Science.gov

Sample records for affect subcellular localization

  1. Alternative splicing affects the subcellular localization of Drosha

    PubMed Central

    Link, Steffen; Grund, Stefanie E.; Diederichs, Sven

    2016-01-01

    The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity. PMID:27185895

  2. Alternative splicing affects the subcellular localization of Drosha.

    PubMed

    Link, Steffen; Grund, Stefanie E; Diederichs, Sven

    2016-06-20

    The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity. PMID:27185895

  3. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    PubMed

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture. PMID:27059239

  4. Posttranslational Modifications of GLUT4 Affect Its Subcellular Localization and Translocation

    PubMed Central

    Sadler, Jessica B. A.; Bryant, Nia J.; Gould, Gwyn W.; Welburn, Cassie R.

    2013-01-01

    The facilitative glucose transporter type 4 (GLUT4) is expressed in adipose and muscle and plays a vital role in whole body glucose homeostasis. In the absence of insulin, only ~1% of cellular GLUT4 is present at the plasma membrane, with the vast majority localizing to intracellular organelles. GLUT4 is retained intracellularly by continuous trafficking through two inter-related cycles. GLUT4 passes through recycling endosomes, the trans Golgi network and an insulin-sensitive intracellular compartment, termed GLUT4-storage vesicles or GSVs. It is from GSVs that GLUT4 is mobilized to the cell surface in response to insulin, where it increases the rate of glucose uptake into the cell. As with many physiological responses to external stimuli, this regulated trafficking event involves multiple posttranslational modifications. This review outlines the roles of posttranslational modifications of GLUT4 on its function and insulin-regulated trafficking. PMID:23665900

  5. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  6. Study of PTEN subcellular localization

    PubMed Central

    Bononi, Angela; Pinton, Paolo

    2015-01-01

    The tumor suppressor PTEN is a key regulator of a plethora of cellular processes that are crucial in cancer development. Through its lipid phosphatase activity PTEN suppresses the PI3K/AKT pathway to govern cell proliferation, growth, migration, energy metabolism and death. The repertoire of roles fulfilled by PTEN has recently been expanded to include crucial functions in the nucleus, where it favors genomic stability and restrains cell cycle progression, as well as protein phosphatase dependent activity at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs), where PTEN interacts with the inositol 1,4,5-trisphosphate receptors (IP3Rs) and regulates Ca2+ release from the ER and sensitivity to apoptosis. Indeed, PTEN is present in definite subcellular locations where it performs distinct functions acting on specific effectors. In this review, we summarize recent advantages in methods to study PTEN subcellular localization and the distinct biological functions of PTEN in different cellular compartments. A deeper understanding of PTEN’s compartmentalized-functions will guide the rational design of novel therapies. PMID:25312582

  7. Altered Subcellular Localization of Tumor-Specific Cyclin E Isoforms Affects Cyclin-Dependent Kinase 2 Complex Formation and Proteasomal Regulation

    PubMed Central

    Delk, Nikki A.; Hunt, Kelly K.; Keyomarsi, Khandan

    2009-01-01

    In tumors, alternative translation and posttranslational proteolytic cleavage of full-length cyclin E (EL) produces tumorigenic low molecular weight cyclin E (LMW-E) isoforms that lack a portion of the EL amino-terminus containing a nuclear localization sequence. Therefore, we hypothesized that LMW-E isoforms have altered subcellular localization. To explore our hypothesis, we compared EL versus LMW-E localization in cell lysates and in vivo using fractionation and protein complementation assays. Our results reveal that LMW-E isoforms preferentially accumulate in the cytoplasm where they bind the cyclin E kinase partner, cyclin-dependent kinase 2 (Cdk2), and have associated kinase activity. The nuclear ubiquitin ligase Fbw7 targets Cdk2-bound cyclin E for degradation; thus, we examined if altered subcellular localization affected LMW-E degradation. We found that cytoplasmic LMW-E/Cdk2 was less susceptible to Fbw7-mediated degradation. One implication of our findings is that altered LMW-E and LMW-E/Cdk2 subcellular localization may lead to aberrant LMW-E protein interactions, regulation, and activity, ultimately contributing to LMW-E tumorigenicity. PMID:19318554

  8. Modeling of Protein Subcellular Localization in Bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Kulkarni, Rahul

    2006-03-01

    Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.

  9. eSLDB: eukaryotic subcellular localization database.

    PubMed

    Pierleoni, Andea; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2007-01-01

    Eukaryotic Subcellular Localization DataBase collects the annotations of subcellular localization of eukaryotic proteomes. So far five proteomes have been processed and stored: Homo sapiens, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae and Arabidopsis thaliana. For each sequence, the database lists localization obtained adopting three different approaches: (i) experimentally determined (when available); (ii) homology-based (when possible); and (iii) predicted. The latter is computed with a suite of machine learning based methods, developed in house. All the data are available at our website and can be searched by sequence, by protein code and/or by protein description. Furthermore, a more complex search can be performed combining different search fields and keys. All the data contained in the database can be freely downloaded in flat file format. The database is available at http://gpcr.biocomp.unibo.it/esldb/. PMID:17108361

  10. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability.

    PubMed

    Cerny, Alexander C; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-05-31

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  11. Mutation of Light-dependent Phosphorylation Sites of the Drosophila Transient Receptor Potential-like (TRPL) Ion Channel Affects Its Subcellular Localization and Stability*

    PubMed Central

    Cerny, Alexander C.; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-01-01

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  12. Subcellular localization of the yeast proteome

    PubMed Central

    Kumar, Anuj; Agarwal, Seema; Heyman, John A.; Matson, Sandra; Heidtman, Matthew; Piccirillo, Stacy; Umansky, Lara; Drawid, Amar; Jansen, Ronald; Liu, Yang; Cheung, Kei-Hoi; Miller, Perry; Gerstein, Mark; Roeder, G. Shirleen; Snyder, Michael

    2002-01-01

    Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass ∼5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability—a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http://ygac.med.yale.edu. PMID:11914276

  13. In Cellulo Mapping of Subcellular Localized Bilirubin.

    PubMed

    Park, Jong-Seok; Nam, Eunju; Lee, Hye-Kyeong; Lim, Mi Hee; Rhee, Hyun-Woo

    2016-08-19

    Bilirubin (BR) is a de novo synthesized metabolite of human cells. However, subcellular localization of BR in the different organelles of human cells has been largely unknown. Here, utilizing UnaG as a genetically encoded fluorescent BR sensor, we report the existence of relatively BR-enriched and BR-depleted microspaces in various cellular organelles of live cells. Our studies indicate that (i) the cytoplasmic facing membrane of the endoplasmic reticulum (ER) and the nucleus are relatively BR-enriched spaces and (ii) mitochondrial intermembrane space and the ER lumen are relatively BR-depleted spaces. Thus, we demonstrate a relationship between such asymmetrical BR distribution in the ER membrane and the BR metabolic pathway. Furthermore, our results suggest plausible BR-transport and BR-regulating machineries in other cellular compartments, including the nucleus and mitochondria. PMID:27232847

  14. Tau regulates the subcellular localization of calmodulin

    SciTech Connect

    Barreda, Elena Gomez de

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  15. Cellular and subcellular localization of PKMζ

    PubMed Central

    Hernández, A. Iván; Oxberry, William C.; Crary, John F.; Mirra, Suzanne S.; Sacktor, Todd Charlton

    2014-01-01

    In contrast to protein kinases that participate in long-term potentiation (LTP) induction and memory consolidation, the autonomously active atypical protein kinase C isoform, protein kinase Mzeta (PKMζ), functions in the core molecular mechanism of LTP maintenance and long-term memory storage. Here, using multiple complementary techniques for light and electron microscopic immunolocalization, we present the first detailed characterization of the cellular and subcellular distribution of PKMζ in rat hippocampus and neocortex. We find that PKMζ is widely expressed in forebrain with prominent immunostaining in hippocampal and neocortical grey matter, and weak label in white matter. In hippocampal and cortical pyramidal cells, PKMζ expression is predominantly somatodendritic, and electron microscopy highlights the kinase at postsynaptic densities and in clusters within spines. In addition, nuclear label and striking punctate immunopositive structures in a paranuclear and dendritic distribution are seen by confocal microscopy, occasionally at dendritic bifurcations. PKMζ immunoreactive granules are observed by electron microscopy in cell bodies and dendrites, including endoplasmic reticulum. The widespread distribution of PKMζ in nuclei, nucleoli and endoplasmic reticulum suggests potential roles of this kinase in cell-wide mechanisms involving gene expression, biogenesis of ribosomes and new protein synthesis. The localization of PKMζ within postsynaptic densities and spines suggests sites where the kinase stores information during LTP maintenance and long-term memory. PMID:24298142

  16. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  17. Subcellular localization of transglutaminase. Effect of collagen.

    PubMed Central

    Juprelle-Soret, M; Wattiaux-De Coninck, S; Wattiaux, R

    1988-01-01

    1. The subcellular distribution of transglutaminase was investigated by using the analytical approach of differential and isopycnic centrifugation as applied to three organs of the rat: liver, kidney and lung. After differential centrifugation by the method of de Duve, Pressman, Gianetto, Wattiaux & Appelmans [(1955) Biochem. J. 63, 604-617], transglutaminase is mostly recovered in the unsedimentable fraction S and the nuclear fraction N. After isopycnic centrifugation of the N fraction in a sucrose density gradient, a high proportion of the enzyme remains at the top of the gradient; a second but minor peak of activity is present in high-density regions, where a small proportion of 5'-nucleotidase, a plasma-membrane marker, is present together with a large proportion of collagen recovered in that fraction. 2. Fractions where a peak of transglutaminase was apparent in the sucrose gradient were examined by electron microscopy. The main components are large membrane sheets with extracellular matrix and free collagen fibers. 3. As these results seem to indicate that some correlation exists between particulate transglutaminase distribution and those of collagen and plasma membranes, the possible binding of transglutaminase by collagen (type I) and by purified rat liver plasma membrane was investigated. 4. The binding studies indicated that collagen is able to bind transglutaminase and to make complexes with plasma-membrane fragments whose density is higher than that of plasma-membrane fragments alone. Transglutaminase cannot be removed from such complexes by 1% Triton X-100, but can be to a relatively large extent by 0.5 M-KCl and by 50% (w/v) glycerol. 5. Such results suggest that the apparent association of transglutaminase with plasma membrane originates from binding in vitro of the cytosolic enzyme to plasma membrane bound to collagen, which takes place during homogenization of the tissue, when the soluble enzyme and extracellular components are brought together

  18. Tyrosine phosphorylation of β-catenin affects its subcellular localization and transcriptional activity of β-catenin in Hela and Bcap-37 cells.

    PubMed

    Qian, He-Ya; Zhang, Ding-Guo; Wang, Hong-Wei; Pei, Dong-Sheng; Zheng, Jun-Nian

    2014-06-01

    In order to investigate the relationship between tyrosine phosphorylation of β-catenin and transcriptional activity of β-catenin in Hela and Bcap-37 cells, genistein (a tyrosine kinase inhibitor) was used to inhibit tyrosine phosphorylation in cells. Our results showed the total β-catenin protein levels were mainly equal in Hela, Bcap-37 and HK-2 cells, β-catenin was mainly present in nucleus in Hela and Bcap-37cells, while in HK-2 cell β-catenin was mainly located in cytoplasm. Genistein could inhibit tyrosine phosphorylation of β-catenin and downregulate nuclear β-catenin expression in Hela and Bcap-37 cells. In addition, genistein suppressed Ki-67 promoter activity and Ki-67 protein level, thus promoted cell apoptosis. Furthermore, β-catenin could increase the Ki-67 promoter activity in Hela and Bcap-37 cells. From these findings we conclude that tyrosine phosphorylation of β-catenin can regulate the cellular distribution of β-catenin and affect the transcriptional activity of β-catenin. PMID:24759800

  19. The Bcl-2/Bcl-xL inhibitor BH3I-2' affects the dynamics and subcellular localization of sumoylated proteins.

    PubMed

    Plourde, Mélodie B; Morchid, Aïda; Iranezereza, Lolita; Berthoux, Lionel

    2013-04-01

    Sumoylation modulates many proteins implicated in apoptosis such as Fas, TNFR1, Daxx, p53 and its regulator MDM2. Some of these proteins, such as DRP-1, are involved in the intrinsic apoptosis pathway. The intrinsic pathway is regulated at the mitochondrial level by the Bcl-2 family of proteins. The small-molecule inhibitor BH3I-2' binds to the hydrophobic groove of the BH3 domain of anti-apoptotic proteins Bcl-xL and Bcl-2. Following treatment with this inhibitor in various experimental conditions, we observed decreased levels of detergent-soluble SUMO-1, an increase in the relative levels of detergent-insoluble sumoylated proteins, or both. Accordingly, immunofluorescence microscopy revealed that the relative numbers and intensities of endogenously or exogenously expressed SUMO-1 foci in the nucleus were increased following BH3I-2' treatment. MG132 caused a large increase in steady-state levels of SUMO-1 and of sumoylated proteins, and this was especially true for detergent-insoluble proteins. The conjugation-incompetent GG-to-AA SUMO-1 mutant, which did not form nuclear foci, was only present in the detergent-soluble lysate fraction and was insensitive to BH3I-2', implying that BH3I-2' specifically affects SUMO in its conjugated form. Finally, BH3I-2' had similar effects on SUMO-2 and SUMO-3 as it had on SUMO-1. In conclusion, BH3I-2' causes an intracellular redistribution of sumoylated proteins, more specifically their targeting to PML and non-PML nuclear bodies in which they may be degraded by the proteasome. Interestingly, knocking down Bcl-2 also altered levels of sumoylated proteins and their presence in detergent-insoluble compartments, confirming the role of Bcl-2 as a modulator of the sumoylation pathway. PMID:23375957

  20. Self-calibrating viscosity probes: Design and subcellular localization

    PubMed Central

    Dakanali, Marianna; Do, Thai H.; Horn, Austin; Chongchivivat, Akaraphon; Jarusreni, Tuptim; Lichlyter, Darcy; Guizzunti, Gianni; Haidekker, Mark A.; Theodorakis, Emmanuel A.

    2012-01-01

    We describe the design, synthesis and fluorescence profiles of new self-calibrating viscosity dyes in which a coumarin (reference fluorophore) has been covalently linked with a molecular rotor (viscosity sensor). Characterization of their fluorescence properties was made with separate excitation of the units and through Resonance Energy Transfer from the reference to the sensor dye. We have modified the linker and the substitution of the rotor in order to change the hydrophilicity of these probes thereby altering their subcellular localization. For instance, hydrophilic dye 12 shows a homogeneous distribution inside the cell and represents a suitable probe for viscosity measurements in the cytoplasm. 2012 Elsevier Ltd. All rights reserved. PMID:22698784

  1. Subcellular Localization of Carotenoid Biosynthesis in Synechocystis sp. PCC 6803

    PubMed Central

    Selstam, Eva; Norling, Birgitta

    2015-01-01

    The biosynthesis pathway of carotenoids in cyanobacteria is partly described. However, the subcellular localization of individual steps is so far unknown. Carotenoid analysis of different membrane subfractions in Synechocystis sp. PCC6803 shows that “light” plasma membranes have a high carotenoid/protein ratio, when compared to “heavier” plasma membranes or thylakoids. The localization of CrtQ and CrtO, two well-defined carotenoid synthesis pathway enzymes in Synechocystis, was studied by epitope tagging and western blots. Both enzymes are locally more abundant in plasma membranes than in thylakoids, implying that the plasma membrane has higher synthesis rates of β-carotene precursor molecules and echinenone. PMID:26083372

  2. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  3. Subcellular localization of transiently expressed fluorescent fusion proteins.

    PubMed

    Collings, David A

    2013-01-01

    The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system. PMID:23996319

  4. Subcellular Localization of Anthocyanin Methyltransferase in Flowers of Petunia hybrida

    PubMed Central

    Jonsson, Lisbeth M. V.; Donker-Koopman, Wilma E.; Uitslager, Piet; Schram, André W.

    1983-01-01

    The subcellular localization of the enzyme anthocyanin-methyltransferase was studied in cells (protoplasts) obtained from the upper epidermis of petals of Petunia hybrida Hort. Vacuoles were isolated from protoplasts to ascertain the possible presence of the enzyme in these organelles. The recovery of methyltransferase activity in vacuole-enriched fractions equalled that of the cytosolic marker enzyme glucose-6-phosphate dehydrogenase. The relative activity of methyltransferase in the vacuole fraction was one tenth of that in the protoplast. Neither whole protoplasts nor isolated vacuoles contained inhibitors of methyltransferase activity. Examination of fractions obtained by differential centrifugation of a protoplast lysate showed that the major part of the methyltransferase activity was cytosolic. Activity found in a 130,000g pellet was due to nonspecific adhesion to membranes. The results indicate that terminal steps of anthocyanin biosynthesis take place in the cytosol. They do not lend support to the notion that the vacuole might be involved in (part of) this process. PMID:16662994

  5. Torso RTK controls Capicua degradation by changing its subcellular localization.

    PubMed

    Grimm, Oliver; Sanchez Zini, Victoria; Kim, Yoosik; Casanova, Jordi; Shvartsman, Stanislav Y; Wieschaus, Eric

    2012-11-01

    The transcriptional repressor Capicua (Cic) controls multiple aspects of Drosophila embryogenesis and has been implicated in vertebrate development and human diseases. Receptor tyrosine kinases (RTKs) can antagonize Cic-dependent gene repression, but the mechanisms responsible for this effect are not fully understood. Based on genetic and imaging studies in the early Drosophila embryo, we found that Torso RTK signaling can increase the rate of Cic degradation by changing its subcellular localization. We propose that Cic is degraded predominantly in the cytoplasm and show that Torso reduces the stability of Cic by controlling the rates of its nucleocytoplasmic transport. This model accounts for the experimentally observed spatiotemporal dynamics of Cic in the early embryo and might explain RTK-dependent control of Cic in other developmental contexts. PMID:23048183

  6. Subcellular localization of hepatitis E virus (HEV) replicase

    SciTech Connect

    Rehman, Shagufta; Kapur, Neeraj; Durgapal, Hemlata; Panda, Subrat Kumar

    2008-01-05

    Hepatitis E virus (HEV) is a hepatotropic virus with a single sense-strand RNA genome of {approx} 7.2 kb in length. Details of the intracellular site of HEV replication can pave further understanding of HEV biology. In-frame fusion construct of functionally active replicase-enhanced green fluorescent protein (EGFP) gene was made in eukaryotic expression vector. The functionality of replicase-EGFP fusion protein was established by its ability to synthesize negative-strand viral RNA in vivo, by strand-specific anchored RT-PCR and molecular beacon binding. Subcellular co-localization was carried out using organelle specific fluorophores and by immuno-electron microscopy. Fluorescence Resonance Energy Transfer (FRET) demonstrated the interaction of this protein with the 3' end of HEV genome. The results show localization of replicase on the endoplasmic reticulum membranes. The protein regions responsible for membrane localization was predicted and identified by use of deletion mutants. Endoplasmic reticulum was identified as the site of replicase localization and possible site of replication.

  7. Cellular and subcellular localization of Marlin-1 in the brain

    PubMed Central

    Vidal, René L; Valenzuela, José I; Luján, Rafael; Couve, Andrés

    2009-01-01

    Background Marlin-1 is a microtubule binding protein that associates specifically with the GABAB1 subunit in neurons and with members of the Janus kinase family in lymphoid cells. In addition, it binds the molecular motor kinesin-I and nucleic acids, preferentially single stranded RNA. Marlin-1 is expressed mainly in the central nervous system but little is known regarding its cellular and subcellular distribution in the brain. Results Here we have studied the localization of Marlin-1 in the rodent brain and cultured neurons combining immunohistochemistry, immunofluorescence and pre-embedding electron microscopy. We demonstrate that Marlin-1 is enriched in restricted areas of the brain including olfactory bulb, cerebral cortex, hippocampus and cerebellum. Marlin-1 is abundant in dendrites and axons of GABAergic and non-GABAergic hippocampal neurons. At the ultrastructural level, Marlin-1 is present in the cytoplasm and the nucleus of CA1 neurons in the hippocampus. In the cytoplasm it associates to microtubules in the dendritic shaft and occasionally with the Golgi apparatus, the endoplasmic reticulum (ER) and dendritic spines. In the nucleus, clusters of Marlin-1 associate to euchromatin. Conclusion Our results demonstrate that Marlin-1 is expressed in discrete areas of the brain. They also confirm the microtubule association at the ultrastructural level in neurons. Together with the abundance of the protein in dendrites and axons they are consistent with the emerging role of Marlin-1 as an intracellular protein linking the cytoskeleton and transport. Our study constitutes the first detailed description of the cellular and subcellular distribution of Marlin-1 in the brain. As such, it will set the basis for future studies on the functional implications of Marlin-1 in protein trafficking. PMID:19386132

  8. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  9. Novel subcellular localization for α-synuclein: possible functional consequences

    PubMed Central

    Guardia-Laguarta, Cristina; Area-Gomez, Estela; Schon, Eric A.; Przedborski, Serge

    2015-01-01

    α-synuclein (α-syn) is one of the genes that when mutated or overexpressed causes Parkinson’s Disease (PD). Initially, it was described as a synaptic terminal protein and later was found to be localized at mitochondria. Mitochondria-associated membranes (MAM) have emerged as a central endoplasmic reticulum (ER) subcellular compartments where key functions of the cell occur. These domains, enriched in cholesterol and anionic phospholipids, are where calcium homeostasis, lipid transfer, and cholesterol metabolism are regulated. Some proteins, related to mitochondrial dynamics and function, are also localized to this area. Several neurodegenerative diseases have shown alterations in MAM functions and resident proteins, including Charcot Marie-Tooth and Alzheimer’s disease (AD). We have recently reported that MAM function is downregulated in cell and mouse models of PD expressing pathogenic mutations of α-syn. This review focuses on the possible role of α-syn in these cellular domains and the early pathogenic features of PD that could be explained by α-syn-MAM disturbances. PMID:25755636

  10. Alternative Splicing Regulates the Subcellular Localization of Divalent Metal Transporter 1 Isoforms

    PubMed Central

    Tabuchi, Mitsuaki; Tanaka, Naotaka; Nishida-Kitayama, Junko; Ohno, Hiroshi; Kishi, Fumio

    2002-01-01

    Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3′ exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element located in the 3′ untranslated region of the mRNA. However, it has been still unknown whether the structural differences between the two DMT1 isoforms is functionally important. Here, we report that each DMT1 isoform exhibits a differential cell type–specific expression patterns and distinct subcellular localizations. DMT1A is predominantly expressed by epithelial cell lines, whereas DMT1B is expressed by the blood cell lines. In HEp-2 cells, GFP-tagged DMT1A is localized in late endosomes and lysosomes, whereas GFP-tagged DMT1B is localized in early endosomes. Using site-directed mutagenesis, a Y555XLXX sequence in the cytoplasmic tail of DMT1B has been identified as an important signal sequence for the early endosomal-targeting of DMT1B. In polarized MDCK cells, GFP-tagged DMT1A and DMT1B are localized in the apical plasma membrane and their respective specific endosomes. Disruption of the N-glycosylation sites in each of the DMT1 isoforms affects their polarized distribution into the apical plasma membrane but not their correct endosomal localization. Our data indicate that the cell type–specific expression patterns and the distinct subcellular localizations of two DMT1 isoforms may be involved in the different iron acquisition steps from the subcellular membranes in various cell types. PMID:12475959

  11. Expression and subcellular localization of ORC1 in Leishmania major

    SciTech Connect

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-10-10

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.

  12. Myeloperoxidase in human peripheral blood lymphocytes: Production and subcellular localization.

    PubMed

    Okada, Sabrina Sayori; de Oliveira, Edson Mendes; de Araújo, Tomaz Henrique; Rodrigues, Maria Rita; Albuquerque, Renata Chaves; Mortara, Renato Arruda; Taniwaki, Noemi Nosomi; Nakaya, Helder Imoto; Campa, Ana; Moreno, Ana Carolina Ramos

    2016-02-01

    Myeloperoxidase (MPO) is an important enzyme in the front-line protection against microorganisms. In peripheral blood, it is accepted that MPO is only produced by myeloid-lineage cells. Thus, MPO presence is unexpected in lymphocytes. We showed recently that B1-lymphocytes from mice have MPO. Here, we showed that subsets of human peripheral B, CD4(+) and CD8(+) T lymphocytes express MPO. The content of MPO in lymphocytes was very low compared to neutrophils/monocytes with a preferential distribution in the nucleus and perinuclear region. Also, we performed a MPO mRNA expression analysis from human blood cells derived from microarray raw data publicly available, showing that MPO is modulated in infectious disease. MPO was increased in CD4(+) T lymphocytes from HIV chronic infection and in CD8(+) T lymphocytes from HCV-positive patients. Our study points out MPO as a multifunctional protein due to its subcellular localization and expression modulation in lymphocytes indicating alternative unknown functions for MPO in lymphocytes. PMID:26632272

  13. Predicting Subcellular Localization of Apoptosis Proteins Combining GO Features of Homologous Proteins and Distance Weighted KNN Classifier

    PubMed Central

    Wang, Xiao; Li, Hui; Zhang, Qiuwen; Wang, Rong

    2016-01-01

    Apoptosis proteins play a key role in maintaining the stability of organism; the functions of apoptosis proteins are related to their subcellular locations which are used to understand the mechanism of programmed cell death. In this paper, we utilize GO annotation information of apoptosis proteins and their homologous proteins retrieved from GOA database to formulate feature vectors and then combine the distance weighted KNN classification algorithm with them to solve the data imbalance problem existing in CL317 data set to predict subcellular locations of apoptosis proteins. It is found that the number of homologous proteins can affect the overall prediction accuracy. Under the optimal number of homologous proteins, the overall prediction accuracy of our method on CL317 data set reaches 96.8% by Jackknife test. Compared with other existing methods, it shows that our proposed method is very effective and better than others for predicting subcellular localization of apoptosis proteins. PMID:27213149

  14. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain.

    PubMed

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABA(A)R). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1-6, β1-3 or γ2 GABA(A)R subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABA(A)R subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABA(A)Rs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABA(A)R subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N = 16) and comparison (N = 14) subjects and found evidence of abnormal localization of the β1 and β2 GABA(A)R subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β2(52 kDa)), 50 kDa (β2(50 kDa)) and 48 kDa (β2(48 kDa)). In the ER, we found increased total β2 GABA(A)R subunit (β2(ALL)) expression driven by increased β2(50 kDa), a decreased ratio of β(248 kDa):β2(ALL) and an increased ratio of β2(50 kDa):β2(48 kDa). Decreased ratios of β1:β2(ALL) and β1:β2(50 kDa) in both the ER and SYN fractions and an increased ratio of β2(52 kDa):β(248 kDa) at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABA(A)Rs. PMID:26241350

  15. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain

    PubMed Central

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABAAR). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1–6, β1–3 or γ2 GABAAR subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABAAR subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABAARs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABAAR subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N=16) and comparison (N=14) subjects and found evidence of abnormal localization of the β1 and β2 GABAAR subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β252 kDa), 50 kDa (β250 kDa) and 48 kDa (β248 kDa). In the ER, we found increased total β2 GABAAR subunit (β2ALL) expression driven by increased β250 kDa, a decreased ratio of β248 kDa:β2ALL and an increased ratio of β250 kDa:β248 kDa. Decreased ratios of β1:β2ALL and β1:β250 kDa in both the ER and SYN fractions and an increased ratio of β252 kDa:β248 kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABAARs. PMID:26241350

  16. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration

    PubMed Central

    O’Neill, Patrick R.; Kalyanaraman, Vani; Gautam, N.

    2016-01-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  17. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.

    PubMed

    O'Neill, Patrick R; Kalyanaraman, Vani; Gautam, N

    2016-05-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  18. Determining the Sub-Cellular Localization of Proteins within Caenorhabditis elegans Body Wall Muscle

    PubMed Central

    Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G.

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive “localizome” for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function. PMID:21611156

  19. Subcellular localization of calcium deposits during zebrafish (Danio rerio) oogenesis.

    PubMed

    Golpour, Amin; Pšenička, Martin; Niksirat, Hamid

    2016-01-01

    Calcium plays prominent roles in regulating a broad range of physiological events in reproduction. The aim of this study was to describe the subcellular distribution of calcium deposits during stages of oogenesis in zebrafish using a combined oxalate-pyroantimonate technique. The oocyte development of zebrafish was categorized into four stages: primary growth, cortical-alveolus, vitellogenic, and maturation, based on morphological criteria. Calcium deposits in the primary growth stage were detected in the cytoplasm, mitochondria, nucleus, and follicular cells. At the cortical-alveolus stage, calcium particles were transported from follicular cells and deposited in the cortical alveoli. In the vitellogenic stage, some cortical alveoli were compacted and transformed from flocculent electron-lucent to electron-dense objects with the progression of the stage. Calcium deposits were transformed from larger to smaller particles, coinciding with compaction of cortical alveoli. In the maturation stage, calcium deposits in all oocyte compartments decreased, with the exception of those in mitochondria. The proportion of area covered by calcium deposits in the mitochondria and cortical alveoli of oocytes at different stages of development was significantly different (p<0.05). The extent of calcium deposits in the cortical alveoli of mature oocytes was substantially lower than in earlier stages. Basic information about calcium distribution during zebrafish oogenesis may contribute to better understanding of its role in oogenesis. PMID:26402915

  20. Subcellular Localization of Galloylated Catechins in Tea Plants [Camellia sinensis (L.) O. Kuntze] Assessed via Immunohistochemistry

    PubMed Central

    Xu, Huanhuan; Wang, Ya; Chen, Yana; Zhang, Pan; Zhao, Yi; Huang, Yewei; Wang, Xuanjun; Sheng, Jun

    2016-01-01

    Galloylated catechins, as the main secondary metabolites in the tea plant, including (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate, comprise approximately three-quarters of all the tea plant catechins and have stronger effects than non-galloylated catechins, both on the product quality in tea processing and the pharmacological efficacy to human beings. The subcellular localization of galloylated catechins has been the primary focus of studies that assess biosynthesis and physiological functions. Classical histochemical localization staining reagents can not specifically detect galloylated catechins; thus, their subcellular localization remains controversial. In the present study, we generated a monoclonal antibody (mAb) against galloylated catechins, which can be used for the subcellular localization of galloylated catechins in the tea plant by immunohistochemistry. Direct ELISA and ForteBio Octet Red 96 System assay indicated the mAb could recognize the galloylated catechins with high specificities and affinities. In addition, tea bud was ascertained as the optimal tissue for freezing microtomic sections for immunohistochemistry. What’s more, the high quality mAbs which exhibited excellent binding capability to galloylated catechins were utilized for the visualization of them via immunohistochemistry. Our findings demonstrated that vacuoles were the primary sites of localization of galloylated catechins at the subcellular level. PMID:27303422

  1. PSI: a comprehensive and integrative approach for accurate plant subcellular localization prediction.

    PubMed

    Liu, Lili; Zhang, Zijun; Mei, Qian; Chen, Ming

    2013-01-01

    Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ~10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/. PMID:24194827

  2. CellWhere: graphical display of interaction networks organized on subcellular localizations.

    PubMed

    Zhu, Lu; Malatras, Apostolos; Thorley, Matthew; Aghoghogbe, Idonnya; Mer, Arvind; Duguez, Stéphanie; Butler-Browne, Gillian; Voit, Thomas; Duddy, William

    2015-07-01

    Given a query list of genes or proteins, CellWhere produces an interactive graphical display that mimics the structure of a cell, showing the local interaction network organized into subcellular locations. This user-friendly tool helps in the formulation of mechanistic hypotheses by enabling the experimental biologist to explore simultaneously two elements of functional context: (i) protein subcellular localization and (ii) protein-protein interactions or gene functional associations. Subcellular localization terms are obtained from public sources (the Gene Ontology and UniProt-together containing several thousand such terms) then mapped onto a smaller number of CellWhere localizations. These localizations include all major cell compartments, but the user may modify the mapping as desired. Protein-protein interaction listings, and their associated evidence strength scores, are obtained from the Mentha interactome server, or power-users may upload a pre-made network produced using some other interactomics tool. The Cytoscape.js JavaScript library is used in producing the graphical display. Importantly, for a protein that has been observed at multiple subcellular locations, users may prioritize the visual display of locations that are of special relevance to their research domain. CellWhere is at http://cellwhere-myology.rhcloud.com. PMID:25883154

  3. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt. PMID:19537160

  4. Subcellular localization and compartmentation of thiamine derivatives in rat brain.

    PubMed

    Bettendorff, L; Wins, P; Lesourd, M

    1994-05-26

    The subcellular distribution of thiamine derivatives in rat brain was studied. Thiamine diphosphate content was highest in the mitochondrial and synaptosomal fractions, and lowest in microsomal, myelin and cytosolic fractions. Only 3-5% of total thiamine diphosphate was bound to transketolase, a cytosolic enzyme. Thiamine triphosphate was barely detectable in the microsomal and cytosolic fraction, but synaptosomes were slightly enriched in this compound compared to the crude homogenate. Both myelin and mitochondrial fractions contained significant amounts of thiamine triphosphate. In order to estimate the relative turnover rates of these compounds, the animals received an intraperitoneal injection of either [14C]thiamine or [14C]sulbutiamine (isobutyrylthiamine disulfide) 1 h before decapitation. The specific radioactivities of thiamine compounds found in the brain decreased in the order: thiamine > thiamine triphosphate > thiamine monophosphate > thiamine diphosphate. Incorporation of radioactivity into thiamine triphosphate was more marked with [14C]sulbutiamine than with [14C]thiamine. The highest specific radioactivity of thiamine diphosphate was found in the cytosolic fraction of the brain, though this pool represents less than 10% of total thiamine diphosphate. Cytosolic thiamine diphosphate had a twice higher specific radioactivity when [14C]sulbutiamine was used as precursor compared with thiamine though no significant differences were found in the other cellular compartments. Our results suggest the existence of two thiamine diphosphate pools: the bound cofactor pool is essentially mitochondrial and has a low turnover; a much smaller cytosolic pool (6-7% of total TDP) of high turnover is the likely precursor of thiamine triphosphate. PMID:8186256

  5. The cellular and subcellular localization of zinc transporter 7 in the mouse spinal cord

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present work addresses the cellular and subcellular localization of the zinc transporter 7 (ZNT7, SLC30a7) protein and the distribution of zinc ions (Zn2+) in the mouse spinal cord. Our results indicated that the ZNT7 immunoreactive neurons were widely distributed in the Rexed’s laminae of the g...

  6. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

    PubMed

    Cui, Yong; Gao, Caiji; Zhao, Qiong; Jiang, Liwen

    2016-01-01

    Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells. PMID:27515077

  7. Characterization of RanBPM Molecular Determinants that Control Its Subcellular Localization

    PubMed Central

    Salemi, Louisa M.; Loureiro, Sandra O.; Schild-Poulter, Caroline

    2015-01-01

    RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding. PMID:25659156

  8. The roles of nucleolin subcellular localization in cancer.

    PubMed

    Berger, Caroline Madeleine; Gaume, Xavier; Bouvet, Philippe

    2015-06-01

    Nucleolin (NCL) is one of the most abundant non ribosomal protein of the nucleolus where it plays a central role in polymerase I transcription. NCL is also found outside of the nucleolus, in the nucleoplasm, cytoplasm as well as on the cell membrane. It acts in all cell compartments to control cellular homeostasis and therefore each cellular pool of NCL can play a different role in cancer development. NCL overexpression and its increased localization at the cell membrane is a common feature of several tumor cells. In cancer cells, NCL overexpression influences cell survival, proliferation and invasion through its action on different cellular pathways. In this review, we describe how the multiple functions of NCL that are associated to its multiple cellular localization can participate to the development of cancer. PMID:25866190

  9. Subcellular localization of adenylate kinases in Plasmodium falciparum.

    PubMed

    Ma, Jipeng; Rahlfs, Stefan; Jortzik, Esther; Schirmer, R Heiner; Przyborski, Jude M; Becker, Katja

    2012-09-21

    Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation. PMID:22819813

  10. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles.

    PubMed

    Wainstein, Ehud; Seger, Rony

    2016-04-01

    The dynamic subcellular localization of ERK in resting and stimulated cells plays an important role in its regulation. In resting cells, ERK localizes in the cytoplasm, and upon stimulation, it translocates to its target substrates and organelles. ERK signaling initiated from different places in resting cells has distinct outcomes. In this review, we summarize the mechanisms of ERK1/2 translocation to the nucleus and mitochondria, and of ERK1c to the Golgi. We also show that ERK1/2 translocation to the nucleus is a useful anti cancer target. Unraveling the complex subcellular localization of ERK and its dynamic changes upon stimulation provides a better understanding of the regulation of ERK signaling and may result in the development of new strategies to combat ERK-related diseases. PMID:26827288

  11. Subcellular localization of the epitheliopeptide, Hym-301, in Hydra.

    PubMed

    Takaku, Yasuharu; Shimizu, Hiroshi; Takahashi, Toshio; Fujisawa, Toshitaka

    2013-03-01

    Peptides, as signaling molecules, play a number of roles in cell activities. An epitheliopeptide, Hym-301, has been described as a peptide involved in morphogenesis in hydra. However, little is known about the intracellular location of the peptide or its specific functions. To investigate the mechanism of morphogenesis that involves peptidic molecules, we have examined the intracellular localization of Hym-301 in hydra by using immunohistochemical and immunogold electron-microscopic analyses. We have found that the pattern of distribution of mature peptide is slightly different from that of its mRNA, and that the peptide is stored in vesicles located adjacent to the cell membrane. We have also found that the peptide is released both extracellularly and internally to the cytoplasm of the cells. Based upon these observations, we have constructed a possible model mechanism of homeostatic regulation of the distribution of the Hym-301 peptide in a dynamic tissue context. PMID:23180321

  12. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  13. Different subcellular localizations and functions of Arabidopsis myosin VIII

    PubMed Central

    Golomb, Lior; Abu-Abied, Mohamad; Belausov, Eduard; Sadot, Einat

    2008-01-01

    Background Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB. Results In transgenic plants expressing GFP fusions with ATM1 (IQ-tail truncation, lacking the head domain), fluorescence was differentially distributed: while in epidermis cells at the root cap GFP-ATM1 equally distributed all over the cell, in epidermal cells right above this region it accumulated in dots. Further up, in cells of the elongation zone, GFP-ATM1 was preferentially positioned at the sides of transversal cell walls. Interestingly, the punctate pattern was insensitive to brefeldin A (BFA) while in some cells closer to the root cap, ATM1 was found in BFA bodies. With the use of different markers and transient expression in Nicotiana benthamiana leaves, it was found that myosin VIII co-localized to the plasmodesmata and ER, colocalized with internalized FM4-64, and partially overlapped with the endosomal markers ARA6, and rarely with ARA7 and FYVE. Motility of ARA6 labeled organelles was inhibited whenever associated with truncated ATM1 but motility of FYVE labeled organelles was inhibited only when associated with large excess of ATM1. Furthermore, GFP-ATM1 and RFP-ATM2 (IQ-tail domain) co-localized to the same spots on the plasma membrane, indicating a specific composition at these sites for myosin binding. Conclusion Taken together, our data suggest that myosin VIII functions differently in different root cells and can be involved in different steps of endocytosis, BFA-sensitive and insensitive pathways, ER tethering and plasmodesmatal activity. PMID:18179725

  14. Dynamic visualization of transcription and RNA subcellular localization in zebrafish.

    PubMed

    Campbell, Philip D; Chao, Jeffrey A; Singer, Robert H; Marlow, Florence L

    2015-04-01

    Live imaging of transcription and RNA dynamics has been successful in cultured cells and tissues of vertebrates but is challenging to accomplish in vivo. The zebrafish offers important advantages to study these processes--optical transparency during embryogenesis, genetic tractability and rapid development. Therefore, to study transcription and RNA dynamics in an intact vertebrate organism, we have adapted the MS2 RNA-labeling system to zebrafish. By using this binary system to coexpress a fluorescent MS2 bacteriophage coat protein (MCP) and an RNA of interest tagged with multiple copies of the RNA hairpin MS2-binding site (MBS), live-cell imaging of RNA dynamics at single RNA molecule resolution has been achieved in other organisms. Here, using a Gateway-compatible MS2 labeling system, we generated stable transgenic zebrafish lines expressing MCP, validated the MBS-MCP interaction and applied the system to investigate zygotic genome activation (ZGA) and RNA localization in primordial germ cells (PGCs) in zebrafish. Although cleavage stage cells are initially transcriptionally silent, we detect transcription of MS2-tagged transcripts driven by the βactin promoter at ∼ 3-3.5 h post-fertilization, consistent with the previously reported ZGA. Furthermore, we show that MS2-tagged nanos3 3'UTR transcripts localize to PGCs, where they are diffusely cytoplasmic and within larger cytoplasmic accumulations reminiscent of those displayed by endogenous nanos3. These tools provide a new avenue for live-cell imaging of RNA molecules in an intact vertebrate. Together with new techniques for targeted genome editing, this system will be a valuable tool to tag and study the dynamics of endogenous RNAs during zebrafish developmental processes. PMID:25758462

  15. Characterization and subcellular localization of aminopeptidases in senescing barley leaves

    NASA Technical Reports Server (NTRS)

    Thayer, S. S.; Choe, H. T.; Rausser, S.; Huffaker, R. C.

    1988-01-01

    Four aminopeptidases (APs) were separated using native polyacrylamide gel electrophoresis of cell-free extracts and the stromal fractions of isolated chloroplasts prepared from primary barley (Hordeum vulgare L., var Numar) leaves. Activities were identified using a series of aminoacyl-beta-naphthylamide derivatives as substrates. AP1, 2, and 3 were found in the stromal fraction of isolated chloroplasts with respective molecular masses of 66.7, 56.5, and 54.6 kilodaltons. AP4 was found only in the cytoplasmic fraction. No AP activity was found in vacuoles of these leaves. It was found that 50% of the L-Leu-beta-naphthylamide and 25% of the L-Arg-beta-naphthylamide activities were localized in the chloroplasts. Several AP activities were associated with the membranes of the thylakoid fraction of isolated chloroplasts. AP1, 2, and 4 reacted against a broad range of substrates, whereas AP3 hydrolyzed only L-Arg-beta-naphthylamide. Only AP2 hydrolyzed L-Val-beta-naphthylamide. Since AP2 and AP3 were the only ones reacting against Val-beta-naphthylamide and Arg-beta-naphthylamide, respectively, several protease inhibitors were tested against these substrates using a stromal fraction from isolated chloroplasts as the source of the two APs. Both APs were sensitive to both metallo and sulfhydryl type inhibitors. Although AP activity decreased as leaves senesced, no new APs appeared on gels during senescence and none disappeared.

  16. APSLAP: an adaptive boosting technique for predicting subcellular localization of apoptosis protein.

    PubMed

    Saravanan, Vijayakumar; Lakshmi, P T V

    2013-12-01

    Apoptotic proteins play key roles in understanding the mechanism of programmed cell death. Knowledge about the subcellular localization of apoptotic protein is constructive in understanding the mechanism of programmed cell death, determining the functional characterization of the protein, screening candidates in drug design, and selecting protein for relevant studies. It is also proclaimed that the information required for determining the subcellular localization of protein resides in their corresponding amino acid sequence. In this work, a new biological feature, class pattern frequency of physiochemical descriptor, was effectively used in accordance with the amino acid composition, protein similarity measure, CTD (composition, translation, and distribution) of physiochemical descriptors, and sequence similarity to predict the subcellular localization of apoptosis protein. AdaBoost with the weak learner as Random-Forest was designed for the five modules and prediction is made based on the weighted voting system. Bench mark dataset of 317 apoptosis proteins were subjected to prediction by our system and the accuracy was found to be 100.0 and 92.4 %, and 90.1 % for self-consistency test, jack-knife test, and tenfold cross validation test respectively, which is 0.9 % higher than that of other existing methods. Beside this, the independent data (N151 and ZW98) set prediction resulted in the accuracy of 90.7 and 87.7 %, respectively. These results show that the protein feature represented by a combined feature vector along with AdaBoost algorithm holds well in effective prediction of subcellular localization of apoptosis proteins. The user friendly web interface "APSLAP" has been constructed, which is freely available at http://apslap.bicpu.edu.in and it is anticipated that this tool will play a significant role in determining the specific role of apoptosis proteins with reliability. PMID:23982307

  17. A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage*

    PubMed Central

    Boisvert, François-Michel; Lam, Yun Wah; Lamont, Douglas; Lamond, Angus I.

    2010-01-01

    A major challenge in cell biology is to identify the subcellular distribution of proteins within cells and to characterize how protein localization changes under different cell growth conditions and in response to stress and other external signals. Protein localization is usually determined either by microscopy or by using cell fractionation combined with protein blotting techniques. Both these approaches are intrinsically low throughput and limited to the analysis of known components. Here we use mass spectrometry-based proteomics to provide an unbiased, quantitative, and high throughput approach for measuring the subcellular distribution of the proteome, termed “spatial proteomics.” The spatial proteomics method analyzes a whole cell extract created by recombining differentially labeled subcellular fractions derived from cells in which proteins have been mass-labeled with heavy isotopes. This was used here to measure the relative distribution between cytoplasm, nucleus, and nucleolus of over 2,000 proteins in HCT116 cells. The data show that, at steady state, the proteome is predominantly partitioned into specific subcellular locations with only a minor subset of proteins equally distributed between two or more compartments. Spatial proteomics also facilitates a proteome-wide comparison of changes in protein localization in response to a wide range of physiological and experimental perturbations, shown here by characterizing dynamic changes in protein localization elicited during the cellular response to DNA damage following treatment of HCT116 cells with etoposide. DNA damage was found to cause dissociation of the proteasome from inhibitory proteins and assembly chaperones in the cytoplasm and relocation to associate with proteasome activators in the nucleus. PMID:20026476

  18. Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum

    PubMed Central

    Guo, Xia; Ruan, Hangze; Li, Xia; Qin, Liming; Tao, Yi; Qi, Xianjie; Gao, Juanmei; Gan, Lin; Duan, Shumin; Shen, Wanhua

    2016-01-01

    Histone deacetylases (HDACs) are thought to localize in the nucleus to regulate gene transcription and play pivotal roles in neurogenesis, apoptosis, and plasticity. However, the subcellular distribution of class I HDACs in the developing brain remains unclear. Here, we show that HDAC1 and HDAC2 are located in both the mitochondria and the nucleus in the Xenopus laevis stage 34 tectum and are mainly restricted to the nucleus following further brain development. HDAC3 is widely present in the mitochondria, nucleus, and cytoplasm during early tectal development and is mainly distributed in the nucleus in stage 45 tectum. In contrast, HDAC8 is broadly located in the mitochondria, nucleus, and cytoplasm during tectal development. These data demonstrate that HDAC1, HDAC2, and HDAC3 are transiently localized in the mitochondria and that the subcellular distribution of class I HDACs in the Xenopus tectum is heterogeneous. Furthermore, we observed that spherical mitochondria accumulate in the cytoplasm at earlier stages, whereas elongated mitochondria are evenly distributed in the tectum at later stages. The activity of histone acetylation (H4K12) remains low in mitochondria during tectal development. Pharmacological blockades of HDACs using a broad spectrum HDAC inhibitor of Trichostatin A (TSA) or specific class I HDAC inhibitors of MS-275 and MGCD0103 decrease the number of mitochondria in the tectum at stage 34. These findings highlight a link between the subcellular distribution of class I HDACs and mitochondrial dynamics in the developing optic tectum of Xenopus laevis. PMID:26793062

  19. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo

    PubMed Central

    Buckley, Clare E.; Moore, Rachel E.; Reade, Anna; Goldberg, Anna R.; Weiner, Orion D.; Clarke, Jonathan D.W.

    2016-01-01

    Summary We demonstrate the utility of the phytochrome system to rapidly and reversibly recruit proteins to specific subcellular regions within specific cells in a living vertebrate embryo. Light-induced heterodimerization using the phytochrome system has previously been used as a powerful tool to dissect signaling pathways for single cells in culture but has not previously been used to reversibly manipulate the precise subcellular location of proteins in multicellular organisms. Here we report the experimental conditions necessary to use this system to manipulate proteins in vivo. As proof of principle, we demonstrate that we can manipulate the localization of the apical polarity protein Pard3 with high temporal and spatial precision in both the neural tube and the embryo’s enveloping layer epithelium. Our optimizations of optogenetic component expression and chromophore purification and delivery should significantly lower the barrier for establishing this powerful optogenetic system in other multicellular organisms. PMID:26766447

  20. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.

    PubMed

    Buckley, Clare E; Moore, Rachel E; Reade, Anna; Goldberg, Anna R; Weiner, Orion D; Clarke, Jonathan D W

    2016-01-11

    We demonstrate the utility of the phytochrome system to rapidly and reversibly recruit proteins to specific subcellular regions within specific cells in a living vertebrate embryo. Light-induced heterodimerization using the phytochrome system has previously been used as a powerful tool to dissect signaling pathways for single cells in culture but has not previously been used to reversibly manipulate the precise subcellular location of proteins in multicellular organisms. Here we report the experimental conditions necessary to use this system to manipulate proteins in vivo. As proof of principle, we demonstrate that we can manipulate the localization of the apical polarity protein Pard3 with high temporal and spatial precision in both the neural tube and the embryo's enveloping layer epithelium. Our optimizations of optogenetic component expression and chromophore purification and delivery should significantly lower the barrier for establishing this powerful optogenetic system in other multicellular organisms. PMID:26766447

  1. Visualizing chemical structure-subcellular localization relationships using fluorescent small molecules as probes of cellular transport

    PubMed Central

    2013-01-01

    Background To study the chemical determinants of small molecule transport inside cells, it is crucial to visualize relationships between the chemical structure of small molecules and their associated subcellular distribution patterns. For this purpose, we experimented with cells incubated with a synthetic combinatorial library of fluorescent, membrane-permeant small molecule chemical agents. With an automated high content screening instrument, the intracellular distribution patterns of these chemical agents were microscopically captured in image data sets, and analyzed off-line with machine vision and cheminformatics algorithms. Nevertheless, it remained challenging to interpret correlations linking the structure and properties of chemical agents to their subcellular localization patterns in large numbers of cells, captured across large number of images. Results To address this challenge, we constructed a Multidimensional Online Virtual Image Display (MOVID) visualization platform using off-the-shelf hardware and software components. For analysis, the image data set acquired from cells incubated with a combinatorial library of fluorescent molecular probes was sorted based on quantitative relationships between the chemical structures, physicochemical properties or predicted subcellular distribution patterns. MOVID enabled visual inspection of the sorted, multidimensional image arrays: Using a multipanel desktop liquid crystal display (LCD) and an avatar as a graphical user interface, the resolution of the images was automatically adjusted to the avatar’s distance, allowing the viewer to rapidly navigate through high resolution image arrays, zooming in and out of the images to inspect and annotate individual cells exhibiting interesting staining patterns. In this manner, MOVID facilitated visualization and interpretation of quantitative structure-localization relationship studies. MOVID also facilitated direct, intuitive exploration of the relationship between the

  2. Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1.

    PubMed

    Amazit, Larbi; Alj, Youssef; Tyagi, Rakesh Kumar; Chauchereau, Anne; Loosfelt, Hugues; Pichon, Christophe; Pantel, Jacques; Foulon-Guinchard, Emmanuelle; Leclerc, Philippe; Milgrom, Edwin; Guiochon-Mantel, Anne

    2003-08-22

    Steroid hormone receptors are ligand-stimulated transcription factors that modulate gene transcription by recruiting coregulators to gene promoters. Subcellular localization and dynamic movements of transcription factors have been shown to be one of the major means of regulating their transcriptional activity. In the present report we describe the subcellular localization and the dynamics of intracellular trafficking of steroid receptor coactivator 1 (SRC-1). After its synthesis in the cytoplasm, SRC-1 is imported into the nucleus, where it activates transcription and is subsequently exported back to the cytoplasm. In both the nucleus and cytoplasm, SRC-1 is localized in speckles. The characterization of SRC-1 nuclear localization sequence reveals that it is a classic bipartite signal localized in the N-terminal region of the protein, between amino acids 18 and 36. This sequence is highly conserved within the other members of the p160 family. Additionally, SRC-1 nuclear export is inhibited by leptomycin B. The region involved in its nuclear export is localized between amino acids 990 and 1038. It is an unusually large domain differing from the classic leucine-rich NES sequences. Thus SRC-1 nuclear export involves either an alternate type of NES or is dependent on the interaction of SRC-1 with a protein, which is exported through the crm1/exportin pathway. Overall, the intracellular trafficking of SRC-1 might be a mechanism to regulate the termination of hormone action, the interaction with other signaling pathways in the cytoplasm and its degradation. PMID:12791702

  3. Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family.

    PubMed

    Tanz, Sandra K; Castleden, Ian; Hooper, Cornelia M; Small, Ian; Millar, A Harvey

    2014-01-01

    Sub-functionalization during the expansion of gene families in eukaryotes has occurred in part through specific subcellular localization of different family members. To better understand this process in plants, compiled records of large-scale proteomic and fluorescent protein localization datasets can be explored and bioinformatic predictions for protein localization can be used to predict the gaps in experimental data. This process can be followed by targeted experiments to test predictions. The SUBA3 database is a free web-service at http://suba.plantenergy.uwa.edu.au that helps users to explore reported experimental data and predictions concerning proteins encoded by gene families and to define the experiments required to locate these homologous sets of proteins. Here we show how SUBA3 can be used to explore the subcellular location of the Deg protease family of ATP-independent serine endopeptidases (Deg1-Deg16). Combined data integration and new experiments refined location information for Deg1 and Deg9, confirmed Deg2, Deg5, and Deg8 in plastids and Deg 15 in peroxisomes and provide substantial experimental evidence for mitochondrial localized Deg proteases. Two of these, Deg3 and Deg10, additionally localized to the plastid, revealing novel dual-targeted Deg proteases in the plastid and the mitochondrion. SUBA3 is continually updated to ensure that researchers can use the latest published data when planning the experimental steps remaining to localize gene family functions. PMID:25161662

  4. Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family

    PubMed Central

    Tanz, Sandra K.; Castleden, Ian; Hooper, Cornelia M.; Small, Ian; Millar, A. Harvey

    2014-01-01

    Sub-functionalization during the expansion of gene families in eukaryotes has occurred in part through specific subcellular localization of different family members. To better understand this process in plants, compiled records of large-scale proteomic and fluorescent protein localization datasets can be explored and bioinformatic predictions for protein localization can be used to predict the gaps in experimental data. This process can be followed by targeted experiments to test predictions. The SUBA3 database is a free web-service at http://suba.plantenergy.uwa.edu.au that helps users to explore reported experimental data and predictions concerning proteins encoded by gene families and to define the experiments required to locate these homologous sets of proteins. Here we show how SUBA3 can be used to explore the subcellular location of the Deg protease family of ATP-independent serine endopeptidases (Deg1–Deg16). Combined data integration and new experiments refined location information for Deg1 and Deg9, confirmed Deg2, Deg5, and Deg8 in plastids and Deg 15 in peroxisomes and provide substantial experimental evidence for mitochondrial localized Deg proteases. Two of these, Deg3 and Deg10, additionally localized to the plastid, revealing novel dual-targeted Deg proteases in the plastid and the mitochondrion. SUBA3 is continually updated to ensure that researchers can use the latest published data when planning the experimental steps remaining to localize gene family functions. PMID:25161662

  5. Transformation of tobacco plants by Yali PPO-GFP fusion gene and observation of subcellular localization

    PubMed Central

    Qi, Jing; Li, Gui-Qin; Dong, Zhen; Zhou, Wei

    2016-01-01

    To explore the subcellular localization of Polyphenol oxidase (PPO) from Pyrus bretschneideri, the 1779 bp cDNA of PPO gene excluding the termination codon TAA was cloned and fused with GFP to construct a binary vector pBI121-PPO-GFP. Then, the binary vector was transformed into Nicotiana tabacum by the tumefanciens-mediated method. Using confocal laser scanning microscopy, green fluorescent signals were localized in chloroplasts of the transformed Nicotiana tabacum cell, suggesting that the Polyphenol oxidase from Pyrus bretschneideri was a chloroplast protein. PMID:27158362

  6. Transformation of tobacco plants by Yali PPO-GFP fusion gene and observation of subcellular localization.

    PubMed

    Qi, Jing; Li, Gui-Qin; Dong, Zhen; Zhou, Wei

    2016-01-01

    To explore the subcellular localization of Polyphenol oxidase (PPO) from Pyrus bretschneideri, the 1779 bp cDNA of PPO gene excluding the termination codon TAA was cloned and fused with GFP to construct a binary vector pBI121-PPO-GFP. Then, the binary vector was transformed into Nicotiana tabacum by the tumefanciens-mediated method. Using confocal laser scanning microscopy, green fluorescent signals were localized in chloroplasts of the transformed Nicotiana tabacum cell, suggesting that the Polyphenol oxidase from Pyrus bretschneideri was a chloroplast protein. PMID:27158362

  7. Protein subcellular localization in human and hamster cell lines: employing local ternary patterns of fluorescence microscopy images.

    PubMed

    Tahir, Muhammad; Khan, Asifullah; Kaya, Hüseyin

    2014-01-01

    Discriminative feature extraction technique is always required for the development of accurate and efficient prediction systems for protein subcellular localization so that effective drugs can be developed. In this work, we showed that Local Ternary Patterns (LTPs) effectively exploit small variations in pixel intensities; present in fluorescence microscopy based protein images of human and hamster cell lines. Further, Synthetic Minority Oversampling Technique is applied to balance the feature space for the classification stage. We observed that LTPs coupled with data balancing technique could enable a classifier, in this case support vector machine, to yield good performance. The proposed ensemble based prediction system, using 10-fold cross-validation, has yielded better performance compared to existing techniques in predicting various subcellular compartments for both 2D HeLa and CHO datasets. The proposed predictor is available online at: http://111.68.99.218/Protein_SubLoc/, which is freely accessible to the public. PMID:23988793

  8. Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase1

    PubMed Central

    Leivar, Pablo; González, Víctor M.; Castel, Susanna; Trelease, Richard N.; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier

    2005-01-01

    Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-μm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR

  9. Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Mi, Lan; Xiong, Rongling; Wang, Pei-Nan; Chen, Ji-Yao; Yang, Wuli; Wang, Changchun; Peng, Qian

    2009-07-01

    Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs) in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.

  10. The role of Cysteine 227 in subcellular localization, water permeability, and multimerization of aquaporin-11.

    PubMed

    Takahashi, Saki; Muta, Kanako; Sonoda, Hiroko; Kato, Ayaka; Abdeen, Ahmed; Ikeda, Masahiro

    2014-01-01

    Aquaporin-11 (AQP11) is the latest member of the mammalian water channel protein family to be described. Recent in vivo studies have shown that mutation at Cys(227) causes renal failure. However the importance of Cys(227) for the molecular function of AQP11 is largely unknown. In this study, we examined the subcellular localization, water permeability, and multimerization of AQP11 with a mutation at Cys(227). Interestingly, cells expressing the mutants had significantly higher osmotic water permeability. In contrast, the mutation lowered the cell surface expression and multimerization levels. Our observations suggest that Cys(227) is crucial for the proper molecular function of AQP11. PMID:24918044

  11. Subcellular Localization of the Sigma-1 Receptor in Retinal Neurons — an Electron Microscopy Study

    PubMed Central

    Mavlyutov, Timur A.; Epstein, Miles; Guo, Lian-Wang

    2015-01-01

    The Sigma-1 receptor (S1R) is known to play a protective role in the central nervous system including the retina. A major barrier for understanding the underlying mechanism is an ambiguity of S1R subcellular localizations. We thus conducted the first electron microscopy (EM) study of S1R subcellular distribution in the mouse retina. Immuno-EM imaging showed previously under-appreciated S1R presence in photoreceptor cells. Unlike in other cell types in previous reports, in photoreceptor cells S1R was found in the nuclear envelope but not localized in the endoplasmic reticulum (ER), raising a possibility of S1R-mediated modulatory mechanisms different than conventionally thought. While in bipolar cells S1R was detected only in the nuclear envelope, in ganglion cells S1R was identified predominantly in the nuclear envelope and found in the ER as well. A predominant localization of S1R in the nuclear envelope in all three retinal neurons implicates a potential role of S1R in modulating nuclear activities. Moreover, its absence in the plasma membrane and presence in the subsurface ER cisternae that are juxtaposed to the plasma membrane in ganglion cells may lend mechanistic insights generally important for frequently reported S1R modulations of ion channels in neurons. PMID:26033680

  12. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. PMID:27106876

  13. Subcellular localization of the sigma-1 receptor in retinal neurons - an electron microscopy study.

    PubMed

    Mavlyutov, Timur A; Epstein, Miles; Guo, Lian-Wang

    2015-01-01

    The Sigma-1 receptor (S1R) is known to play a protective role in the central nervous system including the retina. A major barrier for understanding the underlying mechanism is an ambiguity of S1R subcellular localizations. We thus conducted the first electron microscopy (EM) study of S1R subcellular distribution in the mouse retina. Immuno-EM imaging showed previously under-appreciated S1R presence in photoreceptor cells. Unlike in other cell types in previous reports, in photoreceptor cells S1R was found in the nuclear envelope but not localized in the endoplasmic reticulum (ER), raising a possibility of S1R-mediated modulatory mechanisms different than conventionally thought. While in bipolar cells S1R was detected only in the nuclear envelope, in ganglion cells S1R was identified predominantly in the nuclear envelope and found in the ER as well. A predominant localization of S1R in the nuclear envelope in all three retinal neurons implicates a potential role of S1R in modulating nuclear activities. Moreover, its absence in the plasma membrane and presence in the subsurface ER cisternae that are juxtaposed to the plasma membrane in ganglion cells may lend mechanistic insights generally important for frequently reported S1R modulations of ion channels in neurons. PMID:26033680

  14. Subcellular localization of Mayven following expression of wild type and mutant EGFP tagged cDNAs

    PubMed Central

    2010-01-01

    Background Process formation by glial cells is crucial to their function. Mayven, an actin binding, multi-domain polypeptide, and member of the BTB-BACK-Kelch family have been shown to be important in oligodendrocyte process extension. To assess the role of Mayven in neural cell process extension we have tracked the subcellular distribution of exogenous Mayven following expression of a rat Mayven -EGFP cDNA in a variety of neural cell backgrounds and specifically in OEC tranfectants following drug treatment to disrupt the integrity of the cytoskeleton. A comparison was made between the subcellular localization following transient transfection of OECs with full-length Mayven cDNA and a series of mutant domain constructs. Results The subcellular location of Mayven in OEC transfectants showed a characteristic distribution with intense foci of staining towards the process tips corresponding to regions of accumulated Mayven overlapping in part with lammelipodial actin and was absent from the filipodia and the outer membrane. This signature pattern was also observed in Schwann cells, Oli-Neu cells, astrocytes and the neuroblastoma cell line B104 transfectants and resembled the exogenous and endogenous Mayven distribution in oligodendrocytes. This contrasted with the localization pattern in non-neural cells. There was a re-localization of Mayven in OEC transfectants following drug treatment to challenge the integrity of the actin cytoskeleton while breakdown of the microtubular component had no discernible impact on the accumulation of Mayven in the process tips. Deletion of the first three amino acids of the SH3 motif of the putative Fyn Kinase binding domain at the amino terminus significantly compromised this signature pattern as did the removal of the last Kelch repeat unit of six unit Kelch domain comprising the carboxyl terminus. In addition, there was a reduction in process length in mutant transfectants. Co-expression studies with a haemagglutinin (HA) tagged wild

  15. Subcellular Localization of Enzymes Involved in Indole Alkaloid Biosynthesis in Catharanthus roseus1

    PubMed Central

    De Luca, Vincenzo; Cutler, Adrian J.

    1987-01-01

    The subcellular localization of enzymes involved in indole alkaloid biosynthesis in leaves of Catharanthus roseus has been investigated. Tryptophan decarboxylase and strictosidine synthase which together produce strictosidine, the first indole alkaloid of this pathway, are both cytoplasmic enzymes. S-Adenosyl-l-methionine: 16-methoxy-2,3-dihydro-3-hydroxytabersonine-N-methyltransferase which catalyses the third to last step in vindoline biosynthesis could be localized in the chloroplasts of Catharanthus leaves and is specifically associated with thylakoids. Acetyl-coenzyme-A-deacetylvindoline-O-acetyltransferase which catalyses the last step in vindoline biosynthesis could also be localized in the cytoplasm. The participation of the chloroplast in this pathway suggests that indole alkaloid intermediates enter and exit this compartment during the biosynthesis of vindoline. PMID:16665811

  16. Subcellular localization of KL-6 mucin in intraductal papillary mucinous neoplasm of the pancreas.

    PubMed

    Inagaki, Yoshinori; Seyama, Yasuji; Hasegawa, Kiyoshi; Tang, Wei; Kokudo, Norihiro

    2014-08-01

    This study aimed to clarify the expression profile of KL-6 mucin in intraductal papillary mucinous neoplasm (IPMN) and its relation to tumor malignancy. Expression of KL-6 mucin in 38 IPMNs (intraductal papillary mucinous adenoma (IPMA), 24 cases; minimally invasive intraductal papillary mucinous carcinoma (MI-IPMC), 8 cases; invasive carcinoma originating from IPMC (IC-IPMC), 6 cases) and 66 pancreatic ductal adenocarcinomas (PDACs) was evaluated immunohistochemically. IC-IPMCs and MI-IPMCs had positive staining of KL-6 mucin whereas 58% of IPMAs tested negative. Subcellular localization of KL-6 mucin varied among IPMNs whereas all of the PDAC had positive expression in the circumferential membrane and cytoplasm of cancer cells. IC-IPMCs and MI-IPMCs had a higher frequency of circumferential membrane and cytoplasmic localization of KL-6 mucin than did IPMAs. These results suggest that localization of KL-6 mucin could be used to predict the malignancy of IPMN. PMID:25047009

  17. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    SciTech Connect

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  18. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum)

    PubMed Central

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X.; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions. PMID:25941807

  19. Synthesis, characterization, and subcellular localization studies of amino acid-substituted porphyrinic pigments

    NASA Astrophysics Data System (ADS)

    van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula

    2009-06-01

    Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di

  20. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    PubMed

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. PMID:21054678

  1. Plus ça change – evolutionary sequence divergence predicts protein subcellular localization signals

    PubMed Central

    2014-01-01

    Background Protein subcellular localization is a central problem in understanding cell biology and has been the focus of intense research. In order to predict localization from amino acid sequence a myriad of features have been tried: including amino acid composition, sequence similarity, the presence of certain motifs or domains, and many others. Surprisingly, sequence conservation of sorting motifs has not yet been employed, despite its extensive use for tasks such as the prediction of transcription factor binding sites. Results Here, we flip the problem around, and present a proof of concept for the idea that the lack of sequence conservation can be a novel feature for localization prediction. We show that for yeast, mammal and plant datasets, evolutionary sequence divergence alone has significant power to identify sequences with N-terminal sorting sequences. Moreover sequence divergence is nearly as effective when computed on automatically defined ortholog sets as on hand curated ones. Unfortunately, sequence divergence did not necessarily increase classification performance when combined with some traditional sequence features such as amino acid composition. However a post-hoc analysis of the proteins in which sequence divergence changes the prediction yielded some proteins with atypical (i.e. not MPP-cleaved) matrix targeting signals as well as a few misannotations. Conclusion We report the results of the first quantitative study of the effectiveness of evolutionary sequence divergence as a feature for protein subcellular localization prediction. We show that divergence is indeed useful for prediction, but it is not trivial to improve overall accuracy simply by adding this feature to classical sequence features. Nevertheless we argue that sequence divergence is a promising feature and show anecdotal examples in which it succeeds where other features fail. PMID:24438075

  2. Ubiquitins of Bombyx mori nucleopolyhedrovirus and Helicoverpa armigera nucleopolyhedrovirus show distinct subcellular localization in infected cells.

    PubMed

    Guo, Z J; Zhu, Y M; Li, G H; Chen, K P; Zhang, C X

    2011-01-01

    Ubiquitin (UB) is a conserved protein that regulates a number of processes in eukaryotic cells. Nearly all lepidopteran baculoviruses encode UB homologs showing a partial sequence identity with human UB (Hu-UB). In this study, the sequence, predicted 3D-structure and subcellular localization of UB homologs encoded by two different nucleopolyhedroviruses of Bombyx mori (BmNPV) and Helicoverpa armigera (HaNPV) were compared. UBs of BmNPV and HaNPV (Bm-UB, Ha-UB, respectively) shared only 73% of sequence identity of the different aa in relation to Hu-UB being localized in non-conserved parts, namely in two heterogeneous regions of aa 15-32 and aa 53-60. Interestingly, Bm-UB and Ha-UB share the same seven lysines except for an additional Lys54 in Bm-UB. However, in spite of the sequence heterogeneity, Bm-UB and Ha-UB have a similar predicted 3D-structure. A difference in their subcellular localization during virus growth in insect cell lines was found in the late stage of formation of occlusion-derived virus (ODV). In particular Bm-UB was localized mainly and evenly in the nucleus, while Ha-UB on the nuclear membrane. These data suggest that (i) UBs, besides being engaged in various cellular processes, have a role in specific processes of virus growth, and (ii) Bm-UB and Ha-UB may show certain different activities associated with the virus growth. PMID:21692557

  3. Different subcellular localization of muscarinic and serotonin (S2) receptors in human, dog, and rat brain.

    PubMed

    Luabeya, M K; Maloteaux, J M; De Roe, C; Trouet, A; Laduron, P M

    1986-02-01

    Cortex from rat, dog, and human brain was submitted to subcellular fractionation using an analytical approach consisting of a two-step procedure. First, fractions were obtained by differential centrifugation and were analyzed for their content of serotonin S2 and muscarinic receptors, serotonin uptake, and marker enzymes. Second, the cytoplasmic extracts were subfractionated by equilibration in sucrose density gradient. In human brain, serotonin and muscarinic receptors were found associated mostly with mitochondrial fractions which contain synaptosomes, whereas in rat brain they were concentrated mainly in the microsomal fractions. Density gradient centrifugation confirmed a more marked synaptosomal localization of receptors in human than in rat brain, the dog displaying an intermediate profile. In human brain, indeed, more receptor sites were found to be associated with the second peak characterized in electron microscopy by the largest number of nerve terminals. In addition, synaptosomes from human brain are denser than those from rat brain and some marker enzymes reveal different subcellular distribution in the three species. These data indicate that more receptors are of synaptosomal nature in human brain than in other species and this finding is compatible with a larger amount of synaptic contacts in human brain. PMID:2934515

  4. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney.

    PubMed Central

    Dhanakoti, S N; Brosnan, M E; Herzberg, G R; Brosnan, J T

    1992-01-01

    Rat kidneys extract citrulline derived from the intestinal metabolism of glutamine and convert it stoichiometrically into arginine. This pathway constitutes the major endogenous source of arginine. We investigated the localization of enzymes of arginine synthesis, argininosuccinate synthase and lyase, and of breakdown, arginase and ornithine aminotransferase, in five regions of rat kidney, in cortical tubule fractions and in subcellular fractions of cortex. Argininosuccinate synthase and lyase were found almost exclusively in cortex. Arginase and ornithine aminotransferase were found in inner cortex and outer medulla. Since cortical tissue primarily consists of proximal convoluted and straight tubules, distal tubules and glomeruli, we prepared cortical tubule fragments by collagenase digestion of cortices and fractionated them on a Percoll gradient. Argininosuccinate synthase and lyase were found to be markedly enriched in proximal convoluted tubules, whereas less than 10% of arginase and ornithine aminotransferase, were recovered in this fraction. Arginine production from citrulline was also enriched in proximal convoluted tubules. Subcellular fractionation of kidney cortex revealed that argininosuccinate synthase and lyase are cytosolic. We therefore conclude that arginine synthesis occurs in the cytoplasm of the cells of the proximal convoluted tubule. Images Fig. 1. Fig. 2. PMID:1312326

  5. Organ, cellular, and subcellular localization of brain-specific anion transporter BSAT1.

    PubMed

    Baklaushev, V P; Kardashova, K Sh; Gurina, O I; Yusubaliyeva, G M; Zorkina, Ya A; Chekhonin, V P

    2013-08-01

    Organ, cellular, and subcellular localization of brain-specific anion transporter BSAT1 was studied in rats using antibodies to the extracellular fragment (451-557 a.a). The antibodies were shown to recognize the antigen predominantly localized in the nervous tissue, tumors of glial origin, and primordial ovarian follicles. The absence of BSAT1 immunofluorescence signal in kidney and liver sections and accumulation of (125)I labeled antibodies to BSAT1 in these organs indicate that these antibodies do not cross-react with the most common isoforms of OATP expressed in these organs. Analysis of the cellular localization suggests that in the brain, BSAT1 is localized predominantly in astrocytes, but not in endothelial cells, as was previously reported. Laser scanning confocal microscopy with a set of relevant trackers revealed membrane localization of BSAT1. Taking into account the data on the of localization, we can conclude that antibodies to BSAT1 451-557 can be used for basic research of the transport of thyroxin and prostaglandins across the blood brain barrier and for testing the systems for targeted transport of diagnostic preparations and drugs across the blood brain barrier, e.g. to astroglial tumors. PMID:24143376

  6. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-01

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. PMID:26463279

  7. Classification of protein motifs based on subcellular localization uncovers evolutionary relationships at both sequence and functional levels

    PubMed Central

    2013-01-01

    Background Most proteins have evolved in specific cellular compartments that limit their functions and potential interactions. On the other hand, motifs define amino acid arrangements conserved between protein family members and represent powerful tools for assigning function to protein sequences. The ideal motif would identify all members of a protein family but in practice many motifs identify both family members and unrelated proteins, referred to as True Positive (TP) and False Positive (FP) sequences, respectively. Results To address the relationship between protein motifs, protein function and cellular localization, we systematically assigned subcellular localization data to motif sequences from the comprehensive PROSITE sequence motif database. Using this data we analyzed relationships between localization and function. We find that TPs and FPs have a strong tendency to localize in different compartments. When multiple localizations are considered, TPs are usually distributed between related cellular compartments. We also identified cases where FPs are concentrated in particular subcellular regions, indicating possible functional or evolutionary relationships with TP sequences of the same motif. Conclusions Our findings suggest that the systematic examination of subcellular localization has the potential to uncover evolutionary and functional relationships between motif-containing sequences. We believe that this type of analysis complements existing motif annotations and could aid in their interpretation. Our results shed light on the evolution of cellular organelles and potentially establish the basis for new subcellular localization and function prediction algorithms. PMID:23865897

  8. Subcellular localization of EEN/endophilin A2, a fusion partner gene in leukaemia

    PubMed Central

    2004-01-01

    EEN (extra eleven nineteen), also known as EA2 (endophilin A2), a fusion partner of the MLL (mixed-lineage leukaemia) gene in human acute leukaemia, is a member of the endophilin A family, involved in the formation of endocytic vesicles. We present evidence to show that EEN/EA2 is localized predominantly in nuclei of various cell lines of haemopoietic, fibroblast and epithelial origin, in contrast with its reported cytoplasmic localization in neurons and osteoclasts, and that EEN/EA2 exhibits nucleocytoplasmic shuttling. During the cell cycle, EEN/EA2 shows dynamic localization: it is perichromosomal in prometaphase, co-localizes with the bipolar spindle in metaphase and anaphase and redistributes to the midzone and midbody in telophase. This pattern of distribution coincides with changes in protein levels of EEN/EA2, with the highest levels being observed in G2/M-phase. Our results suggest that distinct subcellular localization of the endophilin A family members probably underpins their diverse cellular functions and indicates a role for EEN/EA2 in the cell cycle. PMID:15214844

  9. Numb directs the subcellular localization of EAAT3 through binding the YxNxxF motif.

    PubMed

    Su, Jin-Feng; Wei, Jian; Li, Pei-Shan; Miao, Hong-Hua; Ma, Yong-Chao; Qu, Yu-Xiu; Xu, Jie; Qin, Jie; Li, Bo-Liang; Song, Bao-Liang; Xu, Zheng-Ping; Luo, Jie

    2016-08-15

    Excitatory amino acid transporter type 3 (EAAT3, also known as SLC1A1) is a high-affinity, Na(+)-dependent glutamate carrier that localizes primarily within the cell and at the apical plasma membrane. Although previous studies have reported proteins and sequence regions involved in EAAT3 trafficking, the detailed molecular mechanism by which EAAT3 is distributed to the correct location still remains elusive. Here, we identify that the YVNGGF sequence in the C-terminus of EAAT3 is responsible for its intracellular localization and apical sorting in rat hepatoma cells CRL1601 and Madin-Darby canine kidney (MDCK) cells, respectively. We further demonstrate that Numb, a clathrin adaptor protein, directly binds the YVNGGF motif and regulates the localization of EAAT3. Mutation of Y503, N505 and F508 within the YVNGGF motif to alanine residues or silencing Numb by use of small interfering RNA (siRNA) results in the aberrant localization of EAAT3. Moreover, both Numb and the YVNGGF motif mediate EAAT3 endocytosis in CRL1601 cells. In summary, our study suggests that Numb is a pivotal adaptor protein that mediates the subcellular localization of EAAT3 through binding the YxNxxF (where x stands for any amino acid) motif. PMID:27358480

  10. Tissue and Subcellular Localization of Enzymes Catabolizing (R)-Amygdalin in Mature Prunus serotina Seeds 1

    PubMed Central

    Swain, Elisabeth; Li, Chun Ping; Poulton, Jonathan E.

    1992-01-01

    In black cherry (Prunus serotina Ehrh.) homogenates, (R)-amygdalin is catabolized to HCN, benzaldehyde, and d-glucose by the sequential action of amygdalin hydrolase, prunasin hydrolase, and mandelonitrile lyase. The tissue and subcellular localizations of these enzymes were determined within intact black cherry seeds by direct enzyme analysis, immunoblotting, and colloidal gold immunocytochemical techniques. Taken together, these procedures showed that the two β-glucosidases are restricted to protein bodies of the procambium, which ramifies throughout the cotyledons. Although amygdalin hydrolase occurred within the majority of procambial cells, prunasin hydrolase was confined to the peripheral layers of this meristematic tissue. Highest levels of mandelonitrile lyase were observed in the protein bodies of the cotyledonary parenchyma cells, with lesser amounts in the procambial cell protein bodies. The residual endosperm tissue had insignificant levels of amygdalin hydrolase, prunasin hydrolase, and mandelonitrile lyase. Images Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:16652960

  11. Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1

    PubMed Central

    Gay, Frédérique; Calvo, Dominica; Lo, Miao-Chia; Ceron, Julian; Maduro, Morris; Lin, Rueyling; Shi, Yang

    2003-01-01

    Lymphoid enhancer factor/T-cell factor (LEF/TCF) are transcription factors that mediate the Wnt signaling pathway, and have crucial roles during embryonic development in various organisms. Here we report that acetylation enhances nuclear retention of POP-1, the Caenorhabditis elegans LEF/TCF homolog, through increasing nuclear import and blocking nuclear export. We identify three lysines that are acetylated in vivo, and demonstrate their essential requirement for proper nuclear localization and biological activity of POP-1 during C. elegans embryogenesis. The conservation of these lysines among other LEF/TCF family members suggests that acetylation may be an important, evolutionarily conserved mechanism regulating subcellular distribution of LEF/TCF factors. PMID:12651889

  12. Ion microscopy: a new approach for subcellular localization of labelled molecules

    SciTech Connect

    Hindie, E.; Hallegot, P.; Chabala, J.M.; Thorne, N.A.; Coulomb, B.; Levi-Setti, R.; Galle, P.

    1988-12-01

    Secondary ion mass spectroscopy (SIMS) was used to obtain images representing the intracellular distribution of molecules labelled with carbon 14. Deoxyadenosine labelled with carbon 14 was added to a cultured human fibroblast cell medium, and the intracellular distribution of this molecule was studied using three different SIMS instruments: the CAMECA IMS 3F and SMI 300 ion microscopes and the UC-HRL scanning ion microprobe. Carbon 14 distribution images obtained by this method show that deoxyadenosine U-C14 is present in the cytoplasm as well as the nucleus, with a higher concentration in the nucleoli. Our study clearly demonstrates that ion microscopy is well suited for carbon 14 detection and localization at the subcellular level, permitting a wide variety of microanalytical tracer experiments.

  13. Identification of an Intrinsic Determinant Critical for Maspin Subcellular Localization and Function

    PubMed Central

    Dzinic, Sijana H.; Kaplun, Alexander; Li, Xiaohua; Bernardo, Margarida; Meng, Yonghong; Dean, Ivory; Krass, David; Stemmer, Paul; Shin, Namhee; Lonardo, Fulvio; Sheng, Shijie

    2013-01-01

    Maspin, a multifaceted tumor suppressor, belongs to the serine protease inhibitor superfamily, but only inhibits serine protease-like enzymes such as histone deacetylase 1 (HDAC1). Maspin is specifically expressed in epithelial cells and it is differentially regulated during tumor progression. A new emerging consensus suggests that a shift in maspin subcellular localization from the nucleus to the cytoplasm stratifies with poor cancer prognosis. In the current study, we employed a rational mutagenesis approach and showed that maspin reactive center loop (RCL) and its neighboring sequence are critical for maspin stability. Further, when expressed in multiple tumor cell lines, single point mutation of Aspartate346 (D346) to Glutamate (E346), maspinD346E, was predominantly nuclear, whereas wild type maspin (maspinWT) was both cytoplasmic and nuclear. Evidence from cellular fractionation followed by immunological and proteomic protein identification, combined with the evidence from fluorescent imaging of endogenous proteins, fluorescent protein fusion constructs, as well as bimolecular fluorescence complementation (BiFC) showed that the increased nuclear enrichment of maspinD346E was, at least in part, due to its increased affinity to HDAC1. MaspinD346E was also more potent than maspinWT as an HDAC inhibitor. Taken together, our evidence demonstrates that D346 is a critical cis-element in maspin sequence that determines the molecular context and subcellular localization of maspin. A mechanistic model derived from our evidence suggests a new window of opportunity for the development of maspin-based biologically competent HDAC inhibitors for cancer treatment. PMID:24278104

  14. Protein subcellular localization prediction based on compartment-specific features and structure conservation

    PubMed Central

    Su, Emily Chia-Yu; Chiu, Hua-Sheng; Lo, Allan; Hwang, Jenn-Kang; Sung, Ting-Yi; Hsu, Wen-Lian

    2007-01-01

    Background Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. Results We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM) model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. Conclusion Our results demonstrate that biological features derived from Gram-negative bacteria translocation pathways yield a significant

  15. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants12

    PubMed Central

    Corpas, Francisco J.; Barroso, Juan B.; Carreras, Alfonso; Quirós, Miguel; León, Ana M.; Romero-Puertas, María C.; Esteban, Francisco J.; Valderrama, Raquel; Palma, José M.; Sandalio, Luisa M.; Gómez, Manuel; del Río, Luis A.

    2004-01-01

    The cellular and subcellular localization of endogenous nitric oxide (NO˙) in leaves from young and senescent pea (Pisum sativum) plants was studied. Confocal laser scanning microscopy analysis of pea leaf sections with the fluorescent probe 4,5-diaminofluorescein diacetate revealed that endogenous NO˙ was mainly present in vascular tissues (xylem and phloem). Green fluorescence spots were also detected in the epidermal cells, palisade and spongy mesophyll cells, and guard cells. In senescent leaves, NO˙ generation was clearly reduced in the vascular tissues. At the subcellular level, by electron paramagnetic resonance spectroscopy with the spin trap Fe(MGD)2 and fluorometric analysis with 4,5-diaminofluorescein diacetate, NO˙ was found to be an endogenous metabolite of peroxisomes. The characteristic three-line electron paramagnetic resonance spectrum of NO˙, with g = 2.05 and aN = 12.8 G, was detected in peroxisomes. By fluorometry, NO˙ was also found in these organelles, and the level measured of NO˙ was linearly dependent on the amount of peroxisomal protein. The enzymatic production of NO˙ from l-Arg (nitric oxide synthase [NOS]-like activity) was measured by ozone chemiluminiscence. The specific activity of peroxisomal NOS was 4.9 nmol NO˙ mg−1 protein min−1; was strictly dependent on NADPH, calmodulin, and BH4; and required calcium. In senescent pea leaves, the NOS-like activity of peroxisomes was down-regulated by 72%. It is proposed that peroxisomal NO˙ could be involved in the process of senescence of pea leaves. PMID:15347796

  16. Subcellular Localization of Proteins Responding to Mitoxantrone-Induced DNA Damage in Leukaemic Cells.

    PubMed

    Ćmielová, J; Lesná, M; Řezáčová, M

    2015-01-01

    The aim of the present study was to investigate the subcellular localization of proteins participating in the double-strand break response pathway - p53, Mdm2, p21 and Chk2. MOLT-4 cells were pre-treated with mitoxantrone in concentrations 1 nmol/l and 5 nmol/l. The trypan blue technique was used to determine cell viability and proliferation. Western blotting was used to evaluate changes in p53, Mdm2 and Chk2 protein expression and sandwich ELISA was used to evaluate changes in the p21 protein amount. After 1 nmol/l mitoxantrone cells did not die, but their ability to proliferate was decreased. The p53 protein was activated and phosphorylated at serines 15 and 392 and accumulated in the nucleus after 24 and 48 h. The Mdm2 protein was present in the cytoplasm with its maximal level after 8 and 16 h. The p21 protein was detected in the nucleus after 24 and 48 h. Increased levels of phosphorylated Chk2 at threonine 68 were observed in the cytoplasmic fraction after 24 and 48 h of mitoxantrone treatment. We used mitoxantrone as an inducer of double-strand breaks to bring new data about the subcellular distribution of proteins responding to DNA damage. In MOLT-4 cells, the p53 protein was activated. p53 was phosphorylated at serines 15 and 392 and accumulated in the nucleus. The Mdm2 protein was activated in advance to p53 and occurred in the cytoplasm. The p21 protein was present in the nucleus. Chk2 kinase was activated by the phosphorylation at threonine 68 and we observed increased levels of this protein in the cytoplasmic fraction. PMID:26333122

  17. Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization.

    PubMed

    Schilling, Stephan; Lindner, Christiane; Koch, Birgit; Wermann, Michael; Rahfeld, Jens-Ulrich; von Bohlen, Alex; Rudolph, Thomas; Reuter, Gunter; Demuth, Hans-Ulrich

    2007-09-25

    Glutaminyl cyclases (QCs) present in plants and vertebrates catalyze the formation of pyroglutamic acid (pGlu) from N-terminal glutamine. Pyroglutamyl hormones also identified in invertebrates imply the involvement of QC activity during their posttranslational maturation. Database mining led to the identification of two genes in Drosophila, which putatively encode QCs, CG32412 (DromeQC) and CG5976 (isoDromeQC). Analysis of their primary structure suggests different subcellular localizations. While DromeQC appeared to be secreted due to an N-terminal signal peptide, isoDromeQC contains either an N-terminal mitochondrial targeting or a secretion signal due to generation of different transcripts from gene CG5976. According to the prediction, homologous expression of the corresponding cDNAs in S2 cells revealed either secreted protein in the medium or intracellular QC activity. Subcellular fractionation and immunochemistry support export of isoDromeQC into the mitochondrion. For enzymatic characterization, DromeQC and isoDromeQC were expressed heterologously in Pichia pastoris and Escherichia coli, respectively. Compared to mammalian QCs, the specificity constants were about 1 order of magnitude lower for most of the analyzed substrates. The pH dependence of the specificity constant was similar for both enzymes, indicating the necessity of an unprotonated substrate amino group and two protonated groups of the enzyme, resulting in an asymmetric bell-shaped characteristic. The determination of the metal content of DromeQC revealed equimolar protein-bound zinc. These results prove conserved enzymatic mechanisms between QCs from invertebrates and mammals. Drosophila is the first organism for which isoenzymes of glutaminyl cyclase have been isolated. The identification of a mitochondrial QC points toward yet undiscovered physiological functions of these enzymes. PMID:17722885

  18. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases

    SciTech Connect

    Dolci, Susanna; Belmonte, Alessia; Santone, Rocco; Giorgi, Mauro; Pellegrini, Manuela; Carosa, Eleonora; Piccione, Emilio; Lenzi, Andrea; Jannini, Emmanuele A. . E-mail: jannini@univaq.it

    2006-03-17

    We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for First time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype.

  19. Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain.

    PubMed

    Hensleigh, E; Pritchard, L M

    2013-11-27

    Stress plays an important role in the development of addiction. Animals subjected to stress exhibit sensitized responses to psychostimulant drugs, and this sensitized response is associated with functional adaptations of the mesolimbic dopamine system. These adaptations likely arise from direct or indirect effects of glucocorticoids on dopaminergic neurons. Though glucocorticoid receptor expression in midbrain dopaminergic neurons has been examined in previous studies, results have been somewhat equivocal. We sought to clarify this issue by analyzing tyrosine hydroxylase (TH) and glucocorticoid receptor (GR) co-localization in the rat midbrain by dual fluorescence immunohistochemistry. We also examined sub-cellular localization of the GR in rat midbrain neurons after acute restraint stress. Adult Long-Evans rats were sacrificed 0, 30, 60 or 120min after 30min of restraint stress. A control group did not undergo restraint. Blood samples were collected immediately before and after restraint for measurement of plasma corticosterone by enzyme immunoassay. Glucocorticoid receptors were observed in dopaminergic neurons in both the substantia nigra (SN) and ventral tegmental area (VTA). The degree of co-localization of TH and GR did not differ between the VTA and the SN. All animals subjected to stress exhibited significant increases in plasma corticosterone. Significant translocation of GR signal to cell nuclei was observed after restraint in the SN, but not in the VTA. These results suggest that stress-induced glucocorticoid secretion could trigger functional changes in the mesolimbic dopamine system by direct activation of glucocorticoid receptors in dopaminergic neurons. PMID:24121048

  20. Biochemical Characterization and Subcellular Localization of the Red Kidney Bean Purple Acid Phosphatase.

    PubMed Central

    Cashikar, A. G.; Kumaresan, R.; Rao, N. M.

    1997-01-01

    Phosphatases are known to play a crucial role in phosphate turnover in plants. However, the exact role of acid phosphatases in plants has been elusive because of insufficient knowledge of their in vivo substrate and subcellular localization. We investigated the biochemical properties of a purple acid phosphatase isolated from red kidney bean (Phaseolus vulgaris) (KBPAP) with respect to its substrate and inhibitor profiles. The kinetic parameters were estimated for five substrates. We used 31P nuclear magnetic resonance to investigate the in vivo substrate of KBPAP. Chemical and enzymological estimation of polyphosphates and ATP, respectively, indicated the absence of polyphosphates and the presence of ATP in trace amounts in the seed extracts. Immunolocalization using antibodies raised against KBPAP was unsuccessful because of the non-specificity of the antiserum toward glycoproteins. Using histoenzymological methods with ATP as a substrate, we could localize KBPAP exclusively in the cell walls of the peripheral two to three rows of cells in the cotyledons. KBPAP activity was not detected in the embryo. In vitro experiments indicated that pectin, a major component of the cell wall, significantly altered the kinetic properties of KBPAP. The substrate profile and localization suggest that KBPAP may have a role in mobilizing organic phosphates in the soil during germination. PMID:12223752

  1. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles

    PubMed Central

    Colcombet, Jean; Lopez-Obando, Mauricio; Heurtevin, Laure; Bernard, Clément; Martin, Karine; Berthomé, Richard; Lurin, Claire

    2013-01-01

    Four hundred and fifty-eight genes coding for PentatricoPeptide Repeat (PPR) proteins are annotated in the Arabidopsis thaliana genome. Over the past 10 years, numerous reports have shown that many of these proteins function in organelles to target specific transcripts and are involved in post-transcriptional regulation. Therefore, they are thought to be important players in the coordination between nuclear and organelle genome expression. Only four of these proteins have been described to be addressed outside organelles, indicating that some PPRs could function in post-transcriptional regulations of nuclear genes. In this work, we updated and improved our current knowledge on the localization of PPR proteins of Arabidopsis within the plant cell. We particularly investigated the subcellular localization of 166 PPR proteins whose targeting predictions were ambiguous, using a combination of high-throughput cloning and microscopy. Through systematic localization experiments and data integration, we confirmed that PPR proteins are largely targeted to organelles and showed that dual targeting to both the mitochondria and plastid occurs more frequently than expected. These results allow us to speculate that dual-targeted PPR proteins could be important for the fine coordination of gene expressions in both organelles. PMID:24037373

  2. Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize.

    PubMed

    Smehilová, Mária; Galuszka, Petr; Bilyeu, Kristin D; Jaworek, Pavel; Kowalska, Marta; Sebela, Marek; Sedlárová, Michaela; English, James T; Frébort, Ivo

    2009-01-01

    Cytokinin dehydrogenase (CKX; EC 1.5.99.12) degrades cytokinin hormones in plants. There are several differently targeted isoforms of CKX in plant cells. While most CKX enzymes appear to be localized in the apoplast or vacuoles, there is generally only one CKX per plant genome that lacks a translocation signal and presumably functions in the cytosol. The only extensively characterized maize CKX is the apoplastic ZmCKX1; a maize gene encoding a non-secreted CKX has not previously been cloned or characterized. Thus, the aim of this work was to characterize the maize non-secreted CKX gene (ZmCKX10), elucidate the subcellular localization of ZmCKX10, and compare its biochemical properties with those of ZmCKX1. Expression profiling of ZmCKX1 and ZmCKX10 was performed in maize tissues to determine their transcript abundance and organ-specific expression. For determination of the subcellular localization, the CKX genes were fused with green fluorescent protein (GFP) and overexpressed in tomato hairy roots. Using confocal microscopy, the ZmCKX1-GFP signal was confirmed to be present in the apoplast, whereas ZmCKX10-GFP was detected in the cytosol. No interactions of ZmCKX1 with the plasma membrane were observed. While roots overexpressing ZmCKX1-GFP formed significantly more mass in comparison with the control, non-secreted CKX overexpression resulted in a small reduction in root mass accumulation. Biochemical characterization of ZmCKX10 was performed using recombinant protein produced in Pichia pastoris. In contrast to the preference for 2,6-dichlorophenolindophenol (DCPIP) as an electron acceptor and trans-zeatin, N(6)-(Delta(2)-isopentenyl)adenine (iP) and N(6)-(Delta(2)-isopentenyl)adenosine (iPR) as substrates for ZmCKX1, the non-secreted ZmCKX10 had a range of suitable electron acceptors, and the enzyme had a higher preference for cis-zeatin and cytokinin N-glucosides as substrates. PMID:19436049

  3. Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought.

    PubMed

    Huseynova, Irada M; Aliyeva, Durna R; Aliyev, Jalal A

    2014-08-01

    Water is a key factor influencing the yield and quality of crops. One of the parameters of plant biological tolerance to constantly changing environmental conditions is the change of activities and numerous molecular forms of antioxidant enzymes. Two durum (Triticum durum Desf.) wheat varieties contrasting for drought tolerance, such as Barakatli-95 (drought tolerant) and Garagylchyg-2 (drought sensitive) were grown over a wide area in the field. Experiments were carried out to study the effect of soil drought on changes in activities and subcellular localization of superoxide dismutase isoforms. The levels of malondialdehyde, glycine betaine and total proteins were also analyzed. The level of the enzyme activity appeared to depend on the wheat varieties, duration of drought and stages of leaf development. Native polyacrylamide gel electrophoresis (PAGE) revealed the presence of 9 isoenzymes of superoxide dismutase in wheat leaves during drought. Mn-SOD was found in the mitochondrial fractions, Fe-SOD in the chloroplast fraction and Cu/Zn-SOD is localized in all subcellular fractions. Wheat leaves contain three different isoforms of SOD (Mn-, Fe-, Cu/Zn-SOD). Three isoforms of Mn-SOD, one isoform of Fe-SOD and five of Cu/Zn-SOD were observed in wheat leaves using 3 mM KCN and 5 mM H2O2 as selective inhibitors. The expression of Mn-SOD was preferentially enhanced by drought stress. It seems that Mn-SOD isoforms more than SOD ones play a major role in the scavenging of superoxide radicals. The observed data showed that status of antioxidant enzymes such as SOD could provide a meaningful tool for depicting drought tolerance of wheat genotype. PMID:24560039

  4. Expression Pattern and Subcellular Localization of the Ovate Protein Family in Rice

    PubMed Central

    Yu, Hui; Jiang, Wenzhu; Liu, Qing; Zhang, Hui; Piao, Mingxin; Chen, Zhengdao; Bian, Mingdi

    2015-01-01

    The Arabidopsis ovate family proteins (AtOFPs) have been shown to function as transcriptional repressors and regulate multiple aspects of plant growth and development. There are 31 genes that encode the full-length OVATE-domain containing proteins in the rice genome. In this study, the gene structure analysis revealed that OsOFPs are intron poor. Phylogenetic analysis suggested that OVATE proteins from rice, Arabidopsis and tomato can be divided into 4 groups (I–IV). Real-time quantitative polymerase chain reaction (RT-qPCR) analysis identified OsOFPs with different tissue-specific expression patterns at all stages of development in the rice plant. Interestingly, nearly half of the total number of OsOFP family was more highly expressed during the seed developmental stage. In addition, seed developmental cis-elements were found in the promoter region of the OsOFPs. Subcellular localization analysis revealed that YFP-OsOFP fusion proteins predominantly localized in the nucleus. Our results suggest that OsOFPs may act as regulatory proteins and play pivotal roles in the growth and development of rice. PMID:25760462

  5. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    SciTech Connect

    Stekhoven, Daniel J.; Omasits, Ulrich; Quebatte, Maxime; Dehio, Christoph; Ahrens, Christian H.

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.

  6. hMSH5 is a nucleocytoplasmic shuttling protein whose stability depends on its subcellular localization

    PubMed Central

    Lahaye, François; Lespinasse, Françoise; Staccini, Pascal; Palin, Lucile; Paquis-Flucklinger, Véronique; Santucci-Darmanin, Sabine

    2010-01-01

    MSH5 is a MutS-homologous protein required for meiotic DNA recombination. In addition, recent studies suggest that the human MSH5 protein (hMSH5) participates to mitotic recombination and to the cellular response to DNA damage and thus raise the possibility that a tight control of hMSH5 function(s) may be important for genomic stability. With the aim to characterize mechanisms potentially involved in the regulation of hMSH5 activity, we investigated its intracellular trafficking properties. We demonstrate that hMSH5 possesses a CRM1-dependent nuclear export signal (NES) and a nuclear localization signal that participates to its nuclear targeting. Localization analysis of various mutated forms of hMSH5 by confocal microscopy indicates that hMSH5 shuttles between the nucleus and the cytoplasm. We also provide evidence suggesting that hMSH5 stability depends on its subcellular compartmentalization, hMSH5 being much less stable in the nucleus than in the cytoplasm. Together, these data suggest that hMSH5 activity may be regulated by nucleocytoplasmic shuttling and nuclear proteasomal degradation, both of these mechanisms contributing to the control of nuclear hMSH5 content. Moreover, data herein also support that in tissues where both hMSH5 and hMSH4 proteins are expressed, hMSH5 might be retained in the nucleus through masking of its NES by binding of hMSH4. PMID:20185565

  7. Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae.

    PubMed Central

    Kuchler, K; Daum, G; Paltauf, F

    1986-01-01

    Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction. Images PMID:3005242

  8. Molecular cloning, expression analysis and subcellular localization of four DELLA genes from hybrid poplar.

    PubMed

    Liu, Sian; Xuan, Lei; Xu, Li-An; Huang, Minren; Xu, Meng

    2016-01-01

    Gibberellic acid (GA) signaling regulates diverse aspects of plant growth and developmental processes. The DELLA repressors of GA signaling are named for an N-terminal conserved DELLA domain. In this study, four genes encoding DELLA proteins, PeRGA1, PeRGA2, PeGAI1 and PeGAI2, were isolated and characterized in poplar. A gene structural analysis revealed that the DELLA genes were all intron-free. Multiple protein sequence alignments revealed that these proteins contained seven highly conserved domains: the DELLA domain, the TVHYNP domain, leucine heptad repeat I (LHR I), the VHIID domain, leucine heptad repeat II (LHR II), the PFYRE domain, and the SAM domain. Temporal expression patterns of these genes were profiled during the adventitious root development of poplar. The four DELLA genes were expressed in root, stem and leaf in a dynamic manner. The subcellular localization demonstrated that these DELLA genes were mainly localized to the nucleus. These results suggest that the four DELLA genes may play diverse regulatory roles in the adventitious root, stem and leaf development of poplar, and contribute to improving our understanding of conserved and divergent aspects of DELLA proteins that restrain GA signaling in various species. PMID:27478746

  9. Perkinsus marinus superoxide dismutase 2 (PmSOD2) localizes to single-membrane subcellular compartments

    SciTech Connect

    Fernandez-Robledo, Jose A.; Schott, Eric J.; Vasta, Gerardo R.

    2008-10-17

    Perkinsus marinus (Phylum Perkinsozoa), a protozoan parasite of oysters, is considered one of the earliest diverging groups of the lineage leading to dinoflagellates. Perkinsus trophozoites are phagocytosed by oyster hemocytes, where they are likely exposed to reactive oxygen species. As part of its reactive oxygen detoxifying pathway, P. marinus possesses two iron-cofactored SOD (PmSOD1 and PmSOD2). Immunoflourescence analysis of P. marinus trophozoites and gene complementation in yeast revealed that PmSOD1 is targeted to the mitochondria. Surprisingly, although PmSOD2 is characterized by a bipartite N-terminus extension typical of plastid targeting, in preliminary immunofluorescence studies it was visualized as punctuate regions in the cytoplasm that could not be assigned to any organelle. Here, we used immunogold electron microscopy to examine the subcellular localization PmSOD2 in P. marinus trophozoites. Gold grains were mostly associated with single-membrane vesicle-like structures, and eventually, localized to electron-dense, apparently amorphous material present in the lumen of a larger, unique compartment. The images suggested that PmSOD2 is targeted to small vesicles that fuse and/or discharge their content into a larger compartment, possibly the large vacuole typical of the mature trophozoites. In light of the in silico targeting prediction, the association of PmSOD2 with single-membrane compartments raises interesting questions regarding its organellar targeting, and the nature of a putative relic plastid in Perkinsus species.

  10. Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes.

    PubMed

    Dewald, B; Rindler-Ludwig, R; Bretz, U; Baggiolini, M

    1975-04-01

    The subcellular localization of elastase and of neutral proteases hydrolyzing histone and casein was determined in human and rabbit polymorphonuclear leukocytes using fractionation by isopycnic centrifugation. Granule-rich fractions obtained by this technique were extracted and analyzed by acrylamide gel electrophoresis, and proteolytic activity on the gels was demonstrated by staining with either N-acetyl-D,L-alanine alpha-naphthyl ester or naphthol AS-D acetate as substrate. In both species, all neutral proteases assayed were found to be localized exclusively in the azurophil granules. Specific activities were about 10-30 times higher in human than in rabbit preparations. In extracts of human azurophil granules up to 10 proteins exhibiting esterolytic activity could be demonstrated after electrophoretic separation. Three major and two or three minor components of these esterases were shown to possess elastase activity. Similar zymograms prepared with extracts from rabbit azurophil granules revealed only one major elastase band. The electrophoretic analysis further showed that the most strongly cationic proteins of both human and rabbit PMNs were also confined to the azurophil granules. PMID:236354

  11. A family of RS domain proteins with novel subcellular localization and trafficking

    PubMed Central

    Kavanagh, Steven J.; Schulz, Thomas C.; Davey, Philippa; Claudianos, Charles; Russell, Carrie; Rathjen, Peter D.

    2005-01-01

    We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins. PMID:15741184

  12. Distinct functions of the dual leucine zipper kinase depending on its subcellular localization.

    PubMed

    Wallbach, Manuel; Duque Escobar, Jorge; Babaeikelishomi, Rohollah; Stahnke, Marie-Jeannette; Blume, Roland; Schröder, Sabine; Kruegel, Jenny; Maedler, Kathrin; Kluth, Oliver; Kehlenbach, Ralph H; Miosge, Nicolai; Oetjen, Elke

    2016-04-01

    The dual leucine zipper kinase DLK induces β-cell apoptosis by inhibiting the transcriptional activity conferred by the β-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to β-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1β, known prediabetic signals. In the present study, the regulation of DLK in β-cells by these cytokines was investigated. Both, TNFα and IL-1β induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the β-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of β-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus. PMID:26776303

  13. PredAlgo: a new subcellular localization prediction tool dedicated to green algae.

    PubMed

    Tardif, Marianne; Atteia, Ariane; Specht, Michael; Cogne, Guillaume; Rolland, Norbert; Brugière, Sabine; Hippler, Michael; Ferro, Myriam; Bruley, Christophe; Peltier, Gilles; Vallon, Olivier; Cournac, Laurent

    2012-12-01

    The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion. PMID:22826458

  14. Oxidative stress and the subcellular localization of the telomerase reverse transcriptase (TERT) in papillary thyroid cancer.

    PubMed

    Muzza, Marina; Colombo, Carla; Cirello, Valentina; Perrino, Michela; Vicentini, Leonardo; Fugazzola, Laura

    2016-08-15

    During hormonogenesis, thyrocytes are physiologically exposed to high levels of oxidative stress (OS) which could either be involved in the pathogenesis of thyroid cancer or exert a cytotoxic effect. We analyzed the oxidative status of papillary thyroid cancer (PTC) both directly, by measuring H2O2 generation by NADPH oxidases (NOXs), and indirectly, by evaluating the antioxidant activity of glutathione peroxidase (GPX), which neutralizes H2O2 excess, and the lipid peroxidation (LP). Moreover, we investigated the subcellular localization of telomerase reverse transcriptase (TERT), and the H2O2 levels in the mitochondria of tumor and normal tissues. The calcium-dependent and independent H2O2 generation activity was significantly higher in tumors than in normal tissues. The GPX activity was higher in PTCs than in normal tissues, and, consistently, no differences were found in LP levels. Moreover, while TERT nuclear expression was similar in tumor and normal tissues, the mitochondrial localization was significantly higher in tumors. At the mitochondrial level, no differences were found in H2O2 generation between tumor and normal tissues. In conclusion, present data demonstrate that the intracellular H2O2 generation by NOXs is significantly higher in PTCs than in normal thyroid tissues. The increased GPX activity found in tumors counteracts the potential cytotoxic effects of high OS exposure. The significantly higher mitochondrial localization of TERT in tumors is consistent with its shuttling from the nucleus upon exposure to high OS. Finally, mitochondrial OS was not significantly different in tumors and normal tissues, supporting the postulated role of mitochondrial TERT in the control of local H2O2 production. PMID:27164443

  15. Stress-Responsive Expression, Subcellular Localization and Protein–Protein Interactions of the Rice Metacaspase Family

    PubMed Central

    Huang, Lei; Zhang, Huijuan; Hong, Yongbo; Liu, Shixia; Li, Dayong; Song, Fengming

    2015-01-01

    Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses. PMID:26193260

  16. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    SciTech Connect

    Song, Yan; Lv, Liyang; Du, Juan; Yue, Longtao; Cao, Lili

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.

  17. Functional Characterization and Subcellular Localization of Poplar (Populus trichocarpa × Populus deltoides) Cinnamate 4-Hydroxylase1

    PubMed Central

    Ro, Dae Kyun; Mah, Nancy; Ellis, Brian E.; Douglas, Carl J.

    2001-01-01

    Cinnamic acid 4-hydroxylase (C4H), a member of the cytochrome P450 monooxygenase superfamily, plays a central role in phenylpropanoid metabolism and lignin biosynthesis and possibly anchors a phenylpropanoid enzyme complex to the endoplasmic reticulum (ER). A full-length cDNA encoding C4H was isolated from a hybrid poplar (Populus trichocarpa × P. deltoides) young leaf cDNA library. RNA-blot analysis detected C4H transcripts in all organs tested, but the gene was most highly expressed in developing xylem. C4H expression was also strongly induced by elicitor-treatment in poplar cell cultures. To verify the catalytic activity of the putative C4H cDNA, two constructs, C4H and C4H fused to the FLAG epitope (C4H::FLAG), were expressed in yeast. Immunoblot analysis showed that C4H was present in the microsomal fraction and microsomal preparations from strains expressing both enzymes efficiently converted cinnamic acid to p-coumaric acid with high specific activities. To investigate the subcellular localization of C4H in vivo, a chimeric C4H-green fluorescent protein (GFP) gene was engineered and stably expressed in Arabidopsis. Confocal laser microscopy analysis clearly showed that in Arabidopsis the C4H::GFP chimeric enzyme was localized to the ER. When expressed in yeast, the C4H::GFP fusion enzyme was also active but displayed significantly lower specific activity than either C4H or C4H::FLAG in in vitro and in vivo enzyme assays. These data definitively show that C4H is localized to the ER in planta. PMID:11351095

  18. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling

    PubMed Central

    Masyuk, Anatoliy I.; Huang, Bing Q.; Radtke, Brynn N.; Gajdos, Gabriella B.; Splinter, Patrick L.; Masyuk, Tatyana V.; Gradilone, Sergio A.

    2013-01-01

    TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling. PMID:23578785

  19. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling.

    PubMed

    Masyuk, Anatoliy I; Huang, Bing Q; Radtke, Brynn N; Gajdos, Gabriella B; Splinter, Patrick L; Masyuk, Tatyana V; Gradilone, Sergio A; LaRusso, Nicholas F

    2013-06-01

    TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling. PMID:23578785

  20. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis.

    PubMed Central

    Stibitz, S; Yang, M S

    1991-01-01

    The DNA sequence of the central regulatory locus vir of Bordetella pertussis predicts that three gene products, BvgA, BvgB, and BvgC, are encoded. Features of the predicted primary structures of these proteins and their homology to other two-component systems suggest that BvgA is located in the cytoplasm, BvgB is located in the periplasm, and BvgC spans the inner membrane. We have used gene fusions to the phoA and lacZ genes of Escherichia coli to investigate the subcellular localization and membrane topology of these proteins. PhoA fusion proteins were also purified and used to raise antibodies that allowed visualization of the vir-encoded polypeptides by Western immunoblotting. Our results have largely confirmed the predictions of the DNA sequence, with the exception that BvgB and BvgC were found to constitute one larger protein that was homologous to the sensor class of two-component systems. We propose that this protein be named BvgS (for sensor) and that its gene be named bvgS. Images PMID:2066330

  1. CELLULAR AND SUBCELLULAR LOCALIZATION OF PDE10A, A STRIATUM-ENRICHED PHOSPHODIESTERASE

    PubMed Central

    XIE, Z.; ADAMOWICZ, W. O.; ELDRED, W. D.; JAKOWSKI, A. B.; KLEIMAN, R. J.; MORTON, D. G.; STEPHENSON, D. T.; STRICK, C. A.; WILLIAMS, R. D.; MENNITI, F. S.

    2006-01-01

    PDE10A is a recently identified phosphodiesterase that is highly expressed by the GABAergic medium spiny projection neurons of the mammalian striatum. Inhibition of PDE10A results in striatal activation and behavioral suppression, suggesting that PDE10A inhibitors represent a novel class of antipsychotic agents. In the present studies we further elucidate the localization of this enzyme in striatum of rat and cynomolgus monkey. We find by confocal microscopy that PDE10A-like immunoreactivity is excluded from each class of striatal interneuron. Thus, the enzyme is restricted to the medium spiny neurons. Subcellular fractionation indicates that PDE10A is primarily membrane bound. The protein is present in the synaptosomal fraction but is separated from the postsynaptic density upon solubilization with 0.4% Triton X-100. Immuno-electron microscopy of striatum confirms that PDE10A is most often associated with membranes in dendrites and spines. Immuno-gold particles are observed on the edge of the postsynaptic density but not within this structure. Our studies indicate that PDE10A is associated with post-synaptic membranes of the medium spiny neurons, suggesting that the specialized compartmentation of PDE10A enables the regulation of intracellular signaling from glutamatergic and dopaminergic inputs to these neurons. PMID:16483723

  2. A novel centrosome and microtubules associated subcellular localization of Nogo-A: implications for neuronal development.

    PubMed

    Mi, Yajing; Gao, Xingchun; Ma, Yue; Gao, Jie; Wang, Zhen; Jin, Weilin

    2014-12-01

    Oligodendrocyte-derived neurite-outgrowth inhibitor Nogo-A and its restriction mechanism are well-known. Recently, Nogo-A is reported to be abundantly expressed in neurons, however, the concrete link between neuronal Nogo-A and neuronal development is poorly understood. In the present study, we used Neuro2A and COS7 cell lines to clarify that Nogo-A largely distributed in the centrosome and microtubules-rich regions. When endogenous Nogo-A was down-regulated with RNA interference, the percentage of cell differentiation and the total neurite length of Neuro2A exposed to valproic acid (VPA) decreased sharply. Furthermore, in primary neurons, acetylated α-tubulin decreased at the tips of neurites where endogenous Nogo-A was still highly expressed. In HEK293FT cell lines, Nogo-A overexpression could redistribute acetylated α-tubulin but not change the level of α-tubulin. Together, our data discovered that centrosome- and microtubules-localized Nogo-A positively regulates neuronal differentiation and neurite outgrowth of Neuro2A cell lines, implicating the essential roles of subcellular Nogo-A in neuronal development. PMID:25286302

  3. Expression pattern and subcellular localization of Arabidopsis purple acid phosphatase AtPAP9.

    PubMed

    Zamani, Katayoun; Lohrasebi, Tahmineh; Sabet, Mohammad S; Malboobi, Mohammad A; Mousavi, Amir

    2014-01-01

    Purple acid phosphatase (PAP; EC 3.1.3.2) enzymes are metallophosphoesterases that hydrolysis phosphate ester bonds in a wide range of substrates. Twenty-nine PAP-encoding loci have been identified in the Arabidopsis genome, many of which have multiple transcript variants expressed in response to diverse environmental conditions. Having analyzed T-DNA insertion mutants, we have provided strong pieces of evidence that AtPAP9 locus encodes at least two types of transcripts, designated as AtPAP9-1 and AtPAP9-2. These transcript variants expressed distinctly during the course of growth in medium containing sufficient phosphate or none. Further histochemical analysis by the use of AtPAP9-1 promoter fused to β-glucuronidase reporter gene indicated the expression of this gene is regulated in a tissue-specific manner. AtPAP9-1 was highly expressed in stipule and vascular tissue, particularly in response to fungal infection. Subcellular localization of AtPAP9-1:green fluorescent fusion protein showed that it must be involved in plasma membrane and cell wall adhesion. PMID:24012521

  4. Local structure of subcellular input retinotopy in an identified visual interneuron

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Gabbiani, Fabrizio; Fabrizio Gabbiani's lab Team

    2015-03-01

    How does the spatial layout of the projections that a neuron receives impact its synaptic integration and computation? What is the mapping topography of subcellular wiring at the single neuron level? The LGMD (lobula giant movement detector) neuron in the locust is an identified neuron that responds preferentially to objects approaching on a collision course. It receives excitatory inputs from the entire visual hemifield through calcium-permeable nicotinic acetylcholine receptors. Previous work showed that the projection from the locust compound eye to the LGMD preserved retinotopy down to the level of a single ommatidium (facet) by employing in vivo widefield calcium imaging. Because widefield imaging relies on global excitation of the preparation and has a relatively low resolution, previous work could not investigate this retinotopic mapping at the level of individual thin dendritic branches. Our current work employs a custom-built two-photon microscope with sub-micron resolution in conjunction with a single-facet stimulation setup that provides visual stimuli to the single ommatidium of locust adequate to explore the local structure of this retinotopy at a finer level. We would thank NIMH for funding this research.

  5. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    PubMed

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. PMID:26220461

  6. Localization and subcellular distribution of N-copine in mouse brain.

    PubMed

    Nakayama, T; Yaoi, T; Kuwajima, G

    1999-01-01

    N-Copine is a novel protein with two C2 domains. Its expression is brain specific and up-regulated by neuronal activity such as kainate stimulation and tetanus stimulation evoking hippocampal CA1 long-term potentiation. We examined the localization and subcellular distribution of N-copine in mouse brain. In situ hybridization analysis showed that N-copine mRNA was expressed exclusively in neurons of the hippocampus and in the main and accessory olfactory bulb, where various forms of synaptic plasticity and memory formation are known to occur. In immunohistochemical analyses, N-copine was detected mainly in the cell bodies and dendrites in the neurons, whereas presynaptic proteins such as synaptotagmin I and rab3A were detected in the regions where axons pass through. In fractionation experiments of brain homogenate, N-copine was associated with the membrane fraction in the presence of Ca2+ but not in its absence. As a GST-fusion protein with the second C2 domain of N-copine showed Ca2+-dependent binding to phosphatidylserine, this domain was considered to be responsible for the Ca2+-dependent association of N-copine with the membrane. Thus, N-copine may have a role as a Ca2+ sensor in postsynaptic events, in contrast to the known roles of "double C2 domain-containing proteins," including synaptotagmin I, in presynaptic events. PMID:9886090

  7. Role of the EHD2 Unstructured Loop in Dimerization, Protein Binding and Subcellular Localization

    PubMed Central

    Bahl, Kriti; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2’s homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2) might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting oligomerization. PMID

  8. MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.

    PubMed

    Magnus, Marcin; Pawlowski, Marcin; Bujnicki, Janusz M

    2012-12-01

    Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22705560

  9. Subcellular Localized Chemical Imaging of Benthic Algal Nutritional Content via HgCdTe Array FT-IR

    SciTech Connect

    Wetzel, D.; Murdock, J; Dodds, W

    2008-01-01

    Algae respond rapidly and uniquely to changes in nutrient availability by adjusting pigment, storage product, and organelle content and quality. Cellular and subcellular variability of the relative abundance of macromolecular pools (e.g. protein, lipid, carbohydrate, and phosphodiesters) within the benthic (bottom dwelling) alga Cladophora glomerata (a common nuisance species in fresh and saline waters) was revealed by FT-IR microspectroscopic imaging. Nutrient heterogeneity was compared at the filament, cellular, and subcellular level, and localized nutrient uptake kinetics were studied by detecting the gradual incorporation of isotopically labeled nitrogen (N) (as K15NO3) from surrounding water into cellular proteins. Nutritional content differed substantially among filament cells, with differences driven by protein and lipid abundance. Whole cell imaging showed high subcellular macromolecular variability in all cells, including adjacent cells on a filament that developed clonally. N uptake was also very heterogeneous, both within and among cells, and did not appear to coincide with subcellular protein distribution. Despite high intercellular variability, some patterns emerged. Cells acquired more 15N the further they were away from the filament attachment point, and 15N incorporation was more closely correlated with phosphodiester content than protein, lipid, or carbohydrate content. Benthic algae are subject to substantial environmental heterogeneity induced by microscale hydrodynamic factors and spatial variability in nutrient availability. Species specific responses to nutrient heterogeneity are central to understanding this key component of aquatic ecosystems. FT-IR microspectroscopy, modified for benthic algae, allows determination of algal physiological responses at scales not available using current techniques.

  10. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.

    PubMed

    Chang, Peng; Fan, Xueyi; Chen, Jiangye

    2015-08-01

    Candida albicans is an opportunistic fungal pathogen commonly found in humans. It has the ability to switch reversibly between three growth forms: budding yeast, pseudohypha, and hypha. The transition between yeast and hyphal growth forms is critical for the pathogenesis of C. albicans. During the yeast-to-hypha morphologic transition, gene expression is regulated by transcriptional regulators including histone modifying complexes and chromatin remodeling complexes. We previously reported that Esa1, a catalytic subunit in the histone acetyltransferase complex NuA4, is essential for the hyphal development of C. albicans. In this study, we analyzed the functional roles of Gcn5, a catalytic subunit in the histone acetyltransferase complex SAGA, in C. albicans. Gcn5 is required for the invasive and filamentous growth of C. albicans. Deletion of GCN5 impaired hyphal elongation in sensing serum and attenuated the virulence of C. albicans in a mouse systemic infection model. The C. albicans gcn5/gcn5 mutant cells also exhibited sensitivity to cell wall stress. Functional analysis showed that the HAT domain and Bromodomain in Gcn5 play distinct roles in morphogenesis and cell wall stress response of C. albicans. Our results show that the conserved residue Glu188 is crucial for the Gcn5 HAT activity and for Gcn5 function during filamentous growth. In addition, the subcellular distribution of ectopically expressed GFP-Gcn5 correlates with the different growth states of C. albicans. In stationary phase, Gcn5 accumulated in the nucleus, while during vegetative growth it localized in the cytoplasm in a morpha-independent manner. Our results suggest that the nuclear localization of Gcn5 depends on the existence of its N-terminal NLS and HAT domains. PMID:25656079

  11. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides

    SciTech Connect

    Sturm, A.; Johnson, K.D.; Szumilo, T.; Elbein, A.D.; Chrispeels, M.J.

    1987-11-01

    Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc/sub 3/Man/sub 9/(GlcNAc)/sub 2/, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associates with Golgi. These include mannosidase I (removes 1-2 mannose residues from Man/sub 6-9/(GlcNAc)/sub 2/), mannosidase II (removes mannose residues from GlcNAcMan/sub 5/(GlcNAc)/sub 2/), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). The authors have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltranferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.

  12. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization

    PubMed Central

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  13. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells.

    PubMed

    Pratt, Evan P S; Owens, Jake L; Hockerman, Gregory H; Hu, Chang-Deng

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is a fluorescence imaging technique used to visualize protein-protein interactions (PPIs) in live cells and animals. One unique application of BiFC is to reveal subcellular localization of PPIs. The superior signal-to-noise ratio of BiFC in comparison with fluorescence resonance energy transfer or bioluminescence resonance energy transfer enables its wide applications. Here, we describe how confocal microscopy can be used to detect and quantify PPIs and their subcellular localization. We use basic leucine zipper transcription factor proteins as an example to provide a step-by-step BiFC protocol using a Nikon A1 confocal microscope and NIS-Elements imaging software. The protocol given below can be readily adapted for use with other confocal microscopes or imaging software. PMID:27515079

  14. High Sequence Variability, Diverse Subcellular Localizations, and Ecological Implications of Alkaline Phosphatase in Dinoflagellates and Other Eukaryotic Phytoplankton

    PubMed Central

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the “red-type” eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort

  15. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    PubMed

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi. PMID:20053634

  16. Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway

    PubMed Central

    de Marcos Lousa, Carine; Soubeyrand, Eric; Bolognese, Paolo; Wattelet-Boyer, Valerie; Bouyssou, Guillaume; Marais, Claireline; Boutté, Yohann; Filippini, Francesco; Moreau, Patrick

    2016-01-01

    SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named ‘phytolongins’ (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the ‘Phyl domain’. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway. PMID:26962210

  17. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation.

    PubMed

    Siepi, Francesca; Gatti, Veronica; Camerini, Serena; Crescenzi, Marco; Soddu, Silvia

    2013-06-01

    HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354. PMID:23485397

  18. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation

    PubMed Central

    Siepi, Francesca; Gatti, Veronica; Camerini, Serena; Crescenzi, Marco; Soddu, Silvia

    2013-01-01

    HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354. PMID:23485397

  19. Maspin expression and melanoma progression: a matter of sub-cellular localization.

    PubMed

    Martinoli, Chiara; Gandini, Sara; Luise, Chiara; Mazzarol, Giovanni; Confalonieri, Stefano; Giuseppe Pelicci, Pier; Testori, Alessandro; Ferrucci, Pier Francesco

    2014-03-01

    Maspin, a member of the serpin family of protease inhibitors, is involved in key processes of cancer progression. Its biological activity seems to be cancer and compartment specific, with the protein acting either as a suppressor or as a tumor promoter in different cancer types. Characterization of maspin expression and its sub-cellular localization in melanoma is missing, hence, we aim to investigate its possible association with melanoma prognostic factors and disease progression. Nuclear and cytoplasmic maspin expression were evaluated on 60 nevi, 152 primary lesions, and 106 melanoma metastases using tissue microarrays and immunohistochemistry. The association between maspin immunoreactivity and patient's clinic-pathological features was evaluated. Multivariate logistic models and survival analyses were performed for maspin expression in primary melanomas. Nuclear maspin was detected in 8% nevi, 49% primary melanomas, and 28% metastases, whereas cytoplasmic maspin in 12% nevi, 18% primary lesions, and 9% metastases. In univariate analysis, nuclear maspin expression in primary melanomas was significantly associated with melanoma prognostic factors (nodular histotype, tumor thickness, mitotic rate, and ulceration) and disease stage, whereas cytoplasmic maspin was observed at higher frequency in thin superficial spreading melanomas, without mitosis. In multivariate analysis, nuclear maspin remained significantly associated with risk of developing a tumor prone to disease progression and, accordingly, with significantly shorter disease-free and overall survival. In this study, maspin was expressed at highest frequency in primary lesions and when expressed in the nuclei, was significantly associated with poor prognostic markers, melanoma recurrence, and worse survival. The present study suggests a tumor-suppressive effect of cytoplasmic maspin and a tumor-promoting effect of nuclear maspin, which open the discussion on its potential use in cancer therapy. PMID

  20. Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier

    NASA Astrophysics Data System (ADS)

    Guo, Xiaotong; Liu, Fulin; Ju, Ying; Wang, Zhen; Wang, Chunyu

    2016-06-01

    Predicting protein subcellular location is necessary for understanding cell function. Several machine learning methods have been developed for computational prediction of primary protein sequences because wet experiments are costly and time consuming. However, two problems still exist in state-of-the-art methods. First, several proteins appear in different subcellular structures simultaneously, whereas current methods only predict one protein sequence in one subcellular structure. Second, most software tools are trained with obsolete data and the latest new databases are missed. We proposed a novel multi-label classification algorithm to solve the first problem and integrated several latest databases to improve prediction performance. Experiments proved the effectiveness of the proposed method. The present study would facilitate research on cellular proteomics.

  1. Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier.

    PubMed

    Guo, Xiaotong; Liu, Fulin; Ju, Ying; Wang, Zhen; Wang, Chunyu

    2016-01-01

    Predicting protein subcellular location is necessary for understanding cell function. Several machine learning methods have been developed for computational prediction of primary protein sequences because wet experiments are costly and time consuming. However, two problems still exist in state-of-the-art methods. First, several proteins appear in different subcellular structures simultaneously, whereas current methods only predict one protein sequence in one subcellular structure. Second, most software tools are trained with obsolete data and the latest new databases are missed. We proposed a novel multi-label classification algorithm to solve the first problem and integrated several latest databases to improve prediction performance. Experiments proved the effectiveness of the proposed method. The present study would facilitate research on cellular proteomics. PMID:27323846

  2. Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier

    PubMed Central

    Guo, Xiaotong; Liu, Fulin; Ju, Ying; Wang, Zhen; Wang, Chunyu

    2016-01-01

    Predicting protein subcellular location is necessary for understanding cell function. Several machine learning methods have been developed for computational prediction of primary protein sequences because wet experiments are costly and time consuming. However, two problems still exist in state-of-the-art methods. First, several proteins appear in different subcellular structures simultaneously, whereas current methods only predict one protein sequence in one subcellular structure. Second, most software tools are trained with obsolete data and the latest new databases are missed. We proposed a novel multi-label classification algorithm to solve the first problem and integrated several latest databases to improve prediction performance. Experiments proved the effectiveness of the proposed method. The present study would facilitate research on cellular proteomics. PMID:27323846

  3. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?

    PubMed

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui

    2016-11-15

    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (<0.05mM), while vacuoles at high Cd substrate (≥0.05mM). Moreover, the concentrations and proportions of Cd in inorganic and water-soluble form also reduced by AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice. PMID:27450963

  4. Targeting Tryptophan Decarboxylase to Selected Subcellular Compartments of Tobacco Plants Affects Enzyme Stability and in Vivo Function and Leads to a Lesion-Mimic Phenotype1

    PubMed Central

    Di Fiore, Stefano; Li, Qiurong; Leech, Mark James; Schuster, Flora; Emans, Neil; Fischer, Rainer; Schillberg, Stefan

    2002-01-01

    Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of l-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype. PMID:12114570

  5. Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein

    PubMed Central

    Urcuqui-Inchima, Silvio; Patiño, Claudia; Zapata, Ximena; García, María Patricia; Arteaga, José; Chamot, Christophe; Kumar, Ajit; Hernandez-Verdun, Danièle

    2011-01-01

    Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication. PMID:21364984

  6. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata.

    PubMed

    Stevens, L H; Blom, T J; Verpoorte, R

    1993-08-01

    The subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus (L.) G. Don and Tabernaemontana divaricata (L.) R. Br. ex Roem. et Schult, was investigated. It was found that tryptophan decarboxylase is an extra-vacuolar enzyme, whereas strictosidine synthase is active inside the vacuole. Strong indications were obtained for the localization of strictosidine glucosidase on the outside of the tonoplast. The results suggest that tryptamine is transported into the vacuole where it is condensed with secologanin to form strictosidine, and that strictosidine passes the tonoplast and is subsequently hydrolysed outside the vacuole. PMID:24201788

  7. CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae

    PubMed Central

    Koh, Judice L. Y.; Chong, Yolanda T.; Friesen, Helena; Moses, Alan; Boone, Charles; Andrews, Brenda J.; Moffat, Jason

    2015-01-01

    Changes in protein subcellular localization and abundance are central to biological regulation in eukaryotic cells. Quantitative measures of protein dynamics in vivo are therefore highly useful for elucidating specific regulatory pathways. Using a combinatorial approach of yeast synthetic genetic array technology, high-content screening, and machine learning classifiers, we developed an automated platform to characterize protein localization and abundance patterns from images of log phase cells from the open-reading frame−green fluorescent protein collection in the budding yeast, Saccharomyces cerevisiae. For each protein, we produced quantitative profiles of localization scores for 16 subcellular compartments at single-cell resolution to trace proteome-wide relocalization in conditions over time. We generated a collection of ∼300,000 micrographs, comprising more than 20 million cells and ∼9 billion quantitative measurements. The images depict the localization and abundance dynamics of more than 4000 proteins under two chemical treatments and in a selected mutant background. Here, we describe CYCLoPs (Collection of Yeast Cells Localization Patterns), a web database resource that provides a central platform for housing and analyzing our yeast proteome dynamics datasets at the single cell level. CYCLoPs version 1.0 is available at http://cyclops.ccbr.utoronto.ca. CYCLoPs will provide a valuable resource for the yeast and eukaryotic cell biology communities and will be updated as new experiments become available. PMID:26048563

  8. Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration

    PubMed Central

    Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.

    2014-01-01

    The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368

  9. Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    PubMed Central

    John, Scott; Weiss, James N.; Ribalet, Bernard

    2011-01-01

    Background The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use). Methodology/Principal Findings To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P. Conclusions/Significance These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an

  10. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/. PMID:24647341

  11. Heterodimerization, Altered Subcellular Localization, and Function of Multiple Zinc Transporters in Viable Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Golan, Yarden; Berman, Bluma; Assaraf, Yehuda G.

    2015-01-01

    Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions. PMID:25657003

  12. Identification and subcellular localization of human rab5b, a new member of the ras-related superfamily of GTPases.

    PubMed Central

    Wilson, D B; Wilson, M P

    1992-01-01

    Members of the mammalian rab family of GTPases are associated with specific subcellular compartments, where these proteins are postulated to function in vesicular transport. By screening a human umbilical vein endothelial cell library with degenerate oligonucleotide probes, we have isolated a 1.6-kb cDNA clone encoding a 215-amino-acid protein belonging to the rab family of GTPases. This newly identified rab protein is 81% identical to human rab5, the canine counterpart of which has been localized to the plasma membrane and early endosomes. In light of this homology, we have named this new member of the GTPase superfamily "rab5b." Northern analysis using the rab5b cDNA as a probe revealed a 3.6-kb mRNA in a variety of cell types, including human umbilical vein endothelial cells, K562 erythroleukemia cells, U937 monoblastic cells, and HeLa cells. A fusion protein between glutathione-S-transferase (GST) and rab5b was expressed in bacteria and purified to homogeneity. The recombinant protein was shown to bind GTP and GDP. As is typical of other recombinant rab proteins, the rab5b-GST fusion protein displayed a low intrinsic rate of GTP hydrolysis (0.005/min). An antiserum to rab5b was prepared and used to determine the apparent molecular size and subcellular distribution of the protein. Western blotting with this antibody revealed a 25-kD protein in COS cells transfected with rab5b and in nontransfected HeLa cells. Indirect immunofluorescence and subcellular fractionation showed that rab5b localizes to the plasma membrane. We speculate that rab5b plays a role in vesicular trafficking at the plasma membrane in various cell types. Images PMID:1541686

  13. In vitro evaluation of mitochondrial-chloroplast subcellular localization of heme oxygenase1 (HO1) in Glycine max.

    PubMed

    Dixit, Shubham; Verma, Khushbu; Shekhawat, Gyan Singh

    2014-05-01

    Heme oxygenase1 (HO1) catalyzes the degradation of heme in to biliverdin, carbon monoxide, and ferrous ions. Its role in higher plants has been found as an antioxidant and precursor of phytochrome synthesis. The present study focuses on subcellular localization of HO1 in leaves of soybean has been investigated. Most activity appeared to be located within chloroplast due to its role in phytochrome synthesis but mitochondria also share its localization. Mitochondrial location of HO1 might be on its inner membranous space due to its role in the synthesis of electron donor species which facilitates HO1 catalyzed reaction. Study reports the co-localization of HO1 in both chloroplast and mitochondria. PMID:24158377

  14. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity

    PubMed Central

    Trimmer, James S.

    2015-01-01

    Potassium channels (KChs) are the most diverse ion channels, in part due to extensive combinatorial assembly of a large number of principal and auxiliary subunits into an assortment of KCh complexes. This structural and functional diversity allows KChs to play diverse roles in neuronal function. Localization of KChs within specialized neuronal compartments defines their physiological role, and also fundamentally impacts their activity, due to localized exposure to diverse cellular determinants of channel function. Recent studies in mammalian brain reveal an exquisite refinement of KCh subcellular localization. This includes axonal KChs at the initial segment, and near/within nodes of Ranvier and presynaptic terminals, dendritic KChs found at sites reflecting specific synaptic input, and KChs defining novel compartments. Painting the remarkable diversity of KChs onto the complex architecture of mammalian neurons creates an elegant picture of electrical signal processing underlying the sophisticated function of individual neuronal compartments, and ultimately neurotransmission and behavior. PMID:25611506

  15. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    PubMed

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. PMID:27480687

  16. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition.

    PubMed

    Shi, J-Y; Zhang, S-W; Pan, Q; Cheng, Y-M; Xie, J

    2007-07-01

    As more and more genomes have been discovered in recent years, there is an urgent need to develop a reliable method to predict the subcellular localization for the explosion of newly found proteins. However, many well-known prediction methods based on amino acid composition have problems utilizing the sequence-order information. Here, based on the concept of Chou's pseudo amino acid composition (PseAA), a new feature extraction method, the multi-scale energy (MSE) approach, is introduced to incorporate the sequence-order information. First, a protein sequence was mapped to a digital signal using the amino acid index. Then, by wavelet transform, the mapped signal was broken down into several scales in which the energy factors were calculated and further formed into an MSE feature vector. Following this, combining this MSE feature vector with amino acid composition (AA), we constructed a series of MSEPseAA feature vectors to represent the protein subcellular localization sequences. Finally, according to a new kind of normalization approach, the MSEPseAA feature vectors were normalized to form the improved MSEPseAA vectors, named as IEPseAA. Using the technique of IEPseAA, C-support vector machine (C-SVM) and three multi-class SVMs strategies, quite promising results were obtained, indicating that MSE is quite effective in reflecting the sequence-order effects and might become a useful tool for predicting the other attributes of proteins as well. PMID:17235454

  17. Changes in Subcellular Localization of Visfatin in Human Colorectal HCT-116 Carcinoma cell Line After Cytochalasin-B Treatment

    PubMed Central

    Skonieczna, M.; Bułdak, Ł; Matysiak, N.; Mielańczyk, Ł; Wyrobiec, G.; Kukla, M.; Michalski, M.; Żwirska-Korczala, K.

    2014-01-01

    The aim of the study was to assess the expression and subcellular localization of visfatin in HCT-116 colorectal carcinoma cells after cytokinesis failure using Cytochalasin B (CytB) and the mechanism of apoptosis of cells after CytB. We observed translocation of visfatin’s antigen in cytB treated colorectal carcinoma HCT-116 cells from cytosol to nucleus. Statistical and morphometric analysis revealed significantly higher area-related numerical density visfatin-bound nano-golds in the nuclei of cytB-treated HCT-116 cells compared to cytosol. Reverse relation to visfatin subcellular localization was observed in un-treated HCT-116 cells. The total amount of visfatin protein and visfatin mRNA level in HCT-116 cells was also decreased after CytB treatment. Additionally, CytB significantly decreased cell survival, increased levels of G2/M fractions, induced bi-nuclei formation as well as increased reactive oxygen species (ROS) level in HCT-116 cells. CytB treatment showed cytotoxic effect that stem from oxidative stress and is connected with the changes in the cytoplasmic/nuclear amount of visfatin in HCT-116 cells. PMID:25308845

  18. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria

    PubMed Central

    Rey, Sébastien; Gardy, Jennifer L; Brinkman, Fiona SL

    2005-01-01

    Background Identification of a bacterial protein's subcellular localization (SCL) is important for genome annotation, function prediction and drug or vaccine target identification. Subcellular fractionation techniques combined with recent proteomics technology permits the identification of large numbers of proteins from distinct bacterial compartments. However, the fractionation of a complex structure like the cell into several subcellular compartments is not a trivial task. Contamination from other compartments may occur, and some proteins may reside in multiple localizations. New computational methods have been reported over the past few years that now permit much more accurate, genome-wide analysis of the SCL of protein sequences deduced from genomes. There is a need to compare such computational methods with laboratory proteomics approaches to identify the most effective current approach for genome-wide localization characterization and annotation. Results In this study, ten subcellular proteome analyses of bacterial compartments were reviewed. PSORTb version 2.0 was used to computationally predict the localization of proteins reported in these publications, and these computational predictions were then compared to the localizations determined by the proteomics study. By using a combined approach, we were able to identify a number of contaminants and proteins with dual localizations, and were able to more accurately identify membrane subproteomes. Our results allowed us to estimate the precision level of laboratory subproteome studies and we show here that, on average, recent high-precision computational methods such as PSORTb now have a lower error rate than laboratory methods. Conclusion We have performed the first focused comparison of genome-wide proteomic and computational methods for subcellular localization identification, and show that computational methods have now attained a level of precision that is exceeding that of high-throughput laboratory

  19. CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization

    PubMed Central

    Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S. L.; Lynn, David J.

    2015-01-01

    CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb PMID:25953080

  20. CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization.

    PubMed

    Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S L; Lynn, David J

    2015-01-01

    CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb PMID:25953080

  1. A comparative antibody analysis of pannexin1 expression in four rat brain regions reveals varying subcellular localizations.

    PubMed

    Cone, Angela C; Ambrosi, Cinzia; Scemes, Eliana; Martone, Maryann E; Sosinsky, Gina E

    2013-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and

  2. A Comparative Antibody Analysis of Pannexin1 Expression in Four Rat Brain Regions Reveals Varying Subcellular Localizations

    PubMed Central

    Cone, Angela C.; Ambrosi, Cinzia; Scemes, Eliana; Martone, Maryann E.; Sosinsky, Gina E.

    2012-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and

  3. Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated "siderosome".

    PubMed

    Imperi, Francesco; Visca, Paolo

    2013-11-01

    The peptidic siderophore pyoverdine is the primary iron uptake system of fluorescent pseudomonads, and a virulence factor in the opportunistic pathogen Pseudomonas aeruginosa. Pyoverdine biogenesis is a co-ordinate process requiring several precursor-generating enzymes and large nonribosomal peptide synthetases (NRPSs) in the cytoplasm, followed by extracytoplasmic maturation. By using cell fractionation, protein-protein interaction, and in vivo labeling assays we obtained evidence that, in P. aeruginosa, pyoverdine NRPSs assemble with precursor-generating enzymes into a membrane-bound multi-enzymatic complex, for which we propose the name "siderosome". The pyoverdine biogenetic complex represents a novel example of subcellular compartmentalization of a secondary metabolic pathway in prokaryotes. PMID:24042050

  4. Spatial and temporal changes in Bax subcellular localization during NPe6-PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Xing, Da; Chen, Wei R.; Wan, Qingling; Zhou, Feifan

    2008-02-01

    Photodynamic therapy (PDT) employing photosensiter N-aspartyl chlorin e6 (NPe6) can induce lysosome disruption and initiate the intrinsic apoptotic pathway. Bax, a member of the Bcl-2 family of proteins, is an essential regulator of apoptosis. Bax is normally found in the cytosol of healthy cells, and translocates to mitochondria in response to many apoptotic stimuli. In this study, using real-time single-cell analysis, we have investigated the kinetics of Bax distribution during NPe6-induced apoptosis in ASTC-a-1 cells. In order to monitor Bax subcellular distribution, cells were stained with GFP-Bax and Mito Tracker Red. The results show that Bax redistribution occurred at about 170 min after treated with NPe6-PDT, and then sequestered into clusters associated with the mitochondira within 30 min. Our data clearly showed the spatial and temporal changes in Bax distribution in living cells during NPe6-induced apoptosis.

  5. MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine.

    PubMed

    Thakur, Anamika; Rajput, Akanksha; Kumar, Manoj

    2016-07-19

    Knowledge of the subcellular location (SCL) of viral proteins in the host cell is important for understanding their function in depth. Therefore, we have developed "MSLVP", a two-tier prediction algorithm for predicting multiple SCLs of viral proteins. For this study, data sets of comprehensive viral proteins with experimentally validated SCL annotation were collected from UniProt. Non-redundant (90%) data sets of 3480 viral proteins that belonged to single (2715), double (391) and multiple (374) sites were employed. Additionally, 1687 (30% sequence identity) viral proteins were categorised into single (1366), double (167) and multiple (154) sites. Single, double and multiple locations further comprised of eight, four and six categories, respectively. Viral protein locations include the nucleus, cytoplasm, endoplasmic reticulum, extracellular, single-pass membrane, multi-pass membrane, capsid, remaining others and combinations thereof. Support vector machine based models were developed using sequence features like amino acid composition, dipeptide composition, physicochemical properties and their hybrids. We have employed "one-versus-one" as well as "one-versus-other" strategies for multiclass classification. The performance of "one-versus-one" is better than the "one-versus-other" approach during 10-fold cross-validation. For the 90% data set, we achieved an accuracy, a Matthew's correlation coefficient (MCC) and a receiver operating characteristic (ROC) of 99.99%, 1.00, 1.00; 100.00%, 1.00, 1.00 and 99.90%; 1.00, 1.00 for single, double and multiple locations, respectively. Similar results were achieved for a 30% sequence identity data set. Predictive models for each SCL performed equally well on the independent dataset. The MSLVP web server () can predict subcellular locations i.e. single (8; including single and multi-pass membrane), double (4) and multiple (6). This would be helpful for elucidating the functional annotation of viral proteins and potential drug

  6. E-Cadherin Facilitates Protein Kinase D1 Activation and Subcellular Localization.

    PubMed

    Li, Zhuo; Zhang, Chuanyou; Chen, Li; Li, Guosheng; Qu, Ling; Balaji, K C; Du, Cheng

    2016-12-01

    Protein kinase D 1 (PKD1) is a serine/threonine kinase implicated in the regulation of diverse cellular functions including cell growth, differentiation, adhesion and motility. The current model for PKD1 activation involves diacylglycerol (DAG) binding to the C1 domain of PKD1 which results in the translocation of PKD1 to subcellular membranes where PKD1 is phosphorylated and activated by protein kinase C (PKC). In this study, we have identified a novel regulation of PKD1 activation. The epithelial cell membrane protein E-cadherin physically binds to PKD1 which leads to a subcellular redistribution of PKD1. Furthermore, artificial targeting of PKD1 to the membrane leads to PKD1 activation in a PKC-independent manner, indicating that membrane attachment is sufficient enough to activate PKD1. The presence of E-cadherin dynamically regulates PKD1 activation by Bryostatin 1, a potent activator of PKD1, and its substrate phosphorylation specificity, implying a loss of E-cadherin during cancer metastasis could cause the re-distribution PKD1 and re-wiring of PKD1 signaling for distinct functions. The knocking down of PKD1 in lung epithelial cell line A549 results in an epithelial to mesenchymal transition with changes in biomarker expression, cell migration and drug resistance. These results extend our previous understanding of PKD1 regulation and E-cadherin signaling functions and may help to explain the diversified functions of PKD1 in various cells. J. Cell. Physiol. 231: 2741-2748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991955

  7. Regional and subcellular localization of Li+ and other cations in the rat brain following long-term lithium administration.

    PubMed

    Lam, H R; Christensen, S

    1992-10-01

    Rats were given LiCl in their diet (40 mmol/kg dry weight) for at least 3 months to elucidate the regional and subcellular localization of Li+ in the brain as well as the effect of chronic lithium administration on the distribution of other cations. At steady-state the mean concentrations of Li+ were 0.66 mmol/kg wet weight in the whole brain and 0.52 mM in plasma. The tissue/plasma concentration ratio exceeded unity in all anatomical regions. No region showed excessive accumulation of Li+. Whole brain or regional contents of Na+ or K+ were unaffected by lithium treatment. Subcellular Li+ localization was demonstrated in nuclear, crude mitochondrial, and microsomal fractions of whole brain homogenate. Subfractionation of the crude mitochondrial fraction revealed energy-independent intrasynaptosomal and intramitochondrial Li+ and K+ localization at 0-4 degrees C. Li+ administered in vivo disappeared within 10 min from synaptosomes incubated at 37 degrees C. Li+ added in vitro at 1 mM attained a synaptosomal steady-state concentration within 30 min at 37 degrees C. In control rats, synaptosomal concentrations and synaptosomal/medium concentration gradients of cations paralleled their respective in vivo concentrations and gradients. Lithium treatment caused synaptosomal depletion of K+ and Mg2+ and hence probably partial membrane depolarization. Addition of 1 mM Li+ in vitro also caused synaptosomal Mg2+ depletion. The results indicate that Li+ is "accumulated" in brain sediments and synaptosomes following its long-term treatment. The estimated intracellular and intrasynaptosomal Li+ concentrations are lower than predicted by passive distribution according to the Nernst equation, evidencing active extrusion of Li+. PMID:1402889

  8. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging

    SciTech Connect

    Wolff, Horst; Hadian, Kamyar; Ziegler, Manja; Weierich, Claudia; Kramer-Hammerle, Susanne; Kleinschmidt, Andrea; Erfle, Volker; Brack-Werner, Ruth . E-mail: brack@gsf.de

    2006-02-15

    The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors.

  9. Ankyrin-G Regulates Neurogenesis and Wnt Signaling by Altering the Subcellular Localization of β-catenin

    PubMed Central

    Durak, Omer; de Anda, Froylan Calderon; Singh, Karun K.; Leussis, Melanie P.; Petryshen, Tracey L.; Sklar, Pamela; Tsai, Li-Huei

    2014-01-01

    Ankyrin-G is a scaffolding protein required for the formation of the axon initial segment in neurons. Recent genome-wide association studies and whole-exome sequencing have identified ANK3, the gene coding for ankyrin-G, to be a risk gene for multiple neuropsychiatric disorders such as bipolar disorder (BD), schizophrenia, and autism spectrum disorder (ASD). Here, we describe a novel role for ankyrin-G in neural progenitor proliferation in the developing cortex. We found that ankyrin-G regulates canonical Wnt signaling by altering the subcellular localization and availability of β-catenin in proliferating cells. Ankyrin-G loss-of-function increases β-catenin levels in the nucleus, thereby promoting neural progenitor proliferation. Importantly, abnormalities in proliferation can be rescued by reducing Wnt pathway signaling. Together, these results suggest that ankyrin-G is required for proper brain development. PMID:24821222

  10. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1.

    PubMed

    Harris, Thurl E; Huffman, Todd A; Chi, An; Shabanowitz, Jeffrey; Hunt, Donald F; Kumar, Anil; Lawrence, John C

    2007-01-01

    Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity. PMID:17105729

  11. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. PMID:26747837

  12. Subcellular localization of triphenylethylene antiestrogen binding sites (TABS) in rat liver.

    PubMed

    Clark, J H; Guthrie, S

    1986-11-01

    The subcellular distribution of triphenylethylene anti-estrogen binding sites (TABS) was examined in the rat liver. Nuclear, mitochondrial and microsomal fractions were prepared by differential centrifugation, extracted with 0.5 M KCl and bound [3H]tamoxifen was determined by the dextran coated charcoal method. The relative concentration of TABS in each fractions were: nuclear 30.2; mitochondrial, 14.8 and microsomal, 10.2 pmol/g tissues. No TABS were detected in the high speed cytosol. The dissociation constants of nuclear and mitochondrial TABS were similar (1-2 nM); however, a higher number was obtained for microsomal TABS (5-6 mM). The ability of other triphenylethylene drugs to compete for [3H]tamoxifen binding to TABS was similar to tamoxifen for mitochondrial and microsomal sites. In contrast, nafoxidine was a more potent inhibitory for nuclear TABS. Exposure of high salt nuclear extracts to charcoal prior to assay did not reveal any evidence for an endogenous ligand of high affinity. We conclude that TABS are present in nuclear, mitochondrial and microsomal fractions of rat liver and that the nuclear fraction contains the highest concentration of these sites. PMID:2432354

  13. Subcellular Localization of Class II HDAs in Arabidopsis thaliana: Nucleocytoplasmic Shuttling of HDA15 Is Driven by Light

    PubMed Central

    Alinsug, Malona V.; Chen, Fang Fang; Luo, Ming; Tai, Ready; Jiang, Liwen; Wu, Keqiang

    2012-01-01

    Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins, HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases. PMID:22363501

  14. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin.

    PubMed

    Taha, Mohamed S; Nouri, Kazem; Milroy, Lech G; Moll, Jens M; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P; Ahmadian, Mohammad R

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. PMID:24658146

  15. Application of in utero electroporation of G-protein coupled receptor (GPCR) genes, for subcellular localization of hardly identifiable GPCR in mouse cerebral cortex.

    PubMed

    Kim, Nam-Ho; Kim, Seunghyuk; Hong, Jae Seung; Jeon, Sung Ho; Huh, Sung-Oh

    2014-07-01

    Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation. PMID:25078448

  16. Differential sub-cellular distribution and co-localization of the microsomal (mEH) and soluble epoxide hydrolases (sEH) in cultured neonatal rat brain cortical astrocytes

    PubMed Central

    Rawal, Seema; Morisseau, Christophe; Hammock, Bruce D.; Shivachar, Amruthesh C

    2013-01-01

    The microsomal epoxide hydrolase (mEH) and soluble epoxide hydrolase (sEH) enzymes exist in a variety of cells and tissues, including liver, kidney and testis. However, very little is known about brain epoxide hydrolases. Here we report the expression, localization and subcellular distribution of mEH and sEH in cultured neonatal rat cortical astrocytes by immunocytochemistry, subcellular fractionation, western blotting and radiometric enzyme assays. Our results showed a diffused immunofluorescence pattern for mEH, which co-localized with the astroglial cytoskeletal marker, glial fibrillary acidic protein (GFAP). The GFAP-positive cells also expressed sEH which was mainly localized in the cytoplasm especially in and around the nucleus. Western blot analyses, revealed a distinct protein band with a molecular mass of ~50 kDa, the signal intensity of which increased about 1.5-fold in the microsomal fraction over the whole cell lysate and other subcellular fractions. The polyclonal anti-human sEH rabbit serum recognized a protein band with a molecular mass similar to that of purified sEH protein (~62 kDa), and the signal intensity increased 1.7-fold in the 105,000×g supernatant fraction over the cell lysate. Although the corresponding mEH enzyme activities generally corroborated with the immunocytochemical and western blotting data a low sEH enzyme activity was detected especially in the total cell lysate and in the soluble fractions. These results suggest that rat brain cortical astrocytes differentially co-express mEH and sEH enzymes. The differential subcellular localization of mEH and sEH may play a role in the cerebrovascular functions that are known to be affected by brain-derived vasoactive epoxides. PMID:18711743

  17. Glucose-6-phosphate dehydrogenase in small intestine of rabbit: biochemical properties and subcellular localization.

    PubMed

    Ninfali, P; Malatesta, M; Biagiotti, E; Aluigi, G; Gazzanelli, G

    2001-07-01

    Biochemical properties and cellular and subcellular distribution patterns of glucose-6-phosphate dehydrogenase (G6PD) were investigated in small intestine of rabbits. The specific activity of G6PD in fresh homogenates of small intestine was 19 +/- 9 IU/g protein. This value did not change significantly after dialysis. The kinetic and electrophoretic properties of the partially purified enzyme were similar to those found in other rabbit tissues. Enzyme histochemical analysis of G6PD activity using the tetrazolium salt method showed high activity in epithelial cells of villi and crypts of Lieberkuhn. The activity in acinar cells of Brunner's glands was lower than that in epithelium, whereas cells of the muscularis externa showed a very low activity. Immunohistochemical analysis showed that the amounts of G6PD protein were lower in the epithelium than in Brunner's glands and muscularis externa. The differences between distribution patterns of activity and protein of G6PD may reflect the presence of inactive enzyme molecules in Brunner's glands and muscularis externa or posttranslational activation of G6PD in epithelium. Electron microscopic immunocytochemical analysis performed with gold-labelled antibodies showed the presence of G6PD protein throughout the cytoplasm and at smooth endoplasmic reticulum in enterocytes. In Paneth cells and cells of Brunner's glands, G6PD was found in the cytoplasm, at rough endoplasmic reticulum and Golgi complex. Immunolabelling was not found in mitochondria or nuclei. Our findings show that G6PD is heterogeneously distributed in cells of the small intestine and that the enzyme is associated with rough and smooth endoplasmic reticulum to support synthetic functions in these compartments by NADPH production. PMID:11482375

  18. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication.

    PubMed

    Hagiwara, Yuka; Komoda, Keisuke; Yamanaka, Takuya; Tamai, Atsushi; Meshi, Tetsuo; Funada, Ryo; Tsuchiya, Tomohiro; Naito, Satoshi; Ishikawa, Masayuki

    2003-01-15

    Arabidopsis TOM1 (AtTOM1) and TOM2A (AtTOM2A) are integral membrane proteins genetically identified to be necessary for efficient intracellular multiplication of tobamoviruses. AtTOM1 interacts with the helicase domain polypeptide of tobamovirus-encoded replication proteins and with AtTOM2A, suggesting that both AtTOM1 and AtTOM2A are integral components of the tobamovirus replication complex. We show here that AtTOM1 and AtTOM2A proteins tagged with green fluorescent protein (GFP) are targeted to the vacuolar membrane (tonoplast)-like structures in plant cells. In subcellular fractionation analyses, GFP-AtTOM2A, AtTOM2A and its tobacco homolog NtTOM2A were predominantly fractionated to low-density tonoplast-rich fractions, whereas AtTOM1-GFP, AtTOM1 and its tobacco homolog NtTOM1 were distributed mainly into the tonoplast-rich fractions and partially into higher-buoyant-density fractions containing membranes from several other organelles. The tobamovirus-encoded replication proteins were co-fractionated with both NtTOM1 and viral RNA-dependent RNA polymerase activity. The replication proteins were also found in the fractions containing non-membrane-bound proteins, but neither NtTOM1 nor the polymerase activity was detected there. These observations suggest that the formation of tobamoviral RNA replication complex occurs on TOM1-containing membranes and is facilitated by TOM2A. PMID:12514140

  19. Subcellular localization of the Streptococcus mutans P1 protein C terminus.

    PubMed

    Homonylo-McGavin, M K; Lee, S F; Bowden, G H

    1999-06-01

    To determine the subcellular location of the Streptococcus mutans P1 protein C-terminal anchor, cell envelope fractionation experiments were conducted in combination with Western immunoblotting, using monoclonal antibody MAb 6-8C specific for an epitope that maps near the C terminus of P1 protein and also a polyclonal antibody preparation directed against the P1 C-terminal 144 amino acids (P1COOH). P1 protein was detected in cell walls but not the membrane purified from S. mutans cells by the monoclonal antibody. In contrast, P1 protein was not detected in the same cell wall preparation using the anti-P1COOH polyclonal antibody. However, proteins released from the cell walls by treatment with mutanolysin contained antigen that was recognized by the anti-P1COOH antibody, suggesting that the epitopes recognized by the antibody were masked by peptidoglycan in the cell wall preparations. When cell walls were treated with boiling trichloroacetic acid to solubilize cell-wall-associated carbohydrate, P1 antigen could not be detected in either the solubilized carbohydrate, or in the remaining peptidoglycan, regardless of whether polyclonal or monoclonal antibody was used. However, when the peptidoglycan was treated with mutanolysin, P1 antigen could be detected in the mutanolysin solubilized fraction by MAb 6-8C. Collectively, these data suggest that the C-terminal 144 amino acids of the P1 protein are embedded within the cell wall, and associated exclusively with the peptidoglycan. Furthermore, the ability of the anti-P1COOH antibody to recognize P1 antigen only after mutanolysin treatment of cell walls suggests these C-terminal 144 amino acids are tightly intercalated within the peptidoglycan strands. PMID:10453480

  20. Substrate Specificity and Subcellular Localization of the Aldehyde-Alcohol Redox-coupling Reaction in Carp Cones*

    PubMed Central

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-01-01

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment. PMID:24217249

  1. Subcellular localization and membrane association of the replicase protein of grapevine rupestris stem pitting-associated virus, family Betaflexiviridae.

    PubMed

    Prosser, Sean W; Xiao, Huogen; Li, Caihong; Nelson, Richard S; Meng, Baozhong

    2015-04-01

    As a member of the newly established Betaflexiviridae family, grapevine rupestris stem pitting-associated virus (GRSPaV) has an RNA genome containing five ORFs. ORF1 encodes a putative replicase polyprotein typical of the alphavirus superfamily of positive-strand ssRNA viruses. Several viruses of this superfamily have been demonstrated to replicate in structures designated viral replication complexes associated with intracellular membranes. However, structure and cellular localization of the replicase complex have not been studied for members of Betaflexiviridae, a family of mostly woody plant viruses. As a first step towards the elucidation of the replication complex of GRSPaV, we investigated the subcellular localization of full-length and truncated versions of its replicase polyprotein via fluorescent tagging, followed by fluorescence microscopy. We found that the replicase polyprotein formed distinctive punctate bodies in both Nicotiana benthamiana leaf cells and tobacco protoplasts. We further mapped a region of 76 amino acids in the methyl-transferase domain responsible for the formation of these punctate structures. The punctate structures are distributed in close proximity to the endoplasmic reticulum network. Membrane flotation and biochemical analyses demonstrate that the N-terminal region responsible for punctate structure formation associated with cellular membrane is likely through an amphipathic α helix serving as an in-plane anchor. The identity of this membrane is yet to be determined. This is, to our knowledge, the first report on the localization and membrane association of the replicase proteins of a member of the family Betaflexiviridae. PMID:25502653

  2. Induction and subcellular localization of two major stress proteins in response to copper in the fathead minnow Pimephales promelas.

    PubMed

    Sanders, B M; Nguyen, J; Martin, L S; Howe, S R; Coventry, S

    1995-11-01

    In the present study we characterize the stress response induced by copper in the fathead minnow, Pimephales promelas. The fathead minnow epithelial cell line ATCC CCL 42 was used to examine the induced synthesis and subcellular localization of the two major stress proteins, stress 70 and cpn60. Western blot analysis demonstrated increased stress70 in cells exposed to 400 and 500 microM Cu. Two-dimensional analysis revealed three isoforms of stress70, one of 70 kDa and two of 72 kDa, at the highest Cu concentration. Chaperonin60 abundance did not change over the same range of Cu concentrations. Indirect immunofluorescence microscopy revealed that stress70 localized in the cytoplasm, particularly in the paranuclear region. Chaperonin60 was localized in mitochondria. Further, when we examined the stress response elicited by Cu in fathead minnow larvae in vivo, we found that Cu induced the stress response at nominal Cu concentrations that were more than an order of magnitude lower that in the cell culture. This disparity between the concentration of Cu, which induced the stress response in cells in culture and in vivo, may be the result of differences in Cu complexation that alter its availability, uptake and toxicity. PMID:8838687

  3. IRF-2 regulates NF-{kappa}B activity by modulating the subcellular localization of NF-{kappa}B

    SciTech Connect

    Chae, Myounghee; Kim, Kwangsoo; Park, Sun-Mi; Jang, Ik-Soon; Seo, Taegun; Kim, Dong-Min; Kim, Il-Chul; Lee, Je-Ho; Park, Junsoo

    2008-06-06

    Nuclear Factor-kappa B (NF-{kappa}B) is a transcription factor essential to the control of cell proliferation, survival, differentiation, immune response, and inflammation. Constitutive NF-{kappa}B activation has been observed in a broad variety of solid tumors and hematological malignancies, which suggests that NF-{kappa}B signaling may perform a critical role in the development of human cancers. Interferon regulatory factor-2 (IRF-2), an antagonistic transcriptional repressor of IRF-1, evidences oncogenic potential, but little is currently known regarding the mechanism underlying the oncogenic activities of IRF-2. In this study, we report that IRF-2 recruits RelA/p65 transcription factors into the nucleus via physical interaction. While the nuclear recruitment of RelA by IRF-2 augments TNF{alpha}-induced NF-{kappa}B dependent transcription, the N-terminal truncated mutant form of IRF-2 inhibits the nuclear localization of RelA, and thus interferes with NF-{kappa}B activation. Furthermore, the knockdown of IRF-2 by IRF-2 siRNA attenuates TNF{alpha}-induced NF-{kappa}B dependent transcription by inhibiting the nuclear localization of RelA. Thus, these results show that IRF-2 regulates NF-{kappa}B activity via the modulation of NF-{kappa}B subcellular localization.

  4. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity. PMID:25644579

  5. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    SciTech Connect

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.

  6. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach.

    PubMed

    Li, Liqi; Yu, Sanjiu; Xiao, Weidong; Li, Yongsheng; Li, Maolin; Huang, Lan; Zheng, Xiaoqi; Zhou, Shiwen; Yang, Hua

    2014-09-01

    Information on the subcellular localization of bacterial proteins is essential for protein function prediction, genome annotation and drug design. Here we proposed a novel approach to predict the subcellular localization of bacterial proteins by fusing features from position-specific score matrix (PSSM), Gene Ontology (GO) and PROFEAT. A backward feature selection approach by linear kennel of SVM was then used to rank the integrated feature vectors and extract optimal features. Finally, SVM was applied for predicting protein subcellular locations based on these optimal features. To validate the performance of our method, we employed jackknife cross-validation tests on three low similarity datasets, i.e., M638, Gneg1456 and Gpos523. The overall accuracies of 94.98%, 93.21%, and 94.57% were achieved for these three datasets, which are higher (from 1.8% to 10.9%) than those by state-of-the-art tools. Comparison results suggest that our method could serve as a very useful vehicle for expediting the prediction of bacterial protein subcellular localization. PMID:24929100

  7. Subcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy

    PubMed Central

    Gallego-Iradi, M. Carolina; Clare, Alexis M.; Brown, Hilda H.; Janus, Christopher; Lewis, Jada; Borchelt, David R.

    2015-01-01

    Background Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells. Results Using CHO and human H4 neuroglioma cell models, we find that ALS/myopathy mutations do not produce profound changes in the localization of the protein. Although we did observe variable levels of Matrin 3 in the cytoplasm either by immunostaining or visualization of fluorescently-tagged protein, the majority of cells expressing either wild-type (WT) or mutant Matrin 3 showed nuclear localization of the protein. When cytoplasmic immunostaining, or fusion protein fluorescence, was seen in the cytoplasm, the stronger intensity of staining or fluorescence was usually evident in the nucleus. In ~80% of cells treated with sodium arsenite (Ars) to induce cytoplasmic stress granules, the nuclear localization of WT and F115C mutant Matrin 3 was not disturbed. Notably, over-expression of mutant Matrin 3 did not induce the formation of obvious large inclusion-like structures in either the cytoplasm or nucleus. Conclusions Our findings indicate that mutations in Matrin 3 that are associated with ALS and myopathy do not dramatically alter the normal localization of the protein or readily induce inclusion formation. PMID:26528920

  8. Role of a geminivirus AV2 protein putative protein kinase C motif on subcellular localization and pathogenicity.

    PubMed

    Chowda-Reddy, R V; Achenjang, Fidelis; Felton, Christian; Etarock, Marie T; Anangfac, Marie-Therese; Nugent, Patricia; Fondong, Vincent N

    2008-07-01

    Virus-derived genes or genome fragments are increasingly being used to generate transgenic plants with resistance to plant viruses. There is need to rapidly investigate these genes in plants using transient expression prior to using them as transgenes since they may be pathogenic to plants. In this study, we investigated the AV2 protein encoded by East African cassava mosaic Cameroon virus, a virus associated with a cassava disease epidemic in western Africa. For subcellular localization, AV2 was fused to the yellow fluorescent protein (YFP) and expressed in Nicotiana benthamiana. Confocal analyses showed that AV2-YFP localizes mainly in the cytoplasm. Because it overlaps with the coat protein gene and therefore could be used to generate transgenic plants for resistance to geminiviruses, we investigated its pathogenesis in N. benthamiana by using the Potato virus X (PVX) vector. The chimeric virus PVX-AV2 induced a mild mottling in infected plants and was shown to suppress virus-induced gene silencing (VIGS). Using point mutations, we show here that AV2 pathogenicity is dependent on a conserved putative protein kinase C (PKC) phosphorylation motif. Because of its pathogenicity and ability to suppress RNA silencing, AV2 transgenic plants will less likely provide a control to geminiviruses, indeed it may weaken the resistance of the plant. We therefore suggest the use of the AV2 putative PKC mutants to generate transgenic plants. PMID:18405995

  9. Cell cycle-related shifts in subcellular localization of BCR: association with mitotic chromosomes and with heterochromatin.

    PubMed Central

    Wetzler, M; Talpaz, M; Yee, G; Stass, S A; Van Etten, R A; Andreeff, M; Goodacre, A M; Kleine, H D; Mahadevia, R K; Kurzrock, R

    1995-01-01

    The disruption of the BCR gene and its juxtaposition to and consequent activation of the ABL gene has been implicated as the critical molecular defect in Philadelphia chromosome-positive leukemias. The normal BCR protein is a multifunctional molecule with domains that suggest its participation in phosphokinase and GTP-binding pathways. Taken together with its localization to the cytoplasm of uncycled cells, it is therefore presumed to be involved in cytoplasmic signaling. By performing a double aphidicolin block for cell cycle synchronization, we currently demonstrate that the subcellular localization of BCR shifts from being largely cytoplasmic in interphase cells to being predominantly perichromosomal in mitosis. Furthermore, with the use of immunogold labeling and electron microscopy, association of BCR with DNA, in particular heterochromatin, can be demonstrated even in quiescent cells. Results were similar in cell lines of lymphoid or myeloid origin. These observations suggest a role for BCR in the phosphokinase interactions linked to condensed chromatin, a network previously implicated in cell cycle regulation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7724587

  10. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani.

    PubMed

    Bhaskar; Kumari, Neeti; Goyal, Neena

    2012-12-01

    T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite. PMID:23137535

  11. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    SciTech Connect

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela; Alfonso, Victoria; Taboga, Oscar

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.

  12. Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart.

    PubMed

    Birkedal, Rikke; Christopher, Jennifer; Thistlethwaite, Angela; Shiels, Holly A

    2009-11-01

    In cardiomyocytes, ryanodine receptors (RYRs) mediate Ca(2+)-induced Ca(2+)-release (CICR) from the sarcoplasmic reticulum (SR) during excitation-contraction (e-c) coupling. In rainbow trout heart, the relative importance of CICR increases with cold-acclimation. Thus, the aim of this study was to investigate the effect of temperature acclimation (4, 11 and 18 degrees C) on RYR intracellular localization and expression density. We used immunocytochemistry to assess intracellular localization in ventricular myocytes and Western blotting to assess RYR expression in both atrial and ventricular tissue. In ventricular myocytes, RYRs were localized peripherally in transverse bands aligning with sarcomeric m-lines and centrally around mitochondria and the nucleus. Localization did not change with temperature acclimation. RYR expression was also unaffected by temperature acclimation. The localization of RYRs at the m-line is similar to neonatal mammalian cardiomyocytes. We suggest this positioning is indicative of myocytes which rely predominantly on transsarcolemmal Ca(2+)-influx, rather than CICR, during e-c coupling. PMID:19544062

  13. ß-cell Subcellular Localization of Glucose Stimulated Mn Uptake By X-ray Fluorescence Microscopy: Implications for Pancreatic MRI

    PubMed Central

    Leoni, Lara; Dhyani, Anita; La Riviere, Patrick; Vogt, Stefan; Lai, Barry; Roman, B.B.

    2013-01-01

    Manganese (Mn) is a calcium (Ca) analog that has long been used as a magnetic resonance imaging (MRI) contrast agent for investigating cardiac tissue functionality, for brain mapping and for neuronal tract tracing studies. Recently, we have extended its use to investigate pancreatic β-cells and showed that, in the presence of MnCl2, glucose activated pancreatic islets yield significant signal enhancement in T1-weigheted MR images. In this study, we exploited for the first time the unique capabilities of X-ray fluorescence microscopy (XFM) to both visualize and quantify the metal in pancreatic β-cells at cellular and sub-cellular levels. MIN-6 insulinoma cells grown in standard tissue culture conditions had only a trace amount of Mn, 1.14 ± 0.03 ×10-11 μg/μm2, homogenously distributed across the cell. Exposure to 2mM glucose and 50 μM MnCl2 for 20 minutes resulted in non-glucose dependent Mn uptake and the overall cell concentration increased to 8.99 ± 2.69 ×10-11 μg/μm2. When cells were activated by incubation in 16mM glucose in the presence of 50 μM MnCl2, a significant increase in cytoplasmic Mn was measured reaching 2.57 ± 1.34 ×10-10 μg/μm2. A further rise in intracellular concentration was measured following KCl induced depolarization, with concentrations totaling 1.25 ± 0.33 ×10-9 and 4.02 ± 0.71 ×10-10 μg/μm2 in the cytoplasm and nuclei respectively. In both activated conditions Mn was prevalent in the cytoplasm and localized primarily in a perinuclear region, possibly corresponding to the Golgi apparatus and involving the secretory pathway. These data are consistent with our previous MRI findings confirming that Mn can be used as a functional imaging reporter of pancreatic β-cell activation and also provide a basis for understanding how subcellular localization of Mn will impact MRI contrast PMID:22144025

  14. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  15. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers.

    PubMed

    Kamsteeg, E J; Heijnen, I; van Os, C H; Deen, P M

    2000-11-13

    In renal principal cells, vasopressin regulates the shuttling of the aquaporin (AQP)2 water channel between intracellular vesicles and the apical plasma membrane. Vasopressin-induced phosphorylation of AQP2 at serine 256 (S256) by protein kinase A (PKA) is essential for its localization in the membrane. However, phosphorylated AQP2 (p-AQP2) has also been detected in intracellular vesicles of noninduced principal cells. As AQP2 is expressed as homotetramers, we hypothesized that the number of p-AQP2 monomers in a tetramer might be critical for the its steady state distribution. Expressed in oocytes, AQP2-S256D and AQP2-S256A mimicked p-AQP2 and non-p-AQP2, respectively, as routing and function of AQP2-S256D and wild-type AQP2 (wt-AQP2) were identical, whereas AQP2-S256A was retained intracellularly. In coinjection experiments, AQP2-S256A and AQP2-S256D formed heterotetramers. Coinjection of different ratios of AQP2-S256A and AQP2-S256D cRNAs revealed that minimally three AQP2-S256D monomers in an AQP2 tetramer were essential for its plasma membrane localization. Therefore, our results suggest that in principal cells, minimally three monomers per AQP2 tetramer have to be phosphorylated for its steady state localization in the apical membrane. As other multisubunit channels are also regulated by phosphorylation, it is anticipated that the stoichiometry of their phosphorylated and nonphosphorylated subunits may fine-tune the activity or subcellular localization of these complexes. PMID:11076974

  16. Subcellular Localization and Biochemical Comparison of Cytosolic and Secreted Cytokinin Dehydrogenase Enzymes from Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytokinin dehydrogenase (CKX, EC 1.5.99.12) degrades cytokinin hormones in plants. There are several differently targeted isoforms of CKX in cells of each plant. While most CKX enzymes appear to be localized in the apoplast or vacuoles, there is generally only one CKX per plant genome that lacks a t...

  17. Subcellular Localization and Polymorphism of Bovine FABP4 in Bovine Intramuscular Adipocytes.

    PubMed

    Yonekura, Shinichi; Hirota, Shohei; Miyazaki, Honami; Tokutake, Yukako

    2016-01-01

    Fatty acid binding protein 4 (FABP4) I74 V, a gene polymorphism associated with unsaturated fatty acid contents, was discovered in Japanese Black cattle. Individuals with FABP4 I/I genotype contain a significantly high level of palmitoleic acid compared to those with FABP4 V/V genotype. It remains unknown how the FABP4 polymorphism leads to different palmitoleic acid contents. We overexpressed FABP4 of different genotypes in bovine intramuscular preadipocytes and examined whether the intracellular localization of FABP4 and the expression levels of lipid metabolism-related genes were different among cells expressing different genotypes. Nuclear localization was observed for the FABP4 V/V, while the FABP4 I/I almost did not. The cells expressing FABP4 of different genotypes were comparable in terms of the expression levels of genes involved in lipid metabolism. FABP4 I/I was localized in most of the lipid droplets 4 days after differentiation induction, whereas approximately 25% lipid droplet co-localized with FABP4 in cells expressing FABP4 V/V. The lipid droplet size increased when palmitoleic acid was added compared to the size observed when palmitic acid was added. These results suggest that lipid droplet enlargement caused by palmitoleic acid and genotype-dependent differences in the fatty acid transporting capacity underlie variations in palmitoleic acid content among FABP4 polymorphisms. PMID:26913550

  18. YAP Subcellular Localization and Hippo Pathway Transcriptome Analysis in Pediatric Hepatocellular Carcinoma

    PubMed Central

    LaQuaglia, Michael J.; Grijalva, James L.; Mueller, Kaly A.; Perez-Atayde, Antonio R.; Kim, Heung Bae; Sadri-Vakili, Ghazaleh; Vakili, Khashayar

    2016-01-01

    Pediatric hepatocellular carcinoma (HCC) is a rare tumor which is associated with an extremely high mortality rate due to lack of effective chemotherapy. Recently, the Hippo pathway and its transcriptional co-activator Yes-associated protein (YAP) have been shown to play a role in hepatocyte proliferation and development of HCC in animal models. Therefore, we sought to examine the activity of YAP and the expression of Hippo pathway components in tumor and non-neoplastic liver tissue from 7 pediatric patients with moderately differentiated HCC. None of the patients had underlying cirrhosis or viral hepatitis, which is commonly seen in adults with HCC. This highlights a major difference in the pathogenesis of HCC between children and adults. We found a statistically significant increase in YAP nuclear localization in 100% of tumors. YAP target gene (CCNE1, CTGF, Cyr61) mRNA expression was also increased in the tumors that had the most significant increase in YAP nuclear localization. Based on Ki67 co-localization studies YAP nuclear localization was not simply a marker of proliferation. Our results demonstrate a clear increase in YAP activity in moderately differentiated pediatric HCC, providing evidence that it may play an important role in tumor survival and propagation. PMID:27605415

  19. YAP Subcellular Localization and Hippo Pathway Transcriptome Analysis in Pediatric Hepatocellular Carcinoma.

    PubMed

    LaQuaglia, Michael J; Grijalva, James L; Mueller, Kaly A; Perez-Atayde, Antonio R; Kim, Heung Bae; Sadri-Vakili, Ghazaleh; Vakili, Khashayar

    2016-01-01

    Pediatric hepatocellular carcinoma (HCC) is a rare tumor which is associated with an extremely high mortality rate due to lack of effective chemotherapy. Recently, the Hippo pathway and its transcriptional co-activator Yes-associated protein (YAP) have been shown to play a role in hepatocyte proliferation and development of HCC in animal models. Therefore, we sought to examine the activity of YAP and the expression of Hippo pathway components in tumor and non-neoplastic liver tissue from 7 pediatric patients with moderately differentiated HCC. None of the patients had underlying cirrhosis or viral hepatitis, which is commonly seen in adults with HCC. This highlights a major difference in the pathogenesis of HCC between children and adults. We found a statistically significant increase in YAP nuclear localization in 100% of tumors. YAP target gene (CCNE1, CTGF, Cyr61) mRNA expression was also increased in the tumors that had the most significant increase in YAP nuclear localization. Based on Ki67 co-localization studies YAP nuclear localization was not simply a marker of proliferation. Our results demonstrate a clear increase in YAP activity in moderately differentiated pediatric HCC, providing evidence that it may play an important role in tumor survival and propagation. PMID:27605415

  20. Expression and subcellular localization of thymosin beta15 following kainic acid treatment in rat brain

    SciTech Connect

    Kim, Young Woong; Kim, Younghwa; Kim, Eun Hae; Koh, Doyle; Sun, Woong Kim, Hyun

    2008-07-11

    Thymosin {beta}15 (T{beta}15) is a pleiotropic factor which exerts multiple roles in the development of nervous system and brain diseases. In this study, we found that the expressions of T{beta}15 mRNA and protein were substantially increased in several brain regions including hippocampal formation and cerebral cortex, following kainic acid (KA)-evoked seizures in rat. Interestingly, a subset of cortex neurons exhibited nuclear T{beta}15 immunoreactivity upon KA treatment. Furthermore, translocation of T{beta}15 from cytosol to nuclei was observed in cultured neurons or HeLa cells during staurosporine (STS)-induced apoptosis, which was also verified by time-lapse imaging of YFP-tagged T{beta}15. It appeared that localization of T{beta}15 is restricted to the cytosol in normal condition by its G-actin-interacting domain, because site-directed mutagenesis of this region resulted in the nuclear localization of T{beta}15 in the absence of STS treatment. To explore the role of nuclear T{beta}15, we enforced T{beta}15 to localize in the nuclei by fusion of T{beta}15 with nuclear localization signal (NLS-T{beta}15). However, overexpression of NLS-T{beta}15 did not alter the viability of cells in response to STS treatment. Collectively, these results suggest that nuclear localization of T{beta}15 is a controlled process during KA or STS stimulation, although its functional significance is yet to be clarified.

  1. HUMAN CYTOSOLIC SULFOTRANSFERASE 2B1: ISOFORM EXPRESSION, TISSUE SPECIFICITY AND SUBCELLULAR LOCALIZATION

    PubMed Central

    Falany, C.N.; He, D.; Dumas, N.; Frost, A.R.; Falany, J.L.

    2007-01-01

    Sulfation is an important Phase II conjugation reaction involved in the synthesis and metabolism of steroids in humans. Two different isoforms (2B1a and 2B1b) are encoded by the sulfotransferase (SULT) 2B1 gene utilizing different start sites of transcription resulting in the incorporation of different first exons. SULT2B1a and SULT2B1b are 350 and 365 amino acids in length, respectively, and the last 342 aa are identical. Message for both SULT2B1 isoforms is present in human tissues although SULT2B1b message is generally more abundant. However, to date only SULT2B1b protein has been detected in human tissues or cell lines. SULT2B1b is localized in the cytosol and/or nuclei of human cells. A unique 3′-extension of SULT2B1b is required for nuclear localization in human BeWo placental choriocarcinoma cells. Nuclear localization is stimulated by forskolin treatment in BeWo cells and serine phosphorylation has been identified in the 3′-extension. SULT2B1b is selective for the sulfation of 3β-hydroxysteroids such as dehydroepiandrosterone and pregnenolone, and may also have a role in cholesterol sulfation in human skin. The substrate specificity, nuclear localization, and tissue localization of SULT2B1b suggest a role in regulating the responsiveness of cells to adrenal androgens via their direct inactivation or by preventing their conversion to more potent androgens and estrogens. PMID:17055258

  2. N-Glycan Branching Affects the Subcellular Distribution of and Inhibition of Matriptase by HAI-2/Placental Bikunin

    PubMed Central

    Lai, Hongyu; Xu, Yuan; Shiao, Frank; Huang, Nanxi; Li, Linpei; Lee, Ming-Shyue; Johnson, Michael D.; Wang, Jehng-Kang; Lin, Chen-Yong

    2015-01-01

    The gene product of SPINT 2, that encodes a transmembrane, Kunitz-type serine protease inhibitor independently designated as HAI-2 or placenta bikunin (PB), is involved in regulation of sodium absorption in human gastrointestinal track. Here, we show that SPINT 2 is expressed as two species of different size (30-40- versus 25-kDa) due to different N-glycans on Asn-57. The N-glycan on 25-kDa HAI-2 appears to be of the oligomannose type and that on 30-40-kDa HAI-2 to be of complex type with extensive terminal N-acetylglucosamine branching. The two different types of N-glycan differentially mask two epitopes on HAI-2 polypeptide, recognized by two different HAI-2 mAbs. The 30-40-kDa form may be mature HAI-2, and is primarily localized in vesicles/granules. The 25-kDa form is likely immature HAI-2, that remains in the endoplasmic reticulum (ER) in the perinuclear regions of mammary epithelial cells. The two different N-glycans could, therefore, represent different maturation stages of N-glycosylation with the 25-kDa likely a precursor of the 30-40-kDa HAI-2, with the ratio of their levels roughly similar among a variety of cells. In breast cancer cells, a significant amount of the 30-40-kDa HAI-2 can translocate to and inhibit matriptase on the cell surface, followed by shedding of the matriptase-HAI-2 complex. The 25-kDa HAI-2 appears to have also exited the ER/Golgi, being localized at the cytoplasmic face of the plasma membrane of breast cancer cells. While the 25-kDa HAI-2 was also detected at the extracellular face of plasma membrane at very low levels it appears to have no role in matriptase inhibition probably due to its paucity on the cell surface. Our study reveals that N-glycan branching regulates HAI-2 through different subcellular distribution and subsequently access to different target proteases. PMID:26171609

  3. N-Glycan Branching Affects the Subcellular Distribution of and Inhibition of Matriptase by HAI-2/Placental Bikunin.

    PubMed

    Lai, Ying-Jung J; Chang, Hsiang-Hua D; Lai, Hongyu; Xu, Yuan; Shiao, Frank; Huang, Nanxi; Li, Linpei; Lee, Ming-Shyue; Johnson, Michael D; Wang, Jehng-Kang; Lin, Chen-Yong

    2015-01-01

    The gene product of SPINT 2, that encodes a transmembrane, Kunitz-type serine protease inhibitor independently designated as HAI-2 or placenta bikunin (PB), is involved in regulation of sodium absorption in human gastrointestinal track. Here, we show that SPINT 2 is expressed as two species of different size (30-40- versus 25-kDa) due to different N-glycans on Asn-57. The N-glycan on 25-kDa HAI-2 appears to be of the oligomannose type and that on 30-40-kDa HAI-2 to be of complex type with extensive terminal N-acetylglucosamine branching. The two different types of N-glycan differentially mask two epitopes on HAI-2 polypeptide, recognized by two different HAI-2 mAbs. The 30-40-kDa form may be mature HAI-2, and is primarily localized in vesicles/granules. The 25-kDa form is likely immature HAI-2, that remains in the endoplasmic reticulum (ER) in the perinuclear regions of mammary epithelial cells. The two different N-glycans could, therefore, represent different maturation stages of N-glycosylation with the 25-kDa likely a precursor of the 30-40-kDa HAI-2, with the ratio of their levels roughly similar among a variety of cells. In breast cancer cells, a significant amount of the 30-40-kDa HAI-2 can translocate to and inhibit matriptase on the cell surface, followed by shedding of the matriptase-HAI-2 complex. The 25-kDa HAI-2 appears to have also exited the ER/Golgi, being localized at the cytoplasmic face of the plasma membrane of breast cancer cells. While the 25-kDa HAI-2 was also detected at the extracellular face of plasma membrane at very low levels it appears to have no role in matriptase inhibition probably due to its paucity on the cell surface. Our study reveals that N-glycan branching regulates HAI-2 through different subcellular distribution and subsequently access to different target proteases. PMID:26171609

  4. Subcellular localization of grapevine red blotch-associated virus ORFs V2 and V3.

    PubMed

    Guo, Tai Wei; Vimalesvaran, Deluxsika; Thompson, Jeremy R; Perry, Keith L; Krenz, Björn

    2015-08-01

    Grapevine red blotch-associated virus is a recently discovered plant monopartite gemini-like virus found in North American grapevines. Leaf discoloration and a decrease in fruit quality are associated with its infection. Two of its six open reading frames (ORFs), V2 and V3, are of unknown function and share no obvious homology with plant or viral genes. Transient expression of these ORFs in fusion with the green fluorescent protein demonstrated that the V2 protein localizes in the nucleoplasm, Cajal bodies, and cytoplasm; and the V3 protein localizes in various unidentified subnuclear bodies. Additionally, the V2 protein is redirected to the nucleolus upon co-expression with the nucleolus and Cajal body-associated protein Fib2. PMID:26063598

  5. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    PubMed

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. PMID:23849111

  6. Functional Implications of the Subcellular Localization of Ethylene-Induced Chitinase and [beta]-1,3-Glucanase in Bean Leaves.

    PubMed Central

    Mauch, F.; Staehelin, L. A.

    1989-01-01

    Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens. PMID:12359894

  7. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Mori, Natsumi; Moriyama, Takashi; Toyoshima, Masakazu; Sato, Naoki

    2016-01-01

    Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid

  8. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Mori, Natsumi; Moriyama, Takashi; Toyoshima, Masakazu; Sato, Naoki

    2016-01-01

    Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid

  9. Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats

    PubMed Central

    Mitrano, D.A.; Arnold, C.; Smith, Y.

    2008-01-01

    There is significant pharmacological and behavioral evidence that group I metabotropic glutamate receptors (mGluR1a and mGluR5) in the nucleus accumbens play an important role in the neurochemical and pathophysiological mechanisms that underlie addiction to psychostimulants. To further address this issue, we undertook a detailed ultrastructural analysis to characterize changes in the subcellular and subsynaptic localization of mGluR1a and mGluR5 in the core and shell of nucleus accumbens following acute or chronic cocaine administration in rats. After a single cocaine injection (30mg/kg) and 45 minutes withdrawal, there was a significant decrease in the proportion of plasma membrane-bound mGluR1a in accumbens shell dendrites. Similarly, the proportion of plasma membrane-bound mGluR1a was decreased in large dendrites of accumbens core neurons following chronic cocaine exposure (i.e. 1 week treatment followed by three weeks withdrawal). However, neither acute nor chronic cocaine treatments induced significant change in the localization of mGluR5 in accumbens core and shell, which is in contrast with the significant reduction of plasma membrane-bound mGluR1a and mGluR5 induced by local intra-accumbens administration of the group I mGluR agonist, DHPG. In conclusion, these findings demonstrate that cocaine-induced glutamate imbalance (Smith et al., 1995; Pierce et al., 1996; Reid et al., 1997) has modest effects on the trafficking of group I mGluRs in the nucleus accumbens. These results provide valuable information on the neuroadaptive mechanisms of accumbens group I mGluRs in response to cocaine administration. PMID:18479833

  10. Phosphatidate Kinase, a Novel Enzyme in Phospholipid Metabolism (Purification, Subcellular Localization, and Occurrence in the Plant Kingdom).

    PubMed Central

    Wissing, J. B.; Behrbohm, H.

    1993-01-01

    Microsomal membranes from suspension-cultured Catharanthus roseus cells possess an enzymic activity that catalyzes the ATP-dependent phosphorylation of phosphatidic acid (PA) to form diacylglycerol pyrophosphate (H. Behrbohm, J.B. Wissing [1993] FEBS Lett 315: 95-99). This enzyme activity, PA kinase, was purified and characterized. Plasma membranes, obtained from C. roseus microsomes by aqueous two-phase partitioning, were extracted, and PA kinase was purified 3200-fold by applying different chromatographic steps that resulted in a specific activity of about 10 [mu]mol min-1 mg-1. Sodium dodecyl sulfate-gel electrophoresis of the fractions obtained from the final chromatographic step revealed a 39-kD protein that correlated with the enzyme activity; PA kinase activity could be eluted from this protein band. Subcellular localization, investigated with C. roseus cells, showed that the activity was confined to membrane fractions, and at least 80% was associated with plasma membranes. The data revealed the same distribution within the cellular membranes of PA kinase as reported for diacylglycerol kinase, which is a typical plasma membrane-located enzyme. Furthermore, PA kinase activity was detected in the calli of 16 different plant species and in the different organs of C. roseus plants and obviously occurs ubiquitously in the plant kingdom. PMID:12231900

  11. Endogenous spar tin, mutated in hereditary spastic paraplegia, has a complex subcellular localization suggesting diverse roles in neurons

    SciTech Connect

    Robay, Dimitri; Patel, Heema; Simpson, Michael A.; Brown, Nigel A.; Crosby, Andrew H. . E-mail: acrosby@sgul.ac.uk

    2006-09-10

    Mutation of spartin (SPG20) underlies a complicated form of hereditary spastic paraplegia, a disorder principally defined by the degeneration of upper motor neurons. Using a polyclonal antibody against spartin to gain insight into the function of the endogenous molecule, we show that the endogenous molecule is present in two main isoforms of 85 kDa and 100 kDa, and 75 kDa and 85 kDa in human and murine, respectively, with restricted subcellular localization. Immunohistochemical studies on human and mouse embryo sections and in vitro cell studies indicate that spartin is likely to possess both nuclear and cytoplasmic functions. The nuclear expression of spartin closely mirrors that of the snRNP (small nuclear ribonucleoprotein) marker {alpha}-Sm, a component of the spliceosome. Spartin is also enriched at the centrosome within mitotic structures. Notably we show that spartin protein undergoes dynamic positional changes in differentiating human SH-SY5Y cells. In undifferentiated non-neuronal cells, spartin displays a nuclear and diffuse cytosolic profile, whereas spartin transiently accumulates in the trans-Golgi network and subsequently decorates discrete puncta along neurites in terminally differentiated neuroblastic cells. Investigation of these spartin-positive vesicles reveals that a large proportion colocalizes with the synaptic vesicle marker synaptotagmin. Spartin is also enriched in synaptic-like structures and in synaptic vesicle-enriched fraction.

  12. Subcellular distribution of small interfering RNA: directed delivery through RNA polymerase III expression cassettes and localization by in situ hybridization.

    PubMed

    Paul, Cynthia P

    2005-01-01

    Reduction in the expression of specific genes through small interfering RNAs (siRNAs) is dependent on the colocalization of siRNAs with other components of the RNA interference (RNAi) pathways within the cell. The expression of siRNAs within cells from cassettes that are derived from genes transcribed by RNA polymerase III (pol III) and provide for selective subcellular distribution of their products can be used to direct siRNAs to the cellular pathways. Expression from the human U6 promoter, resulting in siRNA accumulation in the nucleus, is effective in reducing gene expression, whereas cytoplasmic and nucleolar localization of the siRNA when expressed from the 5S or 7 SL promoters is not effective. The distribution of siRNA within the cell is determined by fluorescence in situ hybridization. Although the long uninterrupted duplex of siRNA makes it difficult to detect with DNA oligonucleotide probes, labeled oligonucleotide probes with 2'-O-methyl RNA backbones provide the stability needed for a strong signal. These methods contribute to studies of the interconnected cellular RNAi pathways and are useful in adapting RNAi as a tool to determine gene function and develop RNA-based therapeutics. PMID:15644179

  13. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages

    SciTech Connect

    Renard, C.; Vanderhaeghe, H.J.; Claes, P.J.; Zenebergh, A.; Tulkens, P.M.

    1987-03-01

    beta-Lactam antibiotics do not accumulate in phagocytes, probably because of their acidic character. We therefore synthesized a basic derivative of penicillin G, namely, /sup 14/C-labeled N-(3-dimethylamino-propyl)benzylpenicillinamide (ABP), and studied its uptake and subcellular localization in J774 macrophages compared with that of /sup 14/C-labeled penicillin G. Whereas the intracellular concentration (Ci) of penicillin G remained lower than its extracellular concentration (Ce), ABP reached a Ci/Ce ratio of 4 to 5. Moreover, approximately 50% of intracellular ABP was found associated with lysosomes after isopycnic centrifugation of cell homogenates in isoosmotic Percoll or hyperosmotic sucrose gradients. The behavior of ABP was thus partly consistent with the model of de Duve et al., in which they described the intralysosomal accumulation of weak organic bases in lysosomes. Although ABP is microbiologically inactive, our results show that beta-lactam antibiotics can be driven into cells by appropriate modification. Further efforts therefore may be warranted in the design of active compounds or prodrugs that may prove useful in the chemotherapy of intracellular infections.

  14. Alpha2-macroglobulin from an Atlantic shrimp: biochemical characterization, sub-cellular localization and gene expression upon fungal challenge.

    PubMed

    Perazzolo, Luciane Maria; Bachère, Evelyne; Rosa, Rafael Diego; Goncalves, Priscila; Andreatta, Edemar Roberto; Daffre, Sirlei; Barracco, Margherita Anna

    2011-12-01

    In this study, we report on the isolation and characterization of an alpha2-macroglobulin (α2M) from the plasma of the pink shrimp Farfantepenaeus paulensis, its sub-cellular localization and transcriptional changes after infection by fungi. The molecular mass of the α2M was estimated at 389 kDa by gel filtration and 197 kDa by SDS-PAGE, under reducing conditions, suggesting that α2M from F. paulensis consists of two identical sub-units, covalently linked by disulphide bonds. The N-terminal amino acid sequence of the α2M from F. paulensis was very similar to those of other penaeid shrimps, crayfish and lobster (70-90% identity) and to a less extent with that of freshwater prawn (40% identity). A monoclonal antibody raised against the Marsupenaeus japonicus α2M made it possible to demonstrate that α2M of F. paulensis is stored in the vesicles of the shrimp granular hemocytes (through immunogold assay). Quantitative real-time PCR (qPCR) analysis showed that α2M mRNA transcripts significantly increased 24 h after an experimental infection with the shrimp pathogen Fusarium solani and it returned to the basal levels at 48 h post-injection. This is the first report on a α2M characterization in an Atlantic penaeid species and its expression profile upon a fungal infection. PMID:21888978

  15. Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners

    PubMed Central

    Khanam, Tasneem; Rozhdestvensky, Timofey S.; Bundman, Marsha; Galiveti, Chenna R.; Handel, Sergej; Sukonina, Valentina; Jordan, Ursula; Brosius, Jürgen; Skryabin, Boris V.

    2007-01-01

    In a rare occasion a single chromosomal locus was targeted twice by independent Alu-related retroposon insertions, and in both cases supported neuronal expression of the respective inserted genes encoding small non-protein coding RNAs (npcRNAs): BC200 RNA in anthropoid primates and G22 RNA in the Lorisoidea branch of prosimians. To avoid primate experimentation, we generated transgenic mice to study neuronal expression and protein binding partners for BC200 and G22 npcRNAs. The BC200 gene, with sufficient upstream flanking sequences, is expressed in transgenic mouse brain areas comparable to those in human brain, and G22 gene, with upstream flanks, has a similar expression pattern. However, when all upstream regions of the G22 gene were removed, expression was completely abolished, despite the presence of intact internal RNA polymerase III promoter elements. Transgenic BC200 RNA is transported into neuronal dendrites as it is in human brain. G22 RNA, almost twice as large as BC200 RNA, has a similar subcellular localization. Both transgenically expressed npcRNAs formed RNP complexes with poly(A) binding protein and the heterodimer SRP9/14, as does BC200 RNA in human. These observations strongly support the possibility that the independently exapted npcRNAs have similar functions, perhaps in translational regulation of dendritic protein biosynthesis in neurons of the respective primates. PMID:17175535

  16. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors. PMID:26972256

  17. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus

    SciTech Connect

    Xiong Ruyi; Wu Jianxiang; Zhou Yijun; Zhou Xueping

    2009-04-25

    Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent long distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.

  18. Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein

    SciTech Connect

    Kieback, Elisa; Mueller, Martin . E-mail: Martin.Mueller@dkfz.de

    2006-02-05

    Two structural proteins form the capsids of papillomaviruses. The major structural protein L1 is the structural determinant of the capsids and is present in 360 copies arranged in 72 pentamers. The minor structural protein L2 is estimated to be present in twelve copies per capsid. Possible roles for L2 in interaction with cell surface receptors and in virion uptake have been suggested. As previously reported, L2 localizes in subnuclear domains identified as nuclear domain 10 (ND10). As it was demonstrated that L2 is able to recruit viral and cellular proteins to ND10, a possible role for L2 as a mediator in viral assembly has been proposed. In this study, we determined factors influencing the localization of L2 at ND10. Under conditions of moderate L2 expression level and in the absence of heterologous viral components, we observed that, in contrast to previous reports, L2 is mainly distributed homogeneously throughout the nucleus. L2, however, is recruited to ND10 at a higher expression level or in the presence of viral components derived from vaccinia virus or from Semliki Forest virus. We observed that translocation of L2 to ND10 is not a concentration-dependent accumulation but rather seems to be triggered by yet unidentified cellular factors. In contrast to HPV 11 and 16 L2, the HPV 18 L2 protein seems to require L1 for efficient nuclear accumulation.

  19. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves

    SciTech Connect

    Voegeli-Lange, R.; Wagner, G.J. )

    1990-04-01

    The synthesis of Cd-binding peptides (CdBPs) was induced upon addition of 20 micromolar CdCl{sub 2} (nonphytotoxic level) to the nutrient solution of hydroponically grown tobacco seedlings (Nicotiana rustica var Pavonii). Amino acid analysis showed that the main components were {gamma}-(Glu-Cys){sub 3}-Gly and {gamma}-(Glu-Cys){sub 4}-Gly. Seedlings exposed to the metal for 1 week contained similar glutathione levels as found in the controls (about 0.18 micromole per gram fresh weight). If, as has been proposed, CdBPs are involved in Cd-detoxification by chelation, both metal and ligand must be localized in the same cellular compartment. To directly determine the localization of Cd and CdBPs, protoplasts and vacuoles were isolated from leaves of Cd-exposed seedlings. Purified vacuoles contained virtually all of the CdBPs and Cd found in protoplasts (104% {plus minus} 8 and 110% {plus minus} 8, respectively). CdBPs were associated with the vacuolar sap and not with the tonoplast membrane. Glutathione was observed in leaves and protoplasts but not in vacuoles. The probability that CdBPs are synthesized extravacuolarly and our finding that they and Cd are predominantly located in the vacuole suggest that these molecules might be involved in transport of Cd to the vacuole. Our results also suggest that a simple cytoplasmic chelator role for CdBPs in Cd tolerance cannot be assumed.

  20. Calcium signaling in mammalian egg activation and embryo development: Influence of subcellular localization

    PubMed Central

    Miao, Yi-Liang; Williams, Carmen J.

    2012-01-01

    Calcium (Ca2+) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca2+ signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca2+ sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca2+ in many cell types and the impact of cellular localization on Ca2+ signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca2+ is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca2+ release and effectors of Ca2+ signals. We then summarize studies exploring how Ca2+ directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca2+ signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe areas for future research. PMID:22888043

  1. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa.

    PubMed

    Yamaguchi, Airi; Kaneko, Takane; Inai, Tetsuichiro; Iida, Hiroshi

    2014-04-01

    Tektins (TEKTs) are composed of a family of filament-forming proteins localized in cilia and flagella. Five types of mammalian TEKTs have been reported, all of which have been verified to be present in sperm flagella. TEKT2, which is indispensable for sperm structure, mobility, and fertilization, was present at the periphery of the outer dense fiber (ODF) in the sperm flagella. By yeast two-hybrid screening, we intended to isolate flagellar proteins that could interact with TEKT2, which resulted in the isolation of novel two genes from the mouse testis library, referred as a TEKT2-binding protein 1 (TEKT2BP1) and -protein 2 (TEKT2BP2). In this study, we characterized TEKT2BP1, which is registered as a coiled-coil domain-containing protein 172 (Ccdc172) in the latest database. RT-PCR analysis indicated that TEKT2BP1 was predominantly expressed in rat testis and that its expression was increased after 3 weeks of postnatal development. Immunocytochemical studies discovered that TEKT2BP1 localized in the middle piece of rat spermatozoa, predominantly concentrated at the mitochondria sheath of the flagella. We hypothesize that the TEKT2-TEKT2BP1 complex might be involved in the structural linkage between the ODF and mitochondria in the middle piece of the sperm flagella. PMID:24394471

  2. Subcellular Localization of Cadmium and Cadmium-Binding Peptides in Tobacco Leaves 1

    PubMed Central

    Vögeli-Lange, Regina; Wagner, George J.

    1990-01-01

    The synthesis of Cd-binding peptides (CdBPs) was induced upon addition of 20 micromolar CdCl2 (nonphytotoxic level) to the nutrient solution of hydroponically grown tobacco seedlings (Nicotiana rustica var Pavonii). Amino acid analysis showed that the main components were γ-(Glu-Cys)3-Gly and γ-(Glu-Cys)4-Gly. Seedlings exposed to the metal for 1 week contained similar glutathione levels as found in the controls (about 0.18 micromole per gram fresh weight). If, as has been proposed, CdBPs are involved in Cd-detoxification by chelation, both metal and ligand must be localized in the same cellular compartment. To directly determine the localization of Cd and CdBPs, protoplasts and vacuoles were isolated from leaves of Cd-exposed seedlings. Purified vacuoles contained virtually all of the CdBPs and Cd found in protoplasts (104% ± 8 and 110% ± 8, respectively). CdBPs were associated with the vacuolar sap and not with the tonoplast membrane. Glutathione was observed in leaves and protoplasts but not in vacuoles. The probability that CdBPs are synthesized extravacuolarly and our finding that they and Cd are predominantly located in the vacuole suggest that these molecules might be involved in transport of Cd to the vacuole. Our results also suggest that a simple cytoplasmic chelator role for CdBPs in Cd tolerance cannot be assumed. Images Figure 3 PMID:16667375

  3. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana

    PubMed Central

    Zheng, Luping; Yao, Jinai; Gao, Fangluan; Chen, Lin; Zhang, Chao; Lian, Lingli; Xie, Liyan; Wu, Zujian; Xie, Lianhui

    2016-01-01

    Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana). Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP). The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2) protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain) and a nuclear localization signal (NLS) in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS) approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana. PMID:26885505

  4. Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development

    PubMed Central

    Dupé, Aurélien; Dumas, Carole; Papadopoulou, Barbara

    2015-01-01

    Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in

  5. Probing the Anticancer Action of Oridonin with Fluorescent Analogues: Visualizing Subcellular Localization to Mitochondria.

    PubMed

    Xu, Shengtao; Luo, Shanshan; Yao, Hong; Cai, Hao; Miao, Xiaoming; Wu, Fang; Yang, Dong-Hua; Wu, Xiaoming; Xie, Weijia; Yao, Hequan; Chen, Zhe-Sheng; Xu, Jinyi

    2016-05-26

    Oridonin (1) is a complex ent-kaurane diterpenoid exhibiting remarkable antitumor activity. However, the detailed mechanism or cellular target that underlies this activity has not yet been identified. Herein, we report an efficient approach for exploring the anticancer mechanism of oridonin through development of the potent fluorescent analogues. A series of novel fluorescent oridonin probes linked with coumarin moieties were designed, synthesized, and characterized. Fluorescence microscopy and confocal imaging studies suggested that fluorescent oridonin probe 17d was rapidly taken up into tumor cells and the mitochondrion was the main site of its accumulation. Moreover, we confirmed that cytochrome c played an important role in oridonin induced mitochondrion-mediated apoptosis and α,β-unsaturated ketone is the active moiety of oridonin, which is crucial to its uptake, localization, and cytotoxicity. Our results provide new insights on the molecular mechanism of oridonin and would be useful for its further development into an antitumor agent. PMID:27089099

  6. Anks3 alters the sub-cellular localization of the Nek7 kinase

    SciTech Connect

    Ramachandran, Haribaskar; Engel, Christina; Müller, Barbara; Dengjel, Jörn; Walz, Gerd; Yakulov, Toma A.

    2015-08-28

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3, but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. - Highlights: • Anks3 interacted with Nek7 kinase, and was heavily modified in the presence of Nek7. • Anks3 N-terminal ankyrin repeats, but not SAM domain required for Nek7 interaction. • Nek7 increased Ser/Thr phosphorylation of Anks3 primarily within ankyrin domain. • Interaction with Anks3 led to cytoplasmic retention and nuclear exclusion of Nek7.

  7. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity.

    PubMed

    Van Dolah, Frances M; Zippay, Mackenzie L; Pezzolesi, Laura; Rein, Kathleen S; Johnson, Jillian G; Morey, Jeanine S; Wang, Zhihong; Pistocchi, Rossella

    2013-12-01

    Dinoflagellates are prolific producers of polyketide secondary metabolites. Dinoflagellate polyketide synthases (PKSs) have sequence similarity to Type I PKSs, megasynthases that encode all catalytic domains on a single polypeptide. However, in dinoflagellate PKSs identified to date, each catalytic domain resides on a separate transcript, suggesting multiprotein complexes similar to Type II PKSs. Here, we provide evidence through coimmunoprecipitation that single-domain ketosynthase and ketoreductase proteins interact, suggesting a predicted multiprotein complex. In Karenia brevis (C.C. Davis) Gert Hansen & Ø. Moestrup, previously observed chloroplast localization of PKSs suggested that brevetoxin biosynthesis may take place in the chloroplast. Here, we report that PKSs are present in both cytosol and chloroplast. Furthermore, brevetoxin is not present in isolated chloroplasts, raising the question of what chloroplast-localized PKS enzymes might be doing. Antibodies to K. brevis PKSs recognize cytosolic and chloroplast proteins in Ostreopsis cf. ovata Fukuyo, and Coolia monotis Meunier, which produce different suites of polyketide toxins, suggesting that these PKSs may share common pathways. Since PKSs are closely related to fatty acid synthases (FAS), we sought to determine if fatty acid biosynthesis colocalizes with either chloroplast or cytosolic PKSs. [(3) H]acetate labeling showed fatty acids are synthesized in the cytosol, with little incorporation in chloroplasts, consistent with a Type I FAS system. However, although 29 sequences in a K. brevis expressed sequence tag database have similarity (BLASTx e-value <10(-10) ) to PKSs, no transcripts for either Type I (cytosolic) or Type II (chloroplast) FAS are present. Further characterization of the FAS complexes may help to elucidate the functions of the PKS enzymes identified in dinoflagellates. PMID:27007632

  8. Expression Patterns and Subcellular Localization of Carbonic Anhydrases Are Developmentally Regulated during Tooth Formation

    PubMed Central

    Reibring, Claes-Göran; El Shahawy, Maha; Hallberg, Kristina; Kannius-Janson, Marie; Nilsson, Jeanette; Parkkila, Seppo; Sly, William S.; Waheed, Abdul; Linde, Anders; Gritli-Linde, Amel

    2014-01-01

    Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for future single or

  9. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus

    PubMed Central

    Mitterling, Katherine L.; Spencer, Joanna L.; Dziedzic, Noelle; Shenoy, Sushila; McCarthy, Katharine; Waters, Elizabeth M.; McEwen, Bruce S.; Milner, Teresa A.

    2010-01-01

    Estrogen receptor-α (ERα), -β (ERβ) and progestin receptor (PR) immunoreactivities are localized to extranuclear sites in the rat hippocampal formation. Since rats and mice respond differently to estradiol treatment at a cellular level, the present study examined the distribution of ovarian hormone receptors in the dorsal hippocampal formation of mice. For this, antibodies to ERα, ERβ, and PR were localized by light and electron immunomicroscopy in male and female mice across the estrous cycle. Light microscopic examination of the mouse hippocampal formation showed sparse nuclear ERα–, and PR-immunoreactivity (-ir) most prominent in the CA1 region and diffuse ERβ-ir primarily in the CA1 pyramidal cell layer as well as in a few interneurons. Ultrastructural analysis additionally revealed discrete extranuclear ERα-, ERβ- and PR-ir in neuronal and glial profiles throughout the hippocampal formation. While extranuclear profiles were detected in all animal groups examined, the amount and types of profiles varied with sex and estrous cycle phase. ERα-ir was highest in diestrus females, particularly in dendritic spines, axons and glia. Similarly, ERβ-ir was highest in estrus and diestrus females, mainly in dendritic spines and glia. Conversely, PR-ir was highest during proestrus, and mostly in axons. Except for very low levels of extranuclear ERβ-ir in mossy fiber terminals in mice, the labeling patterns in the mice for all three antibodies were similar to the ultrastructural labeling found previously in rats, suggesting that regulation of these receptors is well conserved across the two species. PMID:20506473

  10. Anks3 alters the sub-cellular localization of the Nek7 kinase.

    PubMed

    Ramachandran, Haribaskar; Engel, Christina; Müller, Barbara; Dengjel, Jörn; Walz, Gerd; Yakulov, Toma A

    2015-08-28

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3, but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. PMID:26188091

  11. Differential subcellular localization renders HAI-2 a matriptase inhibitor in breast cancer cells but not in mammary epithelial cells.

    PubMed

    Chang, Hsiang-Hua D; Xu, Yuan; Lai, Hongyu; Yang, Xiaoyu; Tseng, Chun-Che; Lai, Ying-Jung J; Pan, Yu; Zhou, Emily; Johnson, Michael D; Wang, Jehng-Kang; Lin, Chen-Yong

    2015-01-01

    The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells. PMID:25786220

  12. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    SciTech Connect

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  13. USP8 Promotes Smoothened Signaling by Preventing Its Ubiquitination and Changing Its Subcellular Localization

    PubMed Central

    Xia, Ruohan; Jia, Hongge; Fan, Junkai; Liu, Yajuan; Jia, Jianhang

    2012-01-01

    The seven transmembrane protein Smoothened (Smo) is a critical component of the Hedgehog (Hh) signaling pathway and is regulated by phosphorylation, dimerization, and cell-surface accumulation upon Hh stimulation. However, it is not clear how Hh regulates Smo accumulation on the cell surface or how Hh regulates the intracellular trafficking of Smo. In addition, little is known about whether ubiquitination is involved in Smo regulation. In this study, we demonstrate that Smo is multi-monoubiquitinated and that Smo ubiquitination is inhibited by Hh and by phosphorylation. Using an in vivo RNAi screen, we identified ubiquitin-specific protease 8 (USP8) as a deubiquitinase that down-regulates Smo ubiquitination. Inactivation of USP8 increases Smo ubiquitination and attenuates Hh-induced Smo accumulation, leading to decreased Hh signaling activity. Moreover, overexpression of USP8 prevents Smo ubiquitination and elevates Smo accumulation, leading to increased Hh signaling activity. Mechanistically, we show that Hh promotes the interaction of USP8 with Smo aa625–753, which covers the three PKA and CK1 phosphorylation clusters. Finally, USP8 promotes the accumulation of Smo at the cell surface and prevents localization to the early endosomes, presumably by deubiquitinating Smo. Our studies identify USP8 as a positive regulator in Hh signaling by down-regulating Smo ubiquitination and thereby mediating Smo intracellular trafficking. PMID:22253573

  14. Subcellular localization of Cd and Cd-binding peptides in tobacco leaves

    SciTech Connect

    Vogeli-Lange, R.; Wagner, G.J. )

    1989-04-01

    Cd-binding peptides (CdBP's) having the general structure {gamma}-(Glu-Cys){sub n}-Gly are inducible by and have high affinity for Cd. If these peptides are involved in Cd detoxification by chelation, both metal and ligand must be localized in the same cellular compartment. To address this question, we studied the vacuolar/extravacuolar distribution of Cd and CdBP's in leaves of hydroponically grown tobacco seedlings. CdBP's were induced upon addition of 20 {mu}M CdCl{sub 2} (non-phytotoxic level) to the nutrient solution. Amino acid analysis indicated that the main components were {gamma}-(Glu-Cys){sub 3}-Gly and {gamma}-(Glu-Cys){sub 4}-Gly. Purified vacuoles isolated from protoplasts of Cd treated leaves contained most of the total CdBP's and Cd found in protoplasts (104% {plus minus}8 and 110% {plus minus}8, respectively). The probability that CdBP's are synthesized extravacuolarly and their predominant location in the vacuole suggest that these molecules may be involved in translocation of Cd to the vacuole.

  15. Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns

    SciTech Connect

    Kim, Jin Young; Lee, Kwang Hee; Shim, Myoung Sup; Shin, Hyein; Xu, Xue-Ming; Carlson, Bradley A.; Hatfield, Dolph L.; Lee, Byeong Jae

    2010-06-18

    Selenophosphate synthetase 1 (SPS1) is an essential cellular gene in higher eukaryotes. Five alternative splice variants of human SPS1 (major type, {Delta}E2, {Delta}E8, +E9, +E9a) were identified wherein +E9 and +E9a make the same protein. The major type was localized in both the nuclear and plasma membranes, and the others in the cytoplasm. All variants form homodimers, and in addition, the major type forms a heterodimer with {Delta}E2, and {Delta}E8 with +E9. The level of expression of each splice variant was different in various cell lines. The expression of each alternative splice variant was regulated during the cell cycle. The levels of the major type and {Delta}E8 were gradually increased until G2/M phase and then gradually decreased. {Delta}E2 expression peaked at mid-S phase and then gradually decreased. However, +E9/+E9a expression decreased gradually after cell cycle arrest. The possible involvement of SPS1 splice variants in cell cycle regulation is discussed.

  16. Evidence for the subcellular localization and specificity of chlordane inhibition in the marine bacterium Aeromonas proteolytica.

    PubMed Central

    Nakas, J P; Litchfield, C D

    1979-01-01

    Sublethal levels (10 to 100 micrograms/ml) of the chlorinated insecticide chlordane (1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan) were introduced into the growth medium of the marine bacterium, Aeromonas proteolytica. Chlordane inhibited the synthesis of an extracellular endopeptidase by almost 40% but exhibited no such inhibition of the extracellular aminopeptidase also produced during the growth cycle. Studied with 14C-labeled chlordane demonstrated that the insecticide was not biologically degraded under the test conditions used and that up to 75% of the recoverable chlordane was cell associated within 48 h. Studied with uniformly labeled L[14C]valine and [2-14C]uracil established that neither the transport nor the incorporation of these protein and ribonucleic acid precursors was inhibited by chlordane. Separation of the membrane fractions using isopycnic centrifugation localized 14C-labeled chlordane in the cytoplasmic membrane. Also, chlordane inhibited the membrane-bound adenosine 5'-triphosphatase while the soluble (released) form of this enzyme remained unaffected. These data indicate that chlordane resides in the cytoplasmic membrane and may cause specific alterations in membrane-associated activities. PMID:156517

  17. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover.

    PubMed

    Henderson, B R

    2000-09-01

    Mutational inactivation of the APC gene is a key early event in the development of familial adenomatous polyposis and colon cancer. APC suppresses tumour progression by promoting degradation of the oncogenic transcriptional activator beta-catenin. APC gene mutations can lead to abnormally high levels of beta-catenin in the nucleus, and the consequent activation of transforming genes. Here, we show that APC is a nuclear-cytoplasmic shuttling protein, and that it can function as a beta-catenin chaperone. APC contains two active nuclear export sequences (NES) at the amino terminus, and mutagenesis of these conserved motifs blocks nuclear export dependent on the CRM1 export receptor. Treatment of cells with the CRM1-specific export inhibitor leptomycin B shifts APC from cytoplasm to nucleus. beta-catenin localization is also regulated by CRM1, but in an APC-dependent manner. Transient expression of wild-type APC in SW480 (APCmut/mut) colon cancer cells enhances nuclear export and degradation of beta-catenin, and these effects can be blocked by mutagenesis of the APC NES. These findings suggest that wild-type APC controls the nuclear accumulation of beta-catenin by a combination of nuclear export and cytoplasmic degradation. PMID:10980707

  18. Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes.

    PubMed

    Ramos, Inés; Cisint, Susana B; Crespo, Claudia A; Medina, Marcela F; Fernández, Silvia N

    2009-08-01

    The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process. PMID:19397840

  19. RhoH Regulates Subcellular Localization of ZAP-70 and Lck in T Cell Receptor Signaling

    PubMed Central

    Chae, Hee-Don; Siefring, Jamie E.; Hildeman, David A.; Gu, Yi; Williams, David A.

    2010-01-01

    RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh-/- bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway. PMID:21103055

  20. Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1.

    PubMed

    Diamond, Marc I; Cai, Shirong; Boudreau, Aaron; Carey, Clifton J; Lyle, Nicholas; Pappu, Rohit V; Swamidass, S Joshua; Bissell, Mina; Piwnica-Worms, Helen; Shao, Jieya

    2015-04-01

    The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer. PMID:25681442

  1. Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases.

    PubMed

    Urscher, Miriam; Przyborski, Jude M; Imoto, Masaya; Deponte, Marcel

    2010-04-01

    The ubiquitous glyoxalase system removes methylglyoxal as a harmful by-product of glycolysis. Because malaria parasites have drastically increased glycolytic fluxes, they could be highly susceptible to the inhibition of this detoxification pathway. Here we analysed the intracellular localization, oligomerization and inhibition of the glyoxalases from Plasmodium falciparum. Glyoxalase I (GloI) and one of the two glyoxalases II (cGloII) were located in the cytosol of the blood stages. The second glyoxalase II (tGloII) was detected in the apicoplast pointing to alternative metabolic pathways. Using a variety of methods, cGloII was found to exist in a monomer-dimer equilibrium that might have been overlooked for homologues from other organisms and that could be of physiological importance. The compounds methyl-gerfelin and curcumin, which were previously shown to inhibit mammalian GloI, also inhibited P. falciparum GloI. Inhibition patterns were predominantly competitive but were complicated because of the two different active sites of the enzyme. This effect was neglected in previous inhibition studies of monomeric glyoxalases I, with consequences for the interpretation of inhibition constants. In summary, the present work reveals novel general glyoxalase properties that future research can build on and provides a significant advance in characterizing the glyoxalase system from P. falciparum. PMID:20149108

  2. Glucosylceramidase mass and subcellular localization are modulated by cholesterol in Niemann-Pick disease type C.

    PubMed

    Salvioli, Rosa; Scarpa, Susanna; Ciaffoni, Fiorella; Tatti, Massimo; Ramoni, Carlo; Vanier, Marie T; Vaccaro, Anna Maria

    2004-04-23

    Niemann-Pick disease type C (NPC) is characterized by the accumulation of cholesterol and sphingolipids in the late endosomal/lysosomal compartment. The mechanism by which the concentration of sphingolipids such as glucosylceramide is increased in this disease is poorly understood. We have found that, in NPC fibroblasts, the cholesterol storage affects the stability of glucosylceramidase (GCase), decreasing its mass and activity; a reduction of cholesterol raises the level of GCase to nearly normal values. GCase is activated and stabilized by saposin C (Sap C) and anionic phospholipids. Here we show by immunofluorescence microscopy that in normal fibroblasts, GCase, Sap C, and lysobisphosphatidic acid (LBPA), the most abundant anionic phospholipid in the endolysosomal system, reside in the same intracellular vesicular structures. In contrast, the colocalization of GCase, Sap C, and LBPA is markedly impaired in NPC fibroblasts but can be re-established by cholesterol depletion. These data show for the first time that the level of cholesterol modulates the interaction of GCase with its protein and lipid activators, namely Sap C and LBPA, regulating the GCase activity and stability. PMID:14757764

  3. Subcellular Localization of ENS-1/ERNI in Chick Embryonic Stem Cells

    PubMed Central

    Blanc, Sophie; Ruggiero, Florence; Birot, Anne-Marie; Acloque, Hervé; Décimo, Didier; Lerat, Emmanuelle; Ohlmann, Théophile; Samarut, Jacques; Mey, Anne

    2014-01-01

    The protein of retroviral origin ENS-1/ERNI plays a major role during neural plate development in chick embryos by controlling the activity of the epigenetic regulator HP1γ, but its function in the earlier developmental stages is still unknown. ENS-1/ERNI promoter activity is down-regulated upon differentiation but the resulting protein expression has never been examined. In this study, we present the results obtained with custom-made antibodies to gain further insights into ENS-1 protein expression in Chicken embryonic stem cells (CES) and during their differentiation. First, we show that ENS-1 controls the activity of HP1γ in CES and we examined the context of its interaction with HP1γ. By combining immunofluorescence and western blot analysis we show that ENS-1 is localized in the cytoplasm and in the nucleus, in agreement with its role on gene's promoter activity. During differentiation, ENS-1 decreases in the cytoplasm but not in the nucleus. More precisely, three distinct forms of the ENS-1 protein co-exist in the nucleus and are differently regulated during differentiation, revealing a new level of control of the protein ENS-1. In silico analysis of the Ens-1 gene copies and the sequence of their corresponding proteins indicate that this pattern is compatible with at least three potential regulation mechanisms, each accounting only partially. The results obtained with the anti-ENS-1 antibodies presented here reveal that the regulation of ENS-1 expression in CES is more complex than expected, providing new tracks to explore the integration of ENS-1 in CES cells regulatory networks. PMID:24643087

  4. In vivo and in vitro phosphorylation and subcellular localization of trypanosomatid cytoskeletal giant proteins.

    PubMed

    Baqui, M M; Milder, R; Mortara, R A; Pudles, J

    2000-09-01

    Promastigote forms of Phytomonas serpens, Leptomonas samueli, and Leishmania tarentolae express cytoskeletal giant proteins with apparent molecular masses of 3,500 kDa (Ps 3500), 2,500 kDa (Ls 2500), and 1,200 kDa (Lt 1200), respectively. Polyclonal antibodies to Lt 1200 and to Ps 3500 specifically recognize similar polypeptides of the same genera of parasite. In addition to reacting with giant polypeptides of the Leptomonas species, anti-Ls 2500 also cross reacts with Ps 3500, and with a 500-kDa polypeptide of Leishmania. Confocal immunofluorescence and immunogold electron microscopy showed major differences in topological distribution of these three proteins, though they partially share a common localization at the anterior end of the cell body skeleton. Furthermore, Ps 3500, Ls 2500, and Lt 1200 are in vivo phosphorylated at serine and threonine residues, whereas, in vitro phosphorylation of cytoskeletal fractions reveal that only Ps 3500 and Ls 2500 are phosphorylated. Heat treatment (100 degrees C) of high salt cytoskeletal extracts demonstrates that Ps 3500 and Ls 2500 remain stable in solution, whereas Lt 1200 is denatured. Kinase assays with immunocomplexes of heat-treated giant proteins show that only Ps 3500 and Ls 2500 are phosphorylated. These results demonstrate the existence of a novel class of megadalton phosphoproteins in promastigote forms of trypanosomatids that appear to be genera specific with distinct cytoskeletal functions. In addition, there is also evidence that Ps 3500 and Ls 2500, in contrast to Lt 1200, seem to be autophosphorylating serine and threonine protein kinases, suggesting that they might play regulatory roles in the cytoskeletal organization. PMID:11002308

  5. Subcellular localization of yeast Sec14 homologues and their involvement in regulation of phospholipid turnover.

    PubMed

    Schnabl, Martina; Oskolkova, Olga V; Holic, Roman; Brezná, Barbara; Pichler, Harald; Zágorsek, Milos; Kohlwein, Sepp D; Paltauf, Fritz; Daum, Günther; Griac, Peter

    2003-08-01

    Sec14p of the yeast Saccharomyces cerevisiae is involved in protein secretion and regulation of lipid synthesis and turnover in vivo, but acts as a phosphatidylinositol-phosphatidylcholine transfer protein in vitro. In this work, the five homologues of Sec14p, Sfh1p-Sfh5p, were subjected to biochemical and cell biological analysis to get a better view of their physiological role. We show that overexpression of SFH2 and SFH4 suppressed the sec14 growth defect in a more and SFH1 in a less efficient way, whereas overexpression of SFH3 and SFH5 did not complement sec14. Using C-terminal yEGFP fusions, Sfh2p, Sfh4p and Sfh5p are mainly localized to the cytosol and microsomes similar to Sec14p. Sfh1p was detected in the nucleus and Sfh3p in lipid particles and in microsomes. In contrast to Sec14p, which inhibits phospholipase D1 (Pld1p), overproduction of Sfh2p and Sfh4p resulted in the activation of Pld1p-mediated phosphatidylcholine turnover. Interestingly, Sec14p and the two homologues Sfh2p and Sfh4p downregulate phospholipase B1 (Plb1p)-mediated turnover of phosphatidylcholine in vivo. In summary, Sfh2p and Sfh4p are the Sec14p homologues with the most pronounced functional similarity to Sec14p, whereas the other Sfh proteins appear to be functionally less related to Sec14p. PMID:12869188

  6. Characterization of bud emergence 46 (BEM46) protein: sequence, structural, phylogenetic and subcellular localization analyses.

    PubMed

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-08-30

    The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved "known unknown" eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional analyses. The evolutionary history of BEM46 proteins is characterized by exonic indels in lineage specific manner. PMID:23916612

  7. Subcellular Localization Determines the Stability and Axon Protective Capacity of Axon Survival Factor Nmnat2

    PubMed Central

    Milde, Stefan; Gilley, Jonathan; Coleman, Michael P.

    2013-01-01

    Axons require a constant supply of the labile axon survival factor Nmnat2 from their cell bodies to avoid spontaneous axon degeneration. Here we investigate the mechanism of fast axonal transport of Nmnat2 and its site of action for axon maintenance. Using dual-colour live-cell imaging of axonal transport in SCG primary culture neurons, we find that Nmnat2 is bidirectionally trafficked in axons together with markers of the trans-Golgi network and synaptic vesicles. In contrast, there is little co-migration with mitochondria, lysosomes, and active zone precursor vesicles. Residues encoded by the small, centrally located exon 6 are necessary and sufficient for stable membrane association and vesicular axonal transport of Nmnat2. Within this sequence, a double cysteine palmitoylation motif shared with GAP43 and surrounding basic residues are all required for efficient palmitoylation and stable association with axonal transport vesicles. Interestingly, however, disrupting this membrane association increases the ability of axonally localized Nmnat2 to preserve transected neurites in primary culture, while re-targeting the strongly protective cytosolic mutants back to membranes abolishes this increase. Larger deletions within the central domain including exon 6 further enhance Nmnat2 axon protective capacity to levels that exceed that of the slow Wallerian degeneration protein, WldS. The mechanism underlying the increase in axon protection appears to involve an increased half-life of the cytosolic forms, suggesting a role for palmitoylation and membrane attachment in Nmnat2 turnover. We conclude that Nmnat2 activity supports axon survival through a site of action distinct from Nmnat2 transport vesicles and that protein stability, a key determinant of axon protection, is enhanced by mutations that disrupt palmitoylation and dissociate Nmnat2 from these vesicles. PMID:23610559

  8. Subcellular Localization and Characterization of Excessive Iron in the Nicotianamine-less Tomato Mutant chloronerva.

    PubMed Central

    Becker, R.; Fritz, E.; Manteuffel, R.

    1995-01-01

    To understand the function of the Fe2+-complexing compound nicotianamine (NA) in the iron metabolism of plants we have localized iron and other elements in the NA-containing tomato wild type (Lycopersicon esculentum) and its NA-free mutant chloronerva by quantitative x-ray microanalysis. Comparison of element composition of the rhizodermal cell walls indicated that the wild type accumulated considerable amounts of iron and phosphorus in the cell wall, whereas in the mutant iron and phosphorus were detected in the cytoplasm and vacuoles of the rhizodermis. In mutant leaves containing high iron concentrations in the symplast, electron-dense inclusions were detected in chloroplasts and phloem. Such particles, consisting mainly of iron and phosphorus, were never found in the wild type and were very rarely detected in young chlorotic mutant leaves or after treatment of the mutant with NA. For further characterization the electron-dense inclusions in mutant leaves were isolated and compared by sodium dodecyl sulfate-gel electrophoresis and immunoblotting to ferritin from iron-loaded Phaseolus vulgaris leaves. Antibodies raised against purified Phaseolus leaf ferritin were used. Neither in mutant nor in wild type (iron loaded and control) was ferritin protein detected. These results suggest that the electron-dense inclusions in mutant leaves are not identical with ferritin. It is concluded that NA is necessary to complex ferrous iron in a soluble and available form within the cells. In the absence of NA the precipitation of excessive iron in the form of insoluble ferric phosphate compounds could protect the cells from iron overload. PMID:12228472

  9. Molecular Characterization and Subcellular Localization of Arabidopsis Class VIII Myosin, ATM1*

    PubMed Central

    Haraguchi, Takeshi; Tominaga, Motoki; Matsumoto, Rie; Sato, Kei; Nakano, Akihiko; Yamamoto, Keiichi; Ito, Kohji

    2014-01-01

    Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg2+-ATPase activity (Vmax = 4 s−1), although their affinities for actin were high (Kactin = 4 μm). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 μm/s, respectively, from which the value for full-length ATM1 is calculated to be ∼0.2 μm/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was ∼90%. ADP dissociation from the actin·ATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s−1, respectively). Physiological concentrations of free Mg2+ modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis. PMID:24637024

  10. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein.

    PubMed

    Bleve, Gianluca; Zacheo, Giuseppe; Cappello, Maria Stella; Dellaglio, Franco; Grieco, Francesco

    2005-08-15

    GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1-GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter localized at the plasma membrane and endoplasmic reticulum levels of induced cells. The factors involved in proper localization and turnover of Gup1p were revealed by expression of the Gup1p-GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaerical protein was targeted to the plasma membrane through a Sec6-dependent process; on treatment with glucose, it was endocytosed through END3 and targeted for degradation in the vacuole. Gup1p belongs to the list of yeast proteins rapidly down-regulated by changing the carbon source in the culture medium, in agreement with the concept that post-translational modifications triggered by glucose affect proteins of peripheral functions. The immunoelectron microscopy assays of cells expressing either Gup1-GFP or GFP-Gup1 fusions suggested the Gup1p membrane topology: the N-terminus lies in the periplasmic space, whereas its C-terminal tail has an intracellular location. An extra cytosolic location of the N-terminal tail is not generally predicted or determined in yeast membrane transporters. PMID:15813700

  11. In vitro photosensitization I. Cellular uptake and subcellular localization of mono-L-aspartyl chlorin e6, chloro-aluminum sulfonated phthalocyanine, and photofrin II.

    PubMed

    Roberts, W G; Berns, M W

    1989-01-01

    The mechanisms of cellular uptake, subcellular localization, and cellular retention kinetics of the photosensitizers photofrin II (PfII), mono-L-aspartyl chlorin e6 (MACE), and chloro-aluminum sulfonated phthalocyanine (CASPc) are reported in this paper. Each photosensitizer's cellular uptake mechanism was determined by preferentially inhibiting endocytosis by chilling cells to 2 degrees C, while allowing diffusion across the membrane. Subcellular localization was studied by computer-enhanced low-light level video fluorescence microscopy, while flow cytometry was used to determine uptake and retention kinetics. The results indicate that PfII enters the cell primarily by diffusion across the membrane, whereas MACE and CASPc enter the cell through endocytosis. PMID:2523995

  12. Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen's syndrome.

    PubMed

    Hosaka, Yukio; Hanawa, Haruo; Washizuka, Takashi; Chinushi, Masaomi; Yamashita, Fumio; Yoshida, Tsuyoshi; Komura, Satoru; Watanabe, Hiroshi; Aizawa, Yoshifusa

    2003-04-01

    Andersen's syndrome (AS) (which is characterized by periodic paralysis, cardiac arrhythmias and dysmorphic features), a hereditary disease, and missense mutations of KCNJ2 (which encodes an inward rectifying potassium channel) have been reported recently. We performed clinical and molecular analyses of a patient with AS, and found a novel mutation (G215D) of KCNJ2. Twelve-lead electrocardiography revealed a long QT interval and frequent premature ventricular contractions, and polymorphic ventricular tachycardia was induced by programmed electrical stimulation. Use of a conventional whole-cell patch-clamp system with COS7 cells demonstrated that the G215D mutant was non-functional, and that co-expression of wild type (WT)- and mutant-KCNJ2 shows a dominant negative effect on both inward and outward currents. We performed confocal laser scanning microscopy to assess the cellular trafficking of WT- and mutant-KCNJ2 subunits tagged with yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP), respectively. Tagging with the YFP did not affect the channel function of WT-KCNJ2 and both proteins showed similar plasma membrane fluorescence patterns. Furthermore, the result of fluorescence resonance energy transfer (FRET) studies at the plasma membrane region suggested that both YFP-tagged WT- and CFP-tagged mutant-KCNJ2 combine to construct a hetero-multimer of the potassium channel. In conclusion, the G215D mutant of KCNJ2 is distributed normally in the plasma membrane, but exhibits a dominant-negative effect and reduces the Kir2.1 current, presumably due to hetero-multimer construction. PMID:12689820

  13. Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils

    SciTech Connect

    Carmo, Lívia A.S.; Dias, Felipe F.; Malta, Kássia K.; Amaral, Kátia B.; Shamri, Revital; Weller, Peter F.; Melo, Rossana C.N.

    2015-10-01

    Background: SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Methods: Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. Results: STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. Conclusions: The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. - Highlights: • First demonstration of the Qa-SNARE syntaxin-17 (STX17) in human eosinophils. • High

  14. Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition.

    PubMed

    Zhu, Pan-Pan; Li, Wen-Chao; Zhong, Zhe-Jin; Deng, En-Ze; Ding, Hui; Chen, Wei; Lin, Hao

    2015-02-01

    Mycobacterium tuberculosis is a bacterium that causes tuberculosis, one of the most prevalent infectious diseases. Predicting the subcellular localization of mycobacterial proteins in this bacterium may provide vital clues for the prediction of protein function as well as for drug discovery and design. Therefore, a computational method that can predict the subcellular localization of mycobacterial proteins with high precision is highly desirable. We propose a computational method to predict the subcellular localization of mycobacterial proteins. An objective and strict benchmark dataset was constructed after collecting 272 non-redundant proteins from the universal protein resource (the UniProt database). Subsequently, a novel feature selection strategy based on binomial distribution was used to optimize the feature vector. Finally, a subset containing 219 chosen tripeptide features was imported into a support vector machine-based method to estimate the performance of the dataset in accurately and sensitively identifying these proteins. We found that the proposed method gave a maximum overall accuracy of 89.71% with an average accuracy of 81.12% in the jackknife cross-validation. The results indicate that our prediction method gave an efficient and powerful performance when compared with other published methods. We made the proposed method available on a purpose built Web server called MycoSub that is freely accessible at . We anticipate that MycoSub will become a useful tool for studying the functions of mycobacterial proteins and for designing and developing anti-mycobacterium drugs. PMID:25437899

  15. Alternative mRNA Splicing from the Glial Fibrillary Acidic Protein (GFAP) Gene Generates Isoforms with Distinct Subcellular mRNA Localization Patterns in Astrocytes

    PubMed Central

    Thomsen, Rune; Daugaard, Tina F.; Holm, Ida E.; Nielsen, Anders Lade

    2013-01-01

    The intermediate filament network of astrocytes includes Glial fibrillary acidic protein (Gfap) as a major component. Gfap mRNA is alternatively spliced resulting in generation of different protein isoforms where Gfapα is the most predominant isoform. The Gfapδ isoform is expressed in proliferating neurogenic astrocytes of the developing human brain and in the adult human and mouse brain. Here we provide a characterization of mouse Gfapδ mRNA and Gfapδ protein. RT-qPCR analysis showed that Gfapδ mRNA and Gfapα mRNA expression is coordinately increased in the post-natal period. Immunohistochemical staining of developing mouse brain samples showed that Gfapδ is expressed in the sub-ventricular zones in accordance with the described localization in the developing and adult human brain. Immunofluorescence analysis verified incorporation of Gfapδ into the Gfap intermediate filament network and overlap in Gfapδ and Gfapα subcellular localization. Subcellular mRNA localization studies identified different localization patterns of Gfapδ and Gfapα mRNA in mouse primary astrocytes. A larger fraction of Gfapα mRNA showed mRNA localization to astrocyte protrusions compared to Gfapδ mRNA. The differential mRNA localization patterns were dependent on the different 3′-exon sequences included in Gfapδ and Gfapα mRNA. The presented results show that alternative Gfap mRNA splicing results in isoform-specific mRNA localization patterns with resulting different local mRNA concentration ratios which have potential to participate in subcellular region-specific intermediate filament dynamics during brain development, maintenance and in disease. PMID:23991052

  16. Subcellular localization of monoglucosyldiacylglycerol synthase in Synechocystis sp. PCC6803 and its unique regulation by lipid environment.

    PubMed

    Selão, Tiago Toscano; Zhang, Lifang; Ariöz, Candan; Wieslander, Åke; Norling, Birgitta

    2014-01-01

    Synthesis of monogalactosyldiacylglycerol (GalDAG) and digalactosyldiacylglycerol (GalGalDAG), the major membrane lipids in cyanobacteria, begins with production of the intermediate precursor monoglucosyldiacylglycerol (GlcDAG), by monoglucosyldiacylglycerol synthase (MGS). In Synechocystis sp. PCC6803 (Synechocystis) this activity is catalyzed by an integral membrane protein, Sll1377 or MgdA. In silico sequence analysis revealed that cyanobacterial homologues of MgdA are highly conserved and comprise a distinct group of lipid glycosyltransferases. Global regulation of lipid synthesis in Synechocystis and, more specifically, the influence of the lipid environment on MgdA activity have not yet been fully elucidated. Therefore, we purified membrane subfractions from this organism and assayed MGS activity in vitro, with and without different lipids and other potential effectors. Sulfoquinovosyldiacylglycerol (SQDAG) potently stimulates MgdA activity, in contrast to other enzymes of a similar nature, which are activated by phosphatidylglycerol instead. Moreover, the final products of galactolipid synthesis, GalDAG and GalGalDAG, inhibited this activity. Western blotting revealed the presence of MgdA both in plasma and thylakoid membranes, with a high specific level of the MgdA protein in the plasma membrane but highest MGS activity in the thylakoid membrane. This discrepancy in the subcellular localization of enzyme activity and protein may indicate the presence of either an unknown regulator and/or an as yet unidentified MGS-type enzyme. Furthermore, the stimulation of MgdA activity by SQDAG observed here provides a new insight into regulation of the biogenesis of both sulfolipids and galactolipids in cyanobacteria. PMID:24516600

  17. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system.

    PubMed

    Poole, Daniel P; Lieu, TinaMarie; Pelayo, Juan Carlos; Eriksson, Emily M; Veldhuis, Nicholas A; Bunnett, Nigel W

    2015-08-15

    Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10(-/-)-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions. PMID:26138465

  18. Binding of monoclonal antibodies to the movement protein (MP) of Tobacco mosaic virus: influence of subcellular MP localization and phosphorylation.

    PubMed

    Tyulkina, Lidia G; Karger, Elena M; Sheveleva, Anna A; Atabekov, Joseph G

    2010-06-01

    Monoclonal antibodies (mAbs) to recombinant movement protein (MP(REC)) of Tobacco mosaic virus (TMV) were used to reveal the dependence of MP epitope accessibility to mAbs on subcellular MP localization and post-translational MP phosphorylation. Leaves of Nicotiana benthamiana or N. tabacum were inoculated mechanically with TMV or agroinjected with an MP expression vector. At different time post-inoculation, ER membrane- and cell wall-enriched fractions (ER-MP and CW-MP, respectively) were isolated and analysed. The N-terminal region (residues 1-30) as well as regions 186-222 and 223-257 of MP from the CW and ER fractions were accessible for interaction with mAbs. By contrast, the MP regions including residues 76-89 and 98-129 were not accessible. The C-terminal TMV MP region (residues 258-268) was inaccessible to mAbs not only in CW-MP, but also in ER-MP fractions. Evidence is presented that phosphorylation of the majority of TMV MP C-terminal sites occurred on ER membranes at an early stage of virus infection, i.e. not after, but before reaching the cell wall. C-terminal phosphorylation of purified MP(REC) abolished recognition of C-proximal residues 258-268 by specific mAbs, which could be restored by MP dephosphorylation. Likewise, accessibility to mAbs of the C-terminal MP epitope in ER-MP and CW-MP leaf fractions was restored by dephosphorylation. Substitution of three or four C-terminal Ser/Thr residues with non-phosphorylatable Ala also resulted in abolition of interaction of mAbs with MP. PMID:20164264

  19. Kinetics and subcellular localization of specific [3H]phorbol 12, 13-dibutyrate binding by mouse brain.

    PubMed

    Dunphy, W G; Kochenburger, R J; Castagna, M; Blumberg, P M

    1981-07-01

    The specific binding of [3H]phorbol 12,13-dibutyrate ([3H]-PDBU) to particulate preparations from mouse brain has been further characterized. Kinetic analysis, using a filtration assay to measure binding, yielded a second-order rate constant at 23 degrees of 3.75 X 10(7) M-1 min-1 and a first-order dissociation rate constant of 0.21 min-1. The Kd of 5.6 nM calculated from the kinetic data agreed well with the value determined previously in equilibrium binding studies. The Kd for [3H]PDBU binding varied only slightly with temperature. From its temperature dependence, [3H]PDBU binding appeared to be associated with a small increase in enthalpy (delta H degrees = +0.4 kcal/mol) and a large increase in entropy (delta S degrees = +38 e.u.). Such values are characteristic for hydrophobic interactions. The dissociation rate constant for binding, in contrast to the Kd, varied dramatically with temperature. The half-time for release ranged from 1.75 min at 30 degrees to 62 min at 4 degrees. The Kd for binding was Ca2+ sensitive; chelation of Ca2+ by ethyleneglycolbis(beta-aminoethyl ether)N,N'-tetraacetic acid increased the Kd 2.4-fold. Upon subcellular fractionation, the specific [3H]PDBU binding activity was exclusively particulate; no binding to cytosol was detectable. Binding clearly did not correlate with nuclear or mitochondrial markers. On the other hand, a broader distribution of binding activity was seen on sucrose density gradients than for either Na+-K+-adenosine triphosphatase activity or binding of quinuclidinyl benzilate (a muscarinic cholinergic antagonist). The localization of specific [3H]PDBU binding to the plasma membrane therefore remains uncertain. PMID:6941848

  20. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection.

    PubMed

    He, Mingyang; Xu, Yan; Cao, Jiangling; Zhu, Ziguo; Jiao, Yuntong; Wang, Yuejin; Guan, Xin; Yang, Yazhou; Xu, Weirong; Fu, Zhenfang

    2013-02-01

    Downy mildew, caused by the oomycete Plasmopara viticola, is a serious fungal disease in the cultivated European grapevines (Vitis vinifera L.). The class 10 of pathogenesis-related (PR) genes in grapevine leaves was reported to be accumulated at mRNA level in response to P. viticola infection. To elucidate the functional roles of PR10 genes during plant-pathogen interactions, a PR10 gene from a fungal-resistant accession of Chinese wild Vitis pseudoreticulata (designated VpPR10.2) was isolated and showed high homology to PR10.2 from susceptible V. vinifera (designated VvPR10.2). Comparative analysis displayed that there were significant differences in the patterns of gene expression between the PR10 genes from the two host species. VpPR10.2 was induced with high level in leaves infected by P. viticola, while VvPR10.2 showed a low response to this inoculation. Recombinant VpPR10.2 protein showed DNase activity against host genomic DNA and RNase activity against yeast total RNA in vitro. Meanwhile, recombinant VpPR10.2 protein inhibited the growth of tobacco fungus Alternaria alternata and over-expression of VpPR10.2 in susceptible V. vinifera enhanced the host resistance to P. viticola. The results from subcellular localization analysis showed that VpPR10.2 proteins were distributed dynamically inside or outside of host cell. Moreover, they were found in haustorium of P. viticola and nucleus of host cell which was associated with a nucleus collapse at 10 days post-inoculation. Taken together, these results suggested that VpPR10.2 might play an important role in host plant defense against P. viticola infection. PMID:22327469

  1. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    SciTech Connect

    Bhaskar,; Kumari, Neeti; Goyal, Neena

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  2. Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS.

    PubMed

    Penen, Florent; Malherbe, Julien; Isaure, Marie-Pierre; Dobritzsch, Dirk; Bertalan, Ivo; Gontier, Etienne; Le Coustumer, Philippe; Schaumlöffel, Dirk

    2016-09-01

    Chemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1nm was used for imaging the ultrastructure of algae cells which have diameters of 5-10μm. TEM coupled to X-EDS (TEM/X-EDS) combined textural (morphology and size) analysis with detection of Ca, P, K, Mg, Fe, and Zn in selected subcellular granules using an X-EDS probe size of approx. 1μm. However, instrumental sensitivity was at the limit for trace element detection. NanoSIMS allowed chemical imaging of macro and trace elements with subcellular resolution (element mapping). Ca, Mg, and P as well as the trace elements Fe, Cu, and Zn present at basal levels were detected in pyrenoids, contractile vacuoles, and granules. Some metals were even localized in small vesicles of about 200nm size. Sensitive subcellular localization of trace metals was possible by the application of a recently developed RF plasma oxygen primary ion source on NanoSIMS which has shown good improvements in terms of lateral resolution (below 50nm), sensitivity, and stability. Furthermore correlative single cell imaging was developed combining the advantages of TEM and NanoSIMS. An advanced sample preparation protocol provided adjacent ultramicrotome sections for parallel TEM and NanoSIMS analyses of the same cell. Thus, the C. reinhardtii cellular ultrastructure could be directly related to the spatial distribution of metals in different cell organelles such as vacuoles and chloroplast. PMID:27288221

  3. Splice Variants of the Dual Specificity Tyrosine Phosphorylation-regulated Kinase 4 (DYRK4) Differ in Their Subcellular Localization and Catalytic Activity*

    PubMed Central

    Papadopoulos, Chrisovalantis; Arato, Krisztina; Lilienthal, Eva; Zerweck, Johannes; Schutkowski, Mike; Chatain, Nicolas; Müller-Newen, Gerhard; Becker, Walter; de la Luna, Susana

    2011-01-01

    Dual specificity tyrosine phosphorylation-regulated kinases, DYRKs, are a family of conserved protein kinases that play key roles in the regulation of cell differentiation, proliferation, and survival. Of the five mammalian DYRKs, DYRK4 is the least studied family member. Here, we show that several splice variants of DYRK4 are expressed in tissue-specific patterns and that these variants have distinct functional capacities. One of these variants contains a nuclear localization signal in its extended N terminus that mediates its interaction with importin α3 and α5 and that is capable of targeting a heterologous protein to the nucleus. Consequently, the nucleocytoplasmic mobility of this variant differs from that of a shorter isoform in live cell imaging experiments. Other splicing events affect the catalytic domain, including a three-amino acid deletion within subdomain XI that markedly reduces the enzymatic activity of DYRK4. We also show that autophosphorylation of a tyrosine residue within the activation loop is necessary for full DYRK4 kinase activity, a defining feature of the DYRK family. Finally, by comparing the phosphorylation of an array of 720 peptides, we show that DYRK1A, DYRK2, and DYRK4 differ in their target recognition sequence and that preference for an arginine residue at position P −3 is a feature of DYRK1A but not of DYRK2 and DYRK4. Therefore, we highlight the use of subcellular localization as an important regulatory mechanism for DYRK proteins, and we propose that substrate specificity could be a source of functional diversity among DYRKs. PMID:21127067

  4. Expression of cytochrome P450 CYP81A6 in rice: tissue specificity, protein subcellular localization, and response to herbicide application*

    PubMed Central

    Lu, Hai-ping; Edwards, Martin; Wang, Qi-zhao; Zhao, Hai-jun; Fu, Hao-wei; Huang, Jian-zhong; Gatehouse, Angharad; Shu, Qing-yao

    2015-01-01

    The cytochrome P450 gene CYP81A6 confers tolerance to bentazon and metsulfuron-methyl, two selective herbicides widely used for weed control in rice and wheat fields. Knockout mutants of CYP81A6 are highly susceptible to both herbicides. The present study aimed to characterize the CYP81A6 expression in rice. Quantitative real-time polymerase chain reaction (PCR) analyses demonstrated that foliar treatment of bentazon (500 mg/L) greatly induced expression of CYP81A6 in both wild-type (Jiazhe B) and its knockout mutant (Jiazhe mB): a 10-fold increase at 9 h before returning to basal levels at 24 h in Jiazhe B, while in the mutant the expression level rose to >20-fold at 12 h and maintained at such high level up to 24 h post exposure. In contrast, metsulfuron-methyl (500 mg/L) treatment did not affect the expression of CYP81A6 in Jiazhe B within 80 h; thereafter the expression peaked at 120 h and returned gradually to basal levels by Day 6. We suggest that a metabolite of metsulfuron-methyl, 1H-2,3-benzothiazin-4-(3H)-one-2,2-dioxide, is likely to be responsible for inducing CYP81A6 expression, rather than the metsulfuron-methyl itself. Use of a promoter-GUS reporter construct (CYP81A6Pro::GUS) demonstrated that CYP81A6 was constitutively expressed throughout the plant, with the highest expression in the upper surfaces of leaves. Subcellular localization studies in rice protoplasts showed that CYP81A6 was localized in the endoplasmic reticulum. These observations advance our understanding of CYP81A6 expression in rice, particularly its response to the two herbicides. PMID:25644466

  5. MNK1 expression increases during cellular senescence and modulates the subcellular localization of hnRNP A1

    SciTech Connect

    Ziaei, Samira; Shimada, Naoko; Kucharavy, Herman; Hubbard, Karen

    2012-03-10

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA-binding protein that modulates splice site usage, polyadenylation, and cleavage efficiency. This protein has also been implicated in mRNA stability and transport from the nucleus. We have previously demonstrated that hnRNP A1 had diminished protein levels and showed cytoplasmic accumulation in senescent human diploid fibroblasts. Furthermore, we have shown that inhibition of p38 MAPK, a key regulator of cellular senescence, elevated hnRNP A1 protein levels and inhibited hnRNP A1 cytoplasmic localization. In this study, we have explored the possible involvement of MNK1, one of the downstream effector of p38 MAPK, in the regulation of hnRNP A1. We have demonstrated that pharmacological inhibition of MNK1 by CGP 57380 decreased the phosphorylation levels of hnRNP A1 in young and senescent fibroblast cells and blocked the cytoplasmic accumulation of hnRNP A1 in senescent cells. In addition, MNK1 formed a complex with hnRNP A1 in vivo. The expression levels of MNK1, phospho-MNK1, and phospho-eIF4E proteins were found to be elevated in senescent cells. These data suggest that MNK1 regulates the phosphorylation and the subcellular distribution of hnRNP A1 and that MNK1 may play a role in the induction of senescence. -- Highlights: Black-Right-Pointing-Pointer MNK1 and not MAPKAPK2 phosphorylates hnRNP A1. Black-Right-Pointing-Pointer MNK1 has elevated levels in senescent cells, this has not been reported previously. Black-Right-Pointing-Pointer MNK1 activity induces cytoplasmic accumulation of hnRNP A1 in senescent cells. Black-Right-Pointing-Pointer Altered cytoplasmic localization of hnRNP A1 may alter gene expression patterns. Black-Right-Pointing-Pointer Our studies may increase our understanding of RNA metabolism during cellular aging.

  6. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation

    PubMed Central

    Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors

  7. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization[S

    PubMed Central

    Sahu-Osen, Anita; Montero-Moran, Gabriela; Schittmayer, Matthias; Fritz, Katarina; Dinh, Anna; Chang, Yu-Fang; McMahon, Derek; Boeszoermenyi, Andras; Cornaciu, Irina; Russell, Deanna; Oberer, Monika; Carman, George M.; Birner-Gruenberger, Ruth; Brasaemle, Dawn L.

    2015-01-01

    CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno­blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation. PMID:25421061

  8. Hepatic oxidative stress and metal subcellular partitioning are affected by selenium exposure in wild yellow perch (Perca flavescens).

    PubMed

    Ponton, Dominic E; Caron, Antoine; Hare, Landis; Campbell, Peter G C

    2016-07-01

    Yellow perch (Perca flavescens) collected from 11 lakes in the Canadian mining regions of Sudbury (Ontario) and Rouyn-Noranda (Quebec) display wide ranges in the concentrations of cadmium (Cd), nickel (Ni), selenium (Se), and thallium (Tl) in their livers. To determine if these trace elements, as well as copper (Cu) and zinc (Zn), are causing oxidative stress in these fish, we measured three biochemical indicators (glutathione (GSH), glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS)) in their livers. We observed that 44% of the yellow perch that we collected were at risk of cellular oxidative stress and lipid peroxidation. Considering all fish from all lakes, higher liver Se concentrations were coincident with both lower proportions of GSSG compared to GSH and lower concentrations of TBARS, suggesting that the essential trace-element Se acts as an antioxidant. Furthermore, fish suffering oxidative stress had higher proportions of Cd, Cu and Zn in potentially sensitive subcellular fractions (organelles and heat-denatured proteins) than did fish not suffering from stress. This result suggests that reactive oxygen species may oxidize metal-binding proteins and thereby reduce the capacity of fish to safely bind trace metals. High Cd concentrations in metal-sensitive subcellular fractions likely further exacerbate the negative effects of lower Se exposure. PMID:27131821

  9. Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors

    PubMed Central

    Retson, T. A.; Reyes, B.A.; Van Bockstaele, E. J.

    2014-01-01

    Understanding the neurobiological bases for sex differences in alcohol dependence is needed to help guide the development of individualized therapies for alcohol abuse disorders. In the present study, alcohol-induced adaptations in (1) anxiety-like behavior, (2) patterns of c-Fos activation and (3) subcellular distribution of corticotropin releasing factor receptor in locus coeruleus (LC) neurons was investigated in male and female Sprague-Dawley rats that were chronically exposed to ethanol using a liquid diet. Results confirm and extend reports by others showing that chronic ethanol exposure produces an anxiogenic-like response in both male and female subjects. Ethanol-induced sex differences were observed with increased c-Fos expression in LC neurons of female ethanol-treated subjects compared to controls or male subjects. Results also reveal sex differences in the subcellular distribution of the CRFr in LC-noradrenergic neurons with female subjects exposed to ethanol exhibiting a higher frequency of plasmalemmal CRFrs. These adaptations have implications for LC neuronal activity and its neural targets across the sexes. Considering the important role of the LC in ethanol-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis, the present results indicate important sex differences in feed-forward regulation of the HPA axis that may render alcohol dependent females more vulnerable to subsequent stress exposure. PMID:25149913

  10. Local autonomic failure affecting a limb.

    PubMed Central

    Johnson, R H; Robinson, B J

    1987-01-01

    Three patients are described who presented with autonomic failure affecting predominantly one limb. Physiological studies revealed that there was sweating loss in the limb which appeared to be due to a preganglionic autonomic lesion and not to a sweat gland abnormality. In all three patients there was also evidence of failure of vasomotor control. There was no evidence of more generalised autonomic failure or neurological deficit. In two patients the condition appeared to be static and, according to the patients' accounts was life long. In the third the sweating loss was present for three years prior to pain loss becoming evident from C2/3 to T1 on the same side as the sweating loss. These patients, together with two recent case reports, indicate that isolated local autonomic failure, probably from a discrete cord lesion, can be a cause of presenting symptoms related to sweating loss or to change in temperature in a limb. PMID:3612155

  11. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    PubMed

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  12. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus

    PubMed Central

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C. S.; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  13. Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD).

    PubMed

    Vilmont, Valérie; Filhol, Odile; Hesse, Anne-Marie; Couté, Yohann; Hue, Christophe; Rémy-Tourneur, Léa; Mistou, Sylvie; Cochet, Claude; Chiocchia, Gilles

    2015-11-01

    The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2β was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2β regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2β-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization. PMID:26253696

  14. Subcellular localization of the fatty acyl reductase involved in pheromone biosynthesis in the tobacco budworm, Heliothis virescens (Noctuidae: Lepidoptera).

    PubMed

    Hagström, Asa K; Walther, Andrea; Wendland, Jürgen; Löfstedt, Christer

    2013-06-01

    Sex pheromone components are produced in specialized glands of female moths via well-characterized biosynthetic pathways, where a Fatty Acyl Reductase (FAR) is often essential for producing the specific ratio of the different pheromone components. The subcellular localization and membrane topology of FARs is important for understanding how pheromones are synthesized and exported to the exterior for release. We investigated the subcellular localization of HvFAR from the noctuid moth Heliothis virescens by producing recombinant fusion proteins with green fluorescent protein (GFP) in yeast. A C-terminally tagged construct was localized to the endoplasmic reticulum (ER) and retained full reductive activity on a broad range of saturated and unsaturated fatty acyl precursors. In contrast, an N-terminally-tagged construct was poorly expressed in the cytoplasm and was not enzymatically active, indicating that HvFAR requires a free N-terminal for both proper targeting and catalytic activity. A series of truncations of the N-and C-termini of HvFAR was conducted based on in silico-predicted hydrophobic domains and transmembrane regions. The N-terminally truncated protein was found in the cytoplasm and did not retain activity, emphasizing the importance of the N-terminal for FAR function. In addition, the orientation in the membrane of the C-terminus-tagged HvFAR-GFP construct was analyzed using a fluorescence protease protection (FPP) assay, implying that the C-terminal of HvFAR is orientated towards the cytoplasm. These results, together with previous data on the localization of desaturases, confirm the importance of the ER as a subcellular site of pheromone production. PMID:23537692

  15. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors

    PubMed Central

    Lau, Joe F.; Parisien, Jean-Patrick; Horvath, Curt M.

    2000-01-01

    The transduction of type I interferon signals to the nucleus relies on activation of a protein complex, ISGF3, involving two signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT2, and the interferon (IFN) regulatory factor (IRF) protein, p48/ISGF3γ. The STAT subunits are cytoplasmically localized in unstimulated cells and rapidly translocate to the nucleus of IFN-stimulated cells, but the p48/ISGF3γ protein is found in both the nucleus and the cytoplasm, regardless of IFN stimulation. Here, we demonstrate that p48 is efficiently and constitutively targeted to the nucleus. Analysis of the subcellular distribution of green fluorescent protein-p48 fragments indicates that p48 contains a bipartite nuclear retention signal within its amino-terminal DNA-binding domain. This signal is preserved in two other IRF proteins involved in immune responses, ICSBP and IRF4. Mutations to clustered basic residues within amino acids 50–100 of p48 or IRF4 disrupt their nuclear accumulation, and DNA-binding ability is not required for nuclear targeting. This is the only example of a nuclear localization signal for any ISGF3 component and assigns a second function to the IRF DNA-binding domain. We also demonstrate that the nuclear distribution of p48 is dramatically altered by coexpression of the STAT2 protein, indicating that STAT2 forms a cytoplasmic complex with p48, overriding the intrinsic p48 nuclear targeting. Retention by STAT2 may serve to regulate the activity of free p48 and/or guarantee that cytoplasmic pools of preassociated STAT2:p48 are available for rapid activation of the IFN response. These findings suggest that analogous mechanisms may exist for regulating the distribution of other IRF proteins. PMID:10860992

  16. Mapping the subcellular localization of Fe3O4@TiO2 nanoparticles by X-ray Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Chen, S.; Gleber, S. C.; Lai, B.; Brister, K.; Flachenecker, C.; Wanzer, B.; Paunesku, T.; Vogt, S.; Woloschak, G. E.

    2013-10-01

    The targeted delivery of Fe3O4@TiO2 nanoparticles to cancer cells is an important step in their development as nanomedicines. We have synthesized nanoparticles that can bind the Epidermal Growth Factor Receptor, a cell surface protein that is overexpressed in many epithelial type cancers. In order to study the subcellular distribution of these nanoparticles, we have utilized the sub-micron resolution of X-ray Fluorescence Microscopy to map the location of Fe3O4@TiO2 NPs and other trace metal elements within HeLa cervical cancer cells. Here we demonstrate how the higher resolution of the newly installed Bionanoprobe at the Advanced Photon Source at Argonne National Laboratory can greatly improve our ability to distinguish intracellular nanoparticles and their spatial relationship with subcellular compartments.

  17. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    SciTech Connect

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  18. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH.

    PubMed

    Berthelsen, J; Kilstrup-Nielsen, C; Blasi, F; Mavilio, F; Zappavigna, V

    1999-04-15

    Nuclear localization of the Extradenticle (EXD) and PBX1 proteins is regionally restricted during Drosophila and mammalian development. We studied the subcellular localization of EXD, PBX, and their partners Homothorax (HTH) and PREP1, in different cell contexts. HTH and PREP1 are cytoplasmic and require association with EXD/PBX for nuclear localization. EXD and PBX1 are nuclear in murine fibroblasts but not in Drosophila Schneider cells, in which they are actively exported to the cytoplasm. Coexpression of EXD/PBX with HTH/PREP1 causes nuclear localization of their heterodimers in both cell contexts. We propose that heterodimerization with HTH/PREP induces nuclear translocation of EXD and PBX1 in specific cell contexts by blocking their nuclear export. PMID:10215622

  19. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH

    PubMed Central

    Berthelsen, Jens; Kilstrup-Nielsen, Charlotte; Blasi, Francesco; Mavilio, Fulvio; Zappavigna, Vincenzo

    1999-01-01

    Nuclear localization of the Extradenticle (EXD) and PBX1 proteins is regionally restricted during Drosophila and mammalian development. We studied the subcellular localization of EXD, PBX, and their partners Homothorax (HTH) and PREP1, in different cell contexts. HTH and PREP1 are cytoplasmic and require association with EXD/PBX for nuclear localization. EXD and PBX1 are nuclear in murine fibroblasts but not in Drosophila Schneider cells, in which they are actively exported to the cytoplasm. Coexpression of EXD/PBX with HTH/PREP1 causes nuclear localization of their heterodimers in both cell contexts. We propose that heterodimerization with HTH/PREP induces nuclear translocation of EXD and PBX1 in specific cell contexts by blocking their nuclear export. PMID:10215622

  20. Calpain-mediated Processing of p53-associated Parkin-like Cytoplasmic Protein (PARC) Affects Chemosensitivity of Human Ovarian Cancer Cells by Promoting p53 Subcellular Trafficking*

    PubMed Central

    Woo, Michael G.; Xue, Kai; Liu, Jiayin; McBride, Heidi; Tsang, Benjamin K.

    2012-01-01

    Resistance to cisplatin (CDDP)-based therapy is a major hurdle to the successful treatment of human ovarian cancer (OVCA), and the chemoresistant phenotype in OVCA cells is associated with Akt-attenuated p53-mediated apoptosis. Pro-apoptotic functions of p53 involve both transcription-dependent and -independent signaling pathways, and dysfunctional localization and/or inactivation of p53 contribute to the development of chemoresistance. PARC is a cytoplasmic protein regulating p53 subcellular localization and subsequent function. Little is known about the molecular mechanisms regulating PARC. Although PARC contains putative caspase-3 cleavage sites, and CDDP is known to induce the activation of caspases and calpains and induce proteasomal degradation of anti-apoptotic proteins, if and how PARC is regulated by CDDP in OVCA are unknown. Here, we present evidence that CDDP promotes calpain-mediated PARC down-regulation, mitochondrial and nuclear p53 accumulation, and apoptosis in chemosensitive but not resistant OVCA cells. Inhibition of Akt is required to sensitize chemoresistant cells to CDDP in a p53-dependent manner, an effect enhanced by PARC down-regulation. CDDP-induced PARC down-regulation is reversible by inhibition of calpain but not of caspases or the 26 S proteasome. Furthermore, in vitro experiments confirm the ability of calpain in mediating Ca2+-dependent PARC down-regulation. The role of Ca2+ in PARC down-regulation was further confirmed as ionomycin-induced PARC down-regulation in both chemosensitive and chemoresistant ovarian cancer cells. The data presented here implicate the regulation of p53 subcellular localization and apoptosis by PARC as a contributing factor in CDDP resistance in OVCA cells and Ca2+/calpain in PARC post-translational processing and chemosensitivity. PMID:22117079

  1. Endotoxin leads to rapid subcellular re-localization of hepatic RXRα: A novel mechanism for reduced hepatic gene expression in inflammation

    PubMed Central

    Ghose, Romi; Zimmerman, Tracy L; Thevananther, Sundararajah; Karpen, Saul J

    2004-01-01

    Background Lipopolysaccharide (LPS) treatment of animals down-regulates the expression of hepatic genes involved in a broad variety of physiological processes, collectively known as the negative hepatic acute phase response (APR). Retinoid X receptor α (RXRα), the most highly expressed RXR isoform in liver, plays a central role in regulating bile acid, cholesterol, fatty acid, steroid and xenobiotic metabolism and homeostasis. Many of the genes regulated by RXRα are repressed during the negative hepatic APR, although the underlying mechanism is not known. We hypothesized that inflammation-induced alteration of the subcellular location of RXRα was a common mechanism underlying the negative hepatic APR. Results Nuclear RXRα protein levels were significantly reduced (~50%) within 1–2 hours after low-dose LPS treatment and remained so for at least 16 hours. RXRα was never detected in cytosolic extracts from saline-treated mice, yet was rapidly and profoundly detectable in the cytosol from 1 hour, to at least 4 hours, after LPS administration. These effects were specific, since the subcellular localization of the RXRα partner, the retinoic acid receptor (RARα), was unaffected by LPS. A potential cell-signaling modulator of RXRα activity, c-Jun-N-terminal kinase (JNK) was maximally activated at 1–2 hours, coincident with maximal levels of cytoplasmic RXRα. RNA levels of RXRα were unchanged, while expression of 6 sentinel hepatic genes regulated by RXRα were all markedly repressed after LPS treatment. This is likely due to reduced nuclear binding activities of regulatory RXRα-containing heterodimer pairs. Conclusion The subcellular localization of native RXRα rapidly changes in response to LPS administration, correlating with induction of cell signaling pathways. This provides a novel and broad-ranging molecular mechanism for the suppression of RXRα-regulated genes in inflammation. PMID:15312234

  2. Altered Subcellular Localization of the NeuN/Rbfox3 RNA Splicing Factor in HIV-Associated Neurocognitive Disorders (HAND)

    PubMed Central

    Lucas, Calixto-Hope; Calvez, Mathilde; Babu, Roshni; Brown, Amanda

    2013-01-01

    The anti-NeuN antibody has been widely used for over 15 years to unambiguously identify post-mitotic neurons in the central nervous system of a wide variety of vertebrates including mice, rats and humans. In contrast to its widely reported nuclear localization, we found significantly higher NeuN reactivity in the cytoplasm of neurons in brain sections from HIV-infected individuals with cognitive impairment compared to controls. The protein target of anti-NeuN antisera was recently identified as the neuron-specific RNA splicing factor, Rbfox3, but its significance in diseases affecting the brain has not been previously reported. RNA splicing occurs in the nucleus hence, the altered localization of RbFox3 to the cytoplasm may lead to the downregulation of neuronal gene expression. PMID:24215932

  3. Subcellular localization of branched-chain amino acid aminotransferase and lactate dehydrogenase C4 in rat and mouse spermatozoa.

    PubMed Central

    Montamat, E E; Vermouth, N T; Blanco, A

    1988-01-01

    Spermatozoa isolated from rat and mouse epididymes show a relatively high branched-chain amino acid aminotransferase (leucine aminotransferase, EC 2.6.1.6) activity. There is a significant reduction of leucine aminotransferase and of the isoenzyme C4 of lactate dehydrogenase (EC 1.1.1.27) in the gametes during their epididymal transit. Studies of patterns of liberation of the leucine aminotransferase and of the lactate dehydrogenase C4 from intact spermatozoa, treated with increasing concentrations of digitonin, indicate that both enzymes have the same dual subcellular location, i.e. in the cytosol and in the mitochondria. PMID:3214422

  4. Subcellular localization of branched-chain amino acid aminotransferase and lactate dehydrogenase C4 in rat and mouse spermatozoa.

    PubMed

    Montamat, E E; Vermouth, N T; Blanco, A

    1988-11-01

    Spermatozoa isolated from rat and mouse epididymes show a relatively high branched-chain amino acid aminotransferase (leucine aminotransferase, EC 2.6.1.6) activity. There is a significant reduction of leucine aminotransferase and of the isoenzyme C4 of lactate dehydrogenase (EC 1.1.1.27) in the gametes during their epididymal transit. Studies of patterns of liberation of the leucine aminotransferase and of the lactate dehydrogenase C4 from intact spermatozoa, treated with increasing concentrations of digitonin, indicate that both enzymes have the same dual subcellular location, i.e. in the cytosol and in the mitochondria. PMID:3214422

  5. Enhancing a Pathway-Genome Database (PGDB) to Capture Subcellular Localization of Metabolites and Enzymes: The Nucleotide-Sugar Biosynthetic Pathways of Populus trichocarpa

    SciTech Connect

    Nag, A.; Karpinets, T. V.; Chang, C. H.; Bar-Peled, M.

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s).

  6. Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies.

    PubMed

    Zhang, Shao-Wu; Zhang, Yun-Long; Yang, Hui-Fang; Zhao, Chun-Hui; Pan, Quan

    2008-05-01

    The rapidly increasing number of sequence entering into the genome databank has called for the need for developing automated methods to analyze them. Information on the subcellular localization of new found protein sequences is important for helping to reveal their functions in time and conducting the study of system biology at the cellular level. Based on the concept of Chou's pseudo-amino acid composition, a series of useful information and techniques, such as residue conservation scores, von Neumann entropies, multi-scale energy, and weighted auto-correlation function were utilized to generate the pseudo-amino acid components for representing the protein samples. Based on such an infrastructure, a hybridization predictor was developed for identifying uncharacterized proteins among the following 12 subcellular localizations: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracell, Golgi apparatus, lysosome, mitochondria, nucleus, peroxisome, plasma membrane, and vacuole. Compared with the results reported by the previous investigators, higher success rates were obtained, suggesting that the current approach is quite promising, and may become a useful high-throughput tool in the relevant areas. PMID:18074191

  7. PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein.

    PubMed

    Seifert, R A; Coats, S A; Oganesian, A; Wright, M B; Dishmon, M; Booth, C J; Johnson, R J; Alpers, C E; Bowen-Pope, D F

    2003-07-15

    PTPRQ (rPTP-GMC1) is a member of the type III receptor-like protein tyrosine phosphatase family. PTPRQ has very low activity against phosphotyrosine but is active against phosphatidylinositol phosphates that are involved in regulation of survival, proliferation, and subcellular architecture. Here, we report that PTPRQ can be expressed as a cytosolic or a receptor-like protein and that the form, subcellular localization, and cell types in which it is expressed are regulated by alternative promoter use and by alternative splicing. The first promoter drives expression of transcripts encoding a transmembrane protein in human podocytes and lung. PTPRQ protein is localized to the basal membrane of human podocytes, beginning when podocyte progenitors can first be identified in the embryonic kidney. A second promoter drives expression of a transcript that can encode a cytoplasmic protein containing the catalytic site. This is the major PTPRQ transcript in rat mesangial cells and human testis and is upregulated in mesangial cells in a rat model of mesangial proliferative glomerulonephritis. Differential regulation of expression of the transmembrane vs cytosolic forms, in different cell types during development or response to injury, may be a mechanism through which PTPRQ, with its activities against membrane phospholipids and against phosphotyrosine, can target specific substrates under different conditions. PMID:12837292

  8. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium.

    PubMed

    Fu, Yongyang; Li, Feifei; Xu, Ting; Cai, Sanjuan; Chu, Weiyue; Qiu, Han; Sha, Sha; Cheng, Guangyu; Xu, Qinsong

    2014-02-01

    Bioaccumulation, subcellular distribution, and acute toxicity of yttrium (Y) were evaluated in Nymphoides peltata. The effects of Y concentrations of 1-5 mg L(-1) applied for 4 days were assessed by measuring changes in photosynthetic pigments, nutrient contents, enzymatic and non-enzymatic antioxidants, and ultrastructure. The accumulation of Y in subcellular fractions decreased in the order of cell wall > organelle > soluble fraction. Much more Y was located in cellulose and pectin than in other biomacromolecules. The content of some mineral elements (Mg, Ca, Fe, Mn, and Mo) increased in N. peltata, but there was an opposite effect for P and K. Meanwhile, ascorbate, and catalase activity decreased significantly for all Y concentrations. In contrast, peroxidase activity was induced, while initial rises in superoxide dismutase activity and glutathione content were followed by subsequent declines. Morphological symptoms of senescence, such as chlorosis and damage to chloroplasts and mitochondria, were observed even at the lowest Y concentration. Pigment content decreased as the Y concentration rose and the calculated EC50 and MPC of Y for N. peltata were 2 and 0.2 mg L(-1) after 4 days of exposure, respectively. The results showed that exogenous Y was highly available in water and that its high concentration in water bodies might produce harmful effects on aquatic organisms. N. peltata is proposed as a biomonitor for the assessment of metal pollution in aquatic ecosystems. PMID:24170501

  9. Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction.

    PubMed

    Glenn, M; Ghosh, A; Ghosh, B K

    1985-11-01

    The growing mycelia of Trichoderma reesei Rut-C30 are richly endowed with endoplasmic reticula and a variety of pleomorphic subcellular bodies. Mycelia of the culture growing in presence of avicel pH101 was fractionated in sucrose density gradients, and several morphologically and biochemically distinct fractions were isolated. Mycelia were homogenized in a Bead Beater, and the homogenate was freed of nucleus and wall fragments by low-speed centrifugation before fractionation. Organelle-free cytosol, which did not penetrate the gradient, contained (of the total) 72% of the vanadate-sensitive ATPase, 26% of carboxymethyl cellulase (CMCase), 2% of cytochrome c reductase, and 13% of the protein. Significant fractions separated on a gradient were light vesicles containing heavily stained material inside and ribosomes attached to the outside surface, intact vesicles resembling condensing vacuoles, large vesicles derived from the plasma membrane, and heavy vesicles containing crystalline material. The light-vesicle fraction contained a large portion of the cell-bound CMCase activity. The particle-bound ATPase and cytochrome c reductase activities were concentrated in heavy fractions. The fractionation in the presence of MgCl2 improved the preservation of subcellular bodies derived from the endoplasmic reticula. Although the CMCase activity of the light-vesicle fraction was 4 times higher than the activity in the heavy-vesicle fraction, the CMCase antibody-binding capacities of both fractions were about the same. This discrepancy between the catalytic activity and the antibody-binding capacity suggests that the heavy vesicles might have contained considerable amount of inactive CMCase compared with that present in the light vesicles. PMID:4091550

  10. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization.

    PubMed

    Lin, David Tse Shen; Conibear, Elizabeth

    2015-01-01

    Dynamic changes in protein S-palmitoylation are critical for regulating protein localization and signaling. Only two enzymes - the acyl-protein thioesterases APT1 and APT2 - are known to catalyze palmitate removal from cytosolic cysteine residues. It is unclear if these enzymes act constitutively on all palmitoylated proteins, or if additional depalmitoylases exist. Using a dual pulse-chase strategy comparing palmitate and protein half-lives, we found knockdown or inhibition of APT1 and APT2 blocked depalmitoylation of Huntingtin, but did not affect palmitate turnover on postsynaptic density protein 95 (PSD95) or N-Ras. We used activity profiling to identify novel serine hydrolase targets of the APT1/2 inhibitor Palmostatin B, and discovered that a family of uncharacterized ABHD17 proteins can accelerate palmitate turnover on PSD95 and N-Ras. ABHD17 catalytic activity is required for N-Ras depalmitoylation and re-localization to internal cellular membranes. Our findings indicate that the family of depalmitoylation enzymes may be substantially broader than previously believed. PMID:26701913

  11. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants

    PubMed Central

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-01-01

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1–296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs. PMID:26359114

  12. 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH{sub 2}-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins

    SciTech Connect

    Kashiwayama, Yoshinori; Seki, Midori; Yasui, Akina; Murasaki, Yoshiyuki; Morita, Masashi; Yamashita, Yukari; Sakaguchi, Masao; Tanaka, Yoshitaka; Imanaka, Tsuneo

    2009-01-15

    70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) is a member of ATP-binding cassette (ABC) protein subfamily D. ABC subfamily D proteins are also known as peroxisomal ABC proteins. Therefore, P70R is thought to be a peroxisomal membrane protein. However, the subcellular localization of P70R is not extensively investigated. In this study, we transiently expressed P70R in fusion with HA (P70R-HA) in CHO cells and examined subcellular localization by immunofluorescence. Surprisingly, P70R-HA was localized to the endoplasmic reticulum (ER), not to peroxisomes. To examine the ER-targeting property of P70R, we expressed various NH{sub 2}-terminal deletion constructs of P70R. Among the NH{sub 2}-terminal deletion constructs, mutant proteins starting with hydrophobic transmembrane segment (TMS) were localized to ER, but the ones containing the NH{sub 2}-terminal hydrophilic cytosolic domain were not. ABC subfamily D proteins destined for peroxisomes have NH{sub 2}-terminal hydrophilic region adjacent to TMS1. However, only P70R lacks the region and is translated with NH{sub 2}-terminal hydrophobic TMS1. Furthermore, attachment of the NH{sub 2}-terminal hydrophilic domain to the NH{sub 2}-terminus of P70R excluded P70R from the ER-targeting pathway. These data suggest that P70R resides in the ER but not the peroxisomal membranes, and the hydrophobic property of NH{sub 2}-terminal region determines the subcellular localization of ABC subfamily D proteins.

  13. Comparative genomics for understanding the structure, function and sub-cellular localization of hypothetical proteins in Thermanerovibrio acidaminovorans DSM 6589 (tai).

    PubMed

    Thakare, Hitesh S; Meshram, Dilip B; Jangam, Chandrakant M; Labhasetwar, Pawan; Roychoudhary, Kunal; Ingle, Arun B

    2016-04-01

    The Thermanerovibrio acidaminovorans DSM 6589 (tai) is a unique bacterium isolated from anaerobic sludge bed reactor from sugar refinery in Netherland. The comparative genomic studies for understanding the hypothetical proteins in T. acidaminovorans DSM 6589 (tai) were carried out using different bioinformatic tools and web servers. In all 320 hypothetical proteins were screened from the total available genome. The Insilico function prediction for 320 hypothetical proteins was achieved by using different online servers like CDD-Blast, Interproscan and pfam whereas, the structure prediction for 202 hypothetical proteins were deciphered by using protein structure prediction server (PS2 server). The sub-cellular localization for the identified proteins was predicted by the use of cello v2.5 for 320. The study carried out has helped us to understand the structures and functions of unknown proteins available in T. acidaminovorans DSM 6589 (tai) through comparative genomic approach. PMID:26930563

  14. Phosphorylation of bovine papillomavirus E1 by the protein kinase CK2 near the nuclear localization signal does not influence subcellular distribution of the protein in dividing cells.

    PubMed

    Lentz, Michael R; Shideler, Tess

    2016-01-01

    The bovine papillomavirus E1 helicase is essential for viral replication. In dividing cells, DNA replication maintains, but does not increase, the viral genome copy number. Replication is limited by low E1 expression and an E1 nucleocytoplasmic shuttling mechanism. Shuttling is controlled in part by phosphorylation of E1 by cellular kinases. Here we investigate conserved sites for phosphorylation by kinase CK2 within the E1 nuclear localization signal. When these CK2 sites are mutated to either alanine or aspartic acid, no change in replication phenotype is observed, and there is no effect on the subcellular distribution of E1, which remains primarily nuclear. This demonstrates that phosphorylation of E1 by CK2 at these sites is not a factor in regulating viral DNA replication in dividing cells. PMID:26467928

  15. The role of the glyoxylate cycle in the symbiotic fungus Tuber borchii: expression analysis and subcellular localization.

    PubMed

    Abba', Simona; Balestrini, Raffaella; Benedetto, Alessandra; Rottensteiner, Hanspeter; De Lucas, José Ramón; Bonfante, Paola

    2007-09-01

    Expression profiles of isocitrate lyase (TbICL), malate synthase (TbMLS) and fructose-1,6-bisphosphatase (TbFBP) from the mycorrhizal ascomycete Tuber borchii were investigated by real-time RT-PCR in fruiting bodies at different stages of maturation. In addition, a time course experiment was set up to determine how the transcription profile of TbICL, TbMLS and TbFBP in axenic-grown mycelia is affected by different carbon sources. The transcript levels of the three genes in the fruiting bodies were all much higher than those measured in the vegetative stage. The investigation on axenic-grown mycelia revealed that the main positive regulator of TbICL and TbMLS gene expression is the availability of acetate and ethanol, while oleic acid is a too complex substrate for the limited degradative capacities of T. borchii. Immunolabelling on axenic-grown mycelia showed a co-localization of TbICL and the peroxisomal marker protein FOX2. This result demonstrated that in T. borchii ICL is compartmentalized in peroxisomes. The high induction of TbICL, TbMLS and TbFBP transcription and the translocation of lipids in fruiting bodies let us hypothesize that glyoxylate cycle and gluconeogenesis are key metabolic pathways in the recycling of existing cell material and the channelling towards the biosynthesis of new cell components during the maturation of fruiting bodies. PMID:17701038

  16. Cellular Distribution and Subcellular Localization of Molecular Components of Vesicular Transmitter Release in Horizontal Cells of Rabbit Retina

    PubMed Central

    HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN H.; BRECHA, NICHOLAS C.

    2010-01-01

    The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of γ-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca2+-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells. PMID:15912504

  17. Cellular and subcellular localization of the neuron-specific plasma membrane calcium ATPase PMCA1a in the rat brain

    PubMed Central

    Kenyon, Katharine A.; Bushong, Eric A; Mauer, Amy S.; Strehler, Emanuel E.; Weinberg, Richard J.; Burette, Alain C.

    2010-01-01

    Regulation of intracellular calcium is crucial both for proper neuronal function and survival. By coupling ATP hydrolysis with Ca2+ extrusion from the cell, the plasma membrane calcium-dependent ATPases (PMCAs) play an essential role in controlling intracellular calcium levels in neurons. In contrast to PMCA2 and PMCA3, which are expressed in significant levels only in the brain and a few other tissues, PMCA1 is ubiquitously distributed, and is thus widely believed to play a “housekeeping” function in mammalian cells. Whereas the PMCA1b splice variant is predominant in most tissues, an alternative variant, PMCA1a, is the major form of PMCA1 in the adult brain. Here, we use immunohistochemistry to analyze the cellular and subcellular distribution of PMCA1a in the brain. We show that PMCA1a is not ubiquitously expressed, but rather is confined to neurons, where it concentrates in the plasma membrane of somata, dendrites and spines. Thus, rather than serving a general “housekeeping” function, our data suggest that PMCA1a is a calcium pump specialized for neurons, where it may contribute to the modulation of somatic and dendritic Ca2+ transients. PMID:20575074

  18. Herpes Simplex Virus 1 Protein Kinase Us3 and Major Tegument Protein UL47 Reciprocally Regulate Their Subcellular Localization in Infected Cells ▿

    PubMed Central

    Kato, Akihisa; Liu, Zhuoming; Minowa, Atsuko; Imai, Takahiko; Tanaka, Michiko; Sugimoto, Ken; Nishiyama, Yukihiro; Arii, Jun; Kawaguchi, Yasushi

    2011-01-01

    Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). We have identified UL47, a major virion protein, as a novel physiological substrate of Us3. In vitro kinase assays and systematic analysis of mutations at putative Us3 phosphorylation sites near the nuclear localization signal of UL47 showed that serine at residue 77 (Ser-77) was required for Us3 phosphorylation of UL47. Replacement of UL47 Ser-77 by alanine produced aberrant accumulation of UL47 at the nuclear rim and impaired the nuclear localization of UL47 in a significant fraction of infected cells. The same defect in UL47 localization was produced by an amino acid substitution in Us3 that inactivated its protein kinase activity. In contrast, a phosphomimetic mutation at UL47 Ser-77 restored wild-type nuclear localization. The UL47 S77A mutation also reduced viral replication in the mouse cornea and the development of herpes stromal keratitis in mice. In addition, UL47 formed a stable complex with Us3 in infected cells, and nuclear localization of Us3 was significantly impaired in the absence of UL47. These results suggested that Us3 phosphorylation of UL47 Ser-77 promoted the nuclear localization of UL47 in cell cultures and played a critical role in viral replication and pathogenesis in vivo. Furthermore, UL47 appeared to be required for efficient nuclear localization of Us3 in infected cells. Therefore, Us3 protein kinase and its substrate UL47 demonstrated a unique regulatory feature in that they reciprocally regulated their subcellular localization in infected cells. PMID:21734045

  19. Seasonal and size-related variation of subcellular biomarkers in quagga mussels (Dreissena bugensis) inhabiting sites affected by moderate contamination with complex mixtures of pollutants.

    PubMed

    Ács, A; Vehovszky, Á; Győri, J; Farkas, A

    2016-07-01

    The size-related differences in subcellular biomarker responses were assessed in Dreissena bugensis mussels inhabiting harbours moderately affected by pollution with complex mixtures of heavy metals and polycyclic aromatic hydrocarbons (PAHs). Adult D. bugensis samples were collected from three harbours of Lake Balaton (Hungary) characterized by moderate shipping activity, and as reference site, from a highly protected remote area of the lake. Biomarkers of exposure (metallothioneins (MTs), ethoxyresorufin-o-deethylase (EROD)), oxidative stress (lipid peroxidation (LPO), DNA strand breaks (DNAsb)) and possible endocrine disruption (vitellogenin-like proteins (VTG)) were analysed in whole-tissue homogenates of differently sized groups of mussels in relation to environmental parameters and priority pollutants (heavy metals and polycyclic aromatic hydrocarbons). Integrated biomarker response (IBR) indices were calculated for biomarker responses gained through in situ measurements to signalize critical sites and to better distinguish natural tendencies from biological effects of contaminants. Biomarker responses showed close positive correlation in case of MT, EROD, LPO, and DNAsb and negative correlation with VTG levels with mussel shell length in autumn, when higher levels of biomarkers appeared, possibly due to natural lifecycle changes of animals. PMID:27329477

  20. Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus.

    PubMed

    Han, Jae-Yeong; Chung, Jinsoo; Kim, Jungkyu; Seo, Eun-Young; Kilcrease, James P; Bauchan, Gary R; Lim, Seungmo; Hammond, John; Lim, Hyoun-Sub

    2016-08-01

    In 2014, we performed a nationwide survey in Korean radish fields to investigate the distribution and variability of Turnip mosaic virus (TuMV). Brassica rapa ssp. pekinensis sap-inoculated with three isolates of TuMV from infected radish tissue showed different symptom severities, whereas symptoms in Raphanus sativus were similar for each isolate. The helper component-protease (HC-Pro) genes of each isolate were sequenced, and phylogenetic analysis showed that the three Korean isolates were clustered into the basal-BR group. The HC-Pro proteins of these isolates were tested for their RNA silencing suppressor (VSR) activity and subcellular localization in Nicotiana benthamiana. A VSR assay by co-agroinfiltration of HC-Pro with soluble-modified GFP (smGFP) showed that HC-Pro of isolate R007 and R041 showed stronger VSR activity than R065. The HC-Pros showed 98.25 % amino acid identity, and weak VSR isolate (R065) has a single variant residue in the C-terminal domain associated with protease activity and self-interaction compared to isolates with strong VSR activity. Formation of large subcellular aggregates of GFP:HC-Pro fusion proteins in N. benthamiana was only observed for HC-Pro from isolates with strong VSR activity, suggesting that R065 'weak' HC-Pro may have diminished self-association; substitution of the variant C-terminal residue largely reversed the HC-Pro aggregation and silencing suppressor characteristics. The lack of correlation between VSR efficiency and induction of systemic necrosis (SN) suggests that differences in viral accumulation due to HC-Pro are not responsible for SN. PMID:27059238

  1. Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau

    PubMed Central

    Di Xia; Gutmann, Julia M.; Götz, Jürgen

    2016-01-01

    Alzheimer’s disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID:27378256

  2. Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau.

    PubMed

    Di Xia; Gutmann, Julia M; Götz, Jürgen

    2016-01-01

    Alzheimer's disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID:27378256

  3. Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells

    PubMed Central

    Reinacher-Schick, Anke; Gumbiner, Barry M.

    2001-01-01

    The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of β-catenin as part of a high molecular weight complex known as the β-catenin destruction complex. The molecular composition of the intact complex and its site of action in the cell are still not well understood. Reports on the subcellular localization of APC in various cell systems have differed significantly and have been consistent with an association with a cytosolic complex, with microtubules, with the nucleus, or with the cortical actin cytoskeleton. To better understand the role of APC and the destruction complex in colorectal cancer, we have begun to characterize and isolate these complexes from confluent polarized human colon epithelial cell monolayers and other epithelial cell types. Subcellular fractionation and immunofluorescence microscopy reveal that a predominant fraction of APC associates tightly with the apical plasma membrane in a variety of epithelial cell types. This apical membrane association is not dependent on the mutational status of either APC or β-catenin. An additional pool of APC is cytosolic and fractionates into two distinct high molecular weight complexes, 20S and 60S in size. Only the 20S fraction contains an appreciable portion of the cellular axin and small but detectable amounts of glycogen synthase kinase 3β and β-catenin. Therefore, it is likely to correspond to the previously characterized β-catenin destruction complex. Dishevelled is almost entirely cytosolic, but does not significantly cofractionate with the 20S complex. The disproportionate amount of APC in the apical membrane and the lack of other destruction complex components in the 60S fraction of APC raise questions about whether these pools of APC take part in the degradation of β-catenin, or alternatively, whether they could be involved in other functions of the protein that

  4. Subcellular localization of CrmA: identification of a novel leucine-rich nuclear export signal conserved in anti-apoptotic serpins.

    PubMed Central

    Rodriguez, Jose A; Span, Simone W; Kruyt, Frank A E; Giaccone, Giuseppe

    2003-01-01

    The cowpox virus-encoded anti-apoptotic protein cytokine response modifier A (CrmA) is a member of the serpin family that specifically inhibits the cellular proteins caspase 1, caspase 8 and granzyme B. In this study, we have used Flag- and yellow fluorescent protein (YFP)-tagged versions of CrmA to investigate the mechanisms that regulate its subcellular localization. We show that CrmA can actively enter and exit the nucleus and we demonstrate the role of the nuclear export receptor CRM1 in this shuttling process. CrmA contains a novel leucine-rich nuclear export signal (NES) that is functionally conserved in the anti-apoptotic cellular serpin PI-9. Besides this leucine-rich export signal, additional sequences mapping to a 103-amino-acid region flanking the NES contribute to the CRM1-dependent nuclear export of CrmA. Although YFP-tagged CrmA is primarily located in the cytoplasm, shifting its localization to be predominantly nuclear by fusion of a heterologous nuclear localization signal did not impair its ability to prevent Fas-induced apoptosis. We propose that nucleocytoplasmic shuttling would allow CrmA to efficiently target cellular pro-apoptotic proteins not only in the cytoplasm, but also in the nucleus, and thus to carry out its anti-apoptotic function in both compartments. PMID:12667137

  5. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production.

    PubMed

    Tay, Moon Y F; Smith, Kate; Ng, Ivan H W; Chan, Kitti W K; Zhao, Yongqian; Ooi, Eng Eong; Lescar, Julien; Luo, Dahai; Jans, David A; Forwood, Jade K; Vasudevan, Subhash G

    2016-09-01

    Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. PMID:27622521

  6. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-27

    development of subcellularly targeted DDSs that will deliver specific drugs to the nuclei of the target cells and will enhance efficacy and reduce toxicity of these drugs. PMID:26731220

  7. Expression Level and Subcellular Localization of Heme Oxygenase-1 Modulates Its Cytoprotective Properties in Response to Lung Injury: A Mouse Model

    PubMed Central

    Namba, Fumihiko; Go, Hayato; Murphy, Jennifer A.; La, Ping; Yang, Guang; Sengupta, Shaon; Fernando, Amal P.; Yohannes, Mekdes; Biswas, Chhanda; Wehrli, Suzanne L.; Dennery, Phyllis A.

    2014-01-01

    Premature infants exposed to hyperoxia suffer acute and long-term pulmonary consequences. Nevertheless, neonates survive hyperoxia better than adults. The factors contributing to neonatal hyperoxic tolerance are not fully elucidated. In contrast to adults, heme oxygenase (HO)-1, an endoplasmic reticulum (ER)-anchored protein, is abundant in the neonatal lung but is not inducible in response to hyperoxia. The latter may be important, because very high levels of HO-1 overexpression are associated with significant oxygen cytotoxicity in vitro. Also, in contrast to adults, HO-1 localizes to the nucleus in neonatal mice exposed to hyperoxia. To understand the mechanisms by which HO-1 expression levels and subcellular localization contribute to hyperoxic tolerance in neonates, lung-specific transgenic mice expressing high or low levels of full-length HO-1 (cytoplasmic, HO-1-FL(H) or HO-1-FL(L)) or C-terminally truncated HO-1 (nuclear, Nuc-HO-1-TR) were generated. In HO-1-FL(L), the lungs had a normal alveolar appearance and lesser oxidative damage after hyperoxic exposure. In contrast, in HO-1-FL(H), alveolar wall thickness with type II cell hyperproliferation was observed as well worsened pulmonary function and evidence of abnormal lung cell hyperproliferation in recovery from hyperoxia. In Nuc-HO-1-TR, the lungs had increased DNA oxidative damage, increased poly (ADP-ribose) polymerase (PARP) protein expression, and reduced poly (ADP-ribose) (PAR) hydrolysis as well as reduced pulmonary function in recovery from hyperoxia. These data indicate that low cytoplasmic HO-1 levels protect against hyperoxia-induced lung injury by attenuating oxidative stress, whereas high cytoplasmic HO-1 levels worsen lung injury by increasing proliferation and decreasing apoptosis of alveolar type II cells. Enhanced lung nuclear HO-1 levels impaired recovery from hyperoxic lung injury by disabling PAR-dependent regulation of DNA repair. Lastly both high cytoplasmic and nuclear expression of

  8. Mechanisms Controlling Subcellular Localization of the G1 Cyclins Cln2p and Cln3p in Budding Yeast

    PubMed Central

    Miller, Mary E.; Cross, Frederick R.

    2001-01-01

    Different G1 cyclins confer functional specificity to the cyclin-dependent kinase (Cdk) Cdc28p in budding yeast. The Cln3p G1 cyclin is localized primarily to the nucleus, while Cln2p is localized primarily to the cytoplasm. Both binding to Cdc28p and Cdc28p-dependent phosphorylation in the C-terminal region of Cln2p are independently required for efficient nuclear depletion of Cln2p, suggesting that this process may be physiologically regulated. The accumulation of hypophosphorylated Cln2 in the nucleus is an energy-dependent process, but may not involve the RAN GTPase. Phosphorylation of Cln2p is inefficient in small newborn cells obtained by elutriation, and this lowered phosphorylation correlates with reduced Cln2p nuclear depletion in newborn cells. Thus, Cln2p may have a brief period of nuclear residence early in the cell cycle. In contrast, the nuclear localization pattern of Cln3p is not influenced by Cdk activity. Cln3p localization requires a bipartite nuclear localization signal (NLS) located at the C terminus of the protein. This sequence is required for nuclear localization of Cln3p and is sufficient to confer nuclear localization to green fluorescent protein in a RAN-dependent manner. Mislocalized Cln3p, lacking the NLS, is much less active in genetic assays specific for Cln3p, but more active in assays normally specific for Cln2p, consistent with the idea that Cln3p localization explains a significant part of Clnp functional specificity. PMID:11509671

  9. Use of SIMS microscopy and electron probe X-ray microanalysis to study the subcellular localization of aluminium in Vicia faba roots cells.

    PubMed

    Mangabeira, P; Mushrifah, I; Escaig, F; Laffray, D; França, M G; Galle, P

    1999-06-01

    Received January 4, 1999; Accepted March 25, 1999 Secondary ion mass spectrometry (SIMS), electron probe X-ray microanalysis (EPMA) and transmission electron microscopy (TEM) were used to study the tissular distribution and subcellular localization of aluminium (Al) precipitate in roots of Viciafaba. The broad bean plant, grown in nitrate solution with 193 microM Al3+ at pH 4.8, for 15 days showed Al deposits in the roots. Al accumulation was not detected in the stems nor in the leaves. Al was found mainly localized on the root's surfaces and within the cell walls of the cortical cells. Al signal was not detected in the vascular tissues. Two weeks exposure to Al caused ultrastructural changes in cortical cells and sometimes a complete disruption of these cells. Deposition of Al in form of insoluble complexes associated with phosphorus, appeared as electron opaque materials in the vacuoles of disrupted cortex cells and in the intercellular inclusions. The leaves turned yellowish at the end of 15 days exposure. The use of electron microprobe, to investigate the same tissues as the ones investigated by SIMS, provided complementary results on aluminium allocation. PMID:10432188

  10. CRM1-dependent nuclear export and dimerization with hMSH5 contribute to the regulation of hMSH4 subcellular localization

    SciTech Connect

    Neyton, Sophie; Lespinasse, Francoise; Lahaye, Francois; Staccini, Pascal; Paquis-Flucklinger, Veronique; Santucci-Darmanin, Sabine

    2007-10-15

    MSH4 and MSH5 are members of the MutS homolog family, a conserved group of proteins involved in DNA mismatch correction and homologous recombination. Although several studies have provided compelling evidences suggesting that MSH4 and MSH5 could act together in early and late stages of meiotic recombination, their precise roles are poorly understood and recent findings suggest that the human MSH4 protein may also exert a cytoplasmic function. Here we show that MSH4 is present in the cytoplasm and the nucleus of both testicular cells and transfected somatic cells. Confocal studies on transfected cells provide the first evidence that the subcellular localization of MSH4 is regulated, at least in part, by an active nuclear export pathway dependent on the exportin CRM1. We used deletion mapping and mutagenesis to define two functional nuclear export sequences within the C-terminal part of hMSH4 that mediate nuclear export through the CRM1 pathway. Our results suggest that CRM1 is also involved in MSH5 nuclear export. In addition, we demonstrate that dimerization of MSH4 and MSH5 facilitates their nuclear localization suggesting that dimerization may regulate the intracellular trafficking of these proteins. Our findings suggest that nucleocytoplasmic traffic may constitute a regulatory mechanism for MSH4 and MSH5 functions.

  11. [Subcellular localization and resistance to Botrytis cinerea of a new type lipid transfer protein AtDhyPRP1 from Arabidopsis thaliana].

    PubMed

    Zhang, Chen; Li, Lan; Xu, Ziqin

    2012-05-01

    Genetic transformation was adopted to analyze the subcellular localization and the resistance to fungal pathogens of Arabidopsis lipid transfer protein AtDHyPRP1. The coding sequence of AtDHyPRP1 amplified by PCR from Ws ecotype was used to construct the plant binary expression vector pRI101-AN-AtDHyPRP1 and the fusion expression vector pCAMBIA1302-AtDHyPRP1-GFP. Transgenic tobacco and Arabidopsis plants were produced by leaf disc and floral dip protocols, respectively. AtDHyPRP1 could improve the resistance of tobacco to Botrytis cinerea remarkably and the infection sites on transgenic tobacco leaves accumulated large amounts of H2O2. Observation under laser scanning confocal microscope showed that AtDHyPRP1 was localized to cell surface. It suggested that AtDHyPRP1 might play special function after secretion to outside of the cell and was involved in plant defense system against pathogens. PMID:22916498

  12. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1

    SciTech Connect

    Finsterbusch, T. . E-mail: finsterbuscht@rki.de; Steinfeldt, T.; Caliskan, R.; Mankertz, A.

    2005-12-05

    Porcine circovirus type 1 (PCV1) encodes two major ORFs. The cap gene comprises the major structural protein of PCV, the rep gene specifies Rep and Rep', which are both essential for initiating the replication of the viral DNA. Rep corresponds to the full-length protein, whereas Rep' is a truncated splice product that is frame-shifted in its C-terminal sequence. In this study, the cellular localization of PCV1-encoded proteins was investigated by immune fluorescence techniques using antibodies against Rep, Rep' and Cap and by expression of viral proteins fused to green and red fluorescence proteins. Rep and Rep' protein co-localized in the nucleus of infected cells as well as in cells transfected with plasmids expressing Rep and Rep' fused to fluorescence proteins, but no signal was seen in the nucleoli. Rep and Rep' carry three potential nuclear localization signals in their identical N-termini, and the contribution of these motifs to nuclear import was experimentally dissected. In contrast to the rep gene products, the localization of the Cap protein varied. While the Cap protein was restricted to the nucleoli in plasmid-transfected cells and was also localized in the nucleoli at an early stage of PCV1 infection, it was seen in the nucleoplasm and the cytoplasm later in infection, suggesting that a shuttling between distinct cellular compartments occurs.

  13. Subcellular localizations of Arabidopsis myotubularins MTM1 and MTM2 suggest possible functions in vesicular trafficking between ER and cis-Golgi.

    PubMed

    Nagpal, Akanksha; Ndamukong, Ivan; Hassan, Ammar; Avramova, Zoya; Baluška, František

    2016-08-01

    The two Arabidopsis genes AtMTM1 and AtMTM2 encode highly similar phosphoinositide 3-phosphatases from the myotubularin family. Despite the high-level conservation of structure and biochemical activities, their physiological roles have significantly diverged. The nature of a membrane and the concentrations of their membrane-anchored substrates (PtdIns3P or PtdIns3,5P2) and/or products (PtdIns5P and PtdIns) are considered critical for determining the functional specificity of myotubularins. We have performed comprehensive analyses of the subcellular localization of AtMTM1 and AtMTM2 using a variety of specific constructs transiently expressed in Nicotiana benthamiana leaf epidermal cells under the control of 35S promoter. AtMTM1 co-localized preferentially with cis-Golgi membranes, while AtMTM2 associated predominantly with ER membranes. In a stark contrast with animal/human MTMs, neither AtMTM1 nor AtMTM2 co-localizes with early or late endosomes or with TGN/EE compartments, making them unlikely participants in the endosomal trafficking system. Localization of the AtMTM2 is sensitive to cold and osmotic stress challenges. In contrast to animal myotubularins, Arabidopsis myotubularins do not associate with endosomes. Our results suggest that Arabidopsis myotubularins play a role in the vesicular trafficking between ER exit sites and cis-Golgi elements. The significance of these results is discussed also in the context of stress biology and plant autophagy. PMID:27340857

  14. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb.

    PubMed

    Wienisch, Martin; Murthy, Venkatesh N

    2016-01-01

    Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons. PMID:27388949

  15. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb

    PubMed Central

    Wienisch, Martin; Murthy, Venkatesh N.

    2016-01-01

    Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons. PMID:27388949

  16. Paraformaldehyde Fixation May Lead to Misinterpretation of the Subcellular Localization of Plant High Mobility Group Box Proteins.

    PubMed

    Li, Man-Wah; Zhou, Liang; Lam, Hon-Ming

    2015-01-01

    Arabidopsis High Mobility Group Box (HMBG) proteins were previously found associated with the interphase chromatin but not the metaphase chromosome. However, these studies are usually based on immunolocalization analysis involving paraformaldehyde fixation. Paraformaldehyde fixation has been widely adapted to preserved cell morphology before immunofluorescence staining. On one hand, the processed cells are no longer living. On the other hand, the processing may lead to misinterpretation of localization. HMGBs from Arabidopsis were fused with enhanced green fluorescence protein (EGFP) and transformed into tobacco BY-2 cells. Basically, the localization of these HMGB proteins detected with EGFP fluorescence in interphase agreed with previous publications. Upon 4% paraformaldehyde fixation, AtHMGB1 was found associated with interphase but not the metaphase chromosomes as previously reported. However, when EGFP fluorescence signal was directly observed under confocal microscope without fixation, association of AtHMGB1 with metaphase chromosomes can be detected. Paraformaldehyde fixation led to dissociation of EGFP tagged AtHMBG1 protein from metaphase chromosomes. This kind of pre-processing of live specimen may lead to dissociation of protein-protein or protein-nucleic acid interaction. Therefore, using of EGFP fusion proteins in live specimen is a better way to determine the correct localization and interaction of proteins. PMID:26270959

  17. Subcellular Localization and Clues for the Function of the HetN Factor Influencing Heterocyst Distribution in Anabaena sp. Strain PCC 7120

    PubMed Central

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J.; Elhai, Jeff; Mullineaux, Conrad W.; Flores, Enrique

    2014-01-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide. PMID:25049089

  18. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120.

    PubMed

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J; Elhai, Jeff; Mullineaux, Conrad W; Flores, Enrique; Herrero, Antonia

    2014-10-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide. PMID:25049089

  19. The Subcellular Localization of Intercellular Adhesion Molecule-5 (Telencephalin) in the Visual Cortex is not Developmentally Regulated in the Absence of Matrix Metalloproteinase-9

    PubMed Central

    Kelly, Emily A.; Tremblay, Marie-Eve; Gahmberg, Carl G.; Tian, Li; Majewska, Ania K.

    2013-01-01

    The telencephalon-associated intercellular adhesion molecule 5 (Telencephalin; ICAM-5) regulates dendritic morphology in the developing brain. In vitro studies have shown that ICAM-5 is predominantly found within dendrites and immature dendritic protrusions, with reduced expression in mushroom spines, suggesting that ICAM-5 downregulation is critical for the maturation of synaptic structures. However, developmental expression of ICAM-5 has not been explored in depth at the ultrastructural level in intact brain tissue. To investigate the ultrastructural localization of ICAM-5 with transmission electron microscopy, we performed immunoperoxidase histochemistry for ICAM-5 in mouse visual cortex at postnatal day (P)14, a period of intense synaptogenesis, and at P28, when synapses mature. We observed the expected ICAM-5 expression in dendritic protrusions and shafts at both P14 and P28. ICAM-5 expression in these dendritic protrusions decreased in prevalence with developmental age to become predominantly localized to dendritic shafts by P28. To further understand the relationship between ICAM-5 and the endopeptidase metalloproteinase-9 (MMP-9), which mediates ICAM-5 cleavage following glutamate activation during postnatal development, we also explored ICAM-5 expression in MMP-9 null animals. This analysis revealed a similar expression of ICAM-5 in dendritic elements at P14 and P28; however an increased prevalence of ICAM-5 was noted in dendritic protrusions at P28 in the MMP-9 null animals, indicating that in the absence of MMP-9, there is no developmental shift in ICAM-5 subcellular localization. Our ultrastructural observations shed light on possible functions mediated by ICAM-5 and their regulation by extracellular proteases. PMID:23897576

  20. Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation

    SciTech Connect

    Dambara, Atsushi; Morinaga, Takatoshi; Fukuda, Naoyuki; Yamakawa, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Murakumo, Yoshiki; Matsuo, Seiichi; Takahashi, Masahide

    2007-10-15

    GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin is involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin.

  1. Expression and Subcellular Localization of Retinoic Acid Receptor-α (RARα) in Healthy and Varicocele Human Spermatozoa: Its Possible Regulatory Role in Capacitation and Survival.

    PubMed

    Perrotta, Ida; Perri, Mariarita; Santoro, Marta; Panza, Salvatore; Caroleo, Maria C; Guido, Carmela; Mete, Annamaria; Cione, Erika; Aquila, Saveria

    2015-01-01

    Varicocele, an abnormal tortuosity and dilation of veins of the pampiniform plexus, is the most common identifiable and correctable cause of male infertility. It is now becoming apparent that signaling through vitamin A metabolites, such as all-trans retinoic acid (ATRA), is indispensable for spermatogenesis and disruption of retinoic acid receptor-α (RARα) function may result in male sterility and aberrant spermatogenesis. Herein, we investigated by Western blot and immunogold electron microscopy the expression profiles and subcellular localization of RARα in healthy and varicocele human sperm; in addition, we analyzed the effects of ATRA on cholesterol efflux and sperm survival utilizing enzymatic colorimetric CHOD-PAP method and Eosin Y technique, respectively. In varicocele samples, a strong reduction of RARα expression was observed. Immunogold labeling evidenced cellular location of RARα also confirming its reduced expression in "varicocele" samples. Sperm responsiveness to ATRA treatment was reduced in varicocele sperm. Our study showed that RARα is expressed in human sperm probably with a dual role in promoting both cholesterol efflux and survival. RARα might be involved in the pathogenesis of varicocele as its expression is reduced in pathologic samples. Thus, ATRA administration in procedures for artificial insemination or dietary vitamin A supplementation might represent a promising therapeutic approach for the management of male infertility. PMID:24992177

  2. Identification of Palmitoyltransferase and Thioesterase Enzymes That Control the Subcellular Localization of Axon Survival Factor Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2)*

    PubMed Central

    Milde, Stefan; Coleman, Michael P.

    2014-01-01

    The NAD-synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a critical survival factor for axons and its constant supply from neuronal cell bodies into axons is required for axon survival in primary culture neurites and axon extension in vivo. Recently, we showed that palmitoylation is necessary to target NMNAT2 to post-Golgi vesicles, thereby influencing its protein turnover and axon protective capacity. Here we find that NMNAT2 is a substrate for cytosolic thioesterases APT1 and APT2 and that palmitoylation/depalmitoylation dynamics are on a time scale similar to its short half-life. Interestingly, however, depalmitoylation does not release NMNAT2 from membranes. The mechanism of palmitoylation-independent membrane attachment appears to be mediated by the same minimal domain required for palmitoylation itself. Furthermore, we identify several zDHHC palmitoyltransferases that influence NMNAT2 palmitoylation and subcellular localization, among which a role for zDHHC17 (HIP14) in neuronal NMNAT2 palmitoylation is best supported by our data. These findings shed light on the enzymatic regulation of NMNAT2 palmitoylation and highlight individual thioesterases and palmitoyltransferases as potential targets to modulate NMNAT2-dependent axon survival. PMID:25271157

  3. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38.

    PubMed

    Yustein, Jason T; Xia, Liang; Kahlenburg, J Michelle; Robinson, Dan; Templeton, Dennis; Kung, Hsing-Jien

    2003-09-18

    The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence. PMID:13679851

  4. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    PubMed

    Ibañez, Irene L; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L; Policastro, Lucía L; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2)O(2)) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2)O(2) removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2)O(2) (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2)O(2) scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27

  5. Phosphorylation and Subcellular Localization of p27Kip1 Regulated by Hydrogen Peroxide Modulation in Cancer Cells

    PubMed Central

    Ibañez, Irene L.; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L.; Policastro, Lucía L.; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H2O2) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H2O2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H2O2 (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H2O2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1. PMID

  6. Identification of Ourmiavirus 30K movement protein amino acid residues involved in symptomatology, viral movement, subcellular localization and tubule formation.

    PubMed

    Margaria, Paolo; Anderson, Charles T; Turina, Massimo; Rosa, Cristina

    2016-09-01

    Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine-scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement-defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild-type MP (GFP:MPwt) mainly co-localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement-defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily. PMID:26637973

  7. Modeling Curvature-Dependent Subcellular Localization of the Small Sporulation Protein SpoVM in Bacillus subtilis

    PubMed Central

    Wasnik, Vaibhav; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2015-01-01

    Recent in vivo experiments suggest that in the bacterium, Bacillus subtilis, the cue for the localization of the small sporulation protein, SpoVM, an essential factor in spore coat formation, is curvature of the bacterial plasma membrane. In vitro measurements of SpoVM adsorption to vesicles of varying sizes also find high sensitivity of adsorption to vesicle radius. This curvature-dependent adsorption is puzzling given the orders of magnitude difference in length scale between an individual protein and the radius of curvature of the cell or vesicle, suggesting protein clustering on the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane adsorption and clustering of SpoVM. Based on our analysis, we hypothesize that the radius dependence of SpoVM adsorption observed in vitro is governed primarily by membrane tension, while for in-vivo localization of SpoVM, we propose a highly sensitive mechanism for curvature sensing based on the formation of macroscopic protein clusters on the membrane. PMID:25625300

  8. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice.

    PubMed

    Meng, Xiao-Qian; Dai, Yuan-Yuan; Jing, Lai-Dong; Bai, Jing; Liu, Shu-Zhen; Zheng, Ke-Gang; Pan, Jie

    2016-08-25

    Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of the focal adhesion kinase family and is highly expressed in oocytes. Using a combination of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2 and its activated form leave the cytoplasm and accumulate in the two pronuclei. We detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and localized to the perinuclear regions, where blastula cells come into contact with each other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse oocyte fertilization as well as throughout early embryo development. PMID:27086609

  9. Expression and subcellular localization of poliovirus VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro.

    PubMed Central

    Datta, U; Dasgupta, A

    1994-01-01

    The poliovirus-encoded, membrane-associated VPg-precursor polypeptide 3AB has been implicated in the initiation of viral RNA synthesis. We have expressed 3AB and 3A polypeptides in eukaryotic cells and examined their localization using indirect immunofluorescence and a direct in vitro membrane-binding assay. Results presented here demonstrate that both 3AB and 3A are capable of localizing in the endoplasmic reticulum and the Golgi apparatus in transfected HeLa cells in the absence of any other poliovirus protein. We have also shown that the carboxy-terminal 18 amino acids of 3A that constitute an amphipathic domain are important in membrane binding of 3A and 3AB. Additionally, we demonstrate that a significant fraction of both 3A and 3AB can be glycosylated in a membrane-dependent fashion during in vitro translation in reticulocyte lysate. We demonstrate that 6-diazo-5-oxo-L-norleucine, an inhibitor of glycoprotein synthesis, significantly inhibits poliovirus RNA synthesis in vivo. The implications of glycosylation of 3AB (and 3A) in viral replication are discussed. Images PMID:8207820

  10. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice

    PubMed Central

    MENG, Xiao-qian; DAI, Yuan-yuan; JING, Lai-dong; BAI, Jing; LIU, Shu-zhen; ZHENG, Ke-gang; PAN, Jie

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of the focal adhesion kinase family and is highly expressed in oocytes. Using a combination of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2 and its activated form leave the cytoplasm and accumulate in the two pronuclei. We detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and localized to the perinuclear regions, where blastula cells come into contact with each other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse oocyte fertilization as well as throughout early embryo development. PMID:27086609

  11. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    SciTech Connect

    Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the

  12. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected. PMID:27424751

  13. Identification and subcellular localization of a 21-kilodalton molecule using affinity-purified antibodies against. cap alpha. -transforming growth factor

    SciTech Connect

    Hazarika, P.; Pardue, R.L.; Earls, R.; Dedman, J.R.

    1987-04-07

    Monospecific antibodies were generated against each of six different peptide sequences derived from rat and human ..cap alpha..-transforming growth factor (..cap alpha..-TGF). The affinity-purified antibody to the 17 amino acid carboxyl-terminal portion of the molecule proved most useful in detecting ..cap alpha..-TGF. When used in a peptide-based radioimmunoassay, it was possible to measure nanogram quantities of native ..cap alpha..-TGF in conditioned cell culture media. When used to analyze cell lysate, these antibodies specifically recognized a 21-kilodalton protein species. Indirect immunofluorescence localization procedures revealed a high concentration of ..cap alpha..-TCF in a perinuclear ring with a diffuse cytoplasmic distribution. These results suggest that a precursor form of ..cap alpha..-TGF has a cellular role beyond that of an autocrine growth factor.

  14. Distinct tissue distributions and subcellular localizations of differently phosphorylated forms of the myosin regulatory light chain in Drosophila.

    PubMed

    Zhang, Liang; Ward, Robert E

    2011-01-01

    Nonmuscle myosin II (myosin hereafter) has well-established roles in generating contractile force on actin filaments during morphogenetic processes in all metazoans. Myosin activation is regulated by phosphorylation of the myosin regulatory light chain (MRLC, encoded by spaghettisquash or sqh in Drosophila) first on Ser21 and subsequently on Thr20. These phosphorylation events are positively controlled by a variety of kinases including myosin light chain kinase, Rho kinase, citron kinase, and AMP kinase and are negatively regulated by myosin phosphatase. The activation of myosin is thus highly regulated and likely developmentally controlled. In order to monitor the activity of myosin during development, we have generated antibodies against the monophosphorylated (Sqh1P) and diphosphorylated (Sqh2P) forms of Sqh. We first show that the antibodies are highly specific. We then used these antibodies to monitor myosin activation in wild type Drosophila tissues. Interestingly, Sqh1P and Sqh2P show distinct patterns of expression in embryos. Sqh1P is expressed nearly ubiquitously and outlines cells consistent with a junctional localization, whereas Sqh2P is strongly expressed on the apical surfaces and in filopodia of tissues undergoing extensive cell shape change or cell movements including the invaginating fore- and hindgut, the invaginating tracheal system, the dorsal pouch and the dorsal most row of epidermal (DME) cells during dorsal closure. In imaginal discs, Sqh1P predominantly localizes in the adherens junction, whereas Sqh2P locates to the apical domain. These antibodies thus have the potential to be very useful in monitoring myosin activation for functional studies of morphogenesis in Drosophila. PMID:20920606

  15. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.).

    PubMed

    Gao, Jun-Shan; Wu, Nan; Shen, Zhi-Lin; Lv, Kai; Qian, Sen-He; Guo, Ning; Sun, Xu; Cai, Yong-Ping; Lin, Yi

    2016-02-01

    Transparent Testa 12 (TT12) is a kind of transmembrane transporter of proanthocyanidins (PAs), which belongs to a membrane-localized multidrug and toxin efflux (MATE) family, but the molecular basis of PAs transport is still poorly understood. Here, we cloned a full-length TT12 cDNA from the fiber of brown cotton (Gossypium hirsutum), named GhTT12 (GenBank accession No. KF240564), which comprised 1733 bp with an open reading frame (ORF) of 1503 bp and encoded a putative protein containing 500 amino acid residues with a typical MATE conserved domain. The GhTT12 gene had 96.8% similarity to AA genome in Gossypium arboretum. Quantitative RT-PCR analysis denoted that the relative expression of GhTT12 in brown cotton was 1-5 folds higher than that in white cotton. The mRNA level was the highest at 5 days post anthesis (DPA) and reduced gradually during the fiber development. Expressing GhTT12-fused green fluorescent protein (GFP) in Nicotiana tabacum showed that GhTT12-GFP was localized in the vacuole membrane. The content of PAs increased firstly and decreased afterwards, and reached the maximum at 15 DPA in brown cotton. But for white cotton, the content of PAs remained at a low level during the fiber development. We speculate that GhTT12 may participate in the transportation of PAs from the cytoplasmic matrix to the vacuole. Taken together, our data revealed that GhTT12 was functional as a PAs transmembrane transporter. PMID:26548815

  16. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin.

    PubMed

    Zhang, Hui; Chen, Yiqian; Wadham, Carol; McCaughan, Geoffrey W; Keane, Fiona M; Gorrell, Mark D

    2015-02-01

    Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed member of the DPP4 gene and protease family. Deciphering the biological functions of DPP9 and its roles in pathogenesis has implicated DPP9 in tumor biology, the immune response, apoptosis, intracellular epidermal growth factor-dependent signaling and cell adhesion and migration. We investigated the intracellular distribution of DPP9 chimeric fluorescent proteins and consequent functions of DPP9. We showed that while some DPP9 is associated with mitochondria, the strongest co-localization was with microtubules. Under steady state conditions, DPP9 was not seen at the plasma membrane, but upon stimulation with either phorbol 12-myristate 13-acetate or epidermal growth factor, some DPP9 re-distributed towards the ruffling membrane. DPP9 was seen at the leading edge of the migrating cell and co-localized with the focal adhesion proteins, integrin-β1 and talin. DPP9 gene silencing and treatment with a DPP8/DPP9 specific inhibitor both reduced cell adhesion and migration. Expression of integrin-β1 and talin was decreased in DPP9-deficient and DPP9-enzyme-inactive cells. There was a concomitant decrease in the phosphorylation of focal adhesion kinase and paxillin, indicating that DPP9 knockdown or enzyme inhibition suppressed the associated adhesion signaling pathway, causing impaired cell movement. These novel findings provide mechanistic insights into the regulatory role of DPP9 in cell movement, and may thus implicate DPP9 in tissue and tumor growth and metastasis. PMID:25486458

  17. Expression, subcellular localization, and enzyme activity of a recombinant human extra-cellular superoxide dismutase in tobacco (Nicotiana benthamiana L.).

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Lee, Weontae; Kim, Tae-Yoon; Kim, Woo Taek

    2016-03-01

    Human extracellular superoxide dismutase (hEC-SOD) is an enzyme that scavenges reactive oxygen species (ROS). Because of its antioxidant activity, hEC-SOD has been used as a therapeutic protein to treat skin disease and arthritis in mammalian systems. In this study, codon-optimized hEC-SOD was expressed in tobacco (Nicotiana benthamiana L.) via a plant-based transient protein expression system. Plant expression binary vectors containing full-length hEC-SOD (f-hEC-SOD) and modified hEC-SOD (m-hEC-SOD), in which the signal peptide and heparin-binding domain were deleted, were constructed for the cytosolic-, endoplasmic reticulum (ER)-, and chloroplast-localizations in tobacco leaf mesophyll cells. The results demonstrated that f-hEC-SOD was more efficiently expressed in the cytosolic fractions than in the ER or chloroplasts of tobacco cells. Our data further indicated that differently localized f-hEC-SOD and m-hEC-SOD displayed SOD enzyme activities, suggesting that the hEC-SODs expressed by plants may be functionally active. The f-hEC-SOD was expressed up to 3.8% of the total leaf soluble protein and the expression yield was calculated to be 313.7 μg f-hEC-SOD per g fresh weight of leaf. Overall, our results reveal that it was possible to express catalytically active hEC-SODs by means of a transient plant expression system in tobacco leaf cells. PMID:26611610

  18. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus

    SciTech Connect

    Claudiani, Pamela; Riano, Elena; Errico, Alessia; Andolfi, Gennaro; Rugarli, Elena I. . E-mail: rugarli@tigem.it

    2005-10-01

    Most cases of autosomal-dominant hereditary spastic paraplegia are linked to mutations in SPG4 encoding spastin, a protein involved in microtubule dynamics and membrane trafficking. In pyramidal neurons of the motor cortex and in immortalized motor neurons, spastin is localized to the synaptic terminals and growth cones. However, in other neurons and in proliferating cells spastin is prevalently nuclear. The mechanisms that determine targeting of spastin to the nucleus or the cytoplasm are unknown. We show here that the SPG4 mRNA is able to direct synthesis of two spastin isoforms, 68 and 60 kDa, respectively, through usage of two different translational start sites. Both isoforms are imported into the nucleus, but the 68-kDa isoform contains two nuclear export signals that efficiently drive export to the cytoplasm. Nuclear export is leptomycin-B sensitive. The cytoplasmic 68-kDa spastin isoform is more abundant in the brain and the spinal cord than in other tissues. Our data indicate that spastin function is modulated through usage of alternative translational start sites and active nuclear import and export, and open new perspectives for the pathogenesis of hereditary spastic paraplegia.

  19. Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase

    PubMed Central

    Mariño, Karina; Güther, Maria Lucia Sampaio; Wernimont, Amy K; Amani, Mernhaz; Hui, Raymond; Ferguson, Michael AJ

    2010-01-01

    The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite’s survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T. brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4′-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-d-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T. brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T. brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme. PMID:20724435

  20. LLW-3-6 and Celecoxib Impacts Growth in Prostate Cancer Cells and Subcellular Localization of COX-2

    PubMed Central

    YEROKUN, TOKUNBO; WINFIELD, LEYTE L.

    2014-01-01

    The proliferation in human prostate carcinomas, PC3 and MDA-PCa-2b, was analyzed for cells treated with LLW-3-6 and celecoxib in the presence and absence of sulfasalazine. LLW-3-6 was more potent than celecoxib at mediating a dose-dependent reduction of viable PC3 cells. Co-treatment with a non-lethal dose of sulfasalazine diminished the potency of both drugs in this cell line. The effects of the drugs in MDA-PCa-2b cells were less significant than those observed in the PC3 cells. Localization of COX-2 in LLW-3-6- and CBX-treated PC3 cells is consistent with protein aggregation known for cells responding to stress stimuli. To complement this, an analysis of the theoretical binding interactions of LLW-3-6 was completed to illustrate the potential of LLW-3-6 to bind to COX-2 in a manner similar to that of celecoxib. Studies to further define the mechanism of action for LLW-3-6 are ongoing. PMID:25202054

  1. Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in Aspergillus nidulans

    PubMed Central

    Palmer, Jonathan M.; Theisen, Jeffrey M.; Duran, Rocio M.; Grayburn, W. Scott; Calvo, Ana M.; Keller, Nancy P.

    2013-01-01

    Secondary metabolism and development are linked in Aspergillus through the conserved regulatory velvet complex composed of VeA, VelB, and LaeA. The founding member of the velvet complex, VeA, shuttles between the cytoplasm and nucleus in response to alterations in light. Here we describe a new interaction partner of VeA identified through a reverse genetics screen looking for LaeA-like methyltransferases in Aspergillus nidulans. One of the putative LaeA-like methyltransferases identified, LlmF, is a negative regulator of sterigmatocystin production and sexual development. LlmF interacts directly with VeA and the repressive function of LlmF is mediated by influencing the localization of VeA, as over-expression of llmF decreases the nuclear to cytoplasmic ratio of VeA while deletion of llmF results in an increased nuclear accumulation of VeA. We show that the methyltransferase domain of LlmF is required for function; however, LlmF does not directly methylate VeA in vitro. This study identifies a new interaction partner for VeA and highlights the importance of cellular compartmentalization of VeA for regulation of development and secondary metabolism. PMID:23341778

  2. Subcellular localization and functional characterization of Nc-p43, a major Neospora caninum tachyzoite surface protein.

    PubMed Central

    Hemphill, A

    1996-01-01

    Neospora caninum is a recently identified coccidian parasite which shares many features with, but is clearly distinct from, Toxoplasma gondii. N. caninum tachyzoites infect a wide range of mammalian cells both in vivo and in vitro. The mechanisms by which infection is achieved are largely unknown. Recent evidence has suggested that a receptor-ligand system in which one or several host cell receptors bind to one or several parasite ligands is involved. Parasite cell surface-associated molecules such as the recently identified Nc-p43 antigen are prime suspects for being implicated in this physical interaction. In this study it is shown that invasion of Vero cell monolayers by N. caninum tachyzoites in vitro is impaired on incubation of parasites with subagglutinating amounts of affinity-purified antibodies directed against Nc-p43. Postembedding immunogold labeling with anti-Nc-p43 antibodies demonstrated that Nc-p43 is localized not only on the parasite cell surface but also within dense granules and rhoptries. The fate of Nc-p43 during intracellular proliferation of N. caninum tachyzoites and subsequent maturation of the parasitophorous vacuole was also studied. PMID:8926100

  3. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization.

    PubMed

    Sahu-Osen, Anita; Montero-Moran, Gabriela; Schittmayer, Matthias; Fritz, Katarina; Dinh, Anna; Chang, Yu-Fang; McMahon, Derek; Boeszoermenyi, Andras; Cornaciu, Irina; Russell, Deanna; Oberer, Monika; Carman, George M; Birner-Gruenberger, Ruth; Brasaemle, Dawn L

    2015-01-01

    CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS(239)S(240), we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno-blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation. PMID:25421061

  4. Localization of polyamine enhancement of protein synthesis to subcellular components of Escherichia coli and Pseudomonas sp. strain Kim.

    PubMed Central

    Rosano, C L; Bunce, S C; Hurwitz, C

    1983-01-01

    At 5 mM Mg2+, spermidine stimulation of polyphenylalanine synthesis by cell-free extracts of Escherichia coli was found to be about 30 times greater than that by extracts of Pseudomonas sp. strain Kim, a unique organism which lacks detectable levels of spermidine. By means of reconstitution experiments, the target of spermidine stimulation was localized to the protein fraction of the highspeed supernatant component (S-100) of E. coli and was absent from, or deficient in, the S-100 fraction of Pseudomonas sp. strain Kim. The spermidine stimulation did not appear to be due to the presence in the E. coli S-100 fraction of ribosomal protein S1, elongation factors, or E. coli aminoacyl-tRNA synthetases. The failure to observe spermidine stimulation by the Pseudomonas sp. strain Kim S-100 fraction was also not due to a spermidine-enhanced polyuridylic acid degradation. The synthesis of polyphenylalanine by Pseudomonas sp. strain Kim extracts was stimulated by putrescine and by S-(+)-2-hydroxyputrescine to a greater degree than was synthesis by E. coli extracts. The enhancement by putrescine and by S-(+)-2-hydroxyputrescine with Pseudomonas sp. strain Kim extracts was found to be due to effects on its ribosomes. PMID:6336736

  5. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization

    SciTech Connect

    Hashiguchi, Kohtaro; Ozaki, Masumi; Kuraoka, Isao; Saitoh, Hisato

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A human cell line expressing a mouse Nip45 has facilitated Nip45 analysis. Black-Right-Pointing-Pointer Nip45 does not effectively inhibit polySUMOylation in vivo. Black-Right-Pointing-Pointer Nip45 interacts directly with SUMO and SUMO chains. Black-Right-Pointing-Pointer Nip45 accumulates at PML bodies in response to proteasome inhibition. -- Abstract: The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.

  6. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  7. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization.

    PubMed

    Zelazny, Enric; Borst, Jan Willem; Muylaert, Mélanie; Batoko, Henri; Hemminga, Marcus A; Chaumont, François

    2007-07-24

    Zea mays plasma membrane intrinsic proteins (ZmPIPs) fall into two groups, ZmPIP1s and ZmPIP2s, that exhibit different water channel activities when expressed in Xenopus oocytes. ZmPIP1s are inactive, whereas ZmPIP2s induce a marked increase in the membrane osmotic water permeability coefficient, P(f). We previously showed that, in Xenopus oocytes, ZmPIP1;2 and ZmPIP2;1 interact to increase the cell P(f). Here, we report the localization and interaction of ZmPIP1s and ZmPIP2s in living maize cells. ZmPIPs were fused to monomeric yellow fluorescent protein and/or monomeric cyan fluorescent protein and expressed transiently in maize mesophyll protoplasts. When expressed alone, ZmPIP1 fusion proteins were retained in the endoplasmic reticulum, whereas ZmPIP2s were found in the plasma membrane. Interestingly, when coexpressed with ZmPIP2s, ZmPIP1s were relocalized to the plasma membrane. Using FRET/fluorescence lifetime imaging microscopy, we demonstrated that this relocalization results from interaction between ZmPIP1s and ZmPIP2s. Immunoprecipitation experiments provided additional evidence for the association of ZmPIP1;2 and ZmPIP2;1 in maize roots and suspension cells. These data suggest that PIP1-PIP2 interaction is required for in planta PIP1 trafficking to the plasma membrane to modulate plasma membrane permeability. PMID:17636130

  8. Histidine residues in the Na+-coupled ascorbic acid transporter-2 (SVCT2) are central regulators of SVCT2 function, modulating pH sensitivity, transporter kinetics, Na+ cooperativity, conformational stability, and subcellular localization.

    PubMed

    Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2010-11-19

    Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function. PMID:20843809

  9. Tissue-specific expression, developmentally and spatially regulated alternative splicing, and protein subcellular localization of OsLpa rice.

    PubMed

    Lu, Hai-ping; Pang, Wei-qin; Li, Wen-xu; Tan, Yuan-yuan; Wang, Qing; Zhao, Hai-jun; Shu, Qing-yao

    2016-02-01

    The OsLpa1 gene (LOC_Os57400) was identified to be involved in phytic acid (PA) metabolism because its knockout and missense mutants reduce PA content in rice grain. However, little is known about the molecular characteristics of OsLpa rice and of its homologues in other plants. In the present study, the spatial pattern of OsLpa1 expression was revealed using OsLpa1 promoter::GUS transgenic plants (GUS: β-glucuronidase); GUS histochemical assay showed that OsLpa1 was strongly expressed in stem, leaf, and root tissues, but in floral organ it is expressed mainly and strongly in filaments. In seeds, GUS staining was concentrated in the aleurone layers; a few blue spots were observed in the outer layers of embryo, but no staining was observed in the endosperm. Three OsLpa1 transcripts (OsLpa1.1, OsLpa1.2, OsLpa1.3) are produced due to alternative splicing; quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis revealed that the abundance of OsLpa1.3 was negligible compared with OsLpa1.1 and OsLpa all tissues. OsLpa1.2 is predominant in germinating seeds (about 5 times that of OsLpa1.1), but its abundance decreases quickly with the development of seedlings and plants, whereas the abundance of OsLpa1.1 rises and falls, reaching its highest level in 45-d-old plants, with abundance greater than that of OsLpa both leaves and roots. In seeds, the abundance of OsLpa1 continuously increases with seed growth, being 27.5 and 15 times greater in 28-DAF (day after flowering) seeds than in 7-DAF seeds for OsLpa1.1 and OsLpa1.2, respectively. Transient expression of chimeric genes with green fluorescence protein (GFP) in rice protoplasts demonstrated that all proteins encoded by the three OsLpa1 transcripts are localized to the chloroplast. PMID:26834011

  10. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    PubMed Central

    2010-01-01

    Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the

  11. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis.

    PubMed

    Otto, Edgar A; Trapp, Melissa L; Schultheiss, Ulla T; Helou, Juliana; Quarmby, Lynne M; Hildebrandt, Friedhelm

    2008-03-01

    Nephronophthisis, an autosomal recessive kidney disease, is the most frequent genetic cause of chronic renal failure in the first 3 decades of life. Causative mutations in 8 genes (NPHP1-8) have been identified, and homologous mouse models for NPHP2/INVS and NPHP3 have been described. The jck mouse is another model of recessive cystic kidney disease, and this mouse harbors a missense mutation, G448V, in the highly conserved RCC1 domain of Nek8. We hypothesized that mutations in NEK8 might cause nephronophthisis in humans, so we performed mutational analysis in a worldwide cohort of 588 patients. We identified 3 different amino acid changes that were conserved through evolution (L330F, H425Y, and A497P) and that were absent from at least 80 ethnically matched controls. All 3 mutations were within RCC1 domains, and the mutation H425Y was positioned within the same RCC1 repeat as the mouse jck mutation. To test the functional significance of these mutations, we introduced them into full-length mouse Nek8 GFP-tagged cDNA constructs. We transiently overexpressed the constructs in inner medullary collecting duct cells (IMCD-3 cell line) and compared the subcellular localization of mutant Nek8 to wild-type Nek8. All mutant forms of Nek8 showed defects in ciliary localization to varying degrees; the H431Y mutant (human H425Y) was completely absent from cilia and the amount localized to centrosomes was decreased. Overexpression of these mutants did not affect overall ciliogenesis, mitosis, or centriole number. Our genetic and functional data support the assumption that mutations in NEK8 cause nephronophthisis (NPHP9), adding another link between proteins mutated in cystic kidney disease and their localization to cilia and centrosomes. PMID:18199800

  12. Factors Affecting the Comprehension of Global and Local Main Idea

    ERIC Educational Resources Information Center

    Wang, Danhua

    2009-01-01

    This study investigated factors that would affect a reader's understanding of the main idea at the global level and explicit and implicit main ideas at the local level. Fifty-seven first-year university students taking a college reading course took a comprehension test on an expository text. Statistical analyses revealed that text structure had a…

  13. Subcellular Nutrient Element Localization and Enrichment in Ecto- and Arbuscular Mycorrhizas of Field-Grown Beech and Ash Trees Indicate Functional Differences

    PubMed Central

    Seven, Jasmin; Polle, Andrea

    2014-01-01

    Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of

  14. Developmental alterations in expression and subcellular localization of antizyme and antizyme inhibitor and their functional importance in the murine mammary gland.

    PubMed

    Murakami, Y; Suzuki, J; Samejima, K; Oka, T

    2010-02-01

    Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and beta-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N(1)-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of beta-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of beta-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ. PMID:19997757

  15. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.

    PubMed

    Golsteyn, R M; Mundt, K E; Fry, A M; Nigg, E A

    1995-06-01

    Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation. PMID:7790358

  16. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation

    PubMed Central

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F.; Fissore, Rafael; Arnoult, Christophe

    2015-01-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca2+ oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca2+ oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  17. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation.

    PubMed

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F; Fissore, Rafael; Arnoult, Christophe

    2015-02-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca(2+) oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca(2+) oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  18. Sexual selection affects local extinction and turnover in bird communities

    USGS Publications Warehouse

    Doherty, P.F., Jr.; Sorci, G.; Royle, J. Andrew; Hines, J.E.; Nichols, J.D.; Boulinier, T.

    2003-01-01

    Predicting extinction risks has become a central goal for conservation and evolutionary biologists interested in population and community dynamics. Several factors have been put forward to explain risks of extinction, including ecological and life history characteristics of individuals. For instance, factors that affect the balance between natality and mortality can have profound effects on population persistence. Sexual selection has been identified as one such factor. Populations under strong sexual selection experience a number of costs ranging from increased predation and parasitism to enhanced sensitivity to environmental and demographic stochasticity. These findings have led to the prediction that local extinction rates should be higher for species/populations with intense sexual selection. We tested this prediction by analyzing the dynamics of natural bird communities at a continental scale over a period of 21 years (1975-1996), using relevant statistical tools. In agreement with the theoretical prediction, we found that sexual selection increased risks of local extinction (dichromatic birds had on average a 23% higher local extinction rate than monochromatic species). However, despite higher local extinction probabilities, the number of dichromatic species did not decrease over the period considered in this study. This pattern was caused by higher local turnover rates of dichromatic species, resulting in relatively stable communities for both groups of species. Our results suggest that these communities function as metacommunities, with frequent local extinctions followed by colonization. Anthropogenic factors impeding dispersal might therefore have a significant impact on the global persistence of sexually selected species.

  19. Local Perturbations Do Not Affect Stability of Laboratory Fruitfly Metapopulations

    PubMed Central

    Dey, Sutirth; Joshi, Amitabh

    2007-01-01

    Background A large number of theoretical studies predict that the dynamics of spatially structured populations (metapopulations) can be altered by constant perturbations to local population size. However, these studies presume large metapopulations inhabiting noise-free, zero-extinction environments, and their predictions have never been empirically verified. Methodology/Principal Findings Here we report an empirical study on the effects of localized perturbations on global dynamics and stability, using fruitfly metapopulations in the laboratory. We find that constant addition of individuals to a particular subpopulation in every generation stabilizes that subpopulation locally, but does not have any detectable effect on the dynamics and stability of the metapopulation. Simulations of our experimental system using a simple but widely applicable model of population dynamics were able to recover the empirical findings, indicating the generality of our results. We then simulated the possible consequences of perturbing more subpopulations, increasing the strength of perturbations, and varying the rate of migration, but found that none of these conditions were expected to alter the outcomes of our experiments. Finally, we show that our main results are robust to the presence of local extinctions in the metapopulation. Conclusions/Significance Our study shows that localized perturbations are unlikely to affect the dynamics of real metapopulations, a finding that has cautionary implications for ecologists and conservation biologists faced with the problem of stabilizing unstable metapopulations in nature. PMID:17311100

  20. AT-101 simultaneously triggers apoptosis and a cytoprotective type of autophagy irrespective of expression levels and the subcellular localization of Bcl-xL and Bcl-2 in MCF7 cells.

    PubMed

    Antonietti, P; Gessler, F; Düssmann, H; Reimertz, C; Mittelbronn, M; Prehn, J H M; Kögel, D

    2016-04-01

    The effects of autophagy on cell death are highly contextual and either beneficial or deleterious. One prime example for this dual function of autophagy is evidenced by the cell responses to the BH3 mimetic AT-101 that is known to induce either apoptotic or autophagy-dependent cell death in different settings. Based on previous reports, we hypothesized that the expression levels of pro-survival Bcl-2 family members may be key determinants for the respective death mode induced by AT-101. Here we investigated the role of autophagy in the response of MCF7 breast cancer cells to AT-101. AT-101 treatment induced a prominent conversion of LC3-I to LC3-II and apoptotic cell death characterized by the appearance of Annexin-positive/PI-negative early apoptotic cells and PARP cleavage. Inhibition of the autophagy pathway, either through application of 3-MA or by lentiviral knockdown of ATG5, strongly potentiated cell death, indicating a pro-survival function of autophagy. Overexpression of wild type Bcl-xL significantly diminished the net amount of AT-101-induced cell death, but failed to alter the death-enhancing effects of the ATG5 knockdown. This was also observed with the organelle-specific variants Bcl-xL-ActA and Bcl-2-ActA (mitochondrial) as well as Bcl-xL-cb5 and Bcl-2-cb5 (ER) which all reduced AT-101-induced cell death, but did not affect the death-enhancing effects of 3-MA. Collectively, our data indicate that in apoptosis-proficient MCF7 cells, AT-101 triggers Bcl-2- and Bcl-xL-dependent apoptosis and a cytoprotective autophagy response that is independent of the expression and subcellular localization of Bcl-xL and Bcl-2. PMID:26721623

  1. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.

    PubMed

    Lennox, Kim A; Behlke, Mark A

    2016-01-29

    Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments. PMID:26578588

  2. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity.

    PubMed

    Olson, Zachary H; Beasley, James C; Rhodes, Olin E

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically. PMID:26886299

  3. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity

    PubMed Central

    Olson, Zachary H.; Beasley, James C.; Rhodes, Olin E.

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically. PMID:26886299

  4. Subcellular distribution of lead in cultured rat hepatocytes

    SciTech Connect

    Mittelstaedt, R.A.; Pounds, J.G.

    1984-10-01

    A clear understanding of the sequence and molecular mechanism of the events involved in lead toxicity is hampered by a lack of information about lead compartmentation within the cell. As part of a continuing effort to identify the mechanism by which lead affects cellular functions, we examined the subcellular distribution of /sup 210/Pb in cultured hepatocytes. The cells were isolated, labeled, homogenized in sucrose-N-((2-hydroxyethyl)piperazine)-N'-2-ethanesulfonic acid buffer, and fractionated into mitochondrial, microsomal, and cytosolic components by differential centrifugation. Complete fractionation of the cells revealed that 71% of the cellular /sup 210/Pb was associated with the mitochondria, 5% with the microsomes, and 24% with the cytosol. A modified, rapid fractionation procedure indicated that 45% of the cellular lead was associated with both the mitochondria and the cytosol and 10% with the microsomes. When the cells were separated into total particulates and cytosol with a single centrifugation, 22% of the /sup 210/Pb was associated with the soluble fraction. The process of homogenization and fractionation of the isolated hepatocytes altered the intracellular distribution of /sup 210/Pb. This experimental approach to studying the localization of lead may be compromised by the redistribution of /sup 210/Pb during the extensive centrifugations and resuspensions required for subcellular fractionation and suggests that the subcellular distribution patterns of /sup 210/Pb obtained by the fractionation of cells reflects the distribution of lead in the homogenate rather than the distribution of /sup 210/Pb in the intact cell.

  5. The Subcellular Dynamics of the Gs-Linked Receptor GPR3 Contribute to the Local Activation of PKA in Cerebellar Granular Neurons

    PubMed Central

    Miyagi, Tatsuhiro; Tanaka, Shigeru; Hide, Izumi; Shirafuji, Toshihiko; Sakai, Norio

    2016-01-01

    G-protein-coupled receptor (GPR) 3 is a member of the GPR family that constitutively activates adenylate cyclase. We have reported that the expression of GPR3 in cerebellar granular neurons (CGNs) contributes to neurite outgrowth and modulates neuronal proliferation and survival. To further identify its role, we have analyzed the precise distribution and local functions of GPR3 in neurons. The fluorescently tagged GPR3 protein was distributed in the plasma membrane, the Golgi body, and the endosomes. In addition, we have revealed that the plasma membrane expression of GPR3 functionally up-regulated the levels of PKA, as measured by a PKA FRET indicator. Next, we asked if the PKA activity was modulated by the expression of GPR3 in CGNs. PKA activity was highly modulated at the neurite tips compared to the soma. In addition, the PKA activity at the neurite tips was up-regulated when GPR3 was transfected into the cells. However, local PKA activity was decreased when endogenous GPR3 was suppressed by a GPR3 siRNA. Finally, we determined the local dynamics of GPR3 in CGNs using time-lapse analysis. Surprisingly, the fluorescent GPR3 puncta were transported along the neurite in both directions over time. In addition, the anterograde movements of the GPR3 puncta in the neurite were significantly inhibited by actin or microtubule polymerization inhibitors and were also disturbed by the Myosin II inhibitor blebbistatin. Moreover, the PKA activity at the tips of the neurites was decreased when blebbistatin was administered. These results suggested that GPR3 was transported along the neurite and contributed to the local activation of PKA in CGN development. The local dynamics of GPR3 in CGNs may affect local neuronal functions, including neuronal differentiation and maturation. PMID:26800526

  6. Demonstration of an oligosaccharide-diphosphodolichol diphosphatase activity whose subcellular localization is different than those of dolichyl-phosphate-dependent enzymes of the dolichol cycle.

    PubMed

    Massarweh, Ahmad; Bosco, Michaël; Iatmanen-Harbi, Soria; Tessier, Clarice; Auberger, Nicolas; Busca, Patricia; Chantret, Isabelle; Gravier-Pelletier, Christine; Moore, Stuart E H

    2016-06-01

    Oligosaccharyl phosphates (OSPs) are hydrolyzed from oligosaccharide-diphosphodolichol (DLO) during protein N-glycosylation by an uncharacterized process. An OSP-generating activity has been reported in vitro, and here we asked if its biochemical characteristics are compatible with a role in endoplasmic reticulum (ER)-situated DLO regulation. We demonstrate a Co(2+)-dependent DLO diphosphatase (DLODP) activity that splits DLO into dolichyl phosphate and OSP. DLODP has a pH optimum of 5.5 and is inhibited by vanadate but not by NaF. Polyprenyl diphosphates inhibit [(3)H]OSP release from [(3)H]DLO, the length of their alkyl chains correlating positively with inhibition potency. The diphosphodiester GlcNAc2-PP-solanesol is hydrolyzed to yield GlcNAc2-P and inhibits [(3)H]OSP release from [(3)H]DLO more effectively than the diphosphomonoester solanesyl diphosphate. During subcellular fractionation of liver homogenates, DLODP codistributes with microsomal markers, and density gradient centrifugation revealed that the distribution of DLODP is closer to that of Golgi apparatus-situated UDP-galactose glycoprotein galactosyltransferase than those of dolichyl-P-dependent glycosyltransferases required for DLO biosynthesis in the ER. Therefore, a DLODP activity showing selectivity toward lipophilic diphosphodiesters such as DLO, and possessing properties distinct from other lipid phosphatases, is identified. Separate subcellular locations for DLODP action and DLO biosynthesis may be required to prevent uncontrolled DLO destruction. PMID:27037250

  7. Neuronal Computations Made Visible with Subcellular Resolution.

    PubMed

    Kaschula, Richard; Salecker, Iris

    2016-06-30

    Sensory information is gradually processed within dedicated neural circuits to generate specific behaviors. In this issue, Yang et al. push technology boundaries to measure both voltage and calcium signals from subcellular compartments of genetically defined interconnected neurons and shed light on local neural computations critical for motion detection. PMID:27368098

  8. Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells.

    PubMed

    Seco, Celia Zazo; Giese, Arnaud P; Shafique, Sobia; Schraders, Margit; Oonk, Anne M M; Grossheim, Mike; Oostrik, Jaap; Strom, Tim; Hegde, Rashmi; van Wijk, Erwin; Frolenkov, Gregory I; Azam, Maleeha; Yntema, Helger G; Free, Rolien H; Riazuddin, Saima; Verheij, Joke B G M; Admiraal, Ronald J; Qamar, Raheel; Ahmed, Zubair M; Kremer, Hannie

    2016-04-01

    Variants in CIB2 can underlie either Usher syndrome type I (USH1J) or nonsyndromic hearing impairment (NSHI) (DFNB48). Here, a novel homozygous missense variant c.196C>T and compound heterozygous variants, c.[97C>T];[196C>T], were found, respectively, in two unrelated families of Dutch origin. Besides, the previously reported c.272 T>C functional missense variant in CIB2 was identified in two families of Pakistani origin. The missense variants are demonstrated not to affect subcellular localization of CIB2 in vestibular hair cells in ex vivo expression experiments. Furthermore, these variants do not affect the ATP-induced calcium responses in COS-7 cells. However, based on the residues affected, the variants are suggested to alter αIIβ integrin binding. HI was nonsyndromic in all four families. However, deafness segregating with the c.272T>C variant in one Pakistani family is remarkably less severe than that in all other families with this mutation. Our results contribute to the insight in genotype-phenotype correlations of CIB2 mutations. PMID:26173970

  9. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    PubMed

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  10. The transcriptional activities and cellular localization of the human estrogen receptor alpha are affected by the synonymous Ala87 mutation.

    PubMed

    Fernández-Calero, Tamara; Astrada, Soledad; Alberti, Alvaro; Horjales, Sofía; Arnal, Jean Francois; Rovira, Carlos; Bollati-Fogolín, Mariela; Flouriot, Gilles; Marin, Mónica

    2014-09-01

    Until recently, synonymous mutations (which do not change amino acids) have been much neglected. Some evidence suggests that this kind of mutations could affect mRNA secondary structure or stability, translation kinetics and protein structure. To explore deeper the role of synonymous mutations, we studied their consequence on the functional activity of the estrogen receptor alpha (ERα). The ERα is a ligand-inducible transcription factor that orchestrates pleiotropic cellular effects, at both genomic and non-genomic levels in response to estrogens. In this work we analyzed in transient transfection experiments, the activity of ERα carrying the synonymous mutation Ala87, a polymorphism involving about 5-10% of the population. In comparison to the wild type receptor, our results show that ERαA87 mutation reduces the transactivation efficiency of ERα on an ERE reporter gene while its expression level remains similar. This mutation enhances 4-OHT-induced transactivation of ERα on an AP1 reporter gene. Finally, the mutation affects the subcellular localization of ERα in a cell type specific manner. It enhances the cytoplasmic location of ERα without significant changes in non-genomic effects of E2. The functional alteration of the ERαA87 determined in this work highlights the relevance of synonymous mutations for biomedical and pharmacological points of view. PMID:24607813

  11. Factors affecting survivability of local Rohilkhand goats under organized farm

    PubMed Central

    Upadhyay, D.; Patel, B. H. M.; Sahu, S.; Gaur, G. K.; Singh, M.

    2015-01-01

    Aim: To study the pattern of mortality as affected by age, season and various diseases in local goats of Rohilkhand region maintained at the Indian Veterinary Research Institute, Bareilly. Materials and Methods: Post-mortem records of 12 years (2000-01 to 2011-12) were used, and total 243 mortality data were collected and analyzed. The causes of mortality were classified into seven major classes viz. digestive disorders, respiratory disorders, cardiovascular disorders, musculoskeletal disorder, parasitic disorders, mixed disorders (combination of digestive, respiratory, parasitic, and cardiovascular disorders) and miscellaneous disorders (cold, hypoglycemia, emaciation, endometritis, traumatic injury, etc.). Results: The average mortality was 10.93%. The overall mortality was more during rainy season followed by winter and summer season. The mortality in 4-6 months of age was high (2.52%) followed by 0-1 month (2.34%) and 2-3 months (1.35%). The average mortality among adult age groups (>12 months) was 3.42%. The mortality showed declining trend with the advancement of age up to 3 months and then again increased in 4-6 months age group. The digestive diseases (3.51%) followed by respiratory diseases (1.89%) and parasitic diseases (1.48%) contributed major share to the total mortality occurred and the remaining disorders were of lesser significance in causing death in goats. There is significant (p<0.01; χ2=55.62) association between year with season and age with the season (p<0.05, χ2=16.083) found in the present study. Conclusion: This study confirms that overall mortality rate averaged 10.93% (ranged between 1.10% and 25.56%) over 12 years under semi-intensive farm condition. It was generally higher in rainy season. The mortality remains higher in kids particularly under 1 month of age. The digestive diseases contributed major share to overall mortality. PMID:27047020

  12. Distinct subcellular localization of alternative splicing variants of EFA6D, a guanine nucleotide exchange factor for Arf6, in the mouse brain.

    PubMed

    Fukaya, Masahiro; Ohta, Shingo; Hara, Yoshinobu; Tamaki, Hideaki; Sakagami, Hiroyuki

    2016-09-01

    EFA6D (guanine nucleotide exchange factor for ADP-ribosylation factor 6 [Arf6]D) is also known as EFA6R, Psd3, and HCA67. It is the fourth member of the EFA6 family with guanine nucleotide exchange activity for Arf6, a small guanosine triphosphatase (GTPase) that regulates endosomal trafficking and actin cytoskeleton remodeling. We propose a classification and nomenclature of 10 EFA6D variants deposited in the GenBank database as EFA6D1a, 1b, 1c, 1d, 1s, 2a, 2b, 2c, 2d, and 2s based on the combination of N-terminal and C-terminal insertions. Polymerase chain reaction analysis showed the expression of all EFA6D variants except for variants a and d in the adult mouse brain. Immunoblotting analysis with novel variant-specific antibodies showed the endogenous expression of EFA6D1b, EFA6D1c, and EFA6D1s at the protein level, with the highest expression being EFA6D1s, in the brain. Immunoblotting analysis of forebrain subcellular fractions showed the distinct subcellular distribution of EFA6D1b/c and EFA6D1s. The immunohistochemical analysis revealed distinct but overlapping immunoreactive patterns between EFA6D1b/c and EFA6D1s in the mouse brain. In immunoelectron microscopic analyses of the hippocampal CA3 region, EFA6D1b/c was present predominantly in the mossy fiber axons of dentate granule cells, whereas EFA6D1s was present abundantly in the cell bodies, dendritic shafts, and spines of hippocampal pyramidal cells. These results provide the first anatomical evidence suggesting the functional diversity of EFA6D variants, particularly EFA6D1b/c and EFA6D1s, in neurons. J. Comp. Neurol. 524:2531-2552, 2016. © 2016 Wiley Periodicals, Inc. PMID:27241101

  13. Subcellular localization of five singular WSC domain-containing proteins and their roles in Beauveria bassiana responses to stress cues and metal ions.

    PubMed

    Tong, Sen-Miao; Chen, Ying; Zhu, Jing; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-04-01

    Some model fungi have three or four proteins with each vectoring a single cell Wall Stress-responsive Component (WSC) domain at N-terminus. In this study, five proteins, each vectoring only a single WSC domain in N-terminal, central or even C-terminal region, were found in Beauveria bassiana, a filamentous fungal entomopathogen, and named Wsc1A-1E due to the domain singularity. Four of them lack either transmembrane domain or C-terminal conserved signature sequence (DXXD) compared with the homologues in the model fungi. Intriguingly, all the eGFP-tagged fusion proteins of Wsc1A-1E were evidently localized to the cell wall and membrane of transgenic hyphae. Single deletions of the five wsc genes resulted in significant, but differential, increases in cellular sensitivity to cell wall perturbation, oxidation, high osmolarity, and four to six metal ions (Zn(2+) , Mg(2+) , Fe(2+) , K(+) , Ca(2+) and Mn(2+) ). Each deletion mutant also showed a delay of germination and a decrease of conidial UV-B resistance, thermotolerance or both. However, none of the deletions affected substantially the fungal growth, conidiation and virulence. Our results indicate a significance of each WSC protein for the B. bassiana adaptation to diverse habitats of host insects. PMID:26994521

  14. Late nonstructural 100,000- and 33,000-dalton proteins of adenovirus type 2. I. Subcellular localization during the course of infection.

    PubMed Central

    Gambke, C; Deppert, W

    1981-01-01

    We analyzed the subcellular locations of the late adenovirus type 2 nonstructural 100,000-dalton (100K) and 33K proteins in adenovirus type 2-infected HeLa cells both by biochemical cell fractionation and by immunofluorescence microscopy, using specific antisera against purified sodium dodecyl sulfate-denatured 100K and 33K polypeptides. Both methods showed that the 100K protein was present in the cytoplasm as well as in the nuclei of infected cells and that it accumulated in the nuclei during the course of infection. Phosphorylated 100K protein also was found both in the cytoplasm and in nuclei. However, the nuclear 100K protein pool was phosphorylated to a higher degree than the cytoplasmic pool. In all experiments the 33K protein, which also is a phosphoprotein, was present exclusively in the nuclei of infected cells. The 100K and 33K proteins were associated with different nuclear substructures; this was demonstrated serologically by an analysis of infected cells in which double color immunofluorescence microscopy was used. In these experiments antibodies against the 100K protein decorated different nuclear structures than antibodies against the 33K protein. Images PMID:7321097

  15. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus.

    PubMed

    Stanojlović, M; Guševac, I; Grković, I; Zlatković, J; Mitrović, N; Zarić, M; Horvat, A; Drakulić, D

    2015-12-17

    The present study attempted to investigate how chronic cerebral hypoperfusion (CCH) and repeated low-dose progesterone (P) treatment affect gene and protein expression, subcellular distribution of key apoptotic elements within protein kinase B (Akt) and extracellular signal-regulated kinases (Erk) signal transduction pathways, as well as neurodegenerative processes and behavior. The results revealed the absence of Erk activation in CCH in cytosolic and synaptosomal fractions, indicating a lower threshold of Akt activation in brain ischemia, while P increased their levels above control values. CCH induced an increase in caspase 3 (Casp 3) and poly (ADP-ribose) polymerase (PARP) gene and protein expression. However, P restored expression of examined molecules in all observed fractions, except for the levels of Casp 3 in synapses which highlighted its possible non-apoptotic or even protective function. Our study showed the absence of nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) response to this type of ischemic condition and its strong activation under the influence of P. Further, the initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by CCH was significantly reduced by P. Finally, P reversed the CCH-induced reduction in locomotor activity, while promoting a substantial decrease in anxiety-related behavior. Our findings support the concept that repeated low-dose post-ischemic P treatment reduces CCH-induced neurodegeneration in the hippocampus. Neuroprotection is initiated through the activation of investigated kinases and regulation of their downstream molecules in subcellular specific manner, indicating that this treatment may be a promising therapy for alleviation of CCH-induced pathologies. PMID:26518459

  16. LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization

    SciTech Connect

    Rapali, Peter; Garcia-Mayoral, Maria Flor; Martinez-Moreno, Monica; Tarnok, Krisztian; Schlett, Katalin; Albar, Juan Pablo; Bruix, Marta; Nyitray, Laszlo; Rodriguez-Crespo, Ignacio

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We have screened a human library with dynein light chain DYNLL1 (DLC8) as bait. Black-Right-Pointing-Pointer Dynein light chain DYNLL1 binds to ATM-kinase interacting protein (ATMIN). Black-Right-Pointing-Pointer ATMIN has 17 SQ/TQ motifs, a motif frequently found in DYNLL1-binding partners. Black-Right-Pointing-Pointer The two proteins interact in vitro, with ATMIN displaying at least five binding sites. Black-Right-Pointing-Pointer The interaction of ATMIN and DYNNL1 in transfected cells can also be observed. -- Abstract: LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1

  17. Socioeconomic factors affecting local support for black bear recovery strategies.

    PubMed

    Morzillo, Anita T; Mertig, Angela G; Hollister, Jeffrey W; Garner, Nathan; Liu, Jianguo

    2010-06-01

    There is global interest in recovering locally extirpated carnivore species. Successful efforts to recover Louisiana black bear in Louisiana have prompted interest in recovery throughout the species' historical range. We evaluated support for three potential black bear recovery strategies prior to public release of a black bear conservation and management plan for eastern Texas, United States. Data were collected from 1,006 residents living in proximity to potential recovery locations, particularly Big Thicket National Preserve. In addition to traditional logistic regression analysis, we used conditional probability analysis to statistically and visually evaluate probabilities of public support for potential black bear recovery strategies based on socioeconomic characteristics. Allowing black bears to repopulate the region on their own (i.e., without active reintroduction) was the recovery strategy with the greatest probability of acceptance. Recovery strategy acceptance was influenced by many socioeconomic factors. Older and long-time local residents were most likely to want to exclude black bears from the area. Concern about the problems that black bears may cause was the only variable significantly related to support or non-support across all strategies. Lack of personal knowledge about black bears was the most frequent reason for uncertainty about preferred strategy. In order to reduce local uncertainty about possible recovery strategies, we suggest that wildlife managers focus outreach efforts on providing local residents with general information about black bears, as well as information pertinent to minimizing the potential for human-black bear conflict. PMID:20401658

  18. Adaptations of proteins to cellular and subcellular pH

    PubMed Central

    2009-01-01

    Bioinformatics-based searches for correlations between subcellular localization and pI or charge distribution of proteins have failed to detect meaningful correlations. Recent work published in BMC Biology finds that a physicochemical metric of charge distribution correlates better with subcellular pH than does pI. See research article http://www.biomedcentral.com/1741-7007/7/69 PMID:20017887

  19. Adaptations of proteins to cellular and subcellular pH.

    PubMed

    Garcia-Moreno, Bertrand

    2009-01-01

    Bioinformatics-based searches for correlations between subcellular localization and pI or charge distribution of proteins have failed to detect meaningful correlations. Recent work published in BMC Biology finds that a physicochemical metric of charge distribution correlates better with subcellular pH than does pI. See research article http://www.biomedcentral.com/1741-7007/7/69. PMID:20017887

  20. Fractionation of Subcellular Organelles.

    PubMed

    Graham, John M

    2015-01-01

    This unit provides both a theoretical and a practical background to all the techniques associated with the application of differential and density gradient centrifugation for the analysis of subcellular membranes. The density gradient information focuses on the use of the modern gradient solute iodixanol, chosen for its ease of use, versatility, and compatibility with biological particles. Its use in both pre-formed discontinuous and continuous gradients and in self-generated gradients is discussed. Considerable emphasis is given to selection of the appropriate centrifuge rotors and tubes and their influence on the methods used for creation, fractionation, and analysis of density gradients. Without proper consideration of these critical ancillary procedures, the resolving power of the gradient can be easily compromised. PMID:26621372

  1. AtNHX5 and AtNHX6 Are Required for the Subcellular Localization of the SNARE Complex That Mediates the Trafficking of Seed Storage Proteins in Arabidopsis

    PubMed Central

    Wu, Xuexia; Ebine, Kazuo; Ueda, Takashi; Qiu, Quan-Sheng

    2016-01-01

    The SNARE complex composed of VAMP727, SYP22, VTI11 and SYP51 is critical for protein trafficking and PSV biogenesis in Arabidopsis. This SNARE complex directs the fusion between the prevacuolar compartment (PVC) and the vacuole, and thus mediates protein trafficking to the vacuole. In this study, we examined the role of AtNHX5 and AtNHX6 in regulating this SNARE complex and its function in protein trafficking. We found that AtNHX5 and AtNHX6 were required for seed production, protein trafficking and PSV biogenesis. We further found that the nhx5 nhx6 syp22 triple mutant showed severe defects in seedling growth and seed development. The triple mutant had short siliques and reduced seed sets, but larger seeds. In addition, the triple mutant had numerous smaller protein storage vacuoles (PSVs) and accumulated precursors of the seed storage proteins in seeds. The PVC localization of SYP22 and VAMP727 was repressed in nhx5 nhx6, while a significant amount of SYP22 and VAMP727 was trapped in the Golgi or TGN in nhx5 nhx6. AtNHX5 and AtNHX6 were co-localized with SYP22 and VAMP727. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for the transport of the storage proteins, indicating the importance of exchange activity in protein transport. AtNHX5 or AtNHX6 did not interact physically with the SNARE complex. Taken together, AtNHX5 and AtNHX6 are required for the PVC localization of the SNARE complex and hence its function in protein transport. AtNHX5 and AtNHX6 may regulate the subcellular localization of the SNARE complex by their transport activity. PMID:26986836

  2. Local bacteria affect the efficacy of chemotherapeutic drugs

    PubMed Central

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T.; McCarthy, Florence O.; Reid, Gregor; Urbaniak, Camilla; Byrne, William L.; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  3. The RAB GTPase RABA1e localizes to the cell plate and shows distinct subcellular behavior from RABA2a under Endosidin 7 treatment

    PubMed Central

    Davis, Destiny J.; McDowell, Stephen C.; Park, Eunsook; Hicks, Glenn; Wilkop, Thomas E.; Drakakaki, Georgia

    2016-01-01

    Cytokinesis in plants requires the activity of RAB GTPases to regulate vesicle-mediated contribution of material to the developing cell plate. While some plant RAB GTPases have been shown to be involved in cell plate formation, many still await functional assignment. Here, we report cell plate localization for YFP-RABA1e in Arabidopsis thaliana and use the cytokinesis inhibitor Endosidin 7 to provide a detailed description of its localization compared to YFP-RABA2a. Differences between YFP-RABA2a and YFP-RABA1e were observed in late-stage cell plates under DMSO control treatment, and became more apparent under Endosidin 7 treatment. Taken together, our results suggest that individual RAB GTPases might make different contributions to cell plate formation and further demonstrates the utility of ES7 probe to dissect them. PMID:25830899

  4. Dynamic changes in subcellular localization of cattle XLF during cell cycle, and focus formation of cattle XLF at DNA damage sites immediately after irradiation

    PubMed Central

    KOIKE, Manabu; YUTOKU, Yasutomo; KOIKE, Aki

    2015-01-01

    Clinically, many chemotherapeutics and ionizing radiation (IR) have been applied for the treatment of various types of human and animal malignancies. These treatments kill tumor cells by causing DNA double-strand breaks (DSBs). Core factors of classical nonhomologous DNA-end joining (C-NHEJ) play a vital role in DSB repair. Thus, it is indispensable to clarify the mechanisms of C-NHEJ in order to develop next-generation chemotherapeutics for cancer. The XRCC4-like factor (XLF; also called Cernunnos or NHEJ1) is the lastly identified core NHEJ factor. The localization of core NHEJ factors might play a critical role in regulating NHEJ activity. The localization and function of XLF have not been elucidated in animal species other than mice and humans. Domestic cattle (Bos taurus) are the most common and vital domestic animals in many countries. Here, we show that the localization of cattle XLF changes dynamically during the cell cycle. Furthermore, EYFP-cattle XLF accumulates quickly at microirradiated sites and colocalizes with the DSB marker γH2AX. Moreover, nuclear localization and accumulation of cattle XLF at DSB sites are dependent on 12 amino acids (288–299) of the C-terminal region of XLF (XLF CTR). Furthermore, basic amino acids on the XLF CTR are highly conserved among domestic animals including cattle, goat and horses, suggesting that the CTR is essential for the function of XLF in domestic animals. These findings might be useful to develop the molecular-targeting therapeutic drug taking XLF as a target molecule for human and domestic animals. PMID:25947322

  5. Dynamic changes in subcellular localization of cattle XLF during cell cycle, and focus formation of cattle XLF at DNA damage sites immediately after irradiation.

    PubMed

    Koike, Manabu; Yutoku, Yasutomo; Koike, Aki

    2015-09-01

    Clinically, many chemotherapeutics and ionizing radiation (IR) have been applied for the treatment of various types of human and animal malignancies. These treatments kill tumor cells by causing DNA double-strand breaks (DSBs). Core factors of classical nonhomologous DNA-end joining (C-NHEJ) play a vital role in DSB repair. Thus, it is indispensable to clarify the mechanisms of C-NHEJ in order to develop next-generation chemotherapeutics for cancer. The XRCC4-like factor (XLF; also called Cernunnos or NHEJ1) is the lastly identified core NHEJ factor. The localization of core NHEJ factors might play a critical role in regulating NHEJ activity. The localization and function of XLF have not been elucidated in animal species other than mice and humans. Domestic cattle (Bos taurus) are the most common and vital domestic animals in many countries. Here, we show that the localization of cattle XLF changes dynamically during the cell cycle. Furthermore, EYFP-cattle XLF accumulates quickly at microirradiated sites and colocalizes with the DSB marker γH2AX. Moreover, nuclear localization and accumulation of cattle XLF at DSB sites are dependent on 12 amino acids (288-299) of the C-terminal region of XLF (XLF CTR). Furthermore, basic amino acids on the XLF CTR are highly conserved among domestic animals including cattle, goat and horses, suggesting that the CTR is essential for the function of XLF in domestic animals. These findings might be useful to develop the molecular-targeting therapeutic drug taking XLF as a target molecule for human and domestic animals. PMID:25947322

  6. Dynamics of the subcellular localization of RalBP1/RLIP through the cell cycle: the role of targeting signals and of protein-protein interactions.

    PubMed

    Fillatre, Jonathan; Delacour, Delphine; Van Hove, Lucie; Bagarre, Thomas; Houssin, Nathalie; Soulika, Marina; Veitia, Reiner A; Moreau, Jacques

    2012-05-01

    The small G protein Ras regulates many cell processes, such as gene expression, proliferation, apoptosis, and cell differentiation. Its mutations are associated with one-third of all cancers. Ras functions are mediated, at least in part, by Ral proteins and their downstream effector the Ral-binding protein 1 (RalBP1). RalBP1 is involved in endocytosis and in regulating the dynamics of the actin cytoskeleton. It also regulates early development since it is required for the completion of gastrulation in Xenopus laevis. RalBP1 has also been reported to be the main transporter of glutathione electrophiles, and it is involved in multidrug resistance. Such a variety of functions could be explained by a differential regulation of RalBP1 localization. In this study, we have detected endogenous RalBP1 in the nucleus of interphasic cells. This nuclear targeting is mediated by nuclear localization sequences that map to the N-terminal third of the protein. Moreover, in X. laevis embryos, a C-terminal coiled-coil sequence mediates RalBP1 retention in the nucleus. We have also observed RalBP1 at the level of the actin cytoskeleton, a localization that depends on interaction of the protein with active Ral. During mitosis RalBP1 also associates with the mitotic spindle and the centrosome, a localization that could be negatively regulated by active Ral. Finally, we demonstrate the presence of post-transcriptional and post-translational isoforms of RalBP1 lacking the Ral-binding domain, which opens new possibilities for the existence of Ral-independent functions. PMID:22319010

  7. Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy

    SciTech Connect

    Valverde-Tercedor, C; Abada-Molina, F; Martinez-Bueno, M; Pineda-Molina, Estela; Chen, Lijun; Oestreicher, Zachery; Lower, Brian H; Lower, Steven K; Bazylinski, Dennis A; Jimenez-Lopez, C

    2014-04-24

    Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.

  8. Membrane Binding and Subcellular Localization of Retroviral Gag Proteins Are Differentially Regulated by MA Interactions with Phosphatidylinositol-(4,5)-Bisphosphate and RNA

    PubMed Central

    Inlora, Jingga; Collins, David R.; Trubin, Marc E.; Chung, Ji Yeon J.

    2014-01-01

    ABSTRACT The matrix (MA) domain of HIV-1 mediates proper Gag localization and membrane binding via interaction with a plasma-membrane (PM)-specific acidic phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. HIV-1 MA also interacts with RNA, which prevents Gag from binding to membranes containing phosphatidylserine, a prevalent cellular acidic phospholipid. These results suggest that the MA-bound RNA promotes PM-specific localization of HIV-1 Gag by blocking nonspecific interactions with cellular membranes that do not contain PI(4,5)P2. To examine whether PI(4,5)P2 dependence and RNA-mediated inhibition collectively determine MA phenotypes across a broad range of retroviruses and elucidate the significance of their interrelationships, we compared a panel of Gag-leucine zipper constructs (GagLZ) containing MA of different retroviruses. We found that in vitro membrane binding of GagLZ via HIV-1 MA and Rous sarcoma virus (RSV) MA is both PI(4,5)P2 dependent and susceptible to RNA-mediated inhibition. The PM-specific localization and virus-like particle (VLP) release of these GagLZ proteins are severely impaired by overexpression of a PI(4,5)P2-depleting enzyme, polyphosphoinositide 5-phosphatase IV (5ptaseIV). In contrast, membrane binding of GagLZ constructs that contain human T-lymphotropic virus type 1 (HTLV-1) MA, murine leukemia virus (MLV) MA, and human endogenous retrovirus K (HERV-K) MA is PI(4,5)P2 independent and not blocked by RNA. The PM localization and VLP release of these GagLZ chimeras were much less sensitive to 5ptaseIV expression. Notably, single amino acid substitutions that confer a large basic patch rendered HTLV-1 MA susceptible to the RNA-mediated block, suggesting that RNA readily blocks MA containing a large basic patch, such as HIV-1 and RSV MA. Further analyses of these MA mutants suggest a possibility that HIV-1 and RSV MA acquired PI(4,5)P2 dependence to alleviate the membrane binding block imposed by RNA. PMID:25491356

  9. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins

    PubMed Central

    Duband-Goulet, Isabelle; Woerner, Stephanie; Gasparini, Sylvaine; Attanda, Wikayatou; Kondé, Emilie; Tellier-Lebègue, Carine; Craescu, Constantin T.; Gombault, Aurélie; Roussel, Pascal; Vadrot, Nathalie; Vicart, Patrick; Östlund, Cecilia; Worman, Howard J.; Zinn-Justin, Sophie; Buendia, Brigitte

    2011-01-01

    Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (Δ607–656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function. PMID:21993218

  10. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins

    SciTech Connect

    Duband-Goulet, Isabelle; Woerner, Stephanie; Gasparini, Sylvaine; Attanda, Wikayatou; Konde, Emilie; Tellier-Lebegue, Carine; Craescu, Constantin T.; Roussel, Pascal; Vadrot, Nathalie; Vicart, Patrick; Oestlund, Cecilia; Worman, Howard J.; and others

    2011-12-10

    Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome ( Increment 607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.

  11. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Lee, Kyungjin; Lee, Hye-Jung; Back, Kyoungwhan

    2014-11-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis. We cloned SNAT from Arabidopsis thaliana (AtSNAT) and functionally characterized this enzyme for the first time from dicotyledonous plants. Similar to rice SNAT, AtSNAT was found to localize to chloroplasts with peak enzyme activity at 45 °C (Km , 309 μm; Vmax , 1400 pmol/min/mg protein). AtSNAT also catalyzed 5-methoxytryptamine (5-MT) into melatonin with high catalytic activity (Km , 51 μm; Vmax , 5300 pmol/min/mg protein). In contrast, Arabidopsis caffeic acid O-methyltransferase (AtCOMT) localized to the cytoplasm. Interestingly, AtCOMT can methylate serotonin into 5-MT with low catalytic activity (Km , 3.396 mm; Vmax , 528 pmol/min/mg protein). These data suggest that serotonin can be converted into either N-acetylserotonin by SNAT or into 5-MT by COMT, after which it is metabolized into melatonin by COMT or SNAT, respectively. To support this hypothesis, serotonin was incubated in the presence of both AtSNAT and AtCOMT enzymes. In addition to melatonin production, the production of major intermediates depended on incubation temperatures; N-acetylserotonin was predominantly produced at high temperatures (45 °C), while low temperatures (37 °C) favored the production of 5-MT. Our results provide biochemical evidence for the presence of a serotonin O-methylation pathway in plant melatonin biosynthesis. PMID:25250906

  12. Profiling Murine Tau with 0N, 1N and 2N Isoform-Specific Antibodies in Brain and Peripheral Organs Reveals Distinct Subcellular Localization, with the 1N Isoform Being Enriched in the Nucleus

    PubMed Central

    Liu, Chang; Götz, Jürgen

    2013-01-01

    In the adult murine brain, the microtubule-associated protein tau exists as three major isoforms, which have four microtubule-binding repeats (4R), with either no (0N), one (1N) or two (2N) amino-terminal inserts. The human brain expresses three additional isoforms with three microtubule-binding repeats (3R) each. However, little is known about the role of the amino-terminal inserts and how the 0N, 1N and 2N tau species differ. In order to investigate this, we generated a series of isoform-specific antibodies and performed a profiling by Western blotting and immunohistochemical analyses using wild-type mice in three age groups: two months, two weeks and postnatal day 0 (P0). This revealed that the brain is the only organ to express tau at significant levels, with 0N4R being the predominant isoform in the two month-old adult. Subcellular fractionation of the brain showed that the 1N isoform is over-represented in the soluble nuclear fraction. This is in agreement with the immunohistochemical analysis as the 1N isoform strongly localizes to the neuronal nucleus, although it is also found in cell bodies and dendrites, but not axons. The 0N isoform is mainly found in cell bodies and axons, whereas nuclei and dendrites are only slightly stained with the 0N antibody. The 2N isoform is highly expressed in axons and in cell bodies, with a detectable expression in dendrites and a very slight expression in nuclei. The 2N isoform that was undetectable at P0, in adult brain was mainly found localized to cell bodies and dendrites. Together these findings reveal significant differences between the three murine tau isoforms that are likely to reflect different neuronal functions. PMID:24386422

  13. Immunodetection and subcellular localization of Mal de Río Cuarto virus P9-1 protein in infected plant and insect host cells.

    PubMed

    Guzmán, Fabiana A; Arneodo, Joel D; Pons, Amalia B Saavedra; Truol, Graciela A; Luque, Andrés V; Conci, Luis R

    2010-08-01

    Mal de Río Cuarto virus (MRCV), a member of the genus Fijivirus, family Reoviridae, has a genome consisting of 10 dsRNA segments. The segment 9 (S9) possesses two non-overlapping open reading frames (ORF-1 and ORF-2) encoding two putative proteins, MRCV P9-1 and MRCV P9-2, both of unknown function. The MRCV S9 ORF-1 was RT-PCR amplified, expressed in pET-15b vector, and the recombinant protein produced was used to raise an antiserum in rabbit. Western blot with the specific MRCV P9-1 antiserum detected a protein of about 39 kDa molecular weight present in crude protein extracts from infected plants and insects. However, no reaction was observed when this antiserum was tested against purified virus. In contrast, only virus particles were detected by a MRCV-coat antiserum used as a validation control. These results suggest that MRCV S9 ORF-1 encodes a non-structural protein of MRCV. Immunoelectron microscopy assays confirmed these results, and localized the MRCV P9-1 protein exclusively in electron-dense granular viroplasms within the cytoplasm of infected plants and insects cells. As viroplasms are believed to be the replication sites of reoviruses, the intracellular location of MRCV P9-1 protein suggests that it might be involved in the assembly process of MRCV particles. PMID:20419342

  14. A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies.

    PubMed

    Phelps, Mitch A; Foraker, Amy B; Gao, Wenqing; Dalton, James T; Swaan, Peter W

    2004-01-01

    Riboflavin (vitamin B2, RF) is taken up in eukaryotic cells via specialized transport mechanisms. Although RF has fluorescence properties, direct microscopic visualization of RF uptake and trafficking has been complicated by cellular autofluorescence. We describe the synthesis, cellular uptake characteristics, and spectroscopic properties of a novel rhodamine-riboflavin conjugate (RD-RF), including absorption and emission spectra, two-photon excitation spectra, and fluorescence pH dependence. The conjugate has a molar extinction coefficient of 23 670 M(-1) cm(-1) at 545 nm (excitation wavelength) with a fluorescence quantum yield of 0.94. This compound exhibits intramolecular fluorescence resonance energy transfer (FRET). Selective quenching of the FRET signal is observed when RD-RF is bound with high affinity by the chicken riboflavin carrier protein. In addition to the typical rhodamine excitation and emission, FRET provides a secondary signal for conjugate localization and an in situ mechanism for observing riboflavin binding. Solution and in vitro stability determinations indicate that the linkage between riboflavin and rhodamine is stable for the duration of typical pulse--chase and cellular trafficking experiments. The distinct spectroscopic properties of RD-RF together with a comparable affinity for RF-binding proteins render it an excellent tool for the study of RF transport and trafficking in living cells. PMID:15981585

  15. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase

    PubMed Central

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A. G.; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries. PMID:27375579

  16. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase.

    PubMed

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A G; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries. PMID:27375579

  17. Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA.

    PubMed Central

    Garcia, I; Rodgers, M; Lenne, C; Rolland, A; Sailland, A; Matringe, M

    1997-01-01

    p-Hydroxyphenylpyruvate dioxygenase catalyses the transformation of p-hydroxyphenylpyruvate into homogentisate. In plants this enzyme has a crucial role because homogentisate is the aromatic precursor of all prenylquinones. Furthermore this enzyme was recently identified as the molecular target for new families of potent herbicides. In this study we examine precisely the localization of p-hydroxyphenylpyruvate dioxygenase activity within carrot cells. Our results provide evidence that, in cultured carrot cells, p-hydroxyphenylpyruvate dioxygenase is associated with the cytosol. Purification and SDS/PAGE analysis of this enzyme revealed that its activity is associated with a polypeptide of 45-46 kDa. This protein specifically cross-reacts with an antiserum raised against the p-hydroxyphenylpyruvate dioxygenase of Pseudomonas fluorescens. Gel-filtration chromatography indicates that the enzyme behaves as a homodimer. We also report the isolation and nucleotide sequence of a cDNA encoding a carrot p-hydroxyphenylpyruvate dioxygenase. The nucleotide sequence (1684 bp) encodes a protein of 442 amino acid residues with a molecular mass of 48094 Da and shows specific C-terminal regions of similarity with other p-hydroxyphenylpyruvate dioxygenases. This cDNA encodes a functional p-hydroxyphenylpyruvate dioxygenase, as evidenced by expression studies with transformed Escherichia coli cells. Comparison of the N-terminal sequence of the 45-46 kDa polypeptide purified from carrot cells with the deduced peptide sequence of the cDNA confirms that this polypeptide supports p-hydroxyphenylpyruvate dioxygenase activity. Immunodetection studies of the native enzyme in carrot cellular extracts reveal that N-terminal proteolysis occurs during the process of purification. This proteolysis explains the difference in molecular masses between the purified protein and the deduced polypeptide. PMID:9271098

  18. From mobility to crosstalk. A model of intracellular miRNAs motion may explain the RNAs interaction mechanism on the basis of target subcellular localization.

    PubMed

    Vasilescu, Catalin; Tanase, Mihai; Dragomir, Mihnea; Calin, George A

    2016-10-01

    MicroRNAs (miRNAs), 22 nucleotides long molecules with the function to reduce gene expression by inhibiting mRNA translation through partial complementary to one or more messenger RNA (mRNA) molecules. A single miRNA can reduce the expression levels of hundreds of genes and one mRNA can be a target for many miRNAs. Despite the study models used so far, miRNAs and mRNAs cannot be seen as acting in an isolated manner or even "in pairs". They most likely exert their complex actions through numerous overlapping interrelations. One of the models depicting interdependence of intracytoplasmic RNAs is the crosstalk model. It is based on a competition between several target mRNAs which are regulated by the same miRNA. In this paper, we will discuss the mobility mechanism of miRNAs, recently suggested by data from "single particle tracking" experiments. These data suggests that miRNA intracellular mobility may be of "intermittent active transport"(IAT) type. IAT is a mobility model composed by alternation of active transport (AT) and Brownian motion (BM). Based on a mathematical model, we concluded that, AT phase may explain the efficiency in reaching far targets and the BM phase may explain the competition. Furthermore, we suggest that the interaction between miRNAs and their targets depends on the concentration of the molecules, the affinity between the molecules and also on the intracellular localization of the molecules. Hence, the probability that a miRNA interacts with its target depends also on the distance to the target and the macromolecular crowding. Taken together, our data proposes an intracytoplasmic mobility mechanism for miRNA and shows that this model can partially explain the RNA crosstalk. PMID:27498347

  19. Type-2 Iodothyronine 5′Deiodinase in Skeletal Muscle of C57Bl/6 Mice. I. Identity, Subcellular Localization, and Characterization

    PubMed Central

    Ramadan, W.; Marsili, A.; Huang, S.; Larsen, P. R.

    2011-01-01

    RT-PCR shows that mouse skeletal muscle contains type-2 iodothyronine deiodinase (D2) mRNA. However, the D2 activity has been hard to measure. Except for newborn mice, muscle homogenates have no detectable activity. However, we have reported D2 activity in mouse muscle microsomes. As the mRNA, activity is higher in slow- than in fast-twitch muscle. We addressed here the major problems in measuring D2 activity in muscle by: homogenizing muscle in high salt to improve yield of membranous structures; separating postmitochondrial supernatant between 38 and 50% sucrose, to eliminate lighter membranes lacking D2; washing these with 0.1 m Na2CO3 to eliminate additional contaminating proteins; pretreating all buffers with Chelex, to eliminate catalytic metals; and eliminating the EDTA from the assay, as this can bind iron that enhances dithiothreitol oxidation and promotes peroxidation reactions. Maximum velocity of T3 generation by postgradient microsomes from red muscles was approximately 1100 fmol/(h · mg) protein with a Michaelis-Menten constant for T4 of 1.5 nm. D2-specific activity of Na2CO3-washed microsomes was 6–10 times higher. The enrichment in D2 activity increased in parallel with the capacity of microsomes to load (sarco/endoplasmic reticulum Ca2+-ATPase) and bind Ca2+ (calsequestrin), indicating that D2 resides in the inner sarcoplasmic reticulum, close to the nuclei. The presence of D3 in the sarcolemma suggests that the most of D2-generated T3 acts locally. Estimates from maximum velocity, Michaelis-Menten constant, and muscle T4 content suggest that mouse red, type-1, aerobic mouse muscle fibers can generate physiologically relevant amounts of T3 and, further, that muscle D2 plays an important role in thyroid hormone-dependent muscle thermogenesis. PMID:21628384

  20. Tissue-specific expression, developmentally and spatially regulated alternative splicing, and protein subcellular localization of OsLpa1 in rice*

    PubMed Central

    Lu, Hai-ping; Pang, Wei-qin; Li, Wen-xu; Tan, Yuan-yuan; Wang, Qing; Zhao, Hai-jun; Shu, Qing-yao

    2016-01-01

    The OsLpa1 gene (LOC_Os02g57400) was identified to be involved in phytic acid (PA) metabolism because its knockout and missense mutants reduce PA content in rice grain. However, little is known about the molecular characteristics of OsLpa1 in rice and of its homologues in other plants. In the present study, the spatial pattern of OsLpa1 expression was revealed using OsLpa1 promoter::GUS transgenic plants (GUS: β-glucuronidase); GUS histochemical assay showed that OsLpa1 was strongly expressed in stem, leaf, and root tissues, but in floral organ it is expressed mainly and strongly in filaments. In seeds, GUS staining was concentrated in the aleurone layers; a few blue spots were observed in the outer layers of embryo, but no staining was observed in the endosperm. Three OsLpa1 transcripts (OsLpa1.1, OsLpa1.2, OsLpa1.3) are produced due to alternative splicing; quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis revealed that the abundance of OsLpa1.3 was negligible compared with OsLpa1.1 and OsLpa1.2 in all tissues. OsLpa1.2 is predominant in germinating seeds (about 5 times that of OsLpa1.1), but its abundance decreases quickly with the development of seedlings and plants, whereas the abundance of OsLpa1.1 rises and falls, reaching its highest level in 45-d-old plants, with abundance greater than that of OsLpa1.2 in both leaves and roots. In seeds, the abundance of OsLpa1 continuously increases with seed growth, being 27.5 and 15 times greater in 28-DAF (day after flowering) seeds than in 7-DAF seeds for OsLpa1.1 and OsLpa1.2, respectively. Transient expression of chimeric genes with green fluorescence protein (GFP) in rice protoplasts demonstrated that all proteins encoded by the three OsLpa1 transcripts are localized to the chloroplast. PMID:26834011

  1. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice

    PubMed Central

    Kaneko, Kentaro; Takamatsu, Takeshi; Inomata, Takuya; Oikawa, Kazusato; Itoh, Kimiko; Hirose, Kazuko; Amano, Maho; Nishimura, Shin-Ichiro; Toyooka, Kiminori; Matsuoka, Ken; Pozueta-Romero, Javier; Mitsui, Toshiaki

    2016-01-01

    Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1–NPP6. Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)–Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2–GFP and NPP6–GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER–Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs. PMID:27335351

  2. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice.

    PubMed

    Kaneko, Kentaro; Takamatsu, Takeshi; Inomata, Takuya; Oikawa, Kazusato; Itoh, Kimiko; Hirose, Kazuko; Amano, Maho; Nishimura, Shin-Ichiro; Toyooka, Kiminori; Matsuoka, Ken; Pozueta-Romero, Javier; Mitsui, Toshiaki

    2016-08-01

    Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1-NPP6 Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)-Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2-GFP and NPP6-GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER-Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs. PMID:27335351

  3. Orotate phosphoribosyltransferase localizes to the Golgi complex and its expression levels affect the sensitivity to anti-cancer drug 5-fluorouracil.

    PubMed

    Hozumi, Yasukazu; Tanaka, Toshiaki; Nakano, Tomoyuki; Matsui, Hirooki; Nasu, Takashi; Koike, Shuji; Kakehata, Seiji; Ito, Tsukasa; Goto, Kaoru

    2015-01-01

    Orotate phosphoribosyltransferase (OPRT) is engaged in de novo pyrimidine synthesis. It catalyzes oronitine to uridine monophosphate (UMP), which is used for RNA synthesis. De novo pyrimidine synthesis has long been known to play an important role in providing DNA/RNA precursors for rapid proliferative activity of cancer cells. Furthermore, chemotherapeutic drug 5-fluorouracil (5-FU) is taken up into cancer cells and is converted to 5-fluoro-UMP (FUMP) by OPRT or to 5-fluoro-dUMP (FdUMP) through intermediary molecules by thymidine phosphorylase. These 5-FU metabolites are misincorporated into DNA/RNA, thereby producing dysfunction of these information processing. However, it remains unclear how the subcellular localization of OPRT and how its variable expression levels affect the response to 5-FU at the cellular level. In this study, immunocytochemical analysis reveals that OPRT localizes to the Golgi complex. Results also show that not only overexpression but also downregulation of OPRT render cells susceptible to 5-FU exposure, but it has no effect on DNA damaging agent doxorubicin. This study provides clues to elucidate the cellular response to 5-FU chemotherapy in relation to the OPRT expression level. PMID:26700594

  4. GAP Activity, but Not Subcellular Targeting, Is Required for Arabidopsis RanGAP Cellular and Developmental Functions[OPEN

    PubMed Central

    Boruc, Joanna; Griffis, Anna H.N.; Rodrigo-Peiris, Thushani; Zhou, Xiao; Tilford, Bailey; Van Damme, Daniël; Meier, Iris

    2015-01-01

    The Ran GTPase activating protein (RanGAP) is important to Ran signaling involved in nucleocytoplasmic transport, spindle organization, and postmitotic nuclear assembly. Unlike vertebrate and yeast RanGAP, plant RanGAP has an N-terminal WPP domain, required for nuclear envelope association and several mitotic locations of Arabidopsis thaliana RanGAP1. A double null mutant of the two Arabidopsis RanGAP homologs is gametophyte lethal. Here, we created a series of mutants with various reductions in RanGAP levels by combining a RanGAP1 null allele with different RanGAP2 alleles. As RanGAP level decreases, the severity of developmental phenotypes increases, but nuclear import is unaffected. To dissect whether the GAP activity and/or the subcellular localization of RanGAP are responsible for the observed phenotypes, this series of rangap mutants were transformed with RanGAP1 variants carrying point mutations abolishing the GAP activity and/or the WPP-dependent subcellular localization. The data show that plant development is differentially affected by RanGAP mutant allele combinations of increasing severity and requires the GAP activity of RanGAP, while the subcellular positioning of RanGAP is dispensable. In addition, our results indicate that nucleocytoplasmic trafficking can tolerate both partial depletion of RanGAP and delocalization of RanGAP from the nuclear envelope. PMID:26091693

  5. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity

    PubMed Central

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  6. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement.

    PubMed

    Bashir, Khurram; Rasheed, Sultana; Kobayashi, Takanori; Seki, Motoaki; Nishizawa, Naoko K

    2016-01-01

    Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants. PMID:27547212

  7. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement

    PubMed Central

    Bashir, Khurram; Rasheed, Sultana; Kobayashi, Takanori; Seki, Motoaki; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants. PMID:27547212

  8. Targeting of blood safety measures to affected areas with ongoing local transmission of malaria.

    PubMed

    Domanović, D; Kitchen, A; Politis, C; Panagiotopoulos, T; Bluemel, J; Van Bortel, W; Overbosch, D; Lieshout-Krikke, R; Fabra, C; Facco, G; Zeller, H

    2016-06-01

    An outbreak of locally acquired Plasmodium vivax malaria in Greece started in 2009 and peaked in 2011. Targeting of blood safety measures to affected areas with ongoing transmission of malaria raised questions of how to define spatial boundaries of such an area and when to trigger any specific blood safety measures, including whether and which blood donation screening strategy to apply. To provide scientific advice the European Centre for Disease Prevention and Control (ECDC) organised expert meetings in 2013. The outcomes of these consultations are expert opinions covering spatial targeting of blood safety measures to affected areas with ongoing local transmission of malaria and blood donation screening strategy for evidence of malaria infection in these areas. Opinions could help EU national blood safety authorities in developing a preventive strategy during malaria outbreaks. PMID:27238883

  9. Monoterpene biosynthesis potential of plant subcellular compartments.

    PubMed

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. PMID:26356766

  10. Understanding the local socio-political processes affecting conservation management outcomes in Corbett Tiger Reserve, India.

    PubMed

    Rastogi, Archi; Hickey, Gordon M; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level. PMID:24522894

  11. Understanding the Local Socio-political Processes Affecting Conservation Management Outcomes in Corbett Tiger Reserve, India

    NASA Astrophysics Data System (ADS)

    Rastogi, Archi; Hickey, Gordon M.; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  12. Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests

    PubMed Central

    Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan

    2013-01-01

    Background and Aims Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. Methods A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Key Results Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. Conclusions The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting

  13. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility

    PubMed Central

    McIntosh, Victoria J.; Abou Samra, Abdul B.; Mohammad, Ramzi M.; Lasley, Robert D.

    2016-01-01

    Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility. PMID:27441649

  14. Local 24-h hyperglycemia does not affect endothelium-dependent or -independent vasoreactivity in humans.

    PubMed

    Houben, A J; Schaper, N C; de Haan, C H; Huvers, F C; Slaaf, D W; de Leeuw, P W; Nieuwenhuijzen Kruseman, C

    1996-06-01

    Hyperglycemia induces regional hemodynamic changes, as suggested by animal studies. These hemodynamic changes may play an initiating role in the pathogenesis of diabetic microangiopathy. The aim of the present study was to evaluate the effects of acute local hyperglycemia for 24 h on basal human forearm muscle and skin blood flow and endothelium-dependent and -independent vasoreactivity. Local hyperglycemia (approximately 15 mM) was induced by infusion of 5% glucose into the brachial artery of the nondominant arm. In control experiments, the same individual amount of glucose was infused intravenously in the dominant arm to correct for possible systemic effects of the infused glucose. Vasoreactivity of the forearm vasculature was evaluated by local infusion of acetylcholine (ACh), sodium nitroprusside (SNP), NG-monomethyl-L-arginine (L-NMMA), and norepinephrine (NE) into the brachial artery. Regional hemodynamic measurements were performed at baseline and after 6, 12, and 24 h of local hyperglycemia. Median (with interquartile range) basal forearm (muscle) blood flow (FBF) was not influenced by the 24-h local hyperglycemia [infused-to-contralateral arm FBF ratio for glucose 1.32 (1.16-1.64) vs. control 1.54 (1.34-1.69)]. Skin microcirculatory blood flow (laser Doppler flowmetry, LDF) was not influenced by the 24-h local hyperglycemia [LDF ratio for glucose 1.00 (0.62-1.56) vs control 0.80 (0.58-1.14)]. In addition, the vasoreactivity of both muscle and skin (not shown) vasculature to ACh [percent change in FBF ratio for glucose 167% (81-263) vs. control 148% (94-211)], SNP [for glucose 486% (178-586) vs. control 293% (196-454)], L-NMMA [for glucose -36% (-56 to -22) vs. control -41% (-51 to -24)], and NE [for glucose -48% (-72 to -41) vs. control -66% (-79 to -33)] was also not affected by the local hyperglycemia. Thus, in contrast to animal studies, our results suggest that a moderate-to-severe hyperglycemia does not affect the regulation of basal blood flow or

  15. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey

    PubMed Central

    Schartel, Tyler E.; Schauber, Eric M.

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  16. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    PubMed

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  17. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  18. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  19. Crack arrest toughness of a heat-affected zone containing local brittle zones

    SciTech Connect

    Malik, L.; Pussegoda, L.N.; Graville, B.A.; Tyson, W.R.

    1996-11-01

    The awareness of the presence of local brittle zones (LBZs) in the heat-affected zone (HAZ) of welds has led to the requirements for minimum initiation toughness for the HAZ for critical applications. A fracture control philosophy that is proposed to be an attractive alternative for heat-affected zones containing LBZs is the prevention of crack propagation rather than of crack initiation. Such an approach would be viable if it could be demonstrated that cracks initiated in the LBZs will be arrested without causing catastrophic failure, notwithstanding the low initiation (CTOD) toughness resulting from the presence of LBZs. Unstable propagation of a crack initiating from an LBZ requires the rupture of tougher microstructural regions surrounding the LBZ in HAZ, and therefore the CTOD value reflecting the presence of LBZ is unlikely to provide a true indication of the potential for fast fracture along the heat-affected zone. Base metal specifications usually ensure that small unstable cracks propagating from the weld zone into the base metal would be arrested. To investigate the likelihood of fast fracture within the HAZ, a test program has been carried out that involved performing compact plane strain and plane stress crack arrest tests on a heat-affected zone that contained LBZs, and thus exhibited unacceptable low CTOD toughness for resistance to brittle fracture initiation. The results indicated that the crack arrest toughness was little influenced by the presence of local brittle zones. Instead, the superior toughness of the larger proportion of finer-grain HAZ surrounding the LBZ present along the crack path has a greater influence on the crack arrest toughness.

  20. Modeling biosilicification at subcellular scales.

    PubMed

    Javaheri, Narjes; Cronemberger, Carolina M; Kaandorp, Jaap A

    2013-01-01

    Biosilicification occurs in many organisms. Sponges and diatoms are major examples of them. In this chapter, we introduce a modeling approach that describes several biological mechanisms controlling silicification. Modeling biosilicification is a typical multiscale problem where processes at very different temporal and spatial scales need to be coupled: processes at the molecular level, physiological processes at the subcellular and cellular level, etc. In biosilicification morphology plays a fundamental role, and a spatiotemporal model is required. In the case of sponges, a particle simulation based on diffusion-limited aggregation is presented here. This model can describe fractal properties of silica aggregates in first steps of deposition on an organic template. In the case of diatoms, a reaction-diffusion model is introduced which can describe the concentrations of chemical components and has the possibility to include polymerization chain of reactions. PMID:24420712

  1. The subcellular organization of neocortical excitatory connections

    PubMed Central

    Petreanu, Leopoldo; Mao, Tianyi; Sternson, Scott; Svoboda, Karel

    2009-01-01

    Understanding cortical circuits will require mapping the connections between specific populations of neurons 1, as well as determining the dendritic locations where the synapses occur 2. The dendrites of individual cortical neurons overlap with numerous types of local and long-range excitatory axons, but axodendritic overlap is not always a good predictor of actual connection strength 3-5. Here we developed an efficient Channelrhodopsin-2 (ChR2)-assisted method 6-8 to map the spatial distribution of synaptic inputs, defined by presynaptic ChR2 expression, within the dendritic arbors of recorded neurons. We expressed ChR2 in two thalamic nuclei, the whisker motor cortex and local excitatory neurons and mapped their synapses with pyramidal neurons in layers (L) 3, 5A, and 5B in the mouse barrel cortex. Within the dendritic arbors of L3 cells, individual inputs impinged onto distinct single domains. These domains were arrayed in an orderly, monotonic pattern along the apical axis: axons from more central origins targeted progressively higher regions of the apical dendrites. In L5 arbors different inputs targeted separate basal and apical domains. Input to L3 and L5 dendrites in L1 was related to whisker movement and position, suggesting a role of these signals in controlling the gain of their target neurons 9. Our experiments reveal exquisite specificity in the subcellular organization of excitatory circuits. PMID:19151697

  2. Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs.

    PubMed

    Wilk, Ronit; Hu, Jack; Blotsky, Dmitry; Krause, Henry M

    2016-03-01

    In a previous analysis of 2300 mRNAs via whole-mount fluorescent in situ hybridization in cellularizing Drosophila embryos, we found that 70% of the transcripts exhibited some form of subcellular localization. To see whether this prevalence is unique to early Drosophila embryos, we examined ∼8000 transcripts over the full course of embryogenesis and ∼800 transcripts in late third instar larval tissues. The numbers and varieties of new subcellular localization patterns are both striking and revealing. In the much larger cells of the third instar larva, virtually all transcripts observed showed subcellular localization in at least one tissue. We also examined the prevalence and variety of localization mechanisms for >100 long noncoding RNAs. All of these were also found to be expressed and subcellularly localized. Thus, subcellular RNA localization appears to be the norm rather than the exception for both coding and noncoding RNAs. These results, which have been annotated and made available on a recompiled database, provide a rich and unique resource for functional gene analyses, some examples of which are provided. PMID:26944682

  3. Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs

    PubMed Central

    Wilk, Ronit; Hu, Jack; Blotsky, Dmitry; Krause, Henry M.

    2016-01-01

    In a previous analysis of 2300 mRNAs via whole-mount fluorescent in situ hybridization in cellularizing Drosophila embryos, we found that 70% of the transcripts exhibited some form of subcellular localization. To see whether this prevalence is unique to early Drosophila embryos, we examined ∼8000 transcripts over the full course of embryogenesis and ∼800 transcripts in late third instar larval tissues. The numbers and varieties of new subcellular localization patterns are both striking and revealing. In the much larger cells of the third instar larva, virtually all transcripts observed showed subcellular localization in at least one tissue. We also examined the prevalence and variety of localization mechanisms for >100 long noncoding RNAs. All of these were also found to be expressed and subcellularly localized. Thus, subcellular RNA localization appears to be the norm rather than the exception for both coding and noncoding RNAs. These results, which have been annotated and made available on a recompiled database, provide a rich and unique resource for functional gene analyses, some examples of which are provided. PMID:26944682

  4. The diverse functions of GAPDH: views from different subcellular compartments

    PubMed Central

    Tristan, Carlos; Shahani, Neelam; Sedlak, Thomas W.; Sawa, Akira

    2011-01-01

    Multiple roles for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been recently appreciated. In addition to the cytoplasm where majority of GAPDH is located under the basal condition, GAPDH is also found in the particulate fractions, such as the nucleus, the mitochondria, and the small vesicular fractions. When cells are exposed to various stressors, dynamic subcellular re-distribution of GAPDH occurs. Here we review these multifunctional properties of GAPDH, especially linking them to its oligomerization, posttranslational modification, and subcellular localization. This includes mechanistic descriptions of how S-nitrosylation of GAPDH under oxidative stress may lead to cell death/dysfunction via nuclear translocation of GAPDH, which is counteracted by a cytosolic GOSPEL. GAPDH is also involved in various diseases, especially neurodegenerative disorders and cancers. Therapeutic strategies to these conditions based on molecular understanding of GAPDH are discussed. PMID:20727968

  5. Genetically targeted fluorogenic macromolecules for subcellular imaging and cellular perturbation.

    PubMed

    Magenau, Andrew J D; Saurabh, Saumya; Andreko, Susan K; Telmer, Cheryl A; Schmidt, Brigitte F; Waggoner, Alan S; Bruchez, Marcel P

    2015-10-01

    The alteration of cellular functions by anchoring macromolecules to specified organelles may reveal a new area of therapeutic potential and clinical treatment. In this work, a unique phenotype was evoked by influencing cellular behavior through the modification of subcellular structures with genetically targetable macromolecules. These fluorogen-functionalized polymers, prepared via controlled radical polymerization, were capable of exclusively decorating actin, cytoplasmic, or nuclear compartments of living cells expressing localized fluorgen-activating proteins. The macromolecular fluorogens were optimized by establishing critical polymer architecture-biophysical property relationships which impacted binding rates, binding affinities, and the level of internalization. Specific labeling of subcellular structures was realized at nanomolar concentrations of polymer, in the absence of membrane permeabilization or transduction domains, and fluorogen-modified polymers were found to bind to protein intact after delivery to the cytosol. Cellular motility was found to be dependent on binding of macromolecular fluorogens to actin structures causing rapid cellular ruffling without migration. PMID:26183934

  6. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization.

    PubMed

    Brand, John; Johnson, Aaron P

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675

  7. Imaging trace element distributions in single organelles and subcellular features

    PubMed Central

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-01-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies. PMID:26911251

  8. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  9. Local Cattle and Badger Populations Affect the Risk of Confirmed Tuberculosis in British Cattle Herds

    PubMed Central

    Vial, Flavie; Johnston, W. Thomas; Donnelly, Christl A.

    2011-01-01

    Background The control of bovine tuberculosis (bTB) remains a priority on the public health agenda in Great Britain, after launching in 1998 the Randomised Badger Culling Trial (RBCT) to evaluate the effectiveness of badger (Meles meles) culling as a control strategy. Our study complements previous analyses of the RBCT data (focusing on treatment effects) by presenting analyses of herd-level risks factors associated with the probability of a confirmed bTB breakdown in herds within each treatment: repeated widespread proactive culling, localized reactive culling and no culling (survey-only). Methodology/Principal Findings New cases of bTB breakdowns were monitored inside the RBCT areas from the end of the first proactive badger cull to one year after the last proactive cull. The risk of a herd bTB breakdown was modeled using logistic regression and proportional hazard models adjusting for local farm-level risk factors. Inside survey-only and reactive areas, increased numbers of active badger setts and cattle herds within 1500 m of a farm were associated with an increased bTB risk. Inside proactive areas, the number of M. bovis positive badgers initially culled within 1500 m of a farm was the strongest predictor of the risk of a confirmed bTB breakdown. Conclusions/Significance The use of herd-based models provide insights into how local cattle and badger populations affect the bTB breakdown risks of individual cattle herds in the absence of and in the presence of badger culling. These measures of local bTB risks could be integrated into a risk-based herd testing programme to improve the targeting of interventions aimed at reducing the risks of bTB transmission. PMID:21464920

  10. Subcellular distribution of potassium in striated muscles

    SciTech Connect

    Edelmann, L.

    1984-01-01

    Microanalytical experiments have been performed to answer the question whether the main cellular cation, K+, follows the water distribution in the striated muscle cell or whether K+ follows the distribution of negative fixed charges (beta- and gamma-carboxyl groups of aspartic and glutamic acid residues). Subcellular localization of K and/or of the K surrogates Rb, Cs, and Tl has been investigated by the following methods: Chemical precipitation of K with tetraphenylborate. Autoradiography of alkali-metals and Tl in air-dried and frozen-hydrated preparations. TEM visualization of electron dense Cs and Tl in sections of freeze-dried and plastic embedded muscle. X-ray microanalysis of air-dried myofibrils and muscle cryosections. The experiments consistently show that K, Rb, Cs, and Tl do not follow the water distribution but are mainly accumulated in the A band, especially in the marginal regions, and at Z lines. The same sites preferentially accumulate Cs or uranyl cations when sections of freeze-dried, embedded muscle are exposed to these electron microscopic stains. It is concluded that the detected uneven distribution of K, Rb, Cs, and Tl in muscle is neither a freeze-drying artifact nor an embedding artifact and may result from a weak ion binding to the beta- and gamma-carboxyl groups of cellular proteins.

  11. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  12. Cellular localization and subcellular distribution of Unc-33-like protein 6, a brain-specific protein of the collapsin response mediator protein family that interacts with the neuronal glycine transporter 2.

    PubMed

    Horiuchi, Masahisa; Loebrich, Sven; Brandstaetter, Johann Helmut; Kneussel, Matthias; Betz, Heinrich

    2005-07-01

    Unc-33-like protein (Ulip)6, a brain-specific phosphoprotein of the Ulip/collapsin response mediator protein family, was originally identified in our laboratory by yeast two-hybrid screening using the cytoplasmic N-terminal domain of the neuronal glycine transporter, glycine transporter (GlyT) 2, as a bait. Here, the interaction of Ulip6 with the N-terminal domain of GlyT2 was found to be specific for this member of the Ulip/collapsin response mediator protein family and to involve amino acids 135-184 of GlyT2. In pull-down assays and coimmunoprecipitation experiments with rat spinal cord extract, the presence of phosphatase inhibitors significantly enhanced binding of Ulip6 to GlyT2. Subcellular fractionation of spinal cord and retina homogenates at different developmental stages showed Ulip6 immunoreactivity to be associated with light vesicles that were distinct from GlyT2-containing and synaptic vesicles. Immunocytochemistry revealed punctate Ulip6 immunoreactivity in both somatic regions and processes of cultured spinal neurones; no colocalization with GlyT2 or other synaptic marker proteins was found. In retina, which expresses only GlyT1 but not GlyT2, Ulip6 was detected in the inner plexiform layer and along the somata and processes of selected bipolar, amacrine and ganglion cells. Our data support a model in which Ulip6 transiently interacts with GlyT2 in a phosphorylation-dependent manner. PMID:15998282

  13. Local and regional factors affecting atmospheric mercury speciation at a remote location

    USGS Publications Warehouse

    Manolopoulos, H.; Schauer, J.J.; Purcell, M.D.; Rudolph, T.M.; Olson, M.L.; Rodger, B.; Krabbenhoft, D.P.

    2007-01-01

    Atmospheric concentrations of elemental (Hg0), reactive gaseous (RGM), and particulate (PHg) mercury were measured at two remote sites in the midwestern United States. Concurrent measurements of Hg0, PHg, and RGM obtained at Devil's Lake and Mt. Horeb, located approximately 65 km apart, showed that Hg0 and PHg concentrations were affected by regional, as well as local sources, while RGM was mainly impacted by local sources. Plumes reaching the Devil's Lake site from a nearby coal-fired power plant significantly impacted SO2 and RGM concentrations at Devil's Lake, but had little impact on Hg0. Our findings suggest that traditional modeling approaches to assess sources of mercury deposited that utilize source emissions and large-scale grids may not be sufficient to predict mercury deposition at sensitive locations due to the importance of small-scale sources and processes. We suggest the use of a receptor-based monitoring to better understand mercury source-receptor relationships. ?? 2007 NRC Canada.

  14. Do the Concentration and Volume of Local Anesthetics Affect the Onset and Success of Infraclavicular Anesthesia?

    PubMed Central

    Mosaffa, Faramarz; Gharaei, Babak; Qoreishi, Mohammad; Razavi, Sajjad; Safari, Farhad; Fathi, Mohammad; Mohseni, Gholamreza; Elyasi, Hedayatollah; Hosseini, Fahimeh

    2015-01-01

    Background: Although local anesthesia is a suitable method for upper limb surgeries, there is debate regarding the effects of appropriate dosing. Objectives: In the current study, we investigated the effects of the concentration and volume of a local anesthetic on the beginning and quality of anesthesia during upper limb orthopedic surgeries. Patients and Methods: This double-blinded, randomized, clinical trial was conducted on 60 patients aged between 18 and 85 years candidated for upper limb orthopedic operations. The patients were equally and randomly distributed into two groups (n = 30). Under ultrasound imaging guidance, the first group received 7 mL of 2% lidocaine and the second group 10 mL of 1.3% lidocaine into the brachial plexus cords. The onset of block and the level of sensory and motor block were documented for each nerve territory. Results: The onset of sensory and motor block was significantly shorter in the 1.3% lidocaine group than in the 2% lidocaine group (P ≤ 0.05). The success rate of sensory and motor block was not different. The quality (completeness) of sensory block for the musculocutaneous nerve and that of motor block for the radial nerve were significantly better in the 1.3% lidocaine group than in the 2% lidocaine group. Conclusions: The volume of the injected anesthetic accelerated the onset of sensory and motor block without affecting the rate of success in our patients. PMID:26473102

  15. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    PubMed

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway. PMID:23633519

  16. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.

    PubMed

    Richter-Boix, Alex; Katzenberger, Marco; Duarte, Helder; Quintela, María; Tejedo, Miguel; Laurila, Anssi

    2015-08-01

    Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow. PMID:26118477

  17. Efficacy and Factors Affecting Outcome of Gemcitabine Concurrent Chemoradiotherapy in Patients With Locally Advanced Pancreatic Cancer

    SciTech Connect

    Huang, P.-I.; Chao, Yee; Li, C.-P.; Lee, R.-C.; Chi, K.-H.; Shiau, C.-Y.; Wang, L.-W.; Yen, S.-H.

    2009-01-01

    Purpose: To evaluate the efficacy and prognostic factors of gemcitabine (GEM) concurrent chemoradiotherapy (CCRT) in patients with locally advanced pancreatic cancer. Methods and Materials: Between January 2002 and December 2005, 55 patients with locally advanced pancreatic cancer treated with GEM (400 mg/m{sup 2}/wk) concurrently with radiotherapy (median dose, 50.4 Gy; range, 26-61.2) at Taipei Veterans General Hospital were enrolled. GEM (1,000 mg/m{sup 2}) was continued after CCRT as maintenance therapy once weekly for 3 weeks and repeated every 4 weeks. The response, survival, toxicity, and prognostic factors were evaluated. Results: With a median follow-up of 10.8 months, the 1- and 2-year survival rate was 52% and 19%, respectively. The median overall survival (OS) and median time to progression (TTP) was 12.4 and 5.9 months, respectively. The response rate was 42% (2 complete responses and 21 partial responses). The major Grade 3-4 toxicities were neutropenia (22%) and anorexia (19%). The median OS and TTP was 15.8 and 9.5 months in the GEM CCRT responders compared with 7.5 and 3.5 months in the nonresponders, respectively (both p < 0.001). The responders had a better Karnofsky performance status (KPS) (86 {+-} 2 vs. 77 {+-} 2, p = 0.002) and had received a greater GEM dose intensity (347 {+-} 13 mg/m{sup 2}/wk vs. 296 {+-} 15 mg/m{sup 2}/wk, p = 0.02) than the nonresponders. KPS and serum carbohydrate antigen 19-9 were the most significant prognostic factors of OS and TTP. Conclusion: The results of our study have shown that GEM CCRT is effective and tolerable for patients with locally advanced pancreatic cancer. The KPS and GEM dose correlated with response. Also, the KPS and CA 19-9 level were the most important factors affecting OS and TTP.

  18. Local Navon letter processing affects skilled behavior: a golf-putting experiment.

    PubMed

    Lewis, Michael B; Dawkins, Gemma

    2015-04-01

    Expert or skilled behaviors (for example, face recognition or sporting performance) are typically performed automatically and with little conscious awareness. Previous studies, in various domains of performance, have shown that activities immediately prior to a task demanding a learned skill can affect performance. In sport, describing the to-be-performed action is detrimental, whereas in face recognition, describing a face or reading local Navon letters is detrimental. Two golf-putting experiments are presented that compare the effects that these three tasks have on experienced and novice golfers. Experiment 1 found a Navon effect on golf performance for experienced players. Experiment 2 found, for experienced players only, that performance was impaired following the three tasks described above, when compared with reading or global Navon tasks. It is suggested that the three tasks affect skilled performance by provoking a shift from automatic behavior to a more analytic style. By demonstrating similarities between effects in face recognition and sporting behavior, it is hoped to better understand concepts in both fields. PMID:25102927

  19. Linking Subcellular Disturbance to Physiological Behavior and Toxicity Induced by Quantum Dots in Caenorhabditis elegans.

    PubMed

    Wang, Qin; Zhou, Yanfeng; Song, Bin; Zhong, Yiling; Wu, Sicong; Cui, Rongrong; Cong, Haixia; Su, Yuanyuan; Zhang, Huimin; He, Yao

    2016-06-01

    The wide-ranging applications of fluorescent semiconductor quantum dots (QDs) have triggered increasing concerns about their biosafety. Most QD-related toxicity studies focus on the subcellular processes in cultured cells or global physiological effects on whole animals. However, it is unclear how QDs affect subcellular processes in living organisms, or how the subcellular disturbance contributes to the overall toxicity. Here the behavior and toxicity of QDs of three different sizes in Caenorhabditis elegans (C. elegans) are systematically investigated at both the systemic and the subcellular level. Specifically, clear size-dependent distribution and toxicity of the QDs in the digestive tract are observed. Short-term exposure of QDs leads to acute toxicity on C. elegans, yet incurring no lasting, irreversible damage. In contrast, chronic exposure of QDs severely inhibits development and shortens lifespan. Subcellular analysis reveals that endocytosis and nutrition storage are disrupted by QDs, which likely accounts for the severe deterioration in growth and longevity. This work reveals that QDs invasion disrupts key subcellular processes in living organisms, and may cause permanent damage to the tissues and organs over long-term retention. The findings provide invaluable information for safety evaluations of QD-based applications and offer new opportunities for design of novel nontoxic nanoprobes. PMID:27121203

  20. Phylogenetic isolation of host trees affects assembly of local Heteroptera communities

    PubMed Central

    Vialatte, A.; Bailey, R. I.; Vasseur, C.; Matocq, A.; Gossner, M. M.; Everhart, D.; Vitrac, X.; Belhadj, A.; Ernoult, A.; Prinzing, A.

    2010-01-01

    A host may be physically isolated in space and then may correspond to a geographical island, but it may also be separated from its local neighbours by hundreds of millions of years of evolutionary history, and may form in this case an evolutionarily distinct island. We test how this affects the assembly processes of the host's colonizers, this question being until now only invoked at the scale of physically distinct islands or patches. We studied the assembly of true bugs in crowns of oaks surrounded by phylogenetically more or less closely related trees. Despite the short distances (less than 150 m) between phylogenetically isolated and non-isolated trees, we found major differences between their Heteroptera faunas. We show that phylogenetically isolated trees support smaller numbers and fewer species of Heteroptera, an increasing proportion of phytophages and a decreasing proportion of omnivores, and proportionally more non-host-specialists. These differences were not due to changes in the nutritional quality of the trees, i.e. species sorting, which we accounted for. Comparison with predictions from meta-community theories suggests that the assembly of local Heteroptera communities may be strongly driven by independent metapopulation processes at the level of the individual species. We conclude that the assembly of communities on hosts separated from their neighbours by long periods of evolutionary history is qualitatively and quantitatively different from that on hosts established surrounded by closely related trees. Potentially, the biotic selection pressure on a host might thus change with the evolutionary proximity of the surrounding hosts. PMID:20335208

  1. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation.

    PubMed

    Nagegowda, Dinesh A

    2010-07-16

    Volatile terpenoids released from different plant parts play crucial roles in pollinator attraction, plant defense, and interaction with the surrounding environment. Two distinct pathways localized in different subcellular compartments are responsible for the biosynthesis of these compounds. Recent advances in the characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have revealed new aspects of volatile terpenoid biosynthesis. This review summarizes recent progress in the characterization of volatile terpenoid biosynthetic genes, their spatio-temporal expression patterns and subcellular localization of corresponding proteins. In addition, recent information obtained from metabolic engineering is discussed. PMID:20553718

  2. Localized β-adrenergic receptor blockade does not affect sweating during exercise.

    PubMed

    Buono, Michael J; Tabor, Brian; White, Ailish

    2011-05-01

    The purpose of the current study was to determine the effect of a locally administered nonselective β-adrenergic antagonist on sweat gland function during exercise. Systemically administered propranolol has been reported to increase, decrease, or not alter sweat production during exercise. To eliminate the confounding systemic effects associated with orally administered propranolol, we used iontophoresis to deliver it to the eccrine sweat glands within a localized area on one forearm prior to exercise. This allowed for determination of the direct effect of β-adrenergic receptor blockade on sweating during exercise. Subjects (n = 14) reported to the laboratory (23 ± 1°C, 35 ± 3% relative humidity) after having refrained from exercise for ≥12 h. Propranolol (1% solution) was administered to a 5-cm(2) area of the flexor surface of one forearm via iontophoresis (1.5 mA) for 5 min. A saline solution was administered to the opposing arm via iontophoresis. Each subject then exercised on a motor-driven treadmill at 75% of their age-predicted maximal heart rate for 20 min, while sweat rate was measured simultaneously in both forearms. Immediately after cessation of exercise, the number of active sweat glands was measured by application of iodine-impregnated paper to each forearm. The sweat rate for the control and propranolol-treated forearm was 0.62 ± 41 and 0.60 ± 0.44 (SD) mg·cm(-2)·min(-1), respectively (P = 0.86). The density of active sweat glands for the control and propranolol-treated forearm was 130 ± 6 and 134 ± 5 (SD) glands/cm(2), respectively, (P = 0.33). End-exercise skin temperature was 32.9 ± 0.2 and 33.1 ± 0.3°C for the control and propranolol-treated forearm, respectively (P = 0.51). Results of the current study show that when propranolol is administered locally, thus eliminating the potential confounding systemic effects of the drug, it does not directly affect sweating during the initial stages of high-intensity exercise in young, healthy

  3. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  4. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    PubMed

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  5. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops.

    PubMed

    Rodrigues, L C; Rodrigues, M

    2015-01-01

    Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality. PMID:25945619

  6. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  7. Subcellular targeting and trafficking of nitric oxide synthases

    PubMed Central

    Oess, Stefanie; Icking, Ann; Fulton, David; Govers, Roland; Müller-Esterl, Werner

    2006-01-01

    Unlike most other endogenous messengers that are deposited in vesicles, processed on demand and/or secreted in a regulated fashion, NO (nitric oxide) is a highly active molecule that readily diffuses through cell membranes and thus cannot be stored inside the producing cell. Rather, its signalling capacity must be controlled at the levels of biosynthesis and local availability. The importance of temporal and spatial control of NO production is highlighted by the finding that differential localization of NO synthases in cardiomyocytes translates into distinct effects of NO in the heart. Thus NO synthases belong to the most tightly controlled enzymes, being regulated at transcriptional and translational levels, through co- and post-translational modifications, by substrate availability and not least via specific sorting to subcellular compartments, where they are in close proximity to their target proteins. Considerable efforts have been made to elucidate the molecular mechanisms that underlie the intracellular targeting and trafficking of NO synthases, to ultimately understand the cellular pathways controlling the formation and function of this powerful signalling molecule. In the present review, we discuss the mechanisms and triggers for subcellular routing and dynamic redistribution of NO synthases and the ensuing consequences for NO production and action. PMID:16722822

  8. Nanodiamond landmarks for subcellular multimodal optical and electron imaging.

    PubMed

    Zurbuchen, Mark A; Lake, Michael P; Kohan, Sirus A; Leung, Belinda; Bouchard, Louis-S

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable "zooming-in" to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  9. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; van Dorland, H A; Gross, J J; Bruckmaier, R M

    2014-01-01

    Hyperketonemia interferes with the metabolic regulation in dairy cows. It is assumed that metabolic and endocrine changes during hyperketonemia also affect metabolic adaptations during inflammatory processes. We therefore studied systemic and local intramammary effects of elevated plasma β-hydroxybutyrate (BHBA) before and during the response to an intramammary lipopolysaccharide (LPS) challenge. Thirteen dairy cows received intravenously either a Na-DL-β-OH-butyrate infusion (n = 5) to achieve a constant plasma BHBA concentration (1.7 ± 0.1 mmol/L), with adjustments of the infusion rates made based on immediate measurements of plasma BHBA every 15 min, or an infusion with a 0.9% NaCl solution (control; n = 8) for 56 h. Infusions started at 0900 h on d 1 and continued until 1700 h 2 d later. Two udder quarters were challenged with 200 μg of Escherichia coli LPS and 2 udder quarters were treated with 0.9% saline solution as control quarters at 48 h after the start of infusion. Blood samples were taken at 1 wk and 2h before the start of infusions as reference samples and hourly during the infusion. Mammary gland biopsies were taken 1 wk before, and 48 and 56 h (8h after LPS challenge) after the start of infusions. The mRNA abundance of key factors related to BHBA and fatty acid metabolism, and glucose transporters was determined in mammary tissue biopsies. Blood samples were analyzed for plasma glucose, BHBA, nonesterified fatty acid, urea, insulin, glucagon, and cortisol concentrations. Differences were not different for effects of BHBA infusion on the mRNA abundance of any of the measured target genes in the mammary gland before LPS challenge. Intramammary LPS challenge increased plasma glucose, cortisol, glucagon, and insulin concentrations in both groups but increases in plasma glucose and glucagon concentration were less pronounced in the Na-DL-β-OH-butyrate infusion group than in controls. In response to LPS challenge, plasma BHBA concentration decreased

  10. SIMS ion microscopy as a novel, practical tool for subcellular chemical imaging in cancer research

    NASA Astrophysics Data System (ADS)

    Chandra, S.

    2003-01-01

    The development of cryogenic sample preparations, subcellular image quantification schemes, and correlative confocal laser scanning microscopy and ion microscopy have made dynamic SIMS a versatile tool in biology and medicine. For example, ion microscopy can provide much needed, novel information on calcium influx and intracellular calcium stores at organelle resolution in normal and transformed cells in order to better understand the altered calcium signaling in malignant cells. 3-D SIMS imaging of cells revealed dynamic gradients of calcium in cells undergoing mitosis and cytokinesis. Studies of subcellular localization of anticancer drugs is another area of research where ion microscopy can provide novel observations in many types of cancers. Ion microscopy is already an essential tool in boron neutron capture therapy (BNCT) of brain cancer as it can be used to quantitatively image the subcellular location of boron in cells and tissues. This information is critically needed for testing the efficacy of boronated agents and for calculations of radiation dosimetry.

  11. How to unveil self-quenched fluorophores and subsequently map the subcellular distribution of exogenous peptides

    PubMed Central

    Swiecicki, Jean-Marie; Thiebaut, Frédéric; Di Pisa, Margherita; Gourdin -Bertin, Simon; Tailhades, Julien; Mansuy, Christelle; Burlina, Fabienne; Chwetzoff, Serge; Trugnan, Germain; Chassaing, Gérard; Lavielle, Solange

    2016-01-01

    Confocal laser scanning microscopy (CLSM) is the most popular technique for mapping the subcellular distribution of a fluorescent molecule and is widely used to investigate the penetration properties of exogenous macromolecules, such as cell-penetrating peptides (CPPs), within cells. Despite the membrane-association propensity of all these CPPs, the signal of the fluorescently labeled CPPs did not colocalize with the plasma membrane. We studied the origin of this fluorescence extinction and the overall consequence on the interpretation of intracellular localizations from CLSM pictures. We demonstrated that this discrepancy originated from fluorescence self-quenching. The fluorescence was unveiled by a “dilution” protocol, i.e. by varying the ratio fluorescent/non-fluorescent CPP. This strategy allowed us to rank with confidence the subcellular distribution of several CPPs, contributing to the elucidation of the penetration mechanism. More generally, this study proposes a broadly applicable and reliable method to study the subcellular distribution of any fluorescently labeled molecules. PMID:26839211

  12. Multilabel learning via random label selection for protein subcellular multilocations prediction.

    PubMed

    Wang, Xiao; Li, Guo-Zheng

    2013-01-01

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multilocation proteins to multiple proteins with single location, which does not take correlations among different subcellular locations into account. In this paper, a novel method named random label selection (RALS) (multilabel learning via RALS), which extends the simple binary relevance (BR) method, is proposed to learn from multilocation proteins in an effective and efficient way. RALS does not explicitly find the correlations among labels, but rather implicitly attempts to learn the label correlations from data by augmenting original feature space with randomly selected labels as its additional input features. Through the fivefold cross-validation test on a benchmark data set, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark data sets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multilocations of proteins. The prediction web server is available at >http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage. PMID:23929867

  13. Socioeconomic Factors Affecting Local Support for Black Bear Recovery Strategies(AED)

    EPA Science Inventory

    There is global interest in recovering locally extirpated carnivore species. Successful efforts to recover Louisiana black bear in Louisiana have prompted interest in recovery throughout the species’ historical range. We evaluated support for three potential black bear recovery s...

  14. Understanding Locally, Culturally, and Contextually Relevant Mental Health Problems among Rwandan Children and Adolescents Affected by HIV/AIDS

    PubMed Central

    Betancourt, Theresa Stichick; Rubin-Smith, Julia E.; Beardslee, William R.; Stulac, Sara