the genes underlying adaptation. The oxygen-transporting haemoglobins directly link external conditions with metabolic needs and therefore represent a unique system for studying environmental effects on molecular evolution. We have discovered two haemoglobin polymorphisms in Atlantic cod populations inhabiting varying temperature and oxygen regimes in the North Atlantic. Three-dimensional modelling of the tetrameric haemoglobin structure demonstrated that the two amino acid replacements Met55β1Val and Lys62β1Ala are located at crucial positions of the α1β1 subunit interface and haem pocket, respectively. The replacements are proposed to affect the oxygen-binding properties by modifying the haemoglobin quaternary structure and electrostatic feature. Intriguingly, the same molecular mechanism for facilitating oxygen binding is found in avian species adapted to high altitudes, illustrating convergent evolution in water- and air-breathing vertebrates to reduction in environmental oxygen availability. Cod populations inhabiting the cold Arctic waters and the low-oxygen Baltic Sea seem well adapted to these conditions by possessing the high oxygen affinity Val55–Ala62 haplotype, while the temperature-insensitive Met55–Lys62 haplotype predominates in the southern populations. The distinct distributions of the functionally different haemoglobin variants indicate that the present biogeography of this ecologically and economically important species might be seriously affected by global warming. PMID:19033139

  3. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity.

    PubMed

    Wang, Wei; DeFeo, Christopher J; Alvarado-Facundo, Esmeralda; Vassell, Russell; Weiss, Carol D

    2015-10-01

    Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well as viral adaptation

  4. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  5. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  6. Structural Stability and Binding Strength of a Designed Peptide-Carbon Nanotube Hybrid

    PubMed Central

    Roxbury, Daniel; Zhang, Shao-Qing; Mittal, Jeetain; DeGrado, William F.; Jagota, Anand

    2014-01-01

    Biological polymers hybridized with single-walled carbon nanotubes (SWCNTs) have elicited much interest recently for applications in SWCNT-based sorting as well as biomedical imaging, sensing, and drug delivery. Recently, de novo designed peptides forming a coiled-coil structure have been engineered to selectively disperse SWCNT of a certain diameter. Here we report on a study of the binding strength and structural stability of the hybrid between such a “HexCoil-Ala” peptide and the (6,5)-SWCNT. Using the competitive binding of a surfactant, we find that affinity strength of the peptide ranks in comparison to that of two single-stranded DNA sequences as (GT)30-DNA > HexCoil-Ala > (TAT)4T-DNA. Further, using replica exchange molecular dynamics (REMD), we show that the hexamer peptide complex has both similarities with and differences from the original design. While one of two distinct helix-helix interfaces of the original model was largely retained, a second interface showed much greater variability. These conformational differences allowed an aromatic tyrosine residue designed to lie along the solvent-exposed surface of the protein instead to penetrate between the two helices and directly contact the SWCNT. These insights will inform future designs of SWCNT-interacting peptides. PMID:24466357

  7. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    PubMed Central

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-01-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection. PMID:26940118

  8. Metals affect the structure and activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational changes

    PubMed Central

    Thompson, Lawrence C; Goswami, Sumit; Peterson, Cynthia B

    2011-01-01

    Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1. PMID:21280128

  9. Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin.

    PubMed

    Lee, Yang; Willers, Chrissie; Kunji, Edmund R S; Crichton, Paul G

    2015-06-02

    Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.

  10. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    PubMed

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

  11. Centrally truncated and stabilized porcine neuropeptide Y analogs: design, synthesis, and mouse brain receptor binding.

    PubMed Central

    Krstenansky, J L; Owen, T J; Buck, S H; Hagaman, K A; McLean, L R

    1989-01-01

    Porcine neuropeptide Y (pNPY) has been proposed to form an intramolecularly stabilized structure characterized by N- and C-terminal helical regions arranged antiparallel due to a central turn region. Analogs based on this structural model that have the central turn region and various amounts of the helical regions removed, yet retain the N and C termini in a similar spatial orientation were designed. The gap formed by removal of the central residues (residues 8-17 or 7-20) was spanned with a single 8-aminooctanoic acid residue (Aoc) and the structure was further stabilized by the introduction of a disulfide bridge. [D-Cys7,Aoc8-17,Cys20]pNPY and [Cys5,Aoc7-20,D-Cys24]pNPY were synthesized and found to have receptor binding affinities of 2.3 nM and 150 nM, respectively, in mouse brain membranes (pNPY affinity is 3.6 nM in this assay). It is proposed that the central region (residues 7-17) of pNPY serves a structural role in the peptide and is not involved in direct receptor interaction. PMID:2543973

  12. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria

    PubMed Central

    Murata, Hitoshi; Sakaguchi, Masakiyo; Kataoka, Ken; Huh, Nam-ho

    2013-01-01

    Mutations in PTEN-induced putative kinase 1 (PINK1) or parkin cause autosomal recessive forms of Parkinson's disease. Recent work suggests that loss of mitochondrial membrane potential stabilizes PINK1 and that accumulated PINK1 recruits parkin from the cytoplasm to mitochondria for elimination of depolarized mitochondria, which is known as mitophagy. In this study, we find that PINK1 forms a complex with sterile α and TIR motif containing 1 (SARM1) and tumor necrosis factor receptor–associated factor 6 (TRAF6), which is important for import of PINK1 in the outer membrane and stabilization of PINK1 on depolarized mitochondria. SARM1, which is known to be an adaptor protein for Toll-like receptor, binds to PINK1 and promotes TRAF6-mediated lysine 63 chain ubiquitination of PINK1 at lysine 433. Down-regulation of SARM1 and TRAF6 abrogates accumulation of PINK1, followed by recruitment of parkin to damaged mitochondria. Some pathogenic mutations of PINK1 reduce the complex formation and ubiquitination. These results indicate that association of PINK1 with SARM1 and TRAF6 is an important step for mitophagy. PMID:23885119

  13. Penem derivatives: beta-lactamase stability and affinity for penicillin-binding proteins in Escherichia coli.

    PubMed

    Ohya, S; Utsui, Y; Sugawara, S; Yamazaki, M

    1982-03-01

    Penem derivatives, a new group of beta-lactam antibiotics with potent activities against a wide range of bacteria, including Pseudomonas aeruginosa, were tested for their stability against hydrolysis by beta-lactamases purified from clinical isolates of Morganella morganii. Proteus vulgaris, and Escherichia coli and by a penicillinase from Bacillus cereus. Penems having 6 alpha substituents, such as hydroxyethyl, hydroxymethyl, and ethyl groups, were very stable against hydrolysis by each of the enzymes. Penems having no 6 alpha substituents were easily hydrolyzed by P. vulgaris and E. coli enzymes, whereas they were rather stable against hydrolysis by M. morganii and B. cereus enzymes, a typical cephalosporinase and penicillinase, respectively. Affinity of the penems for E. coli penicillin-binding proteins (PBPs) was also tested. beta-Lactamase-stable penems having a 6 alpha-hydroxyethyl group showed high affinity for PBP-4, -5, and -6 as well as for PBP-1A, -1Bs, and -2. However, the penems having no 6 alpha substituents showed a far lower affinity for PBP-4, -5, and -6 than that shown by the corresponding 6 alpha-hydroxyethyl penems. Among the penems tested, affinity for PBP-4, -5, and -6 was closely related to their beta-lactamase stability, as was the case among cephamycins and cephalosporins. Effects of the penems on the morphology of a strain of E. coli are also described.

  14. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    SciTech Connect

    Zhao, Junhua E-mail: timon.rabczuk@uni-weimar.de; Lu, Lixin; Rabczuk, Timon E-mail: timon.rabczuk@uni-weimar.de

    2014-05-28

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E{sub i}I{sub i}, d, and γ, where E{sub i}I{sub i} and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates.

  15. Introducing folding stability into the score function for computational design of RNA-binding peptides boosts the probability of success.

    PubMed

    Xiao, Xingqing; Agris, Paul F; Hall, Carol K

    2016-05-01

    A computational strategy that integrates our peptide search algorithm with atomistic molecular dynamics simulation was used to design rational peptide drugs that recognize and bind to the anticodon stem and loop domain (ASL(Lys3)) of human tRNAUUULys3 for the purpose of interrupting HIV replication. The score function of the search algorithm was improved by adding a peptide stability term weighted by an adjustable factor λ to the peptide binding free energy. The five best peptide sequences associated with five different values of λ were determined using the search algorithm and then input in atomistic simulations to examine the stability of the peptides' folded conformations and their ability to bind to ASL(Lys3). Simulation results demonstrated that setting an intermediate value of λ achieves a good balance between optimizing the peptide's binding ability and stabilizing its folded conformation during the sequence evolution process, and hence leads to optimal binding to the target ASL(Lys3). Thus, addition of a peptide stability term significantly improves the success rate for our peptide design search.

  16. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    PubMed

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K(+), Na(+), NH4(+), Ba(2+), and Sr(2+); on the contrary, Mn(2+) was coordinated in the grooves, outside the G-quadruplex. K(+) or Na(+) coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K(+) coordination provided the well-known high inhibitory activity of the aptamer, whereas Na(+) coordination supported low activity. Although NH4(+) coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba(2+) and Sr(2+) coordination. Mn(2+) coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a

  17. Ligand binding assay critical reagents and their stability: recommendations and best practices from the Global Bioanalysis Consortium Harmonization Team.

    PubMed

    King, Lindsay E; Farley, Esme; Imazato, Mami; Keefe, Jeannine; Khan, Masood; Ma, Mark; Pihl, K Susanne; Sriraman, Priya

    2014-05-01

    The L4 Global Harmonization Team on reagents and their stability focused on the management of critical reagents for pharmacokinetic, immunogenicity, and biomarker ligand binding assays. Regulatory guidance recognizes that reagents are important for ligand binding assays but do not address numerous aspects of critical reagent life cycle management. Reagents can be obtained from external vendors or developed internally, but regardless of their source, there are numerous considerations for their reliable long-term use. The authors have identified current best practices and provided recommendations for critical reagent lot changes, stability management, and documentation.

  18. Binding of resveratrol to the minor groove of DNA sequences with AATT and TTAA segments induces differential stability.

    PubMed

    Nair, Maya S; D'Mello, Samar; Pant, Rashmi; Poluri, Krishna Mohan

    2017-05-01

    Interactions of a natural stilbene compound, resveratrol with two DNA sequences containing AATT/TTAA segments have been studied. Resveratrol is found to interact with both the sequences. The mode of interaction has been studied using absorption, steady state fluorescence and circular dichroism spectroscopic techniques. UV-visible absorption and fluorescence studies provided the information regarding the binding constants and the stoichiometry of binding, whereas circular dichroism studies depicted the structural changes in DNA upon resveratrol binding. Our results evidenced that, though resveratrol showed similar affinity to both the sequences, the mode of interactions was different. The binding constants of resveratrol to AATT/TTAA sequences were found to be 7.55×10(5)M(-1) and 5.42×10(5)M(-1) respectively. Spectroscopic data evidenced for a groove binding interaction. Melting studies showed that the binding of resveratrol induces differential stability to the DNA sequences d(CGTTAACG)2 and d(CGAATTCG)2. Fluorescence data showed a stoichiometry of 1:1 for d(CGAATTCG)2-resveratrol complex and 1:4 for d(CGTTAACG)2-resveratrol complex. Molecular docking studies demonstrated that resveratrol binds to the minor groove region of both the sequences to form stable complexes with varied atomic contacts to the DNA bases or backbone. Both the complexes are stabilized by hydrogen bond formation. Our results evidenced that modulation of DNA sequence within the same bases can greatly alter the binding geometry and stability of the complex upon binding to small molecule inhibitor compounds like resveratrol. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities.

    PubMed

    Hauzy, Céline; Gauduchon, Mathias; Hulot, Florence D; Loreau, Michel

    2010-10-07

    Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.

  20. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  1. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  2. The 3' untranslated region of human Cyclin-Dependent Kinase 5 Regulatory subunit 1 contains regulatory elements affecting transcript stability

    PubMed Central

    Moncini, Silvia; Bevilacqua, Annamaria; Venturin, Marco; Fallini, Claudia; Ratti, Antonia; Nicolin, Angelo; Riva, Paola

    2007-01-01

    Background CDK5R1 plays a central role in neuronal migration and differentiation during central nervous system development. CDK5R1 has been implicated in neurodegenerative disorders and proposed as a candidate gene for mental retardation. The remarkable size of CDK5R1 3'-untranslated region (3'-UTR) suggests a role in post-transcriptional regulation of CDK5R1 expression. Results The bioinformatic study shows a high conservation degree in mammals and predicts several AU-Rich Elements (AREs). The insertion of CDK5R1 3'-UTR into luciferase 3'-UTR causes a decreased luciferase activity in four transfected cell lines. We identified 3'-UTR subregions which tend to reduce the reporter gene expression, sometimes in a cell line-dependent manner. In most cases the quantitative analysis of luciferase mRNA suggests that CDK5R1 3'-UTR affects mRNA stability. A region, leading to a very strong mRNA destabilization, showed a significantly low half-life, indicating an accelerated mRNA degradation. The 3' end of the transcript, containing a class I ARE, specifically displays a stabilizing effect in neuroblastoma cell lines. We also observed the interaction of the stabilizing neuronal RNA-binding proteins ELAV with the CDK5R1 transcript in SH-SY5Y cells and identified three 3'-UTR sub-regions showing affinity for ELAV proteins. Conclusion Our findings evince the presence of both destabilizing and stabilizing regulatory elements in CDK5R1 3'-UTR and support the hypothesis that CDK5R1 gene expression is post-transcriptionally controlled in neurons by ELAV-mediated mechanisms. This is the first evidence of the involvement of 3'-UTR in the modulation of CDK5R1 expression. The fine tuning of CDK5R1 expression by 3'-UTR may have a role in central nervous system development and functioning, with potential implications in neurodegenerative and cognitive disorders. PMID:18053171

  3. Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative

    PubMed Central

    2004-01-01

    In familial amyloidotic polyneuropathy, TTR (transthyretin) variants are deposited as amyloid fibrils. It is thought that this process involves TTR tetramer dissociation, which leads to partially unfolded monomers that aggregate and polymerize into amyloid fibrils. This process can be counteracted by stabilization of the tetramer. Several small compounds, such as diclofenac, diflunisal and flufenamic acid, have been reported to bind to TTR in vitro, in the T4 (thyroxine) binding channel that runs through the TTR tetramer, and consequently are considered to stabilize TTR. However, if these agents bind plasma proteins other than TTR, decreased drug availability will occur, compromising their use as therapeutic agents for TTR amyloidosis. In the present work, we compared the action of these compounds and of new derivatives designed to increase both selectivity of binding to TTR and inhibitory potency in relation to TTR amyloid fibril formation. We found two diflunisal derivatives that, in contrast with diclofenac, flufenamic acid and diflunisal, displaced T4 from TTR in plasma preferentially over binding to albumin and thyroxine binding globulin. The same diflunisal derivatives also had a stabilizing effect on TTR tetramers in plasma, as studied by isoelectric focusing of whole plasma under semi-denaturing conditions. In addition, by transmission electron microscopy, we demonstrated that, in contrast with other proposed TTR stabilizers (namely diclofenac, flufenamic acid and diflunisal), one of the diflunisal derivatives tested efficiently inhibited TTR aggregation. Taken together, our ex vivo and in vitro studies present evidence for the selectivity and efficiency of novel diflunisal derivates as TTR stabilizers and as inhibitors of fibril formation. PMID:15080795

  4. High-Density Lipoprotein Binds to Mycobacterium avium and Affects the Infection of THP-1 Macrophages

    PubMed Central

    Ichimura, Naoya; Sato, Megumi; Yoshimoto, Akira; Yano, Kouji; Ohkawa, Ryunosuke; Kasama, Takeshi

    2016-01-01

    High-density lipoprotein (HDL) is involved in innate immunity toward various infectious diseases. Concerning bacteria, HDL is known to bind to lipopolysaccharide (LPS) and to neutralize its physiological activity. On the other hand, cholesterol is known to play an important role in mycobacterial entry into host cells and in survival in the intracellular environment. However, the pathogenicity of Mycobacterium avium (M. avium) infection, which tends to increase worldwide, remains poorly studied. Here we report that HDL indicated a stronger interaction with M. avium than that with other Gram-negative bacteria containing abundant LPS. A binding of apolipoprotein (apo) A-I, the main protein component of HDL, with a specific lipid of M. avium might participate in this interaction. HDL did not have a direct bactericidal activity toward M. avium but attenuated the engulfment of M. avium by THP-1 macrophages. HDL also did not affect bacterial killing after ingestion of live M. avium by THP-1 macrophage. Furthermore, HDL strongly promoted the formation of lipid droplets in M. avium-infected THP-1 macrophages. These observations provide new insights into the relationship between M. avium infection and host lipoproteins, especially HDL. Thus, HDL may help M. avium to escape from host innate immunity. PMID:27516907

  5. Calnuc binds to Alzheimer's beta-amyloid precursor protein and affects its biogenesis.

    PubMed

    Lin, Ping; Li, Feng; Zhang, Yun-Wu; Huang, Haining; Tong, Gary; Farquhar, Marilyn Gist; Xu, Huaxi

    2007-03-01

    Calnuc, a Golgi calcium binding protein, plays a key role in the constitution of calcium storage. Abnormal calcium homeostasis has been linked to Alzheimer's disease (AD). Excessive production and/or accumulation of beta-amyloid (Abeta) peptides that are proteolytically derived from the beta-amyloid precursor protein (APP) have been linked to the pathogenesis of AD. APP has also been indicated to play multiple physiological functions. In this study, we demonstrate that calnuc interacts with APP through direct binding to the carboxyl-terminal region of APP, possibly in a calcium-sensitive manner. Immunofluorescence study revealed that the two proteins co-localize in the Golgi in both cultured cells and mouse brains. Over-expression of calnuc in neuroblastoma cells significantly reduces the level of endogenous APP. Conversely, down-regulation of calnuc by siRNA increases cellular levels of APP. Additionally, we show that over-expression of calnuc down-regulates the APP mRNA level and inhibits APP biosynthesis, which in turn results in a parallel reduction of APP proteolytic metabolites, sAPP, CTFs and Abeta. Furthermore, we found that the level of calnuc was significantly decreased in the brain of AD patients as compared with that of age-matched non-AD controls. Our results suggest a novel function of calnuc in modulating the levels of APP and its proteolytic metabolites, which may further affect the patho/physiological functions of APP including AD pathogenesis.

  6. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme.

    PubMed

    Liu, Lijun; Baase, Walter A; Michael, Miya M; Matthews, Brian W

    2009-09-22

    Both large-to-small and nonpolar-to-polar mutations in the hydrophobic core of T4 lysozyme cause significant loss in stability. By including supplementary stabilizing mutations we constructed a variant that combines the cavity-creating substitution Leu99 --> Ala with the buried charge mutant Met102 --> Glu. Crystal structure determination confirmed that this variant has a large cavity with the side chain of Glu102 located within the cavity wall. The cavity includes a large disk-shaped region plus a bulge. The disk-like region is essentially nonpolar, similar to L99A, while the Glu102 substituent is located in the vicinity of the bulge. Three ordered water molecules bind within this part of the cavity and appear to stabilize the conformation of Glu102. Glu102 has an estimated pKa of about 5.5-6.5, suggesting that it is at least partially charged in the crystal structure. The polar ligands pyridine, phenol and aniline bind within the cavity, and crystal structures of the complexes show one or two water molecules to be retained. Nonpolar ligands of appropriate shape can also bind in the cavity and in some cases exclude all three water molecules. This disrupts the hydrogen-bond network and causes the Glu102 side chain to move away from the ligand by up to 0.8 A where it remains buried in a completely nonpolar environment. Isothermal titration calorimetry revealed that the binding of these compounds stabilizes the protein by 4-6 kcal/mol. For both polar and nonpolar ligands the binding is enthalpically driven. Large negative changes in entropy adversely balance the binding of the polar ligands, whereas entropy has little effect on the nonpolar ligand binding.

  7. The CREB-binding protein affects the circadian regulation of behaviour.

    PubMed

    Maurer, Christian; Winter, Tobias; Chen, Siwei; Hung, Hsiu-Cheng; Weber, Frank

    2016-09-01

    Rhythmic changes in light and temperature conditions form the primary environmental cues that synchronize the molecular circadian clock of most species with the external cycles of day and night. Previous studies established a role for the CREB-binding protein (CBP) in molecular clock function by coactivation of circadian transcription. Here, we report that moderately increased levels of CBP strongly dampen circadian behavioural rhythms without affecting molecular oscillations of circadian transcription. Interestingly, light-dark cycles as well as high temperature facilitated a circadian control of behavioural activity. Based on these observations we propose that in addition to its coactivator function for circadian transcription, CBP is involved in the regulation of circadian behaviour down-stream of the circadian clock.

  8. CTCF-mediated reduction of vigilin binding affects the binding of HP1α to the satellite 2 locus.

    PubMed

    Shen, Wen-Yan; Liu, Qiu-Ying; Wei, Ling; Yu, Xiao-Qin; Li, Ran; Yang, Wen-Li; Xie, Xiao-Yan; Liu, Wen-Quan; Huang, Yuan; Qin, Yang

    2014-05-02

    CCCTC-binding factor (CTCF) has been implicated in numerous aspects of chromosome biology, and vigilin, a multi-KH-domain protein, participates in heterochromatin formation and chromosome segregation. We previously showed that CTCF interacts with vigilin. Here, we show that human vigilin, but not CTCF, colocalizes with HP1α on heterochromatic satellite 2 and β-satellite repeats. CTCF up-regulates the transcription of satellite 2, while vigilin down-regulates it. Vigilin depletion or CTCF overexpression reduces the binding of HP1α on the satellite 2 locus. Furthermore, overexpression of CTCF resists the loading of vigilin onto the satellite 2 locus. Thus CTCF may regulate vigilin behavior and thus indirectly influence the binding of HP1α to the satellite 2 locus.

  9. The oxidation of methionine-54 of epoetinum alfa does not affect molecular structure or stability, but does decrease biological activity.

    PubMed

    Labrenz, Steven R; Calmann, Melissa A; Heavner, George A; Tolman, Glen

    2008-01-01

    Erythropoietin therapy is used to treat severe anemia in renal failure and chemotherapy patients. One of these therapies based on recombinant human erythropoietin is marketed under the trade name of EPREX and utilizes epoetinum alfa as the active pharmaceutical ingredient. The effect of oxidation of methionine-54 on the structure and stability of the erythropoietin molecule has not been directly tested. We have observed partial and full chemical oxidation of methionine-54 to methionine-54 sulfoxide, accomplished using tert-Butylhydroperoxide and hydrogen peroxide, respectively. A blue shift in the fluorescence center of spectral mass wavelength was observed as a linear response to the level of methionine sulfoxide in the epoetinum alfa molecule, presumably arising from a local change in the environment near tryptophan-51, as supported by potassium iodide quenching studies. Circular dichroism studies demonstrated no change in the folded structure of the molecule with methionine oxidation. The thermal unfolding profiles of partial and completely oxidized epoetinum alfa overlap, with a T(m) of 49.5 degrees C across all levels of methionine sulfoxide content. When the protein was tested for activity, a decrease in biological activity was observed, correlating with methionine sulfoxide levels. An allosteric effect between Met54, Trp51, and residues involved in receptor binding is proposed. These results indicate that methionine oxidation has no effect on the folded structure and global thermodynamic stability of the recombinant human erythropoietin molecule. Oxidation can affect potency, but only at levels significantly in excess of those seen in EPREX.

  10. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5'-DNA end.

    PubMed

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-12-15

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork.

  11. Ankle stabilizers affect agility but not vertical jump or dynamic balance performance.

    PubMed

    Ambegaonkar, Jatin P; Redmond, Charles J; Winter, Christa; Cortes, Nelson; Ambegaonkar, Shruti J; Thompson, Brian; Guyer, Susan M

    2011-12-01

    Ankle stabilizers can reduce ankle sprain incidence and severity by limiting range of motion. Still whether using them affects performance remains unclear. The authors compared effects of 3 ankle stabilizers, tape, lace-up (Swede-O Ankle Lok), and semirigid (Air-Cast Air-Stirrup) braces, and a nonsupport control on vertical jump (Sargent Jump Test), agility (Right-Boomerang Run test), and dynamic balance (Modified Bass Test) in 10 volunteers (4 males, 6 females; 25.6 ± 2.8 years, 167.8 ± 13.7 cm, 61.4 ± 10.7 kg) using repeated-measures ANOVAs. Participants had similar vertical jump (P = .27; control = 41.40 ± 11.89 cm, tape = 37.90 ± 7.92 cm, Swede-O = 41.40 ± 11.89 cm, Air-Cast = 39.29 ± 10.85 cm) and dynamic balance (P = .08; control = 92.50 ± 2.46, tape = 91.55 ± 3.53, Swede-O = 97.00 ± 5.32, Air-Cast = 89.40 ± 6.08) but differing agility scores (P = .03; control = 13.55 ± 1.35 seconds, tape = 14.03 ± 1.5 seconds, Swede-O = 14.10 ± 1.36 seconds, Air-Cast = 14.14 ± 1.41 seconds). Post hoc tests revealed a significant difference (P = .03) between control and Air-Cast but not between Swede-O (P = .06) or tape (P = .07). Effect size (d) analyses indicated that compared with control, all stabilizers trended to increase agility run times (tape, d = 0.33; Swede-O, d = 0.40; Air-Cast, d = 0.43). Since participants primarily required sagittal plane motion when jumping vertically and had relatively slow directional changes in the dynamic balance test, wearing ankle stabilizers did not hamper jump or balance. However, ankle stabilizers hindered participants' ability to perform quick directional changes required in the agility test, with the most rigid stabilizer (Air-Cast) affecting agility the most. Clinicians should be aware that ankle stabilizers may affect some performance measures (agility) but not others (jumping, balance) and continue examinations in larger cohorts. Therapeutic, Level II.

  12. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    SciTech Connect

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  13. Phosphorylation and Intramolecular Stabilization of the Ligand Binding Domain in the Nuclear Receptor Steroidogenic Factor 1

    PubMed Central

    Desclozeaux, Marion; Krylova, Irina N.; Horn, Florence; Fletterick, Robert J.; Ingraham, Holly A.

    2002-01-01

    Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor with no known ligand. We showed previously that phosphorylation at serine 203 located N′-terminal to the ligand binding domain (LBD) enhanced cofactor recruitment, analogous to the ligand-mediated recruitment in ligand-dependent receptors. In this study, results of biochemical analyses and an LBD helix assembly assay suggest that the SF-1 LBD adopts an active conformation, with helices 1 and 12 packed against the predicted alpha-helical bundle, in the apparent absence of ligand. Fine mapping of the previously defined proximal activation function in SF-1 showed that the activation function mapped fully to helix 1 of the LBD. Limited proteolyses demonstrate that phosphorylation of S203 in the hinge region mimics the stabilizing effects of ligand on the LBD. Moreover, similar effects were observed in an SF-1/thyroid hormone LBD chimera receptor, illustrating that the S203 phosphorylation effects are transferable to a heterologous ligand-dependent receptor. Our collective data suggest that the hinge together with helix 1 is an individualized specific motif, which is tightly associated with its cognate LBD. For SF-1, we find that this intramolecular association and hence receptor activity are further enhanced by mitogen-activated protein kinase phosphorylation, thus mimicking many of the ligand-induced changes observed for ligand-dependent receptors. PMID:12242296

  14. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.

    PubMed Central

    Tieleman, D P; Berendsen, H J; Sansom, M S

    1999-01-01

    Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface simulation corresponded to a loosely bound alamethicin molecule that interacted with lipid headgroups but did not penetrate the hydrophobic core of the bilayer. Both simulations started with the peptide molecule in an alpha-helical conformation and lasted 2 ns. In water, the helix started to unfold after approximately 300 ps and by the end of the simulation only the N-terminal region of the peptide remained alpha-helical and the molecule had collapsed into a more compact form. At the surface of the bilayer, loss of helicity was restricted to the C-terminal third of the molecule and the rod-shaped structure of the peptide was retained. In the surface simulation about 10% of the peptide/water H-bonds were replaced by peptide/lipid H-bonds. These simulations suggest that some degree of stabilization of an amphipathic alpha-helix occurs at a bilayer surface even without interactions between hydrophobic side chains and the acyl chain core of the bilayer. PMID:10354443

  15. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization

    PubMed Central

    Cau, Julien; Faure, Sandrine; Comps, Michel; Delsert, Claude; Morin, Nathalie

    2001-01-01

    Coordination of the different cytoskeleton networks in the cell is of central importance for morphogenesis, organelle transport, and motility. The Rho family proteins are well characterized for their effects on the actin cytoskeleton, but increasing evidence indicates that they may also control microtubule (MT) dynamics. Here, we demonstrate that a novel Cdc42/Rac effector, X-p21-activated kinase (PAK)5, colocalizes and binds to both the actin and MT networks and that its subcellular localization is regulated during cell cycle progression. In transfected cells, X-PAK5 promotes the formation of stabilized MTs that are associated in bundles and interferes with MTs dynamics, slowing both the elongation and shrinkage rates and inducing long paused periods. X-PAK5 subcellular localization is regulated tightly, since coexpression with active Rac or Cdc42 induces its shuttling to actin-rich structures. Thus, X-PAK5 is a novel MT-associated protein that may communicate between the actin and MT networks during cellular responses to environmental conditions. PMID:11733543

  16. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    PubMed Central

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke; Mortuza, Gulnahar B.; Räschle, Markus; Ibañez de Opakua, Alain; Oka, Yasuyoshi; Feng, Yunpeng; Blanco, Francisco J.; Mann, Matthias; Montoya, Guillermo; Groth, Anja; Bekker-Jensen, Simon

    2016-01-01

    Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication. PMID:26711499

  17. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability.

    PubMed

    Vytvytska, O; Jakobsen, J S; Balcunaite, G; Andersen, J S; Baccarini, M; von Gabain, A

    1998-11-24

    The stability of the ompA mRNA depends on the bacterial growth rate. The 5' untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5' untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qbeta replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.

  18. SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence.

    PubMed

    Ariyachet, Chaiyaboot; Solis, Norma V; Liu, Yaoping; Prasadarao, Nemani V; Filler, Scott G; McBride, Anne E

    2013-04-01

    Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.

  19. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.

    PubMed

    Micoud, Julien; Chauvet, Sylvain; Scheckenbach, Klaus Ernst Ludwig; Alfaidy, Nadia; Chanson, Marc; Benharouga, Mohamed

    2015-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.

  20. Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy

    PubMed Central

    KISSELEVA, NATALIA; KHVOROVA, ANASTASIA; WESTHOF, ERIC; SCHIEMANN, OLAV

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to study the binding of MnII ions to a tertiary stabilized hammer-head ribozyme (tsHHRz) and to compare it with the binding to the minimal hammerhead ribozyme (mHHRz). Continuous wave EPR measurements show that the tsHHRz possesses a single high-affinity MnII binding site with a KD of ≤10 nM at an NaCl concentration of 0.1 M. This dissociation constant is at least two orders of magnitude smaller than the KD determined previously for the single high-affinity MnII site in the mHHRz. In addition, whereas the high-affinity MnII is displaced from the mHHRz upon binding of the aminoglycoside antibiotic neomycin B, it is not from the tsHHRz. Despite these pronounced differences in binding, a comparison between the electron spin echo envelope modulation and hyperfine sublevel correlation spectra of the minimal and tertiary stabilized HHRz demonstrates that the structure of both binding sites is very similar. This suggests that the MnII is located in both ribozymes between the bases A9 and G10.1 of the sheared G · A tandem base pair, as shown previously and in detail for the mHHRz. Thus, the much stronger MnII binding in the tsHHRz is attributed to the interaction between the two external loops, which locks in the RNA fold, trapping the MnII in the tightly bound conformation, whereas the absence of long-range loop–loop interactions in the mHHRz leads to more dynamical and open conformations, decreasing MnII binding. PMID:15611296

  1. Seat surface inclination may affect postural stability during Boccia ball throwing in children with cerebral palsy.

    PubMed

    Tsai, Yung-Shen; Yu, Yi-Chen; Huang, Po-Chang; Cheng, Hsin-Yi Kathy

    2014-12-01

    The aim of the study was to examine how seat surface inclination affects Boccia ball throwing movement and postural stability among children with cerebral palsy (CP). Twelve children with bilateral spastic CP (3 with gross motor function classification system Level I, 5 with Level II, and 4 with Level III) participated in this study. All participants underwent pediatric reach tests and ball throwing performance analyses while seated on 15° anterior- or posterior-inclined, and horizontal surfaces. An electromagnetic motion analysis system was synchronized with a force plate to assess throwing motion and postural stability. The results of the pediatric reach test (p = 0.026), the amplitude of elbow movement (p = 0.036), peak vertical ground reaction force (PVGRF) (p < 0.001), and movement range of the center of pressure (COP) (p < 0.020) were significantly affected by seat inclination during throwing. Post hoc comparisons showed that anterior inclination allowed greater amplitude of elbow movement and PVGRF, and less COP movement range compared with the other inclines. Posterior inclination yielded less reaching distance and PVGRF, and greater COP movement range compared with the other inclines. The anterior-inclined seat yielded superior postural stability for throwing Boccia balls among children with bilateral spastic CP, whereas the posterior-inclined seat caused difficulty.

  2. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter

    PubMed Central

    Alvarez, Frances Joan D.; Orelle, Cédric; Huang, Yan; Bajaj, Ruchika; Everly, R. Michael; Klug, Candice S.; Davidson, Amy L.

    2015-01-01

    Summary MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance (EPR) spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP. PMID:26268698

  3. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.

    PubMed

    Alvarez, Frances Joan D; Orelle, Cédric; Huang, Yan; Bajaj, Ruchika; Everly, R Michael; Klug, Candice S; Davidson, Amy L

    2015-12-01

    MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.

  4. A theoretical analysis of airplane longitudinal stability and control as affected by wind shear

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1977-01-01

    The longitudinal equations of motion with wind shear terms were used to analyze the stability and motions of a jet transport. A positive wind shear gives a decreasing head wind or changes a head wind into a tail wind. A negative wind shear gives a decreasing tail wind or changes a tail wind into a head wind. It was found that wind shear had very little effect on the short period mode and that negative wind shear, although it affected the phugoid, did not cause stability problems. On the other hand, it was found that positive wind shear can cause the phugoid to become aperiodic and unstable. In this case, a stability boundary for the phugoid was found that is valid for most aircraft at all flight speeds. Calculations of aircraft motions confirmed the results of the stability analysis. It was found that a flight path control automatic pilot and an airspeed control system provide good control in all types of wind shear. Appendixes give equations of motion that include the effects of downdrafts and updrafts and extend the longitudinal equations of motion for shear to six degrees of freedom.

  5. Creating temperature-sensitive winged helix transcription factors. Amino acids that stabilize the DNA binding domain of HNF3.

    PubMed

    Stevens, K; Cirillo, L; Zaret, K S

    2000-09-29

    Winged helix transcription factors contain two polypeptide loops, or "wings," that make minor groove contacts with DNA from either side of a three-helix bundle that binds the DNA major groove. While wing 1 is stabilized by a beta-sheet, parameters that stabilize wing 2 are unknown. Herein we identify two bulky aromatic residues in wing 2 that stabilize the loop structure and, thereby, the entire protein's DNA binding and transcriptional stimulatory activity by interacting with other residues in the three-helix bundle. Mutations of these wing 2 residues create proteins that are temperature-sensitive for transcriptional activity. Aromatic and/or hydrophobic residues are highly conserved among the 150 known winged helix proteins, suggesting conserved function. We suggest that the winged helix structure evolved by the acquisition of aromatic and/or hydrophobic residues in distal polypeptide sequences that helped stabilize the association of a protein loop (wing 2) with the three-helix bundle, thereby enhancing DNA binding.

  6. An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics.

    PubMed

    Miller, Becky M; Zhang, Shuxing; Suggs, Jennifer A; Swank, Douglas M; Littlefield, Kimberly P; Knowles, Aileen F; Bernstein, Sanford I

    2005-10-14

    In Drosophila melanogaster expression of muscle myosin heavy chain isoforms occurs by alternative splicing of transcripts from a single gene. The exon 7 domain is one of four variable regions in the catalytic head and is located near the nucleotide-binding site. To ascribe a functional role to this domain, we created two chimeric myosin isoforms (indirect flight isoform-exon 7a and embryonic-exon 7d) that differ from the native indirect flight muscle and embryonic body-wall muscle isoforms only in the exon 7 region. Germline transformation and subsequent expression of the chimeric myosins in the indirect flight muscle of myosin-null Drosophila allowed us to purify the myosin for in vitro studies and to assess in vivo structure and function of transgenic muscles. Intriguingly, in vitro experiments show the exon 7 domain modulates myosin ATPase activity but has no effect on actin filament velocity, a novel result compared to similar studies with other Drosophila variable exons. Transgenic flies expressing the indirect flight isoform-exon 7a have normal indirect flight muscle structure, and flight and jump ability. However, expression of the embryonic-exon 7d chimeric isoform yields flightless flies that show improvements in both the structural stability of the indirect flight muscle and in locomotor abilities as compared to flies expressing the embryonic isoform. Overall, our results suggest the exon 7 domain participates in the regulation of the attachment of myosin to actin in order to fine-tune the physiological properties of Drosophila myosin isoforms.

  7. Phage φ29 Regulatory Protein p4 Stabilizes the Binding of the RNA Polymerase to the Late Promoter in a Process Involving Direct Protein-Protein Contacts

    NASA Astrophysics Data System (ADS)

    Nuez, Beatriz; Rojo, Fernando; Salas, Margarita

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage φ29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  8. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  9. Increased Seasonal Variation in Serotonin Transporter Binding in Seasonal Affective Disorder

    PubMed Central

    Tyrer, Andrea E; Levitan, Robert D; Houle, Sylvain; Wilson, Alan A; Nobrega, José N; Meyer, Jeffrey H

    2016-01-01

    Seasonal affective disorder (SAD) is highly prevalent with rates of 1–6% and greater prevalence at more extreme latitudes; however, there are almost no direct brain investigations of this disorder. In health, serotonin transporter binding potential (5-HTT BPND), an index of 5-HTT levels, is greater throughout the brain in fall-winter compared with spring-summer. We hypothesized that in SAD, this seasonal variation would be greater in brain regions containing structures that regulate affect such as the prefrontal and anterior cingulate cortices (PFC and ACC). Furthermore, given the dimensional nature of SAD symptoms, it was hypothesized that seasonal fluctuation of 5-HTT BPND in the PFC and ACC would be greatest in severe SAD. Twenty SAD and twenty healthy participants underwent [11C]DASB positron emission tomography scans in summer and winter to measure seasonal variation in [11C]DASB 5-HTT BPND. Seasonal increases in [11C]DASB 5-HTT BPND were greater in SAD compared with healthy in the PFC and ACC, primarily due to differences between severe SAD and healthy (severe SAD vs healthy; Mann–Whitney U, U=42.5 and 37.0, p=0.005 and 0.003, respectively; greater magnitude in severe SAD of 35.10 and 14.23%, respectively), with similar findings observed in other regions (U=40.0–62.0, p=0.004–0.048; greater magnitude in severe SAD of 13.16–17.49%). To our knowledge, this is the first brain biomarker identified in SAD. This creates a new opportunity for phase 0 studies to target this phenotype and optimize novel prevention/treatment strategies for SAD. PMID:27087270

  10. Increased Seasonal Variation in Serotonin Transporter Binding in Seasonal Affective Disorder.

    PubMed

    Tyrer, Andrea E; Levitan, Robert D; Houle, Sylvain; Wilson, Alan A; Nobrega, José N; Meyer, Jeffrey H

    2016-09-01

    Seasonal affective disorder (SAD) is highly prevalent with rates of 1-6% and greater prevalence at more extreme latitudes; however, there are almost no direct brain investigations of this disorder. In health, serotonin transporter binding potential (5-HTT BPND), an index of 5-HTT levels, is greater throughout the brain in fall-winter compared with spring-summer. We hypothesized that in SAD, this seasonal variation would be greater in brain regions containing structures that regulate affect such as the prefrontal and anterior cingulate cortices (PFC and ACC). Furthermore, given the dimensional nature of SAD symptoms, it was hypothesized that seasonal fluctuation of 5-HTT BPND in the PFC and ACC would be greatest in severe SAD. Twenty SAD and twenty healthy participants underwent [(11)C]DASB positron emission tomography scans in summer and winter to measure seasonal variation in [(11)C]DASB 5-HTT BPND. Seasonal increases in [(11)C]DASB 5-HTT BPND were greater in SAD compared with healthy in the PFC and ACC, primarily due to differences between severe SAD and healthy (severe SAD vs healthy; Mann-Whitney U, U=42.5 and 37.0, p=0.005 and 0.003, respectively; greater magnitude in severe SAD of 35.10 and 14.23%, respectively), with similar findings observed in other regions (U=40.0-62.0, p=0.004-0.048; greater magnitude in severe SAD of 13.16-17.49%). To our knowledge, this is the first brain biomarker identified in SAD. This creates a new opportunity for phase 0 studies to target this phenotype and optimize novel prevention/treatment strategies for SAD.

  11. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors

    PubMed Central

    Peiris, Diluka; Spector, Alexander F.; Lomax-Browne, Hannah; Azimi, Tayebeh; Ramesh, Bala; Loizidou, Marilena; Welch, Hazel; Dwek, Miriam V.

    2017-01-01

    Alterations in protein glycosylation are a key feature of oncogenesis and have been shown to affect cancer cell behaviour perturbing cell adhesion, favouring cell migration and metastasis. This study investigated the effect of N-linked glycosylation on the binding of Herceptin to HER2 protein in breast cancer and on the sensitivity of cancer cells to the chemotherapeutic agent doxorubicin (DXR) and growth factors (EGF and IGF-1). The interaction between Herceptin and recombinant HER2 protein and cancer cell surfaces (on-rate/off-rate) was assessed using a quartz crystal microbalance biosensor revealing an increase in the accessibility of HER2 to Herceptin following deglycosylation of cell membrane proteins (deglycosylated cells Bmax: 6.83 Hz; glycosylated cells Bmax: 7.35 Hz). The sensitivity of cells to DXR and to growth factors was evaluated using an MTT assay. Maintenance of SKBR-3 cells in tunicamycin (an inhibitor of N-linked glycosylation) resulted in an increase in sensitivity to DXR (0.1 μM DXR P < 0.001) and a decrease in sensitivity to IGF-1 alone and to IGF-1 supplemented with EGF (P < 0.001). This report illustrates the importance of N-linked glycosylation in modulating the response of cancer cells to chemotherapeutic and biological treatments and highlights the potential of glycosylation inhibitors as future combination treatments for breast cancer. PMID:28223691

  12. Hydration status affects nuclear distribution of transcription factor tonicity responsive enhancer binding protein in rat kidney.

    PubMed

    Cha, J H; Woo, S K; Han, K H; Kim, Y H; Handler, J S; Kim, J; Kwon, H M

    2001-11-01

    Tonicity responsive enhancer binding protein (TonEBP) is the transcription factor that regulates tonicity responsive expression of proteins that catalyze cellular accumulation of compatible osmolytes. In cultured MDCK cells, hypertonicity stimulates the activity of TonEBP via a combination of increased protein abundance and increased nuclear localization. For investigating regulation of TonEBP in the kidney, rats were subjected to water loading or dehydration. Water loading lowered urine osmolality and mRNA expression of sodium/myo-inositol cotransporter (SMIT), a target gene of TonEBP, in the renal medulla; dehydration doubled the urine osmolality and increased SMIT mRNA expression. In contrast, overall abundance of TonEBP and its mRNA measured by immunoblot and ribonuclease protection assay, respectively, was not affected. Immunohistochemical analysis, however, revealed that nuclear distribution of TonEBP is generally increased throughout the medulla in dehydrated animals compared with water loaded animals. Increased nuclear localization was particularly dramatic in thin limbs. Notable exceptions were the middle to terminal portions of the inner medullary collecting ducts and blood vessels, where a change in TonEBP distribution was not evident. Immunohistochemical detection of SMIT mRNA revealed that the changes in nuclear distribution of TonEBP correlate with expression of SMIT. It is concluded that under physiologic conditions, nucleocytoplasmic distribution is the dominant mode of regulation of TonEBP in the renal medulla.

  13. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.

    PubMed

    Guo, Chuanliang; Xue, Yan; Yang, Guanheng; Yin, Shang; Shi, Wansheng; Cheng, Yan; Yan, Xiaoshuang; Fan, Shuyue; Zhang, Huijun; Zeng, Fanyi

    2016-08-01

    Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs.

  14. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities.

    PubMed

    Nowlin, Weston H; González, María J; Vanni, Michael J; Stevens, M Henry H; Fields, Matthew W; Valente, Jonathon J

    2007-09-01

    Periodical cicadas emerge from below ground every 13 or 17 years in North American forests, with individual broods representing the synchronous movement of trillions of individuals across geographic regions. Due to predator satiation, most individuals escape predation, die, and become deposited as detritus. Some of this emergent biomass falls into woodland aquatic habitats (small streams and woodland ponds) and serves as a high-quality allochthonous detritus pulse in early summer. We present results of a two-part study in which we (1) quantified deposition of Brood X periodical cicada detritus into woodland ponds and low-order streams in southwestern Ohio, and (2) conducted an outdoor mesocosm experiment in which we examined the effects of deposition of different amounts of cicada detritus on food webs characteristic of forest ponds. In the mesocosm experiment, we manipulated the amount of cicada detritus input to examine if food web dynamics and stability varied with the magnitude of this allochthonous resource subsidy, as predicted by numerous theoretical models. Deposition data indicate that, during years of periodical cicada emergence, cicada carcasses can represent a sizable pulse of allochthonous detritus to forest aquatic ecosystems. In the mesocosm experiment, cicada carcass deposition rapidly affected food webs, leading to substantial increases in nutrients and organism biomass, with the magnitude of increase dependent upon the amount of cicada detritus. Deposition of cicada detritus impacted the stability of organism functional groups and populations by affecting the temporal variability and biomass minima. However, contrary to theory, stability measures were not consistently related to the size of the allochthonous pulse (i.e., the amount of cicada detritus). Our study underscores the need for theory to further explore consequences of pulsed allochthonous subsidies for food web stability.

  15. βI-tubulin mutations in the laulimalide/peloruside binding site mediate drug sensitivity by altering drug-tubulin interactions and microtubule stability.

    PubMed

    Kanakkanthara, Arun; Rowe, Matthew R; Field, Jessica J; Northcote, Peter T; Teesdale-Spittle, Paul H; Miller, John H

    2015-09-01

    Peloruside A (PLA) and laulimalide (LAU) are potent microtubule-stabilizing natural products that are effective against a broad spectrum of cancer cells. The interactions of PLA and LAU with tubulin have attracted a great deal of attention, mainly because they bind to β-tubulin at a site that is different from the classical taxoid site. Multiple βI-tubulin amino acid residues have been predicted by computer modelling studies and more recently by protein crystallography to participate in the binding of PLA and LAU to tubulin. The relevance of these residues in determining cellular sensitivity to the compounds, however, remains largely uncertain. To determine the role of four binding site residues, Q291, D295, V333, and N337 on PLA and LAU activity, we introduced single mutations to these sites by site-directed mutagenesis and transfected each mutant tubulin separately into HEK and/or HeLa cells. We found that a Q291M βI-tubulin mutation increased sensitivity of the cells to PLA, but not to LAU, paclitaxel (PTX), or vinblastine (VBL). In contrast, V333W and N337L mutations led to less stable microtubules, with the V333W causing resistance to PLA and PTX, but not LAU, and the N337L causing resistance to PLA, LAU, and PTX. Moreover, cells expressing either W333 or L337 were hypersensitive to the microtubule-destabilizing agent, VBL. The D295I mutation conferred resistance to both PLA and LAU without affecting microtubule stability or sensitivity to PTX or ixabepilone (IXB). This study identifies the first mammalian βI-tubulin mutation that specifically increases sensitivity to PLA, and reports mutations at PLA and LAU binding site residues that can either reduce microtubule stability or impair drug-tubulin binding, conferring resistance to these microtubule-stabilizing agents. This information provides insights on β-tubulin residues important for maintaining microtubule structural integrity and for sensitivity to microtubule-targeting agents, and suggests novel

  16. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein*

    PubMed Central

    Loo, Tip W.; Clarke, David M.

    2015-01-01

    ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease. PMID:26507655

  17. Stability Limits of Capillary Bridges: How Contact Angle Hysteresis Affects Morphology Transitions of Liquid Microstructures.

    PubMed

    de Ruiter, Riëlle; Semprebon, Ciro; van Gorcum, Mathijs; Duits, Michèl H G; Brinkmann, Martin; Mugele, Frieder

    2015-06-12

    The equilibrium shape of a drop in contact with solid surfaces can undergo continuous or discontinuous transitions upon changes in either drop volume or surface energies. In many instances, such transitions involve the motion of the three-phase contact line and are thus sensitive to contact angle hysteresis. Using a combination of electrowetting-based experiments and numerical calculations, we demonstrate for a generic sphere-plate confinement geometry how contact angle hysteresis affects the mechanical stability of competing axisymmetric and nonaxisymmetric drop conformations and qualitatively changes the character of transitions between them.

  18. Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission.

    PubMed

    Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R; Smith, Thomas J

    2017-10-01

    Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission.IMPORTANCECucumber necrosis virus (CNV), a member of the genus Tombusvirus, is transmitted in nature via zoospores of the fungus Olpidium bornovanus While a number of plant viruses are transmitted via insect vectors, little

  19. Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis.

    PubMed

    Smith, N L; Miskimins, W K

    2011-04-01

    NF90 is a multifunctional double-strand RNA binding protein with documented roles in transcription, mRNA stability, translation, RNA processing and transport, and mitosis. It is a phosphoprotein that interacts with, and is a substrate for, several protein kinases. The study described here was initiated to gain better understanding of specific NF90 phosphorylation sites and their relationship to mechanisms by which NF90 performs its various functions. Phosphoproteomic studies have identified NF90 serine 482 (S482) as a major phosphorylation site in vivo. Site-specific mutations were introduced at this site and the mutated proteins were expressed in MCF7 cells by transfection. Western blotting was used to examine NF90 expression, stability, and responsiveness to protein kinase activators and inhibitors. Flow cytometry was used to examine effects of NF90 mutation on cell cycle progression. Non-phosphorylatable mutant S482A was unstable compared to phosphomimetic S482E mutant. NF90-S482A expression was greatly enhanced by inhibiting proteasomal degradation or by activating PKC. Identical treatments had little effect on NF90-S482E. In contrast to WT NF90 or NF90-S482E, cells stably expressing NF90-S482A accumulated in M phase when treated with TPA. Phosphorylation at S482 is important for NF90 stability and in regulating its functional role during mitosis. Based on the sequence surrounding S482, mitotic kinase PLK1 is a strong candidate for the enzyme that phosphorylates NF90 at this site. © 2011 Blackwell Publishing Ltd.

  20. Identification of VPS13C as a Galectin-12-Binding Protein That Regulates Galectin-12 Protein Stability and Adipogenesis

    PubMed Central

    Yang, Ri-Yao; Xue, Huiting; Yu, Lan; Velayos-Baeza, Antonio; Monaco, Anthony P.; Liu, Fu-Tong

    2016-01-01

    Galectin-12, a member of the galectin family of β-galactoside-binding animal lectins, is preferentially expressed in adipocytes and required for adipocyte differentiation in vitro. This protein was recently found to regulate lipolysis, whole body adiposity, and glucose homeostasis in vivo. Here we identify VPS13C, a member of the VPS13 family of vacuolar protein sorting-associated proteins highly conserved throughout eukaryotic evolution, as a major galectin-12-binding protein. VPS13C is upregulated during adipocyte differentiation, and is required for galectin-12 protein stability. Knockdown of Vps13c markedly reduces the steady-state levels of galectin-12 by promoting its degradation through primarily the lysosomal pathway, and impairs adipocyte differentiation. Our studies also suggest that VPS13C may have a broader role in protein quality control. The regulation of galectin-12 stability by VPS13C could potentially be exploited for therapeutic intervention of obesity and related metabolic diseases. PMID:27073999

  1. Cavity filling mutations at the thyroxine-binding site dramatically increase transthyretin stability and prevent its aggregation.

    PubMed

    Sant'Anna, Ricardo; Almeida, Maria Rosário; Varejāo, Nathalia; Gallego, Pablo; Esperante, Sebastian; Ferreira, Priscila; Pereira-Henriques, Alda; Palhano, Fernando L; de Carvalho, Mamede; Foguel, Debora; Reverter, David; Saraiva, Maria João; Ventura, Salvador

    2017-03-24

    More than a hundred different Transthyretin (TTR) mutations are associated with fatal systemic amyloidoses. They destabilize the protein tetrameric structure and promote the extracellular deposition of TTR as pathological amyloid fibrils. So far, only mutations R104H and T119M have been shown to stabilize significantly TTR, acting as disease suppressors. We describe a novel A108V non-pathogenic mutation found in a Portuguese subject. This variant is more stable than wild type TTR both in vitro and in human plasma, a feature that prevents its aggregation. The crystal structure of A108V reveals that this stabilization comes from novel intra and inter subunit contacts involving the thyroxine (T4) binding site. Exploiting this observation, we engineered a A108I mutation that fills the T4 binding cavity, as evidenced in the crystal structure. This synthetic protein becomes one of the most stable TTR variants described so far, with potential application in gene and protein replacement therapies.

  2. Identification of VPS13C as a Galectin-12-Binding Protein That Regulates Galectin-12 Protein Stability and Adipogenesis.

    PubMed

    Yang, Ri-Yao; Xue, Huiting; Yu, Lan; Velayos-Baeza, Antonio; Monaco, Anthony P; Liu, Fu-Tong

    2016-01-01

    Galectin-12, a member of the galectin family of β-galactoside-binding animal lectins, is preferentially expressed in adipocytes and required for adipocyte differentiation in vitro. This protein was recently found to regulate lipolysis, whole body adiposity, and glucose homeostasis in vivo. Here we identify VPS13C, a member of the VPS13 family of vacuolar protein sorting-associated proteins highly conserved throughout eukaryotic evolution, as a major galectin-12-binding protein. VPS13C is upregulated during adipocyte differentiation, and is required for galectin-12 protein stability. Knockdown of Vps13c markedly reduces the steady-state levels of galectin-12 by promoting its degradation through primarily the lysosomal pathway, and impairs adipocyte differentiation. Our studies also suggest that VPS13C may have a broader role in protein quality control. The regulation of galectin-12 stability by VPS13C could potentially be exploited for therapeutic intervention of obesity and related metabolic diseases.

  3. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  4. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    PubMed

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein.

  5. Conformational changes in DNA-binding proteins: relationships with precomplex features and contributions to specificity and stability.

    PubMed

    Andrabi, Munazah; Mizuguchi, Kenji; Ahmad, Shandar

    2014-05-01

    Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA-binding proteins by superimposing DNA-bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA-binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Copyright © 2013 Wiley Periodicals, Inc.

  6. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages.

  7. Roscovitine differentially affects CaV2 and Kv channels by binding to the open state.

    PubMed

    Buraei, Zafir; Schofield, Geoffrey; Elmslie, Keith S

    2007-03-01

    Roscovitine potently inhibits cyclin-dependent kinases (CDK) and can independently slow the closing of neuronal (CaV2.2) calcium channels. We were interested if this drug could affect other ion channels similarly. Using whole cell recordings, we found that roscovitine specifically slows deactivation of all CaV2 channels (N, P/Q and R) by binding to the open state. This effect had a rapid onset and EC(50)=54, 120 and 54microM for N-, P/Q-, and R-type channels, respectively. Deactivation of other channel types was not slowed, including L-type calcium channels (CaV1.2, CaV1.3), potassium channels (native, Kv4.2, Kv2.1 and Kv1.3), and native sodium channels. However, most of the channels tested were inhibited by roscovitine. The inhibition was characterized by slow development and a lower affinity (EC(50)=100-300microM). Surprisingly, potassium channels were rapidly inhibited with an EC(50)=23microM, which is similar to the EC(50) for roscovitine block of cell division [Meijer, L., Borgne, A., Mulner, O., Chong, J., Blow, J., Inagaki, N., Inagaki, M., Delcros, J., Moulinoux, J., 1997. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527-536]. Potassium current inhibition seemed to result from open channel block. The high potency of these two rapid onset effects makes them complicating factors for ongoing clinical trials and research using roscovitine. Thus, the physiology and pharmacology of slow CaV2 deactivation and potassium channel block must be explored.

  8. Serotonin transporter binding is reduced in seasonal affective disorder following light therapy.

    PubMed

    Tyrer, A E; Levitan, R D; Houle, S; Wilson, A A; Nobrega, J N; Rusjan, P M; Meyer, J H

    2016-11-01

    To investigate the effects of light therapy on serotonin transporter binding (5-HTT BPND ), an index of 5-HTT levels, in the anterior cingulate and prefrontal cortices (ACC and PFC) during winter in seasonal affective disorder (SAD). 5-HTT BPND fluctuates seasonally to a greater extent in SAD relative to health. We hypothesized that in SAD, 5-HTT BPND would be reduced in the ACC and PFC following light therapy. Eleven SAD participants underwent [(11) C] DASB positron emission tomography (PET) scans to measure 5-HTT BPND before and after 2 weeks of daily morning light therapy. The primary finding was a main effect of treatment on 5-HTT BPND in the ACC and PFC (repeated-measures manova, F(2,9) = 6.82, P = 0.016). This effect was significant in the ACC (F(1,10) = 15.11 and P = 0.003, magnitude of decrease, 11.94%) and PFC (F(1,10) = 8.33, P = 0.016, magnitude of decrease, 9.13%). 5-HTT BPND also decreased in other regions assayed following light therapy (repeated-measures manova, F(4,7) = 8.54, P = 0.028) including the hippocampus, ventral striatum, dorsal putamen, thalamus and midbrain (F(1,10) = 8.02-36.94, P < 0.0001-0.018; magnitude -8.83% to -16.74%). These results demonstrate that light therapy reaches an important therapeutic target in the treatment of SAD and provide a basis for improvement of this treatment via application of [(11) C]DASB PET. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The Drosophila RNA-binding protein HOW controls the stability of dgrasp mRNA in the follicular epithelium

    PubMed Central

    Giuliani, Giuliano; Giuliani, Fabrizio; Volk, Talila; Rabouille, Catherine

    2014-01-01

    Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations. PMID:24217913

  10. Molecular cloning, expression profile, odorant affinity, and stability of two odorant-binding proteins in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae).

    PubMed

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2017-02-01

    The polyembryonic endoparasitoid wasp Macrocentrus cingulum Brischke (Hymenoptera: Braconidae) is deployed successfully as a biocontrol agent for corn pest insects from the Lepidopteran genus Ostrinia in Europe and throughout Asia, including Japan, Korea, and China. The odorants are recognized, bound, and solubilized by odorant-binding protein (OBP) in the initial biochemical recognition steps in olfaction that transport them across the sensillum lymph to initiate behavioral response. In the present study, we examine the odorant-binding effects on thermal stability of McinOBP2, McinOBP3, and their mutant form that lacks the third disulfide bonds. Real-time PCR experiments indicate that these two are expressed mainly in adult antennae, with expression levels differing by sex. Odorant-binding affinities of aldehydes, terpenoids, and aliphatic alcohols were measured with circular dichroism spectroscopy based on changes in the thermal stability of the proteins upon their affinities to odorants. The obtained results reveal higher affinity of trans-caryophelle, farnesene, and cis-3-Hexen-1-ol exhibits to both wild and mutant McinOBP2 and McinOBP3. Although conformational flexibility of the mutants and shape of binding cavity make differences in odorant affinity between the wild-type and mutant, it suggested that lacking the third disulfide bond in mutant proteins may have chance to incorrect folded structures that reduced the affinity to these odorants. In addition, CD spectra clearly indicate proteins enriched with α-helical content.

  11. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees.

    PubMed

    Mountcastle, Andrew M; Ravi, Sridhar; Combes, Stacey A

    2015-08-18

    Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee's center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee's moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection.

  12. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study

    PubMed Central

    Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja

    2016-01-01

    Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940

  13. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study.

    PubMed

    Radibratovic, Milica; Minic, Simeon; Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja

    2016-01-01

    Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma.

  14. Tetracycline analogs affecting binding to Tn10-Encoded Tet repressor trigger the same mechanism of induction.

    PubMed

    Lederer, T; Kintrup, M; Takahashi, M; Sum, P E; Ellestad, G A; Hillen, W

    1996-06-11

    We examined the influence of substituents in tetracycline (tc) analogs modified at positions 2 and 4-9 and anhydrotetracycline (atc) on induction of the Tn10-encoded Tet repressor (TetR) by a quantitative in vitro induction assay. The equilibrium association constants of the modified tc to TetR were independently determined to distinguish effects on binding from those on induction. We found a correlation between the binding affinity and induction of TetR for most tc analogs. While a substitution at position 5 revealed only minor effects, changes at position 6 increased binding and induction efficiencies up to 20-fold. A chlorine at position 7 or 8 enhanced binding and induction about 4- and 9-fold, respectively. Substituents at position 9 decreased binding up to 5-fold. Epimerization of the dimethylamino function at position 4 in 4-epi-tc resulted in about 300-fold-reduced binding and 80-fold-reduced induction. Substitution of this grouping by hydrogen in 4-de(dimethylamino)-tc resulted in no binding and no induction. The respective atc analog failed to induce as well, although binding was still observed. The dimethylamino function may, thus, play a role in triggering the conformational change of TetR necessary for induction. Substitution of the 2-carboxamido by a nitrilo function did not influence binding and induction efficiencies. Atc showed about 30-fold increased binding and induction, being the most effective inducer tested in this study. The equilibrium association constants of most TetR-[Mg-tc]+ and TetR-([Mg-tc]+)2 analog complexes with tet operator are decreased about 10(2)- and 10(8)-fold, respectively, as compared to those of free TetR. This suggests that these tc analogs share the same molecular mechanism of TetR induction.

  15. SIRT1 stimulation by polyphenols is affected by their stability and metabolism.

    PubMed

    de Boer, Vincent C J; de Goffau, Marcus C; Arts, Ilja C W; Hollman, Peter C H; Keijer, Jaap

    2006-07-01

    Silent information regulator two ortholog 1 (SIRT1) is the human ortholog of the yeast sir2 protein; one of the most important regulators of lifespan extension by caloric restriction in several organisms. Dietary polyphenols, abundant in vegetables, fruits, cereals, wine and tea, were reported to stimulate the deacetylase activity of recombinant SIRT1 protein and could therefore be potential regulators of aging associated processes. However, inconsistent data between effects of polyphenols on the recombinant SIRT1 and on in vivo SIRT1, led us to investigate the influence of (1) stability of polyphenols under experimental conditions and (2) metabolism of polyphenols in human HT29 cells, on stimulation of SIRT1. With an improved SIRT1 deacetylation assay we found three new polyphenolic stimulators. Epigallocatechin galate (EGCg, 1.76-fold), epicatechin galate (ECg, 1.85-fold) and myricetin (3.19-fold) stimulated SIRT1 under stabilizing conditions, whereas without stabilization, these polyphenols strongly inhibited SIRT1, probably due to H2O2 formation. Using metabolically active HT29 cells we were able to show that quercetin (a stimulator of recombinant SIRT1) could not stimulate intracellular SIRT1. The major quercetin metabolite in humans, quercetin 3-O-glucuronide, slightly inhibited the recombinant SIRT1 activity which explains the lack of stimulatory action of quercetin in HT29 cells. This study shows that the stimulation of SIRT1 is strongly affected by polyphenol stability and metabolism, therefore extrapolation of in vitro SIRT1 stimulation results to physiological effects should be done with caution.

  16. Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage

    PubMed Central

    Xu, Huafeng; Schmidt, Aaron G; O'Donnell, Timothy; Therkelsen, Matthew D; Kepler, Thomas B; Moody, M Anthony; Haynes, Barton F; Liao, Hua-Xin; Harrison, Stephen C; Shaw, David E

    2015-01-01

    Affinity maturation, the process in which somatic hypermutation and positive selection generate antibodies with increasing affinity for an antigen, is pivotal in acquired humoral immunity. We have studied the mechanism of affinity gain in a human B-cell lineage in which two main maturation pathways, diverging from a common ancestor, lead to three mature antibodies that neutralize a broad range of H1 influenza viruses. Previous work showed that increased affinity in the mature antibodies derives primarily from stabilization of the CDR H3 loop in the antigen-binding conformation. We have now used molecular dynamics simulations and existing crystal structures to identify potentially key maturation mutations, and we have characterized their effects on the CDR H3 loop and on antigen binding using further simulations and experimental affinity measurements, respectively. In the two maturation pathways, different contacts between light and heavy chains stabilize the CDR H3 loop. As few as two single-site mutations in each pathway can confer substantial loop stability, but none of them confers experimentally detectable stability on its own. Our results support models of the germinal center reaction in which two or more mutations can occur without concomitant selection and show how divergent pathways have yielded functionally equivalent antibodies. Proteins 2014; 83:771–780. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25524709

  17. A long-term stability study of Prussian blue: A quality assessment of water content and cesium binding.

    PubMed

    Mohammad, Adil; Yang, Yongsheng; Khan, Mansoor A; Faustino, Patrick J

    2015-01-25

    Prussian blue (PB) is the active pharmaceutical ingredient (API) of Radiogardase, the first approved medical countermeasure for the treatment of radiocesium poisoning in the event of a major radiological incident such as a "dirty bomb" or nuclear attack. The purpose of this study is to assess the long-term stability of Prussian blue drug products (DPs) and APIs under laboratory storage condition by monitoring the loss in water content and the in vitro cesium binding. The water content was measured by thermal gravimetric analysis (TGA). The in-vitro cesium binding study was conducted using a surrogate model to mimic gastric residence and intestinal transport. Free cesium was analyzed using a validated flame atomic emission spectroscopy (AES) method. The binding equilibrium was reached at 24h. The Langmuir isotherm was plotted to calculate the maximum binding capacity (MBC). Comparison of the same PB samples with 2003 data samples, the water content of both APIs and DPs decreased on an average by approximately 12-24%. Consequently, the MBC of cesium was decreased from 358mg/g in 2003 to 265mg/g @ pH 7.5, a decrease of approximately 26%. The binding of cesium is also pH dependent with lowest binding at pH 1.0 and maximum binding at pH 7.5. At pH 7.5, the amount of cesium bound decreased by an average value of 7.9% for APIs and 8.9% for DPs (for 600ppm initial cesium concentration). These findings of water loss, pH dependence and decrease in cesium binding are consistent with our previously published data in 2003. Over last 10 years the stored DPs and APIs of PB have lost about 20% of water which has a negative impact on the PB cesium binding, however PB still meets the FDA specification of >150mg/g at equilibrium. The study is the first quantitative assessment of the long-term stability of PB and directs that proper long-term and short-term storage of PB is required to ensure that it is safe and efficacious at the time of an emergency situation. Published by Elsevier

  18. Positive affect and cognitive control: approach-motivation intensity influences the balance between cognitive flexibility and stability.

    PubMed

    Liu, Ya; Wang, Zhenhong

    2014-05-01

    In most prior research, positive affect has been consistently found to promote cognitive flexibility. However, the motivational dimensional model of affect assumes that the influence of positive affect on cognitive processes is modulated by approach-motivation intensity. In the present study, we extended the motivational dimensional model to the domain of cognitive control by examining the effect of low- versus high-approach-motivated positive affect on the balance between cognitive flexibility and stability in an attentional-set-shifting paradigm. Results showed that low-approach-motivated positive affect promoted cognitive flexibility but also caused higher distractibility, whereas high-approach-motivated positive affect enhanced perseverance but simultaneously reduced distractibility. These results suggest that the balance between cognitive flexibility and stability is modulated by the approach-motivation intensity of positive affective states. Therefore, it is essential to incorporate motivational intensity into studies on the influence of affect on cognitive control.

  19. Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity

    PubMed Central

    Adu-Gyamfi, Emmanuel; Kim, Lori S.; Jardetzky, Theodore S.

    2016-01-01

    ABSTRACT Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. IMPORTANCE Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus

  20. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.

    PubMed

    Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter

    2017-04-24

    Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon

  1. Cold-inducible RNA-binding protein (CIRP) regulates target mRNA stabilization in the mouse testis.

    PubMed

    Xia, Zhiping; Zheng, Xinmin; Zheng, Hang; Liu, Xiaojun; Yang, Zhonghua; Wang, Xinghuan

    2012-09-21

    Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testis and down-regulated after heat stress. Recent studies suggest that CIRP contributes to male fertility problems but the mechanisms are unclear. The purpose of this study was to identify the likely mechanism of CIRP in reproduction. Based on the RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling (RIP-Chip) and biotin pull-down assays, we found that the mRNAs binding with CIRP in testis were mostly associated with translation regulator activity, antioxidant activity, envelope and reproduction, including important mRNAs related to male infertility. We also discovered that (Un)(n ≥2) was the possible core recognition sequence, and the binding mRNAs increased their stabilization. Our results improve our understanding of the mechanism by which heat stress causes male infertility. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Independent multimerization of Latent TGFβ Binding Protein-1 stabilized by cross-linking and enhanced by heparan sulfate

    PubMed Central

    Troilo, Helen; Steer, Ruth; Collins, Richard F.; Kielty, Cay M.; Baldock, Clair

    2016-01-01

    TGFβ plays key roles in fibrosis and cancer progression, and latency is conferred by covalent linkage to latent TGFβ binding proteins (LTBPs). LTBP1 is essential for TGFβ folding, secretion, matrix localization and activation but little is known about its structure due to its inherent size and flexibility. Here we show that LTBP1 adopts an extended conformation with stable matrix-binding N-terminus, extended central array of 11 calcium-binding EGF domains and flexible TGFβ-binding C-terminus. Moreover we demonstrate that LTBP1 forms short filament-like structures independent of other matrix components. The termini bind to each other to facilitate linear extension of the filament, while the N-terminal region can serve as a branch-point. Multimerization is enhanced in the presence of heparin and stabilized by the matrix cross-linking enzyme transglutaminase-2. These assemblies will extend the span of LTBP1 to potentially allow simultaneous N-terminal matrix and C-terminal fibrillin interactions providing tethering for TGFβ activation by mechanical force. PMID:27677855

  3. Phosphine passivated gold clusters: how charge transfer affects electronic structure and stability.

    PubMed

    Mollenhauer, Doreen; Gaston, Nicola

    2016-11-02

    A systematic evaluation of small phosphine ligand-protected gold clusters with six to nine gold atoms using density functional theory with dispersion correction has been performed in order to understand the major factors determining stability, including its size, shape, and charge dependence. We show that the charge per atom of the cluster is much more important for the interaction between the ligand shell and gold cluster than the system size. Thus, strong charge transfer effects determine the binding strength between the ligand shell and cluster. The clusters in this series are all non-spherical and exhibit large HOMO-LUMO gaps (above 2.7 eV). Analysis of the delocalized nature of the electronic states at the centre of the clusters demonstrates the presence of nascent superatomic states. However the number of delocalized electrons in these systems is significantly influenced by the charge transfer from the phosphine ligands, contrary to the usual accounting rule for superatom complex systems. Thus, not only electron withdrawing but also charge transfer effects should be considered to influence the superatomic structure of charged ligand surrounded clusters. In consequence in the phosphine gold cluster series under consideration the systems Au7(PPh3)7(+) and Au8(PPh3)8(2+) exhibit nearly fully filled S and P states and the HOMO-LUMO gap increases by 0.2 eV and 0.9 eV, respectively. The interpretation for the stability of the gold phosphine systems is in agreement with experimental results and demonstrates the importance of the superatomic concept.

  4. Stability and sequence-specific DNA binding of activation-labile mutants of the human glucocorticoid receptor

    SciTech Connect

    Elsasser, M.S.; Eisen, L.P.; Harmon, J.M. ); Riegel, A.T. )

    1991-11-19

    The stability and DNA-binding properties of activation-labile (act{sup 1}) human glucocorticoid receptors (hGRs) from the glucocorticoid-resistant mutant 3R7.6TG.4 were investigated. These receptors are able to bind reversible associating ligands with normal affinity and specificity, but become unstable during attempted activation to the DNA binding form. Affinity labeling and immunochemical analysis demonstrated that act{sup 1} receptors are not preferentially proteolyzed during attempted activation. In addition, analysis of binding to calf thymus DNA showed that after loss of ligand, act{sup 1} receptors retain the ability to bind to DNA nonspecifically. A 370 bp MMTV promoter fragment containing multiple GREs and an upstream 342 bp fragment lacking GRE sequences were used to assess the binding of act{sup 1} hGR to specific DNA sequences. Immunoadsorption of hGR-DNA complexes after incubation with {sup 32}P-end-labeled fragments showed that both normal and act{sup 1} both normal and act{sup 1} hGRs could be blocked with a synthetic oligonucleotide containing a perfect palindromic GRE, but not with an oligonucleotide in which the GRE was replaced by and ERE. Analogous results were obtained for normal and act{sup 1} hGR activated in the absence of ligand, or after incubation with the glucocorticoid antagonist RU 38486. These results suggest that sequence-specific binding of the hGR does not require the presence of bound ligand and suggest a role for the ligand in trans-activation of hormonally responsive genes.

  5. Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women

    PubMed Central

    2012-01-01

    Background and purpose Immediate implant stability is a key factor for success in cementless total hip arthroplasty (THA). Low bone mineral density (BMD) and age-related geometric changes of the proximal femur may jeopardize initial stability and osseointegration. We compared migration of hydroxyapatite-coated femoral stems in women with or without low systemic BMD. Patients and methods 61 female patients with hip osteoarthritis were treated with cementless THA with anatomically designed hydroxyapatite-coated femoral stems and ceramic-ceramic bearing surfaces (ABG-II). Of the 39 eligible patients between the ages of 41 and 78 years, 12 had normal systemic BMD and 27 had osteopenia or osteoporosis. According to the Dorr classification, 21 had type A bone and 18 had type B. Translational and rotational migration of the stems was evaluated with radiostereometric analysis (RSA) up to 2 years after surgery. Results Patients with low systemic BMD showed higher subsidence of the femoral stem during the first 3 months after surgery than did those with normal BMD (difference = 0.6, 95% CI: 0.1–1.1; p = 0.03). Low systemic BMD (odds ratio (OR) = 0.1, CI: 0.006–1.0; p = 0.02), low local hip BMD (OR = 0.3, CI: 0.1–0.7; p = 0.005) and ageing (OR = 1.1, CI: 1.0–1.2; p = 0.02) were risk factors for delayed translational stability. Ageing and low canal flare index were risk factors for delayed rotational stabilization (OR = 3, CI: 1.1–9; p = 0.04 and OR = 1.1, CI: 1.0–1.2; p = 0.02, respectively). Harris hip score and WOMAC score were similar in patients with normal systemic BMD and low systemic BMD. Interpretation Low BMD, changes in intraosseous dimensions of the proximal femur, and ageing adversely affected initial stability and delayed osseointegration of cementless stems in women. PMID:22489886

  6. Long-term stability study of Prussian blue - a quality assessment of water content and thallium binding.

    PubMed

    Mohammad, Adil; Faustino, Patrick J; Khan, Mansoor A; Yang, Yongsheng

    2014-12-30

    The purpose of this study is to assess the long-term stability of Prussian blue (PB) drug product (DP) and active pharmaceutical ingredient (API) under laboratory storage conditions by monitoring the loss in water content and the corresponding change of the in vitro thallium binding capacity that represents product performance. The bound water content and the in vitro thallium binding capacity of PB DPs and APIs were measured in 2003 and 2013, respectively. Water content, a critical quality attribute that directly correlates to the thallium (Tl) binding capacity was measured by thermal gravimetric analysis (TGA). The thallium binding study was conducted by testing PB in buffered solutions over the human gastrointestinal pH range with thallium concentrations ranging from 600 to 1,500 ppm. Samples were incubated at physiological temperature of 37°C in a shaking water bath to mimic gastric flux and intestinal transport. The binding equilibrium was reached at 24h. Following incubation, each sample was filtered and the free thallium was analyzed using a validated inductively coupled plasma spectroscopic method (ICP). The Langmuir isotherm was plotted to calculate maximum binding capacity (MBC). Compared with 2003, the water content of DP-1 decreased by about 14.1% (from 15.6 to 13.4 mol), and the MBC of DP-1 decreased by about 12.5% (from 714 to 625 mg/g) at pH 7.5. When low concentration of thallium (600 ppm) was used at pH 7.5, the Tl binding remained comparable for both API-1 (286 vs 276 mg/g) and DP-1 (286 vs 268 mg/g). Similarly, the Tl binding remained unchanged for both API-1 (237 vs 255 mg/g) and DP-1 (234 vs 236 mg/g) at pH 5.0. However, at pH 1.0 the binding was reduced 32.3% and 25.9% for API-1 and DP-1, respectively. Since the majority of binding takes place in the upper GI tract where pH around 5 can be expected, and therefore, the Tl binding capacity of PB should be comparable for new and aged samples. The findings that Tl binding changes with the water

  7. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  8. Bed Rest and Hypoxic Exposure Affect Sleep Architecture and Breathing Stability

    PubMed Central

    Morrison, Shawnda A.; Mirnik, Dani; Korsic, Spela; Eiken, Ola; Mekjavic, Igor B.; Dolenc-Groselj, Leja

    2017-01-01

    Objective: Despite over 50 years of research on the physiological effects of sustained bed rest, data characterizing its effects on sleep macrostructure and breathing stability in humans are scarce. This study was conducted to determine the effects of continuous exposure to hypoxia and sustained best rest, both individually and combined, on nocturnal sleep and breathing stability. Methods: Eleven participants completed three randomized, counter-balanced, 21-days trials of: (1) normoxic bed rest (NBR, PIO2 = 133.1 ± 0.3), (2) hypoxic ambulatory confinement (HAMB, PIO2 = 90.0 ± 0.4) and (3) hypoxic bed rest (HBR, PIO2 = 90.0 ± 0.4; ~4,000 m equivalent altitude). Full objective polysomnography was performed at baseline, on Night 1 and Night 21 in each condition. Results: In NBR Night 1, more time was spent in light sleep (10 ± 2%) compared to baseline (8 ± 2%; p = 0.028); Slow-wave sleep (SWS) was reduced from baseline in the hypoxic-only trial by 18% (HAMB Night 21, p = 0.028) and further reduced by 33% (HBR Night 1, p = 0.010), and 36% (HBR Night 21, p = 0.008) when combined with bed rest. The apnea-hypopnea index doubled from Night 1 to Night 21 in HBR (32–62 events·h−1) and HAMB (31–59 events·h−1; p = 0.002). Those who experienced greatest breathing instability from Night 1 to Night 21 (NBR) were correlated to unchanged or higher (+1%) night SpO2 concentrations (R2 = 0.471, p = 0.020). Conclusion: Bed rest negatively affects sleep macrostructure, increases the apnea-hypopnea index, and worsens breathing stability, each independently exacerbated by continuous exposure to hypoxia. PMID:28676764

  9. Habitat stability affects dispersal and the ability to track climate change.

    PubMed

    Hof, Christian; Brändle, Martin; Dehling, D Matthias; Munguía, Mariana; Brandl, Roland; Araújo, Miguel B; Rahbek, Carsten

    2012-08-23

    Habitat persistence should influence dispersal ability, selecting for stronger dispersal in habitats of lower temporal stability. As standing (lentic) freshwater habitats are on average less persistent over time than running (lotic) habitats, lentic species should show higher dispersal abilities than lotic species. Assuming that climate is an important determinant of species distributions, we hypothesize that lentic species should have distributions that are closer to equilibrium with current climate, and should more rapidly track climatic changes. We tested these hypotheses using datasets from 1988 and 2006 containing all European dragon- and damselfly species. Bioclimatic envelope models showed that lentic species were closer to climatic equilibrium than lotic species. Furthermore, the models over-predicted lotic species ranges more strongly than lentic species ranges, indicating that lentic species track climatic changes more rapidly than lotic species. These results are consistent with the proposed hypothesis that habitat persistence affects the evolution of dispersal.

  10. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  11. Initial Recognition of a Cellodextrin Chain in the Cellulose-Binding Tunnel May Affect Cellobiohydrolase Directional Specificity

    PubMed Central

    GhattyVenkataKrishna, Pavan K.; Alekozai, Emal M.; Beckham, Gregg T.; Schulz, Roland; Crowley, Michael F.; Uberbacher, Edward C.; Cheng, Xiaolin

    2013-01-01

    Cellobiohydrolases processively hydrolyze glycosidic linkages in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for either the reducing or nonreducing end of cellulose. Here, we conduct molecular dynamics simulations and free energy calculations to examine the initial binding of a cellulose chain into the catalytic tunnel of the reducing-end-specific Family 7 cellobiohydrolase (Cel7A) from Hypocrea jecorina. In unrestrained simulations, the cellulose diffuses into the tunnel from the −7 to the −5 positions, and the associated free energy profiles exhibit no barriers for initial processivity. The comparison of the free energy profiles for different cellulose chain orientations show a thermodynamic preference for the reducing end, suggesting that the preferential initial binding may affect the directional specificity of the enzyme by impeding nonproductive (nonreducing end) binding. Finally, the Trp-40 at the tunnel entrance is shown with free energy calculations to have a significant effect on initial chain complexation in Cel7A. PMID:23442969

  12. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: lipid oxidation.

    PubMed

    Let, Mette B; Jacobsen, Charlotte; Sørensen, Ann-Dorit M; Meyer, Anne S

    2007-03-07

    In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.

  13. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. © 2016 The Author(s).

  14. Affect consciousness and eating disorders. Short term stability and subgroup characteristics.

    PubMed

    Lech, Börje; Holmqvist, Rolf; Andersson, Gerhard

    2012-01-01

    The aim of the study was to analyse differences in observer rated affect consciousness (AC) between subgroups of patients diagnosed with eating disorders (N = 44; 30 with anorexia nervosa and 14 with bulimia nervosa), and a non-clinical group (N = 40). Another aim was to study the short-term stability of AC over 10-11 weeks of treatment and its relation to self-reported eating pathology and general psychopathology. A moderate short-term stability of AC was found but the levels were not correlated with eating pathology or psychopathology. No differences between the two diagnostic categories were found, but the eating disorder group as whole had significantly lower AC compared with a non-eating disorder reference group. AC seems to be a moderately stable ability that differentiates patients diagnosed with eating disorders from a non-clinical population. However, AC is not related to symptoms of eating disorder or general psychiatric symptoms in this group of patients. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.

  15. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter - substrate binding protein complex

    PubMed Central

    Nguyen, Phong T.; Li, Qi Wen; Kadaba, Neena S.; Lai, Jeffrey Y.; Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    Despite the ubiquitous role of ATP Binding Cassette (ABC) importers in nutrient uptake, only the E. coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250–253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nM. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ~40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system. PMID:25803078

  16. Calcium-binding and structural stability of echidna and canine milk lysozymes.

    PubMed

    Kikuchi, M; Kawano, K; Nitta, K

    1998-10-01

    For echidna and canine milk lysozymes, which were presumed to be the calcium-binding lysozymes by their amino acid sequences, we have quantitated their calcium-binding strength and examined their guanidine unfolding profiles. The calcium-binding constants of echidna and canine lysozymes were determined to be 8.6 x 10(6) M(-1) and 8.9 x 10(6) M(-1) in 0.1 M KCl at pH 7.1 and 20 C, respectively. The unfolding of decalcified canine lysozyme proceeds in the same manner as that of alpha-lactalbumin, through a stable molten globule intermediate. However, neither calcium-bound nor decalcified echidna lysozyme shows a stable molten globule intermediate. This unfolding profile of echidna lysozyme is identical to that of conventional lysozymes and pigeon egg-white lysozyme, avian calcium-binding lysozyme. This result supports the suggestion of Prager and Jolles (Prager EM, Jolles P. 1996. Animal lysozymes c and g: An overview. In: Jolles P, ed. Lysozymes: Model enzymes in biochemistry and biology. Basel-Boston-Berlin: Birkhauzer Verlag. pp 9-31) that the lineage of avian and echidna calcium-binding lysozymes and that of eutherian calcium-binding lysozymes diverged separately from that of conventional lysozymes.

  17. Feature Binding of Common Everyday Items Is Not Affected by Age

    PubMed Central

    Hoefeijzers, Serge; González Hernández, Alfredis; Magnolia Rios, Angela; Parra, Mario A.

    2017-01-01

    There is a surge of studies confirming that old age spares the ability to bind in visual working memory (VWM) multiple features within singular object representations. Furthermore, it has been suggested that such ability may also be independent of the cultural background of the assessed individual. However, this evidence has been gathered with tasks that use arbitrary bindings of unfamiliar features. Whether age spares memory binding functions when the memoranda are features of everyday life objects remains less well explored. The present study investigated the influence of age, memory delay, and education, on conjunctive binding functions responsible for representing everyday items in VWM. We asked 32 healthy young and 41 healthy older adults to perform a memory binding task. During the task, participants saw visual arrays of objects, colours, or coloured objects presented for 6 s. Immediately after they were asked either to select the objects or the colours that were presented during the study display from larger sets of objects or colours, or to recombine them by selecting from such sets the objects and their corresponding colours. This procedure was repeated immediately after but this time providing a 30 s unfiled delay. We manipulated familiarity by presenting congruent and incongruent object-colour pairings. The results showed that the ability to bind intrinsic features in VWM does not decline with age even when these features belong to everyday items and form novel or well-known associations. Such preserved memory binding abilities held across memory delays. The impact of feature congruency on item-recognition appears to be greater in older than in younger adults. This suggests that long-term memory (LTM) supports binding functions carried out in VWM for familiar everyday items and older adults still benefit from this LTM support. We have expanded the evidence supporting the lack of age effects on VWM binding functions to new feature and object domains (i

  18. Feature Binding of Common Everyday Items Is Not Affected by Age.

    PubMed

    Hoefeijzers, Serge; González Hernández, Alfredis; Magnolia Rios, Angela; Parra, Mario A

    2017-01-01

    There is a surge of studies confirming that old age spares the ability to bind in visual working memory (VWM) multiple features within singular object representations. Furthermore, it has been suggested that such ability may also be independent of the cultural background of the assessed individual. However, this evidence has been gathered with tasks that use arbitrary bindings of unfamiliar features. Whether age spares memory binding functions when the memoranda are features of everyday life objects remains less well explored. The present study investigated the influence of age, memory delay, and education, on conjunctive binding functions responsible for representing everyday items in VWM. We asked 32 healthy young and 41 healthy older adults to perform a memory binding task. During the task, participants saw visual arrays of objects, colours, or coloured objects presented for 6 s. Immediately after they were asked either to select the objects or the colours that were presented during the study display from larger sets of objects or colours, or to recombine them by selecting from such sets the objects and their corresponding colours. This procedure was repeated immediately after but this time providing a 30 s unfiled delay. We manipulated familiarity by presenting congruent and incongruent object-colour pairings. The results showed that the ability to bind intrinsic features in VWM does not decline with age even when these features belong to everyday items and form novel or well-known associations. Such preserved memory binding abilities held across memory delays. The impact of feature congruency on item-recognition appears to be greater in older than in younger adults. This suggests that long-term memory (LTM) supports binding functions carried out in VWM for familiar everyday items and older adults still benefit from this LTM support. We have expanded the evidence supporting the lack of age effects on VWM binding functions to new feature and object domains (i

  19. Nuclear DNA fragmentation negatively affects zona binding competence of Y bearing mouse spermatozoa.

    PubMed

    Kumar, Dayanidhi; Upadhya, Dinesh; Uppangala, Shubhashree; Salian, Sujit Raj; Kalthur, Guruprasad; Adiga, Satish Kumar

    2013-12-01

    To investigate the influence of sperm DNA integrity on the zona binding ability of mouse spermatozoa in relation to their sex chromosomal constitution. In this prospective experimental study, the sperm DNA fragmentation was induced by exposing testicular area of Swiss Albino mice (Mus musculus) to different doses of γ-radiation (0, 2.5, 5.0 and 10.0 Gy). Sperm DNA fragmentation was quantified by single cell gel electrophoresis (comet assay). In vitro sperm zona binding assay was performed and the numbers of zona bound X and Y bearing spermatozoa were determined using fluorescence in situ hybridization (FISH). The assessment of zona pellucida bound X and Y-bearing spermatozoa using fluorescence in situ hybridization has revealed a unique binding pattern. The number of zona bound Y-spermatozoa declined significantly (P < 0.01 to 0.0001) with increase in the DNA damage. The skewed binding pattern of X and Y-bearing sperm was strongly correlated with the extent of sperm DNA damage. The zona pellucida may have a role in preventing DNA damaged mouse sperm binding especially towards Y-bearing sperm. However, the exact mechanism behind this observation needs to be elucidated further.

  20. A novel ER–microtubule-binding protein, ERLIN2, stabilizes Cyclin B1 and regulates cell cycle progression

    PubMed Central

    Zhang, Xuebao; Cai, Juan; Zheng, Ze; Polin, Lisa; Lin, Zhenghong; Dandekar, Aditya; Li, Li; Sun, Fei; Finley, Russell L; Fang, Deyu; Yang, Zeng-Quan; Zhang, Kezhong

    2015-01-01

    The gene encoding endoplasmic reticulum (ER) lipid raft-associated protein 2 (ERLIN2) is amplified in human breast cancers. ERLIN2 gene mutations were also found to be associated with human childhood progressive motor neuron diseases. Yet, an understanding of the physiological function and mechanism for ERLIN2 remains elusive. In this study, we reveal that ERLIN2 is a spatially and temporally regulated ER–microtubule-binding protein that has an important role in cell cycle progression by interacting with and stabilizing the mitosis-promoting factors. Whereas ERLIN2 is highly expressed in aggressive human breast cancers, during normal development ERLIN2 is expressed at the postnatal stage and becomes undetectable in adulthood. ERLIN2 interacts with the microtubule component α-tubulin, and this interaction is maximal during the cell cycle G2/M phase where ERLIN2 simultaneously interacts with the mitosis-promoting complex Cyclin B1/Cdk1. ERLIN2 facilitates K63-linked ubiquitination and stabilization of Cyclin B1 protein in G2/M phase. Downregulation of ERLIN2 results in cell cycle arrest, represses breast cancer proliferation and malignancy and increases sensitivity of breast cancer cells to anticancer drugs. In summary, our study revealed a novel ER–microtubule-binding protein, ERLIN2, which interacts with and stabilizes mitosis-promoting factors to regulate cell cycle progression associated with human breast cancer malignancy. PMID:27462423

  1. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex.

    PubMed

    Odoux, Anne; Jindal, Darren; Tamas, Tamara C; Lim, Benjamin W H; Pollard, Drake; Xu, Wu

    2016-06-01

    The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen

  2. Relative resistance of the F-42-stabilized classical pathway C3 convertase to inactivation by C4-binding protein.

    PubMed

    Daha, M R; van Es, L A

    1980-11-01

    The sera of some patients with SLE contain an IgG antibody (F-42) directed against the classical pathway C3 convertase (C-42), which is capable of stabilizing C42 in a dose-dependent manner. The half-life (T 1/2) of C42 is prolonged by F-42. In order to determine whether C4-binding protein was capable of reversing stabilization of C42, stabilized and unstabilized cell-bound C42 were exposed to purified C4-bp and the convertase activity was assessed. C4-bp was capable of accelerating the decay of C42 in a dose-dependent manner; 2 microgram/ml C4-bp reduced the T 1/2 of C42 from 5 to 2.5 min at 30 degrees C. On the other hand, 16 microgram C4-bp could reverse stabilization of C42 by F-42 from T 1/2 = 78 min to a T 1/2 - 40 min; 128 microgram C4-bp reduced the T 1/2 of stabilized C42 to 4 min. Functional inactivation of C42 occurs via enhanced decay-dissociation of C2 from the convertase by C4-bp, as shown by the release of 125I-C2i from the cell-bound convertase. Stabilization of C42 by F-42 is caused by prevention of decay-dissociation of 125I-C2. F-42 was also capable of stabilizing C4oxy2 even further, as shown by prolongation of the T 1/2 of cell-bound C4 oxy2 to a T 1/2 of at least 300 min at 30 degrees C.

  3. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    Over time, Norwegian fjords and harbour areas have received contaminants from industrial activities and urban run-off, and measures to remediate contaminated marine sediments are therefore needed. Stabilization/solidification (S/S) technology, in which the contaminated marine sediments are mixed with cement and other binding agents, has been shown to be a promising remediation technology. This paper summarizes a study of the environmental effect of stabilization, highlighting the importance of sulphide binding governing the leaching of heavy metals from the S/S of contaminated marine sediments. The study is a part of a research project focusing on developing effective methods for S/S of contaminated seabed sediments for use in new construction areas. Four cementitious binders were tested on sediments from six different locations: Bergen, Gilhus, Grenland, Hammerfest, Sandvika and Trondheim. The sediments differed with respect to properties such as concentration of contaminants, water content, organic content and grain size distribution. Portland cement, Portland cement with fly ash, industry cement, and sulphate resistant cement, were tested as binders. The leaching from the S/S sediments after 28 days of curing was measured by using a standard leaching batch test (EN 12457-2: 2003), with seawater as leaching agent. The eluate was analysed for pH and redox, as well as content of heavy metals and organic contaminants. Available volatile sulphide (AVS) and simultaneously extractable metals (SEM) were also measured in the sediments. This paper focuses on the leaching of lead (Pb) and copper (Cu). A reduced leaching of Pb after stabilization was observed for the mixtures, whereas the leaching of Cu from Hammerfest sediments increased substantially after stabilization for all cementitious additions. Experiments show that Hammerfest samples had lower values of AVS than the other sediments. This was confirmed by the SEM/AVS analysis, highlighting the importance of

  4. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    PubMed Central

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  5. Phosphorylation states of translational initiation factors affect mRNA cap binding in wheat.

    PubMed

    Khan, Mateen A; Goss, Dixie J

    2004-07-20

    Phosphorylation of eukaryotic translational initiation factors (eIFs) has been shown to be an important means of regulating protein synthesis. Plant initiation factors undergo phosphorylation/dephosphorylation under a variety of stress and growth conditions. We have shown that recombinant wheat cap-binding protein, eIF(iso)4E, produced from E. coli can be phosphorylated in vitro. Phosphorylation of eIF(iso)4E has effects on m(7)G cap-binding affinity similar to those of phosphorylation of mammalian eIF4E even though eIF(iso)4E lacks an amino acid that can be phosphorylated at the residue corresponding to Ser-209, the phosphorylation site in mammalian eIF4E. The cap-binding affinity was reduced 1.2-2.6-fold when eIF(iso)4E was phosphorylated. The in vitro phosphorylation site for wheat eIF(iso)4E was identified as Ser-207. Addition of eIF(iso)4G and eIF4B that had also been phosphorylated in vitro further reduced cap-binding affinity. Temperature-dependent studies showed that DeltaH(degrees) was favorable for cap binding regardless of the phosphorylation state of the initiation factors. The entropy, however, was unfavorable (negative) except when eIF(iso)4E was phosphorylated and interacting with eIF(iso)4G. Phosphorylation may modulate not only cap-binding activity, but other functions of eukaryotic initiation factors as well.

  6. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation.

    PubMed

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai; Luo, Zhipu; Li, Rui; Gårdsvoll, Henrik; de Lorenzi, Valentina; Sidenius, Nicolai; Huang, Mingdong; Ploug, Michael

    2015-03-27

    The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU (Ly6/uPAR-like) domains is inherently flexible and binding of uPA drives uPAR into its closed conformation, which presents the higher-affinity state for vitronectin thus providing an allosteric regulatory mechanism. Using a new class of epitope-mapped anti-uPAR monoclonal antibodies (mAbs), we now demonstrate that the reciprocal stabilization is indeed also possible. By surface plasmon resonance studies, we show that these mAbs and vitronectin have overlapping binding sites on uPAR and that they share Arg91 as hotspot residue in their binding interfaces. The crystal structure solved for one of these uPAR·mAb complexes at 3.0Å clearly shows that this mAb preselects the closed uPAR conformation with an empty but correctly assembled large hydrophobic binding cavity for uPA. Accordingly, these mAbs inhibit the uPAR-dependent lamellipodia formation and migration on vitronectin-coated matrices irrespective of the conformational status of uPAR and its occupancy with uPA. This is the first study to the best of our knowledge, showing that the dynamic assembly of the three LU domains in uPARwt can be driven toward the closed form by an external ligand, which is not engaging the hydrophobic uPA binding cavity. As this binding interface is also exploited by the somatomedin B domain of vitronectin, therefore, this relationship should be taken into consideration when exploring uPAR-dependent cell adhesion and migration in vitronectin-rich environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Identification of Residues in Domain III of Bacillus thuringiensis Cry1Ac Toxin That Affect Binding and Toxicity

    PubMed Central

    Lee, Mi Kyong; You, Taek H.; Gould, Fred L.; Dean, Donald H.

    1999-01-01

    Alanine substitution mutations in the Cry1Ac domain III region, from amino acid residues 503 to 525, were constructed to study the functional role of domain III in the toxicity and receptor binding of the protein to Lymantria dispar, Manduca sexta, and Heliothis virescens. Five sets of alanine block mutants were generated at the residues 503SS504, 506NNI508, 509QNR511, 522ST523, and 524ST525. Single alanine substitutions were made at the residues 509Q, 510N, 511R, and 513Y. All mutant proteins produced stable toxic fragments as judged by trypsin digestion, midgut enzyme digestion, and circular dichroism spectrum analysis. The mutations, 503SS504-AA, 506NNI508-AAA, 522ST523-AA, 524ST525-AA, and 510N-A affected neither the protein’s toxicity nor its binding to brush border membrane vesicles (BBMV) prepared from these insects. Toward L. dispar and M. sexta, the 509QNR511-AAA, 509Q-A, 511R-A, and 513Y-A mutant toxins showed 4- to 10-fold reductions in binding affinities to BBMV, with 2- to 3-fold reductions in toxicity. Toward H. virescens, the 509QNR511-AAA, 509Q-A, 511R-A, and 513Y-mutant toxins showed 8- to 22-fold reductions in binding affinities, but only 509QNR511-AAA and 511R-A mutant toxins reduced toxicity by approximately three to four times. In the present study, greater loss in binding affinity relative to toxicity has been observed. These data suggest that the residues 509Q, 511R, and 513Y in domain III might be only involved in initial binding to the receptor and that the initial binding step becomes rate limiting only when it is reduced more than fivefold. PMID:10508083

  8. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  9. Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State*♦

    PubMed Central

    Fourati, Zaineb; Ruza, Reinis Reinholds; Laverty, Duncan; Drège, Emmanuelle; Delarue-Cochin, Sandrine; Joseph, Delphine; Koehl, Patrice; Smart, Trevor; Delarue, Marc

    2017-01-01

    Barbiturates induce anesthesia by modulating the activity of anionic and cationic pentameric ligand-gated ion channels (pLGICs). Despite more than a century of use in clinical practice, the prototypic binding site for this class of drugs within pLGICs is yet to be described. In this study, we present the first X-ray structures of barbiturates bound to GLIC, a cationic prokaryotic pLGIC with excellent structural homology to other relevant channels sensitive to general anesthetics and, as shown here, to barbiturates, at clinically relevant concentrations. Several derivatives of barbiturates containing anomalous scatterers were synthesized, and these derivatives helped us unambiguously identify a unique barbiturate binding site within the central ion channel pore in a closed conformation. In addition, docking calculations around the observed binding site for all three states of the receptor, including a model of the desensitized state, showed that barbiturates preferentially stabilize the closed state. The identification of this pore binding site sheds light on the mechanism of barbiturate inhibition of cationic pLGICs and allows the rationalization of several structural and functional features previously observed for barbiturates. PMID:27986812

  10. Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules.

    PubMed

    Ashraf, Shoaib; Beech, Robin N; Hancock, Mark A; Prichard, Roger K

    2015-08-01

    Haemonchus contortus is a nematode of livestock that can cause severe disease and mortality. Ivermectin, an anti-parasitic drug that targets glutamate-gated chloride channels, is widely used in humans, livestock, companion animals and agriculture. Although an association between genetic changes to β-tubulin and exposure to ivermectin has been previously reported, direct binding between ivermectin and tubulin has not been demonstrated to date. Tubulin/microtubules are key targets for many anti-mitotic drugs used in anti-parasite and cancer therapies. We now report that ivermectin exposure increased the rate and extent of polymerisation of H. contortus recombinant α- and β-tubulin, and protected the parasitic α- and β-tubulins from limited trypsin proteolysis. Direct binding between ivermectin and the tubulin monomers exhibited low micromolar affinities, as determined using surface plasmon resonance. Subsequent equilibrium dialysis indicated that ivermectin and Taxol compete for binding to tubulin, supporting our molecular modelling that predicts ivermectin interacts with the Taxol binding pocket of both parasitic and mammalian tubulins. Collectively, our data indicate that ivermectin can bind to and stabilise microtubules (i.e., alter the tubulin polymerisation equilibrium) and this can then lead to mitotic arrest. This work extends the range of known pharmacological effects of ivermectin, and reveals its potential as an anti-mitotic agent. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  11. Spectrofluorimetric methods of stability-indicating assay of certain drugs affecting the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Moussa, B. A.; Mohamed, M. F.; Youssef, N. F.

    2011-01-01

    Two stability-indicating spectrofluorimetric methods have been developed for the determination of ezetimibe and olmesartan medoxomil, drugs affecting the cardiovascular system, and validated in the presence of their degradation products. The first method, for ezetimibe, is based on an oxidative coupling reaction of ezetimibe with 3-methylbenzothiazolin-2-one hydrazone hydrochloride in the presence of cerium (IV) ammonium sulfate in an acidic medium. The quenching effect of ezetimibe on the fluorescence of excess cerous ions is measured at the emission wavelength, λem, of 345 nm with the excitation wavelength, λex, of 296 nm. Factors affecting the reaction were carefully studied and optimized. The second method, for olmesartan medoxomil, is based on measuring the native fluorescence intensity of olmesartan medoxomil in methanol at λem = 360 nm with λex = 286 nm. Regression plots revealed good linear relationships in the assay limits of 10-120 and 8-112 g/ml for ezetimibe and olmesartan medoxomil, respectively. The validity of the methods was assessed according to the United States Pharmacopeya guidelines. Statistical analysis of the results exposed good Student's t-test and F-ratio values. The introduced methods were successfully applied to the analysis of ezetimibe and olmesartan medoxomil in drug substances and drug products as well as in the presence of their degradation products.

  12. Odorant-binding protein (OBP) genes affect host specificity in a fig-pollinator mutualistic system.

    PubMed

    Wang, N; Wang, N X; Niu, L M; Bian, S N; Xiao, J H; Huang, D W

    2014-10-01

    The interaction between figs and their pollinating wasps is regarded as a model system for studying specialized co-evolved mutualism. Chemoreception of fig wasps plays an important role in this interaction, and odorant-binding proteins (OBP) function in the first step of odorant detection. The OBP repertoire of the fig wasp Ceratosolen solmsi is reported to be one of the smallest among insects; however, it is unknown how these OBPs are related to the complicated mating process occurring within the fig cavity and the extreme host specificity of the species. In the present study, we combined a structural analysis of the conserved cysteine pattern and motif order, a phylogenetic analysis, and previous studies on ligand-binding assays to deduce the function of OBPs. We also quantified the expression of OBP genes in different life stages of female and male fig wasps by using real-time quantitative PCR, which can help to predict the function of these genes. The results indicated that CsolOBP1 and CsolOBP2 (or CsolOBP5) in males may bind to pheromones and play important roles in mate choice, whereas CsolOBP4 and CsolOBP5 may primarily function in host localization by females through binding of volatile compounds emitted by receptive figs.

  13. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1

    SciTech Connect

    Kilanczyk, Ewa; Filipek, Slawomir; Jastrzebska, Beata; Filipek, Anna

    2009-02-27

    In this work we showed for the first time that mouse CacyBP/SIP interacts with extracellular signal regulated kinases 1 and 2 (ERK1/2). We also established that a calcium binding protein, S100A6, competes for this interaction. Moreover, the E217K mutant of CacyBP/SIP does not bind significantly to ERK1/2 although it retains the ability to interact with S100A6. Molecular modeling shows that the E217K mutation in the 189-219 CacyBP/SIP fragment markedly changes its electrostatic potential, suggesting that the binding with ERK1/2 might have an electrostatic character. We also demonstrate that CacyBP/SIP-ERK1/2 interaction inhibits phosphorylation of the Elk-1 transcription factor in vitro and in the nuclear fraction of NB2a cells. Altogether, our data suggest that the binding of CacyBP/SIP with ERK1/2 might regulate Elk-1 phosphorylation/transcriptional activity and that S100A6 might further modulate this effect via Ca{sup 2+}-dependent interaction with CacyBP/SIP and competition with ERK1/2.

  14. A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii.

    PubMed

    Ji, Xiaofei; Xu, Yuanxi; Zhang, Cong; Chen, Ning; Lu, Xuemei

    2012-10-01

    Cytophaga hutchinsonii is a Gram-negative gliding bacterium, which can rapidly degrade crystalline cellulose via a novel strategy without any recognizable processive cellulases. Its mechanism of cellulose binding and degradation is still a mystery. In this study, the mutagenesis of C. hutchinsonii with the mariner-based transposon HimarEm3 and gene complementation with the oriC-based plasmid carrying the antibiotic resistance gene cfxA or tetQ were reported for the first time to provide valuable tools for mutagenesis and genetic manipulation of the bacterium. Mutant A-4 with a transposon mutation in gene CHU_0134, which encodes a putative thiol-disulfide isomerase exhibits defects in cell motility and cellulose degradation. The cellulose binding ability of A-4 was only half of that of the wild-type strain, while the endo-cellulase activity of the cell-free supernatants and on the intact cell surface of A-4 decreased by 40%. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins binding to cellulose in the outer membrane showed that most of them were significantly decreased or disappeared in A-4 including some Gld proteins and hypothetical proteins, indicating that these proteins might play an important role in cell motility and cellulose binding and degradation by the bacterium.

  15. The Binding Ring Illusion: assimilation affects the perceived size of a circular array.

    PubMed

    McCarthy, J Daniel; Kupitz, Colin; Caplovitz, Gideon P

    2013-01-01

    Our perception of an object's size arises from the integration of multiple sources of visual information including retinal size, perceived distance and its size relative to other objects in the visual field. This constructive process is revealed through a number of classic size illusions such as the Delboeuf Illusion, the Ebbinghaus Illusion and others illustrating size constancy. Here we present a novel variant of the Delbouef and Ebbinghaus size illusions that we have named the Binding Ring Illusion. The illusion is such that the perceived size of a circular array of elements is underestimated when superimposed by a circular contour - a binding ring - and overestimated when the binding ring slightly exceeds the overall size of the array. Here we characterize the stimulus conditions that lead to the illusion, and the perceptual principles that underlie it. Our findings indicate that the perceived size of an array is susceptible to the assimilation of an explicitly defined superimposed contour. Our results also indicate that the assimilation process takes place at a relatively high level in the visual processing stream, after different spatial frequencies have been integrated and global shape has been constructed. We hypothesize that the Binding Ring Illusion arises due to the fact that the size of an array of elements is not explicitly defined and therefore can be influenced (through a process of assimilation) by the presence of a superimposed object that does have an explicit size.

  16. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1.

    PubMed

    Kilanczyk, Ewa; Filipek, Slawomir; Jastrzebska, Beata; Filipek, Anna

    2009-02-27

    In this work we showed for the first time that mouse CacyBP/SIP interacts with extracellular signal regulated kinases 1 and 2 (ERK1/2). We also established that a calcium binding protein, S100A6, competes for this interaction. Moreover, the E217K mutant of CacyBP/SIP does not bind significantly to ERK1/2 although it retains the ability to interact with S100A6. Molecular modeling shows that the E217K mutation in the 189-219 CacyBP/SIP fragment markedly changes its electrostatic potential, suggesting that the binding with ERK1/2 might have an electrostatic character. We also demonstrate that CacyBP/SIP-ERK1/2 interaction inhibits phosphorylation of the Elk-1 transcription factor in vitro and in the nuclear fraction of NB2a cells. Altogether, our data suggest that the binding of CacyBP/SIP with ERK1/2 might regulate Elk-1 phosphorylation/transcriptional activity and that S100A6 might further modulate this effect via Ca(2+)-dependent interaction with CacyBP/SIP and competition with ERK1/2.

  17. The Binding Ring Illusion: assimilation affects the perceived size of a circular array

    PubMed Central

    Caplovitz, Gideon P

    2013-01-01

    Our perception of an object’s size arises from the integration of multiple sources of visual information including retinal size, perceived distance and its size relative to other objects in the visual field. This constructive process is revealed through a number of classic size illusions such as the Delboeuf Illusion, the Ebbinghaus Illusion and others illustrating size constancy. Here we present a novel variant of the Delbouef and Ebbinghaus size illusions that we have named the Binding Ring Illusion. The illusion is such that the perceived size of a circular array of elements is underestimated when superimposed by a circular contour – a binding ring – and overestimated when the binding ring slightly exceeds the overall size of the array. Here we characterize the stimulus conditions that lead to the illusion, and the perceptual principles that underlie it. Our findings indicate that the perceived size of an array is susceptible to the assimilation of an explicitly defined superimposed contour. Our results also indicate that the assimilation process takes place at a relatively high level in the visual processing stream, after different spatial frequencies have been integrated and global shape has been constructed. We hypothesize that the Binding Ring Illusion arises due to the fact that the size of an array of elements is not explicitly defined and therefore can be influenced (through a process of assimilation) by the presence of a superimposed object that does have an explicit size. PMID:24555042

  18. Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation

    PubMed Central

    2004-01-01

    Before delivery to endosomes, portions of proCD (procathepsin D) and proSAP (prosaposin) are assembled into complexes. We demonstrate that such complexes are also present in secretions of cultured cells. To study the formation and properties of the complexes, we purified proCD and proSAP from culture media of Spodoptera frugiperda cells that were infected with baculoviruses bearing the respective cDNAs. The biological activity of proCD was demonstrated by its pH-dependent autoactivation to pseudocathepsin D and that of proSAP was demonstrated by feeding to saposin-deficient cultured cells that corrected the storage of radioactive glycolipids. In gel filtration, proSAP behaved as an oligomer and proCD as a monomer. ProSAP altered the elution of proCD such that the latter was shifted into proSAP-containing fractions. ProSAP did not change the elution of mature cathepsin D. Using surface plasmon resonance and an immobilized biotinylated proCD, binding of proSAP was demonstrated under neutral and weakly acidic conditions. At pH 6.8, specific binding appeared to involve more than one binding site on a proSAP oligomer. The dissociation of the first site was characterized by a KD1 of 5.8±2.9×10−8 M−1 (calculated for the monomer). ProSAP stimulated the autoactivation of proCD and also the activity of pseudocathepsin D. Concomitant with the activation, proSAP behaved as a substrate yielding tri- and disaposins and smaller fragments. Our results demonstrate that proSAP forms oligomers that are capable of binding proCD spontaneously and independent of the mammalian type N-glycosylation but not capable of binding mature cathepsin D. In addition to binding proSAP, proCD behaves as an autoactivable and processing enzyme and its binding partner as an activator and substrate. PMID:15255780

  19. The Study of Stability of Compression-loaded Multispan Composite Panel Upon Failure of elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  20. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    SciTech Connect

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Jr., Joseph J.

    2012-10-16

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.

  1. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    PubMed Central

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  2. Hydrophobic Peptides Affect Binding of Calmodulin and Ca2+ as Explored by H/D Amide Exchange and Mass Spectrometry

    PubMed Central

    Sperry, Justin B.; Huang, Richard Y-C.; Zhu, Mei M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    Calmodulin (CaM), a ubiquitous intracellular sensor protein, binds Ca2+ and interacts with various targets as part of signal transduction. Using hydrogen/deuterium exchange (H/DX) and a high resolution PLIMSTEX (Protein-Ligand Interactions by Mass Spectrometry, Titration, and H/D Exchange) protocol, we examined five different states of calmodulin: calcium-free, calcium-loaded, and three states of calcium-loaded in the presence of either melittin, mastoparan, or skeletal myosin light-chain kinase (MLCK). When CaM binds Ca2+, the extent of HDX decreased, consistent with the protein becoming stabilized upon binding. Furthermore, Ca2+-saturated calmodulin exhibits increased protection when bound to the peptides, forming high affinity complexes. The protocol reveals significant changes in EF hands 1, 3, and 4 with saturating levels of Ca2+. Titration of the protein using PLIMSTEX provides the binding affinity of Ca2+ to calmodulin within previously reported values. The affinities of calmodulin to Ca2+ increase by factors of 300 and 1000 in the presence of melittin and mastoparan, respectively. A modified PLIMSTEX protocol whereby the protein is digested to component peptides gives a region-specific titration. The titration data taken in this way show a decrease in the root mean square fit of the residuals, indicating a better fit of the data. The global H/D exchange results and those obtained in a region-specific way provide new insight into the Ca2+-binding properties of this well-studied protein. PMID:21765646

  3. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  4. Application of circular dichroism and magnetic circular dichroism for assessing biopharmaceuticals formulations photo-stability and small ligands binding properties.

    PubMed

    Longo, Edoardo; Hussain, Rohanah; Siligardi, Giuliano

    2015-03-01

    Synchrotron radiation circular dichroism (SRCD) is a powerful tool for photo-stability assessment of proteins. Recently our research has been interested in applying SRCD to develop screening methodologies for accelerated photo-stability assessment of monoclonal antibody formulations. Despite it was proven to be reliable and applicable within a wide range of salts and excipients containing solutions, the presence of far-UV (<260nm) strong absorbing species (e.g., sodium chloride, histidine, arginine) in common formulations completely prevent the analysis. Herein, we propose a new method based on CD coupled with magnetic CD (MCD) to address the problem and offer an additional versatile tool for monitoring the photo-stability. This is done by assessing the stability of the samples by looking at the near-UV band, as well as giving insights in the denaturation mechanism. We applied this method to four mAbs formulations and correlated the results with dynamic light scattering data. Finally, we applied MCD in ligand interaction to key proteins such as lysozyme, comparing the human with the hen enzyme in the binding of N,N',N''-triacetylchitotriose. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.

    PubMed

    Qiao, Xiaoya; Liu, Ying; Luo, Liting; Chen, Lei; Zhao, Caixian; Ai, Xuanjun

    2017-05-27

    Pin1 is a peptidyl-prolyl cis-trans isomerase, whose WW domain specifically recognizes the pSer/Thr-Pro motif. Pin1 is involved in multiple phosphorylation events that regulate the activities of various substrates, and Pin1 deregulation has been reported in various diseases, including cancer and Alzheimer's disease. The WW domain of Pin1 has been used as a small model protein to investigate the folding mechanisms of the β-sheet structure by studying the effect of mutations or its naturally occurring variants. However, only a few studies have investigated the structure and binding of Pin1 WW mutants. In the present work, two naturally occurring Pin1 WW variants, namely, G20D and S16R, derived from the cynomolgus monkey and African green monkey, respectively, were selected to investigate the influence of charge mutation on the structure, stability, and binding properties of the Pin1 WW domain. Analysis using a combination of nuclear magnetic resonance (NMR) and chemical shift-based calculations revealed that the G20D and S16R mutants had high structural similarity to the wild-type Pin1 WW domain. However, the presence of a charge mutation significantly decreased the stability of the Pin1 WW domain. Both the wild-type and G20D forms of the Pin1 WW domain utilized a three-site mode to bind to a phosphorylated Tau peptide, pT231, whereas the S16R mutant binds to the pT231 peptide either in a non-specific manner or through a totally different binding mechanism. Correspondingly, the wild-type and two mutant Pin1 WW domains showed different binding affinities to the Tau phosphopeptide. Considering that the WW domain participates in the catalytic activity of the Pin1 isomerase, our study represents a novel approach for studying Pin1 function through the analysis of its naturally occurring mutants. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco.

    PubMed

    Schwenkert, Serena; Umate, Pavan; Dal Bosco, Cristina; Volz, Stefanie; Mlçochová, Lada; Zoryan, Mikael; Eichacker, Lutz A; Ohad, Itzhak; Herrmann, Reinhold G; Meurer, Jörg

    2006-11-10

    Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.

  7. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice

    PubMed Central

    Vance, Tyler D. R.; Olijve, Luuk L. C.; Campbell, Robert L.; Voets, Ilja K.; Davies, Peter L.; Guo, Shuaiqi

    2014-01-01

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches. PMID:24892750

  8. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice.

    PubMed

    Vance, Tyler D R; Olijve, Luuk L C; Campbell, Robert L; Voets, Ilja K; Davies, Peter L; Guo, Shuaiqi

    2014-07-04

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches.

  9. Metal ions in sugar binding, sugar specificity and structural stability of Spatholobus parviflorus seed lectin.

    PubMed

    Abhilash, Joseph; Dileep, Kalarickal Vijayan; Palanimuthu, Muthusamy; Geethanandan, Krishnan; Sadasivan, Chittalakkotu; Haridas, Madhathilkovilakath

    2013-08-01

    Spatholobus parviflorus seed lectin (SPL) is a heterotetrameric lectin, with two α and two β monomers. In the crystal structure of SPL α monomer, two residues at positions 240 and 241 are missing. This region was modeled based on the positional and sequence similarities. The role of metal ions in SPL structure was analyzed by 10 ns molecular dynamics simulation. MD simulations were performed in the presence and absence of metal ions to explain the loss of haemagglutinating property of the lectin due to demetallization. Demetallized structure was found to deviate drastically at the metal binding loop region. Affinity of different sugars like N-acetyl galactosamine (GalNAc), D-galactose and lactose towards the native and demetallized protein was calculated by molecular docking studies. It was found that the sugar binding site got severely distorted in demetallized lectin. Consequently, sugar binding ability of lectin might be decreasing in the demetallized condition. Isothermal titration calorimetric (ITC) analysis of the sugars in the presence of native and demetallized protein confirmed the in silico results. It was observed after molecular dynamics simulations, that significant structural deviations were not caused in the quaternary structure of demetallized lectin. It was confirmed that the structural changes modified the sugar binding ability, as well as sugar specificity of the present lectin. The role of metal ions in sugar binding is described based on the in silico studies and ITC analysis. A comprehensive analysis of the ITC data suggests that the sugar specificity of the metal bound lectin and the loss of sugar specificity due to metal chelation are not linear.

  10. Post-Biostimulation Biogenic U(IV) Stability and Microbial Community Structure that Affects its Dynamics

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Long, P. E.; Moon, H.; N'Guessan, L.; Peacock, A.; Sinha, M.; Tan, H.; Traub, D.; Williams, K. H.

    2010-12-01

    Flow-through sediment column experiments were conducted to determine the stability of biogenic U(IV) after biostimulation has been discontinued, and to isolate the key biogeochemical processes that affect the post-biostimulation U(IV) stability. Columns, packed with sediments from an UMTRA site (Rifle Colorado) were biostimulated for two months by injecting groundwater containing 3 mM acetate and 20 uM U(VI) at flow rates typically encountered at the Rifle site. After the biostimulation period, acetate injection was discontinued, and groundwater containing dissolved oxygen was allowed to enter the columns. Columns were then sacrificed at two week intervals to examine the sediment geochemistry and associated microbial community. Results showed that iron sulfide precipitates, that formed during the bioreduction phase, acted as a buffer to partially prevent biogenic U(IV) oxidation during the month post stimulation period. Groundwater and sediment microbial community compositions were analyzed over a period of one month post-biostimulation. The results indicate that two distinct biological processes, characterized by oxygen utilization, played important roles during this period. Within two weeks post stimulation, organisms such as Hydrogenophaga sp. and Thiobacillus sp. were observed in the columns. These bacteria, are able to use Fe(II), sulfide, or thiosulfate as their electron donor in the presence of O2. Furthermore, organisms closely related to Lysobacter sp. and Sterolibacterium sp. were also detected in the groundwater and sediment. It was suggested that these organisms may be feeding on decaying biomass and consuming O2 in the process. The presence of these oxidizing and spoilage bacteria is thought to have resulted in the consumption of oxygen, therefore protecting the biogenic U(IV) from being reoxidized in the sediment columns. To simulate the in situ U(IV) stability under post biostimulation conditions, columns bioreduced in the laboratory, as described

  11. Nucleotide binding affects intrinsic dynamics and structural communication in Ras GTPases.

    PubMed

    Fanelli, Francesca; Raimondi, Francesco

    2013-01-01

    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. These proteins act biologically as molecular switches, which, cycling between OFF and ON states, play fundamental role in cell biology. This review article summarizes the inferences from the widest computational analyses done so far on Ras GTPases aimed at providing a comprehensive structural/dynamic view of the trans-family and family-specific functioning mechanisms. These variegated comparative analyses could infer the evolutionary and intrinsic flexibilities as well as the structural communication features in the most representative G protein families in different functional states. In spite of the low sequence similarities, the members of the Ras superfamily share the topology of the Ras-like domain, including the nucleotide binding site. GDP and GTP make very similar interactions in all GTPases and differences in their binding modes are localized around the γ-phosphate of GTP. Remarkably, such subtle local differences result in significant differences in the functional dynamics and structural communication features of the protein. In Ras GTPases, the nucleotide plays a central and active role in dictating functional dynamics, establishing the major structure network, and mediating the communication paths instrumental in function retention and specialization. Collectively, the results of these studies support the speculation that an "extended conformational selection model" that embraces a repertoire of selection and adjustment processes is likely more suitable to describe the nucleotide behavior in these important molecular switches.

  12. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells

    PubMed Central

    2012-01-01

    Background Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. Results We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, Maackia amurensis (MAA) and Sambucus Nigra (SNA), could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. Conclusions In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells. PMID:22853823

  13. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation

    PubMed Central

    Dunzendorfer-Matt, Theresia; Mercado, Ellen L.; Maly, Karl; McCormick, Frank; Scheffzek, Klaus

    2016-01-01

    Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs. PMID:27313208

  14. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    PubMed

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  15. Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation.

    PubMed

    Dai, Lixin; Taylor, Martin S; O'Donnell, Kathryn A; Boeke, Jef D

    2012-11-01

    Poly(A) binding proteins (PABPs) specifically bind the polyadenosine tail of mRNA and have been shown to be important for RNA polyadenylation, translation initiation, and mRNA stability. Using a modified L1 retrotransposition vector, we examined the effects of two PABPs (encoded by PABPN1 and PABPC1) on the retrotransposition activity of the L1 non-long-terminal-repeat (non-LTR) retrotransposon in both HeLa and HEK293T cells. We demonstrated that knockdown of these two genes by RNA interference (RNAi) effectively reduced L1 retrotransposition by 70 to 80% without significantly changing L1 transcription or translation or the status of the poly(A) tail. We identified that both poly(A) binding proteins were associated with the L1 ribonucleoprotein complex, presumably through L1 mRNA. Depletion of PABPC1 caused a defect in L1 RNP formation. Knockdown of the PABPC1 inhibitor PAIP2 increased L1 retrotransposition up to 2-fold. Low levels of exogenous overexpression of PABPN1 and PABPC1 increased L1 retrotransposition, whereas unregulated overexpression of these two proteins caused pleiotropic effects, such as hypersensitivity to puromycin and decreased L1 activity. Our data suggest that PABPC1 is essential for the formation of L1 RNA-protein complexes and may play a role in L1 RNP translocation in the host cell.

  16. Stability and Control Harmony in Approach and Landing. [analysis of factors affecting flight characteristics at low airspeeds

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1975-01-01

    A review of the factors which affect stability and control harmony in approach and landing is made to obtain a clearer understanding of the proper relationship, the trade-offs involved, and to show how limits in stability and control harmony are established for advanced aircraft. Factors which influence stability and control harmony include the longitudinal short period response of the aircraft and the level of several pitch control characteristics including control power, control sensitivity, and control feel. At low stability levels for advanced aircraft, less conventional control techniques such as DLC are needed to improve harmony and some form of stability augmentation must be provided to improve precession of flight path control and reduce pilot work load.

  17. Nutritional stress affects an atypical cap-binding protein in Leishmania.

    PubMed

    Zinoviev, Alexandra; Manor, Shachar; Shapira, Michal

    2012-12-01

    Many eukaryotes encode multiple isoforms of the cap-binding translation initiation factor (eIF4E). Leishmanias and other trypanosomatids encode four paralogs of this protein, but none can complement the eIF4E function in a yeast mutant. A low conservation is observed between the four paralogs, suggesting they assist these organisms survive a multitude of conditions encountered throughout the life cycle. Earlier attempts to decipher their function led to identification of LeishIF4E-4 as the canonical translation initiation factor. LeishIF4E-1 appears to function during thermal stress, via a mechanism not yet understood. LeishIF4E-3 hardly binds cap-4 and is, therefore, less likely to serve as a typical initiation factor. Although it interacts with an eIF4G homolog, LeishIF4G-4, the two polypeptides do not co-migrate on sucrose gradients. While LeishIF4E-3 enters large particles that increase in size during nutritional stress, LeishIF4G-4 is found only in the top fractions. Confocal microscopy localized LeishIF4E-3 (but not LeishIF4G-4) within nutritional stress-induced granules. Accordingly, interaction between the two proteins reduced upon starvation. We therefore propose that under normal conditions, LeishIF4G-4 sequesters LeishIF4E-3 in the cytoplasm. During a nutritional stress, LeishIF4E-3 is modified and released from LeishIF4G-4 to enter stress granules, where inactive mRNAs are stored. Binding of LeishIF4G-4 to LeishIF4E-3 requires a short peptide within the LeishIF4G-4 N-terminus, which bears no similarity to the consensus 4E-binding peptide, YXXXXLΦ. Mutational analysis combined with structure prediction indicates that this interaction is based on an obligatory, conserved α helix in LeishIF4G-4. These features further highlight the uniqueness of LeishIF4E-3 and how it interacts with its binding partners.

  18. Cavity filling mutations at the thyroxine-binding site dramatically increase transthyretin stability and prevent its aggregation

    PubMed Central

    Sant’Anna, Ricardo; Almeida, Maria Rosário; Varejāo, Nathalia; Gallego, Pablo; Esperante, Sebastian; Ferreira, Priscila; Pereira-Henriques, Alda; Palhano, Fernando L.; de Carvalho, Mamede; Foguel, Debora; Reverter, David; Saraiva, Maria João; Ventura, Salvador

    2017-01-01

    More than a hundred different Transthyretin (TTR) mutations are associated with fatal systemic amyloidoses. They destabilize the protein tetrameric structure and promote the extracellular deposition of TTR as pathological amyloid fibrils. So far, only mutations R104H and T119M have been shown to stabilize significantly TTR, acting as disease suppressors. We describe a novel A108V non-pathogenic mutation found in a Portuguese subject. This variant is more stable than wild type TTR both in vitro and in human plasma, a feature that prevents its aggregation. The crystal structure of A108V reveals that this stabilization comes from novel intra and inter subunit contacts involving the thyroxine (T4) binding site. Exploiting this observation, we engineered a A108I mutation that fills the T4 binding cavity, as evidenced in the crystal structure. This synthetic protein becomes one of the most stable TTR variants described so far, with potential application in gene and protein replacement therapies. PMID:28338000

  19. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans.

    PubMed

    Ludwig, Antje; Poller, Wolfram C; Westphal, Kera; Minkwitz, Susann; Lättig-Tünnemann, Gisela; Metzkow, Susanne; Stangl, Karl; Baumann, Gert; Taupitz, Matthias; Wagner, Susanne; Schnorr, Jörg; Stangl, Verena

    2013-03-01

    Magnetic resonance imaging (MRI) with contrast agents that target specific inflammatory components of atherosclerotic lesions has the potential to emerge as promising diagnostic modality for detecting unstable plaques. Since a high content of macrophages and alterations of the extracellular matrix are hallmarks of plaque instability, these structures represent attractive targets for new imaging modalities. In this study, we compared in vitro uptake and binding of electrostatically stabilized citrate-coated very small superparamagnetic iron oxide particles (VSOP) to THP-1 cells with sterically stabilized carboxydextran-coated Resovist(®). Uptake of VSOP in both THP-1 monocytic cells and THP-derived macrophages (THP-MΦ) was more efficient compared to Resovist(®) without inducing cytotoxicity or modifying normal cellular functions (no changes in levels of reactive oxygen species, caspase-3 activity, proliferation, cytokine production). Importantly, VSOP bound with high affinity to the cell surface and to apoptotic membrane vesicles. Inhibition of glycosaminoglycan (GAG) synthesis by glucose deprivation in THP-MΦ was associated with a significant reduction of VSOP attachment suggesting that the strong interaction of VSOP with the membranes of cells and apoptotic vesicles occurs via binding to negatively charged GAGs. These in vitro experiments show that VSOP-enhanced MRI may represent a new imaging approach for visualizing high-risk plaques on the basis of targeting pathologically increased GAGs or apoptotic membrane vesicles in atherosclerotic lesions. VSOP should be investigated further in appropriate in vivo experiments to characterize accumulation in unstable plaque.

  20. Stabilization of an α/β-Hydrolase by Introducing Proline Residues: Salicylic Acid Binding Protein 2 from Tobacco.

    PubMed

    Huang, Jun; Jones, Bryan J; Kazlauskas, Romas J

    2015-07-21

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. We investigated a plant esterase, salicylic acid binding protein 2 (SABP2), as a model α/β-hydrolase. SABP2 shows typical stability to urea (unfolding free energy 6.9 ± 1.5 kcal/mol) and to heat inactivation (T1/2 15min 49.2 ± 0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homologue or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1), and E215P (+0.9). Introducing proline in the cap domain did not stabilize SABP2 (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/2 15min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P−S70P ΔT1/2 15min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases.

  1. Stability, subunit interactions and carbohydrate-binding of the seed lectin from Pterocarpus angolensis.

    PubMed

    Echemendia-Blanco, Dannele; Van Driessche, Edilbert; Ncube, Ignatious; Read, John S; Beeckmans, Sonia

    2009-01-01

    From 1 kg of defatted Pterocarpus angolensis (mukwa tree) seed meal, 21.6 grams of an alpha,D-mannose/glucose-specific lectin can be purified on mannose-Sepharose. Relative affinities for several (oligo)saccharides and glycoproteins were studied by haemagglutination-inhibition. Gel filtration shows that the lectin exists as a dimer above pH 5 and as a monomer below pH 3.5. This is confirmed by studies on the release of lectin subunits that were adsorbed from solution to lectin monomers immobilized onto Eupergit-c. From the gel filtration patterns it is calculated that a residue with pK(a) of about 4.4 is involved in dimer dissociation. Titration of glutamic acids (E60, E209) is postulated to be involved. CD spectroscopy shows that the secondary structure of the lectin is unchanged between pH 1 and 12.5, and that the tertiary structure remains unchanged between pH 5 and 12. In the acid pH region, reversible spectral changes occur that may be due to the titration of one or more amino acids with a pK(a) value of 3.9-4.2, probably aspartic acid. These residues are implicated in sugar-binding but not in dimerization of the lectin. Only at pH 12.5, irreversible denaturation occurs. Mukwa lectin displays full carbohydrate-binding capacity between pH 4 and 12, as is concluded from ELLA (Enzyme Linked Lectin Assay) using ovalbumin and fetuin, and from binding of the same glycoproteins to immobilized lectin monomers. The lectin is rapidly and fully reversibly demetallized at pH 2.5 with 5 mM EDTA. The demetallized lectin is completely devoid of sugar-binding activity. Mukwa lectin is a very thermostable molecule (at least till 85 degrees C). However, addition of non-ionic detergents substantially lowers its thermostability.

  2. Glutamine synthetase stabilizes the binding of GlnR to nitrogen fixation gene operators.

    PubMed

    Fernandes, Gabriela de C; Hauf, Ksenia; Sant'Anna, Fernando H; Forchhammer, Karl; Passaglia, Luciane M P

    2017-03-01

    Biological nitrogen fixation (BNF) is a high energy demanding process carried out by diazotrophic microorganisms that supply combined nitrogen to the biosphere. The genes related to BNF are strictly regulated, but these mechanisms are poorly understood in gram-positive bacteria. The transcription factor GlnR was proposed to regulate nitrogen fixation-related genes based on Paenibacillus comparative genomics. In order to validate this proposal, we investigated BNF regulatory sequences in Paenibacillus riograndensis SBR5(T) genome. We identified GlnR-binding sites flanking σ(A) -binding sites upstream from BNF-related genes. GlnR binding to these sites was demonstrated by surface plasmon resonance spectroscopy. GlnR-DNA affinity is greatly enhanced when GlnR is in complex with feedback-inhibited (glutamine-occupied) glutamine synthetase (GS). GlnR-GS complex formation is also modulated by ATP and AMP. Thereby, gene repression exerted by the GlnR-GS complex is coupled with nitrogen (glutamine levels) and energetic status (ATP and AMP). Finally, we propose a DNA-looping model based on multiple operator sites that represents a strong and strict regulation for these genes. © 2017 Federation of European Biochemical Societies.

  3. Ion binding properties and structure stability of the NaK channel.

    PubMed

    Shen, Rong; Guo, Wanlin

    2009-05-01

    Ion distribution in the selectivity filter and ion-water and ion-protein interactions of NaK channel are systematically investigated by all-atom molecular dynamics simulations, with the tetramer channel protein being embedded in a solvated phospholipid bilayer. Analysis of the simulation results indicates that K(+) ions prefer to bind within the sites formed by two adjacent planes of oxygen atoms from the selectivity filter, while Na(+) ions are inclined to bind to a single plane of four oxygen atoms. At the same time, both K(+) and Na(+) ions can diffuse in the vestibule, accompanying with movements of the water molecules confined in a complex formed by the vestibule together with four small grottos connecting to it. As a result, K(+) ions show a wide range of coordination numbers (6-8), while Na(+) ions display a constant coordination number of approximately 6 in the selectivity filter, which may result in the loss of selectivity of NaK. It is also found that a Ca(2+) can bind at the extracellular site as reported in the crystal structure in a partially hydrated state, or at a higher site in a full hydration state. Furthermore, the carbonyl group of Asp66 can reorient to point towards the center pore when an ion exists in the vestibule, while that of Gly65 always aligns tangentially to the channel axis, as in the crystallographic structures.

  4. Temperature after Arc Discharge Affected by Current Decrement Ratio in Wall Stabilized Arc

    NASA Astrophysics Data System (ADS)

    Sato, Ken; Suzuki, Daichi; Iwao, Toru

    2015-11-01

    Recently, the stable supply of electric power is indispensable in a power generation, and a transmission and distribution system of electric power. The GCB (Gas Circuit Breaker) has been researched for performance improvement of the arc interruption of abnormal fault current without the fail. The GCB has been researched for the high capacity and downsizing for development of practical use. Because the power network is expanded, the capacity of interruption current increased for reliability. The GCB should interrupt the arc of high current and voltage, shorten the time to interrupt, and become the high capability in order to improve the reliability and practicability. It is important to prevent the insulation of re-ignition and thermal re-ignition of arc after the arc interruption. It is mainly considered that the factor of thermal re-ignition is the arc temperature distribution after current zero. The temperature distribution has been elucidated by the current decrement ratio (di/dt). However, the variation of temperature distribution and decrement process of the temperature by the wall radius is also important in order to design the circuit breaker. In this paper, temperature after Arc Discharge Affected by Current Decrement Ratio in Wall Stabilized Arc was elucidated in order to know the effect on the temperature in the wall radius. As a result, when the wall radius decreases, the temperature at 0 A after 200 μs is lower.

  5. Factors affecting the stability and performance of ipratropium bromide; fenoterol hydrobromide pressurized-metered dose inhalers.

    PubMed

    Ninbovorl, Jenjira; Sawatdee, Somchai; Srichana, Teerapol

    2013-12-01

    The aim of the study was to investigate the factors affecting the stability and performance of ipratropium bromide and fenoterol hydrobromide in a pressurized-metered dose inhaler (pMDI). A factorial design was applied to investigate the effects of three parameters (propellant, water, and ethanol) on the performance of 27 designed formulations of a solution-based pMDI. The formulations that contained a hydrofluoroalkane (HFA) propellant lower than 72% v/v and an ethanol concentration higher than 27% v/v remained as clear solutions. Nine formulations that contained the HFA propellant higher than 74% v/v precipitated. The results indicated that it was not only the HFA propellant content of the formulations that was related to the formulation instability but also ethanol content. Only six formulations from the 18 formulations, that did not precipitate, produced drug contents that were within the acceptable range (80-120%). These six formulations generated aerosols with mass median aerodynamic diameters (MMAD) of approximately 2 μm with a fine particle fraction (FPF; particle size, <6.4 μm) between 45% and 52%. The MMAD and FPF did not change significantly after 6 months of storage (P > 0.05).

  6. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Stability of flavoured phytosterol-enriched drinking yogurts during storage as affected by different packaging materials.

    PubMed

    Semeniuc, Cristina Anamaria; Cardenia, Vladimiro; Mandrioli, Mara; Muste, Sevastiţa; Borsari, Andrea; Rodriguez-Estrada, Maria Teresa

    2016-06-01

    The aim of this study was to investigate the influence of different packaging materials on storage stability of flavoured phytosterol-enriched drinking yogurts. White vanilla (WV) and blood orange (BO) phytosterol-enriched drinking yogurts conditioned in mono-layer and triple-layer co-extruded plastic bottles were stored at +6 ± 1 °C for 35 days (under alternating 12 h light and 12 h darkness) to simulate shelf-life conditions. Samples were collected at three different storage times and subjected to determination of total sterol content (TSC), peroxide value (PV) and thiobarbituric acid reactive substances (TBARs). TSC was not significantly affected by packaging material or storage time and met the quantity declared on the label. PV was significantly influenced by yogurt type × packaging material × storage time interaction and TBARs by packaging material × storage time interaction. Between the two packaging materials, the triple-layer plastic mini bottle with black coloured and completely opaque intermediate layer offered the best protection against lipid oxidation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Yap4 PKA- and GSK3-dependent phosphorylation affects its stability but not its nuclear localization.

    PubMed

    Pereira, Jorge; Pimentel, Catarina; Amaral, Catarina; Menezes, Regina A; Rodrigues-Pousada, Claudina

    2009-12-01

    Yap4 is a nuclear-resident transcription factor induced in Saccharomyces cerevisiae when exposed to several stress conditions, which include mild hyperosmotic and oxidative stress, temperature shift or metal exposure. This protein is also phosphorylated. Here we report that this modification is driven by PKA and GSK3. In order to ascertain whether Yap4 is directly or indirectly phosphorylated by PKA, we searched for stress and PKA-related kinases that could phosphorylate Yap4. We show that phosphorylation is independent of the kinases Rim15, Yak1, Sch9, Slt2, Ste20 and Ptk2. In addition, we showed that Yap4 phosphorylation is also abrogated in the triple GSK3 mutant mck1 rim11 yol128c. Furthermore, our data reveal that Yap4 nuclear localization is independent of its phosphorylation state. This protein has several putative phosphorylation sites, but only the mutation of residues T192 and S196 impairs its phosphorylation under different stress conditions. The ability of the non-phosphorylated forms of Yap4 to partially rescue the hog1 severe sensitivity phenotype is not affected, suggesting that Yap4 activity is maintained in the absence of phosphorylation. However, this modification seems to be required for stability of the protein, as the non-phosphorylated form has a shorter half-life than the phosphorylated one.

  9. Coumarin-chalcone hybrid instigates DNA damage by minor groove binding and stabilizes p53 through post translational modifications

    PubMed Central

    Ashraf, Raghib; Hamidullah; Hasanain, Mohammad; Pandey, Praveen; Maheshwari, Mayank; Singh, L. Ravithej; Siddiqui, M. Quadir; Konwar, Rituraj; Sashidhara, Koneni V.; Sarkar, Jayanta

    2017-01-01

    S009-131, a coumarin-chalcone hybrid, had been shown to possess anti-proliferative and anti-tumour effect by triggering apoptosis. In this report, we investigated role of DNA damage signalling pathway in S009-131 induced cancer cell death. Here we show that S009-131 causes DNA damage by potential binding to the minor groove which led to the phosphorylation and activation of ATM and DNA-PK, but not ATR, at earlier time points in order to initiate repair process. S009-131 induced DNA damage response triggered activation of p53 through phosphorylation at its key residues. Pharmacological inhibition of PIKKs abrogated S009-131 induced phosphorylation of p53 at Ser 15. DNA damage induced phosphorylation resulted in reduced proteasomal degradation of p53 by disrupting p53-MDM2 interaction. Additionally, our docking studies revealed that S009-131 might also contribute to increased cellular p53 level by occupying p53 binding pocket of MDM2. Posttranslational modifications of p53 upon S009-131 treatment led to enhanced affinity of p53 towards responsive elements (p53-RE) in the promoter regions of target genes and increased transcriptional efficiency. Together, the results suggest that S009-131 cleaves DNA through minor groove binding and eventually activates PIKKs associated DNA damage response signalling to promote stabilization and enhanced transcriptional activity of p53 through posttranslational modifications at key residues. PMID:28349922

  10. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function

    PubMed Central

    D’Agostino, Vito Giuseppe; Lal, Preet; Mantelli, Barbara; Tiedje, Christopher; Zucal, Chiara; Thongon, Natthakan; Gaestel, Matthias; Latorre, Elisa; Marinelli, Luciana; Seneci, Pierfausto; Amadio, Marialaura; Provenzani, Alessandro

    2015-01-01

    Post-transcriptional regulation is an essential determinant of gene expression programs in physiological and pathological conditions. HuR is a RNA-binding protein that orchestrates the stabilization and translation of mRNAs, critical in inflammation and tumor progression, including tumor necrosis factor-alpha (TNF). We identified the low molecular weight compound 15,16-dihydrotanshinone-I (DHTS), well known in traditional Chinese medicine practice, through a validated high throughput screening on a set of anti-inflammatory agents for its ability to prevent HuR:RNA complex formation. We found that DHTS interferes with the association step between HuR and the RNA with an equilibrium dissociation constant in the nanomolar range in vitro (Ki = 3.74 ± 1.63 nM). In breast cancer cell lines, short term exposure to DHTS influences mRNA stability and translational efficiency of TNF in a HuR-dependent manner and also other functional readouts of its post-transcriptional control, such as the stability of selected pre-mRNAs. Importantly, we show that migration and sensitivity of breast cancer cells to DHTS are modulated by HuR expression, indicating that HuR is among the preferential intracellular targets of DHTS. Here, we disclose a previously unrecognized molecular mechanism exerted by DHTS, opening new perspectives to therapeutically target the HuR mediated, post-transcriptional control in inflammation and cancer cells. PMID:26553968

  11. The Amyloid Precursor Protein Copper Binding Domain Histidine Residues 149 and 151 Mediate APP Stability and Metabolism*

    PubMed Central

    Spoerri, Loredana; Vella, Laura J.; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2012-01-01

    One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid β peptide (Aβ) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aβ accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His147, His149, and His151). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His149 and His151 to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain. PMID:22685292

  12. Biological Insights of the Dopaminergic Stabilizer ACR16 at the Binding Pocket of Dopamine D2 Receptor.

    PubMed

    Ekhteiari Salmas, Ramin; Seeman, Philip; Aksoydan, Busecan; Stein, Matthias; Yurtsever, Mine; Durdagi, Serdar

    2017-04-19

    The dopamine D2 receptor (D2R) plays an important part in the human central nervous system and it is considered to be a focal target of antipsychotic agents. It is structurally modeled in active and inactive states, in which homodimerization reaction of the D2R monomers is also applied. The ASP2314 (also known as ACR16) ligand, a D2R stabilizer, is used in tests to evaluate how dimerization and conformational changes may alter the ligand binding space and to provide information on alterations in inhibitory mechanisms upon activation. The administration of the D2R agonist ligand ACR16 [(3)H](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ((+)PHNO) revealed Ki values of 32 nM for the D2(high)R and 52 μM for the D2(low)R. The calculated binding affinities of ACR16 with post processing molecular dynamics (MD) simulations analyses using MM/PBSA for the monomeric and homodimeric forms of the D2(high)R were -9.46 and -8.39 kcal/mol, respectively. The data suggests that the dimerization of the D2R leads negative cooperativity for ACR16 binding. The dimerization reaction of the D2(high)R is energetically favorable by -22.95 kcal/mol. The dimerization reaction structurally and thermodynamically stabilizes the D2(high)R conformation, which may be due to the intermolecular forces formed between the TM4 of each monomer, and the result strongly demonstrates dimerization essential for activation of the D2R.

  13. The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates.

    PubMed

    Martin, Gregory G; McIntosh, Avery L; Huang, Huan; Gupta, Shipra; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-12-23

    Although the human liver fatty acid binding protein (L-FABP) T94A variant arises from the most commonly occurring single-nucleotide polymorphism in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in the complete loss of ligand binding ability and function analogous to that seen with L-FABP gene ablation. This possibility was addressed using the recombinant human wild-type (WT) T94T and T94A variant L-FABP and cultured primary human hepatocytes. Nonconservative replacement of the medium-sized, polar, uncharged T residue with a smaller, nonpolar, aliphatic A residue at position 94 of the human L-FABP significantly increased the L-FABP α-helical structure content at the expense of β-sheet content and concomitantly decreased the thermal stability. T94A did not alter the binding affinities for peroxisome proliferator-activated receptor α (PPARα) agonist ligands (phytanic acid, fenofibrate, and fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on the human L-FABP secondary structure, the active metabolite fenofibric acid altered the T94A secondary structure much more than that of the WT T94T L-FABP. Finally, in cultured primary human hepatocytes, the T94A variant exhibited a significantly reduced extent of fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while the T94A substitution did not alter the affinity of the human L-FABP for PPARα agonist ligands, it significantly altered the human L-FABP structure, stability, and conformational and functional response to fibrate.

  14. The amyloid precursor protein copper binding domain histidine residues 149 and 151 mediate APP stability and metabolism.

    PubMed

    Spoerri, Loredana; Vella, Laura J; Pham, Chi L L; Barnham, Kevin J; Cappai, Roberto

    2012-08-03

    One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid β peptide (Aβ) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aβ accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His(147), His(149), and His(151)). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His(149) and His(151) to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain.

  15. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters.

    PubMed

    Thangasamy, Saminathan; Chen, Pei-Wei; Lai, Ming-Hsing; Chen, Jychian; Jauh, Guang-Yuh

    2012-07-01

    Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.

  16. Ultraviolet irradiation of diacetylenic liposomes as a strategy to improve size stability and to alter protein binding without cytotoxicity enhancement.

    PubMed

    Temprana, C Facundo; Amor, M Silvia; Femia, A Lis; Gasparri, Julieta; Taira, M Cristina; del Valle Alonso, Silvia

    2011-06-01

    Membrane-modification effects, induced by ultraviolet (UV) irradiation in diacetylenic liposomes, were analyzed upon contact with cells, biological membranes, and proteins. Liposomes formulated with mixtures of unsaturated 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine and saturated 1,2-dimyristoyl-sn-glycero-3-phosphocholine, in a 1:1 molar ratio, were compared with those that were UV-irradiated and analyzed in several aspects. Membrane polymerization inherence on size stability was studied as well as its impact on mitochondrial and microsomal membrane peroxidation induction, hemolytic activity, and cell viability. Moreover, in order to gain insight about the possible irradiation effect on interfacial membrane properties, interaction with bovine serum albumin (BSA), lysozyme (Lyso), and apolipoprotein (apoA-I) was studied. Improved size stability was found for polymerized liposomes after a period of 30 days at 4°C. In addition, membrane irradiation had no marked effect on cell viability, hemolysis, or induction of microsomal and mitochondrial membrane peroxidation. Interfacial membrane characteristics were found to be altered after polymerization, since a differential protein binding for polymerized or nonpolymerized membranes was observed for BSA and Lyso, but not for apoA-I. The substantial contribution of this work is the finding that even when maintaining the same lipid composition, changes induced by UV irradiation are sufficient to increase size stability and establish differences in protein binding, in particular, reducing the amount of bound Lyso and BSA, without increasing formulation cytotoxicity. This work aimed at showing that the usage of diacetylenic lipids and UV modification of membrane interfacial properties should be strategies to be taken into consideration when designing new delivery systems.

  17. Special AT-rich Binding Protein-2 (SATB2) Differentially Affects Disease-causing p63 Mutant Proteins*

    PubMed Central

    Chung, Jacky; Grant, R. Ian; Kaplan, David R.; Irwin, Meredith S.

    2011-01-01

    p63, a p53 family member, is critical for proper skin and limb development and directly regulates gene expression in the ectoderm. Mice lacking p63 exhibit skin and craniofacial defects including cleft palate. In humans p63 mutations are associated with several distinct developmental syndromes. p63 sterile-α-motif domain, AEC (ankyloblepharon-ectodermal dysplasia-clefting)-associated mutations are associated with a high prevalence of orofacial clefting disorders, which are less common in EEC (ectrodactyly-ectodermal dysplasia-clefting) patients with DNA binding domain p63 mutations. However, the mechanisms by which these mutations differentially influence p63 function remain unclear, and interactions with other proteins implicated in craniofacial development have not been identified. Here, we show that AEC p63 mutations affect the ability of the p63 protein to interact with special AT-rich binding protein-2 (SATB2), which has recently also been implicated in the development of cleft palate. p63 and SATB2 are co-expressed early in development in the ectoderm of the first and second branchial arches, two essential sites where signaling is required for craniofacial patterning. SATB2 attenuates p63-mediated gene expression of perp (p53 apoptosis effector related to PMP-22), a critical downstream target gene during development, and specifically decreases p63 perp promoter binding. Interestingly, AEC but not EEC p63 mutations affect the ability of p63 to interact with SATB2 and the inhibitory effects of SATB2 on p63 transactivation of perp are most pronounced for AEC-associated p63 mutations. Our findings reveal a novel gain-of-function property of AEC-causing p63 mutations and identify SATB2 as the first p63 binding partner that differentially influences AEC and EEC p63 mutant proteins. PMID:21965674

  18. To what extent does not wearing shoes affect the local dynamic stability of walking?: effect size and intrasession repeatability.

    PubMed

    Terrier, Philippe; Reynard, Fabienne

    2014-04-01

    Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73-0.81) and slightly higher in barefoot walking condition (ICC: 0.81-0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.

  19. Mutations that affect coenzyme binding and dimer formation of fungal 17beta-hydroxysteroid dehydrogenase.

    PubMed

    Brunskole, Mojca; Kristan, Katja; Stojan, Jure; Rizner, Tea Lanisnik

    2009-03-25

    The 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/reductase superfamily, and it functions as a dimer that is composed of two identical subunits. By constructing the appropriate mutants, we have examined the M204 residue that is situated in the coenzyme binding pocket, for its role in the binding of the coenzyme NADP(H). We have also studied the importance of hydrophobic interactions through F124, F132, F133 and F177 for 17beta-HSDcl dimer formation. The M204G substitution decreased the catalytic efficiency of 17beta-HSDcl, suggesting that M204 sterically coerces the nicotinamide moiety of the coenzyme into the appropriate position for further hydride transfer. Phenylalanine substitutions introduced at the dimer interface produced inactive aggregates and oligomers with high molecular masses, suggesting that these hydrophobic interactions have important roles in the formation of the active dimer.

  20. How hormone receptor-DNA binding affects nucleosomal DNA: the role of symmetry.

    PubMed Central

    Bishop, T C; Kosztin, D; Schulten, K

    1997-01-01

    Molecular dynamics simulations have been employed to determine the optimal conformation of an estrogen receptor DNA binding domain dimer bound to a consensus response element, ds(AGGTCACAGTGACCT), and to a nonconsensus response element, ds(AGAACACAGTGACCT). The structures simulated were derived from a crystallographic structure and solvated by a sphere (45-A radius) of explicit water and counterions. Long-range electrostatic interactions were accounted for during 100-ps simulations by means of a fast multipole expansion algorithm combined with a multiple time-step scheme in the molecular dynamics package NAMD. The simulations demonstrate that the dimer induces a bent and underwound (10.7 bp/turn) conformation in the DNA. The bending reflects the dyad symmetry of the receptor dimer and can be described as an S-shaped curve in the helical axis of DNA when projected onto a plane. A similar bent and underwound conformation is observed for nucleosomal DNA near the nucleosome's dyad axis that reflects the symmetry of the histone octamer. We propose that when a receptor dimer binds to a nucleosome, the most favorable dimer-DNA and histone-DNA interactions are achieved if the respective symmetry axes are aligned. Such positioning of a receptor dimer over the dyad of nucleosome B in the mouse mammary tumor virus promoter is in agreement with experiment. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 9 FIGURE 11 PMID:9129808

  1. Glutamate racemase from Mycobacterium tuberculosis inhibits DNA gyrase by affecting its DNA-binding

    PubMed Central

    Sengupta, Sugopa; Shah, Meera; Nagaraja, Valakunja

    2006-01-01

    Glutamate racemase (MurI) catalyses the conversion of l-glutamate to d-glutamate, an important component of the bacterial cell wall. MurI from Escherichia coli inhibits DNA gyrase in presence of the peptidoglycan precursor. Amongst the two-glutamate racemases found in Bacillus subtilis, only one inhibits gyrase, in absence of the precursor. Mycobacterium tuberculosis has a single gene encoding glutamate racemase. Action of M.tuberculosis MurI on DNA gyrase activity has been examined and its mode of action elucidated. We demonstrate that mycobacterial MurI inhibits DNA gyrase activity, in addition to its precursor independent racemization function. The inhibition is not species-specific as E.coli gyrase is also inhibited but is enzyme-specific as topoisomerase I activity remains unaltered. The mechanism of inhibition is different from other well-known gyrase inhibitors. MurI binds to GyrA subunit of the enzyme leading to a decrease in DNA-binding of the holoenzyme. The sequestration of the gyrase by MurI results in inhibition of all reactions catalysed by DNA gyrase. MurI is thus not a typical potent inhibitor of DNA gyrase and instead its role could be in modulation of the gyrase activity. PMID:17020913

  2. A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding.

    PubMed

    Zúñiga, Roberto; Salazar, Juan; Canales, Mauricio; Orellana, Omar

    2002-12-18

    The activation domain of class I aminoacyl-tRNA synthetases, which contains the Rossmann fold and the signature sequences HIGH and KMSKS, is generally split into two halves by the connective peptides (CP1, CP2) whose amino acid sequences are idiosyncratic. CP1 has been shown to participate in the binding of tRNA as well as the editing of the reaction intermediate aminoacyl-AMP or the aminoacyl-tRNA. No function has been assigned to CP2. The amino acid sequence of Acidithiobacillus ferrooxidans TrpRS was predicted from the genome sequence. Protein sequence alignments revealed that A. ferrooxidans TrpRS contains a 70 amino acids long CP2 that is not found in any other bacterial TrpRS. However, a CP2 in the same relative position was found in the predicted sequence of several archaeal TrpRSs. A. ferrooxidans TrpRS is functional in vivo in Escherichia coli. A deletion mutant of A. ferrooxidans trpS lacking the coding region of CP2 was constructed. The in vivo activity of the mutant TrpRS in E. coli, as well as the kinetic parameters of the in vitro activation of tryptophan by ATP, were not altered by the deletion. However, the K(m) value for tRNA was seven-fold higher upon deletion, reducing the efficiency of aminoacylation. Structural modeling suggests that CP2 binds to the inner corner of the L shape of tRNA.

  3. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').

    PubMed

    Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando

    2015-02-02

    We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.

  4. Binding of protofibrillar Aβ trimers to lipid bilayer surface enhances Aβ structural stability and causes membrane thinning.

    PubMed

    Dong, Xuewei; Sun, Yunxiang; Wei, Guanghong; Nussinov, Ruth; Ma, Buyong

    2017-10-05

    Alzheimer's disease, a common neurodegenerative disease, is characterized by the aggregation of amyloid-β (Aβ) peptides. The interactions of Aβ with membranes cause changes in membrane morphology and ion permeation, which are responsible for its neurotoxicity and can accelerate fibril growth. However, the Aβ-lipid interactions and how these induce membrane perturbation and disruption at the atomic level and the consequences for the Aβ organization are not entirely understood. Here, we perform multiple atomistic molecular dynamics simulations on three protofibrillar Aβ9-40 trimers. Our simulations show that, regardless of the morphologies and the initial orientations of the three different protofibrillar Aβ9-40 trimers, the N-terminal β-sheet of all trimers preferentially binds to the membrane surface. The POPG lipid bilayers enhance the structural stability of protofibrillar Aβ trimers by stabilizing inter-peptide β-sheets and D23-K28 salt-bridges. The interaction causes local membrane thinning. We found that the trimer structure related to Alzheimer's disease brain tissue () is the most stable both in water solution and at membrane surface, and displays slightly stronger membrane perturbation capability. These results provide mechanistic insights into the membrane-enhanced structural stability of protofibrillar Aβ oligomers and the first step of Aβ-induced membrane disruption at the atomic level.

  5. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  6. Whole Genome Sequencing Identifies a Deletion in Protein Phosphatase 2A That Affects Its Stability and Localization in Chlamydomonas reinhardtii

    PubMed Central

    Lin, Huawen; Miller, Michelle L.; Granas, David M.; Dutcher, Susan K.

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating. PMID:24086163

  7. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Miller, Michelle L; Granas, David M; Dutcher, Susan K

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  8. Interaction Signatures Stabilizing the NAD(P)-Binding Rossmann Fold: A Structure Network Approach

    PubMed Central

    Bhattacharyya, Moitrayee; Upadhyay, Roopali; Vishveshwara, Saraswathi

    2012-01-01

    The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a “spatial motif” and several “fold specific hot spots” that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest. PMID:23284738

  9. Catalytic pathway, substrate binding and stability in SAICAR synthetase: A structure and molecular dynamics study.

    PubMed

    Manjunath, Kavyashree; Jeyakanthan, Jeyaraman; Sekar, Kanagaraj

    2015-07-01

    The de novo purine biosynthesis is one of the highly conserved pathways among all organisms and is essential for the cell viability. A clear understanding of the enzymes in this pathway would pave way for the development of antimicrobial and anticancer drugs. Phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase is one of the enzymes in this pathway that catalyzes ATP dependent ligation of carboxyaminoimidazole ribotide (CAIR) with l-aspartate (ASP). Here, we describe eight crystal structures of this enzyme, in C2221 and H3 space groups, bound to various substrates and substrate mimics from a hyperthermophilic archaea Pyrococcus horikoshii along with molecular dynamics simulations of the structures with substrates. Complexes exhibit minimal deviation from its apo structure. The CAIR binding site displays a preference for pyrimidine nucleotides. In the ADP·TMP·ASP complex, the ASP binds at a position equivalent to that found in Saccharomyces cerevisiae structure (PDB: 2CNU) and thus, clears the ambiguity regarding ASP's position. A possible mode for the inhibition of the enzyme by CTP and UTP, observed earlier in the yeast enzyme, is clearly illustrated in the structures bound to CMP and UMP. The ADP.Mg(2+)·PO4·CD/MP complex having a phosphate ion between the ATP and CAIR sites strengthens one of the two probable pathways (proposed in Escherichia coli study) of catalytic mechanism and suggests the possibility of a phosphorylation taking place before the ASP's attack on CAIR. Molecular dynamic simulations of this enzyme along with its substrates at 90°C reveal the relative strengths of substrate binding, possible antagonism and the role of Mg(2+) ions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  11. The role of the salt concentration, proton, and phosphate binding on the thermal stability of wild and cloned DNA-binding protein Sso7d from Sulfolobus solfataricus.

    PubMed

    Todorova, Roumiana; Atanasov, Boris

    2004-04-01

    The acidic pH (1.5-7.0) and ionic strength (0.005-0.2M) dependence of thermodynamic functions of protein Sso7d from Sulfolobus solfataricus, cloned (c-Sso7d) and N-heptapeptide deleted [c-des(1-7)Sso7d] in glycine, and phosphate buffers was studied by means of adiabatic scanning calorimetry. The difference of proton binding was estimated from deltaHcal(pH), Td(pH), and (deltaTd/deltapH). It was found that a single group non-co-operative ionization with apparent pKa = 3.25 for both cloned and deleted proteins govern the thermal unfolding of two different (protonated and unprotonated) forms. deltaH degrees is found to be pH-independent and the changes in stability (deltaG degrees ) originate from changes in entropy terms. The apparent pKa measured at high salt concentrations decreases with 0.5 pH units from glycine to phosphate and the free energy of transfer at high ionic strength is 0.7 kcal/mol. The ionic strength dependence for the pH-dependent D-states is very different at pH 6.0 and 1.5. This is consistent with the property of denatured state to be more compacted or "closed" (Dc) at neutral or weak acidic pH and more random or "open" (Do) at acidic pH. From the Bjerrum's relation was found the number of screened charges important for the unfolding process. The main conclusions are: (1) the thermal stability of Sso7d has prominently entropic nature; (2) a single non-co-operative ionization controls the conformations in the D-state; and (3) pH-dependent conformational equilibrium could be functionally important in Sso7d-DNA recognition. Copyright 2004 Elsevier B.V.

  12. The Tubulin Binding Mode of MT Stabilizing and Destabilizing Agents Studied by NMR

    NASA Astrophysics Data System (ADS)

    Sánchez-Pedregal, Víctor M.; Griesinger, Christian

    Tubulin is a fascinating molecule that forms the cytoskeleton of the cells and plays an important role in cell division and trafficking of molecules. It polymerizes and depolymerizes in order to fulfill this biological function. This function can be modulated by small molecules that interfere with the polymerization or the depolymerization. In this article, the structural basis of this behavior is reviewed with special attention to the contribution of NMR spectroscopy. Complex structures of small molecules that bind to tubulin and microtubules will be discussed. Many of them have been determined using NMR spectroscopy, which proves to be an important method in tubulin research.

  13. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  14. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins

    PubMed Central

    Patel, A.; Hashimoto, H.; Zhang, X.; Cheng, X.

    2016-01-01

    Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides. PMID:27372763

  15. Binding of Alkyl Polyglucoside Surfactants to Bacteriorhodopsin and its Relation to Protein Stability

    PubMed Central

    Santonicola, M. Gabriella; Lenhoff, Abraham M.; Kaler, Eric W.

    2008-01-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell. PMID:18234822

  16. Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability.

    PubMed

    Santonicola, M Gabriella; Lenhoff, Abraham M; Kaler, Eric W

    2008-05-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell.

  17. Effect of lysine modification on the stability and cellular binding of human amyloidogenic light chains.

    PubMed

    Davern, S; Murphy, C L; O'Neill, H; Wall, J S; Weiss, D T; Solomon, A

    2011-01-01

    AL amyloidosis is characterized by the pathologic deposition as fibrils of monoclonal light chains (i.e., Bence Jones proteins [BJPs]) in particular organs and tissues. This phenomenon has been attributed to the presence in amyloidogenic proteins of particular amino acids that cause these molecules to become unstable, as well as post-translational modifications and, in regard to the latter, we have investigated the effect of biotinylation of lysyl residues on cell binding. We utilized an experimental system designed to test if BJPs obtained from patients with AL amyloidosis or, as a control, multiple myeloma (MM), bound human fibroblasts and renal epithelial cells. As documented by fluorescence microscopy and ELISA, the amyloidogenic BJPs, as compared with MM components, bound preferentially and this reactivity increased significantly after chemical modification of their lysyl residues with sulfo-NHS-biotin. Further, based on tryptophan fluorescence and circular dichroism data, it was apparent that their conformation was altered, which we hypothesize exposed a binding site not accessible on the native protein. The results of our studies indicate that post-translational structural modifications of pathologic light chains can enhance their capacity for cellular interaction and thus may contribute to the pathogenesis of AL amyloidosis and multiple myeloma.

  18. Effect of Lysine Modification on the Stability and Cellular Binding of Human Amyloidogenic Light Chains

    SciTech Connect

    O'Neill, Hugh Michael; Davern, Sandra M.; Murphy, Charles L.; Wall, Jonathan; Deborah, Weiss T.; Solomon, Alan

    2011-01-01

    AL amyloidosis is characterized by the pathologic deposition as fibrils of monoclonal light chains (i.e., Bence Jones proteins [BJPs]) in particular organs and tissues. This phenomenon has been attributed to the presence in amyloidogenic proteins of particular amino acids that cause these molecules to become unstable, as well as post-translational modifications and, in regard to the latter, we have investigated the effect of biotinylation of lysyl residues on cell binding. We utilized an experimental system designed to test if BJPs obtained from patients with AL amyloidosis or, as a control, multiple myeloma (MM), bound human fibroblasts and renal epithelial cells. As documented by fluorescent microscopy and ELISA, the amyloidogenic BJPs, as compared with MM components, bound preferentially and this reactivity increased significantly after chemical modification of their lysyl residues with sulfo-NHS-biotin. Further, based on tryptophan fluorescence and circular dichorism data, it was apparent that their conformation was altered, which we hypothesize exposed a binding site not accessible on the native protein. The results of our studies indicate that post-translational structural modifications of pathologic light chains can enhance their capacity for cellular interaction and thus may contribute to the pathogenesis of AL amyloidosis and multiple myeloma.

  19. Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure.

    PubMed

    Mortimer, Stefanie A; Doudna, Jennifer A

    2013-04-01

    MicroRNAs (miRNAs) typically downregulate protein expression from target mRNAs through limited base-pairing interactions between the 5' 'seed' region of the miRNA and the mRNA 3' untranslated region (3'UTR). In contrast to this established mode of action, the liver-specific human miR-122 binds at two sites within the hepatitis C viral (HCV) 5'UTR, leading to increased production of infectious virions. We show here that two copies of miR-122 interact with the HCV 5'UTR at partially overlapping positions near the 5' end of the viral transcript to form a stable ternary complex. Both miR-122 binding sites involve extensive base pairing outside of the seed sequence; yet, they have substantially different interaction affinities. Structural probing reveals changes in the architecture of the HCV 5'UTR that occur on interaction with miR-122. In contrast to previous reports, however, results using both the recombinant cytoplasmic exonuclease Xrn1 and liver cell extracts show that miR-122-mediated protection of the HCV RNA from degradation does not correlate with stimulation of viral propagation in vivo. Thus, the miR-122:HCV ternary complex likely functions at other steps critical to the viral life cycle.

  20. TANK-binding kinase-1 broadly affects oyster immune response to bacteria and viruses.

    PubMed

    Tang, Xueying; Huang, Baoyu; Zhang, Linlin; Li, Li; Zhang, Guofan

    2016-09-01

    As a benthic filter feeder of estuaries, the immune system of oysters provides one of the best models for studying the genetic and molecular basis of the innate immune pathway in marine invertebrates and examining the influence of environmental factors on the immune system. Here, the molecular function of molluscan TANK-binding kinase-1 (TBK1) (which we named CgTBK1) was studied in the Pacific oyster, Crassostrea gigas. Compared with known TBK1 proteins in other model organisms, CgTBK1 contains a conserved S-TKc domain and a coiled coil domain at the N- and C-terminals but lacks an important ubiquitin domain. Quantitative real-time PCR analysis revealed that the expression level of CgTBK1 was ubiquitous in all selected tissues, with highest expression in the gills. CgTBK1 expression was significantly upregulated in response to infections with Vibrio alginolyticus, ostreid herpesvirus 1 (OsHV-1 reference strain and μvar), and polyinosinic:polycytidylic acid sodium salt, suggesting its broad function in immune response. Subcellular localization showed the presence of CgTBK1 in the cytoplasm of HeLa cells, suggesting its potential function as the signal transducer between the receptor and transcription factor. We further demonstrated that CgTBK1 interacted with CgSTING in HEK293T cells, providing evidence that CgTBK1 could be activated by direct binding to CgSTING. In summary, we characterized the TBK1 gene in C. gigas and demonstrated its role in the innate immune response to pathogen infections.

  1. Identification and characterization of a 44 kDa protein that binds specifically to the 3'-untranslated region of CYP2a5 mRNA: inducibility, subcellular distribution and possible role in mRNA stabilization.

    PubMed Central

    Geneste, O; Raffalli, F; Lang, M A

    1996-01-01

    Stabilization of mRNA is important in the regulation of CYP2a5 expression but the factors involved in the process are not known [Aida and Negishi (1991) Biochemistry 30, 8041-8045]. In this paper, we describe, for the first time, a protein that binds specifically to the 3'-untranslated region of CYP2a5 mRNA and which is inducible by pyrazole, a compound known to increase the half-life of CYP2a5 mRNA. We also demonstrate that pyrazole treatment causes an elongation of the CYP2a5 mRNA poly(A) tail, and that phenobarbital, which is transcriptional activator of the CYP2a5 gene that does not affect the mRNA half-life, neither induces the RNA-binding protein nor affects the poly(A) tail size. SDS/PAGE of the UV-cross-linked RNA-protein complex demonstrated that the RNA-binding protein has an apparent molecular mass of 44 kDa. The protein-binding site was localized to a 70-nucleotide region between bases 1585 and 1655. Treatment of cytoplasmic extracts with an SH-oxidizing agent, diamide, an SH-blocking agent, N-ethylmaleimide or potato acid phosphatase abolished complex-formation, suggesting that the CYP2a5 mRNA-binding protein is subject to post-translational regulation. Subcellular fractionation showed that the 44 kDa protein is present in polyribosomes and nuclei, and that its apparent induction is much stronger in polyribosomes than in nuclear extracts. We propose that this 44 kDa RNA-binding protein is involved in the stabilization of CYP2a5 mRNA by controlling the length of the poly(A) tail. PMID:8611142

  2. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  3. Factors affecting the stability of the performance of ambient fine-particle concentrators.

    PubMed

    Kim, S; Sioutas, C; Chang, M C; Gong, H

    2000-01-01

    This article describes a systematic evaluation of factors affecting the stability of the performance of Harvard ambient fine-particle concentrators, an essential requirement for controlled animal and human exposure studies that utilize these technologies. Phenomenological problems during the operation of the concentrator, including pressure drop increase and decrease in concentration enrichment, were statistically correlated with ambient air parameters such as temperature, relative humidity, PM2.5 mass concentration, and mass median diameter. The normalized hourly pressure drop across the concentrator was strongly associated (R2 = .81) with the product of ambient PM2.5 mass concentration and the difference between the vapor pressure downstream of the impactor nozzle and the saturation vapor pressure at the adiabatic expansion temperature (i.e., the temperature of the aerosol immediately downstream of the virtual impactors). From multiple regression analysis, the average enrichment factor was predicted reasonably well (R2 = .67) by aerosol mass median diameter and the normalized hourly pressure drop. Based on these results, we can anticipate in any given day whether an exposure study can be conducted without a considerable increase in the concentrator pressure drop, which might lead to an abrupt or premature termination of the exposure. As particle mass concentration and ambient dewpoint are the two main parameters responsible for raising the pressure drop across the concentrator, efforts should be made to either desiccate the ambient aerosol at days of high dewpoints, or to dilute the ambient PM at days of high concentrations, prior to drawing the aerosol through the virtual impactors. The latter approach is recommended on days of severe ambient pollution conditions because it is simpler and also makes it possible to maintain the appropriate concentration level delivered to the exposure chamber.

  4. JNK3 Enzyme Binding to Arrestin-3 Differentially Affects the Recruitment of Upstream Mitogen-activated Protein (MAP) Kinase Kinases*

    PubMed Central

    Zhan, Xuanzhi; Kaoud, Tamer S.; Kook, Seunghyi; Dalby, Kevin N.; Gurevich, Vsevolod V.

    2013-01-01

    Arrestin-3 was previously shown to bind JNK3α2, MKK4, and ASK1. However, full JNK3α2 activation requires phosphorylation by both MKK4 and MKK7. Using purified proteins we show that arrestin-3 directly interacts with MKK7 and promotes JNK3α2 phosphorylation by both MKK4 and MKK7 in vitro as well as in intact cells. The binding of JNK3α2 promotes an arrestin-3 interaction with MKK4 while reducing its binding to MKK7. Interestingly, the arrestin-3 concentration optimal for scaffolding the MKK7-JNK3α2 module is ∼10-fold higher than for the MKK4-JNK3α2 module. The data provide a mechanistic basis for arrestin-3-dependent activation of JNK3α2. The opposite effects of JNK3α2 on arrestin-3 interactions with MKK4 and MKK7 is the first demonstration that the kinase components in mammalian MAPK cascades regulate each other's interactions with a scaffold protein. The results show how signaling outcomes can be affected by the relative expression of scaffolding proteins and components of signaling cascades that they assemble. PMID:23960075

  5. A Rhizavidin Monomer with Nearly Multimeric Avidin-Like Binding Stability Against Biotin Conjugates.

    PubMed

    Lee, Jeong Min; Kim, Jung A; Yen, Tzu-Chi; Lee, In Hwan; Ahn, Byungjun; Lee, Younghoon; Hsieh, Chia-Lung; Kim, Ho Min; Jung, Yongwon

    2016-03-01

    Developing a monomeric form of an avidin-like protein with highly stable biotin binding properties has been a major challenge in biotin-avidin linking technology. Here we report a monomeric avidin-like protein-enhanced monoavidin-with off-rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head-group-biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24-meric avidin probe by fusing eMA to a multimeric cage protein. The 24-meric avidin and eMA were utilized to demonstrate how artificial clustering of cell-surface proteins greatly enhances the internalization rates of assembled proteins on live cells.

  6. Soil aggregate stability as affected by clay mineralogy and polyacrylamide addition

    USDA-ARS?s Scientific Manuscript database

    The addition of polyacrylamide (PAM) to soil leads to stabilization of existing aggregates and improved bonding between, and aggregation of adjacent soil particles However, the dependence of PAM efficacy as an aggregate stabilizing agent on soil-clay mineralogy has not been studied. Sixteen soil sam...

  7. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    USDA-ARS?s Scientific Manuscript database

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  8. Voluntary changes in step width and step length during human walking affect dynamic margins of stability.

    PubMed

    McAndrew Young, Patricia M; Dingwell, Jonathan B

    2012-06-01

    "Cautious" gait is generally characterized by wider and shorter steps. However, we do not clearly understand the relationship between step characteristics and individuals' stability. Here, we examined the effects of voluntarily altering step width (SW) and step length (SL) on individuals' margins of stability. Fourteen participants completed three 3-min treadmill walking trials during three SL (short, normal with metronome, and long) and three SW (narrow, normal and wide) manipulation conditions. SL manipulations yielded significant changes in mean anterior-posterior (AP) margins of stability (MOS(ap)) (p<0.0005) but not mediolateral (ML) margins of stability (MOS(ml)) (p≥0.0579). Taking wider steps increased mean MOS(ml) while decreasing MOS(ap) (p<0.0005). Walking with either wider or long steps, each of which increases the base of support, yielded increased AP and ML MOS variability (p≤0.0468). Step-to-step analysis of MOS(ml) indicated that subjects took stable steps followed immediately by stable steps. Overall, short-term, voluntary adoption of wider steps may help increase instantaneous lateral stability but shorter steps did not change lateral stability during unperturbed walking. We suggest that the observed changes in stability margins be considered in gait training programs which recommend short-term changes in step characteristics to improve stability. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Sponsor relationships, analyte stability in ligand-binding assays and critical reagent management: a bioanalytical CRO perspective.

    PubMed

    Lefor Bradford, Julia

    2015-01-01

    This perspective article discusses key points to address in the establishment of sound partnerships between sponsors and bioanalytical CROs to assure the timeliness, quality and consistency of bioanalysis throughout biological therapeutic development. The performance of ligand-binding assays can be greatly impacted by low-grade reagents, lot-to-lot variability and lack of stability of the analyte in matrix, impacting both timelines and cost. Thorough characterization of the biologic of interest and its assay-enabling critical reagents will lend itself well to conservation of materials and continuity of assay performance. When unplanned events occur, such as performance declines or premature depletion of material, structured procedures are paramount to supplement the current loosely defined regulatory guidance on critical reagent characterization and method bridging.

  10. Identification of novel microtubule-binding proteins by taxol-mediated microtubule stabilization and mass spectrometry analysis

    PubMed Central

    He, Xianfei; Liu, Zhu; He, Qianqian; Qin, Juan; Liu, Ningning; Zhang, Linlin; Li, Dengwen; Zhou, Jun; Shui, Wenqing; Liu, Min

    2015-01-01

    Microtubule-binding proteins (MBPs) are structurally and functionally diverse regulators of microtubule-mediated cellular processes. Alteration of MBPs has been implicated in the pathogenesis of human diseases, including cancer. MBPs can stabilize or destabilize microtubules or move along microtubules to transport various cargoes. In addition, MBPs can control microtubule dynamics through direct interaction with microtubules or coordination with other proteins. To better understand microtubule structure and function, it is necessary to identify additional MBPs. In this study, we isolated microtubules and MBPs from mammalian cells by a taxol-based method and then profiled a panel of MBPs by mass spectrometry. We discovered a number of previously uncharacterized MBPs, including several membrane-associated proteins and proteins involved in post-translational modifications, in addition to several structural components. These results support the notion that microtubules have a wide range of functions and may undergo more exquisite regulation than previously recognized. PMID:26445615

  11. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    SciTech Connect

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey; Alinger, Joshua B.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, Douglas S.

    2016-12-14

    ABSTRACT

    Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability.

    IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV

  12. MiniCD4 protein resistance mutations affect binding to the HIV-1 gp120 CD4 binding site and decrease entry efficiency.

    PubMed

    Grupping, Katrijn; Selhorst, Philippe; Michiels, Johan; Vereecken, Katleen; Heyndrickx, Leo; Kessler, Pascal; Vanham, Guido; Martin, Loïc; Ariën, Kevin K

    2012-05-02

    Binding of the viral envelope protein (Env), and particularly of its gp120 subunit, to the cellular CD4 receptor is the first essential step of the HIV-1 entry process. The CD4 binding site (CD4bs) of gp120, and especially a recessed cavity occupied by the CD4 Phe43 residue, are known to be highly conserved among the different circulating subtypes and therefore constitute particularly interesting targets for vaccine and drug design. The miniCD4 proteins are a promising class of CD4bs inhibitors. Studying virus evolution under pressure of CD4bs inhibitors could provide insight on the gp120-CD4 interaction and viral entry. The present study reports on the resistance induction of two subtype B HIV-1 against the most active miniCD4, M48U1, and its ancestor, M48, and how these mutated positions affect CD4bs recognition, entry efficiency, and sensitivity to other CD4bs inhibitors. Resistance against M48U1 was always associated with S375R/N substitution in both BaL and SF162; M48 resistance was associated with D474N substitution in SF162 and with H105Y substitution in BaL. In addition, some other mutations at position V255 and G471 were of importance for SF162 resistant viruses. Except for 474, all of these mutated positions are conserved, and introducing them into an SF162 Env expressing infectious molecular clone (pBRNL4.3 SF162) resulted in decreased entry efficiency. Furthermore, resistant mutants showed at least some cross-resistance towards other CD4bs inhibitors, the V3 monoclonal antibody 447-52D and some even against the monoclonal antibody 17b, of which the epitope overlaps the co-receptor binding site. The mutations H105Y, V255M, S375R/N, G471R/E, and D474N are found to be involved in resistance towards M48 and M48U1. All mutated positions are part of, or in close proximity to, the CD4bs; most are highly conserved, and all have an impact on the entry efficiency, suggesting their importance for optimal virus infectivity.

  13. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles*

    PubMed Central

    Martin, Katherine R.; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M.; Witko-Sarsat, Véronique

    2016-01-01

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  15. Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases.

    PubMed

    Rodríguez-Sanoja, R; Ruiz, B; Guyot, J P; Sanchez, S

    2005-01-01

    A new starch-binding domain (SBD) was recently described in alpha-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus alpha-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus alpha-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities.

  16. Developmental changes affecting lectin binding in the vomeronasal organ of domestic pigs, Sus scrofa.

    PubMed

    Park, Junwoo; Lee, Wonho; Jeong, Chanwoo; Kim, Hwangryong; Taniguchi, Kazumi; Shin, Taekyun

    2012-01-01

    This study investigated the developmental changes of glycoconjugate patterns in the porcine vomeronasal organs (VNOs) and associated glands (Jacobson's glands) from prenatal (9 weeks of gestation) and postnatal (2 days after birth) to the sexually mature stage (6 months old). The VNO of pigs (Sus scrofa) was examined using the following: Dolichos biflorus agglutinin (DBA), Bandeiraea simplicifolia agglutinin isolectin B4 (BSI-B4), Triticum vulgaris agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and soybean agglutinin (SBA). At the fetal stage, all lectins examined were detected mainly in the free border of the vomeronasal epithelium, but few (WGA and UEA-I) and or absent in the VNO cell bodies. At the postnatal and sexually mature stages, the reactivity of some lectins, including WGA, UEA-I, DBA and SBA, were shown to increase in the VNO sensory epithelium as well as the free border. The increased reactivity of lectins as development progressed was also observed in Jacobson's gland acini. These findings suggest that binding sites of lectins, including those of WGA, UEA-I, DBA, and SBA, increase during development from fetal to postnatal growth, possibly contributing to the increased ability of chemoreception in the pig.

  17. Interference on cytoplasmic polyadenylation element-binding proteins affects the invasion ability of glioma stem cells.

    PubMed

    Liu, H L; Huo, J F; Liu, Z J; Chen, X B

    2015-10-28

    Glioma stem cells derived from primary cultures were divided into an experiment group, a control group, and a blank group and subjected to cytoplasmic polyadenilation element-binding protein (CPEBs) interference, transfection with empty vector, and normal culture, respectively, to compare their invasion abilities. Western blotting showed that siRNA-3 had the strongest interfering effect on CPEBs. CPEBs were expressed in the experiment group with green fluorescence at an expression rate of over 70%. Significantly lower CPEB expression was observed in the experiment group compared to in the control and blank groups (P < 0.05). After 48-h treatment, the apoptotic rate in the experiment group was 21.43%, which was significantly higher than that in the blank (0.51%) and control (1.43%) groups (P < 0.05). After 3 days of treatment, the experiment group grew significantly more slowly than did the control and blank groups (P < 0.05). The transwell invasion assay showed that significantly fewer cells in the experiment group penetrated the membrane than did cells in the control and blank groups (P < 0.05). After CPEB interference, the growth, proliferation, and invasion of glioma stem cells were substantially inhibited, providing support for targeted therapy of glioma and for improving prognosis.

  18. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance.

    PubMed

    Yang, Lixin; Zhang, Rui; Li, Ming; Wu, Xujun; Wang, Jianhong; Huang, Lin; Shi, Xiaodong; Li, Qingwei; Su, Bing

    2014-01-01

    As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1), a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3'UTR, where a SNP (rs1042538) exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.

  19. Exchanging Murine and Human Immunoglobulin Constant Chains Affects the Kinetics and Thermodynamics of Antigen Binding and Chimeric Antibody Autoreactivity

    PubMed Central

    Torres, Marcela; Fernandez-Fuentes, Narcis; Fiser, András; Casadevall, Arturo

    2007-01-01

    Mouse-human chimeric antibodies composed of murine variable (V) and human (C) chains are useful therapeutic reagents. Consequently, we investigated whether heterologous C-regions from mice and humans affected specificity and affinity, and determined the contribution of CH glycosylation to antigen binding. The interaction of a 12-mer peptide mimetic with monoclonal antibody (mAb) 18B7 to Cryptococcus neoformans glucuronoxylomannan, and its chimeric (ch) and deglycosylated forms were studied by surface plasmon resonance. The equilibrium and rate association constants for the chAb were higher than for mAb 18B7. V region affinity was not affected by CH region glycosylation whereas heterologous C region of the same isotype altered the Ab binding affinity and the specificity for self-antigens. Structural models displayed local differences that implied changes on the connectivity of residues. These findings suggest that V region conformational changes can be dictated by the CH domains through an allosteric effect involving networks of highly connected amino acids. PMID:18074033

  20. A common polymorphism within MSLN affects miR-611 binding site and soluble mesothelin levels in healthy people.

    PubMed

    Garritano, Sonia; De Santi, Chiara; Silvestri, Roberto; Melaiu, Ombretta; Cipollini, Monica; Barone, Elisa; Lucchi, Marco; Barale, Roberto; Mutti, Luciano; Gemignani, Federica; Bonotti, Alessandra; Foddis, Rudy; Cristaudo, Alfonso; Landi, Stefano

    2014-11-01

    Soluble mesothelin related peptide (SMRP) was proposed as a promising diagnostic marker for malignant pleural mesothelioma (MPM). In a previous study, we found that rs1057147 within the 3' untranslated region of MSLN gene was associated with SMRP levels. Thus, we aimed to (1) confirm the previous association on a large series of volunteers and (2) test the hypothesis that the SNP could affect microRNA binding sites. The association analysis was verified in 759 subjects. Then, in silico predictions highlighted miR-611 and miR-887 as candidate miRNAs binding to the polymorphic site. Thus, chimeric constructs bearing the alternative alleles (G > A) were assayed alone or in cotransfection with the miRNA mimics, with dual luciferase reporter assay in non-MPM Met-5A cells. The miRNAs were also assayed by western blot analysis for their ability to down-regulate endogenous mesothelin in the MPM Mero-14 cell line. We confirmed that, among non-MPM volunteers, GG homozygotes have the lowest SMRP levels. When the genotype is taken into account, the specificity of SMRP as biomarker improves from 79.7% to 85.3%. Dual-luciferase assays showed a significantly lower reporter activity when the vector harbored the G allele as compared to A allele. miR-887 mimic caused a reduced reporter activity of vectors harboring A or G alleles, while miR-611 was effective only on the vector harboring the G allele. Transfection of these miRNAs into Mero-14 cells significantly reduced endogenous MSLN protein. SMRP performance as diagnostic biomarker improved by considering the genotype rs1057147. This polymorphism most likely affects a binding site for miR-611.

  1. The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability.

    PubMed

    Fernandes, André T; Pereira, Manuela M; Silva, Catarina S; Lindley, Peter F; Bento, Isabel; Melo, Eduardo Pinho; Martins, Lígia O

    2011-04-01

    The contribution of the disulfide bridge in CotA-laccase from Bacillus subtilis is assessed with respect to the enzyme's functional and structural properties. The removal of the disulfide bond by site-directed mutagenesis, creating the C322A mutant, does not affect the spectroscopic or catalytic properties and, surprisingly, neither the long-term nor the thermodynamic stability parameters of the enzyme. Furthermore, the crystal structure of the C322A mutant indicates that the overall structure is essentially the same as that of the wild type, with only slight alterations evident in the immediate proximity of the mutation. In the mutant enzyme, the loop containing the C322 residue becomes less ordered, suggesting perturbations to the substrate binding pocket. Despite the wild type and the C322A mutant showing similar thermodynamic stability in equilibrium, the holo or apo forms of the mutant unfold at faster rates than the wild-type enzyme. The picosecond to nanosecond time range dynamics of the mutant enzyme was not affected as shown by acrylamide collisional fluorescence quenching analysis. Interestingly, copper uptake or copper release as measured by the stopped-flow technique also occurs more rapidly in the C322A mutant than in the wild-type enzyme. Overall the structural and kinetic data presented here suggest that the disulfide bridge in CotA-laccase contributes to the conformational dynamics of the protein on the microsecond to millisecond timescale, with implications for the rates of copper incorporation into and release from the catalytic centres.

  2. Nuclear magnetic resonance studies reveal stabilization of parallel G-quadruplex DNA [d(T2G4T)]4 upon binding to protoberberine alkaloid coralyne.

    PubMed

    Padmapriya, Kumar; Barthwal, Ritu

    2016-10-15

    Stabilization of G-quadruplex DNA structures in human telomeric and proto-oncogenic promoter regions upon ligand binding has evolved as a viable anti-cancer strategy. We have studied interaction of coralyne, a human telomerase inhibiting protoberberine alkaloid, with parallel stranded tetrameric G-quadruplex DNA [d(T2G4T)]4 using Circular Dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Appearance of induced CD band and the Diffusion Ordered NMR Spectroscopy (DOSY) experiments confirm the formation of well defined coralyne-DNA complex. (1)H and (31)P NMR studies reveal that coralyne specifically recognizes T2pG3 and G6pT7 steps in DNA. Guanine imino protons indicate that coralyne binding induces thermal stabilization of the G-quadruplex DNA by >20°C. The observed specific changes and thermal stabilization of DNA upon binding may be attributed to inhibition of telomerase by coralyne.

  3. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action.

    PubMed

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-07-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.

  4. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    SciTech Connect

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James

    2010-04-07

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 {angstrom} cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the 'off-target' effect of a small molecule is mediated by an MAI mechanism.

  5. Cooperative Stabilization of Zn2+:DNA Complexes Through Netropsin Binding in the Minor Groove of FdU-Substituted DNA

    PubMed Central

    Ghosh, Supratim; Salsbury, Freddie R.; Horita, David A.; Gmeiner, William H.

    2013-01-01

    The simultaneous binding of netropsin in the minor groove and Zn2+ in the major groove of a DNA hairpin that includes 10 consecutive FdU nucleotides at the 3′-terminus (3’FdU) was demonstrated based upon NMR spectroscopy, circular dichroism (CD), and computational modeling studies. The resulting Zn2+ /netropsin:3’FdU complex had very high thermal stability with aspects of the complex intact at 85 °C, conditions that result in complete dissociation of Mg2+ complexes. CD and 19F NMR spectroscopy were consistent with Zn2+ binding in the major groove of the DNA duplex and utilizing F5 and O4 of consecutive FdU nucleotides as ligands with FdU nucleotides hemi-deprotonated in the complex. Netropsin is bound in the minor groove of the DNA duplex based upon 2D NOESY data demonstrating contacts between AH2 1H and netropsin 1H resonances. The Zn2+/netropsin:3’FdU complex displayed increased cytotoxicity towards PC3 prostate cancer (PCa) cells relative to the constituent components or separate complexes (e.g. Zn2+:3’FdU) indicating that this new structural motif may be therapeutically useful for PCa treatment. PMID:23153072

  6. Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability.

    PubMed

    Gulkowska, Anna; Sander, Michael; Hollender, Juliane; Krauss, Martin

    2013-07-02

    Sulfonamide antibiotics form stable covalent bonds with quinone moieties in organic matter via nucleophilic addition reactions. In this work, we combined analytical electrochemistry with trace analytics to assess the catalytic role of the oxidoreductase laccase in the binding of sulfamethazine (SMZ) to Leonardite humic acid (LHA) and to four synthetic humic acids (SHAs) polymerized from low molecular weight precursors and to determine the stability of the formed bonds. In the absence of laccase, a significant portion of the added SMZ formed covalent bonds with LHA, but only a very small fraction (<0.4%) of the total quinone moieties in LHA reacted. Increasing absolute, but decreasing relative concentrations of SMZ-LHA covalent bonds with increasing initial SMZ concentration suggested that the quinone moieties in LHA covered a wide distribution in reactivity for the nucleophilic addition of SMZ. Laccase catalyzed the formation of covalent bonds by oxidizing unreactive hydroquinone moieties in LHA to reactive, electrophilic quinone moieties, of which a large fraction (5%) reacted with SMZ. Compared to LHA, the SHA showed enhanced covalent bond formation in the absence of laccase, suggesting a higher reactivity of their quinone moieties toward nucleophilic addition. This work supports that binding to soil organic matter (SOM) is an important process governing the fate, bioactivity, and extractability of sulfonamides in soils.

  7. Relevance of the flavin binding to the stability and folding of engineered cholesterol oxidase containing noncovalently bound FAD

    PubMed Central

    Caldinelli, Laura; Iametti, Stefania; Barbiroli, Alberto; Fessas, Dimitrios; Bonomi, Francesco; Piubelli, Luciano; Molla, Gianluca; Pollegioni, Loredano

    2008-01-01

    The flavoprotein cholesterol oxidase (CO) from Brevibacterium sterolicum is a monomeric flavoenzyme containing one molecule of FAD cofactor covalently linked to His69. The elimination of the covalent link following the His69Ala substitution was demonstrated to result in a significant decrease in activity, in the midpoint redox potential of the flavin, and in stability with respect to the wild-type enzyme, but does not modify the overall structure of the enzyme. We used CO as a model system to dissect the changes due to the elimination of the covalent link between the flavin and the protein (by comparing the wild-type and H69A CO holoproteins) with those due to the elimination of the cofactor (by comparing the holo- and apoprotein forms of H69A CO). The apoprotein of H69A CO lacks the characteristic tertiary structure of the holoprotein and displays larger hydrophobic surfaces; its urea-induced unfolding does not occur by a simple two-state mechanism and is largely nonreversible. Minor alterations in the flavin binding region are evident between the native and the refolded proteins, and are likely responsible for the low refolding yield observed. A model for the equilibrium unfolding of H69A CO that also takes into consideration the effects of cofactor binding and dissociation, and thus may be of general significance in terms of the relationships between cofactor uptake and folding in flavoproteins, is presented. PMID:18218720

  8. Plakophilins 1 and 3 Bind to FXR1 and Thereby Influence the mRNA Stability of Desmosomal Proteins

    PubMed Central

    Fischer-Kešo, Regina; Breuninger, Sonja; Hofmann, Sarah; Henn, Manuela; Röhrig, Theresa; Ströbel, Philipp; Stoecklin, Georg

    2014-01-01

    Plakophilins 1 and 3 (PKP1/3) are members of the arm repeat family of catenin proteins and serve as structural components of desmosomes, which are important for cell-cell-adhesion. In addition, PKP1/3 occur as soluble proteins outside desmosomes, yet their role in the cytoplasm is not known. We found that cytoplasmic PKP1/3 coprecipitated with the RNA-binding proteins FXR1, G3BP, PABPC1, and UPF1, and these PKP1/3 complexes also comprised desmoplakin and PKP2 mRNAs. Moreover, we showed that the interaction of PKP1/3 with G3BP, PABPC1, and UPF1 but not with FXR1 was RNase sensitive. To address the cytoplasmic function of PKP1/3, we performed gain-and-loss-of-function studies. Both PKP1 and PKP3 knockdown cell lines showed reduced protein and mRNA levels for desmoplakin and PKP2. Whereas global rates of translation were unaffected, desmoplakin and PKP2 mRNA were destabilized. Furthermore, binding of PKP1/3 to FXR1 was RNA independent, and both PKP3 and FXR1 stabilized PKP2 mRNA. Our results demonstrate that cytoplasmic PKP1/3 are components of mRNA ribonucleoprotein particles and act as posttranscriptional regulators of gene expression. PMID:25225333

  9. Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins

    PubMed Central

    Valdivieso-Torres, Leonardo; Sarangi, Anindita; Whidby, Jillian; Marcotrigiano, Joseph

    2015-01-01

    ABSTRACT Retargeting of gammaretroviral envelope proteins has shown promising results in the isolation of novel isolates with therapeutic potential. However, the optimal conditions required to obtain high-affinity retargeted envelope proteins with narrow tropism are not understood. This study highlights the advantage of constrained peptides within receptor binding domains and validates the random library screening technique of obtaining novel retargeted Env proteins. Using a modified vector backbone to screen the envelope libraries on 143B osteosarcoma cells, three novel and unique retargeted envelopes were isolated. The use of complex disulfide bonds within variable regions required for receptor binding is found within natural gammaretroviral envelope isolates. Interestingly, two of the isolates, named AII and BV2, have a pair of cysteines located within the randomized region of 11 amino acids similar to that identified within the CP Env, an isolate identified in a previous Env library screen on the human renal carcinoma Caki-1 cell line. The amino acids within the randomized region of AII and BV2 envelopes that are essential for viral infection have been identified in this study and include these cysteine residues. Through mutagenesis studies, the putative disulfide bond pairs including and beyond the randomized region were examined. In parallel, the disulfide bonds of CP Env were identified using mass spectrometry. The results indicate that this pair of cysteines creates the structural context to position key hydrophobic (F and W) and basic (K and H) residues critical for viral titer and suggest that AII, BV2, and CP internal cysteines bond together in distinct ways. IMPORTANCE Retargeted gammaretroviral particles have broad applications for therapeutic use. Although great advances have been achieved in identifying new Env-host cell receptor pairs, the rules for designing optimal Env libraries are still unclear. We have found that isolates with an additional

  10. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  11. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing.

    PubMed

    Pratt-Hyatt, Matthew; Pai, Dave A; Haeusler, Rebecca A; Wozniak, Glenn G; Good, Paul D; Miller, Erin L; McLeod, Ian X; Yates, John R; Hopper, Anita K; Engelke, David R

    2013-08-13

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification.

  12. Hormonal and nonhormonal factors affecting sex hormone-binding globulin levels in blood.

    PubMed

    Thijssen, J H

    1988-01-01

    Researchers in Utrecht, the Netherlands have studied the effects of different factors, such as oral contraceptives (OCs), on sex hormone binding globulin (SHBG) levels in blood. The SHBG levels in women who continuously used OCs consisting only of .05 mg of ethinyl estradiol (EE2) rose as high as 260% + or - 25% of those in women not using OCs. Further, mean SHBG levels of women using combination OCs of EE2 and levonorgestrel were 10-60% higher than women not using OCs. SHBG levels were significantly higher than the use of a sequential OC containing decreasing amounts of EE2 and increasing amounts of levonorgestrel than those cause by use of a continuous combined OC with .03 mg and .15 mg respectively. As the dosage of EE2 increased in combination OCs with 2.5 mg lynestrenol, the SHBG increased from 20% (.05 mg EE2) to 150% (.75 mg EE2). SHBG levels after taking EE2 and cyproterone acetate increased significantly more (240%) than levels after EE2 and desogestrel (170%), or after EE2 and gestoden (140%) [p.001]. SHBG levels of women who took OCs containing only .03 mg of levonorgestrel daily decreased 35% (p.01). These levels fell by 30% in women who received 150 mg of medroxyprogesterone acetate intramuscularly every 3 months (p.001). SHBG concentrations increased when estrogens were taken orally for noncontraceptive purposes, but they did not change when they were administered percutaneously. As body weight increased the SHBG levels decreased despite hormonal status or sex. Further, the lower the fat content of one's diet the higher the SHBG levels and vice versa. SHBG levels are higher in males with flaccid lungs than they are in males with healthy lungs.

  13. Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium.

    PubMed

    Nociari, Marcelo M; Lehmann, Guillermo L; Perez Bay, Andres E; Radu, Roxana A; Jiang, Zhichun; Goicochea, Shelby; Schreiner, Ryan; Warren, J David; Shan, Jufang; Adam de Beaumais, Ségolène; Ménand, Mickaël; Sollogoub, Matthieu; Maxfield, Frederick R; Rodriguez-Boulan, Enrique

    2014-04-08

    Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (β-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of β-CD. Importantly, β-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of β-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of β-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.

  14. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    NASA Astrophysics Data System (ADS)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  15. Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium

    PubMed Central

    Nociari, Marcelo M.; Lehmann, Guillermo L.; Perez Bay, Andres E.; Radu, Roxana A.; Jiang, Zhichun; Goicochea, Shelby; Schreiner, Ryan; Warren, J. David; Shan, Jufang; Adam de Beaumais, Ségolène; Ménand, Mickaël; Sollogoub, Matthieu; Maxfield, Frederick R.; Rodriguez-Boulan, Enrique

    2014-01-01

    Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (β-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of β-CD. Importantly, β-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of β-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of β-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs. PMID:24706818

  16. C11orf83, a Mitochondrial Cardiolipin-Binding Protein Involved in bc1 Complex Assembly and Supercomplex Stabilization

    PubMed Central

    Foti, Michelangelo; Raemy, Etienne; Vaz, Frédéric Maxime; Martinou, Jean-Claude; Bairoch, Amos

    2015-01-01

    Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. PMID:25605331

  17. 5-Stabilized phosphatidylinositol 3,4,5-trisphosphate analogues bind Grp1 PH, inhibit phosphoinositide phosphatases, and block neutrophil migration.

    PubMed

    Zhang, Honglu; He, Ju; Kutateladze, Tatiana G; Sakai, Takahiro; Sasaki, Takehiko; Markadieu, Nicolas; Erneux, Christophe; Prestwich, Glenn D

    2010-02-15

    Metabolically stabilized analogues of PtdIns(3,4,5)P3 have shown long-lived agonist activity for cellular events and selective inhibition of lipid phosphatase activity. We describe an efficient asymmetric synthesis of two 5-phosphatase-resistant analogues of PtdIns(3,4,5)P3, the 5-methylene phosphonate (MP) and 5-phosphorothioate (PT). Furthermore, we illustrate the biochemical and biological activities of five stabilized PtdIns(3,4,5)P3 analogues in four contexts. First, the relative binding affinities of the 3-MP, 3-PT, 5-MP, 5-PT, and 3,4,5-PT3 analogues to the Grp1 PH domain are shown, as determined by NMR spectroscopy. Second, the enzymology of the five analogues is explored, showing the relative efficiency of inhibition of SHIP1, SHIP2, and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), as well as the greatly reduced ability of these phosphatases to process these analogues as substrates as compared to PtdIns(3,4,5)P3. Third, exogenously delivered analogues severely impair complement factor C5a-mediated polarization and migration of murine neutrophils. Finally, the new analogues show long-lived agonist activity in mimicking insulin action in sodium transport in A6 cells.

  18. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants

    PubMed Central

    2013-01-01

    Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation

  19. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    SciTech Connect

    Doerk, T.; Wulbrand, U.; Tuemmler, B. )

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compound heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.

  20. Post-translational phosphorylation affects the IgE binding capacity of caseins.

    PubMed

    Bernard, H; Meisel, H; Creminon, C; Wal, J M

    2000-02-11

    IgE response specific to those molecular regions of casein that contain a major phosphorylation site was analyzed using native and modified caseins and derived peptides. This study included (i) the naturally occurring common variants A1 and A from beta- and alphas2-caseins, respectively, which were purified in the native form and then dephosphorylated, (ii) a purified rare variant D of alphas2-casein which lacks one major phosphorylation site, and (iii) the native and dephosphorylated tryptic fragment f(1-25) from beta-casein. Direct and indirect ELISA using sera from patients allergic to milk showed that the IgE response to caseins is affected by modifying or eliminating the major phosphorylation site.

  1. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition

    PubMed Central

    Thompson, Lawrence C; Goswami, Sumit; Ginsberg, David S; Day, Duane E; Verhamme, Ingrid M; Peterson, Cynthia B

    2011-01-01

    Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1–2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability. PMID:21280127

  2. Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part I: A necessary and sufficient condition for the stability of general molecular systems

    SciTech Connect

    Catto, I.; Lions, P.L. )

    1992-01-01

    The authors study here the binding of atoms and molecules and the stability of general molecular systems including molecular ions. This is the first paper of a series devoted to the study of these general problems. The authors obtain here a general necessary and sufficient condition for the stability of a general molecular system in the context of Thomas-Fermi-Von Weizsaecker, Thomas-Fermi-Dirac-Von Weizsaecker, Hartree or Hartree-Fock theories. 20 refs.

  3. DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction.

    PubMed

    Gilbert, Nick; Thomson, Inga; Boyle, Shelagh; Allan, James; Ramsahoye, Bernard; Bickmore, Wendy A

    2007-05-07

    DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.

  4. The ties that bind: perceived social support, stress, and IBS in severely affected patients

    PubMed Central

    LACKNER, J. M.; BRASEL, A. M.; QUIGLEY, B M.; KEEFER, L.; KRASNER, S. S.; POWELL, C.; KATZ, L. A.; SITRIN, M. D.

    2016-01-01

    Background This study assessed the association between social support and the severity of irritable bowel syndrome (IBS) symptoms in a sample of severely affected IBS patients recruited to an NIH-funded clinical trial. In addition, we examined if the effects of social support on IBS pain are mediated through the effects on stress. Methods Subjects were 105 Rome II diagnosed IBS patients (F = 85%) who completed seven questionnaires which were collected as part of a pretreatment baseline assessment. Key Results Partial correlations were conducted to clarify the relationships between social support and clinically relevant variables with baseline levels of psychopathology, holding constant number of comorbid medical diseases, age, gender, marital status, ethnicity, and education. Analyses indicated that social support was inversely related to IBS symptom severity. Social support was positively related with less severe pain. A similar pattern of data was found for perceived stress but not quality of life impairment. Regression analyses examined if the effects of social support on pain are mediated by stress. The effects of social support on bodily pain were mediated by stress such that the greater the social support the less stress and the less pain. This effect did not hold for symptom severity, quality of life, or psychological distress. Conclusions & Inferences This study links the perceived adequacy of social support to the global severity of symptoms of IBS and its cardinal symptom (pain). It also suggests that the mechanism by which social support alleviates pain is through a reduction in stress levels. PMID:20465594

  5. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation.

    PubMed

    Kreisl, William C; Jenko, Kimberly J; Hines, Christina S; Lyoo, Chul Hyoung; Corona, Winston; Morse, Cheryl L; Zoghbi, Sami S; Hyde, Thomas; Kleinman, Joel E; Pike, Victor W; McMahon, Francis J; Innis, Robert B

    2013-01-01

    Second-generation radioligands for translocator protein (TSPO), an inflammation marker, are confounded by the codominant rs6971 polymorphism that affects binding affinity. The resulting three groups are homozygous for high-affinity state (HH), homozygous for low-affinity state (LL), or heterozygous (HL). We tested if in vitro binding to leukocytes distinguished TSPO genotypes and if genotype could affect clinical studies using the TSPO radioligand [(11)C]PBR28. In vitro binding to leukocytes and [(11)C]PBR28 brain imaging were performed in 27 human subjects with known TSPO genotype. Specific [(3)H]PBR28 binding was measured in prefrontal cortex of 45 schizophrenia patients and 47 controls. Leukocyte binding to PBR28 predicted genotype in all subjects. Brain uptake was ∼40% higher in HH than HL subjects. Specific [(3)H]PBR28 binding in LL controls was negligible, while HH controls had ∼80% higher binding than HL controls. After excluding LL subjects, specific binding was 16% greater in schizophrenia patients than controls. This difference was insignificant by itself (P=0.085), but was significant after correcting for TSPO genotype (P=0.011). Our results show that TSPO genotype influences PBR28 binding in vitro and in vivo. Correcting for this genotype increased statistical power in our postmortem study and is recommended for in vivo positron emission tomography studies.

  6. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility.

    PubMed

    Goschke, Thomas; Bolte, Annette

    2014-09-01

    Goal-directed action in changing environments requires a dynamic balance between complementary control modes, which serve antagonistic adaptive functions (e.g., to shield goals from competing responses and distracting information vs. to flexibly switch between goals and behavioral dispositions in response to significant changes). Too rigid goal shielding promotes stability but incurs a cost in terms of perseveration and reduced flexibility, whereas too weak goal shielding promotes flexibility but incurs a cost in terms of increased distractibility. While research on cognitive control has long been conducted relatively independently from the study of emotion and motivation, it is becoming increasingly clear that positive affect and reward play a central role in modulating cognitive control. In particular, evidence from the past decade suggests that positive affect not only influences the contents of cognitive processes, but also modulates the balance between complementary modes of cognitive control. In this article we review studies from the past decade that examined effects of induced positive affect on the balance between cognitive stability and flexibility with a focus on set switching and working memory maintenance and updating. Moreover, we review recent evidence indicating that task-irrelevant positive affect and performance-contingent rewards exert different and sometimes opposite effects on cognitive control modes, suggesting dissociations between emotional and motivational effects of positive affect. Finally, we critically review evidence for the popular hypothesis that effects of positive affect may be mediated by dopaminergic modulations of neural processing in prefrontal and striatal brain circuits, and we refine this "dopamine hypothesis of positive affect" by specifying distinct mechanisms by which dopamine may mediate effects of positive affect and reward on cognitive control. We conclude with a discussion of limitations of current research, point to

  7. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    PubMed

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  8. The use of “stabilization exercises” to affect neuromuscular control in the lumbopelvic region: a narrative review

    PubMed Central

    Bruno, Paul

    2014-01-01

    It is well-established that the coordination of muscular activity in the lumbopelvic region is vital to the generation of mechanical spinal stability. Several models illustrating mechanisms by which dysfunctional neuromuscular control strategies may serve as a cause and/or effect of low back pain have been described in the literature. The term “core stability” is variously used by clinicians and researchers, and this variety has led to several rehabilitative approaches suggested to affect the neuromuscular control strategies of the lumbopelvic region (e.g. “stabilization exercise”, “motor control exercise”). This narrative review will highlight: 1) the ongoing debate in the clinical and research communities regarding the terms “core stability” and “stabilization exercise”, 2) the importance of sub-grouping in identifying those patients most likely to benefit from such therapeutic interventions, and 3) two protocols that can assist clinicians in this process. PMID:24932016

  9. Use of factorial design for evaluation of factors affecting the chemical stability of sirolimus (rapamycin) in solid dosage form.

    PubMed

    Petelin, Petra; Homar, Miha; Bajc, Aleksander; Kerč, Janez; Simona, Bohanec

    2012-03-01

    Effects of four process and formulation parameters (spraying rate of ethanol solution, drying and tablet hardness and hydroxypropyl methyl cellulose (HPMC) content) were evaluated in terms of initial quality of tablets using factorial design approach. For determination of stability of final drug product, the tablets were exposed to stress testing conditions and the three most significant factors were investigated (spraying rate of ethanol solution, drying and HPMC content). Considering the chemical stability of Sirolimus, the following responses were found to be most important: total sum of degradation products, levels of impurity I and assay of isomer C. Investigated factors and their interactions most significantly affected the assay of isomer C in initial and in stressed stability testing samples. The factorial design approach is a very economic way of obtaining the maximum amount of information in a short period of time, which is especially important in studies that include a variety of different factors and their interactions.

  10. Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria

    PubMed Central

    Kang, Mi-Sun; Kim, Youn-Shin; Lee, Hyun-Chul; Lim, Hoi-Soon

    2012-01-01

    Daily use of probiotic chewing gum might have a beneficial effect on oral health, and it is important that the viability of the probiotics be maintained in this food product. In this study, we examined the stability of probiotic chewing gum containing Weissella cibaria. We evaluated the effects of various factors, including temperature and additives, on the survival of freeze-dried probiotic W. cibaria powder. No changes in viability were detected during storage at 4℃ for 5 months, whereas the viability of bacteria stored at 20℃ decreased. The stability of probiotic chewing gum decreased steadily during storage at 20℃ for 4 weeks. The viability of the freeze-dried W. cibaria mixed with various additives, such as xylitol, sorbitol, menthol, sugar ester, magnesium stearate, and vitamin C, was determined over a 4-week storage period at 20℃. Most of the freeze-dried bacteria except for those mixed with menthol and vitamin C were generally stable during a 3-week storage period. Overall, our study showed that W. cibaria was more stable at 4℃ than that at 20℃. In addition, menthol and vitamin C had a detrimental effect on the storage stability of W. cibaria. This is the first study to examine the effects of various chewing gum additives on the stability of W. cibaria. Further studies will be needed to improve the stability of probiotic bacteria for developing a novel probiotic W. cibaria gum. PMID:23323221

  11. Polymorphisms in microRNA target sites modulate risk of lymphoblastic and myeloid leukemias and affect microRNA binding

    PubMed Central

    2014-01-01

    Background MicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In this study we aimed at identifying miRSNPs associated with leukemia risk and assessing impact of these miRSNPs on miRNA binding to target transcripts. Methods We analyzed with specialized algorithms the 3′ untranslated regions of 137 leukemia-associated genes and identified 111 putative miRSNPs, of which 10 were chosen for further investigation. We genotyped patients with acute myeloid leukemia (AML, n = 87), chronic myeloid leukemia (CML, n = 140), childhood acute lymphoblastic leukemia (ALL, n = 101) and healthy controls (n = 471). Association between SNPs and leukemia risk was calculated by estimating odds ratios in the multivariate logistic regression analysis. For miRSNPs that were associated with leukemia risk we performed luciferase reporter assays to examine whether they influence miRNA binding. Results Here we show that variant alleles of TLX1_rs2742038 and ETV6_rs1573613 were associated with increased risk of childhood ALL (OR (95% CI) = 3.97 (1.43-11.02) and 1.9 (1.16-3.11), respectively), while PML_rs9479 was associated with decreased ALL risk (OR = 0.55 (0.36-0.86). In adult myeloid leukemias we found significant associations between the variant allele of PML_rs9479 and decreased AML risk (OR = 0.61 (0.38-0.97), and between variant alleles of IRF8_ rs10514611 and ARHGAP26_rs187729 and increased CML risk (OR = 2.4 (1.12-5.15) and 1.63 (1.07-2.47), respectively). Moreover, we observed a significant trend for an increasing ALL and CML risk with the growing number of risk genotypes with OR = 13.91 (4.38-44.11) for carriers of ≥3 risk genotypes in ALL and OR = 4.9 (1.27-18.85) for carriers of 2 risk genotypes in CML. Luciferase reporter assays revealed that the C allele of ARHGAP

  12. Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively.

    PubMed

    Nowak, Jakub Stanislaw; Hobor, Fruzsina; Downie Ruiz Velasco, Angela; Choudhury, Nila Roy; Heikel, Gregory; Kerr, Alastair; Ramos, Andres; Michlewski, Gracjan

    2017-03-01

    Lin28a inhibits the biogenesis of let-7 miRNAs by triggering the polyuridylation and degradation of their precursors by terminal uridylyltransferases TUT4/7 and 3'-5' exoribonuclease Dis3l2, respectively. Previously, we showed that Lin28a also controls the production of neuro-specific miRNA-9 via a polyuridylation-independent mechanism. Here we reveal that the sequences and structural characteristics of pre-let-7 and pre-miRNA-9 are eliciting two distinct modes of binding to Lin28a. We present evidence that Dis3l2 controls miRNA-9 production. Finally, we show that the constitutive expression of untagged Lin28a during neuronal differentiation in vitro positively and negatively affects numerous other miRNAs. Our findings shed light on the role of Lin28a in differentiating cells and on the ways in which one RNA-binding protein can perform multiple roles in the regulation of RNA processing. © 2017 Nowak et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Roscovitine binds to novel L-channel (CaV1.2) sites that separately affect activation and inactivation.

    PubMed

    Yarotskyy, Viktor; Gao, Guofeng; Du, Lei; Ganapathi, Sindura B; Peterson, Blaise Z; Elmslie, Keith S

    2010-01-01

    L-type (Ca(V)1.2) calcium channel antagonists play an important role in the treatment of cardiovascular disease. (R)-Roscovitine, a trisubstituted purine, has been shown to inhibit L-currents by slowing activation and enhancing inactivation. This study utilized molecular and pharmacological approaches to determine whether these effects result from (R)-roscovitine binding to a single site. Using the S enantiomer, we find that (S)-roscovitine enhances inactivation without affecting activation, which suggests multiple sites. This was further supported in studies using chimeric channels comprised of N- and L-channel domains. Those chimeras containing L-channel domains I and IV showed (R)-roscovitine-induced slowed activation like that of wild type L-channels, whereas chimeric channels containing L-channel domain I responded to (R)-roscovitine with enhanced inactivation. We conclude that (R)-roscovitine binds to distinct sites on L-type channels to slow activation and enhance inactivation. These sites appear to be unique from other calcium channel antagonist sites that reside within domains III and IV and are thus novel sites that could be exploited for future drug development. Trisubstituted purines could become a new class of drugs for the treatment of diseases related to hyperfunction of L-type channels, such as Torsades de Pointes.

  14. Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively

    PubMed Central

    Nowak, Jakub Stanislaw; Hobor, Fruzsina; Downie Ruiz Velasco, Angela; Choudhury, Nila Roy; Heikel, Gregory; Kerr, Alastair; Ramos, Andres; Michlewski, Gracjan

    2017-01-01

    Lin28a inhibits the biogenesis of let-7 miRNAs by triggering the polyuridylation and degradation of their precursors by terminal uridylyltransferases TUT4/7 and 3′-5′ exoribonuclease Dis3l2, respectively. Previously, we showed that Lin28a also controls the production of neuro-specific miRNA-9 via a polyuridylation-independent mechanism. Here we reveal that the sequences and structural characteristics of pre-let-7 and pre-miRNA-9 are eliciting two distinct modes of binding to Lin28a. We present evidence that Dis3l2 controls miRNA-9 production. Finally, we show that the constitutive expression of untagged Lin28a during neuronal differentiation in vitro positively and negatively affects numerous other miRNAs. Our findings shed light on the role of Lin28a in differentiating cells and on the ways in which one RNA-binding protein can perform multiple roles in the regulation of RNA processing. PMID:27881476

  15. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    DOE PAGES

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; ...

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve asmore » guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.« less

  16. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  17. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  18. In vitro Activation of Heat Shock Transcription Factor DNA-Binding by Calcium and Biochemical Conditions that Affect Protein Conformation

    NASA Astrophysics Data System (ADS)

    Mosser, Dick D.; Kotzbauer, Paul T.; Sarge, Kevin D.; Morimoto, Richard I.

    1990-05-01

    The transcription of heat shock genes in response to physiological stress requires activation of heat shock transcription factor (HSF). Although the transcriptional response is most commonly induced by temperature elevation, the biochemical events involved in HSF activation in vivo can also be triggered at normal physiological temperatures by chemicals that inhibit metabolic processes. We have used a HeLa cell-free system in which HSF DNA-binding is activated by conditions that affect protein conformation, including increasing concentrations of hydrogen ions, urea, or nonionic detergents. Treatment with calcium ions also results in a concentration- and time-dependent activation of HSF in vitro. Pretreatment with each of these biochemical conditions reduces the temperature dependence for HSF activation in vitro. These results suggest that HSF is activated either directly by under-going a conformational change or indirectly through interactions with unfolded proteins.

  19. Mass spectrometric identification of key proteolytic cleavage sites in statherin affecting mineral homeostasis and bacterial binding domains.

    PubMed

    Helmerhorst, Eva J; Traboulsi, Georges; Salih, Erdjan; Oppenheim, Frank G

    2010-10-01

    Human salivary statherin inhibits both primary and secondary calcium phosphate precipitation and, upon binding to hydroxyapatite, associates with a variety of oral bacteria. These functions, crucial in the maintenance of tooth enamel integrity, are located in defined regions within the statherin molecule. Proteases associated with saliva, however, cleave statherin effectively, and it is of importance to determine how statherin functional domains are affected by these events. Statherin was isolated from human parotid secretion by zinc precipitation and purified by reversed-phase high performance liquid chromatography (RP-HPLC). To characterize the proteolytic process provoked by oral proteases, statherin was incubated with whole saliva and fragmentation was monitored by RP-HPLC. The early formed peptides were structurally characterized by reversed phase liquid chromatography electrospray-ionization tandem mass spectrometry. Statherin was degraded 3.6× faster in whole saliva than in whole saliva supernatant. The main and primary cleavage sites were located in the N-terminal half of statherin, specifically after Arg(9), Arg(10), and Arg(13); after Phe(14) and Tyr(18); and after Gly(12), Gly(15), Gly(17) and Gly(19) while the C-terminal half of statherin remained intact. Whole saliva protease activities separated the charged N-terminus from the hydrophobic C-terminus, negatively impacting on full length statherin functions comprising enamel lubrication and inhibition of primary calcium phosphate precipitation. Cryptic epitopes for bacterial binding residing in the C-terminal domain were likewise affected. The full characterization of the statherin peptides generated facilitates the elucidation of their novel functional roles in the oral and gastro-intestinal environment.

  20. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition.

    PubMed

    Ye, Zi-Wei; Lung, Shiu-Cheung; Hu, Tai-Hua; Chen, Qin-Fang; Suen, Yung-Lee; Wang, Mingfu; Hoffmann-Benning, Susanne; Yeung, Edward; Chye, Mee-Len

    2016-12-01

    Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.

  1. Affects of N-terminal variation in the SeM protein of Streptococcus equi on antibody and fibrinogen binding.

    PubMed

    Timoney, John F; DeNegri, Rafaela; Sheoran, Abhineet; Forster, Nathalie

    2010-02-10

    The clonal Streptococcus equi causes equine strangles, a highly contagious suppurative lymphadenopathy and rhinopharyngitis. An important virulence factor and vaccine component, the antiphagocytic fibrinogen binding SeM of S. equi is a surface anchored fibrillar protein. Two recent studies of N. American, Japanese and European isolates have revealed a high frequency of N-terminal amino acid variation in SeM of S. equi CF32 that suggests this region of the protein is subject to immunologic selection pressure. The aims of the present study were firstly to map regions of SeM reactive with convalescent equine IgG and IgA and stimulatory for lymph node cells and secondly to determine effects of N-terminal variation on the functionality of SeM. Variation did not significantly affect fibrinogen binding or susceptibility of S. equi to an opsonic equine serum. Linear epitopes reactive with convalescent IgG and mucosal IgA were concentrated toward the conserved center of SeM. However, IgA but not IgG from every horse reacted with at least one peptide that contained variable sequence. Lymph node cells (CD4+) from horses immunized with SeM were strongly responsive to a peptide (alphaalpha36-138) encoding the entire variable region. SeM (CF32) specific mouse Mab 04D11 which reacted strongly with this larger peptide but not with shorter peptides within that sequence reacted strongly with whole cells of S. equi CF32 but only weakly with cells of any of 14 isolates of S. equi expressing different variants of SeM. These results in combination suggest that N-terminal variation alters a conformational epitope of significance in mucosal IgA and systemic T cell responses but does not affect antibody mediated phagocytosis and killing. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Changing Folding and Binding Stability in a Viral Coat Protein: A Comparison between Substitutions Accessible through Mutation and Those Fixed by Natural Selection

    PubMed Central

    Wichman, Holly A.; Ytreberg, F. Marty

    2014-01-01

    Previous studies have shown that most random amino acid substitutions destabilize protein folding (i.e. increase the folding free energy). No analogous studies have been carried out for protein-protein binding. Here we use a structure-based model of the major coat protein in a simple virus, bacteriophage φX174, to estimate the free energy of folding of a single coat protein and binding of five coat proteins within a pentameric unit. We confirm and extend previous work in finding that most accessible substitutions destabilize both protein folding and protein-protein binding. We compare the pool of accessible substitutions with those observed among the φX174-like wild phage and in experimental evolution with φX174. We find that observed substitutions have smaller effects on stability than expected by chance. An analysis of adaptations at high temperatures suggests that selection favors either substitutions with no effect on stability or those that simultaneously stabilize protein folding and slightly destabilize protein binding. We speculate that these mutations might involve adjusting the rate of capsid assembly. At normal laboratory temperature there is little evidence of directional selection. Finally, we show that cumulative changes in stability are highly variable; sometimes they are well beyond the bounds of single substitution changes and sometimes they are not. The variation leads us to conclude that phenotype selection acts on more than just stability. Instances of larger cumulative stability change (never via a single substitution despite their availability) lead us to conclude that selection views stability at a local, not a global, level. PMID:25405628

  3. 2,2′-Pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman; Tchilibon, Susanna; Gross, Ariel S.; Jacobson, Kenneth A.

    2015-01-01

    The effect of 2,2′-pyridylisatogen tosylate (PIT) on the human P2Y1 receptor and on other recombinant P2Y receptors has been studied. We first examined the modulation by PIT of the agonist-induced accumulation of inositol phosphates. PIT blocked 2-methylthio-ADP (2-MeSADP)-induced accumulation of inositol phosphates in 1321N1 astrocytoma cells stably expressing human P2Y1 receptors in a non-competitive and concentration-dependent manner. The IC50 for reduction of the maximal agonist effect was 0.14 μM. In contrast, MRS2179, a competitive P2Y1 receptor antagonist, parallel-shifted the agonist concentration–response curve to the right. PIT also concentration-dependently blocked the P2Y1 receptor signaling induced by the endogenous agonists, ADP and ATP. A simple structural analogue of PIT was synthesized and found to be inactive as a P2Y1 receptor antagonist, suggesting that the nitroxyl group of PIT is a necessary structural component for P2Y1 receptor antagonism. We next examined the possible modulation of the binding of the newly available antagonist radioligand for the P2Y1 receptor, [3H] MRS2279. It was found that PIT (0.01–10 μM) did not inhibit [3H] MRS2279 binding to the human P2Y1 receptor. PIT (10 μM) had no effect on the competition for [3H] MRS2279 binding by agonists, ADP and ATP, suggesting that its antagonism of the P2Y1 receptor may be allosteric. PIT had no significant effect on agonist activation of other P2Y receptors, including P2Y2, P2Y4, P2Y6, P2Y11 and P2Y12 receptors. Thus, PIT selectively and non-competitively blocked P2Y1 receptor signaling without affecting nucleotide binding. PMID:15193995

  4. Nitrogen transformation and nitrous oxide emissions affected by biochar amendment and fertilizer stabilizers

    USDA-ARS?s Scientific Manuscript database

    Biochar as a soil amendment and the use of fertilizer stabilizers (N transformation inhibitors) have been shown to reduce N2O emissions, but the mechanisms or processes involved are not well understood. The objective of this research was to investigate N transformation processes and the relationship...

  5. Dimensional stability of flakeboards as affected by board specific gravity and flake alignment

    Treesearch

    Robert L. Geimer

    1982-01-01

    The objective was to determine the relationship between the variables specific gravity (SG) and flake alignment and the dimensional stability properties of flakeboard. Boards manufactured without a density gradient were exposed to various levels of relative humidity and a vacuum-pressure soak (VPS) treatment. Changes in moisture content (MC), thickness swelling, and...

  6. Temporal stability of soil water contents as affected by weather patterns: a simulation study.

    USDA-ARS?s Scientific Manuscript database

    Temporal stability of soil water content (TS SWC) is a natural phenomenon that recently attracts attention and finds multiple applications. Large variations in the interannual and interseasonal TS SWC have been encountered among locations studied by various authors. The objective of this work was ...

  7. AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE

    EPA Science Inventory

    Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...

  8. AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE

    EPA Science Inventory

    Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...

  9. Factors Affecting the Stability of Biodiesel Sold in the United States

    SciTech Connect

    McCormick, R. L.; Ratcliff, M.; Moens, L.; Lawrence, R.

    2006-01-01

    As part of a survey of biodiesel quality and stability in the United States, 27 biodiesel (B100) samples were collected from blenders and distributor nationwide. For this sample set, 85% met all of the requirements of the industry standard for biodiesel, ASTM D6751.

  10. Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(IV) moiety.

    PubMed

    Banerjee, Samya; Pant, Ila; Khan, Imran; Prasad, Puja; Hussain, Akhtar; Kondaiah, Paturu; Chakravarty, Akhil R

    2015-03-07

    Oxovanadium(IV) complexes of polypyridyl and curcumin-based ligands, viz. [VO(cur)(L)Cl] (1, 2) and [VO(scur)(L)Cl] (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4), Hcur is curcumin and Hscur is diglucosylcurcumin, were synthesized and characterized and their cellular uptake, photocytotoxicity, intracellular localization, DNA binding, and DNA photo-cleavage activity studied. Complex [VO(cur)(phen)Cl] (1) has V(IV)N2O3Cl distorted octahedral geometry as evidenced from its crystal structure. The sugar appended complexes show significantly higher uptake into the cancer cells compared to their normal analogues. The complexes are remarkably photocytotoxic in visible light (400-700 nm) giving an IC50 value of <5 μM in HeLa, HaCaT and MCF-7 cells with no significant dark toxicity. The green emission of the complexes was used for cellular imaging. Predominant cytosolic localization of the complexes 1-4 to a lesser extent into the nucleus was evidenced from confocal imaging. The complexes as strong binders of calf thymus DNA displayed photocleavage of supercoiled pUC19 DNA in red light by generating ˙OH radicals as the ROS. The cell death is via an apoptotic pathway involving the ROS. Binding to the VO(2+) moiety has resulted in stability against any hydrolytic degradation of curcumin along with an enhancement of its photocytotoxicity.

  11. Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice.

    PubMed

    Lim, Kyung-Eun; Park, Na-Rae; Che, Xiangguo; Han, Min-Su; Jeong, Jae-Hwan; Kim, Shin-Yoon; Park, Clara Yongjoo; Akiyama, Haruhiko; Kim, Jung-Eun; Ryoo, Hyun-Mo; Stein, Janet L; Lian, Jane B; Stein, Gary S; Choi, Je-Yong

    2015-04-01

    Core binding factor beta (Cbfβ), the partner protein of Runx family transcription factors, enhances Runx function by increasing the binding of Runx to DNA. Null mutations of Cbfb result in embryonic death, which can be rescued by restoring fetal hematopoiesis but only until birth, where bone formation is still nearly absent. Here, we address a direct role of Cbfβ in skeletal homeostasis by generating osteoblast-specific Cbfβ-deficient mice (Cbfb(Δob/Δob) ) from Cbfb-floxed mice crossed with mice expressing Cre from the Col1a1 promoter. Cbfb(Δob/Δob) mice showed normal growth and development but exhibited reduced bone mass, particularly of cortical bone. The reduction of bone mass in Cbfb(Δob/Δob) mice is similar to the phenotype of mice with haploinsufficiency of Runx2. Although the number of osteoblasts remained unchanged, the number of active osteoblasts decreased in Cbfb(Δob/Δob) mice and resulted in lower mineral apposition rate. Immunohistochemical and quantitative real-time PCR analyses showed that the expression of osteogenic markers, including Runx2, osterix, osteocalcin, and osteopontin, was significantly repressed in Cbfb(Δob/Δob) mice compared with wild-type mice. Cbfβ deficiency also reduced Runx2 protein levels in osteoblasts. The mechanism was revealed by forced expression of Cbfβ, which increased Runx2 protein levels in vitro by inhibiting polyubiquitination-mediated proteosomal degradation. Collectively, these findings indicate that Cbfβ stabilizes Runx2 in osteoblasts by forming a complex and thus facilitates the proper maintenance of bone mass, particularly cortical bone.

  12. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    PubMed

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing

    2016-06-01

    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction <0.053 mm. The fractions >2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon.

  13. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.

    PubMed

    Grün, Alexandra Y; Meier, Jutta; Metreveli, George; Schaumann, Gabriele E; Manz, Werner

    2016-12-01

    Bacterial biofilms are most likely confronted with silver nanoparticles (Ag NPs) as a pollutant stressor in aquatic systems. In this study, biofilms of Aquabacterium citratiphilum were exposed for 20 h to 30 and 70 nm citrate stabilized Ag NPs in low-dose concentrations ranging from 600 to 2400 μg l(-1), and the Ag NP-mediated effects on descriptive, structural, and functional biofilm characteristics, including viability, protein content, architecture, and mechanical stability, were investigated. Viability, based on the bacterial cell membrane integrity of A. citratiphilum, as determined by epifluorescence microscopy, remained unaffected after Ag NP exposure. Moreover, in contrast to information in the current literature, protein contents of cells and extracellular polymeric substances (EPS) and biofilm architecture, including dry mass, thickness, and density, were not significantly impacted by exposure to Ag NPs. However, the biofilms themselves served as effective sinks for Ag NPs, exhibiting enrichment factors from 5 to 8. Biofilms showed a greater capacity to accumulate 30 nm sized Ag NPs than 70 nm Ag NPs. Furthermore, Ag NPs significantly threatened the mechanical stability of biofilms, as determined by a newly developed assay. For 30 nm Ag NPs, the mechanical stability of biofilms decreased as the Ag NP concentrations applied to them increased. In contrast, 70 nm Ag NPs produced a similar decrease in mechanical stability for each applied concentration. Overall, this finding demonstrates that exposure to Ag NPs triggers remarkable changes in biofilm adhesion and/or cohesiveness. Because of biofilm-mediated ecological services, this response raises environmental concerns regarding Ag NP release into freshwater systems, even in sublethal concentrations.

  14. Cu(2+) affects amyloid-β (1-42) aggregation by increasing peptide-peptide binding forces.

    PubMed

    Hane, Francis; Tran, Gary; Attwood, Simon J; Leonenko, Zoya

    2013-01-01

    The link between metals, Alzheimer's disease (AD) and its implicated protein, amyloid-β (Aβ), is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1-42) peptides in the presence of copper ions, Cu(2+). In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.

  15. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR

    PubMed Central

    Stevers, Loes M.; Lam, Chan V.; Leysen, Seppe F. R.; Meijer, Femke A.; van Scheppingen, Daphne S.; de Vries, Rens M. J. M.; Carlile, Graeme W.; Milroy, Lech G.; Thomas, David Y.; Brunsveld, Luc; Ottmann, Christian

    2016-01-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein–protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3–CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  16. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    PubMed Central

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  17. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins

    PubMed Central

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-01-01

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions. PMID:28266541

  18. Landfast ice affects the stability of the Arctic halocline: Evidence from a numerical model

    NASA Astrophysics Data System (ADS)

    Itkin, Polona; Losch, Martin; Gerdes, Rüdiger

    2015-04-01

    Landfast ice covers large surface areas of the winter Siberian Seas. The immobile landfast ice cover inhibits divergent and convergent motion, hence dynamical sea ice growth and redistribution, decouples winter river plumes in coastal seas from the atmosphere, and positions polynyas at the landfast ice edge offshore. In spite of the potentially large effects, state-of-the-art numerical models usually do not represent landfast ice in its correct extent. A simple parametrization of landfast ice based on bathymetry and internal sea ice strength is introduced and its effects on the simulated Arctic Ocean are demonstrated. The simulations suggest that the Siberian landfast ice impacts the Arctic halocline stability through enhanced brine production in polynyas located closer to the shelf break and by redirecting river water to the Canadian Basin. These processes strengthen the halocline in the Canadian Basin, but erode its stability in the Makarov and Eurasian Basins.

  19. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins.

    PubMed

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-03-07

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.

  20. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    NASA Astrophysics Data System (ADS)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli; Liu, Jianping

    2016-09-01

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10-100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer-polymer and polymer-cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.

  1. How Does Functional Soccer Training on Uneven Ground Affect Dynamic Stability of Lower Limbs in Young Soccer Players

    PubMed Central

    Plenzler, Marcin; Mrozińska, Natalia; Mierzwińska, Anna; Korbolewska, Olga; Mejnartowicz, Daria; Popieluch, Marcin; Śmigielski, Robert

    2014-01-01

    the supporting limb after the preparatory period, during which a stability and proprioception training was completed. The significance of these results is even greater when the parallel substantial increase of the physical body height of these young players is taken into account (the taller the player is, the harder it is for him to keep the balance). The players’ tests results are, also, statistically lower than the control group’s data. That, in turn, means that the players had better stability in comparison to the control group. This co-dependence regarding the overall stability was mainly affected by the A/P stability indexes taken in a sagittal plane. Also, no new injuries were recorded within the young players group. Conclusion: 1. The exercised functional training significantly improved stability results of the supporting limb among the young players. 2. The results encourage to continue the study, and, in the later stage, check whether there is an actual relationship between the dynamic stability results and sports achievements combined with the frequency of injuries.

  2. Voluntarily Changing Step Length or Step Width Affects Dynamic Stability of Human Walking

    PubMed Central

    McAndrew Young, Patricia M.; Dingwell, Jonathan B.

    2012-01-01

    Changes in step width (SW), step length (SL), and/or the variability of these parameters have been prospectively related to risk of falling. However, it is unknown how voluntary changes in SW and SL directly alter variability and/or dynamic stability of walking. Here, we quantified how variability and dynamic stability of human walking changed when individuals voluntarily manipulated SW and SL. Fourteen unimpaired, young adults walked on a treadmill at their preferred walking speed with normal gait, with a metronome and with narrower, wider, shorter and longer steps than normal. Taking narrower steps caused increased SL variability while mediolateral (ML) movements of the C7 vertebra (i.e., trunk) became locally more stable (p < 0.05) and anterior-posterior (AP) C7 movements became locally less stable (p < 0.05). Taking wider steps caused increased SW and SL variability, while ML C7 movements became both locally and orbitally less stable (p < 0.05). Any change in SL caused increased SW, SL, and stride time variability. When taking shorter steps, ML C7 movements exhibited greater short-term local and orbital instability, while AP C7 movements exhibited decreased short-term and long-term local instability (p < 0.05). When taking longer steps, AP, ML, and vertical C7 movements all exhibited increased long-term local instability and increased orbital instability (p < 0.05). Correlations between mean SW, SL and dynamic stability of C7 marker motions were weak. However, short-term voluntary changes in SW and SL did significantly alter local and orbital stability of trunk motions. PMID:22172233

  3. Voluntarily changing step length or step width affects dynamic stability of human walking.

    PubMed

    McAndrew Young, Patricia M; Dingwell, Jonathan B

    2012-03-01

    Changes in step width (SW), step length (SL), and/or the variability of these parameters have been prospectively related to risk of falling. However, it is unknown how voluntary changes in SW and SL directly alter variability and/or dynamic stability of walking. Here, we quantified how variability and dynamic stability of human walking changed when individuals voluntarily manipulated SW and SL. 14 unimpaired, young adults walked on a treadmill at their preferred walking speed with normal gait, with a metronome and with narrower, wider, shorter and longer steps than normal. Taking narrower steps caused increased SL variability while mediolateral (ML) movements of the C7 vertebra (i.e., trunk) became locally more stable (p<0.05) and anterior-posterior (AP) C7 movements became locally less stable (p<0.05). Taking wider steps caused increased SW and SL variability, while ML C7 movements became both locally and orbitally less stable (p<0.05). Any change in SL caused increased SW, SL, and stride time variability. When taking shorter steps, ML C7 movements exhibited greater short-term local and orbital instability, while AP C7 movements exhibited decreased short-term and long-term local instability (p<0.05). When taking longer steps, AP, ML, and vertical C7 movements all exhibited increased long-term local instability and increased orbital instability (p<0.05). Correlations between mean SW, SL and dynamic stability of C7 marker motions were weak. However, short-term voluntary changes in SW and SL did significantly alter local and orbital stability of trunk motions. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    PubMed Central

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  5. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  6. Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation.

    PubMed

    Arakawa, Reijiro; Yokoyama, Shinji

    2002-06-21

    ATP-binding cassette transporter (ABC) A1 was increased by apolipoprotein A-I without an increase of its message in THP-1 cells. The pulse label study demonstrated that apoA-I retarded degradation of ABCA1. Similar changes were demonstrated by apoA-II, but the effect of high density lipoprotein was almost negligible on the basis of equivalent protein concentration. Thiol protease inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal