Science.gov

Sample records for affect thermal comfort

  1. Thermal comfort following immersion.

    PubMed

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles.

  2. Outdoor thermal comfort.

    PubMed

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  3. Thermal comfort: research and practice.

    PubMed

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  4. Dynamic thermal environment and thermal comfort.

    PubMed

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research.

  5. Assessment of man's thermal comfort in practice

    PubMed Central

    Fanger, P. O.

    1973-01-01

    Fanger, P. O. (1973).British Journal of Industrial Medicine,30, 313-324. Assessment of man's thermal comfort in practice. A review is given of existing knowledge regarding the conditions for thermal comfort. Both physiological and environmental comfort conditions are discussed. Comfort criteria are shown diagrammatically, and their application is illustrated by numerous practical examples. Furthermore, the effect on the comfort conditions of age, adaptation, sex, seasonal and circadian rhythm, and unilateral heating or cooling of the body is discussed. The term `climate monotony' is considered. A method is recommended for the evaluation of the quality of thermal environments in practice. Images PMID:4584998

  6. Thermal aspects of vehicle comfort.

    PubMed

    Holmér, I; Nilsson, H; Bohm, M; Norén, O

    1995-07-01

    The combined thermal effects of convection, radiation and conduction in a vehicle compartment need special measuring equipment accounting for spatial and temporal variations in the driver space. The most sophisticated equipment measures local heat fluxes at defined spots or areas of a man-shaped manikin. Manikin segment heat fluxes have been measured in a variety of vehicle climatic conditions (heat, cold, solar radiation etc.) and compared with thermal sensation votes and physiological responses of subjects exposed to the same conditions. High correlation was found for segment fluxes and mean thermal vote (MTV) of subjects for the same body segments. By calibrating the manikin under homogenous, wind still conditions, heat fluxes could be converted (and normalised) to an equivalent homogenous temperature (EHT). Regression of MTV-values on EHT-values was used as basis for the derivation of a comfort profile, specifying acceptable temperature ranges for 19 different body segments. The method has been used for assessment of the thermal climate in trucks and crane cabins in winter and summer conditions. The possibility for spatial resolution of thermal influences (e.g. by solar radiation or convection currents) appeared to be very useful in the analysis of system performance. Ventilation of driver's seats is a technical solution to reducing insulation of thigh, seat and back areas of the body. Constructions, however, may vary in efficiency. In one system seat ventilation allowed for almost 2 degrees C higher ambient conditions for unchanged general thermal sensation, in addition to the pronounced local effect. In a recent study the effects of various technical measures related to cabin design and HVAC-systems have been investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Thermal Comfort and Strategies for Energy Conservation.

    ERIC Educational Resources Information Center

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  8. Models for the indices of thermal comfort.

    PubMed

    Streinu-Cercel, Adrian; Costoiu, Sergiu; Mârza, Maria; Streinu-Cercel, Anca; Mârza, Monica

    2008-01-01

    The current paper propose the analysis and extension formulation required for establishing decision in the management of the medical national system from the point of view of quality and efficiency such as: conceiving models for the indices of thermal comfort, defining the predicted mean vote (on the thermal sensation scale) "PMV", defining the metabolism "M", heat transfer between the human body and the environment, defining the predicted percent of dissatisfied people "PPD", defining all indices of thermal comfort.

  9. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  10. Classification of thermal environments for comfort assessment.

    PubMed

    Lenzuni, Paolo; Freda, Daniela; Del Gaudio, Michele

    2009-06-01

    According to ISO 7730:2005, classification is a mandatory precondition for thermal comfort assessment since the appropriate criterion depends on which category the specific work situation (SWS) investigated belongs to. Unfortunately, while the standard does include three different comfort criteria, it does not indicate how the appropriate criterion should be selected. This paper presents a classification scheme that allows thermal comfort assessment to be reliably performed in any environment. The model is based on an algorithm that calculates a score by means of a weighted product of three quantities, each one taking care of a specific, highly relevant element: the subject's thermal sensitivity, the accuracy required for carrying out the task and the practicality of thermal control. The scheme's simple modular structure can easily accommodate both changes and additions, should other hypothetical elements be identified to be as relevant to the classification scheme. The model presented allows a modulation of comfort levels across different social groups. It is so possible to provide extra care for children, elderly, pregnant women, disabled and other 'weak' categories, as required by ISO/TS 14415:2005, by setting the highest comfort level. Finally, it also widens the options for simultaneously establishing comfort conditions for different individuals performing different tasks in the same area and clarifies whose comfort should be pursued with the highest priority.

  11. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    SciTech Connect

    Regnier, Cindy

    2012-08-01

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  12. Thermal Comfort Strategies: A Report on Cellulose Insulation.

    DTIC Science & Technology

    1996-12-01

    comfort, saves energy, controls moisture, increases indoor air quality, and, in general, increases user satisfaction. Thermal comfort is an important...productivity could mean an annual savings of $1 billion. This report presents thermal comfort strategies relating to the use of cellulose insulation...insulation are described. The report also discusses technical issues involved in general thermal comfort strategies, including: (1) infiltration, (2

  13. [Thermal comfort in perioperatory risk's evaluation].

    PubMed

    Masia, M D; Dettori, M; Liperi, G; Deriu, G M; Posadino, S; Maida, G; Mura, I

    2009-01-01

    Studies till now conducted about operating rooms' microclimate have been focused mainly on operators' thermal comfort, considering that uneasiness conditions may compromise their working performance. In last years, nevertheless, the anesthesiologic community recalled attention on patients' risks determined by perioperatory variations of normothermia, underlining the necessity of orientating studies to individuate microclimate characteristics act to guarantee thermal comfort of the patient too. Looking at these considerations, a study has been conducted in the operating rooms of the hospital-university Firm and the n.1 USL of Sassari, finalized, on one hand, to determinate microclimate characteristics of the operating blocks and to evaluate operators' and patients' thermal comfort, on the other to individuate, through a software simulation, microclimate conditions that ensure contemporarily thermal comfort for both the categories. Results confirm the existence of a thermal "gap" among operators and patients, these last constantly submitted to "cold-stress", sometimes very accentuated. So, we underline microclimate's importance in operating rooms, because there are particular situations that can condition perioperatory risks. Moreover it can be useful to integrate risk's classes of the American Society of Anestesiology (ASA) with a score attributed to the PMV/PPD variation, reaching more real operatory risk indicators.

  14. Coupling of the Models of Human Physiology and Thermal Comfort

    NASA Astrophysics Data System (ADS)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  15. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow

    PubMed Central

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous ‘components’. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].1 The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.1 Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude. PMID:27226992

  16. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow.

    PubMed

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous 'components'. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].(1) The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.(1) Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude.

  17. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  18. Uncertainty Analysis of Thermal Comfort Parameters

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. Silva; Alves e Sousa, J.; Cox, Maurice G.; Forbes, Alistair B.; Matias, L. Cordeiro; Martins, L. Lages

    2015-08-01

    International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote ( PMV) and predicted percentage dissatisfied ( PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

  19. Regional differences in temperature sensation and thermal comfort in humans.

    PubMed

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  20. Combined comfort model of thermal comfort and air quality on buses in Hong Kong.

    PubMed

    Shek, Ka Wing; Chan, Wai Tin

    2008-01-25

    Air-conditioning settings are important factors in controlling the comfort of passengers on buses. The local bus operators control in-bus air quality and thermal environment by conforming to the prescribed levels stated in published standards. As a result, the settings are merely adjusted to fulfill the standards, rather than to satisfy the passengers' thermal comfort and air quality. Such "standard-oriented" practices are not appropriate; the passengers' preferences and satisfaction should be emphasized instead. Thus a "comfort-oriented" philosophy should be implemented to achieve a comfortable in-bus commuting environment. In this study, the achievement of a comfortable in-bus environment was examined with emphasis on thermal comfort and air quality. Both the measurement of physical parameters and subjective questionnaire surveys were conducted to collect practical in-bus thermal and air parameters data, as well as subjective satisfaction and sensation votes from the passengers. By analyzing the correlation between the objective and subjective data, a combined comfort models were developed. The models helped in evaluating the percentage of dissatisfaction under various combinations of passengers' sensation votes towards thermal comfort and air quality. An effective approach integrated the combined comfort model, hardware and software systems and the bus air-conditioning system could effectively control the transient in-bus environment. By processing and analyzing the data from the continuous monitoring system with the combined comfort model, air-conditioning setting adjustment commands could be determined and delivered to the hardware. This system adjusted air-conditioning settings depending on real-time commands along the bus journey. Therefore, a comfortable in-bus air quality and thermal environment could be achieved and efficiently maintained along the bus journey despite dynamic outdoor influences. Moreover, this model can help optimize air

  1. Predicting human thermal comfort in a transient nonuniform thermal environment.

    PubMed

    Rugh, J P; Farrington, R B; Bharathan, D; Vlahinos, A; Burke, R; Huizenga, C; Zhang, H

    2004-09-01

    The National Renewable Energy Laboratory has developed a suite of thermal comfort tools to assist in the development of smaller and more efficient climate control systems in automobiles. These tools, which include a 126-segment sweating manikin, a finite element physiological model of the human body, and a psychological model based on human testing, are designed to predict human thermal comfort in transient, nonuniform thermal environments, such as automobiles. The manikin measures the heat loss from the human body in the vehicle environment and sends the heat flux from each segment to the physiological model. The physiological model predicts the body's response to the environment, determines 126-segment skin temperatures, sweat rate, and breathing rate, and transmits the data to the manikin. The psychological model uses temperature data from the physiological model to predict the local and global thermal comfort as a function of local skin and core temperatures and their rates of change. Results of initial integration testing show the thermal response of a manikin segment to transient environmental conditions.

  2. Progress in thermal comfort research over the last twenty years.

    PubMed

    de Dear, R J; Akimoto, T; Arens, E A; Brager, G; Candido, C; Cheong, K W D; Li, B; Nishihara, N; Sekhar, S C; Tanabe, S; Toftum, J; Zhang, H; Zhu, Y

    2013-12-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based determinism of Fanger's comfort model toward the mainstream and acceptance of the adaptive comfort model. Another noticeable shift has been from the undesirable toward the desirable qualities of air movement. Additionally, sophisticated models covering the physics and physiology of the human body were developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we deliver comfortable indoor environments. These trends, in turn, continue setting the directions for contemporary thermal comfort research for the next decades.

  3. THERMAL COMFORT IN RELATION TO MEAN SKIN TEMPERATURE,

    DTIC Science & Technology

    Nude men were exposed to a range of ambient temperatures and were brought to a condition of thermal comfort by adjustment of the incident radiation...was evident that mean skin temperature, per se, was not a dependable criterion of thermal comfort . (Author)

  4. Evaluation of Thermal Comfort and Contamination Control for a Cleanroom

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Jen; Zheng, Yin-Rui; Lai, Chi-Ming; Chiang, Che-Ming

    There has been a substantial increase in the working environment of cleanroom. Special garments are therefore dressed in all cleanrooms to control particles and microbiological contamination dispersed from personnel in cleanrooms. However, more tightly-woven fabrics of cleanroom garments will result in thermal comfort dissatisfaction. In this study, field tests of a cleanroom have been carried out in our newly constructed MEMS laboratory. The ASHRAE thermal comfort code was conducted to investigate thermal comfort of personnel based on field-testing data consequently. Furthermore, the effects of clothing on thermal comfort and contamination control have been assessed comprehensively. The results from computer simulation and field tests indicated that there existed optimum compromise between the predicted mean vote and airborne particle counts under different cleanroom garments. The contamination control could be achieved by proper types of garments with satisfied thermal comfort of predict mean vote between 0.5-1.0.

  5. Thermal Comfort and Thermal Sensation During Exposure to Hot, Hot-Humid and Thermoneutral Environments

    DTIC Science & Technology

    1998-01-01

    than COND 2(6 +/- 2 W) and COND 3 (11 +/- 5 W, p < 0.05). The thermal comfort and thermal sensation assessments reflected the physiological responses...surface was related to thermal comfort (R2 = 0.94. This research provided evidence that skin wettedness predicted thermal comfort effectively in all...environments tested. The subjective assessment of thermal comfort discriminated between all environments and the heat index derived from the USARIEM

  6. A correct enthalpy relationship as thermal comfort index for livestock.

    PubMed

    Rodrigues, Valéria Cristina; da Silva, Iran José Oliveira; Vieira, Frederico Márcio Corrêa; Nascimento, Sheila Tavares

    2011-05-01

    Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.

  7. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2017-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  8. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador.

    PubMed

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2017-03-10

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  9. Assessing Thermal Comfort of Broiler Chicks During Brooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper management of the thermal environment during brooding is essential to performance in broilers. Brooding programs used in the broiler industry are prescriptive, but little information exists about thermal comfort in chicks. Identifying thermal conditions that chicks prefer would allow for be...

  10. Thermal comfort requirements: A study of people with multiple sclerosis

    SciTech Connect

    Webb, L.H.; Parsons, K.C.; Hodder, S.G.

    1999-07-01

    Existing specifications for thermal comfort in built environments are coming under increased criticism for failing to consider the requirements of specific populations. People with physical disabilities are an example of one such population. This paper presents the results of a study on the thermal comfort requirements of 32 people with multiple sclerosis. Subjects were exposed to three conditions: 18.5 C, PMV = {minus}1.5, slightly cool to cool; 23 C, PMV = 0, neutral; 29 C, PMV = +1.5, slightly warm to warm. Results indicate that people with multiple sclerosis have a wide range of responses to the three experimental conditions. The actual percentage dissatisfied was much higher than predicted by Fange's (1970) predicted percentage dissatisfied. Their preferred environment is slightly warmer than 23 C, PMV = 0, neutral. A subgroup of the population prefers an environment that is slightly cooler than 23 C. Further work is needed to qualify if their preferred environments match that of PMV+1 and PMV{minus}1 and to identify if any of the factors such as age, duration of disability, and medication affect the actual mean vote.

  11. Linguistic dimensions in descriptors expressing thermal sensation in Korean: 'warm' projects thermal comfort.

    PubMed

    Lee, Joo-Young; Tochihara, Yutaka

    2010-07-01

    The present study was triggered by the inconsistency in verbal descriptors in English and Korean describing 'warm' and 'hot' in the thermal sensation scale. The purpose of this study was to examine the linguistic dimensions of the terms expressing 'ttatteuhada (warm)' and 'yakkan duptta (slightly hot)' in Korean. A total of 988 urban Koreans (479 males and 509 females) participated in a questionnaire survey consisting of six questions. The one-to-one survey was conducted indoors in December 2008. Our results showed that (1) 'warm' and 'slightly hot' in Korean are distinctive thermal descriptors; (2) 'warm' projects thermal comfort (80.4% of 988 respondents), but 'slightly hot' projects some thermal discomfort (54.3% of 988 respondents); (3) a slight thermally comfortable feeling was expressed as 'warm' (83.9% of 988 respondents), while a slight thermally uncomfortable feeling was seldom expressed as 'warm' (6.2% of 988 respondents) in mild heat environments; (4) the linguistic dimension within the term 'warm' was less affected by individual thermal susceptibility (vulnerability) than that of the term 'slightly hot'. In summary, 'warm' in Korean connotes a thermally comfortable feeling. In the case of being a little thermally uncomfortable, Koreans project their thermal sensation through the term 'slightly hot', rather than 'warm'. In conclusion, thermal descriptors in the ISO 10551/ASHRAE scale, i.e., 'very cold-cold-cool-slightly cool-neutral-slightly warm-warm-hot-very hot', are not valid for the evaluation of mild hot environments in Korea. A new categorical scale is required in Korean considering the descriptors 'warm' and 'slightly hot'.

  12. Linguistic dimensions in descriptors expressing thermal sensation in Korean: `warm' projects thermal comfort

    NASA Astrophysics Data System (ADS)

    Lee, Joo-Young; Tochihara, Yutaka

    2010-07-01

    The present study was triggered by the inconsistency in verbal descriptors in English and Korean describing ‘warm’ and ‘hot’ in the thermal sensation scale. The purpose of this study was to examine the linguistic dimensions of the terms expressing ‘ ttatteuhada (warm)’ and ‘ yakkan duptta (slightly hot)’ in Korean. A total of 988 urban Koreans (479 males and 509 females) participated in a questionnaire survey consisting of six questions. The one-to-one survey was conducted indoors in December 2008. Our results showed that (1) ‘warm’ and ‘slightly hot’ in Korean are distinctive thermal descriptors; (2) ‘warm’ projects thermal comfort (80.4% of 988 respondents), but ‘slightly hot’ projects some thermal discomfort (54.3% of 988 respondents); (3) a slight thermally comfortable feeling was expressed as ‘warm’ (83.9% of 988 respondents), while a slight thermally uncomfortable feeling was seldom expressed as ‘warm’ (6.2% of 988 respondents) in mild heat environments; (4) the linguistic dimension within the term ‘warm’ was less affected by individual thermal susceptibility (vulnerability) than that of the term ‘slightly hot’. In summary, ‘warm’ in Korean connotes a thermally comfortable feeling. In the case of being a little thermally uncomfortable, Koreans project their thermal sensation through the term ‘slightly hot’, rather than ‘warm’. In conclusion, thermal descriptors in the ISO 10551/ASHRAE scale, i.e., ‘very cold-cold-cool-slightly cool-neutral-slightly warm-warm-hot-very hot’, are not valid for the evaluation of mild hot environments in Korea. A new categorical scale is required in Korean considering the descriptors ‘warm’ and ‘slightly hot’.

  13. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

  14. An on-the-road experiment into the thermal comfort of car seats.

    PubMed

    Cengiz, Tülin Gündüz; Babalik, Fatih C

    2007-05-01

    This paper presents an evaluation of thermal comfort in an extended road trial study. Automobile seats play an important role in improving the thermal comfort. In the assessment of thermal comfort in autos, in general subjective and objective measurements are used. Testing on the road is very difficult but real traffic conditions affect the comfort level directly, as well as the driver's experience to real conditions. Thus, for such cases real traffic situations should not be neglected in the evaluation of comfort. The aim of this study was to carry out, on an extended road trial study, an evaluation of thermal comfort using human subjects. In the experiments used, the 100% polyester seat cover had three different cover materials, which were velvet, jacquard and micro fiber. All experiments were carried out on a sunny day with ten participants over 1h. They were carried out at air temperatures of 25 degrees C in a Fiat Marea 2004, which had an automatic climate function. Skin temperature at eight points and skin wettedness at two points on the human body were measured during the trials. Participants were required to complete a questionnaire of 15 questions, every 5 min. It can be concluded that there was negligible difference in participants' reported thermal sensation between the three seats. According to objective measurement results, all seat cover materials have the same degree of thermal comfort. On the road the participants feel warmer around their waist than any other area of the body. It was suggested that the effects of real traffic conditions must be accounted for in comfort predictions.

  15. Thermal comfort of patients in hospital ward areas.

    PubMed Central

    Smith, R. M.; Rae, A.

    1977-01-01

    The patient is identified as being of prime importance for comfort standards in hospital ward areas, other ward users being expected to adjust their dress to suit the conditions necessary for patients comfort. A study to identify the optimum steady state conditions for patients comfort is then described. Although this study raises some doubts as to the applicability of the standard thermal comfort assessment techniques to ward areas, it is felt that its results give a good indication of the steady-state conditions preferred by the patients. These were an air temperature of between 21-5 degrees and 22 degrees C and a relative humidity of between 30% and 70%, where the air velocity was less than 0-1 m/s and the mean radiant temperature was close to air temperature. PMID:264497

  16. Modeling of the thermal comfort in vehicles using COMSOL multiphysics

    NASA Astrophysics Data System (ADS)

    Gavrila, Camelia; Vartires, Andreea

    2016-12-01

    The environmental quality in vehicles is a very important aspect of building design and evaluation of the influence of the thermal comfort inside the car for ensuring a safe trip. The aim of this paper is to modeling and simulating the thermal comfort inside the vehicles, using COMSOL Multiphysics program, for different ventilation grilles. The objective will be the implementing innovative air diffusion grilles in a prototype vehicle. The idea behind this goal is to introduce air diffusers with a special geometry allowing improving mixing between the hot or the cold conditioned air introduced in the cockpit and the ambient.

  17. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  18. The correlation between thermal comfort in buildings and fashion products.

    PubMed

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  19. Effect of neck warming and cooling on thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Chambers, A. B.

    1972-01-01

    The potential use of local neck cooling in an area superficial to the cerebral arteries was evaluated by circulating cold or hot water through two copper disks held firmly against the neck. Subjective responses indicated that neck cooling improves the thermal comfort in a hot environment.

  20. Coupling effect on thermal comfort in a typical cubicle-based office with personalized floor diffuser control.

    PubMed

    Shi, Z Y; Dong, T

    2014-01-01

    A typical office layout with cubicles, in which occupants have their own control of the micro-environment by adjusting supply air flow rate of the floor diffuser, is numerically investigated for the impact of the discrepancy in personal thermal sensation preference on thermal comfort. The comparison among different scenarios indicates that whether the local thermal comfort is significantly affected by the neighboring cubicle (coupling effect) depends on whether the doorway is closed or not whereas the "openness", of upper space has no influence on such coupling effect but observably on the thermal comfort. The effect of thermoregulation is also presented and compared with conventional constant heat flux assumption for the occupants.

  1. Thermal comfort assessment in Moscow during the summer 2010

    NASA Astrophysics Data System (ADS)

    Malinina, Elizaveta; Konstantinov, Pavel

    2013-04-01

    Biometeorological indices are used to asses thermal comfort conditions and evaluate the influence of the weather on the human organism and health. Despite of the fact, that some biometeorological indices are already used in weather forecast, the assessment of these indices is especially important during the extreme weather conditions like continuous heat or cold waves. One of the very urgent issues in the applied climatology is the assessment of thermal comfort conditions in the urban areas, because nowadays more than half population of the planet lives there. Especially important is to study thermal comfort conditions in biggest and, thus, densely populated cities, because the effect of heat waves becomes stronger by the urban heat island effect. In July and August 2010 in the biggest city in Russia - Moscow, where more than 11 million people live, the longest and the strongest heat wave as well as the warmest day (29th of July 2010) were recorded since the meteorological observations in Russian capital were started. The main objective of this work is to evaluate the thermal comfort conditions of the warmest day in Moscow. For that purpose several biometeorological indices, particularly PET (physiological equivalent temperature), were analyzed and calculated for the warmest day in Russian capital. The calculations were done for the certain city canyon on the territory of the Moscow State University as well as for the places with natural vegetation. The results were compared with each other and, thus, the complex thermal comfort assessment was done. Also, the results of the calculations for the 29th of July 2010 were compared with the mean meteorological data for this period.

  2. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  3. Dataset on daytime outdoor thermal comfort for Belo Horizonte, Brazil.

    PubMed

    Hirashima, Simone Queiroz da Silveira; Assis, Eleonora Sad de; Nikolopoulou, Marialena

    2016-12-01

    This dataset describe microclimatic parameters of two urban open public spaces in the city of Belo Horizonte, Brazil; physiological equivalent temperature (PET) index values and the related subjective responses of interviewees regarding thermal sensation perception and preference and thermal comfort evaluation. Individuals and behavioral characteristics of respondents were also presented. Data were collected at daytime, in summer and winter, 2013. Statistical treatment of this data was firstly presented in a PhD Thesis ("Percepção sonora e térmica e avaliação de conforto em espaços urbanos abertos do município de Belo Horizonte - MG, Brasil" (Hirashima, 2014) [1]), providing relevant information on thermal conditions in these locations and on thermal comfort assessment. Up to now, this data was also explored in the article "Daytime Thermal Comfort in Urban Spaces: A Field Study in Brazil" (Hirashima et al., in press) [2]. These references are recommended for further interpretation and discussion.

  4. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Emmanuel, Rohinton

    2006-11-01

    The outdoor environment is deteriorating in many tropical cities due to rapid urbanization. This leads to a number of problems related to health and well-being of humans and also negatively affects social and commercial outdoor activities. The creation of thermally comfortable microclimates in urban environments is therefore very important. This paper discusses the influence of street-canyon geometry on outdoor thermal comfort in Colombo, Sri Lanka. Five sites with different urban geometry, ground cover, and distance from the sea were studied during the warmest season. The environmental parameters affecting thermal comfort, viz. air temperature, humidity, wind speed, and solar radiation, were measured, and the thermal comfort was estimated by calculating the physiologically equivalent temperature (PET). The thermal comfort is far above the assumed comfort zone due to the combination of intense solar radiation, high temperatures, and low wind speeds, especially on clear days. The worst conditions were found in wide streets with low-rise buildings and no shade trees. The most comfortable conditions were found in narrow streets with tall buildings, especially if shade trees were present, as well as in areas near the coast where the sea breeze had a positive effect. In order to improve the outdoor comfort in Colombo, it is suggested to allow a more compact urban form with deeper street canyons and to provide additional shade through the use of trees, covered walkways, pedestrian arcades, etc. The opening up of the city’s coastal strip would allow the sea breeze to penetrate further into the city.

  5. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-03-07

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.

  6. The effect of human-mattress interface's temperature on perceived thermal comfort.

    PubMed

    Califano, R; Naddeo, A; Vink, P

    2017-01-01

    In recent years, methods that allow for an objective evaluation of perceived comfort, in terms of postural, physiological, cognitive and environmental comfort, have received a great deal of attention from researchers. This paper focuses on one of the factors that influences physiological comfort perception: the temperature difference between users and the objects with which they interact. The first aim is to create a measuring system that does not affect the perceived comfort during the temperatures' acquisition. The main aim is to evaluate how the temperature at the human-mattress interface can affect the level of perceived comfort. A foam mattress has been used for testing in order to take into account the entire back part of the human body. The temperature at the interface was registered by fourteen 100 Ohm Platinum RTDs (Resistance Temperature Detectors) placed on the mattress under the trunk, the shoulders, the buttocks, the legs, the thighs, the arms and the forearms of the test subject. 29 subjects participated in a comfort test in a humidity controlled environment. The test protocol involved: dress-code, anthropometric-based positioning on mattress, environment temperature measuring and an acclimatization time before the test. At the end of each test, each of the test subject's thermal sensations and the level of comfort perception were evaluated using the ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) scale. The data analyses concerned, in the first instance, correlations between the temperature at the interface and comfort levels of the different parts of the body. Then the same analyses were performed independently of the body parts being considered. The results demonstrated that there was no strong correlation among the studied variables and that the total increase of temperature at interface is associated with a reduction in comfort.

  7. Thermal Comfort Project: A Cool Solution to the Nation's Energy Security Challenges

    SciTech Connect

    Not Available

    2002-05-01

    This fact sheet describes how the CTTS thermal comfort project will increase energy security by reducing fuel consumed by auxiliary loads such as air conditioning. It also describes physiological and psychological computer models and thermal comfort manikin.

  8. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study.

    PubMed

    Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H

    2009-04-01

    Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.

  9. Numerical Analysis of Thermal Comfort at Urban Environment

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  10. Numerical Analysis of Thermal Comfort at Open Air Spaces

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  11. The Physiological Basis for Thermal Comfort in Different Climates; a Preliminary Study (De fysiologische basis voor thermisch comfort onder diverse klimatologische omstandigheden; een voorstudie),

    DTIC Science & Technology

    2007-11-02

    Thermal comfort is very important for optimal functioning of humans. It gives information about the thermal state of the body, by which the human...receptors and sending efferent information to the effectors by which the body controls its temperature. Thermal comfort is determined by the temperature...global thermal comfort are core temperature, temperature of the extremities and temperature of the environment. In local thermal comfort and pain

  12. Development of Light Powered Sensor Networks for Thermal Comfort Measurement.

    PubMed

    Lee, Dasheng

    2008-10-16

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  13. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877

  14. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.

    PubMed

    Lin, Tzu-Ping; Hwang, Ruey-Lung; Huang, Kuo-Tsang; Sun, Chen-Yi; Huang, Ying-Che

    2010-05-01

    While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.

  15. Thermal comfort and thermoregulation in manned space flight.

    PubMed

    Yang, Zhen-Zhong; Fei, Jin-Xue; Yu, Xue-Jun

    2013-11-01

    Exposure to thermal environment is one of the main concerns for manned space exploration. By focusing on the works performed on thermoregulation at microgravity or simulated microgravity, we endeavored to review the investigation on space thermal environmental physiology. First of all, the application of medical requirements for the crew module design from normal thermal comfort to accidental thermal emergencies in a space craft will be addressed. Then, alterations in the autonomic and behavioral temperature regulation caused by the effect of weightlessness both in space flight and its simulation on the ground are also discussed. Furthermore, countermeasures like exercise training, simulated natural ventilation, encouraged drink, etc., in the protection of thermoregulation during space flight is presented. Finally, the challenge of space thermal environment physiology faced in the future is figured out.

  16. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  17. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.

    PubMed

    Zhou, X; Ouyang, Q; Zhu, Y; Feng, C; Zhang, X

    2014-04-01

    To investigate whether occupants' anticipated control of their thermal environment can influence their thermal comfort and to explain why the acceptable temperature range in naturally ventilated environments is greater than that in air-conditioned environments, a series of experiments were conducted in a climate chamber in which the thermal environment remained the same but the psychological environment varied. The results of the experiments show that the ability to control the environment can improve occupants' thermal sensation and thermal comfort. Specifically, occupants' anticipated control decreased their thermal sensation vote (TSV) by 0.4-0.5 and improved their thermal comfort vote (TCV) by 0.3-0.4 in neutral-warm environment. This improvement was due exclusively to psychological factors. In addition, having to pay the cost of cooling had no significant influence on the occupants' thermal sensation and thermal comfort in this experiment. Thus, having the ability to control the thermal environment can improve occupants' comfort even if there is a monetary cost involved.

  18. Climate change and thermal comfort in Hong Kong

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Shing Calvin; Hart, Melissa Anne

    2014-03-01

    Thermal comfort is a major issue in cities and it is expected to change in the future due to the changing climate. The objective of this paper is to use the universal thermal comfort index (UTCI) to compare the outdoor thermal comfort in Hong Kong in the past (1971-2000) and the future (2046-2065 and 2081-2100). The future climate of Hong Kong was determined by the general circulation model (GCM) simulations of future climate scenarios (A1B and B1) established by the Intergovernmental Panel on Climate Change (IPCC). Three GCMs were chosen, GISS-ER, GFDL-CM2.1 and MRI-CGCM2.3.2, based on their performance in simulating past climate. Through a statistical downscaling procedure, the future climatic variables were transferred to the local scale. The UTCI is calculated by four predicted climate variables: air temperature, wind speed, relative humidity and solar radiation. After a normalisation procedure, future UTCI profiles for the urban area of Hong Kong were created. Comparing the past UTCI (calculated by observation data) and future UTCI, all three GCMs predicted that the future climate scenarios have a higher mode and a higher maximum value. There is a shift from `No Thermal Stress' toward `Moderate Heat Stress' and `Strong Heat Stress' during the period 2046-2065, becoming more severe for the later period (2081-2100). Comparing the two scenarios, B1 exhibited similar projections in the two time periods whereas for A1B there was a significant difference, with both the mode and maximum increasing by 2 °C from 2046-2065 to 2081-2100.

  19. Climate change and thermal comfort in Hong Kong.

    PubMed

    Cheung, Chi Shing Calvin; Hart, Melissa Anne

    2014-03-01

    Thermal comfort is a major issue in cities and it is expected to change in the future due to the changing climate. The objective of this paper is to use the universal thermal comfort index (UTCI) to compare the outdoor thermal comfort in Hong Kong in the past (1971-2000) and the future (2046-2065 and 2081-2100). The future climate of Hong Kong was determined by the general circulation model (GCM) simulations of future climate scenarios (A1B and B1) established by the Intergovernmental Panel on Climate Change (IPCC). Three GCMs were chosen, GISS-ER, GFDL-CM2.1 and MRI-CGCM2.3.2, based on their performance in simulating past climate. Through a statistical downscaling procedure, the future climatic variables were transferred to the local scale. The UTCI is calculated by four predicted climate variables: air temperature, wind speed, relative humidity and solar radiation. After a normalisation procedure, future UTCI profiles for the urban area of Hong Kong were created. Comparing the past UTCI (calculated by observation data) and future UTCI, all three GCMs predicted that the future climate scenarios have a higher mode and a higher maximum value. There is a shift from 'No Thermal Stress' toward 'Moderate Heat Stress' and 'Strong Heat Stress' during the period 2046-2065, becoming more severe for the later period (2081-2100). Comparing the two scenarios, B1 exhibited similar projections in the two time periods whereas for A1B there was a significant difference, with both the mode and maximum increasing by 2°C from 2046-2065 to 2081-2100.

  20. Air quality and thermal comfort levels under extreme hot weather

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Melas, D.; Kambezidis, H. D.

    2015-01-01

    Meteorological (T and RH values) and air pollution data (PM10, NO2 and O3 concentrations) observed in Athens, Thessaloniki and Volos were analyzed to assess the air quality and the thermal comfort conditions and to study their synergy, when extreme hot weather prevailed in Greece during the period 2001-2010. The identification of a heat wave day was based on the suggestion made by the IPCC to define an extreme weather event. According to it, a heat wave day is detected when the daily maximum hourly temperature value exceeds its 90th percentile. This temperature criterion was applied to the data recorded at the cities center. Air quality was assessed at three sites in Athens (city center, near the city center, suburb), at two sites in Thessaloniki (city center, suburb) and at one site in Volos (city center), while thermal comfort conditions were assessed at the cities center. Mean pollution levels during the heat wave days and the non-heat wave days were calculated in order to examine the impact of the extreme hot weather on air quality. For this purpose, the distributions of the common air quality index and the exceedances of the air quality standards in force during the heat wave days and the non-heat wave days were also studied. Additionally, the variation of the daily maximum hourly value of Thom's discomfort index was studied in order to investigate the effect of extreme hot weather on people's thermal comfort. Moreover, the values of the common air quality index and Thom's discomfort index were comparatively assessed so as to investigate their synergy under extreme hot weather.

  1. Analytical and subjective interpretation of thermal comfort in hospitals: A case study in two sterilization services.

    PubMed

    Carvalhais, Carlos; Santos, Joana; Vieira da Silva, Manuela

    2016-01-01

    Hospital facilities are normally very complex, which combined with patient requirements promote conditions for potential development of uncomfortable working conditions. Thermal discomfort is one such example. This study aimed to determine levels of thermal comfort, sensations, and preferences, from a field investigation conducted in two sterilization services (SS) of two hospitals from Porto and Aveiro, Portugal. The analytical determination and interpretation of thermal comfort was based upon assumptions of ISO 7726:1998 and ISO 7730:2005. The predicted mean vote (PMV) and predicted percentage of dissatisfaction (PPD) indices were obtained by measurement and estimation of environmental and personal variables, respectively, and calculated according to ISO 7730 equations. The subjective variables were obtained from thermal sensation (subjective PMV) and affective assessment (subjective PPD), reported by a questionnaire based upon ISO 10551:1995. Both approaches confirmed thermal discomfort in both SS (codified as SS1 and SS2). For all areas, PMV and PPD exceeded in all periods of the day the recommended range of -0.5 to +0.5 and <10%, respectively. No significant differences were found between day periods. The questionnaire results showed that SS2 workers reported a higher level of thermal discomfort. There were no significant differences between PMV and thermal sensations, as well as between PPD and affective assessment. The PMV/PPD model was found suitable to predict thermal sensations of occupants in hospital SS located in areas with a mild climate in Portugal.

  2. A possible connection between thermal comfort and health

    SciTech Connect

    Stoops, John L.

    2004-05-20

    It is a well-established fact that cardiovascular health requires periodic exercise during which the human body often experiences significant physical discomfort. It is not obvious to the exerciser that the short-term pain and discomfort has a long-term positive health impact. Many cultures have well-established practices that involve exposing the body to periodic thermal discomfort. Scandinavian saunas and American Indian sweat lodges are two examples. Both are believed to promote health and well-being. Vacations often intentionally include significant thermal discomfort as part of the experience (e.g., sunbathing, and downhill skiing). So people often intentionally make themselves thermally uncomfortable yet the entire foundation of providing the thermal environment in our buildings is done to minimize the percentage of people thermally dissatisfied. We must provide an environment that does not negatively impact short-term health and we need to consider productivity but are our current thermal comfort standards too narrowly defined and do these standards actually contribute to longer-term negative health impacts? This paper examines the possibility that the human body thermoregulatory system has a corollary relationship to the cardiovascular system. It explores the possibility that we have an inherent need to exercise our thermoregulatory system. Potential, physiological, sociological and energy ramifications of these possibilities are discussed.

  3. Measurement Uncertainty Budget of the PMV Thermal Comfort Equation

    NASA Astrophysics Data System (ADS)

    Ekici, Can

    2016-05-01

    Fanger's predicted mean vote (PMV) equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, air velocity, humidity activity level and clothing thermal resistance. PMV is a mathematical model of thermal comfort which was developed by Fanger. The uncertainty budget of the PMV equation was developed according to GUM in this study. An example is given for the uncertainty model of PMV in the exemplification section of the study. Sensitivity coefficients were derived from the PMV equation. Uncertainty budgets can be seen in the tables. A mathematical model of the sensitivity coefficients of Ta, hc, T_{mrt}, T_{cl}, and Pa is given in this study. And the uncertainty budgets for hc, T_{cl}, and Pa are given in this study.

  4. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan.

    PubMed

    Lin, Tzu-Ping; Matzarakis, Andreas

    2008-03-01

    Bioclimate conditions at Sun Moon Lake, one of Taiwan's most popular tourist destinations, are presented. Existing tourism-related climate is typically based on mean monthly conditions of air temperature and precipitation and excludes the thermal perception of tourists. This study presents a relatively more detailed analysis of tourism climate by using a modified thermal comfort range for both Taiwan and Western/Middle European conditions, presented by frequency analysis of 10-day intervals. Furthermore, an integrated approach (climate tourism information scheme) is applied to present the frequencies of each facet under particular criteria for each 10-day interval, generating a time-series of climate data with temporal resolution for tourists and tourism authorities.

  5. Thermal Comfort Study of a Compact Thermoelectric Air Conditioner

    NASA Astrophysics Data System (ADS)

    Maneewan, S.; Tipsaenprom, W.; Lertsatitthanakorn, C.

    2010-09-01

    This paper evaluates the cooling performance and thermal comfort of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks and fans. Thermal acceptability assessment was performed to find out whether the cooled air met the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard-55’s 80% acceptability criteria. A suitable condition occurred at 1 A current flow with a corresponding cooling capacity of 29.2 W, giving an average cooled air temperature of 28°C and 0.9 m/s cooled air velocity. The coefficient of performance was calculated and found to be ˜0.34. Economic analysis indicates that the payback period is 0.75 years when one compact TE air conditioner unit is used instead of a 1-ton conventional air conditioner.

  6. Thermal Comfort and Sensation in Men Wearing a Cooling System Controlled by Skin Temperature

    DTIC Science & Technology

    2007-07-01

    The study was done to determine whether thermal comfort (TC), thermal sensation (TS), and subjective factors gauging environmental stress were...improvement in thermal comfort . Methods: Eight male volunteers exercised at moderate work intensity (425 W) in three microclimate cooling tests. The

  7. Thermal Manikin Evaluation of Passive and Active Cooling Garments to Improve Comfort of Military Body Armor

    DTIC Science & Technology

    2007-08-01

    increased TM evaporative cooling potential approximately 18%. Military use of these garments could allow for increases in sweat evaporation and overall thermal comfort during operational heat exposure.

  8. NREL Provides Guidance to Improve Thermal Comfort in High-Performance Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop recommendations on HVAC system design and operating conditions to achieve optimal thermal comfort in high-performance homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed recommendations to help residential heating, cooling, and ventilation (HVAC) designers select optimal supply inlet size and system operating conditions to maintain good thermal comfort in low heating and cooling load homes. This can be achieved by using high sidewall supply air jets to create proper combinations of air temperature and air motion in the occupied zone of the conditioned space. The design of air distribution systems for low-load homes is an integral part of residential system research and development in systems integration. As American homes become more energy efficient, space conditioning systems will be downsized. The downsizing will reach the point where the air flow volumes required to meet the remaining heating and cooling loads may be too small to maintain uniform room air mixing, which can affect thermal comfort. NREL researchers performed a detailed study evaluating the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, supply air velocity, and supply inlet size. They found that in heating mode, low and intermediate supply temperatures of 95 F (308 K) and 105 F (314 K) maintained acceptable comfort levels at lower fan powers than can be achieved at 120 F (322 K) supply temperatures. For the high supply temperature of 120 F (322 K), higher fan powers (supply velocities) were required to overcome buoyancy effects and reach a good mixing in the room. In cooling mode, a supply temperature of 55 F (286 K) provided acceptable comfort levels. A small supply inlet of 8-in. (0.2 m) x 1-in. (0.025 m) is recommended in both heating and cooling modes. Computational fluid dynamics was used to model heat transfer and airflow in the room

  9. Influence of evapotranspiration on thermal comfort in central European cities

    NASA Astrophysics Data System (ADS)

    Goldbach, A.; Kuttler, W.

    2012-04-01

    In future, more and more people will be exposed to the negative thermal effects of urban climate, which will be exacerbated by predicted climate change. In regard to urban climate studies, it is necessary to develop adaptation and mitigation strategies tailored to the problem area and to include them in the local planning process. Urban green spaces or water bodies could help to mitigate the radiation and air temperature. For this purpose eddy-covariance technique has been carried out in Oberhausen (Germany; 51° N, 6° E) between 15 August 2010 and 14 August 2011 to quantify turbulent sensible and latent heat fluxes in areas with various types of urban land use. The results show that sensible heat flux (QH) is 20 % higher, latent heat flux (QE) 90 % lower at the urban (URB) site compared to the suburban one (SUB). Furthermore, partition of the turbulent heat fluxes (QH/Q* resp. QE/Q*) clearly depends on plan area density (λP). The human-biometeorological thermal index, the physiologically equivalent temperature (PET), demonstrates that green spaces counteract growing thermal stress on city-dwellers due to improving thermal comfort. Aside from the positive effect of shading, inner-city green spaces can only be effective if an adequate water supply is ensured. Otherwise, the positive thermal effects of green spaces resulting from transpiration will be reduced to a minimum or eliminated entirely, which is confirmed by the measured values. Additional planning recommendations for urban planners within cities located at mid-latitudes derived from measuring results are given.

  10. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation

    NASA Astrophysics Data System (ADS)

    Krüger, E.; Drach, P.; Broede, P.

    2017-03-01

    Aimed at climate-responsive urban design for tropical areas, the paper attempts to answer the question whether the site-related context affects in some way the perceptual assessment of the microclimate by users of outdoor spaces. Our hypothesis was that visual cues resulting from urban design are important components of the outdoor thermal perception. Monitoring was carried out alongside the administration of standard comfort questionnaires throughout summer periods in 2012-2015 in pedestrian areas of downtown Rio de Janeiro (22° 54 10 S, 43° 12 27 W), Brazil. Campaigns took place at different points, pre-defined in respect of urban geometry attributes. For the measurements, a Davis Vantage Pro2 weather station was employed to which a gray globe thermometer was attached. Two thermal indices were used for assessing the overall meteorological conditions and comfort levels in the outdoor locations: physiological equivalent temperature (PET) and universal thermal climate index (UTCI). Our results suggest that thermal sensation in Rio depends to a large extent on the thermal environment as described by air temperature, PET, or UTCI, and that urban geometry (expressed by the sky-view factor (SVF)) may modify this relationship with increased building density associated to warmer sensation votes under moderate heat stress conditions. This relationship however reverses under strong heat stress with warmer sensations in less obstructed locations, and disappears completely under still higher heat stress, where meteorological conditions, and not the site's SVF, will drive thermal sensation.

  11. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation.

    PubMed

    Krüger, E; Drach, P; Broede, P

    2017-03-01

    Aimed at climate-responsive urban design for tropical areas, the paper attempts to answer the question whether the site-related context affects in some way the perceptual assessment of the microclimate by users of outdoor spaces. Our hypothesis was that visual cues resulting from urban design are important components of the outdoor thermal perception. Monitoring was carried out alongside the administration of standard comfort questionnaires throughout summer periods in 2012-2015 in pedestrian areas of downtown Rio de Janeiro (22° 54 10 S, 43° 12 27 W), Brazil. Campaigns took place at different points, pre-defined in respect of urban geometry attributes. For the measurements, a Davis Vantage Pro2 weather station was employed to which a gray globe thermometer was attached. Two thermal indices were used for assessing the overall meteorological conditions and comfort levels in the outdoor locations: physiological equivalent temperature (PET) and universal thermal climate index (UTCI). Our results suggest that thermal sensation in Rio depends to a large extent on the thermal environment as described by air temperature, PET, or UTCI, and that urban geometry (expressed by the sky-view factor (SVF)) may modify this relationship with increased building density associated to warmer sensation votes under moderate heat stress conditions. This relationship however reverses under strong heat stress with warmer sensations in less obstructed locations, and disappears completely under still higher heat stress, where meteorological conditions, and not the site's SVF, will drive thermal sensation.

  12. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation

    NASA Astrophysics Data System (ADS)

    Krüger, E.; Drach, P.; Broede, P.

    2016-08-01

    Aimed at climate-responsive urban design for tropical areas, the paper attempts to answer the question whether the site-related context affects in some way the perceptual assessment of the microclimate by users of outdoor spaces. Our hypothesis was that visual cues resulting from urban design are important components of the outdoor thermal perception. Monitoring was carried out alongside the administration of standard comfort questionnaires throughout summer periods in 2012-2015 in pedestrian areas of downtown Rio de Janeiro (22° 54 10 S, 43° 12 27 W), Brazil. Campaigns took place at different points, pre-defined in respect of urban geometry attributes. For the measurements, a Davis Vantage Pro2 weather station was employed to which a gray globe thermometer was attached. Two thermal indices were used for assessing the overall meteorological conditions and comfort levels in the outdoor locations: physiological equivalent temperature (PET) and universal thermal climate index (UTCI). Our results suggest that thermal sensation in Rio depends to a large extent on the thermal environment as described by air temperature, PET, or UTCI, and that urban geometry (expressed by the sky-view factor (SVF)) may modify this relationship with increased building density associated to warmer sensation votes under moderate heat stress conditions. This relationship however reverses under strong heat stress with warmer sensations in less obstructed locations, and disappears completely under still higher heat stress, where meteorological conditions, and not the site's SVF, will drive thermal sensation.

  13. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  14. The determinants of thermal comfort in cool water.

    PubMed

    Guéritée, J; House, J R; Redortier, B; Tipton, M J

    2015-10-01

    Water-based activities may result in the loss of thermal comfort (TC). We hypothesized that in cooling water, the hands and feet would be responsible. Supine immersions were conducted in up to five clothing conditions (exposing various regions), as well as investigations to determine if a "reference" skin temperature (Tsk) distribution in thermoneutral air would help interpret our findings. After 10 min in 34.5 °C water, the temperature was decreased to 19.5 °C over 20 min; eight resting or exercising volunteers reported when they no longer felt comfortable and which region was responsible. TC, rectal temperature, and Tsk were measured. Rather than the extremities, the lower back and chest caused the loss of overall TC. At this point, mean (SD) chest Tsk was 3.3 (1.7) °C lower than the reference temperature (P = 0.005), and 3.8 (1.5) °C lower for the back (P = 0.002). Finger Tsk was 3.1 (2.7) °C higher than the reference temperature (P = 0.037). In cool and cooling water, hands and feet, already adapted to colder air temperatures, will not cause discomfort. Contrarily, more discomfort may arise from the chest and lower back, as these regions cool by more than normal. Thus, Tsk distribution in thermoneutral air may help understand variations in TC responses across the body.

  15. An analysis of influential factors on outdoor thermal comfort in summer

    NASA Astrophysics Data System (ADS)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  16. An analysis of influential factors on outdoor thermal comfort in summer.

    PubMed

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  17. Clothing selection behavior of the aged women for thermal comfort.

    PubMed

    Jeong, W S

    1999-05-01

    Wearing behavior and thermoregulatory responses of five young women (YG; 20 +/- 1 yr) and five aged women (AG; 65 +/- 3 yr) to indoor cold in summer were investigated in this study. The subjects were exposed to 21.0 +/- 0.5 degrees C and 55 +/- 5% RH while seated during a 90-minute experiment. The subjects were allowed to select and wear for thermal comfort clothing whenever they needed additional clothing during the experiment. Rectal temperature (Tre) and temperatures of 7 sites (head, chest, forearm, hand, thigh, leg, foot) of the skin of the subjects were measured every 10 minutes. Mean skin temperature (Tsk) of the subject was obtained every 10 minutes. First selection time of additional clothing was monitored and weight of selected total clothing was calculated. The results for this study were as follows: Tre and Tsk gradually decreased in YG and AG, however Tre decreased less than Tsk which decreased greater in AG than YG (p < 0.01). AG's first selection of additional clothing and thermal sensation response were slower than YG's. Furthermore, total clothing weight was less in AG than YG. It was concluded that clothing selection behavior would modify the intrinsic thermoregulatory responses of the aged women to the cold stress in the summer.

  18. Effects of seasonal and climate variations on calves' thermal comfort and behaviour

    NASA Astrophysics Data System (ADS)

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N.

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced ( P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence ( P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly ( P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence ( P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  19. Effects of seasonal and climate variations on calves' thermal comfort and behaviour.

    PubMed

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced (P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence (P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly (P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence (P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  20. An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices

    PubMed Central

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-01-01

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment. PMID:26959035

  1. Evaluation of thermal comfort conditions in Ourmieh Lake, Iran

    NASA Astrophysics Data System (ADS)

    Farajzadeh, Hassan; Matzarakis, Andreas

    2012-02-01

    Research in developing countries concerning the relationship of weather and climate conditions with tourism shows a high importance not only because of financial aspects but also an important part of the region's tourism resource base. Monthly mean air temperature, relative humidity, precipitation, vapor pressure, wind velocity, and cloud cover for the period 1985-2005 data collected from four meteorological stations Tabriz, Maragheh, Orumieh, and Khoy were selected. The purpose of this study is to determine the most suitable months for human thermal comfort in Ourmieh Lake, a salt sea in the northwest of Iran. To achieve this, the cooling power and physiologically equivalent temperature (PET) calculated by the RayMan model and the Climate Tourism/Transfer Information Scheme (CTIS) were used. The results based on cooling power indicate that the most favorable period for tourism, sporting, and recreational activities in Ourmieh Lake is between June and October and based on PET between June to September. In addition, the CTIS shows a detailed quantification of the relevant climate-tourism factors.

  2. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate.

    PubMed

    Md Din, Mohd Fadhil; Lee, Yee Yong; Ponraj, Mohanadoss; Ossen, Dilshan Remaz; Iwao, Kenzo; Chelliapan, Shreeshivadasan

    2014-04-01

    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity.

  3. Thermal Comfort in the Hot Humid Tropics of Australia

    PubMed Central

    Wyndham, C. H.

    1963-01-01

    Day and night comfort votes were recorded from Caucasian residents at Weipa, a mission station in the hot humid tropics of North Queensland, Australia. The limit of day comfort for more than 50% of the men was 81·5°F. (27·5°C.) “normal” corrected effective temperature; the night limit was 78·0°F. (25·5°C.). Day comfort limits correlated well with air conditions at which sweat was apparent: night limits correlated with the amount of bed covering. Evidence of a change over 14 days in day comfort limit was found. Limitations in the effective temperature scale for expressing the “oppressive nature” of night air conditions are pointed out. Criticism is voiced of the use of dry bulb temperature instead of the effective temperature scale in conditions of high wet bulb temperatures with high relative humidity, such as in the hot humid tropics. PMID:14002126

  4. Testing thermal comfort of trekking boots: an objective and subjective evaluation.

    PubMed

    Arezes, P M; Neves, M M; Teixeira, S F; Leão, C P; Cunha, J L

    2013-07-01

    The study of the thermal comfort of the feet when using a specific type of shoe is of paramount importance, in particular if the main goal of the study is to attend to the needs of users. The main aim of this study was to propose a test battery for thermal comfort analysis and to apply it to the analysis of trekking boots. Methodologically, the project involves both objective and subjective evaluations. An objective evaluation of the thermal properties of the fabrics used in the boots was developed and applied. In addition, the thermal comfort provided when using the boots was also assessed both subjective and objectively. The evaluation of the thermal comfort during use, which was simulated in a laboratory environment, included the measurement of the temperature and moisture of the feet. The subjective assessment was performed using a questionnaire. From the results obtained, it was possible to define an optimal combination of fabrics to apply to trekking boots by considering the provided thermal insulation, air permeability and wicking. The results also revealed that the subjective perception of thermal comfort appears to be more related to the increase in temperature of the feet than to the moisture retention inside the boot. Although the evaluation of knits used in the boots indicated that a particular combination of fibres was optimal for use in the inner layer, the subjective and objective evaluation of thermal comfort revealed that the evaluation provided by users did not necessarily match the technical assessment data. No correlation was observed between the general comfort and specific thermal comfort assessments. Finally, the identification of thermal discomfort by specific foot areas would be useful in the process of designing and developing boots.

  5. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    NASA Astrophysics Data System (ADS)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  6. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan.

    PubMed

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4 degrees C and 17.6-30.0 degrees C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7 degrees C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  7. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions.

  8. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2016-09-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  9. Thermal sensations and comfort investigations in transient conditions in tropical office.

    PubMed

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that

  10. An investigation of the thermal comfort adaptive model in a tropical upland climate

    SciTech Connect

    Malama, A.; Jitkhajornwanich, K.; Sharples, S.; Pitts, A.C.

    1998-10-01

    The results of two thermal comfort surveys performed in Zambia, which has a tropical upland climate, are presented and analyzed with special reference to the adaptive model. The main forms of adaptation and adjustment analyzed are: clothing, skin moisture, activity level, and environmental controls. Results show that in the cool season the main methods of adaptation used by the subjects were clothing and environmental controls, while in the warm season only environmental controls were used. It proved difficult to establish the impact of the various levels of adaptivity on thermal comfort standards. It would be useful if the adaptive model could be factored into thermal comfort to produce adaptive thermal comfort standards that would allow for differences in culture and climate across the globe.

  11. Thermal face protection delays finger cooling and improves thermal comfort during cold air exposure.

    PubMed

    O'Brien, Catherine; Castellani, John W; Sawka, Michael N

    2011-12-01

    When people dress for cold weather, the face often remains exposed. Facial cooling can decrease finger blood flow, reducing finger temperature (T (f)). This study examined whether thermal face protection limits finger cooling and thereby improves thermal comfort and manual dexterity during prolonged cold exposure. T (f) was measured in ten volunteers dressed in cold-weather clothing as they stood for 60 min facing the wind (-15°C, 3 m s(-1)), once while wearing a balaclava and goggles (BAL), and once with the balaclava pulled down and without goggles (CON). Subjects removed mitts, wearing only thin gloves to perform Purdue Pegboard (PP) tests at 15 and 50 min, and Minnesota Rate of Manipulation (MRM) tests at 30 and 55 min. Subjects rated their thermal sensation and comfort just before the dexterity tests. T (f) decreased (p < 0.05 for time × trial interaction) by 15 min of cold exposure during CON (33.6 ± 1.4-28.7 ± 2.0°C), but not during BAL (33.2 ± 1.4-30.6 ± 3.2°C); and after 30 min T (f) remained warmer during BAL (23.3 ± 5.9°C) than CON (19.2 ± 3.5); however, by 50 min, T (f) was no different between trials (14.1 ± 2.7°C). Performance on PP fell (p < 0.05) by 25% after 50 min in both trials; MRM performance was not altered by cold on either trial. Subjects felt colder (p < 0.05) and more uncomfortable (p < 0.05) during CON, compared to BAL. Thermal face protection was effective for maintaining warmer T (f) and thermal comfort during cold exposure; however, local cooling of the hands during manual dexterity tests reduced this physiological advantage, and performance was not improved.

  12. Evaporative cooling: Thermal comfort and its energy implications in California climates

    NASA Astrophysics Data System (ADS)

    Xu, Tengfang

    1998-09-01

    Evaporative cooling is more energy efficient than conventional air conditioning for comparable cooling, especially in arid areas such as Arizona, Colorado and Utah. In California, designers have not widely accepted the technology largely because of concerns about comfort and health. There is little actual quantitative information about thermal comfort in evaporatively cooling buildings. To advance the technology, it is necessary to address thermal comfort under the elevated humidities in such buildings. The objectives of this study are to (1) measure the occupant's reactions to the thermal conditions within evaporatively cooled buildings in California, (2) quantify acceptability limits applicable to evaporatively cooled spaces, (3) predict the indoor conditions and energy consumption of a prototypical evaporatively cooled building under different California climates, and (4) draw conclusions about the potential of the technology. The primary approach was to carry out field studies of thermal comfort in evaporatively cooled office and classroom buildings in inland California. The indoor environmental conditions were measured and compared to occupants' subjective votes of comfort and acceptability. These were compared with current ASHRAE comfort standards, and used to test the validity of the comfort zones' boundaries. Field results were generalized by using the DOE-2 program to simulate both the indoor conditions and energy savings produced by evaporative cooling in three climates. The field studies find little impact of humidity on building occupants' thermal comfort. The limit of 60% relative humidity was clearly too restrictive for these evaporatively cooled spaces, and a looser limit is needed. The humidities measured in this study were however not high enough to verify the appropriateness of the 20sb°C wet-bulb temperature limit in ASHRAE Standard 55-1995. Adaptive opportunities of achieving thermal comfort were discovered, suggesting a possible wider zone of

  13. Thermal comfort in urban green spaces: a survey on a Dutch university campus

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; de Groot, Rudolf; Bakker, Frank; Wörtche, Heinrich; Leemans, Rik

    2017-01-01

    To better understand the influence of urban green infrastructure (UGI) on outdoor human thermal comfort, a survey and physical measurements were performed at the campus of the University of Groningen, The Netherlands, in spring and summer 2015. Three hundred eighty-nine respondents were interviewed in five different green spaces. We aimed to analyze people's thermal comfort perception and preference in outdoor urban green spaces, and to specify the combined effects between the thermal environmental and personal factors. The results imply that non-physical environmental and subjective factors (e.g., natural view, quiet environment, and emotional background) were more important in perceiving comfort than the actual thermal conditions. By applying a linear regression and probit analysis, the comfort temperature was found to be 22.2 °C and the preferred temperature was at a surprisingly high 35.7 °C. This can be explained by the observation that most respondents, who live in temperate regions, have a natural tendency to describe their preferred state as "warmer" even when feeling "warm" already. Using the Kruskal-Wallis H test, the four significant factors influencing thermal comfort were people's exposure time in green spaces, previous thermal environment and activity, and their thermal history. However, the effect of thermal history needs further investigation due to the unequal sample sizes of respondents from different climate regions. By providing evidence for the role of the objective and subjective factors on human thermal comfort, the relationship between UGI, microclimate, and thermal comfort can assist urban planning to make better use of green spaces for microclimate regulation.

  14. Thermal comfort in urban green spaces: a survey on a Dutch university campus.

    PubMed

    Wang, Yafei; de Groot, Rudolf; Bakker, Frank; Wörtche, Heinrich; Leemans, Rik

    2017-01-01

    To better understand the influence of urban green infrastructure (UGI) on outdoor human thermal comfort, a survey and physical measurements were performed at the campus of the University of Groningen, The Netherlands, in spring and summer 2015. Three hundred eighty-nine respondents were interviewed in five different green spaces. We aimed to analyze people's thermal comfort perception and preference in outdoor urban green spaces, and to specify the combined effects between the thermal environmental and personal factors. The results imply that non-physical environmental and subjective factors (e.g., natural view, quiet environment, and emotional background) were more important in perceiving comfort than the actual thermal conditions. By applying a linear regression and probit analysis, the comfort temperature was found to be 22.2 °C and the preferred temperature was at a surprisingly high 35.7 °C. This can be explained by the observation that most respondents, who live in temperate regions, have a natural tendency to describe their preferred state as "warmer" even when feeling "warm" already. Using the Kruskal-Wallis H test, the four significant factors influencing thermal comfort were people's exposure time in green spaces, previous thermal environment and activity, and their thermal history. However, the effect of thermal history needs further investigation due to the unequal sample sizes of respondents from different climate regions. By providing evidence for the role of the objective and subjective factors on human thermal comfort, the relationship between UGI, microclimate, and thermal comfort can assist urban planning to make better use of green spaces for microclimate regulation.

  15. Impact of Photovoltaic Canopy Shade on Outdoor Thermal Comfort in a Hot Desert City

    NASA Astrophysics Data System (ADS)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-04-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade on thermal comfort through microclimate observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. Six stationary sensors under solar canopies and in nearby sun-exposed and tree-shaded locations monitored 5-min temperature and humidity for a year. On selected clear calm days representative of each season, we conducted hourly microclimate transects from 7:00AM to 6:00PM and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on the Likert scale, increasing thermal comfort in all seasons except winter. The shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shade are equally efficient in semi-arid desert environments. Globe temperature explained 50% of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors include adaptation level, gender, thermal comfort vote, thermal preference, season, and time of day. A regression of perceived comfort on Physiological Equivalent Temperature yielded a neutral temperature of 28.6°C. The acceptable comfort range was 19.1°C-38.1°C with a preferred temperature of 20.8°C. Respondents exposed to above neutral temperatures felt more comfortable if they had been in air-conditioning 5 minutes prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas.

  16. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.

    PubMed

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-12-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

  17. A comparison of suit dresses and summer clothes in the terms of thermal comfort

    PubMed Central

    2013-01-01

    Background Fanger’s PMV equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, relative air velocity, humidity, activity level and clothing insulation. Methods This paper contains a comparison of suit dresses and summer clothes in terms of thermal comfort, Fanger’s PMV equation. Studies were processed in the winter for an office, which locates in Ankara, Turkey. The office was partitioned to fifty square cells. Humidity, relative air velocity, air temperature and mean radiant temperature were measured on the centre points of these cells. Thermal comfort analyses were processed for suit dressing (Icl = 1 clo) and summer clothing (Icl = 0.5 clo). Results Discomfort/comfort in an environment for different clothing types can be seen in this study. The relationship between indoor thermal comfort distribution and clothing type was discussed. Graphics about thermal comfort were sketched according to cells. Conclusions Conclusions about the thermal comfort of occupants were given by PMV graphics. PMID:24355097

  18. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    PubMed

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions.

  19. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    PubMed

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China.

  20. Relative importance of different surface regions for thermal comfort in humans.

    PubMed

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Kasuga, Momoko; Uchida, Yuki; Tokizawa, Ken; Nagashima, Kei; Kanosue, Kazuyuki

    2013-01-01

    In a previous study, we investigated the contribution of the surface of the face, chest, abdomen, and thigh to thermal comfort by applying local temperature stimulation during whole-body exposure to mild heat or cold. In hot conditions, humans prefer a cool face, and in cold they prefer a warm abdomen. In this study, we extended investigation of regional differences in thermal comfort to the neck, hand, soles, abdomen (Experiment 1), the upper and lower back, upper arm, and abdomen (Experiment 2). The methodology was similar to that used in the previous study. To compare the results of each experiment, we utilized the abdomen as the reference area in these experiments. Thermal comfort feelings were not particularly strong for the limbs and extremities, in spite of the fact that changes in skin temperature induced by local temperature stimulation of the limbs and extremities were always larger than changes that were induced in the more proximal body parts. For the trunk areas, a significant difference in thermal comfort was not observed among the abdomen, and upper and lower back. An exception involved local cooling during whole-body mild cold exposure, wherein the most dominant preference was for a warmer temperature of the abdomen. As for the neck and abdomen, clear differences were observed during local cooling, while no significant difference was observed during local warming. We combined the results for the current and the previous study, and characterized regional differences in thermal comfort and thermal preference for the whole-body surface.

  1. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  2. Thermal Analysis--Human Comfort--Indoor Environments. NBS Special Publication 491.

    ERIC Educational Resources Information Center

    Mangum, Billy W., Ed.; Hill, James E., Ed.

    Included in these proceedings are 11 formal papers presented by leading researchers in the field of thermal comfort and heat stress at a symposium held for the purpose of exploring new aspects of indoor thermal environments, caused primarily by the impact of energy conservation in new and existing buildings. The contributed papers were from…

  3. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.

    PubMed

    Tung, Chien-Hung; Chen, Chen-Peng; Tsai, Kang-Ting; Kántor, Noémi; Hwang, Ruey-Lung; Matzarakis, Andreas; Lin, Tzu-Ping

    2014-11-01

    Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.

  4. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.

    PubMed

    Cui, W; Wu, T; Ouyang, Q; Zhu, Y

    2017-01-01

    Passengers' behavioral adjustments warrant greater attention in thermal comfort research in aircraft cabins. Thus, a field investigation on 10 commercial aircrafts was conducted. Environment measurements were made and a questionnaire survey was performed. In the questionnaire, passengers were asked to evaluate their thermal comfort and record their adjustments regarding the usage of blankets and ventilation nozzles. The results indicate that behavioral adjustments in the cabin and the use of blankets or nozzle adjustments were employed by 2/3 of the passengers. However, the thermal comfort evaluations by these passengers were not as good as the evaluations by passengers who did not perform any adjustments. Possible causes such as differences in metabolic rate, clothing insulation and radiation asymmetry are discussed. The individual difference seems to be the most probable contributor, suggesting possibly that passengers who made adjustments had a narrower acceptance threshold or a higher expectancy regarding the cabin environment. Local thermal comfort was closely related to the adjustments and significantly influenced overall thermal comfort. Frequent flying was associated with lower ratings for the cabin environment.

  5. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.

    PubMed

    Pala, Uzeyir; Oz, H Ridvan

    2015-05-01

    By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension.

  6. Energy Conversion for Thermal Comfort and Air Quality Within Car Cabin

    NASA Astrophysics Data System (ADS)

    Kristanto, Daniel; Leephakpreeda, Thananchai

    2017-03-01

    Thermal comfort and air quality within a car cabin are required during driving throughout various climates where energy is efficiently consumed to maintain acceptable conditions by air conditioning (AC) unit. This paper proposes an analysis of energy conversion within a car cabin for thermal comfort and air quality. Mathematical models, based on energy and mass balances, are developed to determine process variables of a car cabin. Experimental data from real conditions is compared with simulated results for model validation. There is very good agreement between those results. The proposed models are used to simulate interesting case studies in real circumstances for investigation on trade-off among thermal comfort, air quality, and energy usage.

  7. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    NASA Astrophysics Data System (ADS)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-10-01

    The Markov chain's first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%.

  8. Assessment of thermal comfort in a naturally ventilated residential terrace house

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Tap, Masine Md.; Salimin, Khairul Amry Mohd

    2012-06-01

    In hot and humid climates thermal discomfort is a major problem to the occupants of many residential terrace houses especially when they are not equipped with an air-conditioning system. This paper presents a study on an assessment of the level of thermal comfort in a naturally ventilated residential terrace house in Malaysia using computational fluid dynamics (CFD) method. Actual measurements were made to obtain the average air temperature, relative humidity and air flow pattern in various sections of the house. CFD simulations were conducted on a simplified model of the house to predict and visualize the temperature distribution and air flow pattern and its velocity in the house. The level of thermal comfort in the house was found to be well outside the comfort limits as specified by ASHRAE standards.

  9. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    SciTech Connect

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-10-22

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%.

  10. Thermal comfort investigation on a naturally ventilated two- storey residential house in Malaysia

    NASA Astrophysics Data System (ADS)

    Malek, N. A.; Khairuddin, M. H.; Rosli, M. F.

    2015-09-01

    This paper presents a case study to investigate the human thermal comfort on a naturally ventilated two-storey residential house in Malaysia. Three parameters were investigated in this study, namely the air temperature, air velocity and air humidity. These parameters were measured using the appropriate measuring device to obtain the actual data and compared with simulation results. The level of thermal comfort in the house was found to be poor as the parameters measured are over the limits specified by ASHRAE standards. Simulation on the model of the house was performed using the Computational Fluid Dynamics (CFD) commercial code, FLUENT to visualize the temperature distribution and air flow pattern and velocity in the house. The error between these two sets of data was acceptable and thus the simulation used in this study was validated. Comparison was also made in the CFD simulation to see the effects of using a ceiling fan installed in the house and without ceiling fan. The level of thermal comfort was poor in both cases as it did not satisfy the standards set by ASHRAE but more uniform temperature distribution inside the house was found when the ceiling fan was turned on. The thermal comfort level became critical in the afternoon as during this period, the house receives direct sunlight which causes the temperature inside the house to increase. Although the mechanical ventilation devices did not help to improve the thermal comfort in the house being studied, the CFD simulation results can be used by building designers to further improve the level of thermal comfort in naturally ventilated residential houses.

  11. The adaptive model of thermal comfort and energy conservation in the built environment

    NASA Astrophysics Data System (ADS)

    de Dear, R.; Schiller Brager, Gail

      Current thermal comfort standards and the models underpinning them purport to be equally applicable across all types of building, ventilation, occupancy pattern and climate zone. A recent research project sponsored by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, RP-884) critically evaluated these assumptions by statistically analysing a large database of research results in building comfort studies from all over the world (n=22,346). The results reported in this paper indicated a clear dependence of indoor comfort temperatures on outdoor air temperatures (instead of outdoor effective temperature ET* used in RP-884), especially in buildings that were free-running or naturally ventilated. These findings encourage significant revisions of ASHRAE's comfort standard in terms of climatically relevant prescriptions. The paper highlights the potential for reduced cooling energy requirements by designing for natural or hybrid ventilation in many moderate climate zones of the world.

  12. The adaptive model of thermal comfort and energy conservation in the built environment.

    PubMed

    de Dear, R; Brager, G S

    2001-07-01

    Current thermal comfort standards and the models underpinning them purport to be equally applicable across all types of building, ventilation, occupancy pattern and climate zone. A recent research project sponsored by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, RP-884) critically evaluated these assumptions by statistically analysing a large database of research results in building comfort studies from all over the world (n=22,346). The results reported in this paper indicated a clear dependence of indoor comfort temperatures on outdoor air temperatures (instead of outdoor effective temperature ET* used in RP-884), especially in buildings that were free-running or naturally ventilated. These findings encourage significant revisions of ASHRAE's comfort standard in terms of climatically relevant prescriptions. The paper highlights the potential for reduced cooling energy requirements by designing for natural or hybrid ventilation in many moderate climate zones of the world.

  13. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle.

    PubMed

    Oi, Hajime; Yanagi, Kotaro; Tabata, Koji; Tochihara, Yutaka

    2011-08-01

    Subjective experiments involving 12 different conditions were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal sensation and thermal comfort. The experimental conditions involved various combinations of the operative temperature in the test room (10 or 20°C), a heated seat (on/off) and a foot heater (room operative temperature +10 or +20°C). The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. The room operative temperature at which the occupants felt a 'neutral' overall thermal sensation was decreased by about 3°C by using the heated seat or foot heater and by about 6°C when both devices were used. Moreover, the effects of these devices on vehicle heater energy consumption were investigated using simulations. As a result, it was revealed that heated seats and foot heaters can reduce the total heater energy consumption of vehicles. Statement of Relevance: Subjective experiments were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal comfort. The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. These devices can reduce the total heater energy consumption in vehicles.

  14. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China

    PubMed Central

    Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding

    2016-01-01

    With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants’ health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management. PMID:27941659

  15. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China.

    PubMed

    Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding

    2016-12-08

    With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants' health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management.

  16. Automatic control of human thermal comfort with a liquid-cooled garment

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1977-01-01

    Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.

  17. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    PubMed

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  18. Thermal comfort of diving dry suit with the use of the warp-knitted fabric

    NASA Astrophysics Data System (ADS)

    Lenfeldova, I.; Hes, L.; Annayeva, M.

    2016-07-01

    Achievement of a good level of thermal comfort of under-suits for dry suit diving which enable also the required mobility of the diver in water is inevitable not only for the scuba sport and commercial diving people but also for safety and activities of people who make research under water. The aim of this work is to verify whether selected knitted structures (which are not waterproof) can substitute the currently used textile materials (nonwovens). This dry-suit innovation is intended to increase the properties which correspond to the perception of thermal comfort of the diver in water. To achieve this objective, the Alambeta thermal tester was used in the study for experimental determination of thermal resistance of spacer warp knitted fabric at varying contact pressure. The studied textiles were expected to be very suitable for the intended application due to their low compressibility which yields relatively high thickness a hence increased thermal insulation.

  19. Physical and Thermal Comfort Properties of Viscose Fabrics made from Vortex and Ring Spun Yarns

    NASA Astrophysics Data System (ADS)

    Thilagavathi, G.; Muthukumar, N.; Kumar, V. Kiran; Sadasivam, Sanjay; Sidharth, P. Mithun; Nikhil Jain, G.

    2016-11-01

    Viscose fiber is frequently preferred for various types of inner and outer knitwear products for its comfort and visual characteristics. In this study, the physical and thermal comfort properties of viscose fabrics made from ring and vortex yarns have been studied to explore the impact of spinning process on fabric properties. 100% viscose fibers were spun into yarns by ring and vortex spinning and the developed yarns were converted to single jersey fabrics. The results indicated that fabrics made from vortex spun yarns had better pilling resistance over that of those from ring spun yarns. There was no significant difference between bursting strength values of vortex and ring spun yarn fabrics. Fabrics made from ring yarn had better dimensional stability compared to fabrics made from vortex yarn. The air permeability and water vapour permeability of vortex yarn fabrics were higher than ring spun yarn fabrics. The vortex yarn fabrics had better thermal comfort properties compared to ring yarn fabrics.

  20. The influence of thermal insulation position in building exterior walls on indoor thermal comfort and energy consumption of residential buildings in Chongqing

    NASA Astrophysics Data System (ADS)

    Wang, D.; Yu, W.; Zhao, X.; Dai, W.; Ruan, Y.

    2016-08-01

    This paper focused on the influence of using position of thermal insulation materials in exterior walls on the indoor thermal comfort and building energy consumption of residential building in Chongqing. In this study, four (4) typical residential building models in Chongqing were established, which have different usage of thermal insulation layer position in exterior walls. Indoor thermal comfort hours, cooling and heating energy consumption of each model were obtained by using a simulation tool, Energyplus. Based on the simulation data, the influence of thermal insulation position on indoor thermal comfort and building energy consumption in each season was analyzed. The results showed that building with internal insulation had the highest indoor thermal comfort hours and least cooling and heating energy consumption in summer and winter. In transitional season, the highest indoor thermal comfort hours are obtained when thermal insulation is located on the exterior side.

  1. Understanding and Evaluating Human Thermal Comfort at Tertiary Level Using a Computer-Based Laboratory Teaching Tool

    ERIC Educational Resources Information Center

    Pellegrini, Marco

    2014-01-01

    Phase changes in water are experienced in everyday life but students often struggle to understand mechanisms that regulate them. Human thermal comfort is closely related to humidity, evaporative heat loss and heat transfer. The purpose of the present study is to assist students in the evaluation of human thermal comfort. Such a goal is achievable…

  2. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists

    NASA Astrophysics Data System (ADS)

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects ( n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences ( p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  3. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists.

    PubMed

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects (n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences (p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  4. System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning

    DOEpatents

    Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D

    2016-10-04

    A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.

  5. The CFD Simulation on Thermal Comfort in a library Building in the Tropics

    SciTech Connect

    Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.

    2010-05-21

    This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.

  6. A field study on thermal comfort in an Italian hospital considering differences in gender and age.

    PubMed

    Del Ferraro, S; Iavicoli, S; Russo, S; Molinaro, V

    2015-09-01

    The hospital is a thermal environment where comfort must be calibrated by taking into account two different groups of people, that is, patients and medical staff. The study involves 30 patients and 19 medical staff with a view to verifying if Predicted Mean Vote (PMV) index can accurately predict thermal sensations of both groups also taking into account any potential effects of age and gender. The methodology adopted is based on the comparison between PMV values (calculated according to ISO 7730 after having collected environmental data and estimated personal parameters) and perceptual judgments (Actual Mean Vote, AMV), expressed by the subjects interviewed. Different statistical analyses show that PMV model finds his best correlation with AMV values in a sample of male medical staff under 65 years of age. It has been observed that gender and age are factors that must be taken into account in the assessment of thermal comfort in the hospital due to very weak correlation between AMV and PMV values.

  7. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  8. Effect of human behavior on economizer efficacy and thermal comfort in southern California

    NASA Astrophysics Data System (ADS)

    Lanning, TIghe Glennon

    California has set a zero net-energy conservation goal for the residential sector that is to be achieved by 2020 (California Energy Commission 2011). To reduce energy consumption in the building sector, modern buildings should fundamentally incorporate sustainable performance standards, involving renewable systems, climate-specific strategies, and consideration of a variety of users. Building occupants must operate in concert with the buildings they inhabit in order to maximize the potential of the building, its systems, and their own comfort. In climates with significant diurnal temperature swings, environmental controls designed to capitalize on this should be considered to reduce cooling-related loads. One specific strategy is the air-side economizer, which uses daily outdoor temperature swings to reduce indoor temperature swings. Traditionally a similar effect could be achieved by using thermal mass to buffer indoor temperature swings through thermal lag. Economizers reduce the amount of thermal mass typically required by naturally ventilated buildings. Fans are used to force cool nighttime air deep into the building, allowing lower mass buildings to take advantage of nighttime cooling. Economizers connect to a thermostat, and when the outdoor temperature dips below a programmed set-point the economizer draws cool air from outside, flushing out the warmed interior air. This type of system can be simulated with reasonable accuracy by energy modeling programs; however, because the system is occupant-driven (as opposed to a truly passive mass-driven system) any unpredictable occupant behavior can reduce its effectiveness and create misleading simulation results. This unpredictably has helped prevent the spread of economizers in the residential market. This study investigated to what extent human behavior affected the performance of economizer-based HVAC systems, based on physical observations, environmental data collections, and energy simulations of a residential

  9. Modelling occupants' personal characteristics for thermal comfort prediction.

    PubMed

    Haldi, Frédéric; Robinson, Darren

    2011-09-01

    Based on results from a field survey campaign conducted in Switzerand, we show that occupants' variations in clothing choices, which are relatively unconstrained, are best described by the daily mean outdoor temperature and that major clothing adjustments occur rarely during the day. We then develop an ordinal logistic model of the probability distribution of discretised clothing levels, which results in a concise and informative expression of occupants' clothing choices. Results from both cross-validation and independent verification suggest that this model formulation may be used with confidence. Furthermore, the form of the model is readily generalisable, given the requisite calibration data, to environments where dress codes are more specific. We also observe that, for these building occupants, the prevailing metabolic activity levels are mostly constant for the whole range of surveyed environmental conditions, as their activities are relatively constrained by the tasks in hand. Occupants may compensate for this constraint, however, through the consumption of cold and hot drinks, with corresponding impacts on metabolic heat production. Indeed, cold drink consumption was found to be highly correlated with indoor thermal conditions, whilst hot drink consumption is best described by a seasonal variable. These variables can be used for predictive purposes using binary logistic models.

  10. Modelling occupants' personal characteristics for thermal comfort prediction

    NASA Astrophysics Data System (ADS)

    Haldi, Frédéric; Robinson, Darren

    2011-09-01

    Based on results from a field survey campaign conducted in Switzerand, we show that occupants' variations in clothing choices, which are relatively unconstrained, are best described by the daily mean outdoor temperature and that major clothing adjustments occur rarely during the day. We then develop an ordinal logistic model of the probability distribution of discretised clothing levels, which results in a concise and informative expression of occupants' clothing choices. Results from both cross-validation and independent verification suggest that this model formulation may be used with confidence. Furthermore, the form of the model is readily generalisable, given the requisite calibration data, to environments where dress codes are more specific. We also observe that, for these building occupants, the prevailing metabolic activity levels are mostly constant for the whole range of surveyed environmental conditions, as their activities are relatively constrained by the tasks in hand. Occupants may compensate for this constraint, however, through the consumption of cold and hot drinks, with corresponding impacts on metabolic heat production. Indeed, cold drink consumption was found to be highly correlated with indoor thermal conditions, whilst hot drink consumption is best described by a seasonal variable. These variables can be used for predictive purposes using binary logistic models.

  11. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon

    NASA Astrophysics Data System (ADS)

    da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente

    2015-09-01

    The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation ( P < 0.01) was found between the new indices and the physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.

  12. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon.

    PubMed

    da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente

    2015-09-01

    The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation (P < 0.01) was found between the new indices and the physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.

  13. Thermal comfort conditions in the NBS/DoE direct gain passive solar test facility

    NASA Astrophysics Data System (ADS)

    Liu, S. T.

    1982-12-01

    The thermal comfort conditions in a direct gain cell of passive solar test facility were analyzed. It was found that the daytime operative temperature as measured by the black globe temperature sensors in an area near the large south glazing exceeded the upper boundary of the ASHRAE comfort envelope by a large amount in a clear day during both the thermal transition month of October and the cold winter month of January. The reflected solar radiation from the interior surfaces and the snow covered ground plays a significant role on the measured black globe temperature and should be included in the computation of the mean radiant temperature for a space with large glazed areas.

  14. Thermal Comfort Testing for Vehicle Operator/Passenger Workspaces (Truck Cabs)

    DTIC Science & Technology

    2007-10-09

    This TOP describes the procedure to quantify the thermal comfort of a truck cab in temperatures as hot and humid as possible. Facilities, instrumentation, health and safety, test conditions, test procedures, data required, and presentation of data will be discussed in this TOP. This TOP will supplement the following TOPs: TOP 1-1-006, TOP 2-2-508, TOP 2-4-001, and TOP 10-1-003.

  15. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    PubMed

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by

  16. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    NASA Astrophysics Data System (ADS)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  17. An Analysis of Some Observations of Thermal Comfort in an Equatorial Climate

    PubMed Central

    Webb, C. G.

    1959-01-01

    The analysis is introduced by a brief account of the development of work on thermal comfort. The observations, which are fully described in relation to the interior climates which were experienced, were made in Singapore in 1949-50. The climate of Singapore is typical of the equator, being warm, damp and windless; and the annual variation is almost negligible. Buildings are unheated, of an open type, and shaded from the sun and sky. A multiple regression equation has been derived, giving the thermal effect on a number of subjects of variations in the air temperature, the water vapour pressure, and the air velocity within the ranges experienced. The implications of the equation are discussed, and a climatic index is derived from it which is similar in definition to the widely used “effective temperature” scale, but shows a better correlation with thermal sensation. The new index is named the Singapore index. At a further stage the thermal sensation scale is simplified for the purpose of probit analysis. The probit regressions of discomfort due to warmth and cold are separately given in relation to the new index, and are combined to yield a thermal comfort graph from which the optimum is obtained and explored. A comfort chart for the rapid assessment of these humid climates is supplied, and an alternative form of the index equation is given which is more suitable for rapid calculation. It appears desirable in an equatorial climate to attempt to minimize discomfort by allowing to some extent for individual thermal requirements, and the benefits of a suitable climatic spread within a room are described. PMID:13843256

  18. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities

    NASA Astrophysics Data System (ADS)

    Ruiz, María Angélica; Correa, Erica Norma

    2015-10-01

    Outdoor thermal comfort is one of the most influential factors in the habitability of a space. Thermal level is defined not only by climate variables but also by the adaptation of people to the environment. This study presents a comparison between inductive and deductive thermal comfort models, contrasted with subjective reports, in order to identify which of the models can be used to most correctly predict thermal comfort in tree-covered outdoor spaces of the Mendoza Metropolitan Area, an intensely forested and open city located in an arid zone. Interviews and microclimatic measurements were carried out in winter 2010 and in summer 2011. Six widely used indices were selected according to different levels of complexity: the Temperature-Humidity Index (THI), Vinje's Comfort Index (PE), Thermal Sensation Index (TS), the Predicted Mean Vote (PMV), the COMFA model's energy balance (S), and the Physiological Equivalent Temperature (PET). The results show that the predictive models evaluated show percentages of predictive ability lower than 25 %. Despite this low indicator, inductive methods are adequate for obtaining a diagnosis of the degree and frequency in which a space is comfortable or not whereas deductive methods are recommended to influence urban design strategies. In addition, it is necessary to develop local models to evaluate perceived thermal comfort more adequately. This type of tool is very useful in the design and evaluation of the thermal conditions in outdoor spaces, based not only to climatic criteria but also subjective sensations.

  19. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore

    NASA Astrophysics Data System (ADS)

    de Dear, R. J.; Leow, K. G.; Foo, S. C.

    1991-12-01

    Thermal comfort field experiments were conducted in Singapore in both naturally ventilated highrise residential buildings and air conditioned office buildings. Each of the 818 questionnaire responses was made simultaneously with a detailed set of indoor climatic measurements, and estimates of clothing insulation and metabolic rate. Results for the air conditioned sample indicated that office buildings were overcooled, causing up to one-third of their occupants to experience cool thermal comfort sensations. These observations in air conditioned buildings were broadly consistent with the ISO, ASHRAE and Singapore indoor climatic standards. Indoor climates of the naturally ventilated apartments during the day and early evening were on average three degrees warmer than the ISO comfort standard prescriptions, but caused much less thermal discomfort than expected. Discrepancies between thermal comfort responses in apartment blocks and office buildings are discussed in terms of contemporary perceptual theory.

  20. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city

    NASA Astrophysics Data System (ADS)

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  1. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city.

    PubMed

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  2. Skin temperature, thermal comfort, sweating, clothing and activity of men sledging in Antarctica

    PubMed Central

    Budd, G. M.

    1966-01-01

    1. Three men were studied while dog-sledging 320 km in 12 days in Antarctica. Conventional Antarctic clothing (`sweaters and windproofs') was worn. Four hundred observations were made of medial thigh skin temperature, thermal comfort, sweating, clothing, activity and environmental conditions. 2. Work occupied an average of 11·0 hr/day and sleep 7·5 hr. Estimated daily energy expenditure averaged 5100 kcal (range 2740-6660 kcal). 3. Skin temperature fell on exposure to cold despite the clothing worn, but was not changed by the level of activity. Sweating, and thermal comfort, were directly related to both skin temperature and activity. 4. Inside the tent, the modal value of skin temperature was 33° C (range 27-36° C) and the men were comfortable in 94% of observations. 5. During the 9·2 hr/day spent outdoors the modal value of skin temperature was 27° C (range 18-33° C) and the men felt too cold (but did not shiver) in 11% (range 7-20%) of observations, suggesting that cold stress was not negligible. However, they also felt too hot in 20% of observations and were sweating in 23%. PMID:5914254

  3. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  4. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    PubMed

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-02-14

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  5. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-02-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  6. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI--a case study in Southern Brazil.

    PubMed

    Bröde, Peter; Krüger, Eduardo L; Rossi, Francine A; Fiala, Dusan

    2012-05-01

    Recognising that modifications to the physical attributes of urban space are able to promote improved thermal outdoor conditions and thus positively influence the use of open spaces, a survey to define optimal thermal comfort ranges for passers-by in pedestrian streets was conducted in Curitiba, Brazil. We applied general additive models to study the impact of temperature, humidity, and wind, as well as long-wave and short-wave radiant heat fluxes as summarised by the recently developed Universal Thermal Climate Index (UTCI) on the choice of clothing insulation by fitting LOESS smoothers to observations from 944 males and 710 females aged from 13 to 91 years. We further analysed votes of thermal sensation compared to predictions of UTCI. The results showed that females chose less insulating clothing in warm conditions compared to males and that observed values of clothing insulation depended on temperature, but also on season and potentially on solar radiation. The overall pattern of clothing choice was well reflected by UTCI, which also provided for good predictions of thermal sensation votes depending on the meteorological conditions. Analysing subgroups indicated that the goodness-of-fit of the UTCI was independent of gender and age, and with only limited influence of season and body composition as assessed by body mass index. This suggests that UTCI can serve as a suitable planning tool for urban thermal comfort in sub-tropical regions.

  7. Field study of occupant comfort and office thermal environments in a hot, arid climate

    SciTech Connect

    Cena, K.; Dear, R.J. de

    1999-07-01

    This paper presents the main findings of ASHRAE research project RP-921, a field study of occupant comfort and office thermal environment in 22 air-conditioned office buildings in Kalgoorlie-Boulder, Western Australia, a location characterized by a hot and arid climate. A total of 935 subjects provided 1,229 sets of data for winter and summer, each accompanied by a full set of indoor climatic measurements with laboratory-grade instrumentation. Clothing insulation estimates for seated subjects (0.5 clo in summer and 0.7 in winter) were supplemented by the incremental effect of chairs (0.15 clo). Thermal neutrality, according to responses on the ASHRAE seven-point sensation scale, occurred at 20.3 C in winter and at 23.3 C in summer. Preferred temperature, defined as a minimum of subjects requesting temperature change, was 22.2 C for both seasons. Nearly 65% of the indoor measurements fell within the ANSI/ASHRAE Standard 55a-1992 summer comfort zone and 85% in the winter. Over 85% of the occupants considered their thermal conditions acceptable. Subjects who expressed a below-average level of job satisfaction on a 15-question index were 50% more likely to express dissatisfaction with their thermal environment than subjects with above-average job satisfaction.

  8. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    PubMed

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort.

  9. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    PubMed

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  10. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    PubMed Central

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners. PMID:23476674

  11. Evaluation of thermal comfort in university classrooms through objective approach and subjective preference analysis.

    PubMed

    Nico, Maria Anna; Liuzzi, Stefania; Stefanizzi, Pietro

    2015-05-01

    Assessing thermal comfort becomes more relevant when the aim is to maximise learning and productivity performances, as typically occurs in offices and schools. However, if, in the offices, the Fanger model well represents the thermal occupant response, then on the contrary, in schools, adaptive mechanisms significantly influence the occupants' thermal preference. In this study, an experimental approach was performed in the Polytechnic University of Bari, during the first days of March, in free running conditions. First, the results of questionnaires were compared according to the application of the Fanger model and the adaptive model; second, using a subjective scale, a complete analysis was performed on thermal preference in terms of acceptability, neutrality and preference, with particular focus on the influence of gender. The user possibility to control the indoor plant system produced a significant impact on the thermal sensation and the acceptability of the thermal environment. Gender was also demonstrated to greatly influence the thermal judgement of the thermal environment when an outdoor cold climate occurs.

  12. Counteracting urban climate change: adaptation measures and their effect on thermal comfort

    NASA Astrophysics Data System (ADS)

    Müller, Nicole; Kuttler, Wilhelm; Barlag, Andreas-Bent

    2014-01-01

    Cities represent thermal load areas compared with their surrounding environments. Due to climate change, summer heat events will increase. Therefore, mitigation and adaptation are needed. In this study, meteorological measurements in various local climate zones were performed to demonstrate the influence of evaporation surfaces and other factors on thermal comfort, as determined by the physiologically equivalent temperature (PET). Furthermore, a quantification of the thermal effects of several adaptation measures and varying meteorological parameters was made using model simulations (ENVI-met) in an inner-city neighborhood (Oberhausen, Germany). The results show that the most effective adaptation measure was increased wind speed (maximal 15 K PET reduction). Moreover, vegetation areas show greater PET reductions by the combination of shading and evapotranspiration than water surfaces. The creation of park areas with sufficient water supply and tall, isolated, shade-providing trees that allow for adequate ventilation can be recommended for planning.

  13. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms

    PubMed Central

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447

  14. Assessing Primary Care Trainee Comfort in the Diagnosis and Management of Thermal Injuries.

    PubMed

    Vrouwe, Sebastian Q; Shahrokhi, Shahriar

    2016-12-02

    Thermal injuries are common and the majority will initially present to primary care physicians. Despite being a part of the objectives of training in family medicine (FM) and emergency medicine (EM), previous study has shown that in practice, gaps exist in the delivery of care. An electronic survey was sent to all FM/EM trainees at our university for the 2014 to 2015 academic year. Plastic Surgery trainees were included as a control group. Demographics and educational/clinical experience were assessed. Trainee comfort was measured on a five-point Likert scale across 15 domains related to thermal injuries. Preferences for educational interventions were also ranked. Descriptive statistics and the Kruskal-Wallis test were used (P < .05 considered significant). The survey response rate was 27.4% (117/427). FM and EM (CCFP and Royal College) trainees estimated a median 0, 1, and 2 hours of total didactic instruction, respectively. During that academic year, FM and EM (CCFP and Royal College) trainees cared for a median 1, 4, and 5 patients, respectively. Significant differences were noted in comfort levels across all 15 domains when compared with plastic surgery trainees. Preferences for educational interventions were ranked, with clinical rotations and traditional lecture scoring the highest. Primary care trainees are not comfortable in the diagnosis and management of thermal injuries. This may be attributed to limited clinical exposure and teaching during their postgraduate training. There exists an opportunity for specialists in burn care to collaborate with primary care training programs and deliver an educational intervention with the aim of long-lasting quality improvement.

  15. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    PubMed

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  16. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne.

    PubMed

    Lam, Cho Kwong Charlie; Loughnan, Margaret; Tapper, Nigel

    2016-01-06

    Outdoor thermal comfort studies have mainly examined the perception of local residents, and there has been little work on how those conditions are perceived differently by tourists, especially tourists of diverse origins. This issue is important because it will improve the application of thermal indices in predicting the thermal perception of tourists. This study aims to compare the differences in thermal perception and preferences between local and overseas visitors to the Royal Botanic Garden (RBG) in Melbourne during summer. An 8-day survey was conducted in February 2014 at four sites in the garden (n = 2198), including 2 days with maximum temperature exceeding 40 °C. The survey results were compared with data from four weather stations adjacent to the survey locations. One survey location, 'Fern Gully', has a misting system and visitors perceived the Fern Gully to be cooler than other survey locations. As the apparent temperature exceeded 32.4 °C, visitors perceived the environment as being 'warm' or 'hot'. At 'hot' conditions, 36.8 % of European visitors voted for no change to the thermal conditions, which is considerably higher than the response from Australian visitors (12.2 %) and Chinese visitors (7.5 %). Study results suggest that overseas tourists have different comfort perception and preferences compared to local Australians in hot weather based at least in part on expectations. Understanding the differences in visitors' thermal perception is important to improve the garden design. It can also lead to better tour planning and marketing to potential visitors from different countries.

  17. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne

    NASA Astrophysics Data System (ADS)

    Lam, Cho Kwong Charlie; Loughnan, Margaret; Tapper, Nigel

    2016-01-01

    Outdoor thermal comfort studies have mainly examined the perception of local residents, and there has been little work on how those conditions are perceived differently by tourists, especially tourists of diverse origins. This issue is important because it will improve the application of thermal indices in predicting the thermal perception of tourists. This study aims to compare the differences in thermal perception and preferences between local and overseas visitors to the Royal Botanic Garden (RBG) in Melbourne during summer. An 8-day survey was conducted in February 2014 at four sites in the garden (n = 2198), including 2 days with maximum temperature exceeding 40 °C. The survey results were compared with data from four weather stations adjacent to the survey locations. One survey location, `Fern Gully', has a misting system and visitors perceived the Fern Gully to be cooler than other survey locations. As the apparent temperature exceeded 32.4 °C, visitors perceived the environment as being `warm' or `hot'. At `hot' conditions, 36.8 % of European visitors voted for no change to the thermal conditions, which is considerably higher than the response from Australian visitors (12.2 %) and Chinese visitors (7.5 %). Study results suggest that overseas tourists have different comfort perception and preferences compared to local Australians in hot weather based at least in part on expectations. Understanding the differences in visitors' thermal perception is important to improve the garden design. It can also lead to better tour planning and marketing to potential visitors from different countries.

  18. Optimum comfort limits determination through the characteristics of asymmetric thermal radiation in a heated floor space, "ondol".

    PubMed

    Yoon, Y J; Park, S D; Sohn, J Y

    1992-09-01

    This study was undertaken to evaluate the effects of the asymmetric radiation on thermal comfort, and to suggest the optimum comfort limits in a radiant heating space. The index of V.R.T. (Vector Radiant Temperature) was used to describe the environmental quality of the heated floor space. Optimum comfort limits of this space were suggested through both theoretical and empirical studies. It is recommended to use not only man's sensation of the ambient air but also that of the floor surface for the determination of the optimum comfort limits on the heated floor space such as an "Ondol" in Korea. In the present study the optimum comfort limits were suggested in terms of the V.R.T. The optimum limits obtained were as follows: the vector radiant temperature 11.0 approximately 15.0 K.

  19. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  20. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, El Hassan

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  1. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood

    NASA Astrophysics Data System (ADS)

    Taleghani, Mohammad; Sailor, David; Ban-Weiss, George A.

    2016-02-01

    The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians.

  2. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses

    PubMed Central

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. Methods: This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Isfahan hospitals in 2012. To measure the SA, sleep quality, visual fatigue and thermal comfort, Spielberger state-trait anxiety inventory, Pittsburg sleep quality index, eye fatigue questionnaire and thermal comfort questionnaire were used respectively. The data were analyzed with descriptive statistics, student test and correlation analysis. Results: Correlation between SA and sleep quality was −0.664(P < 0001), Pearson correlation between SA and thermal comfort was −0.276(P = 0.016) and between SA and eye fatigue was 0.57 (P < 0001). Conclusion: Based on these results, it can be concluded that improvement of thermal conditions and reduce state anxiety level can be reduce eye fatigue and increase the sleep quality in shift work nurses. PMID:25077165

  3. Environmental natural processes that achieve thermal comfort in multifamily buildings in hot-arid regions

    NASA Astrophysics Data System (ADS)

    Moreno, Paola

    Buildings, especially in hot climates, consume a lot of energy when people want to be comfortable inside them, which translates to very expensive fees each month. The most innovative response to this problem is renewable energy, that is used, in this case, to run mechanical HVAC systems. Renewable energy is the solution for many problems, but to avoid urban heat islands when using excessive HVAC systems (powered by renewables), and to solve thermal comfort-related problems, there has to be other solution. The major challenge to find it would be to have a change of thinking process. If a building in a hot-arid region uses natural processes to emulate the functions of HVAC systems, and the proper passive strategies, then, it will provide thermal comfort to its users, diminishing the need of a mechanical system. This hypothesis will be carried out by extracting the natural processes found in a specific case in nature, applying them into a building's design, and then simulating its energy efficiency with the adequate software. There will be a comparison of the same proposed building without the natural processes, to have tangible numbers showing that these proposed strategies, in fact, work. With explanatory detailed diagrams and the energy analysis, the hypothesis could be proven correct or incorrect. The significance of this approach relies on the proximity to the natural processes that have been working in different aspects of life since the beginning of time. They have been there all the time, waiting until architects, engineers, and people in general use them, instead of making more new energy-using inventions. By having the numbers from a conventional building and the ones of the proposed building, and the right environmental diagrams, the experiment should be valid. In the near future, there should be more research focused on nature and its processes, in order to be able to reduce the use of mechanical systems, and with that, reduce the energy use and the carbon

  4. Assessment of human thermal comfort and mitigation measures in different urban climatotopes

    NASA Astrophysics Data System (ADS)

    Müller, N.; Kuttler, W.

    2012-04-01

    This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the

  5. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    SciTech Connect

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  6. Evaluation of the Thermal Comfort of a Thermoelectric Ceiling Cooling Panel (TE-CCP) System

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, Charoenporn; Wiset, Lamul; Atthajariyakul, Surat

    2009-07-01

    This present work evaluates the cooling performance and thermal comfort of a thermoelectric ceiling cooling panel (TE-CCP) system composed of 36 TE modules. The cold side of the TE modules was fixed to an aluminum ceiling panel to cool a test chamber of 4.5 m3 volume, while a copper heat exchanger with circulating cooling water at the hot side of the TE modules was used for heat release. Thermal acceptability assessment was performed to find out whether the indoor environment met the ASHRAE Standard-55's 80% acceptability criteria. The standard was met with the TE-CCP system operating at 1 A of current flow with a corresponding cooling capacity of 201.6 W, which gives the COP of 0.82 with an average indoor temperature of 27°C and 0.8 m/s indoor air velocity.

  7. Assessment of Human Safety and Thermal Comfort in High-Temperature Environment: CFD and Human Thermoregulation Model

    NASA Astrophysics Data System (ADS)

    Xuefeng, Han; Wenguo, Weng; Shifei, Shen

    2010-05-01

    The safety and the thermal comfort of victims and firefighters are important in the building fires, which are a little dependent on the occupant fatalities. In order to investigate the effects of the dangerous environment on human body in fires, numerical calculation of the heat transfer and human thermoregulation are presented in this paper. The numerical manikins coupled with human thermal models were proved as powerful tools for visualizing thermal comfort. The two-node model by Gagge and multi-code thermoregulation models were investigated, and the Gagge's model was coupled with the CFD for high-temperature environment simulation, with which a numerical manikin was built. During the simulation, temperatures of skin and core compartment of Computer Simulated Person (CPS) were recorded respectively, and the Predicted Mean Vote index values were counted. The thermal load on skin is much higher than neutral cases and the skin can be burnt in minutes if no protection and heat abstraction methods were introduced. Though existing models can predict thermal comfort in general indoor environment, they are not suitable in predicting the thermal comfort with high-temperature cases. It was suggested that more research combining CFD coupling thermoregulation models with thermal manikin experiment are needed.

  8. Development of indoor environmental index: Air quality index and thermal comfort index

    NASA Astrophysics Data System (ADS)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    In this paper, index for indoor air quality (also known as IAQI) and thermal comfort index (TCI) have been developed. The IAQI was actually modified from previous outdoor air quality index (AQI) designed by the United States Environmental Protection Agency (US EPA). In order to measure the index, a real-time monitoring system to monitor indoor air quality level was developed. The proposed system consists of three parts: sensor module cloud, base station and service-oriented client. The sensor module cloud (SMC) contains collections of sensor modules that measures the air quality data and transmit the captured data to base station through wireless. Each sensor modules includes an integrated sensor array that can measure indoor air parameters like Carbon Dioxide, Carbon Monoxide, Ozone, Nitrogen Dioxide, Oxygen, Volatile Organic Compound and Particulate Matter. Temperature and humidity were also being measured in order to determine comfort condition in indoor environment. The result from several experiments show that the system is able to measure the air quality presented in IAQI and TCI in many indoor environment settings like air-conditioner, chemical present and cigarette smoke that may impact the air quality. It also shows that the air quality are changing dramatically, thus real-time monitoring system is essential.

  9. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  10. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    PubMed Central

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of −0.4 °C, and for males: the limit temperature of −6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet. PMID:26759077

  11. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    NASA Astrophysics Data System (ADS)

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of ‑0.4 °C, and for males: the limit temperature of ‑6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  12. Use of a novel smart heating sleeping bag to improve wearers' local thermal comfort in the feet.

    PubMed

    Song, W F; Zhang, C J; Lai, D D; Wang, F M; Kuklane, K

    2016-01-13

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers' local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  13. The influence of park size and form on micro climate and thermal comfort

    NASA Astrophysics Data System (ADS)

    Sodoudi, Sahar; Chi, Xiaoli; Müller, Felix; Zhang, Huiwen

    2016-04-01

    The population of urban areas will increase in the next decades and it leads to higher fraction of sealed areas, which will increase the urban heat island intensity. In addition, climate model projections also show that the frequency and the intensity of heat waves and the related heat stress will be higher in the future. Urban Parks are the best key to mitigate the urban heat island and to minimize the local climate change. Due to the lack of free spaces which can be converted to green spaces, this study investigates the influence of urban park forms on the micro climate and thermal comfort. In this study, a central big park has been compared to different numbers of small parks in terms of the cooling effect and thermal comfort. Five different park forms with the same total size have been considered. The results show that the park cooling effect depends not only on the park form, but also on the arrangement of the vegetation inside the park and wind speed and direction. Grassy areas (with 10 and 50 Cm grass), shrubs and hedges as well as trees with small and big canopies have been considered for the simulation. ENVI-MET and Rayman models have been used to simulate the cooling effect, cooled area size, PET and UTCI, respectively. The results for a hot day in Berlin on three different times during day and night will be shown and compared to each other. The effects of Sky view factor and soil humidity (irrigation) have also been discussed.

  14. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    PubMed

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg(-1)), specific cost (0.75 R$ kg(-1)), weight gain (7.3 kg), daily weight gain (0.21 kg day(-1)), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg(-1); 1.03 R$ kg(-1); 5.2 kg; 0.15 kg day(-1), and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  15. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use

    NASA Astrophysics Data System (ADS)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly ( P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  16. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.

    PubMed

    Cheng, Y; Lin, Z

    2016-04-01

    Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet-dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows.

  17. Reduction of Energy Consumption for Air Conditioning While Maintaining Acceptable Human Comfort.

    DTIC Science & Technology

    1988-04-01

    Fanger, 1972). It is not always possible, or, practical, to obtain optimi thermal comfort conditions. Therefore Frofessor Fanger devised an index to...understand the complex interaction of the six key variables that affect human comfort. Thermal comfort is not exclusively a function of air temperature... Thermal comfort also depends on five other, less obvious, parameters: mean radiant temperature, relative air velocity, humidity, activity level, and

  18. Cognitive Appraisals Affect Both Embodiment of Thermal Sensation and Its Mapping to Thermal Evaluation

    PubMed Central

    Keeling, Trevor P.; Roesch, Etienne B.; Clements-Croome, Derek

    2016-01-01

    The physical environment leads to a thermal sensation that is perceived and appraised by occupants. The present study focuses on the relationship between sensation and evaluation. We asked 166 people to recall a thermal event from their recent past. They were then asked how they evaluated this experience in terms of 10 different emotions (frustrated, resigned, dislike, indifferent, angry, anxious, liking, joyful, regretful, proud). We tested whether four psychological factors (appraisal dimensions) could be used to predict the ensuing emotions, as well as comfort, acceptability, and sensation. The four dimensions were: the Conduciveness of the event, who/what caused the event (Causality), who had control (Agency), and whether the event was expected (Expectations). These dimensions, except for Expectations, were good predictors of the reported emotions. Expectations, however, predicted the reported thermal sensation, its acceptability, and ensuing comfort. The more expected an event was, the more uncomfortable a person felt, and the less likely they reported a neutral thermal sensation. Together, these results support an embodied view of how subjective appraisals affect thermal experience. Overall, we show that appraisal dimensions mediate occupants' evaluation of their thermal sensation, which suggests an additional method for understanding psychological adaption. PMID:27445877

  19. College Students' Comfort Level Discussing Death with Faculty and Perceptions of Faculty Support for Grief-Affected Students

    ERIC Educational Resources Information Center

    Hedman, A. S.

    2012-01-01

    Students' comfort discussing death with faculty, views regarding faculty's likelihood to provide accommodations to grief-affected students, and perceived empathy of faculty were assessed. Undergraduate students (n = 371) attending a Midwestern university completed the Student Survey on Grief Issues. Twenty-six percent reported the death of at…

  20. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  1. Comparison of thermal comfort performance of two different types of road vehicle climate control systems.

    PubMed

    Quanten, S; Van Brecht, A; Berckmans, D

    2007-03-01

    The performance of climate control systems in vehicles becomes more and more important, especially against the background of the important relationship between compartment climate and driver mental condition and, thus, traffic safety. The performance of two different types of climate control systems, an un-air-conditioned heating/cooling device (VW) and an air-conditioning climate control unit (BMW), is compared using modern and practical evaluation techniques quantifying both the dynamic 3-D temperature distribution and the local air refreshment rate. Both systems suffer from considerable temperature gradients: temperature gradients in the U-AC (VW) car up to 8-9 degrees C are encountered, while the AC (BMW) delivers clear improvement resulting in temperature gradients of 5-6 degrees C. The experiments clearly demonstrate the effect of the presence of even a single passenger on the thermal regime, increasing the existing thermal discrepancies in the compartment with 15% independent of ventilation rate. Furthermore, in terms of air refreshment rates in the vehicle compartment, an air-conditioning unit halves the air refreshment time at all positions in the vehicle cabin, delivering a significant improvement in terms of human comfort. Similarly, extra air inlets in the back compartment of a car deliver progress in terms of cabin refreshment rate (93 s down to 50 s).

  2. Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode.

    PubMed

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2011-11-01

    The main objective of the present work is the assessment of the thermal insulation of clothing ensembles, both in static conditions and considering the effect of body movements. The different equations used to calculate the equivalent thermal resistance of the whole body, namely the serial, the global and the parallel methods, are considered and the results are presented and discussed for the basic, the effective and the total clothing insulations. The results show that the dynamic thermal insulation values are always lower than the corresponding static ones. The highest mean relative difference [(static-dynamic)/static] was obtained with the parallel method and the lowest with the serial. For I(cl) the mean relative differences varied from 0.5 to 13.4% with the serial method, from 5.6 to 14.6% with the global and from 7.2 to 17.7% with the parallel method. In addition, the dynamic tests presents the higher mean relative differences between the calculation methods. The results also show that the serial method always presents the higher values and the parallel method the lowest ones. The relative differences between the calculation methods {[(serial-global)/global] and [(parallel-global)/global]} were sometimes significant and associated to the non-uniform distribution of the clothing insulation. In fact, the ensembles with the highest thermal insulation values present the highest differences between the calculation methods.

  3. Thermal comfort of aeroplane seats: influence of different seat materials and the use of laboratory test methods.

    PubMed

    Bartels, Volkmar T

    2003-07-01

    This study determined the influence of different cover and cushion materials on the thermal comfort of aeroplane seats. Different materials as well as ready made seats were investigated by the physiological laboratory test methods Skin Model and seat comfort tester. Additionally, seat trials with human test subjects were performed in a climatic chamber. Results show that a fabric cover produces a considerably higher sweat transport than leather. A three-dimensional knitted spacer fabric turns out to be the better cushion alternative in comparison to a moulded foam pad. Results from the physiological laboratory test methods nicely correspond to the seat trials with human test subjects.

  4. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments

    NASA Astrophysics Data System (ADS)

    Coutts, Andrew M.; White, Emma C.; Tapper, Nigel J.; Beringer, Jason; Livesley, Stephen J.

    2016-04-01

    Urban street trees provide many environmental, social, and economic benefits for our cities. This research explored the role of street trees in Melbourne, Australia, in cooling the urban microclimate and improving human thermal comfort (HTC). Three east-west (E-W) oriented streets were studied in two contrasting street canyon forms (deep and shallow) and between contrasting tree canopy covers (high and low). These streets were instrumented with multiple microclimate monitoring stations to continuously measure air temperature, humidity, solar radiation, wind speed and mean radiant temperature so as to calculate the Universal Thermal Climate Index (UTCI) from May 2011 to June 2013, focusing on summertime conditions and heat events. Street trees supported average daytime cooling during heat events in the shallow canyon by around 0.2 to 0.6 °C and up to 0.9 °C during mid-morning (9:00-10:00). Maximum daytime cooling reached 1.5 °C in the shallow canyon. The influence of street tree canopies in the deep canyon was masked by the shading effect of the tall buildings. Trees were very effective at reducing daytime UTCI in summer largely through a reduction in mean radiant temperature from shade, lowering thermal stress from very strong (UTCI > 38 °C) down to strong (UTCI > 32 °C). The influence of street trees on canyon air temperature and HTC was highly localized and variable, depending on tree cover, geometry, and prevailing meteorological conditions. The cooling benefit of street tree canopies increases as street canyon geometry shallows and broadens. This should be recognized in the strategic placement, density of planting, and species selection of street trees.

  5. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  6. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong.

    PubMed

    Cheng, Vicky; Ng, Edward; Chan, Cecilia; Givoni, Baruch

    2012-01-01

    This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments--an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index--physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.

  7. Human thermal comfort antithesis in the context of the Mediterranean tourism potential

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana

    2016-04-01

    Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could

  8. Cooling vest for improving surgeons' thermal comfort: a multidisciplinary design project.

    PubMed

    Langø, Thomas; Nesbakken, Ragnhild; Faerevik, Hilde; Holbø, Kristine; Reitan, Jarl; Yavuz, Yunus; Mårvik, Ronald

    2009-01-01

    A laparoscopic surgeon sometimes experiences heat-related discomfort even though the temperature situation is moderate. The aim of this project was to design a cooling vest using a phase change material to increase thermal comfort for the surgeon. The project focused on the design process to reveal the most important parameters for the design of a cooling vest that could be demonstrated in a clinical setting. We performed an entire design process, from problem analysis, situation observations, concept for a prototype, temperature measurements, and a final design based on clinical testing. The project was conducted by a multidisciplinary team consisting of product designers, engineers, physiologists, and surgeons. We carried out four physiological demonstrations of one surgeon's skin temperatures and heart rate during different laparoscopic procedures. A commercially available cooling vest for firemen and two proof-of-concept prototypes were tested alongside a reference operation without cooling. To aid the final design, one person went through a climate chamber test with two different set-ups of cooling elements. The final design was found to improve the conditions of our test subject. It was found that whole trunk cooling was more effective than only upper trunk cooling. A final design was proposed based on the design process and the findings in the operating room and in the laboratory. Although the experiences using the vest seemed positive, further studies on several operators and more surgical procedures are needed to determine the true benefits for the operator.

  9. Modelling thermal comfort of visitors at urban squares in hot and arid climate using NN-ARX soft computing method

    NASA Astrophysics Data System (ADS)

    Kariminia, Shahab; Motamedi, Shervin; Shamshirband, Shahaboddin; Piri, Jamshid; Mohammadi, Kasra; Hashim, Roslan; Roy, Chandrabhushan; Petković, Dalibor; Bonakdari, Hossein

    2016-05-01

    Visitors utilize the urban space based on their thermal perception and thermal environment. The thermal adaptation engages the user's behavioural, physiological and psychological aspects. These aspects play critical roles in user's ability to assess the thermal environments. Previous studies have rarely addressed the effects of identified factors such as gender, age and locality on outdoor thermal comfort, particularly in hot, dry climate. This study investigated the thermal comfort of visitors at two city squares in Iran based on their demographics as well as the role of thermal environment. Assessing the thermal comfort required taking physical measurement and questionnaire survey. In this study, a non-linear model known as the neural network autoregressive with exogenous input (NN-ARX) was employed. Five indices of physiological equivalent temperature (PET), predicted mean vote (PMV), standard effective temperature (SET), thermal sensation votes (TSVs) and mean radiant temperature ( T mrt) were trained and tested using the NN-ARX. Then, the results were compared to the artificial neural network (ANN) and the adaptive neuro-fuzzy inference system (ANFIS). The findings showed the superiority of the NN-ARX over the ANN and the ANFIS. For the NN-ARX model, the statistical indicators of the root mean square error (RMSE) and the mean absolute error (MAE) were 0.53 and 0.36 for the PET, 1.28 and 0.71 for the PMV, 2.59 and 1.99 for the SET, 0.29 and 0.08 for the TSV and finally 0.19 and 0.04 for the T mrt.

  10. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-09-01

    In chamber experiments, we investigated the ventilation effectiveness and thermal comfort of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin or a human volunteer seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air in the breathing zone) in experiments with the mannequin ranged from 1.4 to 2.7 (median, 1.8), whereas with human subjects the air change effectiveness ranged from 1.3 to 2.3 (median, 1.6). The majority of the air change effectiveness values with the human subjects were less than values with the mannequin at comparable tests. Similarly, the tests run with supply air temperature equal to the room air temperature had lower air change effectiveness values than comparable tests with the supply air temperature lower ({approx}5 C) than the room air temperature. The air change effectiveness values are higher than typically reported for commercially available task ventilation or displacement ventilation systems. Based on surveys completed by the subjects, operation of the task ventilation system did not cause thermal discomfort.

  11. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    PubMed

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation

  12. Assessment of thermal comfort level at pedestrian level in high-density urban area of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ma, J.; Ng, E.; Yuan, C.; Lai, A.

    2015-12-01

    Hong Kong is a subtropical city which is very hot and humid in the summer. Pedestrians commonly experience thermal discomfort. Various studies have shown that the tall bulky buildings intensify the urban heat island effect and reduce urban air ventilation. However, relatively few studies have focused on modeling the thermal load at pedestrian level (~ 2 m). This study assesses the thermal comfort level, quantified by PET (Physiological Equivalent Temperature), using a GIS - based simulation approach. A thermal comfort level map shows the PET value of a typical summer afternoon in the high building density area. For example, the averaged PET in Sheung Wan is about 41 degree Celsius in a clear day and 38 degree Celsius in a cloudy day. This map shows where the walkways, colonnades, and greening is most needed. In addition, given a start point, a end point, and weather data, we generate the most comfort walking routes weighted by the PET. In the simulation, shortwave irradiance is calculated using the topographic radiation model (Fu and Rich, 1999) under various cloud cover scenarios; longwave irradiance is calculated based the radiative transfer equation (Swinbank, 1963). Combining these two factors, Tmrt (mean radiant temperature) is solved. And in some cases, the Tmrt differ more than 40 degree Celsius between areas under the sun and under the shades. Considering thermal load and wind information, we found that shading from buildings has stronger effect on PET than poor air ventilation resulted from dense buildings. We predict that pedestrians would feel more comfortable (lower PET) in a hot summer afternoon when walking in the higher building density area.

  13. Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity.

    PubMed

    Kenny, Natasha A; Warland, Jon S; Brown, Robert D; Gillespie, Terry G

    2009-09-01

    The purpose of this paper is to improve the accuracy of the COMFA outdoor thermal comfort model for application to subjects performing physical activity. A sensitivity analysis was performed to identify conditions where the COMFA model produced erroneous estimates of the heat and moisture exchanges between the human body and the ambient environment, based on data from subjects performing moderate-to-vigorous physical activity. Errors occurred at high metabolic rates (> 400 W m(-2)), high wind speeds (> 4 m s(-1)) and warm air temperatures (> 28 degrees C). Revisions to the clothing resistance (r(c)), clothing vapour resistance (r(c upsilon)), skin tissue resistance (r(t)), and skin temperature (T(sk)) equations were proposed. The revised assessment revealed that subjects had a wide range of thermal acceptability (B = -20 W m(-2) to +150 W m(-2)), which was offset to the warm-end of the comfort scale. The revised model (COMFA*) performed well, predicting the actual thermal sensation of subjects in approximately 70% of cases. This study effectively integrated current empirical research related the effect of wind and activity on the clothing microclimate to improve the application of an outdoor thermal comfort model for subjects performing physical activity.

  14. Study of weather and thermal comfort influence on sport performance: prognostic analysis applied to Rio de Janeiro's city marathon

    NASA Astrophysics Data System (ADS)

    Pallotta, M.; Herdies, D. L.; Gonçalves, L. G.

    2013-05-01

    There is nowadays a growing interest in the influence and impacts of weather and climate in human life. The weather conditions analysis shows the utility of this type of tool when applied in sports. These conditions act as a differential in strategy and training, especially for outdoor sports. This study had as aim objective develop weather forecast and thermal comfort evaluation targeted to sports, and hoped that the results can be used to the development of products and weather service in the Olympic Games 2016 in Rio de Janeiro City. The use of weather forecast applied to the sport showed to be efficient for the case of Rio de Janeiro City Marathon, especially due to the high spatial resolution. The WRF simulations for the three marathons studied showed good results for temperature, atmospheric pressure, and relative humidity. On the other hand, the forecast of the wind showed a pattern of overestimation of the real situation in all cases. It was concluded that the WRF model provides, in general, more representative simulations from 36 hours in advance, and with 18 hours of integration they were even better, describing efficiently the synoptic situation that would be found. A review of weather conditions and thermal comfort at specific points of the marathon route showed that there are significant differences between the stages of the marathon, which makes possible to plan the competition strategy under the thermal comfort. It was concluded that a relationship between a situation more thermally comfortable (uncomfortable) and the best (worst) time in Rio de Janeiro City Marathon

  15. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    PubMed

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  16. Infrared reflector based on liquid crystal polymers and its impact on thermal comfort conditions in buildings

    NASA Astrophysics Data System (ADS)

    Khandelwal, Hitesh; Roberz, Franziska; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Bastiaansen, Cees W. M.; Broer, Dick J.; Debije, Michael G.; Schenning, Albert P. H. J.

    2014-10-01

    There has been a huge increase in the global demand of energy over the last few years. One of the main contributors to energy consumption in buildings, cars, greenhouses and indoor spaces is the cooling devices needed to maintain the indoor temperature at comfortable levels. To reduce the energy used by cooling devices, we need improved light control in transparent building elements, such as windows. Infrared (IR) reflectors applied to the windows for rejection of infrared light would be very attractive, especially if they do not affect light in the visible region. A method to selectively and precisely control infrared transmission is via the use of cholesteric liquid crystal (Ch-LC) polymer reflectors. Ch-LCs, also known as chiral-nematic LCs, reflect circularly polarized light as a result of their self-organizing molecular helices. The pitch of the helix in these networks determines the wavelength of reflection. In contrast to existing alternatives, they are characterized by a very sharp cut-off between the transmissive and the reflective state enabling exact tailoring of the heat reflection. In this article we have focused on fabrication of infrared reflectors using Ch-LCs and a computational model was used to predict the energy savings of this IR-reflector in an office building in Abu Dhabi which indicated that 6 % energy savings can be realized.

  17. Thermal comfort and tourism climate changes in the Qinghai-Tibet Plateau in the last 50 years

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chi, Xiaoli

    2014-08-01

    In this paper, the thermal comfort and its changes in the Qinghai-Tibet Plateau over the last 50 years have been evaluated by using the physiological equivalent temperature (PET), and a more complete tourism climate picture is presented by the Climate-Tourism-Information Scheme (CTIS). The results show that PET classes in the Qinghai-Tibet Plateau cover six out of the nine-point thermal sensation scale — very cold, cold, cool, slightly cool, neutral and slightly warm — and cold stress is prevailing throughout the year. A small number of slightly cool/warm and neutral days occur in summer months. There occur no warm, hot and very hot days. The frequency of PET classes varies among regions, depending on their altitude/latitude conditions. Xining, Lhasa and Yushu are the top three cities in terms of thermal favorability. With global warming, annual cumulative number of thermally favorable days has been increasing, and that of cold stress has been reducing. The change is more obvious in lower elevation than that in higher elevation regions. The improving thermal comfort in the Qinghai-Tibet Plateau might be a glad tiding for local communities and tourists. Besides PET, CTIS can provide a number of additional bioclimatic information related to tourism and recreational activities. CTIS for Lhasa and Xining shows that sunshine is plentiful all the year round, and windy days occur frequently from late January to early May. This is a useful bioclimatic information for tourism authorities, travel agencies, resorts and tourists.

  18. Residual limb skin temperature and thermal comfort in people with amputation during activity in a cold environment.

    PubMed

    Segal, Ava D; Klute, Glenn K

    2016-01-01

    Thermal comfort remains a common problem for people with lower-limb amputation. Both donning a prosthesis and engaging in activity at room temperature can increase residual limb skin temperature; however, the effects of activity on skin temperature and comfort in more extreme environments remain unknown. We examined residual limb skin temperatures and perceived thermal comfort (PTC; 11-point Likert scale) of participants with unilateral transtibial amputation (n = 8) who were snowshoeing in a cold environment. Residual limb skin temperature increased by 3.9°C [3.0°C to 4.7°C] (mean difference [95% confidence interval (CI)], p < 0.001) after two 30 min exercise sessions separated by a 5 min rest session. Minimal cooling (-0.2°C [-1.1°C to 0.6°C]) occurred during the rest period. Similar changes in PTC were found for the residual limb, intact limb, and whole body, with a mean scale increase of 1.6 [1.1 to 2.1] and 1.3 [0.8 to 1.8] for the first and second exercise sessions, respectively (p < 0.001). Activity in a cold environment caused similar increases in residual limb skin temperature as those found in studies conducted at room temperature. Participants with amputation perceived warming as their skin temperature increased during exercise followed by the perception of cooling during rest, despite minimal associated decreases in skin temperature.

  19. Contribution of garment fit and style to thermal comfort at the lower body

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Böhnisch, Sonja; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2016-12-01

    The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.

  20. Contribution of garment fit and style to thermal comfort at the lower body.

    PubMed

    Mert, Emel; Böhnisch, Sonja; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2016-12-01

    The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.

  1. Annual Energy Savings and Thermal Comfort of Autonomously Heated and Cooled Office Chairs

    SciTech Connect

    Carmichael, Scott; Booten, Chuck; Robertson, Joseph; Chin, Justin; Christensen, Dane; Pless, Jacquelyn; Arent, Doug

    2016-07-01

    Energy use in offices buildings is largely driven by air conditioning demands. But the optimal temperature is not the same for all building occupants, leading to the infamous thermostat war. And many occupants have independently overcome building comfort weaknesses with their own space heaters or fans. NREL tested is a customized office chair that automatically heats and cools the occupant along the seat and chair back according to the occupants' personal preferences. This product is shown to deliver markedly better comfort at room temperatures well above typical office cooling setpoints. Experimental subjects reported satisfaction in these elevated air temperatures, partly because the chair's cooling effect was tuned to their own individual needs. Simulation of the chair in office buildings around the U.S. shows that energy can be saved everywhere, with impacts varying due to the climate. Total building HVAC energy savings exceeded 10% in hot-dry climate zones. Due to high product cost, simple payback for the chair we studied is beyond the expected chair life. We then understood the need to establish cost-performance targets for comfort delivery packages. NREL derived several hypothetical energy/cost/comfort targets for personal comfort product systems. In some climate regions around the U.S., these show the potential for office building HVAC energy savings in excess of 20%. This report documents this research, providing an overview of the research team's methods and results while also identifying areas for future research building upon the findings.

  2. Energy usage while maintaining thermal comfort: A case study of a UNT dormitory

    NASA Astrophysics Data System (ADS)

    Gambrell, Dusten

    Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.

  3. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  4. Individual thermal profiles as a basis for comfort improvement in space and other environments

    NASA Technical Reports Server (NTRS)

    Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.

    2002-01-01

    , depending on their size and tissue mass content. The design of individual thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.

  5. Human thermal comfort conditions and urban planning in hot-humid climates—The case of Cuba

    NASA Astrophysics Data System (ADS)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  6. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    PubMed

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  7. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.

    PubMed

    Giaconia, Carlo; Orioli, Aldo; Di Gangi, Alessandra

    2015-05-01

    The results of an experimental investigation on the human thermal comfort inside the cabin of some Airbus A319 aircrafts during 14 short-haul domestic flights, linking various Italian cities, are presented and used to define a correlation among the predicted mean vote (PMV), a procedure which is commonly used to assess the thermal comfort in inhabited environments, and the equivalent temperature and mean thermal vote (MTV), which are the parameters suggested by the European Standard EN ISO 14505-2 for the evaluation of the thermal environment in vehicles. The measurements of the radiant temperature, air temperature and relative humidity during flights were performed. The air temperature varied between 22.2 °C and 26.0 °C; the relative humidity ranged from 8.7% to 59.2%. The calculated values of the PMV varied from -0.16 to 0.90 and were confirmed by the answers of the passengers. The equivalent temperature was evaluated using the equations of Fanger or on the basis of the values of the skin temperature measured on some volunteers. The correlation linking the thermal sensation scales and zones used by the PMV and the MTV resulted quite accurate because the minimum value of the absolute difference between such environmental indexes equalled 0.0073 and the maximum difference did not exceed the value of 0.0589. Even though the equivalent temperature and the MTV were specifically proposed to evaluate the thermal sensation in vehicles, their use may be effectively extended to the assessment of the thermal comfort in airplanes or other occupied places.

  8. Thermal Band Analysis of Agricultural Land Use and its Effects on Bioclimatic Comfort: The Case of Pasinler

    NASA Astrophysics Data System (ADS)

    Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi

    2014-05-01

    Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.

  9. Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment

    NASA Astrophysics Data System (ADS)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2012-01-01

    Human thermal comfort assessments pertaining to exercise while in outdoor environments can improve urban and recreational planning. The current study applied a simple four-segment skin temperature approach to the COMFA (COMfort FormulA) outdoor energy balance model. Comparative results of measured mean skin temperature ( {{bar{T}}}nolimits_{{Msk}} ) with predicted {{bar{T}}}nolimits_{{sk}} indicate that the model accurately predicted {{bar{T}}}nolimits_{{sk}} , showing significantly strong agreement ( r = 0.859, P < 0.01) during outdoor exercise (cycling and running). The combined 5-min mean variation of the {{bar{T}}}nolimits_{{sk}} RMSE was 1.5°C, with separate cycling and running giving RMSE of 1.4°C and 1.6°C, respectively, and no significant difference in residuals. Subjects' actual thermal sensation (ATS) votes displayed significant strong rank correlation with budget scores calculated using both measured and predicted {{bar{T}}}nolimits_{{sk}} ( r s = 0.507 and 0.517, respectively, P < 0.01). These results show improved predictive strength of ATS of subjects as compared to the original and updated COMFA models. This psychological improvement, plus {{bar{T}}}nolimits_{{sk}} and T c validations, enables better application to a variety of outdoor spaces. This model can be used in future research studying linkages between thermal discomfort, subsequent decreases in physical activity, and negative health trends.

  10. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment.

    PubMed

    Katavoutas, George; Flocas, Helena A; Matzarakis, Andreas

    2015-02-01

    Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.

  11. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  12. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest

    NASA Astrophysics Data System (ADS)

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s-1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m-2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  13. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest.

    PubMed

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s(-1)), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m(-2). Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  14. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China.

    PubMed

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3 degrees C and 27.7 degrees C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0-31.6 degrees C) was wider than that in air-conditioned buildings (25.1-30.3 degrees C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9 degrees C and 27.3 degrees C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4 degrees C cooler than neutral temperatures. This result suggests that people of hot climates may use words like "slightly cool" to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants' comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26 degrees C or even higher in air-conditioned buildings was confirmed as making

  15. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation

  16. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    PubMed

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2016-10-18

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates.

  17. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.

    PubMed

    Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-01-01

    Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.

  18. The Return of the Freudian Couch®: Managing Affectivity through Technologies of Comfort

    ERIC Educational Resources Information Center

    Juelskjaer, Malou; Staunaes, Dorthe; Ratner, Helene

    2013-01-01

    This article explores how the affective "set-up" of Freud's legendary couch has been exported into modern education relations. The so-called psy-sciences from pedagogy, psychology, and psychiatry have informed self-management in school. Managing self-management has a material-affective dimension. Through affective encounters with the…

  19. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods.

    PubMed

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2008-11-01

    The present work is dedicated to a comparative analysis of calculation methods about clothing insulation with a thermal manikin operating under the thermal comfort regulation mode. The serial, global, and parallel calculation methods are considered and the thermal insulation results for garments (30) and ensembles (9) are discussed. The serial and parallel methods presents the higher and lower values, respectively, and the differences were sometimes significant. Considering the results for the effective thermal insulation, the mean values of the relative differences between the serial and global methods were 25.7% for the daily wear garments, 45.2% for the cold protective garments and 38.5% for the ensembles. The corresponding mean values for the global and parallel methods were 8.7, 15.8, and 10.5%, respectively. Since any uneven clothing insulation is to be expected as a source of error, particular care must be required when the calculation methods deal with cold protective clothing.

  20. Effect of climate change on outdoor thermal comfort in humid climates

    PubMed Central

    2014-01-01

    Background Galicia, in northwest Spain, experiences warm summers and winters. However, the higher relative humidity that prevails the whole year through and the location of the summer hot points are related to real weather heat stroke in the hottest season. However, Planet Global Heating was recently analyzed for the climate in Galicia. Climate change was found to be able to trigger effects that involve a new situation with new potential regions of risk. In this paper, 50 weather stations were selected to sample the weather conditions in this humid region, over the last 10 years. From these results, new regions with a potential for heat stroke risk in the next 20 years were identified using the humidex index. Results Results reveal that during the last 10 years, the winter season presents more comfortable conditions, whereas the summer season presents the highest humidex value. Further, the higher relative humidity throughout the whole year reveals that the humidex index clearly depends upon the outdoor temperature. Conclusions Global Planet Heating shows a definite effect on the outdoor comfort conditions reaching unbearable degrees in the really hottest zones. Therefore, this effect will clearly influence tourism and risk prevention strategies in these areas. PMID:24517127

  1. Effect evaluation of a heated ambulance mattress-prototype on body temperatures and thermal comfort - an experimental study

    PubMed Central

    2014-01-01

    Background Exposure to cold temperatures is, often, a neglected problem in prehospital care. One of the leading influences of the overall sensation of cold discomfort is the cooling of the back. The aim of this study was to evaluate the effect of a heated ambulance mattress-prototype on body temperatures and thermal comfort in an experimental study. Method Data were collected during four days in November, 2011 inside and outside of a cold chamber. All participants (n = 23) participated in two trials each. In one trial, they were lying on a stretcher with a supplied heated mattress and in the other trial without a heated mattress. Outcomes were back temperature, finger temperature, core body temperature, Cold Discomfort Scale (CDS), four statements from the state-trait anxiety – inventory (STAI), and short notes of their experiences of the two mattresses. Data were analysed both quantitatively and qualitatively. A repeated measure design was used to evaluate the effect of the two mattresses. Results A statistical difference between the regular mattress and the heated mattress was found in the back temperature. In the heated mattress trial, the statement “I am tense” was fewer whereas the statements “I feel comfortable”, “I am relaxed” and “I feel content” were higher in the heated mattress trial. The qualitative analyses of the short notes showed that the heated mattress, when compared to the unheated mattress, was experienced as warm, comfortable, providing security and was easier to relax on. Conclusions Heat supply from underneath the body results in increased comfort and may prevent hypothermia which is important for injured and sick patients in ambulance care. PMID:25103366

  2. Analysis of the Thermal Comfort and Impact Properties of the Neoprene-Spacer Fabric Structure for Preventing the Joint Damages

    PubMed Central

    Ghorbani, Ehsan; Hasani, Hossein; Rafeian, Homa; Hashemibeni, Batool

    2013-01-01

    Background: Frequent moves at the joint, plus external factors such as trauma, aging, and etc., are all reasons for joint damages. In order to protect and care of joints, the orthopedic textiles are used. To protect the joints, these textiles keep muscles warm to prevent shock. To produce orthopedic textiles, Neoprene foams have been traditionally used. These foams are flexible and resist impact, but are not comfortable enough and might cause problems for the consumer. This study introduces a new structure consisting of perforated Neoprene foam attached to the spacer fabric and also compares the properties of thermal and moisture comfort and impact properties of this structure in comparison with Neoprene foam. Methods: In order to measure the factors related to the samples lateral pressure behavior, a tensile tester was used. A uniform pressure is applied to the samples and a force – displacement curve is obtained. The test continues until the maximum compression force is reached to 50 N. The area under the curve is much greater; more energy is absorbed during the impact. In order to investigate the dynamic heat and moisture transfer of fabrics, an experimental apparatus was developed. This device made the simulation of sweating of human body possible and consisted of a controlled environmental chamber, sweating guarded hot plate, and data acquisition system. Results: The findings show that the Neoprene-spacer fabric structure represents higher toughness values compared to other samples (P ≤ 0.001). Neoprene-spacer fabric structure (A3) has higher rate of moisture transport than conventional Neoprene foam; because of undesirable comfort characteristics in Neoprene. Conclusions: Results of the tests indicate full advantage of the new structure compared with the Neoprene foam for use in orthopedic textiles (P ≤ 0.001). PMID:24049594

  3. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  4. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    PubMed

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions.

  5. Novel ventilation design of combining spacer and mesh structure in sports T-shirt significantly improves thermal comfort.

    PubMed

    Sun, Chao; Au, Joe Sau-chuen; Fan, Jintu; Zheng, Rong

    2015-05-01

    This paper reports on novel ventilation design in sports T-shirt, which combines spacer and mesh structure, and experimental evidence on the advantages of design in improving thermal comfort. Evaporative resistance (Re) and thermal insulation (Rc) of T-shirts were measured using a sweating thermal manikin under three different air velocities. Moisture permeability index (i(m)) was calculated to compare the different designed T-shirts. The T-shirts of new and conventional designs were also compared by wearer trials, which were comprised of 30 min treadmill running followed by 10 min rest. Skin temperature, skin relative humidity, heart rate, oxygen inhalation and energy expenditure were monitored, and subjective sensations were asked. Results demonstrated that novel T-shirt has 11.1% significant lower im than control sample under windy condition. The novel T-shirt contributes to reduce the variation of skin temperature and relative humidity up to 37% and 32%, as well as decrease 3.3% energy consumption during exercise.

  6. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity

    NASA Astrophysics Data System (ADS)

    Kenny, Natasha A.; Warland, Jon S.; Brown, Robert D.; Gillespie, Terry G.

    2009-09-01

    This study assessed the performance of the COMFA outdoor thermal comfort model on subjects performing moderate to vigorous physical activity. Field tests were conducted on 27 subjects performing 30 min of steady-state activity (walking, running, and cycling) in an outdoor environment. The predicted COMFA budgets were compared to the actual thermal sensation (ATS) votes provided by participants during each 5-min interval. The results revealed a normal distribution in the subjects’ ATS votes, with 82% of votes received in categories 0 (neutral) to +2 (warm). The ATS votes were significantly dependent upon sex, air temperature, short and long-wave radiation, wind speed, and metabolic activity rate. There was a significant positive correlation between the ATS and predicted budgets (Spearman’s rho = 0.574, P < 0.01). However, the predicted budgets did not display a normal distribution, and the model produced erroneous estimates of the heat and moisture exchange between the human body and the ambient environment in 6% of the cases.

  7. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in prehospital emergency care – an intervention study

    PubMed Central

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients’ exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions The use of active heat from underneath increases the patients’ thermal comfort and may prevent the negative consequences of cold stress. PMID:26374468

  8. Thermal Comfort and HVAC Systems Operation Challenges in a Modern Office Building - Case Study

    NASA Astrophysics Data System (ADS)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2016-12-01

    The aim of the study is to evaluate the indoor environment conditions in the new-built office building, Energetikum, and consequently suggest the control strategies, which can lead to determination of critical areas and elimination of thermal discomfort. Representative offices have been selected and equipped with portable sensor groups for monitoring of the indoor environment parameters. Contribution is presenting the data obtained from 6 selected rooms during 3 reference weeks - heating, transition and cooling period. The measured results indicate overheating of the rooms, particularly in the ones with the large glazed areas with higher solar gains. The values of indoor air temperature during heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (the cat. II.) during 13 % - 49 % of evaluated time intervals. Consequently, the simulation model of the selected office was created and is pointing to the possibilities of the control system improvement, which can lead to an elimination of the problem with overheating.

  9. Implementation of human thermal comfort information in Köppen-Geiger climate classification-the example of China.

    PubMed

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-11-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  10. Implementation of human thermal comfort information in Köppen-Geiger climate classification—the example of China

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-11-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  11. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    NASA Astrophysics Data System (ADS)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2017-01-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  12. Black Versus Gray T-Shirts: Comparison of Spectrophotometric and Other Biophysical Properties of Physical Fitness Uniforms and Modeled Heat Strain and Thermal Comfort

    DTIC Science & Technology

    2016-09-01

    Kraning KK & Gonzalez RR. A mechanistic computer simulation of human work in heat that accounts for physical and physiological effects of clothing...associated physiological responses at various ambient temperatures. Environmental Research, 1(1), 1-20, 1967. 12. Gagge AP, Stolwijk JA J, & Saltin B...Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environmental Research, 2(3), 209

  13. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    NASA Astrophysics Data System (ADS)

    Ogoli, David Mwale

    affect a building's use regarding thermal mass occur during early design stages. The intention is to present new knowledge to architects regarding the use of thermal mass in equatorial high altitude climates for energy-efficiency through passive solar strategies.

  14. Dairy-based preexercise meal does not affect gut comfort or time-trial performance in female cyclists.

    PubMed

    Haakonssen, Eric C; Ross, Megan L; Cato, Louise E; Nana, Alisa; Knight, Emma J; Jenkins, David G; Martin, David T; Burke, Louise M

    2014-10-01

    Some athletes avoid dairy in the meal consumed before exercise due to fears about gastrointestinal discomfort. Regular exclusion of dairy foods may unnecessarily reduce intake of high quality proteins and calcium with possible implications for body composition and bone health. This study compared the effects of meals that included (Dairy) or excluded (Control) dairy foods on gastric comfort and subsequent cycling performance. Well-trained female cyclists (n = 32; mean ± SD; 24.3 ± 4.1 y; VO(2peak) 57.1 ± 4.9 ml/kg/min) completed two trials (randomized cross-over design) in which they consumed a meal (2 g/kg carbohydrate and 54 kJ/kg) 2 hr before a 90-min cycle session (80 min at 60% maximal aerobic power followed by a 10-min time trial; TT). The dairy meal contained 3 servings of dairy foods providing ~1350 mg calcium. Gut comfort and palatability were measured using questionnaires. Performance was measured as maximum mean power during the TT (MMP10(min)). There was no statistical or clinical evidence of an effect of meal type on MMP10(min) with a mean difference (Dairy - Control) of 4 W (95% CI [-2, 9]). There was no evidence of an association between pretrial gut comfort and meal type (p = .15) or between gut comfort delta scores and meal type postmeal (p = .31), preexercise (p = .17) or postexercise (p = .80). There was no statistical or clinical evidence of a difference in palatability between meal types. In summary, substantial amounts of dairy foods can be included in meals consumed before strenuous cycling without impairing either gut comfort or performance.

  15. Optimum utilization of site energy sources for all-season thermal comfort in new residential construction for single-family attached (rowhouse/townhouse) designs

    SciTech Connect

    Not Available

    1981-02-26

    A proposed design analysis is presented of a passive solar energy efficient system for a typical three-level, three bedroom, two story, garage-under townhouse. The design incorporates the best, most performance-proven and cost effective products, materials, processes, technologies, and sub-systems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration sysems, the plenum-supply system, the thermal-storage party-fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described. Features of the design under analysis and on which conclusions have not yet been formulated are: the energy reclamation system, auxiliary energy back-up systems, the distribution system and operating modes, the control systems, and non-comfort energy systems and inputs. (MCW)

  16. Artificial neural network models as a useful tool to forecast human thermal comfort using microclimatic and bioclimatic data in the great Athens area (Greece).

    PubMed

    Moustris, Kostas P; Tsiros, Ioannis X; Ziomas, Ioannis C; Paliatsos, Athanasios G

    2010-01-01

    The present study deals with the development and application of Artificial Neural Network (ANN) models as a tool for the evaluation of human thermal comfort conditions in the urban environment. ANNs are applied to forecast for three consecutive days during the hot period of the year (May-September) the human thermal comfort conditions as well as the daily number of consecutive hours with high levels of thermal discomfort in the great area of Athens (Greece). Modeling was based on bioclimatic data calculated by two widely used biometereorogical indices (the Discomfort Index and the Cooling Power Index) and microclimatic data (air temperature, relative humidity and wind speed) from 7 different meteorological stations for the period 2001-2005. Model performance showed that the risk of human discomfort conditions exceeding certain thresholds can be successfully forecasted by the ANN models. In addition, despite the limitations of the models, the results of the study demonstrated that ANNs, when adequately trained, could have a high applicability in the area of prevention human thermal discomfort levels in urban areas, based on a series of relatively limited number of bioclimatic data values calculated prior to the period of interest.

  17. Physiological comfort of biofunctional textiles.

    PubMed

    Bartels, Volkmar T

    2006-01-01

    Statistics show that the wear comfort is the most important property of clothing demanded by users and consumers. Hence, biofunctional textiles only have a high market potential, if they are comfortable. In this work it is shown how the thermophysiological and skin sensorial wear comfort of biofunctional textiles can be measured effectively by means of the Skin Model and skin sensorial test apparatus. From these measurements, wear comfort votes can be predicted, assessing a textile's wear comfort in practice. These wear comfort votes match exactly the subjective perceptions of test persons. As a result validated by wearer trials with human test subjects, biofunctional textiles can offer the same good wear comfort as classical, non-biofunctional materials. On the other hand, some of the biofunctional treatments lead to a perceivably poorer wear comfort. In particular, the skin sensorial comfort is negatively affected by hydrophobic, smooth (flat) surfaces that easily cling to sweat-wetted skin, or which tend to make textiles stiffer. As guidelines for the improvement of the thermophysiological or skin sensorial wear comfort, it is recommended to use hydrophilic treatments in a suitable concentration and spun yarns instead of filaments.

  18. Evaluation of thermal comfort, physiological, hematological, and seminal features of buffalo bulls in an artificial insemination station in a tropical environment.

    PubMed

    Barros, Daniel Vale; Silva, Lilian Kátia Ximenes; de Brito Lourenço, José; da Silva, Aluizio Otávio Almeida; E Silva, André Guimarães Maciel; Franco, Irving Montanar; Oliveira, Carlos Magno Chaves; Tholon, Patrícia; Martorano, Lucieta Guerreiro; Garcia, Alexandre Rossetto

    2015-06-01

    This study aimed to assess the variation over time in thermal comfort indices and the behavior of physiological parameters related to thermolysis, blood parameters, and semen in natura of buffalo bulls reared in tropical climate. The study was carried out in an artificial insemination station under a humid tropical climate (Afi according to Köppen). Ten water buffalo bulls (Bubalus bubalis) were used during the 5 months (April to August) of study. The environmental Temperature Humidity Index (THId) and the pen microclimate Temperature Humidity Index (THIp) were calculated. Every 25 days, respiratory rate (RR), heart rate (HR), rectal temperature (RT), and Benezra's thermal comfort index (BTCI) were assessed in the morning and in the afternoon. A blood assay was performed every month, while semen was collected weekly. THIp did not vary over the months (P > 0.05) and was higher in the afternoon than in the morning (77.7 ± 2.6 versus 81.8 ± 2.1, P < 0.05). RR, HR, and BTCI significantly increased over the months and were different between the periods of the day (P > 0.05) but within the physiological limits. RT varied between the periods of the day and decreased over the months, being the lowest in August (37.8 ± 0.7 °C), time-impacted hematocrit, mean corpuscular volume, hemoglobin levels, and spermatic gross motility and vigor (P < 0.05). Thus, buffalo bulls reared under a humid tropical climate may have variations in thermal comfort during the hotter periods but are able to efficiently activate thermoregulatory mechanisms and maintain homeothermy, hence preserving their physiological and seminal parameters at normal levels.

  19. The influence of indoor microclimate on thermal comfort and conservation of artworks: the case study of the cathedral of Matera (South Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, Tiziana; Rospi, Gianluca; Cardinale, Nicola; Paterino, Lucia; Persia, Ivan

    2014-05-01

    The Matera Cathedral was built in Apulian-Romanesque style in the thirteenth century on the highest spur of the "Civita" that divides "Sassi" district in two parts. The constructive material is the calcareous stone of the Vaglia, extracted from quarries in the area of Matera. The interior is Baroque and presents several artworks, including: mortars covered with a golden patina, a wooden ceiling, painted canvas and painting frescoes, three minor altars and a major altar of precious white marble, a nativity scene made of local painted limestone. The research had to evaluate the indoor microclimate during and after the restoration works, that also concern the installation of floor heating system to heat the indoor environments. Specifically, we have analyzed the thermal comfort and the effect that the artwork and construction materials inside the Cathedral of Matera have undergone. This evaluation was carried out in two different phases: in the first one we have investigated the state of the art (history of the site, constructive typology and artworks); in the second one we have done a systematic diagnosis and an instrumental one. The analysis were carried out in a qualitative and quantitative way and have allowed us to test indoor microclimatic parameters (air temperature, relative humidity and indoor air velocity), surface temperatures of the envelope and also Fanger's comfort indices (PMV and PPD) according to the UNI EN ISO 7730. The thermal mapping of the wall surface and of the artworks, carried out through thermal imaging camera, and the instrumental measurement campaigns were made both before restoration and after installation of the heating system; in addition measurements were taken with system on and off. The analysis thus made possible to verify that the thermo-hygrometric parameters found, as a result of the recovery operations, meet the limits indicated by the regulations and international studies. In this way, we can affirm that the indoor environment

  20. Brain activation related to affective dimension during thermal stimulation in humans: a functional magnetic resonance imaging study.

    PubMed

    Sung, Eun-Jung; Yoo, Seung-Schik; Yoon, Hyo Woon; Oh, Sung-Suk; Han, Yeji; Park, Hyun Wook

    2007-07-01

    The aim of this study was to identify the activated brain region that is involved with the affective dimension of thermal stimulation (not pain, but innocuous warming) using functional MR imaging. Twelve healthy, right-handed male subjects participated in the study. Thermal stimulation with two different temperatures of 41 degrees C and 34 degrees C was applied to the subjects using a fomentation pack, wrapped around the right lower leg of each subject. On the basis of the subjects' responses after the scanning sessions, the authors were able to observe that the subjects felt "warm" and "slightly pleasant and comfortable" under the 41 degrees C condition. The experimental results indicated that warm stimulation produced a significant increase of activation compared to thermal neutral stimulation in various regions such as contralateral insular, ipsilateral cerebellum, ipsilateral putamen, contralateral middle frontal gyrus, ipsilateral inferior frontal gyrus, contralateral postcentral gyrus, and contralateral paracentral lobule. The activated regions are known to be related to thermal sensory, affective/emotional awareness, cognitive functions, sensory-discrimination, and emotion/affective processing, and so on. These results suggest that an appropriate thermal stimulation can produce a positive emotion and activate emotion/affect related regions of the brain.

  1. A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens

    NASA Astrophysics Data System (ADS)

    Charalampopoulos, Ioannis; Tsiros, Ioannis; Chronopoulou-Sereli, Aikaterini; Matzarakis, Andreas

    2015-09-01

    Studies on human thermal comfort in urban areas typically quantify and assess the influence of the atmospheric parameters studying the values and their patterns of the selected index or parameter. In this paper, the interpretation tools are the first derivative of the selected parameters (∆Parameter/∆t) and the violin plots. Using these tools, the effect of sites' configuration on thermal conditions was investigated. Both derivatives and violin plots indicated the ability of vegetation to act as a buffer to the rapid changes of air temperature, mean radiant temperature, and the physiologically equivalent temperature (PET). The study is focused on the "thermal extreme" seasons of winter (December, January, and February) and summer (June, July, and August) during a 3-year period of measurements in five selected sites under calm wind and sunny conditions. According to the results, the absence of vegetation leads to high derivative values whereas the existence of dense vegetation tends to keep the parameters' values relatively low, especially under hot weather conditions.

  2. A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens.

    PubMed

    Charalampopoulos, Ioannis; Tsiros, Ioannis; Chronopoulou-Sereli, Aikaterini; Matzarakis, Andreas

    2015-09-01

    Studies on human thermal comfort in urban areas typically quantify and assess the influence of the atmospheric parameters studying the values and their patterns of the selected index or parameter. In this paper, the interpretation tools are the first derivative of the selected parameters (∆Parameter/∆t) and the violin plots. Using these tools, the effect of sites' configuration on thermal conditions was investigated. Both derivatives and violin plots indicated the ability of vegetation to act as a buffer to the rapid changes of air temperature, mean radiant temperature, and the physiologically equivalent temperature (PET). The study is focused on the "thermal extreme" seasons of winter (December, January, and February) and summer (June, July, and August) during a 3-year period of measurements in five selected sites under calm wind and sunny conditions. According to the results, the absence of vegetation leads to high derivative values whereas the existence of dense vegetation tends to keep the parameters' values relatively low, especially under hot weather conditions.

  3. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  4. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    PubMed

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  5. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    PubMed Central

    Sakellaris, Ioannis A.; Saraga, Dikaia E.; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G.; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G.; Bluyssen, Philomena M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building’s location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants. PMID:27120608

  6. [Comfort: a concept analysis].

    PubMed

    Tsai, Jia-Ling; Lee, Ya-Ling; Hu, Wen-Yu

    2012-02-01

    Comfort is an important concept and core value of nursing. The defining attributes, antecedents and consequences of comfort need further analysis and exploration, even though the concept of comfort has been addressed previously in nursing literature. We employed the strategies of concept analysis as described by Walker&Avant (2005) to analyze the concept of comfort. The defining attributes of comfort include: 1) effective communication; 2) family and meaningful relationships; 3) maintaining functionality; 4) self-characteristics; 5) physical symptom relief, states, and interventions; 6) psychological, spiritual activities and states; and 7) a sense of safety and security. Antecedents consist of discomfort, distress and suffering. Consequences consist of (1) met/satisfied needs; (2) increased sense of control; (3) sense of inner peace; (4) a pleasant experience; (5) feeling cared for; (6) relief of symptoms; (7) reduced suffering; (8) decreased disequilibrium; and (9) absence of discomfort. We also outline the construction of cases, empirical references and comfort measurement tools. Analysis found comfort to have multiple dimensions and confirmed it as a clinical issue that should receive greater emphasis and valuation. Findings are hoped to increase nurse understanding of the concept of comfort and enable nurses to evaluate level of comfort and follow up on variations in such using empirical tools. Concept analysis can guide further comfort related interventions and research to benefit patients.

  7. Visual comfort evaluated by opponent colors

    NASA Astrophysics Data System (ADS)

    Sagawa, Ken

    2002-06-01

    This study aimed to evaluate psychological impression of visual comfort when we see an image of ordinary colored scene presented in a color display. Effects of opponent colors, i.e. red, green, yellow and blue component, on the subjective judgement on visual comfort to the image were investigated. Three kinds of psychological experiment were designed to see the effects and the results indicated that the red/green opponent color component was more affecting than the yellow-blue one, and red color in particular was the most affecting factor on visual comfort.

  8. Learning in Comfort

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2012-01-01

    Students spend hours a day in classrooms, so it is critical to their learning to have places to sit that are healthful and comfortable. Schools and universities should outfit their classrooms and other learning spaces with furniture that enables students to carry out their school work comfortably and does not detract from their ability to focus…

  9. How the mode of action affects evidence of planning and movement kinematics in aging: End-state comfort in older adults.

    PubMed

    Scharoun, Sara M; Gonzalez, Dave A; Roy, Eric A; Bryden, Pamela J

    2016-05-01

    Motor deficits are commonly observed with age; however, it has been argued that older adults are more adept when acting in natural tasks and do not differ from young adults in these contexts. This study assessed end-state comfort and movement kinematics in a familiar task to examine this further. Left- and right-handed older adults picked up a glass (upright or overturned) as if to pour water in four modes of action (pantomime, pantomime with image/cup as a guide, actual grasping). With increasing age, a longer deceleration phase (in pantomime without a stimulus) and less end-state comfort (in pantomime without a stimulus and image as a guide) was displayed as the amount of contextual information available to guide movement decreased. Changes in movement strategies likely reflect an increased reliance on feedback control and demonstration of a more cautious movement. A secondary aim of this study was to assess hand preference and performance, considering conflicting reports of manual asymmetries with age. Performance differences in the Grooved Pegboard place task indicate left handers may display a shift towards right handedness in some, but not all cases. Summarizing, this study supports age-related differences in planning and control processes in a familiar task, and changes in manual asymmetries with age in left handers.

  10. Factors affecting thermal infrared images at selected field sites

    SciTech Connect

    Sisson, J.B.; Ferguson, J.S.

    1993-07-01

    A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

  11. The Effect of Fibre Blend on Comfort Characteristics of Elastic Knitted Fabrics Used for Pressure Garments

    NASA Astrophysics Data System (ADS)

    Bera, M.; Chattopadhay, R.; Gupta, D.

    2014-04-01

    Comfort characteristics of pressure garments are very important issue as these garments are recommended to wear for 23 h a day to recover from venous problem, scar maturation, orthopedic problems, post surgery, post pregnancy and many other problems. The patients mostly stop using such kind of medical devices because of itching, perspiration and other comfort relate problems. Mostly nylon, polyester and cotton fibres are used in the fabrics. Nylon, polyester are used for strength whereas cotton is used for good comfort related properties. It may be possible to get some certain type of strength and comfort property together by using both types of fibre. Less information is available in this aspect. In this paper, fabric samples were prepared in knit construction by varying the nylon and cotton blend percentage. Comfort properties in terms of air permeability, thermal property, water vapor permeability, surface friction behavior and wicking properties have been studied extensively. The results showed that, the fibre blend percentage did not have any influence on pressure generation. Air permeability and thermal properties were also not affected. However, water vapor permeability and wicking behavior vary significantly. Increase in nylon percentage increases both the water vapor permeability and wicking. It can be thus concluded that, manufacturers can choose fibre blend percentage according to the requirement.

  12. Thermal Convection Affects Shape Of Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Mennetrier, C.; Chopra, M. A.; Yao, M.; De Groh, H. C., III; Yeoh, G. H.; De Vahl Davis, G.; Leonardi, E.

    1994-01-01

    Report describes experimental and theoretical study of effect of thermal convection on shape of interface between solid and liquid succinonitrile, clear commercially available plastic, in Bridgman (directional-solidification) apparatus in vertical and horizontal orientations.

  13. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  14. 24 CFR 3280.511 - Comfort cooling certificate and information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Comfort cooling certificate and... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.511 Comfort cooling certificate and information. (a) The manufactured home manufacturer...

  15. 24 CFR 3280.511 - Comfort cooling certificate and information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Comfort cooling certificate and... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.511 Comfort cooling certificate and information. (a) The manufactured home manufacturer...

  16. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  17. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  18. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  19. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  20. Do School Facilities Affect Academic Outcomes?

    ERIC Educational Resources Information Center

    Schneider, Mark

    This review explores which facility attributes affect academic outcomes the most and in what manner and degree. The research is examined in six categories: indoor air quality, ventilation, and thermal comfort; lighting; acoustics; building age and quality; school size; and class size. The review concludes that school facilities affect learning.…

  1. Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time.

    PubMed

    Shen, Xianghao; Feng, Shumin; Li, Zhenning; Hu, Baoyu

    2016-01-01

    Although bus comfort is a crucial indicator of service quality, existing studies tend to focus on passenger load and ignore in-vehicle time, which can also affect passengers' comfort perception. Therefore, by conducting surveys, this study examines passengers' comfort perception while accounting for both factors. Then, using the survey data, it performs a two-way analysis of variance and shows that both in-vehicle time and passenger load significantly affect passenger comfort. Then, a bus comfort model is proposed to evaluate comfort level, followed by a sensitivity analysis. The method introduced in this study has theoretical implications for bus operators attempting to improve bus service quality.

  2. A model to assess the comfort of automotive seat cushions.

    PubMed

    Jiaxing, Zhan; Fard, Mohammad; Jazar, Reza

    2014-01-01

    A large number of independent and interacting factors affect seating comfort such as seat shape, stability, lumbar support and seat height. Although many subjective comfort studies have been conducted, few of them considered seating comfort from its subassembly level. This paper analyzed the automotive seat cushion designed with geared four-bar linkage for the seat height adjustment. The operation torque and lift distance of this mechanism was investigated as 2 major comfort factors. Ten cushions with this kind of design in the market were compared and assessed.

  3. Cardiovascular and Thermal Strain during Manual Work in Cold Weather

    DTIC Science & Technology

    2005-05-01

    subjective thermal sensation (on a scale ranging from unbearably cold to very hot) and thermal comfort (ranging from comfortable to extremely uncomfortable...both thermal sensation and thermal comfort ratings at 1 and at 30 min. There was no significant difference in Thermal Comfort (TC) between the two...overview of the subjective thermal ratings pre and post repeated cold exposure is shown in Table 2. During the acclimation days, thermal comfort was

  4. Comfortably saving energy

    NASA Astrophysics Data System (ADS)

    Elich, H. J.

    1984-04-01

    A central heating control system saving energy and improving comfort was digitally implemented. Based on control principles and simulation a control algorithm was determined. Two microcomputers are used to process room and boiler sensor data and are connected with each other by two-wire communication. The system provides a low and constant boiler temperature, an accurately controlled room temperature, a built-in pump switch, and the possibility to adjust the temperature four times a day.

  5. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.

    PubMed

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-08-04

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates.

  6. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature

    PubMed Central

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-01-01

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates. PMID:27487917

  7. Comfort model for automobile seat.

    PubMed

    da Silva, Lizandra da; Bortolotti, Silvana Ligia Vincenzi; Campos, Izabel Carolina Martins; Merino, Eugenio Andrés Díaz

    2012-01-01

    Comfort on automobile seats is lived daily by thousands of drivers. Epistemologically, comfort can be understood under the theory of complexity, since it emerges from a chain of interrelationships between man and several elements of the system. This interaction process can engender extreme comfort associated to the feeling of pleasure and wellbeing or, on the other hand, lead to discomfort, normally followed by pain. This article has for purpose the development of a theoretical model that favours the comfort feature on automobile seats through the identification of its facets and indicators. For such, a theoretical study is resorted to, allowing the mapping of elements that constitute the model. The results present a comfort model on automobile seats that contemplates the (physical, psychological, object, context and environment) facets. This model is expected to contribute with the automobile industry for the development of improvements of the ergonomic project of seats to increase the comfort noticed by the users.

  8. Different thermal conditions of the extremities affect thermoregulation in clothed man.

    PubMed

    Jeong, W S; Tokura, H

    1993-01-01

    The effects of different types of clothing on human deep body temperature were studied with six healthy male subjects in a supine posture. Two clothing ensembles were employed for the present study: A covered the whole body area with garments except the face (1.97 clo) and B covered only the trunk and the upper half of the extremities with garments (1.53 clo). The experiment was carried out in a climatic chamber at 55% +/- 5% relative humidity under cooling and warming temperatures: the temperature was changed from 22 degrees C to 10 degrees C (cooling) and returned to 22 degrees C again (warming). The major findings were: rectal temperature (T(re)) continued to decrease gradually in A throughout the experiment, whereas in B it increased during cooling, and returned to previous levels during warming. As a result, T(re) and chest skin temperature were maintained at a higher level in B than in A. Internal tissue conductances were greater in A than in B both during cooling and during warming. Thermal comfort appeared to have been influenced more by the rate of skin temperature change than by the level of skin temperature per se. It was concluded that peripheral vasoconstriction in B induced less heat flow from core to shell, and, thus, the core temperature was maintained at a higher level in B than in A.

  9. Honeywell: Comfort and economy

    SciTech Connect

    Lukaszewski, J.

    1995-12-31

    The presentation of the Company starts with having it ranked among the ones operating on the customers` market or those acting on the professional market. But it is not so. Honeywell is beyond such simple criteria. We are a company supplying products, systems and services related with generally conceived automatic control engineering, yet the operational range does comprise so many apparently diversified fields, for instance automatic control in aeronautics, heavy power engineering, building of apartment buildings, detached houses, heat engineering and some others. Nevertheless, our targets are always the same: maximum increase in efficiency and reliability of the process lines controlled by our systems as well as securing the best comfort of work and rest for people who stay in the buildings controlled by our devices. Simultaneously, the utilization of energy sources and the natural environment resources must be as sensible as possible.

  10. Hoof Comfort for Horses

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Aquila Equine Enhancement Products, Inc., of Woburn, Massachusetts, developed magnetic hoof protector pads, called "Power Pads," which support and cushion the impact on a horse's hooves and legs to provide comfort and protection against injuries. The pads were tested by Marshall Space Flight Center's Materials and Processing Laboratory for strength and durability. Putting the pads on a horse does not interfere with its natural movement or flexibility and can be compared to a person changing into athletic shoes for a sporting event. The pads are cut to the appropriate size, and then mounted onto a horse's hooves using conventional shoeing methods. Once attached, the pads protect the hard and soft parts of the hoof by cushioning blows against the hard ground. The design also protects the vulnerable "heel" of the hoof. They are a cost-effective way to protect a horse's hooves since they can be reused.

  11. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.

    PubMed

    Richter-Boix, Alex; Katzenberger, Marco; Duarte, Helder; Quintela, María; Tejedo, Miguel; Laurila, Anssi

    2015-08-01

    Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow.

  12. Legal and regulatory issues affecting the aquifer thermal energy storage concept

    SciTech Connect

    Hendrickson, P.L.

    1980-10-01

    A number of legal and regulatory issus that potentially can affect implementation of the Aquifer Thermal Energy Storage (ATES) concept are examined. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  13. Covered in Comfort

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In 1988, NASA began working with private industry to develop thermally adaptive phase-change materials that could be applied to astronauts suits and gloves for better protection against the bitter cold and scorching heat encountered in space.

  14. The thickness of DLC thin film affects the thermal conduction of HPLED lights

    NASA Astrophysics Data System (ADS)

    Hsu, Ming Seng; Huang, Jen Wei; Shyu, Feng Lin

    2016-09-01

    Thermal dissipation had an important influence in the quantum effect and life of light emitting diodes (LED) because it enabled heat transfer away from electric devices to the aluminum plate for heat removal. In the industrial processing, the quality of the thermal dissipation was decided by the gumming technique between the PCB and aluminum plate. In this study, we made the ceramic thin films of diamond like carbon (DLC) by vacuum sputtering between the substrate and high power light emitting diodes (HPLED) light to check the influence of heat transfer by DLC thin films. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature of HPLEDs. The X-Ray photoelectron spectroscopy (XPS) patterns revealed that ceramic phases were successfully grown onto the substrate. At the same time, the real work temperatures showed the thickness of DLC thin film coating effectively affected the thermal conduction of HPLEDs.

  15. Creating high performance buildings: Lower energy, better comfort

    NASA Astrophysics Data System (ADS)

    Brager, Gail; Arens, Edward

    2015-03-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64-84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  16. Creating high performance buildings: Lower energy, better comfort

    SciTech Connect

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  17. Analysing Thermal Response Test Data Affected by Groundwater Flow and Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Imitazione, Gianmario; Chiozzi, Paolo; Orsi, Marco; Armadillo, Egidio

    2014-05-01

    Tests that record the underground temperature variation due to a constant heat injected into a borehole (or extracted from it) by means of a carrier fluid are routinely performed to infer subsurface thermal conductivity and borehole thermal resistance, which are needed to size geothermal heat pump systems. The most popular model to analyse temperature-time curves obtained from these tests is the infinite line source (ILS). This model gives appropriate estimations of thermal parameters only if particular hydro-geological conditions are fulfilled. Several flaws can however affect data interpretation with ILS, which is based on strong assumptions like those of a purely conductive heat transfer regime in a homogeneous medium, no vertical heat flow and infinite length of the borehole. Other drawbacks can arise from the difficulty in the proper thermal insulation of the test equipment, and consequently with oscillations of the carrier fluid temperature due to surface temperature changes. In this paper, we focused on the treatment of thermal response test data when both advection and periodic changes of surface temperature occur. We used a moving line source model to simulate temperature-time signals under different hypothesis of Darcy velocity and thermal properties. A random noise was added to the signal in order to mimic high frequency disturbances, possibly caused by equipment operating conditions and/or geological variability. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root mean square error between the synthetic dataset and the theoretical model. The optimisation was carried out with the Nelder-Mead algorithm, and thermal and hydraulic properties were determined by iterative reprocessing according to a trial-and-error procedure. The inferred thermal and hydraulic parameters are well consistent with the 'a priory' values, and the presence of noise in the synthetic data does not produce

  18. Thermal plasticity in young snakes: how will climate change affect the thermoregulatory tactics of ectotherms?

    PubMed

    Aubret, F; Shine, R

    2010-01-15

    Climate change will result in some areas becoming warmer and others cooler, and will amplify the magnitude of year-to-year thermal variation in many areas. How will such changes affect animals that rely on ambient thermal heterogeneity to behaviourally regulate their body temperatures? To explore this question, we raised 43 captive-born tiger snakes Notechis scutatus in enclosures that provided cold (19-22 degrees C), intermediate (19-26 degrees C) or hot (19-37 degrees C) thermal gradients. The snakes adjusted their diel timing of thermoregulatory behaviour so effectively that when tested 14 months later, body temperatures (mean and maximum), locomotor speeds and anti-predator behaviours did not differ among treatment groups. Thus, the young snakes modified their behaviour to compensate for restricted thermal opportunities. Then, we suddenly shifted ambient conditions to mimic year-to-year variation. In contrast to the earlier plasticity, snakes failed to adjust to this change, e.g. snakes raised at cooler treatments but then shifted to hot conditions showed a higher mean body temperature for at least two months after the onset of the new thermal regime. Hence, thermal conditions experienced early in life influenced subsequent thermoregulatory tactics; the mean selected temperature of a snake depended more upon its prior raising conditions than upon its current thermoregulatory opportunities. Behavioural plasticity thus allows snakes to adjust to suboptimal thermal conditions but this plasticity is limited. The major thermoregulatory challenge from global climate change may not be the shift in mean values (to which our young snakes adjusted) but the increased year-to-year variation (with which our snakes proved less able to deal).

  19. Heartwarming memories: Nostalgia maintains physiological comfort.

    PubMed

    Zhou, Xinyue; Wildschut, Tim; Sedikides, Constantine; Chen, Xiaoxi; Vingerhoets, Ad J J M

    2012-08-01

    Nostalgia, a sentimental longing or wistful affection for the past, is a predominantly positive and social emotion. Recent evidence suggests that nostalgia maintains psychological comfort. Here, we propose, and document in five methodologically diverse studies, a broader homeostatic function for nostalgia that also encompasses the maintenance of physiological comfort. We show that nostalgia--an emotion with a strong connotation of warmth--is triggered by coldness. Participants reported stronger nostalgia on colder (vs. warmer) days and in a cold (vs. neutral or warm) room. Nostalgia, in turn, modulates the interoceptive feeling of temperature. Higher levels of music-evoked nostalgia predicted increased physical warmth, and participants who recalled a nostalgic (vs. ordinary autobiographical) event perceived ambient temperature as higher. Finally, and consistent with the close central nervous system integration of temperature and pain sensations, participants who recalled a nostalgic (vs. ordinary autobiographical) event evinced greater tolerance to noxious cold.

  20. Indoor Thermal Comfort, an Evolutionary Biology Perspective

    SciTech Connect

    Stoops, John L.

    2006-04-15

    As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?

  1. Comfort evaluation of maternity support garments in a wear trial.

    PubMed

    Ho, S S; Yu, W; Lao, T T; Chow, D H K; Chung, J W; Li, Y

    2008-09-01

    This study aims to evaluate the wear comfort of eight commercially available maternity support garments. The thermophysiological, sensory/tactile and movement comfort were assessed in a wear trial using a 19-item questionnaire. Fourteen pregnant Chinese women aged 32.3 +/- 4.2 years were recruited from a local obstetric clinic. The results show that the tested garments generally provided greater sensory comfort than thermophysiological comfort. The thermophysiological comfort was mainly influenced by the fibre contents and breathability. Significant linear relationships were found between material appearance and hand feel (r = 0.86, p < 0.001), and between non-itchiness and no red mark (r = 0.78, p < 0.001). Movement comfort was influenced by the garment type and style features. Overall, the soft, good-fit, cotton/elastane maternity brief was perceived as the best product. The findings of comfort needs in pregnant women and the effects of various garment attributes would be helpful for the development of maternity support garment design criteria that are required to satisfy critical ergonomic needs. Low back pain during pregnancy is a common and significant health problem. A maternity support garment is regarded as a convenient and safe device to stabilise the lumbar spine so as to relieve pain. However, patient compliance is likely to be affected by discomfort and inconvenience. The results of this study provide guidance for the optimal design of maternity support clothing.

  2. EDUCATION, CHILDREN AND COMFORT.

    ERIC Educational Resources Information Center

    Iowa Univ., Iowa City.

    TWO SIMILAR CLASSROOMS WERE SET UP IN THE LENNOX LIVING LABORATORY, DES MOINES, IOWA, ONE FOR EXPERIMENTAL GROUPS AND ONE FOR CONTROL GROUPS. TEMPERATURE, AIR CIRCULATION AND HUMIDITY CAN BE CONTROLLED AND MEASURED IN BOTH ROOMS. THE ROOMS ARE OF SIMILAR SIZE, LAYOUT AND CONSTRUCTION, THE THERMAL ENVIRONMENT BEING THE ONLY VARIABLE. THE FOLLOWING…

  3. Thermal properties of ration components as affected by moisture content and water activity during freezing.

    PubMed

    Li, J; Chinachoti, P; Wang, D; Hallberg, L M; Sun, X S

    2008-11-01

    Beef roast with vegetables is an example of a meal, ready-to-eat (MRE) ration entrée. It is a mixture of meat, potato, mushroom, and carrot with a gravy sauce. The thermal properties of each component were characterized in terms of freezing point, latent heat, freezable and unfreezable water contents, and enthalpy during freezing using differential scanning calorimetry. Freezing and thawing curves and the effect of freezing and thawing cycles on thermal properties were also evaluated. The freezing points of beef, potato, mushroom, and sauce were all in the range of -5.1 to -5.6 degrees C, but moisture content, water activity, latent heat, freezable and unfreezable water contents, and enthalpy varied among these components. Freezing temperature greatly affected the unfrozen water fraction. The unfreezable water content (unfrozen water fraction at -50 degrees C) of ration components was in the range of 8.2% to 9.7%. The freezing and thawing curves of vegetables with sauce differed from those of beef but took similar time to freeze or thaw. Freezing and thawing cycles did not greatly affect the thermal properties of each component. Freezing point and latent heat were reduced by decreasing moisture content and water activity of each component. Water activity was proportionally linear to freezing point at a(w) > 0.88, and moisture content was proportionally linear to freezable water content in all ration components. Water was not available for freezing when moisture content was reduced to 28.8% or less. This study indicates that moisture content and water activity are critical factors affecting thermal behavior of ration components during freezing.

  4. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    USGS Publications Warehouse

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  5. Averting comfortable lifestyle crises.

    PubMed

    Bilton, Rod

    2013-01-01

    : alternative non-sugar sweeteners; toxic side-effects of aspartame. Stevia and xylitol as healthy sugar replacements; the role of food processing in dietary health; and beneficial effects of resistant starch in natural and processed foods. The rise of maize and soya-based vegetable oils have led to omega-6 fat overload and imbalance in the dietary ratio of omega-3 to omega-6 fats. This has led to toxicity studies with industrial trans fats; investigations on health risks associated with stress and comfort eating; and abdominal obesity. Other factors to consider are: diet, cholesterol and oxidative stress, as well as the new approaches to the chronology of eating and the health benefits of intermittent fasting.

  6. Factors affecting the thermal shock resistance of several hafnia based composites containing graphite or tungsten. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.

    1974-01-01

    The thermal shock resistance of hafnia based composites containing graphite powder or tungsten fibers was investigated in terms of material properties which include thermal expansion, thermal conductivity, compressive fracture stress, modulus of elasticity, and phase stability in terms of the processing parameters of hot pressing pressure and/or density, degree of stabilization of the hafnia, and composition. All other parameters were held constant or assumed constant. The thermal shock resistance was directly proportional to the compressive fracture stress to modulus of elasticity ratio and was not affected appreciably by the small thermal expansion or thermal conductivity changes. This ratio was found to vary strongly with the composition and density such that the composites containing graphite had relatively poor thermal shock resistance, while the composites containing tungsten had superior thermal shock resistance.

  7. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined.

  8. Participant Comfort with and Application of Inquiry-Based Learning: Results from 4-H Volunteer Training

    ERIC Educational Resources Information Center

    Haugen, Heidi; Stevenson, Anne; Meyer, Rebecca L.

    2016-01-01

    This article explores how a one-time training designed to support learning transfer affected 4-H volunteers' comfort levels with the training content and how comfort levels, in turn, affected the volunteers' application of tools and techniques learned during the training. Results of a follow-up survey suggest that the training participants…

  9. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.

    PubMed

    Manenti, T; Loeschcke, V; Moghadam, N N; Sørensen, J G

    2015-11-01

    The selective past of populations is presumed to affect the levels of phenotypic plasticity. Experimental evolution at constant temperatures is generally expected to lead to a decreased level of plasticity due to presumed costs associated with phenotypic plasticity when not needed. In this study, we investigated the effect of experimental evolution in constant, predictable and unpredictable daily fluctuating temperature regimes on the levels of phenotype plasticity in several life history and stress resistance traits in Drosophila simulans. Contrary to the expectation, evolution in the different regimes did not affect the levels of plasticity in any of the traits investigated even though the populations from the different thermal regimes had evolved different stress resistance and fitness trait means. Although costs associated with phenotypic plasticity are known, our results suggest that the maintenance of phenotypic plasticity might come at low and negligible costs, and thus, the potential of phenotypic plasticity to evolve in populations exposed to different environmental conditions might be limited.

  10. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  11. Comfort Zone: Model or Metaphor

    ERIC Educational Resources Information Center

    Brown, Mike

    2008-01-01

    The comfort zone model is widespread within adventure education literature. It is based on the belief that when placed in a stressful situation people will respond by overcoming their fear and therefore grow as individuals. This model is often presented to participants prior to activities with a highly perceived sense of risk and challenge which…

  12. Behavioural Responses to Thermal Conditions Affect Seasonal Mass Change in a Heat-Sensitive Northern Ungulate

    PubMed Central

    van Beest, Floris M.; Milner, Jos M.

    2013-01-01

    Background Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Methodology/Principal Findings Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. Conclusions/Significance This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance

  13. Thermal processing differentially affects lycopene and other carotenoids in cis-lycopene containing, tangerine tomatoes.

    PubMed

    Cooperstone, Jessica L; Francis, David M; Schwartz, Steven J

    2016-11-01

    Tangerine tomatoes, unlike red tomatoes, accumulate cis-lycopenes instead of the all-trans isomer. cis-Lycopene is the predominating isomeric form of lycopene found in blood and tissues. Our objective was to understand how thermal processing and lipid concentration affect carotenoid isomerisation and degradation in tangerine tomatoes. We conducted duplicated factorial designed experiments producing tangerine tomato juice and sauce, varying both processing time and lipid concentration. Carotenoids were extracted and analysed using high-performance liquid chromatography with photodiode array detection. Phytoene, phytofluene, ζ-carotene, neurosporene, tetra-cis-lycopene, all-trans-lycopene and other-cis-lycopenes were quantified. Tetra-cis-lycopene decreased with increasing heating time and reached 80% of the original level in sauce after processing times of 180min. All-trans-lycopene and other-cis-lycopenes increased with longer processing times. Total carotenoids and total lycopene decreased with increased heating times while phytoene and phytofluene were unchanged. These data suggest limiting thermal processing of tangerine tomato products if delivery of tetra-cis-lycopene is desirable.

  14. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  15. Cold cratonic roots and thermal blankets: How continents affect mantle convection

    USGS Publications Warehouse

    Trubitsyn, V.P.; Mooney, W.D.; Abbott, D.H.

    2003-01-01

    Two-dimensional convection models with moving continents show that continents profoundly affect the pattern of mantle convection. If the continents are wider than the wavelength of the convection cells (???3000 km, the thickness of the mantle), they cause neighboring deep mantle thermal upwellings to coalesce into a single focused upwelling. This focused upwelling zone will have a potential temperature anomaly of about 200??C, much higher than the 100??C temperature anomaly of upwelling zones generated beneath typical oceanic lithosphere. Extensive high-temperature melts (including flood basalts and late potassic granites) will be produced, and the excess temperature anomaly will induce continental uplift (as revealed in sea level changes) and the eventual breakup of the supercontinent. The mantle thermal anomaly will persist for several hundred million years after such a breakup. In contrast, small continental blocks (<1000 km diameter) do not induce focused mantle upwelling zones. Instead, small continental blocks are dragged to mantle downwelling zones, where they spend most of their time, and will migrate laterally with the downwelling. As a result of sitting over relatively cold mantle (downwellings), small continental blocks are favored to keep their cratonic roots. This may explain the long-term survival of small cratonic blocks (e.g., the Yilgarn and Pilbara cratons of western Australia, and the West African craton). The optimum size for long-term stability of a continental block is <3000 km. These results show that continents profoundly affect the pattern of mantle convection. These effects are illustrated in terms of the timing and history of supercontinent breakup, the production of high-temperature melts, and sea level changes. Such two-dimensional calculations can be further refined and tested by three-dimensional numerical simulations of mantle convection with moving continental and oceanic plates.

  16. Thermoregulatory responses during exercise and a hot water immersion and the affective responses to peripheral thermal stimuli

    NASA Astrophysics Data System (ADS)

    Fujishima, K.

    1986-03-01

    Tympanic (Tty), mean skin (¯Tsk) and mean body (¯Tb) temperatures and heart rate (HR) increased more in low Vo2 max group (LG) than in high Vo2 max group (HG) during exercise. The regression coefficient of body temperatures (Tty and ¯Tb) on HR and the increased rate of heat storage were larger in LG than in HG during exercise. The local sweat rate (per min/cm2) during a hot water bath exhibited a considerable large quantity in comparison with the amount during exercise. Internal and skin temperatures during a hot water bath increased more immediately than those during exercise. The levels of comfort sensation during the preovulatory phase in women and pre-exercise period in men were higher at 40‡C than at 20‡C as peripheral thermal stimulus. The levels during the postovulatory and post-exercise phases in the same subjects were higher with the cool stimuli than with the warm stimuli. Above results suggest that thermoregulatory responses during submaximal exercise are different according to physical fitness and that these responses are different from those during hot water immersion. In addition, these suggest that the scores of thermal sensation with warm and cool stimuli are different during the pre- and post-ovulatory phases and the pre- and post-exercise periods.

  17. Passenger comfort technology for system decision making

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Decisions requiring passenger comfort technology were shown to depend on: the relationship between comfort and other factors (e.g., cost, urgency, alternate modes) in traveler acceptance of the systems, serving a selected market require technology to quantify effects of comfort versus offsetting factors in system acceptance. Public predict the maximum percentage of travelers who willingly accept the overall comfort of any trip ride. One or the other of these technology requirements apply to decisions on system design, operation and maintenance.

  18. Ceiling fans as extenders of the summer comfort envelope

    SciTech Connect

    Rohles, F.M.; Jones, B.W.; Konz, S.A.

    1983-01-01

    The ASHRAE Standard 55-1981 specifies temperature limits or zones for winter and summer comfort. It states that the upper limit of the summer comfort zone, which is 79/sup 0/F or 26/sup 0/C, can be extended to 82/sup 0/F or 28/sup 0/C with air velocities of 160 fpm or 0.8 m/s. The manufacturers of ceiling fans claim comfort may be obtained at velocities considerably below the 160 fpm (0.8 m/s) level. They further claim that 82/sup 0/F (28/sup 0/C) with a ceiling fan will provide the same amount of comfort as 75/sup 0/F (24/sup 0/C) without a fan. Since ceiling fans require less than a penny per hour to operate, their use, as opposed to air conditioning, could represent a large energy savings without affecting human comfort. The National Bureau of Standards suggests a reduction in air conditioning demand of 3%//sup 0/F (5.4%/C). Thus the energy saving provided by 140 fpm (0.7 m/s) from a ceiling fan would be 5.6/sup 0/F X 3%//sup 0/F = 17%. Thus it was concluded that a ceiling fan may extend the upper limit of the summer comfort envelope from 79/sup 0/F (26/sup 0/C) to 85/sup 0/F (29/sup 0/C) (the equivalent temperature on any specific situation depends on the velocity of the air on the person). The results suggest that the turbulent and variable characteristics of the air plume of the ceiling fan may be its major comfort-producing feature.

  19. Thermal management concepts for higher efficiency heavy vehicles.

    SciTech Connect

    Wambsganss, M. W.

    1999-05-19

    Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

  20. Depth of artificial Burrowing Owl burrows affects thermal suitability and occupancy

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.; Rathbun, Nathan

    2015-01-01

    Many organizations have installed artificial burrows to help bolster local Burrowing Owl (Athene cunicularia) populations. However, occupancy probability and reproductive success in artificial burrows varies within and among burrow installations. We evaluated the possibility that depth below ground might explain differences in occupancy probability and reproductive success by affecting the temperature of artificial burrows. We measured burrow temperatures from March to July 2010 in 27 artificial burrows in southern California that were buried 15–76 cm below the surface (measured between the surface and the top of the burrow chamber). Burrow depth was one of several characteristics that affected burrow temperature. Burrow temperature decreased by 0.03°C per cm of soil on top of the burrow. The percentage of time that artificial burrows provided a thermal refuge from above-ground temperature decreased with burrow depth and ranged between 50% and 58% among burrows. The percentage of time that burrow temperature was optimal for incubating females also decreased with burrow depth and ranged between 27% and 100% among burrows. However, the percentage of time that burrow temperature was optimal for unattended eggs increased with burrow depth and ranged between 11% and 95% among burrows. We found no effect of burrow depth on reproductive success across 21 nesting attempts. However, occupancy probability had a non-linear relationship with burrow depth. The shallowest burrows (15 cm) had a moderate probability of being occupied (0.46), burrows between 28 and 40 cm had the highest probability of being occupied (>0.80), and burrows >53 cm had the lowest probability of being occupied (<0.43). Burrowing Owls may prefer burrows at moderate depths because these burrows provide a thermal refuge from above-ground temperatures, and are often cool enough to allow females to leave eggs unattended before the onset of full-time incubation, but not too cool for incubating females that

  1. The Effects of Various Comfort Food on Heart Coherence in Adults

    PubMed Central

    Joseph, Madeline Matar; McIntosh, Mark S.; Joseph, Christine Marie

    2014-01-01

    Background: Some of the nutrients in food are precursors to neurotransmitters, accounting for its effects on mood. Heart coherence (HC), which relates to the optimal psycho-physiological conditions for human body functions, is affected by a person's emotional status. Objectives: (1) To determine the effects of various comfort food on HC and heart rate (HR) in adult females 20 to 50 years of age and (2) to evaluate if body mass index (BMI) has an effect on HC and HR when eating various comfort foods. Methods: The researcher obtained consent from participants after explaining the project. The subjects' height and weight were measured using standardized methods to calculate their BMI. Participants sat in a comfortable chair in a quiet area with a clipped earpiece to measure their heart rate variability (HRV), HR, and HC. Each participant was asked about their favorite comfort food (sweet vs salty). First, the participant imagined eating her favorite comfort food (IFCF) and then was asked to imagine her non-favorite comfort food (INFCF). Finally, the participant ate her favorite comfort food (EFCF) and then ate her non-favorite comfort food (ENFCF). HC scores were recorded in three categories (low, medium, and high) in these four settings. Results: A total of 20 participants completed the study. Paired student's t-tests were used to assess whether the means of the compared groups were statistically different. The data demonstrated that there was a higher HC when participants ate their favorite comfort food than when they ate the non-favorite comfort food (t=−2.912, P<.01) and a higher HC when eating a favorite comfort food than when imaging eating a favorite comfort food (t=−.2408, P<.01). The participants' BMI had a positive correlation between the BMI and low HC (when one increases, the other increases as well) when imagining eating a favorite comfort food (r =.475, P<.05). There was a negative correlation between BMI and medium HC (when one increases, the other

  2. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    PubMed

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  3. Determining the bioclimatic comfort in Kastamonu City.

    PubMed

    Cetin, Mehmet

    2015-10-01

    Bioclimatic comfort defines the optimal climatic conditions in which people feel healthy and dynamic. Bioclimatic comfort mapping methods are useful to urban managers and planners. For the purposes of planning, climatic conditions, as determined by bioclimatic comfort assessments, are important. Bioclimatic components such as temperature, relative humidity, and wind speeds are important in evaluating bioclimatic comfort. In this study of the climate of Kastamonu province, the most suitable areas in terms of bioclimatic comfort have been identified. In this context, climate values belonging to the province of Kastamonu are taken from a total of nine meteorological stations. Altitude (36-1050 m) between stations is noted for revealing climatic changes. The data collected from these stations, including average temperature, relative humidity, and wind speed values are transferred to geographical information system (GIS) using ArcMap 10.2.2 software. GIS maps created from the imported data has designated the most suitable comfort areas in and around the city of Kastamonu. As a result, the study shows that Kastamonu has suitable ranges for bioclimatic comfort zone. The range of bioclimatic comfort value for Kastamonu is 17.6 °C. It is between a comfort ranges which is 15-20 °C. Kastamonu City has suitable area for bioclimatic comfort.

  4. Tecnology innovation related to comfort on commercial vehicles.

    PubMed

    Martini, M; Ferrero, D

    2012-01-01

    The scope of this article is to show the Iveco activity in terms of comfort improvement in all its product Portfolio, focusing on innovation research and realization of tools to get better the life of the driver on commercial vehicles. Comfort related to the ergonomics, thermal, vibrational comfort and after-treatment system in order to improve the life of driver and passengers. It is to remember that Commercial vehicles have different use from a car. For example an heavy truck cabin is not only a place where to drive 8 hours a day, but it is at the same time, an office, a place where to eat, where to sleep and to have a rest. The effort in the last 10 years of Iveco is to improve the comfort of the life of the drivers, utilizing continuous research in standards and innovative systems in order to increase the security and life improvement, focusing also on worldwide legislation as a partner in European committees for health and safety.

  5. Advanced Thermally Stable Jet Fuel Development Program Annual Report. Volume 2. Compositional Factors Affecting Thermal Degradation of Jet Fuels

    DTIC Science & Technology

    1992-05-01

    the purpose of identification of peaks in the gas chromatogram, the retention times of methane, ethane, propane, butane, pentane, ethylene , propylene...olefinic hydrocarbons). While ethane and ethylene do not separate on the SP- 1700 column, it appears that the main products from thermal...decomposition of the three model compounds are methane, ethane+ ethylene , propane, propylene, butane and butene. The distribution patterns of the components in the

  6. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  7. The effect of slightly warm temperature on work performance and comfort in open-plan offices - a laboratory study.

    PubMed

    Maula, H; Hongisto, V; Östman, L; Haapakangas, A; Koskela, H; Hyönä, J

    2016-04-01

    The aim of the study was to determine the effect of a temperature of 29°C on performance in tasks involving different cognitive demands and to assess the effect on perceived performance, subjective workload, thermal comfort, perceived working conditions, cognitive fatigue, and somatic symptoms in a laboratory with realistic office environment. A comparison was made with a temperature of 23°C. Performance was measured on the basis of six different tasks that reflect different stages of cognitive performance. Thirty-three students participated in the experiment. The exposure time was 3.5 h in both thermal conditions. Performance was negatively affected by slightly warm temperature in the N-back working memory task. Temperature had no effect on performance in other tasks focusing on psychomotor, working memory, attention, or long-term memory capabilities. Temperature had no effect on perceived performance. However, slightly warm temperature caused concentration difficulties. Throat symptoms were found to increase over time at 29°C, but no temporal change was seen at 23°C. No effect of temperature on other symptoms was found. As expected, the differences in thermal comfort were significant. Women perceived a temperature of 23°C colder than men.

  8. Temperature, comfort and pollution levels during heat waves and the role of sea breeze.

    PubMed

    Papanastasiou, Dimitris K; Melas, Dimitris; Bartzanas, Thomas; Kittas, Constantinos

    2010-05-01

    During the summer of 2007 several Greek regions suffered periods of extreme heat, with midday temperatures of over 40 degrees C on several consecutive days. High temperatures were also recorded on the east coast of central Greece, where a complex sea breeze circulation system frequently develops. The more intense events occurred at the end of June and July. The highest temperatures were observed on 26 June and 25 July, while the sea breeze developed only on 25 July. Meteorological data collected at two sites-a coastal urban location and an inland suburban site that is not reached by the sea breeze flow-as well as pollution data collected at the urban site, were analysed in order to investigate the relationship between sea breeze development and the prevailing environmental conditions during these two heat wave events. The analysis revealed that sea breeze development affects temperature and pollution levels at the shoreline significantly, causing a decrease of approximately 4 degrees C from the maximum temperature value and an increase of approximately 30% in peak PM10 levels. Additionally, several stress indices were calculated in order to assess heat comfort conditions at the two sites. It was found that nocturnal comfort levels are determined mainly by the urban heat island effect, the intensity of which reaches up to 8 degrees C, while the applied indices do not demonstrate any significant daytime thermal stress relief due to sea breeze development.

  9. Spatial variability of chilling temperature in Turkey and its effect on human comfort

    NASA Astrophysics Data System (ADS)

    Toros, H.; Deniz, A.; Şaylan, L.; Şen, O.; Baloğlu, M.

    2005-03-01

    Air temperature, absolute humidity and wind speed are the most important meteorological parameters that affect human thermal comfort. Because of heat loss, the human body feels air temperatures different to actual temperatures. Wind speed is the most practical element for consideration in terms of human comfort. In winter, due to the strong wind speeds, the sensible temperature is generally colder than the air temperature. This uncomfortable condition can cause problems related to tourism, heating and cooling. In this study, the spatial and temporal distributions of cooling temperatures and Wind Chill Index (WCI) are analyzed for Turkey, and their effect on the human body is considered. In this paper, monthly cooling temperatures between October and March in the years 1929 to 1990 are calculated by using measured temperature and wind speed at 79 stations in Turkey. The influence of wind chill is especially observed in the regions of the Aegean, west and middle Black Sea and east and central Anatolia. The wind chill in these regions has an uncomfortable effect on the human body. Usually, the WCI value is higher in western, northern and central Anatolia than in other regions.

  10. Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2007-01-01

    Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

  11. Dependence of radial thermal diffusivity on parameters of toroidal plasma affected by resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao

    2013-06-01

    We investigate how the neoclassical thermal diffusivity of an axisymmetric toroidal plasma is modified by the effect of resonant magnetic perturbations (RMPs), using a drift-kinetic simulation code for calculating the radial thermal diffusivity of ion in the perturbed region under an assumption of zero electric field. Here, the perturbed region is assumed to be generated on and near the resonance surfaces, and is wedged in between the regular closed magnetic surfaces. We find that the dependence of the radial thermal diffusivity on parameters of the toroidal plasma is represented as \\chi_r=\\chi_r^{(0)} \\{1+ c_0\\,(\\omega_b/\

  12. Possible Factors affecting the Thermal Contrast between Middle-Latitude Asian Continent and Adjacent Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Huaqiong; Wu, Tongwen; Dong, Wenjie

    2015-04-01

    A middle-latitude Land-Sea thermal contrast Index was used in this study which has close connection to the East Asian summer precipitation. The index has two parts which are land thermal index defined as JJA 500-hPa geopotential height anomalies at a land area (75°-90° E, 40° -55°N ) and ocean thermal index defined as that at an oceanic area (140° -150°E, 35° -42.5°N). The impact of the surface heat flux and atmospheric diabatic heating over the land and the ocean on the index was studied. The results show that the surface heat flux over Eurasian inner land has little influence to the land thermal index, while the variation of the surface latent heat flux and long-wave radiation over the Pacific adjacent to Japan has highly correlation with the ocean thermal index. The changes with height of the atmospheric diabatic heating rates over the Eurasian inner land and the Pacific adjacent to Japan have different features. The variations of the middle troposphere atmospheric long-wave and short-wave radiation heating have significantly influences on land thermal index, and that of the low troposphere atmospheric long-wave radiation, short-wave radiation and deep convective heating also have impact on the yearly variation of the land thermal index. For the ocean thermal index, the variations of the surface layer atmospheric vertical diffuse heating, large-scale latent heating and long-wave radiation heating are more important, low and middle troposphere atmospheric large-scale latent heating and shallow convective heating also have impact on the yearly variation of the ocean thermal index. And then the ocean thermal index has closely connection with the low troposphere atmospheric temperature, while the land thermal index has closely connection with the middle troposphere atmospheric temperature. The Effect of the preceding global SST anomalies on the index also was analyzed. The relations of land thermal index and ocean thermal index and the global SST anomalies

  13. Selected Sports Bras: Overall Comfort and Support.

    ERIC Educational Resources Information Center

    Lawson, LaJean; Lorentzen, Deana

    This study evaluated currently marketed sports bras on subjective measures of comfort and support both within an entire group of women and within cup sizes, correlated the subjective measures of comfort and support with previously reported biomechanical findings of support on the same bras, and further developed empirically based guidelines for…

  14. Inverse Thermal Analysis of Ti-6Al-4V Laser Welds Using Solidification and Heat-Affected Zone Boundaries

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2017-03-01

    Temperature histories of Ti-6Al-4V laser welds are presented, which are calculated using numerical-analytical basis functions and boundary constraints based on measured solidification and heat-affected zone cross sections. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification and heat-affected zone boundaries.

  15. Inverse Thermal Analysis of Ti-6Al-4V Laser Welds Using Solidification and Heat-Affected Zone Boundaries

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2017-02-01

    Temperature histories of Ti-6Al-4V laser welds are presented, which are calculated using numerical-analytical basis functions and boundary constraints based on measured solidification and heat-affected zone cross sections. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification and heat-affected zone boundaries.

  16. Thermal acclimation and nutritional history affect the oxidation of different classes of exogenous nutrients in Siberian hamsters, Phodopus sungorus.

    PubMed

    McCue, Marshall D; Voigt, Christian C; Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-11-01

    During acclimatization to winter, changes in morphology and physiology combined with changes in diet may affect how animals use the nutrients they ingest. To study (a) how thermal acclimation and (b) nutritional history affect the rates at which Siberian hamsters (Phodopus sungorus) oxidize different classes of dietary nutrients, we conducted two trials in which we fed hamsters one of three (13) C-labeled compounds, that is, glucose, leucine, or palmitic acid. We predicted that under acute cold stress (3 hr at 2°C) hamsters previously acclimated to cold temperatures (10°C) for 3 weeks would have higher resting metabolic rate (RMR) and would oxidize a greater proportion of dietary fatty acids than animals acclimated to 21°C. We also investigated how chronic nutritional stress affects how hamsters use dietary nutrients. To examine this, hamsters were fed four different diets (control, low protein, low lipid, and low-glycemic index) for 2 weeks. During cold challenges, hamsters previously acclimated to cold exhibited higher thermal conductance and RMR, and also oxidized more exogenous palmitic acid during the postprandial phase than animals acclimated to 21°C. In the nutritional stress trial, hamsters fed the low protein diet oxidized more exogenous glucose, but not more exogenous palmitic acid than the control group. The use of (13) C-labeled metabolic tracers combined with breath testing demonstrated that both thermal and nutritional history results in significant changes in the extent to which animals oxidize dietary nutrients during the postprandial period.

  17. Environmental and comfort upgrading through lean technologies in informal settlements: Case study in Nairobi, Kenia and New Delhi, India

    NASA Astrophysics Data System (ADS)

    De Angelis, Enrico; Tagliabue, Lavinia Chiara; Zecchini, Paolo; Milanesi, Mattia

    2016-07-01

    Informal settlements, namely slums (or bidonville or favelas) are one of the stronger challenge for urban context in developing countries. The increase of urban population leads to a widespread poverty and critical life conditions for a large segment of population, in particular in Sub-Saharan Africa, where a high percentage of people lives in informal settlements. The problems in slums are multiple: people suffer malnutrition and poor sanitation, flooding or drought, and live in shelters providing no thermal comfort in many days of the year, furthermore scarce and highly polluting energy sources are available. Climate change and an unavoidable heat island effect make these living conditions nearly catastrophic. This paper focuses on the main characters of these slums and on how to what promote the improvement of living conditions with a lean, low cost, low impact, feasible upgrading of the housing or more properly shelters. The subject of the analysis is the Mathare 4A Upgrading Programme in the city of Nairobi, Kenya, one of the highest slum-dwellers growing rate. The technological solutions applied in this context have been verified in a different climate condition such as the city of New Delhi, India where the phenomenon of the slums is significantly burdensome. The analysis of the comfort conditions inside a type housing has been carried out using hourly weather data and dynamic heat transfer simulation, without any HVAC system and striving only natural ventilation. Data about internal temperature and relative humidity conditions have been applied to evaluate the comfort hours using the Predicted Mean Vote method, the adaptive thermal comfort principles and the bioclimatic charts for the two climates in Nairobi and New Delhi. The percentage of hours within the comfort range and the amount of degree-hours exceeding comfort values showed for different upgrading strategies, how it is possible to deeply influence the living conditions by technological and

  18. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism.

    PubMed

    Fitzpatrick, Ginny; Lanan, Michele C; Bronstein, Judith L

    2014-09-01

    Mutualism is an often complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and, in exchange, protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40 °C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0 °C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species.

  19. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism

    PubMed Central

    Fitzpatrick, Ginny; Lanan, Michele C.; Bronstein, Judith L.

    2014-01-01

    Mutualism is an often-complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and in exchange protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40°C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0°C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  20. Flicker-glare and visual-comfort assessments of light emitting diode billboards.

    PubMed

    Lin, Meng-Wei; Hsieh, Pin-Hsuan; Chang, Erik C; Chen, Yi-Chun

    2014-08-01

    This study investigated the discomfort glare produced by the high-brightness LED billboards in relation to four factors: flicker frequency, panel luminance, viewing angular sub-tense, and ambient illuminance. The results showed that visual comfort is not affected by ambient illuminance but by the other three factors. Also, interaction was found between luminance and viewing angle. The experimental data were curve fitted to construct visual comfort models of LED billboard displays. By modulating the operating conditions, comfort display with LED billboards can be achieved.

  1. Behavior of Avirulent Yersinia pestis in Liquid Whole Egg as Affected by Antimicrobials and Thermal Pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yersinia spp. is a psychrotrophic bacterium that can grow at temperatures as low as minus two degrees Celsius, and is known to contaminate shell eggs in the United States and shell eggs and liquid egg in South America. A study was performed to determine the thermal sensitivity of avirulent Yersinia...

  2. Swimming with Predators and Pesticides: How Environmental Stressors Affect the Thermal Physiology of Tadpoles

    PubMed Central

    Katzenberger, Marco; Hammond, John; Duarte, Helder; Tejedo, Miguel; Calabuig, Cecilia; Relyea, Rick A.

    2014-01-01

    To forecast biological responses to changing environments, we need to understand how a species's physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming. PMID:24869960

  3. The Urban Fabric of the City as Its Affects Thermal Energy Responses Derived from Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    2000-01-01

    The physical geography of the city affects numerous aspects of its interlinked biophysical, social, and land-atmosphere characteristics - those attributes that come together to form the total urban environment. One approach to studying the multitude of interactions that occur as a result of urbanization is to view the city from a systems ecology perspective, where energy and material cycle into and out of the urban milieu. Thus, the urban ecosystem is synergistic in linking land, air, water, and living organisms in a vast network of interrelated physical, human, and biological process. Given the number and the shear complexity of the exchanges and, ultimately, their effects, that occur within the urban environment, we are focusing our research on looking at how the morphology or urban fabric of the city, drives thermal energy exchanges across the urban landscape. The study of thermal energy attributes for different cities provides insight into how thermal fluxes and characteristics are partitioned across the city landscape in response to each city's morphology. We are using thermal infrared remote sensing data obtained at a high spatial resolution from aircraft, along with satellite data, to identify and quantify thermal energy characteristics for 4 U.S. cities: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. Analysis of how thermal energy is spatially distributed across the urban landscapes for these cities provides a unique perspective for understanding how the differing morphology of cities forces land-atmosphere exchanges, such as the urban heat island effect, as well as related meteorological and air quality interactions. Keyword: urban ecosystems, remote sensing, urban heat island

  4. Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour.

    PubMed

    Wu, Kao; Gan, Renyou; Dai, Shuhong; Cai, Yi-Zhong; Corke, Harold; Zhu, Fan

    2016-03-01

    Buckwheat (BF) and millet (MF) are recommended as healthy foods due to their unique chemical composition and health benefits. This study investigated the thermal and rheological properties of BF-WF (wheat flour) and MF-WF flour blends at various ratios (0:100 to 100:0). Increasing BF or MF concentration led to higher cold paste viscosity and setback viscosity of pasting properties gel adhesiveness, storage modulus (G') and loss modulus (G″) of dynamic oscillatory rheology, and yield stress (σ0 ) of flow curve of WF. BF and MF addition decreased peak viscosity and breakdown of pasting, gel hardness, swelling volume, and consistency coefficient (K) of flow curve of WF. Thermal properties of the blends appeared additive of that of individual flour. Nonadditive effects were observed for some property changes in the mixtures, and indicated interactions between flour components. This may provide a physicochemical basis for using BF and MF in formulating novel healthy products.

  5. Aircraft sound quality for passenger comfort and enhanced product image

    NASA Astrophysics Data System (ADS)

    Wakefield, Gregory H.; Bultemeier, Eric J.; West, Erik; Angerer, James R.; Bhat, Waman V.

    2005-09-01

    Passenger cabin noise requirements for commercial airplanes are being expanded beyond the traditional focus on noise annoyance and speech intelligibility. There is increasing recognition that the passenger response to the cabin soundscape is much more complex; affecting perceptions of product quality, and impacting fatigue and comfort. Tailoring the soundscape for a preferred cabin environment requires the development of metrics that capture a range of passenger responses. In a preliminary exploration of potential metrics, a series of experiments were undertaken to investigate passenger preference for several classes of stationary and transient sounds within the passenger cabin. The design, implementation, and data analysis for these experiments is discussed, along with the application of results to enhance cabin comfort and to convey product quality. Key findings confirm what has been found in sound quality studies in other industries: sound level alone does not fully account for passenger preference.

  6. Normothermia and patient comfort: a comparative study in an outpatient surgery setting.

    PubMed

    Leeth, Dianne; Mamaril, Myrna; Oman, Kathleen S; Krumbach, Barbara

    2010-06-01

    ASPAN guidelines for the prevention of unplanned perioperative hypothermia define normothermia as a core temperature between 36 and 38 degrees C and an acceptable level of warmth. Over a six-month period, more than 30% of the same-day surgery patients experienced hypothermic core temperatures on admission to the preoperative unit. The purpose of the study was to compare two preoperative warming methods (forced-air gowns vs traditional warmed cotton blankets) on oral body temperatures, and patients reported "thermal" comfort in ambulatory surgery patients. A repeated measures experimental design study included 150 subjects in Pre-op who were randomly assigned to either the control warmed blankets group or the experimental forced-air gown group. Oral temperatures and thermal comfort assessments were measured every 30 minutes while the patients were in Pre-op, and on admission and discharge from the Phase I PACU. There was no significant difference in postoperative temperature between the subjects warmed with blankets and the warm-air gowns. Subjects warmed with the warm-air gowns reported higher comfort scores after 30 minutes of warming than those warmed with blankets. The change in comfort score from baseline to 30 minutes post warming was greater in the warm-air gown group (P = .001), indicating that warm-air gowns contribute to patients' increased thermal comfort.

  7. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous

  8. Evaluation of Comfort Liners for Pilot Helmets.

    DTIC Science & Technology

    1994-09-01

    coated open-cell foam system called a Thermoformed Liner (TFL) by Kaiser Electronics. Coefficient of friction, compression and creep data are generated on each of the II helmet comfort liner materials.

  9. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    USGS Publications Warehouse

    Holloway, J.M.; Nordstrom, D.K.; Böhlke, J.K.; McCleskey, R.B.; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  10. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance.

    PubMed

    Ely, Brett R; Sollanek, Kurt J; Cheuvront, Samuel N; Lieberman, Harris R; Kenefick, Robert W

    2013-04-01

    Equivocal findings have been reported in the few studies that examined the impact of ambient temperature (T a) and hypohydration on cognition and dynamic balance. The purpose of this study was to determine the impact of acute exposure to a range of ambient temperatures (T(a) 10-40 °C) in euhydration (EUH) and hypohydration (HYP) states on cognition, mood and dynamic balance. Thirty-two men (age 22 ± 4 years, height 1.80 ± 0.05 m, body mass 85.4 ± 10.8 kg) were grouped into four matched cohorts (n = 8), and tested in one of the four T(a) (10, 20, 30, 40 °C) when EUH and HYP (-4 % body mass via exercise-heat exposure). Cognition was assessed using psychomotor vigilance, 4-choice reaction time, matching to sample, and grammatical reasoning. Mood was evaluated by profile of mood states and dynamic postural balance was tested using a Biodex Balance System. Thermal sensation (TS), core (T core) and skin temperature (T(sk)) were obtained throughout testing. Volunteers lost -4.1 ± 0.4 % body mass during HYP. T sk and TS increased with increasing T(a), with no effect of hydration. Cognitive performance was not altered by HYP or thermal stress. Total mood disturbance (TMD), fatigue, confusion, anger, and depression increased during HYP at all T(a). Dynamic balance was unaffected by HYP, but 10 °C exposure impaired balance compared to all other T(a). Despite an increase in TMD during HYP, cognitive function was maintained in all testing environments, demonstrating cognitive resiliency in response to body fluid deficits. Dynamic postural stability at 10 °C appeared to be hampered by low-grade shivering, but was otherwise maintained during HYP and thermal stress.

  11. Thermal-induced residual stresses affect the fractographic patterns of zirconia-veneer dental prostheses.

    PubMed

    Belli, Renan; Petschelt, Anselm; Lohbauer, Ulrich

    2013-05-01

    Veneer fractures in dental zirconia-veneer prostheses are more frequent clinically than in conventional metal-ceramic systems. This is thought to be due to the increased residual stresses generated within the veneer during fabrication when zirconia is the infrastructure material. This investigation aimed to analyze the fractographic features of fractured zirconia-veneer dental crowns submitted to a load-to-failure test and to a more clinically relevant in vitro chewing simulation fatigue test. As-sintered and sandblasted zirconia copings were veneered with glass-ceramic with different coefficients of thermal expansion and cooled following two cooling rates, creating, this way, different levels of stresses within the veneer. Crowns with different thermal mismatch combinations and different cooling rates were hypothesized to present particular fracture patterns. A careful examination of >1000 scanning electron microscopy images of the fracture surfaces was conducted in search of characteristic fractographic markings of fracture mechanisms connected to the stress state of the veneer. Distinctive structural features could be observed between groups veneered with the two different glass-ceramics and between fractured crowns under static and cyclic loading. The presence/absence of residual stresses zones within the veneer have shown to play the major role in the fracture pattern of zirconia-veneer dental prostheses. For the fatigue crowns, the zirconia core was never exposed, either for sandblasted and as-sintered groups.

  12. Study of different cross-shaped microchannels affecting thermal-bubble-actuated microparticle manipulation

    NASA Astrophysics Data System (ADS)

    Li, Weichen; Tsou, Chingfu

    2015-10-01

    This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.

  13. In vitro gastrointestinal digestion of glabrous canaryseed proteins as affected by variety and thermal treatment.

    PubMed

    Rajamohamed, Sahul H; Aryee, Alberta N A; Hucl, Pierre; Patterson, Carol Ann; Boye, Joyce I

    2013-09-01

    Glabrous or hairless canaryseed is a nutritional grain that could be a good addition to the diet if approved as a novel food. To assess the impact of thermal treatment on its digestibility; raw, roasted or boiled flours prepared from three different varieties of glabrous canaryseed were subjected to in vitro gastrointestinal digestion conditions and the effect on protein electrophoretic profiles was examined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Roasting was done by dry-heat in an oven at 176 °C for 12 min whereas boiling was done in water at 98 °C for 12 min. SDS-PAGE showed approximately twenty-five protein bands in the undigested raw flour with molecular masses (MM) ranging from <14 kDa to >97 kDa. The dominant proteins had low MM, between the ranges of ~57 to 12 kDa. Roasting markedly altered the protein electrophoretic profile with the appearance of large molecular weight aggregates. Canaryseed proteins were more easily digested after thermal treatment and under sequential gastric-duodenal conditions than under gastric or duodenal conditions alone. Furthermore, roasting appeared to have a greater impact on in vitro protein digestibility than boiling.

  14. Assessment of Thermal Protection Afforded by Hot Water Diving Suits

    DTIC Science & Technology

    1980-07-03

    Assessment of Thermal Protect! " Afforded by Hot Water Diving Suits A AA L. A. Kuehn Diver thermal comfort in cold water is presently only...with proper control oj inlet suit water flow% and temperature, as well as heating of inspired gas, this suit technology suffices for thermal comfort for...technology provides in part to the convective heat loss that it prpsents, sustained long-term thermal comfort in cold water, Webb (W) has defined a

  15. The zone of comfort: Predicting visual discomfort with stereo displays.

    PubMed

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M; Banks, Martin S

    2011-07-21

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence-accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence-accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema.

  16. The zone of comfort: Predicting visual discomfort with stereo displays

    PubMed Central

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M.; Banks, Martin S.

    2012-01-01

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence–accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence–accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema. PMID:21778252

  17. Algal symbiont type affects gene expression in juveniles of the coral Acropora tenuis exposed to thermal stress.

    PubMed

    Yuyama, Ikuko; Harii, Saki; Hidaka, Michio

    2012-05-01

    Reef-building corals harbor symbiotic dinoflagellates, Symbiodinium spp., which are currently divided into several clades. The responses of corals associated with different Symbiodinium clades to thermal stress are not well understood, especially at a gene expression level. Juveniles of the coral Acropora tenuis inoculated with different algal types (clade A or D) were exposed to thermal stress and the expression levels of four putative stress-responsive genes, including genes coding green and red fluorescent proteins, an oxidative stress-responsive protein, and an ascorbic acid transporter, were analyzed by quantitative real-time PCR. The expression levels of the four genes decreased at high temperatures if juveniles were associated with clade A symbionts but increased if the symbionts were in clade D. The intensity of green fluorescence increased with temperature in clade D symbionts harboring juveniles, but not in juveniles associated with clade A symbionts. The present results suggest that genotypes of endosymbiotic algae affect the thermal stress responses of the coral juveniles.

  18. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  19. Interracial Social Comfort and Its Relationship to Adjustment to College

    ERIC Educational Resources Information Center

    McDonald, Scott D.; Vrana, Scott R.

    2007-01-01

    The present study examined the effects of interracial social comfort on college adjustment for 45 Black and 82 White students at a predominantly-White university. Black students reporting more comfort with Whites, regardless of level of comfort with Blacks, experienced better college adjustment. Furthermore, more social comfort with Blacks…

  20. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect

    Englemann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  1. The Efficacy of an Air-Cooling Vest to Reduce Thermal Strain for Light Armour Vehicle Personnel

    DTIC Science & Technology

    2007-01-01

    4 2.9.4 Thermal Comfort Measurements .................................................................... 4 2.9.5...5 3.2 Thermal Comfort ........................................................................................................... 5...period for each subject following a 1-min washout period. 2.9.4 Thermal Comfort Measurements Subjects were asked to provide a subjective

  2. Thermal stress and tropical cyclones affect economic production in Central America and Caribbean

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2009-12-01

    Surface temperatures and tropical cyclones have large impacts on economic production. Local cyclone energy dissipation reduces output in agriculture and tourism, while stimulating output in construction. High surface temperatures reduce output in several labor-intensive industries; a 1° C increase for two consecutive years results in production losses of ˜13%. The response is greatest during the hottest season and is non-linear, with high temperature days contributing the most to production losses. The structure of this response matches results from a large ergonomics literature, supporting the hypothesis that thermal stress reduces human performance, driving macroeconomic fluctuations. This large response of non-agricultural sectors suggests that current estimates underestimate the scale and scope of economic vulnerabilities to climate change. Responses of each industry to surface temperature, tropical cyclones and rainfall. Estimates represent the change of value-added in the industry in response to each atmospheric variables during the year of production (L=0) and the years prior (L≥1). The responses to surface temperature are triangles, tropical cyclones are squares and rainfall are crosses. Estimates are grey if none of the annual responses are significant at the α = 0.1 level. Whiskers indicate 95% confidence intervals. Tourism receipts displays the five years prior (L=1-5) because of the long response of that industry to cyclones. Agriculture per worker is also plotted as circles when estimated a second time excluding mainland countries from the sample. Units are: temperature- percent change in output per 0.33°C; cyclones- percent changes in output per 1 standard deviation of tropical cyclone energy; rainfall- percent change in output per 2 cm/month.

  3. Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens.

    PubMed

    Piestun, Yogev; Yahav, Shlomo; Halevy, Orna

    2015-10-01

    Thermal manipulation (TM) of 39.5°C applied during mid-embryogenesis (embryonic d 7 to 16) has been proven to promote muscle development and enhance muscle growth and meat production in meat-type chickens. This study aimed to elucidate the cellular basis for this effect. Continuous TM or intermittent TM (for 12 h/d) increased myoblast proliferation manifested by higher (25 to 48%) myoblast number in the pectoral muscles during embryonic development but also during the first week posthatch. Proliferation ability of the pectoral-muscle-derived myoblasts in vitro was significantly higher in the TM treatments until embryonic d 15 (intermittent TM) or 13 (continuous TM) compared to that of controls, suggesting increased myogenic progeny reservoir in the muscle. However, the proliferation ability of myoblasts was lower in the TM treatments vs. control during the last days of incubation. This coincided with higher levels of myogenin expression in the muscle, indicating enhanced cell differentiation in the TM muscle. A similar pattern was observed posthatch: Myoblast proliferation was significantly higher in the TM chicks relative to controls during the peak of posthatch cell proliferation until d 6, followed by lower cell number 2 wk posthatch as myoblast number sharply decreases. Higher myogenin expression was observed in the TM chicks on d 6. This resulted in increased muscle growth, manifested by significantly higher relative weight of breast muscle in the embryo and posthatch. It can be concluded that temperature elevation during mid-term embryogenesis promotes myoblast proliferation, thus increasing myogenic progeny reservoir in the muscle, resulting in enhanced muscle growth in the embryo and posthatch.

  4. Dynamics of a Recurrent Buchnera Mutation That Affects Thermal Tolerance of Pea Aphid Hosts

    PubMed Central

    Burke, Gaelen R.; McLaughlin, Heather J.; Simon, Jean-Christophe; Moran, Nancy A.

    2010-01-01

    Mutations in maternally transmitted symbionts can affect host fitness. In this study we investigate a mutation in an obligate bacterial symbiont (Buchnera), which has dramatic effects on the heat tolerance of pea aphid hosts (Acyrthosiphon pisum). The heat-sensitive allele arises through a single base deletion in a homopolymer within the promoter of ibpA, which encodes a universal small heat-shock protein. In laboratory cultures reared under cool conditions (20°), the rate of fixation (1.4 × 10−3 substitutions per Buchnera replication) is much higher than the previously estimated mutation rate for single base deletions in homopolymers in the Buchnera genome, implying a strong selective benefit. This mutation recurs in natural populations, but seldom reaches high frequencies, implying that it is only rarely favored by selection. Another potential source of physiological stress in pea aphids is infection by other microorganisms, including facultative bacterial symbionts, which occur in a majority of pea aphids in field populations. Frequency of the heat-sensitive Buchnera allele is negatively correlated with presence of facultative symbionts in both laboratory colonies and field populations, suggesting that these infections impose stress that is ameliorated by ibpA expression. This single base polymorphism in Buchnera has the potential to allow aphid populations to adapt quickly to prevailing conditions. PMID:20610410

  5. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea

    PubMed Central

    Falfushynska, Halina I.; Phan, Tuan; Sokolova, Inna M.

    2016-01-01

    Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20–41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8–12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC. PMID:27995990

  6. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea

    NASA Astrophysics Data System (ADS)

    Falfushynska, Halina I.; Phan, Tuan; Sokolova, Inna M.

    2016-12-01

    Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20–41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8–12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC.

  7. Extending end-state comfort effect: do we consider the beginning state comfort of another?

    PubMed

    Gonzalez, David A; Studenka, Breanna E; Glazebrook, Cheryl M; Lyons, Jim L

    2011-03-01

    Sharing a drink or passing a tool to another person is frequently done in our daily lives. However, a second thought is rarely given about how the object should be handed; instead we pay attention to other factors (e.g., the company). This interaction (handing a tool to someone) is interesting, since it may give insight to how motor intentions are predicted. Research has demonstrated that individuals exhibit an end-state comfort effect when manipulating objects, and it is of interest to determine how this is applied to a joint-action paradigm. The purpose of this experiment was to determine if participants would anticipate the confederate's postural requirements and pass tools in a manner that allowed the confederate to have beginning state comfort and thus facilitate the motion sequence as a whole. That is, would the participant incur the cost of the movement by adopting an awkward posture to facilitate the use of the tool by the confederate? The results demonstrated that participants allowed the confederate to adopt a comfortable beginning state comfort on 100% of the trials for all the tools. However, the participants did not sacrifice end-state comfort, demonstrating that the participants were able to plan ahead to both maximize their own end-state comfort and the beginning state comfort of the confederate.

  8. Infants and Toddlers: Soothing and Comforting Babies

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    2004-01-01

    Babies thrive on security. In early months, secure feelings stem from being warm, cuddled closely, and comfortable in their tummies (and in having clean bottoms!). In this article, the author discusses how to soothe infants and toddlers. The strategies to help ease babies' distress are described. Some of the recommended strategies include: (1) to…

  9. Helping Children Feel Comfortable and Calm

    ERIC Educational Resources Information Center

    Honig, Alice Sterling; Miller, Susan A.; Church, Ellen Booth

    2006-01-01

    This article presents calming activities and routines for children at different ages and stages. Honig discusses the different stages of arousal for children ages 0-2 and gives suggestions for ways to sooth fussy babies. Miller discusses calming activities and comforting environments for children ages 3-4, and recommends activities that require…

  10. Calculation of Level of Comfort of the Micro-Climate in Buildings During the Estimation of the Energy-Saving Measures

    NASA Astrophysics Data System (ADS)

    Prorokova, M. V.; Bukhmirov, V. V.

    2016-02-01

    The article describes the method of valuation of comfort of microclimate of residen-tial, public and administrative buildings. The method is based on calculation of the coefficient of thermal comfort of a person in the room. Further amendments are introduced to the asym-metry of the thermal radiation, radiation cooling and air quality. The method serves as the basis for a computer program.

  11. Urban heat island and differences in outdoor comfort levels in Glasgow, UK

    NASA Astrophysics Data System (ADS)

    Krüger, Eduardo; Drach, Patricia; Emmanuel, Rohinton; Corbella, Oscar

    2013-04-01

    From extensive outdoor comfort campaigns, preliminary outdoor comfort ranges have been defined for the local population of Glasgow, UK, in terms of two thermal indices: `Temperature Humidity Sun Wind' (THSW) and `Physiological Equivalent Temperature' (PET). A series of measurements and surveys was carried out from winter through summer 2011 during 19 monitoring campaigns. For data collection, a Davis Vantage Pro2 weather station was used, which was equipped with temperature and humidity sensors, cup anemometer with wind vane, silicon pyranometer and globe thermometer. From concurrent measurements using two weather stations, one located close to the city core and another located at a rural setting, approximately at a 15-km distance from the urban area of Glasgow, comparisons were made with regard to thermal comfort levels and to urban-rural temperature differences for different periods of the year. It was found that the two selected thermal indices (THSW and PET) closely correlate to the actual thermal sensation of respondents. Moreover, results show that the urban site will have fewer days of cold discomfort, more days of `neutral' thermal sensation and slightly higher warm discomfort. The most frequent urban heat island intensity was found to be around 3° C, whereas the fraction of cooling to heating degree-hours for a T base of 65 °F was approximately 1/12th.

  12. The effect of structures on indoor humidity--possibility to improve comfort and perceived air quality.

    PubMed

    Simonson, C J; Salonvaara, M; Ojanen, T

    2002-12-01

    The research presented in this paper shows that moisture transfer between indoor air and hygroscopic building structures can generally improve indoor humidity conditions. This is important because the literature shows that indoor humidity has a significant effect on occupant comfort, perceived air quality (PAQ), occupant health, building durability, material emissions, and energy consumption. Therefore, it appears possible to improve the quality of life of occupants when appropriately applying hygroscopic wood-based materials. The paper concentrates on the numerical investigation of a bedroom in a wooden building located in four European countries (Finland, Belgium, Germany, and Italy). The results show that moisture transfer between indoor air and the hygroscopic structure significantly reduces the peak indoor humidity. Based on correlations from the literature, which quantify the effect of temperature and humidity on comfort and PAQ for sedentary adults, hygroscopic structures can improve indoor comfort and air quality. In all the investigated climates, it is possible to improve the indoor conditions such that, as many as 10 more people of 100 are satisfied with the thermal comfort conditions (warm respiratory comfort) at the end of occupation. Similarly, the percent dissatisfied with PAQ can be 25% lower in the morning when permeable and hygroscopic structures are applied.

  13. Analysis of Knitting Process Variables and Yarn Count Influencing the Thermo-physiological Comfort Properties of Single Jersey and Rib Fabrics

    NASA Astrophysics Data System (ADS)

    Ghosh, Anindya; Mal, Prithwiraj; Majumdar, Abhijit; Banerjee, Debamalya

    2016-10-01

    In this paper, an investigation has been made to study the effect of yarn count and various knitting parameters, namely loop length, carriage speed and yarn input tension on thermo-physiological comfort properties like air permeability, thermal conductivity and thermal absorptivity. An orthogonal block Box and Behnken experimental design has been used to conduct the study. Analyses of the results show that yarn count and loop length have significant influence on the fabric thermo-physiological comfort properties. Yarn input tension and carriage speed have no significant impact on the fabric comfort.

  14. Human thermal physiological and psychological responses under different heating environments.

    PubMed

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems.

  15. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.; Clear, Robert D.

    2013-10-28

    developed technology, and it would require at least a full solstice-to-solstice cycle to ruinously quantify the performance, which was not possible within the project timeframe. There are certain limitations inherited from the operational assumptions, which could potentially affect the effectiveness and applicability of the developed control technologies. The system takes a typical ceiling-mounting approach for the photosensor locations, and therefore, the control performance relies on proper commissioning or the built-in intelligence of the photosensor for pertinent task light level estimations. For spaces where daylight penetration diminishes significantly deeper into the zone, certain modification to the control algorithms is required to accommodate multiple lighting control subzones and the corresponding sensors for providing a more uniform light level across the entire zone. Integrated control of visual and thermal comfort requires the lighting control zone and thermal control zone to coincide with each other. In other words, the area illuminated by a lighting circuit needs to be the same area served by the thermostat. Thus, the original zoning will potentially constrain the applicability of this technology in retrofitting projects. This project demonstrated the technical feasibility of a zone-based integrated control technology. From the simulation results and testbed implementations, up to 60% lighting energy savings in daylit areas relative to a “no-controls” case can easily be achieved. A 20% reduction of whole building energy consumption is also attainable. In the aspect of occupant comfort, the testbed demonstrated the ability to maintain specified light level on the workplane while promptly mitigate daylight glare 90% of the time. The control system also managed to maintain the thermal environment at a comfortable level 90% of the time. The aspect of system scalability was guaranteed by the system architecture design, based on which the testbeds were

  16. Walking after Stroke: Comfortable versus Maximum Safe Speed.

    ERIC Educational Resources Information Center

    Bohannon, Richard W.

    1992-01-01

    This study attempted to (1) determine whether stroke patients (n=20) can safely increase their walking speed above that of comfortable walking; (2) describe the relationship between comfortable and maximum safe walking speed; and (3) examine correlations between maximum and comfortable speeds and a functional walking score. Subjects were able to…

  17. Thermal management in heavy vehicles : a review identifying issues and research requirements.

    SciTech Connect

    Wambsganss, M. W.

    1999-01-15

    Thermal management in heavy vehicles is cross-cutting because it directly or indirectly affects engine performance, fuel economy, safety and reliability, engine/component life, driver comfort, materials selection, emissions, maintenance, and aerodynamics. It follows that thermal management is critical to the design of large (class 6-8) trucks, especially in optimizing for energy efficiency and emissions reduction. Heat rejection requirements are expected to increase, and it is industry's goal to develop new, innovative, high-performance cooling systems that occupy less space and are lightweight and cost-competitive. The state of the art in heavy vehicle thermal management is reviewed, and issues and research areas are identified.

  18. Physicochemical and thermal properties of taro (Colocasia esculenta sp) powders as affected by state of maturity and drying method.

    PubMed

    Himeda, M; Njintang, Y N; Gaiani, C; Nguimbou, R M; Scher, J; Facho, B; Mbofung, C M F

    2014-09-01

    The study was aimed at determining the effect of harvesting time and drying method on the thermal and physicochemical properties of taro powder, Sosso ecotype. A 5 × 2 factorial experiment with 5 harvesting times (6, 7, 8, 9 and 10 months after planting) and 2 drying methods (sun and electric oven drying) was used for this purpose. The variance component analysis revealed harvesting time as the most important factor affecting all the variables measured. In particular the proteins and available sugar contents of the powders increased significantly with increase in harvesting time. The same was true of the gelling property and water absorption capacity of the powders. It was equally observed that the temperatures (start, peak and end) and enthalpy of gelatinization of the powders increased with harvesting time. It is concluded that harvesting sosso-taro at full maturity (10 months after planting) and sun-drying produces food powders with excellent gelling properties among others.

  19. Thermal affected zone obtained in machining steel XC42 by high-power continuous CO 2 laser

    NASA Astrophysics Data System (ADS)

    Jebbari, Neila; Jebari, Mohamed Mondher; Saadallah, Faycal; Tarrats-Saugnac, Annie; Bennaceur, Raouf; Longuemard, Jean Paul

    2008-09-01

    A high-power continuous CO 2 laser (4 kW) can provide energy capable of causing melting or even, with a special treatment of the surface, vaporization of an XC42-steel sample. The laser-metal interaction causes an energetic machining mechanism, which takes place according to the assumption that the melting front precedes the laser beam, such that the laser beam interacts with a preheated surface whose temperature is near the melting point. The proposed model, obtained from the energy balance during the interaction time, concerns the case of machining with an inert gas jet and permits the calculation of the characteristic parameters of the groove according to the characteristic laser parameters (absorbed laser energy and impact diameter of the laser beam) and allows the estimation of the quantity of the energy causing the thermal affected zone (TAZ). This energy is equivalent to the heat quantity that must be injected in the heat propagation equation. In the case of a semi-infinite medium with fusion temperature at the surface, the resolution of the heat propagation equation gives access to the width of the TAZ.

  20. Perceived Competence and Comfort in Respiratory Protection

    PubMed Central

    Burgel, Barbara J.; Novak, Debra; Burns, Candace M.; Byrd, Annette; Carpenter, Holly; Gruden, MaryAnn; Lachat, Ann; Taormina, Deborah

    2015-01-01

    In response to the Institute of Medicine (2011) report Occupational Health Nurses and Respiratory Protection: Improving Education and Training, a nationwide survey was conducted in May 2012 to assess occupational health nurses’ educational preparation, roles, responsibilities, and training needs in respiratory protection. More than 2,000 occupational health nurses responded; 83% perceived themselves as competent, proficient, or expert in respiratory protection, reporting moderate comfort with 12 respiratory program elements. If occupational health nurses had primary responsibility for the respiratory protection program, they were more likely to perceive higher competence and more comfort in respiratory protection, after controlling for occupational health nursing experience, highest education, occupational health nursing certification, industry sector, Association of Occupational Health Professionals in Healthcare membership, taking a National Institute for Occupational Safety and Health spirometry course in the prior 5 years, and perceiving a positive safety culture at work. These survey results document high perceived competence and comfort in respiratory protection. These findings support the development of targeted educational programs and interprofessional competencies for respiratory protection. PMID:23429638

  1. The social comfort of wearable technology and gestural interaction.

    PubMed

    Dunne, Lucy E; Profita, Halley; Zeagler, Clint; Clawson, James; Gilliland, Scott; Do, Ellen Yi-Luen; Budd, Jim

    2014-01-01

    The "wearability" of wearable technology addresses the factors that affect the degree of comfort the wearer experiences while wearing a device, including physical, psychological, and social aspects. While the physical and psychological aspects of wearing technology have been investigated since early in the development of the field of wearable computing, the social aspects of wearability have been less fully-explored. As wearable technology becomes increasingly common on the commercial market, social wearability is becoming an ever-more-important variable contributing to the success or failure of new products. Here we present an analysis of social aspects of wearability within the context of the greater understanding of wearability in wearable technology, and focus on selected theoretical frameworks for understanding how wearable products are perceived and evaluated in a social context. Qualitative results from a study of social acceptability of on-body interactions are presented as a case study of social wearability.

  2. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps.

    PubMed

    García-Gil, Alejandro; Vázquez-Suñe, Enric; Schneider, Eduardo Garrido; Sánchez-Navarro, José Ángel; Mateo-Lázaro, Jesús

    2014-07-01

    The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations.

  3. Comfort air temperature influence on heating and cooling loads of a residential building

    NASA Astrophysics Data System (ADS)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  4. Comparison of different cooling regimes within a shortened liquid cooling/warming garment on physiological and psychological comfort during exercise

    NASA Technical Reports Server (NTRS)

    Leon, Gloria R.; Koscheyev, Victor S.; Coca, Aitor; List, Nathan

    2004-01-01

    The aim of this study was to compare the effectiveness of different cooling regime intensities to maintain physiological and subjective comfort during physical exertion levels comparable to that engaged in during extravehicular activities (EVA) in space. We studied eight subjects (six males, two females) donned in our newly developed physiologically based shortened liquid cooling/warming garment (SLCWG). Rigorous (condition 1) and mild (condition 2) water temperature cooling regimes were compared at physical exertion levels comparable to that performed during EVA to ascertain the effectiveness of a lesser intensity of cooling in maintaining thermal comfort, thus reducing energy consumption in the portable life support system. Exercise intensity was varied across stages of the session. Finger temperature, rectal temperature, and subjective perception of overall body and hand comfort were assessed. Finger temperature was significantly higher in the rigorous cooling condition and showed a consistent increase across exercise stages, likely due to the restriction of heat extraction because of the intensive cold. In the mild cooling condition, finger temperature exhibited an overall decline with cooling, indicating greater heat extraction from the body. Rectal temperature was not significantly different between conditions, and showed a steady increase over exercise stages in both rigorous and mild cooling conditions. Ratings of overall comfort were 30% higher (more positive) and more stable in mild cooling (p<0.001). The mild cooling regime was more effective than rigorous cooling in allowing the process of heat exchange to occur, thus maintaining thermal homeostasis and subjective comfort during physical exertion.

  5. Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon

    2015-05-01

    Although autostereoscopic display is considered to be mainstream in the three-dimensional (3-D) display market for the near future, practical quality problems still exist due to various challenges such as the accommodation-vergence conflict and crosstalk. A number of studies have shown that these problems reduce the visual comfort and reliability of the perceived workload. We present two experiments for investigating the effect of parallax distribution, which affects the behavior of the accommodation and vergence responses and crosstalk on visual comfort in autostereoscopic display. We measured the subjective visual scores and perceived depth position for watching under various conditions that include foreground parallax, background parallax, and crosstalk levels. The results show that the viewers' comfort is significantly influenced by parallax distribution that induces a suitable conflict between the accommodation and vergence responses of the human visual system. Moreover, we confirm that crosstalk changes significantly affect visual comfort in parallax barrier autostereoscopic display. Consequently, the results can be used as guidelines to produce or adjust the 3-D image in accordance with the characteristics of parallax barrier autostereoscopic display.

  6. Frontal Brain Activity and Behavioral Indicators of Affective States are Weakly Affected by Thermal Stimuli in Sheep Living in Different Housing Conditions

    PubMed Central

    Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2015-01-01

    Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative), intermediate, and cold (as presumably positive). We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g., locomotor activity, aversive behaviors), and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements, and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found. PMID:26664938

  7. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  8. Examining therapist comfort in delivering family therapy in home and community settings: development and evaluation of the Therapist Comfort Scale.

    PubMed

    Glebova, Tatiana; Foster, Sharon L; Cunningham, Phillippe B; Brennan, Patricia A; Whitmore, Elizabeth

    2012-03-01

    This study reports on the development and psychometric properties of a new measure assessing therapist comfort in the home treatment context and the relationship between therapist comfort, related process variables, and therapist characteristics. Data were drawn from a longitudinal evaluation of 185 families treated by 51 therapists using Multisystemic Therapy (MST). Therapist comfort was measured at four time points. Psychometric evaluation indicated that the measure was internally and temporally consistent. Examination of the measure's validity indicated that therapists' feelings of safety and comfort during the provision of home-based treatment were associated with family neighborhood characteristics and family socioeconomic factors. Furthermore, the therapist's reported level of alliance (as measured by the Emotional Bonding subscale of the Working Alliance Inventory) was related to her/his feeling of comfort. Analyses also indicated that therapists with greater belief in the clinical utility of the MST model felt more comfortable when delivering MST. Together the results suggest that economically disadvantaged families treated in home and community settings may be most at risk for erosions in the therapeutic relationship over time as a function of lower therapist comfort. Because therapist comfort was associated with therapeutic alliance-a factor found to be associated with clinical outcomes across studies and treatment models-findings imply that psychotherapists should regularly examine their own level of comfort, especially when providing services in nontraditional settings, and that therapist comfort should be routinely assessed as part of clinical supervision and training.

  9. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    SciTech Connect

    Busch, J.F. Jr.

    1990-08-01

    This document contains Appendix A, B, and C. In Appendix A, we are working as part of a research project with King Monkut's Institute of Technology, Thonburi, and the University of California, Berkeley (USA) to determine how people respond to the thermal environment inside buildings. We have prepared a short questionnaire which will survey thermal comfort. Our plan is to survey each building during each of three seasons over this year (e.g. hot, rainy, and cool seasons). Appendix B contains supporting technical documentation on conservation potential and Appendix C contains documentation on utility impacts.

  10. Local thermal unpleasantness and discomfort prediction in the vicinity of thermoneutrality.

    PubMed

    Pellerin, Nicolas; Deschuyteneer, Anne; Candas, Victor

    2004-09-01

    This work emphasizes a better understanding of the origin of human thermal discomfort under heterogeneous but steady environments, in subjects in the vicinity of physiological and sensory thermoneutrality. The knowledge of skin temperatures allows a psychophysiological study aiming at linking the body thermal state (local and global) to thermal sensation (perceptive and affective judgements). By using two driving simulators, 345 subjects were exposed to different thermal environments, modulated by factors such as the air distribution in the automotive cockpit or the clothing insulation (winter or summer). This work shows that consideration of the local thermal state is essential for the evaluation of thermal comfort in the case of non-uniform environments. Our experimental conditions point out that the overall sensation of discomfort is quantitative, with local unpleasantness needing to be felt for a certain number of body surfaces. A local origin is suggested for cold discomfort, in opposition to the global characteristics of warm discomfort.

  11. Aircraft passenger comfort experience: underlying factors and differentiation from discomfort.

    PubMed

    Ahmadpour, Naseem; Robert, Jean-Marc; Lindgaard, Gitte

    2016-01-01

    Previous studies defined passengers' comfort based on their concerns during the flight and a set of eight experiential factors such as 'peace of mind', 'physical wellbeing', 'pleasure', etc. One Objective of this paper was to determine whether the factors underlying the passengers' experience of comfort differ from those of discomfort. Another objective was to cross-validate those factors. In the first study, respondents provided written reports of flight comfort and discomfort experiences separately and gave ratings on the impact of the eight factors on each experience. Follow up interviews were also conducted. Significant difference was found between comfort and discomfort ratings for two factors of 'pleasure', denoted by one's concern for stimulation, ambience and exceeded expectations, and 'physical wellbeing' characterized in terms of bodily support and energy. However, there were no significant differences between the comfort and discomfort ratings on the other six factors. The evidence does not support the proposition that passenger comfort and discomfort are underline by different sets of factors. It is therefore suggested that the evaluation of overall passenger comfort experience, as a whole, employ one spectrum ranging from extreme comfort to discomfort. In study two, a pool of comfort descriptors was collected. Those that were less relevant to passenger comfort were eliminated in a number of steps. Factor analysis was used to classify the remaining descriptors, using respondents' ratings on their potential impact on passenger comfort. Seven factors corresponded to the pre-determined passenger comfort factors from previous research, validating those with an exception of 'proxemics' (concerning one's privacy and control over their situation) but it was argued that this is due to the nature of the factor itself, which is context dependent and generally perceived unconsciously.

  12. Building Comfort Analysis Using BLAST: A Case Study

    DTIC Science & Technology

    1991-09-01

    Thermodynamics (BLAST) computer program includes the ability to model comfort parameters in addition to evalu- ating building energy performance. This study...new feature of the Building Loads Analysis and Systems Thermodynamics (BLAST) computer program includes the ability to model comfort parameters in...Systems Thermodynamics (BLAST) computer program to examine a facility’s comfort parameters. BLAST is a comprehensive hour-by-hour simulation program

  13. Thermal Stress in Seven Types of Chemical Defense Ensembles During Moderate Exercise in Hot Environments

    DTIC Science & Technology

    1993-08-01

    calculated by dividing sweat production by trial length. Subjective Measures Subjective evaluations of rated perceived exertion (RPE) (10) and thermal comfort (TC...correlate with HR (10) . Thermal comfort is believed to be a relative indicator of Trask (11) . Significant differences in •’C ratings were seen only...activity. Data for mean RPE as a function of mean thermal comfort reveal a better relationship than that of RPE and HR. RPE may also be influenced by

  14. Passenger comfort response times as a function of aircraft motion

    NASA Technical Reports Server (NTRS)

    Rinalducci, E. J.

    1975-01-01

    The relationship between a passenger's response time of changes in level of comfort experienced as a function of aircraft motion was examined. The aircraft used in this investigation was capable of providing a wide range of vertical and transverse accelerations by means of direct lift flap control surfaces and side force generator surfaces in addition to normal control surfaces. Response times to changes in comfort were recorded along with the passenger's rating of comfort on a five point scale. In addition, a number of aircraft motion variables including vertical and transverse accelerations were also recorded. Results indicate some relationship between human comfort response times to reaction time data.

  15. Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK

    NASA Astrophysics Data System (ADS)

    Krüger, Eduardo; Drach, Patricia; Emmanuel, Rohinton; Corbella, Oscar

    2013-07-01

    To understand thermal preferences and to define a preliminary outdoor comfort range for the local population of Glasgow, UK, an extensive series of measurements and surveys was carried out during 19 monitoring campaigns from winter through summer 2011 at six different monitoring points in pedestrian areas of downtown Glasgow. For data collection, a Davis Vantage Pro2 weather station equipped with temperature and humidity sensors, cup anemometer with wind vane, silicon pyranometer and globe thermometer was employed. Predictions of the outdoor thermal index PET (physiologically equivalent temperature) correlated closely to the actual thermal votes of respondents. Using concurrent measurements from a second Davis Vantage Pro2 weather station placed in a rural setting approximately 15 km from the urban area, comparisons were drawn with regard to daytime thermal comfort levels and urban-rural temperature differences (∆Tu-r) for the various sites. The urban sites exhibited a consistent lower level of thermal discomfort during daytime. No discernible effect of urban form attributes in terms of the sky-view factor were observed on ∆Tu-r or on the relative difference of the adjusted predicted percentage of dissatisfied (PPD*).

  16. Adaptation to local thermal regimes by crustose coralline algae does not affect rates of recruitment in coral larvae

    NASA Astrophysics Data System (ADS)

    Siboni, Nachshon; Abrego, David; Evenhuis, Christian; Logan, Murray; Motti, Cherie A.

    2015-12-01

    Crustose coralline algae (CCA) are well known for their ability to induce settlement in coral larvae. While their wide distribution spans reefs that differ substantially in temperature regimes, the extent of local adaptation to these regimes and the impact they have on CCA inductive ability are unknown. CCA Porolithon onkodes from Heron (southern) and Lizard (northern) islands on Australia's Great Barrier Reef (separated by 1181 km) were experimentally exposed to acute or prolonged thermal stress events and their thermal tolerance and recruitment capacity determined. A sudden onset bleaching model was developed to determine the health status of CCA based on the rate of change in the CCA live surface area (LSA). The interaction between location and temperature was significant ( F (2,119) = 6.74, p = 0.0017), indicating that thermally driven local adaptation had occurred. The southern population remained healthy after prolonged exposure to 28 °C and exhibited growth compared to the northern population ( p = 0.022), with its optimum temperature determined to be slightly below 28 °C. As expected, at the higher temperatures (30 and 32 °C) the Lizard Island population performed better that those from Heron Island, with an optimum temperature of 30 °C. Lizard Island CCA displayed the lowest bleaching rates at 30 °C, while levels consistently increased with temperature in their southern counterparts. The ability of those CCA deemed thermally tolerant (based on LSA) to induce Acropora millepora larval settlement was then assessed. While spatial differences influenced the health and bleaching levels of P. onkodes during prolonged and acute thermal exposure, thermally tolerant fragments, regardless of location, induced similar rates of coral larval settlement. This confirmed that recent thermal history does not influence the ability of CCA to induce settlement of A. millepora larvae.

  17. Patient comfort during flexible and rigid cystourethroscopy

    PubMed Central

    Zdrojowy, Romuald; Wojciechowska, Joanna; Kościelska, Katarzyna; Dembowski, Janusz; Matuszewski, Michał; Tupikowski, Krzysztof; Małkiewicz, Bartosz; Kołodziej, Anna

    2016-01-01

    Introduction Cystourethroscopy (CS) is an endoscopic method used to visualize the urethra and the bladder. Aim In this study, we prospectively evaluated pain in men undergoing cyclic cystoscopic assessment with rigid and flexible instruments after transurethral resection of bladder tumor (TURB). Material and methods One hundred and twenty male patients who were under surveillance after a TURB procedure due to urothelial cell carcinoma and who had undergone at least one rigid cystourethroscopy in the past were enrolled in the trial. Patients were prospectively randomized to age-matched groups for flexible (group F) or rigid (group R) CS. Patient's comfort was evaluated on an 11-grade scale, ranging from 0 (free from pain) to 10 points (unbearable pain). Results The patients described the pain during the previous rigid CS as ranging from 4 to 10 (mean: 6.8) in group F and from 0 to 10 (mean: 5.8) in group R. Group R patients described the pain during the current rigid CS as ranging from 0 to 10 (mean: 5.7). No mean change in the grade was observed between the two pain descriptions (no change 11 patients, weaker pain 25 patients, stronger pain 24 patients, gamma 0.51, p < 0.0001). Group F described the pain as 1 to 5 (mean: 2.1). In the case of flexible CS the pain experience was greatly lowered compared to the previous rigid CS. All flexible CS patients reported lowered pain (by 1 to 9 grades). Patients’ age did not influence the comfort of the flexible CS or the change in pain level. Conclusions Flexible CS is better tolerated than rigid cystoscopy by male patients regardless of patients’ age. PMID:27458489

  18. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  19. Performance criteria for dynamic window systems using nanostructured behaviors for energy harvesting and environmental comfort

    NASA Astrophysics Data System (ADS)

    Andow, Brandon C.; Krietemeyer, Bess; Stark, Peter R. H.; Dyson, Anna H.

    2013-04-01

    Contemporary commercial building types continue to incorporate predominantly glazed envelope systems, despite the associated challenges with thermal regulation, visual comfort, and increased energy consumption. The advantage of window systems that could adaptively respond to changes in the environment while meeting variable demands for building energy use and occupant comfort has led to considerable investment towards the advancement of dynamic window technologies. Although these technologies demonstrate cost warranting improvements in building energy performance, they face challenges with visible clarity, color variability and response time. Furthermore, they remain challenged with respect to their ability to adequately control important qualitative criteria for daylighting such as glare and balanced light redistribution within occupied spaces. The material dependent limitations of advanced glazing technologies have initiated a search for new thin film solutions, with new device possibilities emerging across many fields. Idealized window performance has traditionally been defined as the dynamic control of solar transmittance, glare, solar gain and daylighting at any time to manage energy, comfort and view. However, in the context of wider goals towards building energy self-sufficiency through the achievement of on-site net zero energy, emerging material systems point towards other physical phenomena for achieving transparency modulation and energy harvesting, demanding a broader range of criteria for advanced glazing controls that allow the glazed building envelope to exist as a transfer function that can address and potentially accommodate the following five principal criteria: 1. Thermal management; 2. Daylighting harvesting and modulation; 3. Maintenance of views; 4. Active power capture, transfer, storage and redistribution; 5. Information Display. Building upon the existing set of performance requirements for high-performance glazing, this paper prescribes

  20. Dynamic weakening of fault gouge affected by thermal conductivity of host specimen: implications for the high-velocity weakening mechanisms

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko; Niemeijer, André

    2015-04-01

    Since many high-velocity weakening mechanisms are thermal in origin, we study the effects of thermal conductivity of host specimen on fault gouge friction behavior at seismic slip rates. By using host specimens made of brass, stainless steel, Ti-Al-V alloy and gabbro with thermal conductivities of 123, 15, 5.8 and 3.25 W/m/K, respectively, the experiments in this study produce completely different temperature conditions within the same gouge under the same slip rates and normal stresses. Fault gouges used in the experiments are a natural illite- and quartz-rich gouge from Longmenshan fault zone and pure periclase (MgO) nanopowder. High-velocity weakening of gouges were more pronounced with decreasing thermal conductivity of the specimens. Particularly, almost no dynamic weakening was observed in the tests performed with brass host specimens, while tests with specimens of gabbro and Ti-Al-V alloy exhibits quite similar dramatic weakening behaviors. Such differences in gouge frictional behavior cannot be explained by original flash heating model, since asperity contacts within the slip zone and experimental conditions are still same, even though host specimens are different. Microstructure observations under scanning and transmission electron microscopes reveal that slip zone materials tend to change from individual ultrafine nanograins to larger sintered grains or aggregates, with decreasing thermal conductivities of host specimens. Calculated temperature together with observed microstructure indicate that bulk temperature rise may be also play an important role in fault weakening, as predicted by a recent theoretical analysis of the role of flash heating within the gouge zone [Proctor et al., 2014]. Current results demonstrate the importance of frictional heating in causing the dynamic weakening of gouge, and the powder lubrication hypothesis is not consistent with our experimental data.

  1. No calorie comfort: Viewing and drawing "comfort foods" similarly augment positive mood for those with depression.

    PubMed

    Privitera, Gregory J; Welling, Deeanna; Tejada, Gabriela; Sweazy, Nicole; Cuifolo, Kayla N; King-Shepard, Quentin W; Doraiswamy, P Murali

    2016-12-12

    Based on behavioral and neurobiological data, we tested the hypothesis that viewing/drawing visual images of comfort foods in the absence of eating will increase positive mood and that this effect is augmented for those with clinical symptoms of depression. A counterbalanced design was used for 60 participants with and without clinical symptoms in two variations: food image and food art. In each variation, participants viewed/drew foods high or low in fat/sugar; pre-post mood was recorded. Results show a consistent pattern: viewing/drawing comfort foods [food image (95% confidence interval): 2.72-4.85; food art (95% confidence interval): 2.65-4.62] and fruits [food image (95% confidence interval): 1.20-2.23; food art (95% confidence interval): 1.51-2.56] enhanced mood. For comfort foods, mood was augmented for those with clinical symptoms of depression [food image (95% confidence interval): 0.95-3.59; food art (95% confidence interval): 0.97-3.46]. Findings corroborate previous data and reveal a novel finding of augmented mood increases for those with clinical symptoms.

  2. Comfort Food: Nourishing Our Collective Stomachs and Our Collective Minds

    ERIC Educational Resources Information Center

    Troisi, Jordan D.; Wright, Julian W. C.

    2017-01-01

    Food is a powerful motivator in human functioning--it serves a biological need, as emotional support, and as a cultural symbol. Until recently, the term "comfort food" has been inadequately and unscientifically defined. In addition, the popular media have oversimplified the concept of comfort food as purely unhealthy food, often consumed…

  3. The Digital Divide in Classrooms: Teacher Technology Comfort and Evaluations

    ERIC Educational Resources Information Center

    Dornisch, Michele

    2013-01-01

    A disconnect exists between students' comfort with using technology for learning and teachers' comfort in using technology for teaching. Students report the desire for more engaging technology-based assignments. Teachers cite multiple reasons for their hesitancy to use technology in their teaching. The current study investigates whether…

  4. Comfort evaluation as the example of anthropotechnical furniture design.

    PubMed

    Vlaović, Zoran; Bogner, Andrija; Grbac, Ivica

    2008-03-01

    Human health is becoming an increasingly important issue in contemporary hectic lifestyle imposed at work and by struggle to save time and money. Sitting comfort and quality of chairs which we use for the most of our time have, thus, become essential for healthy lifestyle. Sitting discomforts arise from prolonged sitting on the inappropriate chairs, which failing to provide sufficient support to the body cause discomfort and tiring. The studies of the office chair constructions have identified differences in perception of comfort provided by different types of seats. Four seat constructions and the comfort they provide to the sitters were compared by means of subjective indicators. After a two-day sitting on each of the studied chairs the subjects scored their perception of comfort and discomfort, using the questionnaire with 17 statements. Constructional forms and materials which contributed more to the sense of comfort by minimizing fatigue and pains developed by sitting were determined.

  5. Applying outdoor environment to develop health, comfort, and energy saving in the office in hot-humid climate.

    PubMed

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2-23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  6. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    SciTech Connect

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  7. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    PubMed Central

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  8. A Correlation Between the Heat Affected Zone Microstructure and the Thermal History During Welding of HY-130 Steel.

    DTIC Science & Technology

    1981-09-01

    the weld. Additionally, Lipsey [Ref. 9] used a computer program to predict the temperature at various 11 locations in the test plate. in all of these...M.I.T. OSP#82558, November 1980. 7. Rogalski, W. J., "An Economic and Technical Study on the Feasibility of Using Advanced Joining Techniques in... Lipsey , M. D., "Investigation of Welding Thermal Strains in High Strength Quenched and Tempered Steel," Ocean Engineer Thesis, Massachusetts Institute

  9. 33 CFR 165.809 - Security Zones; Port of Port Lavaca-Point Comfort, Point Comfort, TX and Port of Corpus Christi...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lavaca-Point Comfort, Point Comfort, TX and Port of Corpus Christi Inner Harbor, Corpus Christi, TX. 165... Lavaca-Point Comfort, Point Comfort, TX and Port of Corpus Christi Inner Harbor, Corpus Christi, TX. (a) Location. The following area is designated as a security zone: all waters of the Corpus Christi...

  10. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer.

    PubMed

    Winett, R A; Hatcher, J W; Fort, T R; Leckliter, I N; Love, S Q; Riley, A W; Fishback, J F

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62 degrees F when home and about 59 degrees F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75 degrees F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior

  11. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer

    PubMed Central

    Winett, Richard A.; Hatcher, Joseph W.; Fort, T. Richard; Leckliter, Ingrid N.; Love, Susan Q.; Riley, Anne W.; Fishback, James F.

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62°F when home and about 59°F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75°F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior change, and energy

  12. Thermal environment assessment reliability using temperature--humidity indices.

    PubMed

    d'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe

    2011-01-01

    A reliable assessment of the thermal environment should take into account the whole of the six parameters affecting the thermal sensation (air temperature, air velocity, humidity, mean radiant temperature, metabolic rate and thermo-physical properties of clothing). Anyway, the need of a quick evaluation based on few measurements and calculations has leaded to like best temperature-humidity indices instead of rational methods based on the heat balance on the human body. Among these, Canadian Humidex, preliminarily used only for weather forecasts, is becoming more and more widespread for a generalized assessment of both outdoor and indoor thermal environments. This custom arouses great controversies since using an index validated in outdoor conditions does not assure its indoor reliability. Moreover is it really possible to carry out the thermal environment assessment ignoring some of variables involved in the physiological response of the human body? Aiming to give a clear answer to these questions, this paper deals with a comparison between the assessment carried out according to the rational methods suggested by International Standards in force and the Humidex index. This combined analysis under hot stress situations (indoor and outdoor) has been preliminarily carried out; in a second phase the study deals with the indoor comfort prediction. Obtained results show that Humidex index very often leads to the underestimation of the workplace dangerousness and a poor reliability of comfort prediction when it is used in indoor situations.

  13. Factors Related to Establishing a Comfort Care Goal in Nursing Home Patients with Dementia: A Cohort Study among Family and Professional Caregivers

    PubMed Central

    van Soest-Poortvliet, Mirjam C.; de Vet, Henrica C.W.; Hertogh, Cees M.P.M.; Onwuteaka-Philipsen, Bregje D.; Deliens, Luc H.J.

    2014-01-01

    Abstract Background: Many people with dementia die in long-term care settings. These patients may benefit from a palliative care goal, focused on comfort. Admission may be a good time to revisit or develop care plans. Objective: To describe care goals in nursing home patients with dementia and factors associated with establishing a comfort care goal. Design: We used generalized estimating equation regression analyses for baseline analyses and multinomial logistic regression analyses for longitudinal analyses. Setting: Prospective data collection in 28 Dutch facilities, mostly nursing homes (2007–2010; Dutch End of Life in Dementia study, DEOLD). Results: Eight weeks after admission (baseline), 56.7% of 326 patients had a comfort care goal. At death, 89.5% had a comfort care goal. Adjusted for illness severity, patients with a baseline comfort care goal were more likely to have a religious affiliation, to be less competent to make decisions, and to have a short survival prediction. Their families were less likely to prefer life-prolongation and more likely to be satisfied with family–physician communication. Compared with patients with a comfort care goal established later during their stay, patients with a baseline comfort care goal also more frequently had a more highly educated family member. Conclusions: Initially, over half of the patients had a care goal focused on comfort, increasing to the large majority of the patients at death. Optimizing patient–family–physician communication upon admission may support the early establishing of a comfort care goal. Patient condition and family views play a role, and physicians should be aware that religious affiliation and education may also affect the (timing of) setting a comfort care goal. PMID:25226515

  14. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase

    PubMed Central

    Sharma, Reetu; Sastry, G. Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant’s functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  15. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  16. Thermal analysis of Malaysian double storey housing - low/medium cost unit

    NASA Astrophysics Data System (ADS)

    Normah, M. G.; Lau, K. Y.; Yusoff, S. Mohd.

    2012-06-01

    Almost half of the total energy used today is consumed in buildings. In the tropical climate, air-conditioning a housing unit takes much of the energy bill. Malaysia is no exception. Malaysian double storey terrace housing is popular among developers and buyers. Surveys have shown that housing occupants are much dissatisfied with the thermal comfort and artificial cooling is often sought. The objective of this study is to assess the thermal comfort of the low and medium-cost double storey housing in the area surrounding Universiti Teknologi Malaysia. A simulation program using the Weighting Factor Method calculates the heat transfer interaction, temperature distribution, and PMV level in three types of housing units in relation to the size. Fanger's PMV model based on ISO Standard 7730 is used here because it accounts for all parameters that affect the thermal sensation of a human within its equation. Results showed that both the low and medium-cost housing units studied are out of the comfortable range described by ASHRAE Standard 55 with the units all complied with the local bylaws. In view of the uncertainties in energy supply, future housing units should consider natural ventilation as part of the passive energy management.

  17. Na,K-ATPase reconstituted in ternary liposome: the presence of cholesterol affects protein activity and thermal stability.

    PubMed

    Yoneda, Juliana Sakamoto; Rigos, Carolina Fortes; de Lourenço, Thaís Fernanda Aranda; Sebinelli, Heitor Gobbi; Ciancaglini, Pietro

    2014-12-15

    Differential scanning calorimetry (DSC) was applied to investigate the effect of cholesterol on the thermotropic properties of the lipid membrane (DPPC and DPPE). The thermostability and unfolding of solubilized and reconstituted Na,K-ATPase in DPPC:DPPE:cholesterol-liposomes was also studied to gain insight into the role of cholesterol in the Na,K-ATPase modulation of enzyme function and activity. The tertiary system (DPPC:DPPE:cholesterol) (molar ratio DPPC:DPPE equal 1:1) when cholesterol content was increased from 0% up to 40% results in a slight decrease in the temperature of transition and enthalpy, and an increase in width. We observed that, without heating treatment, at 37°C, the activity was higher for 20mol% cholesterol. However, thermal inactivation experiments showed that the enzyme activity loss time depends on the cholesterol membrane content. The unfolding of the enzyme incorporated to liposomes of DPPC:DPPE (1:1mol) with different cholesterol contents, ranging from 0% to 40% mol was also studied by DSC. Some differences between the thermograms indicate that the presence of lipids promotes a conformational change in protein structure and this change is enough to change the way Na,K-ATPase thermally unfolds.

  18. A Comparison of Helping, Sharing, Comforting, Honesty, and Civic Awareness for Home Care, Day Care, and Preschool Children.

    ERIC Educational Resources Information Center

    Austin, Ann M. Berghout; And Others

    In a study designed to determine whether experience in day care or preschool affects children's knowledge and enactment of prosocial behaviors, 59 children in day care, preschool, and home care were pre- and post-tested concerning: (1) their understanding of helping, sharing, comforting, honesty, and civic awareness; (2) their definitions of…

  19. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    PubMed Central

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  20. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.

    PubMed

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.

  1. Purpose in life as a resource for increasing comfort with ethnic diversity.

    PubMed

    Burrow, Anthony L; Stanley, Maclen; Sumner, Rachel; Hill, Patrick L

    2014-11-01

    Emerging demographic trends signal that White Americans will soon relinquish their majority status. As Whites' acclimation to an increasingly diverse society is poised to figure prominently in their adjustment, identifying sources of greater comfort with diversity is important. Three studies (N = 519) revealed evidence that purpose in life bolsters comfort with ethnic diversity among White adults. Specifically, dispositional purpose was positively related to diversity attitudes and attenuated feelings of threat resulting from viewing demographic projections of greater diversity. In addition, when primed experimentally, purpose attenuated participants' preferences for living in an ethnically homogeneous-White city, relative to a more diverse city when shown maps displaying ethno-demographic information. These effects persisted after controlling for positive affect and perceived connections to ethnic out-groups, suggesting the robust influence of purpose. Potential benefits of situating purpose as a unique resource for navigating an increasingly diverse society are discussed.

  2. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2008-08-27

    The effects of boiling and steaming processes on the phenolic components and antioxidant activities of whole yellow (with yellow seed coat and yellow cotyledon) and black (with black seed coat and green cotyledon) soybeans were investigated. As compared to the raw soybeans, all processing methods caused significant (p < 0.05) decreases in total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), DPPH free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) in black soybeans. Pressure steaming caused significant (p < 0.05) increases in TPC, CTC, DPPH, FRAP, and ORAC in yellow soybeans. The steaming resulted in a greater retention of TPC, DPPH, FRAP, and ORAC values in both yellow and black soybeans as compared to the boiling treatments. To further investigate the effect of processing on phenolic compounds and elucidate the contribution of these compounds to changes of antioxidant activities, phenolic acids, isoflavones, and anthocyanins were quantitatively determined by HPLC. The pressure steaming treatments caused significant (p < 0.05) increases in gallic acid and 2,3,4-trihydroxybenzoic acid, whereas all treatments caused significant (p < 0.05) decreases in two predominant phenolic acids (chlorogenic acid and trans-cinnamic acid), and total phenolic acids for both yellow and black soybeans. All thermal processing caused significant (p < 0.05) increases in aglucones and beta-glucosides of isoflavones, but caused significant (p < 0.05) decreases in malonylglucosides of isoflavones for both yellow and black soybeans. All thermal processing caused significant (p < 0.05) decreases of cyanidin-3-glucoside and peonidin-3-glucoside in black soybeans. Significant correlations existed between selected phenolic compositions, isoflavone and anthocyanin contents, and antioxidant properties of cooked soybeans.

  3. Effect of thermal and mechanical loading on marginal adaptation and microtensile bond strength of a self-etching adhesive with caries-affected dentin

    PubMed Central

    Aggarwal, Vivek; Singla, Mamta; Miglani, Sanjay

    2011-01-01

    Aim: This study evaluated the effect of thermal and mechanical loading on marginal adaptation and microtensile bond strength in total-etch versus self-etch adhesive systems in caries-affected dentin. Materials and Methods: Forty class II cavities were prepared on extracted proximally carious human mandibular first molars and were divided into two groups: Group I — self-etch adhesive system restorations and Group II — total-etch adhesive system restorations. Group I and II were further divided into sub-groups A (Without thermal and mechanical loading) and B (With thermal and mechanical loading of 5000 cycles, 5 ± 2°C to 55 ± 2°C, dwell time 30 seconds, and 150,000 cycles at 60N). The gingival margin of the proximal box was evaluated at 200X magnification for marginal adaptation in a low vacuum scanning electron microscope. The restorations were sectioned, perpendicular to the bonded surface, into 0.8 mm thick slabs. All the specimens were subjected to microtensile bond strength testing. The marginal adaptation was analyzed using descriptive studies, and the bond strength data was analyzed using the one-way analysis of variance (ANOVA) test. Results and Conclusions: The total-etch system performed better under thermomechanical loading. PMID:21691507

  4. Ride quality evaluation 1: Questionnaire studies of airline passenger comfort

    NASA Technical Reports Server (NTRS)

    Richards, L. G.; Jacobson, I. D.

    1974-01-01

    As part of a larger effort to assess passenger comfort in aircraft, two questionnaires were administered: one to ground-based respondents; the other to passengers in flight. Respondents indicated the importance of various factors influencing their satisfaction with a trip, the perceived importance of various physical factors in determining their level of comfort, and the ease of time spent performing activities in flight. The in-flight sample also provided a rating of their level of comfort and of their willingness to fly again. Comfort ratings were examined in relation to (1) type of respondent, (2) type of aircraft, (3) characteristics of the passengers, (4) ease of performing activities, and (5) willingness to fly again.

  5. 68. Smart view recreation area comfort station with postandrail fence ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Smart view recreation area comfort station with post-and-rail fence reflecting Appalachian culture. Facing west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  6. Medical comforts during the heroic age of Antarctic exploration.

    PubMed

    Guly, H R

    2013-04-01

    In the literature of the exploration of the Antarctic in the early 20th century, there are many references to 'medical comforts'. While 'medical comforts' was sometimes used as a euphemism for alcoholic beverages, the term, which originated in the army, covered all foods and drinks used for the treatment and prevention of illness and during convalescence. This article describes the use of medical comforts during the Antarctic expeditions of the so called 'heroic age'. Apart from alcohol, medical comforts included beef extracts, milk extracts and arrowroot. These products were extensively advertised to the medical and nursing professions and to the general public and the Antarctic connection was sometimes used in the advertising. The products were largely devoid of vitamins and their use may have contributed to some of the disease that occurred on these expeditions.

  7. From occupying to inhabiting - a change in conceptualising comfort

    NASA Astrophysics Data System (ADS)

    Jaffari, Svenja D.; Matthews, Ben

    2009-11-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what comfort is for ordinary people

  8. Bodily action penetrates affective perception

    PubMed Central

    Rigutti, Sara; Gerbino, Walter

    2016-01-01

    Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification) task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on

  9. Short-Term Thermal-Humidity Shock Affects Point-of-Care Glucose Testing: Implications for Health Professionals and Patients.

    PubMed

    Lam, Mandy; Louie, Richard F; Curtis, Corbin M; Ferguson, William J; Vy, John H; Truong, Anh-Thu; Sumner, Stephanie L; Kost, Gerald J

    2014-01-01

    The objective was to assess the effects of short-term (≤1 hour) static high temperature and humidity stresses on the performance of point-of-care (POC) glucose test strips and meters. Glucose meters are used by medical responders and patients in a variety of settings including hospitals, clinics, homes, and the field. Reagent test strips and instruments are potentially exposed to austere environmental conditions. Glucose test strips and meters were exposed to a mean relative humidity of 83.0% (SD = 8.0%) and temperature of 42°C (107.6°F, SD = 3.2) in a Tenney BTRC environmental chamber. Stressed and unstressed glucose reagent strips and meters were tested with spiked blood samples (n = 40 measurements per time point for each of 4 trials) after 15, 30, 45, and 60 minutes of exposure. Wilcoxon's signed rank test was applied to compare measurements test strip and meter measurements to isolate and characterize the magnitude of meter versus test strip effects individually. Stressed POC meters and test strips produced elevated glucose results, with stressed meter bias as high as 20 mg/dL (17.7% error), and stressed test strip bias as high as 13 mg/dL (12.2% error). The aggregate stress effect on meter and test strips yielded a positive bias as high as 33 mg/dL (30.1% error) after 15 minutes of exposure. Short-term exposure (15 minutes) to high temperature and humidity can significantly affect the performance of POC glucose test strips and meters, with measurement biases that potentially affect clinical decision making and patient safety.

  10. How Were Southwest Pacific Pelagic Ecosystems Affected by Extreme Global Warming During the Initial Eocene Thermal Maximum?

    NASA Astrophysics Data System (ADS)

    Hollis, C. J.; Crouch, E. M.; Dickens, G. R.

    2004-12-01

    Four sections in eastern New Zealand provide the only South Pacific record of the initial Eocene thermal maximum (IETM): a siliciclastic outer shelf section (Tawanui, Hawkes Bay) and three pelagic-hemipelagic sections forming an outer shelf-upper slope transect across a carbonate ramp (Muzzle, Dee and Mead Streams, Clarence Valley). Although the rocks are too indurated to yield reliable oxygen isotope data, the IETM is identified by bulk carbonate carbon isotopes as a sharp negative excursion followed by gradual recovery over 0.6 to 4.0 m. In all sections, the excursion is mirrored by terrigenous sediment concentration, due to reduced biogenic (carbonate and silica) input and increased terrigenous input. Increased precipitation under warm humid conditions appears to have increased terrestrial discharge, recorded by deposition of smectitic marl in pelagic settings and illite/kaolinite-bearing smectitic mudstone in neritic settings. Eutrophic conditions are inferred for the IETM interval at Tawanui based on dysoxia, carbonate dissolution, an acme for the peridinioid dinocyst Apectodinium and abundant Toweius spp in nannofossil assemblages. Continued abundance of Toweius and replacement of Apectodinium by peridinioids of the Deflandrea complex suggests that eutrophic, albeit cooler, conditions persisted for at least 0.5 Ma after the IETM. In contrast, the IETM in Clarence Valley is marked by reduced biogenic silica content but little change in carbonate, and no evidence for carbonate dissolution. Sparse, poorly preserved palynomorphs assemblages suggest organic matter was oxidised under fully oxic conditions. Reduced numbers of upwelling indicators in the siliceous microfossil assemblage and common warm-water planktic foraminifera (Morozovella spp.), nannoplankton (Discoaster spp.) and radiolarians (e.g. Podocyrtis and Theocorys spp.) signal a switch from eutrophic to oligotrophic conditions and significant warming of near-surface waters. A progressive increase in

  11. Using the Comfortability-in-Learning Scale to Enhance Positive Classroom Learning Environments

    ERIC Educational Resources Information Center

    Kiener, Michael; Green, Peter; Ahuna, Kelly

    2014-01-01

    A goal of higher education is to advance learning. This study examined the role "comfortability" plays in that process. Defined as the level of comfort students experience with their classmates, instructor, and course material, comfortability addresses how secure a student feels in the classroom. Comfortability was assessed multiple…

  12. Human comfort response to random motions with a dominant transverse motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with transverse acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  13. Human comfort response to random motions with a dominant longitudinal motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with longitudinal acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  14. Impact of three biological decontamination methods on filtering facepiece respirator fit, odor, comfort, and donning ease.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Novak, Debra A; Faulkner, Kimberly A; Palmiero, Andrew; Powell, Jeffrey; Shaffer, Ronald E

    2011-07-01

    The objective of this study was to determine if ultraviolet germicidal irradiation (UVGI), moist heat incubation (MHI), or microwave-generated steam (MGS) decontamination affects the fitting characteristics, odor, comfort, or donning ease of six N95 filtering facepiece respirator (FFR) models. For each model, 10 experienced test subjects qualified for the study by passing a standard OSHA quantitative fit test. Once qualified, each subject performed a series of fit tests to assess respirator fit and completed surveys to evaluate odor, comfort, and donning ease with FFRs that were not decontaminated (controls) and with FFRs of the same model that had been decontaminated. Respirator fit was quantitatively measured using a multidonning protocol with the TSI PORTACOUNT Plus and the N95 Companion accessory (designed to count only particles resulting from face to face-seal leakage). Participants' subjective appraisals of the respirator's odor, comfort, and donning ease were captured using a visual analog scale survey. Wilcoxon signed rank tests compared median values for fit, odor, comfort, and donning ease for each FFR and decontamination method against their respective controls for a given model. Two of the six FFRs demonstrated a statistically significant reduction (p < 0.05) in fit after MHI decontamination. However, for these two FFR models, post-decontamination mean fit factors were still ≥ 100. One of the other FFRs demonstrated a relatively small though statistically significant increase (p < 0.05) in median odor response after MHI decontamination. These data suggest that FFR users with characteristics similar to those in this study population would be unlikely to experience a clinically meaningful reduction in fit, increase in odor, increase in discomfort, or increased difficulty in donning with the six FFRs included in this study after UVGI, MHI, or MGS decontamination. Further research is needed before decontamination of N95 FFRs for purposes of reuse can be

  15. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  16. Reduced oxide sites and surface corrugation affecting the reactivity, thermal stability, and selectivity of supported Au-Pd bimetallic clusters on SiO2/Si(100).

    PubMed

    Gross, Elad; Sorek, Elishama; Murugadoss, Arumugam; Asscher, Micha

    2013-05-21

    The morphology and surface elemental composition of Au-Pd bimetallic nanoclusters are reported to be sensitive to and affected by reduced silicon defect sites and structural corrugation on SiO2/Si(100), generated by argon ion sputtering under ultrahigh vacuum (UHV) conditions. Metastable structures of the bimetallic clusters, where Au atoms are depleted from the top surface upon annealing, are stabilized by the interaction with the reduced silica sites, as indicated from CO temperature programmed desorption (TPD) titration measurements. Acetylene conversion to ethylene and benzene has been studied as a probe reaction, revealing the modification of selectivity and reactivity enhancement in addition to improved thermal stability on substrates rich in reduced-silica sites. These observations suggest that these unique sites play an important role in anchoring thermodynamically metastable conformations of supported Au-Pd bimetallic catalysts and dictate their high-temperature activity.

  17. Thermal sensation and thermophysiological responses to metabolic step-changes

    NASA Astrophysics Data System (ADS)

    Goto, T.; Toftum, J.; de Dear, R.; Fanger, P. O.

    2006-05-01

    This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15 20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10 5 min 25% and during the prior 20 10 min 10%.

  18. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil

    NASA Astrophysics Data System (ADS)

    Abreu-Harbich, Loyde V.; Labaki, Lucila C.; Matzarakis, Andreas

    2014-01-01

    Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003-2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast-southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

  19. A preliminary study of patient comfort associated with customised mouthguards

    PubMed Central

    McClelland, C.; Kinirons, M.; Geary, L.

    1999-01-01

    OBJECTIVE: To compare patient perception of custom made mouthguards of ideal and less than ideal designs in terms of their comfort and "wearability". METHOD: A mouthguard of ideal design (A) and one incorporating common design faults of underextension and unadjusted occlusion (B) were provided for 22 active sportsmen and women. They were not informed of the details of the design or the status of the protector. Half the participants were asked to wear mouthguard A first and the other half wore B first, each worn for one hour on two consecutive nights. Questionnaires were used to evaluate and rate the comfort and wearability of each mouthguard. RESULTS: Eighteen people completed the study. The ideal appliance was rated as significantly more retentive and comfortable overall and specifically was more comfortable to lips, gums, and tongue. It was also recognised as being less bulky, less likely to keep the teeth apart, or to cause pain in the jaw muscles. CONCLUSIONS: Comfort is likely to be increased if mouthguards are extended labially to within 2 mm of the vestibular reflection, adjusted to allow even occlusal contact, rounded at the buccal peripheries, and tapered at the palatal edges. 


 PMID:10378071

  20. COMFORT: evaluating a new communication curriculum with nurse leaders.

    PubMed

    Goldsmith, Joy; Wittenberg-Lyles, Elaine

    2013-01-01

    Nursing faculty face increasing instructional demands to keep pace with mounting knowledge and competency requirements for student nurses. In the context of nursing practice, tasks and time pressures detract from the high skill and aptitude expectation of communication. The communication, orientation and opportunity, mindful presence, family, openings, relating, and team (COMFORT) curriculum, an acronym that represents 7 basic nursing communication principles, has been introduced into the communication module of the End-of-Life Nursing Education Consortium, which currently provides the only standardized undergraduate and graduate nurse training in hospice and palliative care. This study examines the potential efficacy of the COMFORT curriculum for everyday communication challenges experienced by members of the Georgia Organization of Nurse Leaders. Participants were prompted to describe communication barriers and then apply an aspect of the COMFORT curriculum to this barrier. Responses revealed primary communication barriers with co-workers and patient/families. Nurses predominantly identified directly correlating components in the COMFORT framework (C-communication, F-family) as solutions to the topics described as barriers. Based on confirmation of extant literature addressing generalist nurse communication challenges, there is support for the inclusion of COMFORT across the nursing curriculum to efficiently and effectively teach communication strategies to nurses.

  1. Thermal exchanges and temperature stress

    NASA Technical Reports Server (NTRS)

    Webb, P.

    1975-01-01

    Thermal comfort during space flight is discussed. Heat production of man during space flight and wear loss as a mean of dissipating heat are described. Water cooled garments are also considered, along with tolerance for extreme heat and body heat storage. Models of human temperature regulation are presented in the form of documented FORTRAN programs.

  2. The influence of light on thermal responses.

    PubMed

    te Kulve, M; Schellen, L; Schlangen, L J M; van Marken Lichtenbelt, W D

    2016-02-01

    Light is essential for vision and plays an important role in non-visual responses, thus affecting alertness, mood and circadian rhythms. Furthermore, light influences physiological processes, such as thermoregulation, and therefore may be expected to play a role in thermal comfort (TC) as well. A systematic literature search was performed for human studies exploring the relation between ocular light exposure, thermophysiology and TC. Experimental results show that light in the evening can reduce melatonin secretion, delay the natural decline in core body temperature (CBT) and slow down the increase in distal skin temperature. In the morning though, bright light can result in a faster decline in melatonin levels, thus enabling a faster increase in CBT. Moreover, the colour of light can affect temperature perception of the environment. Light with colour tones towards the red end of the visual spectrum leads to a warmer perception compared to more bluish light tones. It should be noted, however, that many results of light on thermal responses are inconclusive, and a theoretical framework is largely lacking. In conclusion, light is capable of evoking thermophysiological responses and visual input can alter perception of the thermal environment. Therefore, lighting conditions should be taken into consideration during thermophysiological research and in the design of indoor climates.

  3. Analysis of impact of suspension rubber mounts on ride comfort

    NASA Astrophysics Data System (ADS)

    Chen, Bao; Chen, Zheming; Lei, Gang

    2017-01-01

    Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.

  4. Alternating pressure mattresses: comfort and quality of sleep.

    PubMed

    Grindley, A; Acres, J

    Comfort is particularly important for patients with terminal illness where the priority is to maximize quality of life. Equally important is effective pressure area care, as such patients are at high risk of developing pressure sores because of their poor general condition (Bale and Regnard, 1995). The present randomized controlled study set in a hospice focused on the development of methodology for assessing patient comfort and quality of sleep and used this to compare two widely used, alternating air pressure mattresses (the Nimbus II and the Pegasus Airwave). The Nimbus II mattress performed consistently better than the Pegasus Airwave in terms of patient comfort and quality of sleep. Features of the Nimbus II that may explain its better performance include less extreme changes in pressure, lower peak inflation pressures and the ability to automatically vary the pressure to suit the patient's position and weight.

  5. A review of ride comfort studies in the United Kingdom

    NASA Technical Reports Server (NTRS)

    Griffin, M. J.

    1975-01-01

    United Kingdom research which is relevant to the assessment of vehicle ride comfort was reviewed. The findings reported in approximately 80 research papers are outlined, and an index to the areas of application of these studies is provided. The data obtained by different research groups are compared, and it is concluded that, while there are some areas of general agreement, the findings obtained from previous United Kingdom research are insufficient to define a general purpose ride comfort evaluation procedure. The degree to which United Kingdom research supports the vibration evaluation procedure defined in the current International Standard on the evaluation of human exposure to whole-body vibration is discussed.

  6. Comfort Theory: a unifying framework to enhance the practice environment.

    PubMed

    Kolcaba, Katharine; Tilton, Colette; Drouin, Carol

    2006-11-01

    The application of theory to practice is multifaceted. It requires a nursing theory that is compatible with an institution's values and mission and that is easily understood and simple enough to guide practice. Comfort Theory was chosen because of its universality. The authors describe how Kolcaba's Comfort Theory was used by a not-for-profit New England hospital to provide a coherent and consistent pattern for enhancing care and promoting professional practice, as well as to serve as a unifying framework for applying for Magnet Recognition Status.

  7. Comfort, hygiene, and safety in veterinary palliative care and hospice.

    PubMed

    Downing, Robin; Adams, Valarie Hajek; McClenaghan, Ann P

    2011-05-01

    Hygiene, comfort, and safety during pet palliative care and hospice are usually straightforward. The veterinary health care team must coordinate care to ensure that the pet and the family are fully informed and engaged in the process. End-of-life issues, euthanasia, and death are typically not everyday concerns for the pet owner. Pet owners and veterinary patients rely on the veterinary health care team to help create the structure within which the pet will die. The veterinary team can give the family-pet unit the gift of structure and multifaceted comfort. The veterinary profession must take seriously this unique niche of care.

  8. Objective and subjective evaluation of the acoustic comfort in classrooms.

    PubMed

    Zannin, Paulo Henrique Trombetta; Marcon, Carolina Reich

    2007-09-01

    The acoustic comfort of classrooms in a Brazilian public school has been evaluated through interviews with 62 teachers and 464 pupils, measurements of background noise, reverberation time, and sound insulation. Acoustic measurements have revealed the poor acoustic quality of the classrooms. Results have shown that teachers and pupils consider the noise generated and the voice of the teacher in neighboring classrooms as the main sources of annoyance inside the classroom. Acoustic simulations resulted in the suggestion of placement of perforated plywood on the ceiling, for reduction in reverberation time and increase in the acoustic comfort of the classrooms.

  9. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    SciTech Connect

    Williams, Richard; Grim, Joel; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, Sebastien N.; Gao, Fei; Bhattacharya, Pijush; Tupitsyn, Eugene; Rowe, Emmanuel; Buliga, Vladimir M.; Burger, Arnold

    2013-10-01

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.

  10. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    SciTech Connect

    Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.

    2013-09-26

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.

  11. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    DOE PAGES

    Williams, R. T.; Grim, Joel Q.; Li, Qi; ...

    2013-09-26

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less

  12. Teaching Children about Aspects of Comfort in the Built Environment

    ERIC Educational Resources Information Center

    Kowaltowski, Doris C. C. K.; Filho, Francisco Borges; Labaki, Lucila C.; Pina, Silvia A. Mikami G.; Bernardi, Nubia

    2004-01-01

    This article presents specific teaching material for the primary school level that introduces basic concepts of environmental comfort. The authors developed 2 booklets to make children aware of the built environment. Following a postoccupancy evaluation of state schools in the city of Campinas, in the state of Sao Paulo, Brazil, the research team…

  13. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.

    PubMed

    Nichols, David F

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.

  14. Test Anxiety, Test Comfort and Student Achievement Test Performance.

    ERIC Educational Resources Information Center

    Fyans, Leslie J., Jr.

    The Illinois Inventory of Educational Progress (IIEP) Test Comfort Scale was administered and test results were studied in terms of student achievement and correlates of achievement. Using the revised, seven-item scale, it was determined that: in grade 4, there was no main significant effect for sex or ethnic differences, although Orientals and…

  15. A novel medical bandage with enhanced clothing comfort

    NASA Astrophysics Data System (ADS)

    Oğlakcioğlu, N.; Sari, B.; Bedez Üte, T.; Marmarali, A.

    2016-07-01

    Compression garments are special textile products which apply a pressure on needed body zones for supporting medical, sport or casual activities. Medical bandages are a group of these garments and they have a very common usage for compression effect on legs or arms. These bandages are generally produced by using synthetic raw materials such as polyamide or polyester fibres. Medical bandages are in contact with skin. Even if the synthetic fibres are used, they may cause both comfort and health problems like allergies. Nowadays in textile sector, the expectations of clients include using of natural fibres as far as possible in all garments. Natural fibres have good advantages such as breathability, softness, moisture management ability, non-allergenic and ecologic structure and these characteristics present optimum utilization conditions. In this study, tubular medical bandages were manufactured by using core spun yarns (sheath fibres are selected as tencel, bamboo and cotton, core material is elastane) and their pressure and comfort (air and water vapour permeability) characteristics were investigated. The results indicated that the bandages have good comfort abilities beside adequate pressure values for compression effect. These garments can constitute a new production field for medical bandages with their comfort properties in addition to pressure characteristics.

  16. Managing in a Change Environment: From Coping to Comfort.

    ERIC Educational Resources Information Center

    Goble, David S.

    1997-01-01

    Discusses the accelerating pace of change that librarians must cope with and suggests looking to the private sector for strategies to become more comfortable with change. Describes the five disciplines comprising the learning organization culture: systems thinking, personal mastery, mental models, shared vision, and team learning. (LRW)

  17. Measurements and simulation on the comfort of forklifts

    NASA Astrophysics Data System (ADS)

    Verschoore, R.; Pieters, J. G.; Pollet, I. V.

    2003-09-01

    In order to determine the influence of some parameters of a forklift such as the road profile, the tyre characteristics, the riding comfort, etc., measurements carried out on a forklift with different tyres and seats were evaluated using different standards and methods. In addition, a simulation model was developed and used to investigate the influence of these parameters. Simulations and test run results showed good agreement. The comparison of the results obtained with several methods of comfort evaluation and a series of tests showed that they nearly all resulted in the same classification. However, the results obtained with different methods could not always be compared among themselves. Solid tyres were found to be more comfortable than pneumatic ones because of their high damping. The negative influence of higher stiffness was smaller than the positive influence of higher damping. The simulations pointed out that for a global general investigation about comfort, the influence of the horizontal tyre stiffness and damping can be neglected. Also the seat characteristics could be linearized. When the stability of the forklift has to be investigated, the horizontal forces must also be considered.

  18. Affordable comfort 95 - investing in our energy future

    SciTech Connect

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  19. Ductless Mini-Split Heat Pump Comfort Evaluation

    SciTech Connect

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01

    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  20. Managing breathlessness: providing comfort at the end of life.

    PubMed

    Tice, Martha A

    2006-04-01

    Dyspnea is a common symptom at the end of life. It occurs as the result of a complex mix of physical, biochemical, and perceptual components. When patients and their healthcare providers focus on the "numbers" related to oxygenation, rather than comfort, the individual's quality of life can suffer.

  1. Dew Point Evaporative Comfort Cooling: Report and Summary Report

    SciTech Connect

    Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

    2012-11-01

    The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

  2. Beyond the Comfort Zone: Lessons of Intercultural Service

    ERIC Educational Resources Information Center

    Urraca, Beatriz; Ledoux, Michael; Harris, James T., III

    2009-01-01

    This article describes an international service-learning project in Bolivia undertaken by faculty and students from Widener University. The authors examine characteristics of the student group, trip preparation, and lessons learned from the experience. The article discusses the American cultural biases that emphasize personal comfort and…

  3. Ductless Mini-Split Heat Pump Comfort Evaluation

    SciTech Connect

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01

    Field tests were conducted in two homes in Austin, TX, to evaluate the comfort performance of ductless minisplit heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  4. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect

    Burdick, A.

    2013-10-01

    K. Hovnanian(R) Homes(R) constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  5. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect

    Burdick, A.

    2013-10-01

    K. Hovnanian® Homes constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  6. Perceptions of temperature, moisture and comfort in clothing during environmental transients.

    PubMed

    Li, Y

    2005-02-22

    A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.

  7. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents.

    PubMed

    He, Zhiyong; Tao, Yadan; Zeng, Maomao; Zhang, Shuang; Tao, Guanjun; Qin, Fang; Chen, Jie

    2016-06-01

    The effects of high pressure homogenization processing (HPHP), thermal treatment (TT) and milk matrix (soy, skimmed and whole milk) on the phenolic bioaccessibility and the ABTS scavenging activity of apple, grape and orange juice (AJ, GJ and OJ) were investigated. HPHP and soy milk diminished AJ's total phenolic bioaccessibility 29.3%, 26.3%, respectively, whereas TT and bovine milk hardly affected it. HPHP had little effect on GJ's and OJ's total phenolic bioaccessibility, while TT enhanced them 27.3-33.9%, 19.0-29.2%, respectively, and milk matrix increased them 26.6-31.1%, 13.3-43.4%, respectively. Furthermore, TT (80 °C/30 min) and TT (90 °C/30 s) presented the similar influences on GJ's and OJ's phenolic bioaccessibility. Skimmed milk showed a better enhancing effect on OJ's total phenolic bioaccessibility than soy and whole milk, but had a similar effect on GJ's as whole milk. These results contribute to promoting the health benefits of fruit juices by optimizing the processing and formulas in the food industry.

  8. Physicochemical and Thermal Properties of Extruded Instant Functional Rice Porridge Powder as Affected by the Addition of Soybean or Mung Bean.

    PubMed

    Mayachiew, Pornpimon; Charunuch, Chulaluck; Devahastin, Sakamon

    2015-12-01

    Legumes contain protein, micronutrients, and bioactive compounds, which provide various health benefits. In this study, soybean or mung bean was mixed in rice flour to produce by extrusion instant functional legume-rice porridge powder. The effects of the type and percentage (10%, 20%, or 30%, w/w) of legumes on the expansion ratio of the extrudates were first evaluated. Amino acid composition, color, and selected physicochemical (bulk density, water absorption index, and water solubility index), thermal (onset temperature, peak temperature, and transition enthalpy), and pasting (peak viscosity, trough viscosity, and final viscosity) properties of the powder were determined. The crystalline structure and formation of amylose-lipid complexes and the total phenolics content (TPC) and antioxidant activity of the powder were also measured. Soybean-blended porridge powder exhibited higher TPC, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, ferric reducing antioxidant power, amino acid, and fat contents than the mung bean-blended porridge powder. Incorporating either legume affected the product properties by decreasing the lightness and bulk density, while increasing the greenness and yellowness and the peak temperature and transition enthalpy. Expansion capacity of the extrudates increased with percentage of mung bean in the mixture but decreased as the percentage of soybean increased. Amylose-lipid complexes formation was confirmed by X-ray diffraction analysis results. Addition of soybean or mung bean resulted in significant pasting property changes of the porridge powder.

  9. Analysis of behaviour patterns and thermal responses to a hot-arid climate in rural China.

    PubMed

    Yan, Haiyan; Yang, Liu; Zheng, Wuxing; He, Wenfang; Li, Daoyi

    2016-07-01

    Climate can greatly affect building design, life style and thermal perception for all groups of people; however, this phenomenon has not yet been rigorously evaluated in China's hot-arid climate. The aim of this paper is to present the results of a thermal comfort survey by evaluating the influence of the hot-arid climate upon the behavioural patterns and thermal comfort responses of 160 residents in 65 traditional vernacular houses in Turfan, China, in 2011. In this survey, there were 206 sets of effective data, and the features of the traditional residential buildings and the human behaviour patterns in Turfan were described and analysed. The results showed that the diversified courtyards and shade spaces were the most obvious features of traditional houses in Turfan. People here typically spend most of their time in one of two spaces for eating, resting, and entertaining. It was found that the preferred temperature was 26.5°C. The preferred air velocity occurred at 0.62m/s. A suitable air velocity range of 0.15-1.24m/s was suggested in Turfan. Moreover, the neutral temperature of the local people was 30.1°C (tg or to). The upper limits of the 80% acceptable zone by using the direct and indirect acceptability method were 32.7 and 33.8°C, respectively. The neutral temperature and upper limit of the acceptable zone in Turfan were higher than those of the adaptive standards. Attention should be paid to the role of thermal comfort in influencing building design by using simple passive cooling strategies. The above results are believed to be potentially valuable for the design and evaluation of residential buildings located in hot-arid climate.

  10. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Miao, Shiguang; Shen, Shuanghe; Li, Ju; Zhang, Benzhi; Zhang, Ziyue; Chen, Xiujie

    2015-03-01

    Sky view factor (SVF), which is an indicator of urban canyon geometry, affects the surface energy balance, local air circulation, and outdoor thermal comfort. This study focused on a continuous and long-term meteorological observation system to investigate the effects of SVF on outdoor thermal conditions and physiological equivalent temperature (PET) in the central business district (CBD) of Beijing (which is located within Chaoyang District), specifically addressed current knowledge gaps for SVF-PET relationships in cities with typical continental/microthermal climates. An urban sub-domain scale model and the RayMan model were used to diagnose wind fields and to calculate SVF and long-term PET, respectively. Analytical results show that the extent of shading contributes to variations in thermal perception distribution. Highly shaded areas (SVF <0.3) typically exhibit less frequent hot conditions during summer, while enduring longer periods of cold discomfort in winter than moderately shaded areas (0.3< SVF <0.5) and slightly shaded areas (SVF >0.5), and vice versa. Because Beijing has a monsoon-influenced humid continental climate with hot summers and long, cold, windy, and dry winters, a design project that ideally provides moderate shading should be planned to balance hot discomfort in summer and cold discomfort in winter, which effectively prolongs the comfort periods in outdoor spaces throughout the entire year. This research indicate that climate zone characteristics, urban environmental conditions, and thermal comfort requirements of residents must be accounted for in local-scale scientific planning and design, i.e., for urban canyon streets and residential estates.

  11. Children undergoing cancer treatment describe their experiences of comfort in interviews and drawings.

    PubMed

    Ångström-Brännström, Charlotte; Norberg, Astrid

    2014-01-01

    Children with cancer often undergo a long course of treatment, described as painful, and associated with feelings of discomfort and need of comfort. The aim of this descriptive interview study was to investigate how children, aged 3 to 9 years, undergoing cancer treatment describe their experience of comfort. The children were interviewed and asked to make drawings. Data were content analyzed and four themes were constructed--enduring discomfort, expressing discomfort, finding comfort, and comforting others. The findings show that the children endured discomfort during treatment, and were sometimes able to express it. They found comfort especially from their family and from hospital staff. The children also described that they comforted family members. The findings are in accordance with previous research about children's and adults' accounts of comfort. An incidental finding is that parents were surprised when they listened to the children's accounts of their experience of discomfort and comfort and achieved a better understanding of their children.

  12. Electrical vestibular stimuli to enhance vestibulo-motor output and improve subject comfort.

    PubMed

    Forbes, Patrick A; Dakin, Christopher J; Geers, Anoek M; Vlaar, Martijn P; Happee, Riender; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    Electrical vestibular stimulation is often used to assess vestibulo-motor and postural responses in both clinical and research settings. Stochastic vestibular stimulation (SVS) is a recently established technique with many advantages over its square-wave counterpart; however, the evoked muscle responses remain relatively small. Although the vestibular-evoked responses can be enhanced by increasing the stimulus amplitude, subjects often perceive these higher intensity electrical stimuli as noxious or painful. Here, we developed multisine vestibular stimulation (MVS) signals that include precise frequency contributions to increase signal-to-noise ratios (SNR) of stimulus-evoked muscle and motor responses. Subjects were exposed to three different MVS stimuli to establish that: 1) MVS signals evoke equivalent vestibulo-motor responses compared to SVS while improving subject comfort and reducing experimentation time, 2) stimulus-evoked vestibulo-motor responses are reliably estimated as a linear system and 3) specific components of the cumulant density time domain vestibulo-motor responses can be targeted by controlling the frequency content of the input stimulus. Our results revealed that in comparison to SVS, MVS signals increased the SNR 3-6 times, reduced the minimum experimentation time by 85% and improved subjective measures of comfort by 20-80%. Vestibulo-motor responses measured using both EMG and force were not substantially affected by nonlinear distortions. In addition, by limiting the contribution of high frequencies within the MVS input stimulus, the magnitude of the medium latency time domain motor output response was increased by 58%. These results demonstrate that MVS stimuli can be designed to target and enhance vestibulo-motor output responses while simultaneously improving subject comfort, which should prove beneficial for both research and clinical applications.

  13. Infrared thermal facial image sequence registration analysis and verification

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  14. Energy consumption in buildings and female thermal demand

    NASA Astrophysics Data System (ADS)

    Kingma, Boris; van Marken Lichtenbelt, Wouter

    2015-12-01

    Energy consumption of residential buildings and offices adds up to about 30% of total carbon dioxide emissions; and occupant behaviour contributes to 80% of the variation in energy consumption. Indoor climate regulations are based on an empirical thermal comfort model that was developed in the 1960s (ref. ). Standard values for one of its primary variables--metabolic rate--are based on an average male, and may overestimate female metabolic rate by up to 35% (ref. ). This may cause buildings to be intrinsically non-energy-efficient in providing comfort to females. Therefore, we make a case to use actual metabolic rates. Moreover, with a biophysical analysis we illustrate the effect of miscalculating metabolic rate on female thermal demand. The approach is fundamentally different from current empirical thermal comfort models and builds up predictions from the physical and physiological constraints, rather than statistical association to thermal comfort. It provides a substantiation of the thermal comfort standard on the population level and adds flexibility to predict thermal demand of subpopulations and individuals. Ultimately, an accurate representation of thermal demand of all occupants leads to actual energy consumption predictions and real energy savings of buildings that are designed and operated by the buildings services community.

  15. Sensory Processing Relates to Attachment to Childhood Comfort Objects of College Students

    ERIC Educational Resources Information Center

    Kalpidou, Maria

    2012-01-01

    The author tested the hypothesis that attachment to comfort objects is based on the sensory processing characteristics of the individual. Fifty-two undergraduate students with and without a childhood comfort object reported sensory responses and performed a tactile threshold task. Those with a comfort object described their object and rated their…

  16. Comfort Women in Human Rights Discourse: Fetishized Testimonies, Small Museums, and the Politics of Thin Description

    ERIC Educational Resources Information Center

    Joo, Hee-Jung Serenity

    2015-01-01

    In the last two decades, the issue of comfort women--the women and girls who were forced into sex slavery for the Japanese army before and during WWII--has risen to global attention. Tens of thousands of comfort women (the average estimate is anywhere between 80,000 and 200,000) were confined at comfort stations managed by the Japanese Imperial…

  17. Comfort care packs: a little bit of hospice in hospital?

    PubMed

    Oliver, Mark A; Hillock, Sharon; Moore, Carol; Goble, Hannah; Asbury, Nicky

    2010-10-01

    The Comfort Care Pack initiative is an innovation designed to enhance the inpatient experience of end-of-life patients and their carers. The carer is given a pleasantly decorated box containing a variety of items for use by the patient or the carer themselves: snacks, toiletries and items to promote comfort. This project set out to evaluate the impact of these packs by reviewing the returns of the feedback questionnaires included with the packs. From the first 220 packs, 58 questionnaires were returned, giving quantitative and qualitative data. The response to the packs was overwhelmingly positive and they were much valued by the carers. This was the case despite the fact that relatively few of the items were actually used by the recipients. It is suggested that the value of the packs to recipients lies in the gesture of being thought about during what is a difficult time for them. The implications of this are discussed.

  18. 108. Doughton Park Recreation Area Comfort Station. Instead of trying ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. Doughton Park Recreation Area Comfort Station. Instead of trying to hide this building, it was decided to let it be seen. A salt box design reflecting a mountain building was chosen, it had a sloping split shingle roof matching the hill side with a front porch placed on the lower side. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  19. When Are Users Comfortable Sharing Locations with Advertisers?

    DTIC Science & Technology

    2010-10-01

    suggest that users’ strong privacy concerns may hinder this potentially invasive form of advertising , as early efforts reach the market . We also find that...When Are Users Comfortable Sharing Locations with Advertisers ? Patrick Gage Kelley, Michael Benisch, Lorrie Faith Cranor, Norman Sadeh October 2010...15213-3890 As smartphones and other mobile computing devices have increased in ubiquity, advertisers have begun to realize a more effective way of

  20. The HVAC Control Technology Making Energy Saving Compatible with Comfort

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuo; Yonezawa, Kenzo; Murayama, Dai; Nishimura, Nobutaka; Hanada, Yuuichi; Yamazaki, Kenichi

    The new air-conditioning control technology for the energy saving for buildings is proposed. The method is mainly focused on the compatibility of energy savings and comfort. The energy saving is achieved through the next generation air handling unit that controls room humidity without energy loss and the optimal operation of HVAC (Heating, Ventilating and air-conditioning) system, manipulating the supplying airflow temperature to the rooms, room temperature and the humidity. The comfort is kept by the index (PMV: Predicted Mean Vote) that calculated with room temperature, humidity, radiation temperature, wind velocity and so on. In order to find the HVAC system operation conditions that satisfy the comfort and energy saving at the same time, very large-scale nonlinear programming with nonlinear constraints must be solved on real time basis. To make the programming of the system practical, the driving function loaded onto a control computer is introduced. The function is made by the spline interpolation to achieve calculation stable and to adapt to various HVAC operation modes. The effectiveness of the HVAC control technology is proved through a building HVAC data and the simulations using the data.

  1. Comfortable and leisurely: Old women on style and dress.

    PubMed

    Lövgren, Karin

    2016-01-01

    This article uses wardrobe interviews with women in the ages of 62-94 to explore transitions and continuities during the life course. During interviews the women have defined their style preferences. One categorization favored by several of them was comfortable. Different meanings were attached to this concept. Practical and convenient outfits were described as increasingly important when aging. Garments that did not expose the body-and its changes with aging-were preferred. The informants talked about the importance of feeling at ease, appropriately dressed for the occasion and situation. They were concerned with feeling nice in their outfits but also stressed becoming more laid-back and prioritizing convenience in their later years. All of these examples had to do with comfort and being comfortable. Uncomfortable clothes were too tight, deemed wrong for the occasion, and unwanted sources of self-consciousness and visibility. Transitions in their style of dress had been gradual, slowly adapting to changes in everyday life as well as in their bodies.

  2. Classifying EEG Signals during Stereoscopic Visualization to Estimate Visual Comfort.

    PubMed

    Frey, Jérémy; Appriou, Aurélien; Lotte, Fabien; Hachet, Martin

    2016-01-01

    With stereoscopic displays a sensation of depth that is too strong could impede visual comfort and may result in fatigue or pain. We used Electroencephalography (EEG) to develop a novel brain-computer interface that monitors users' states in order to reduce visual strain. We present the first system that discriminates comfortable conditions from uncomfortable ones during stereoscopic vision using EEG. In particular, we show that either changes in event-related potentials' (ERPs) amplitudes or changes in EEG oscillations power following stereoscopic objects presentation can be used to estimate visual comfort. Our system reacts within 1 s to depth variations, achieving 63% accuracy on average (up to 76%) and 74% on average when 7 consecutive variations are measured (up to 93%). Performances are stable (≈62.5%) when a simplified signal processing is used to simulate online analyses or when the number of EEG channels is lessened. This study could lead to adaptive systems that automatically suit stereoscopic displays to users and viewing conditions. For example, it could be possible to match the stereoscopic effect with users' state by modifying the overlap of left and right images according to the classifier output.

  3. Classifying EEG Signals during Stereoscopic Visualization to Estimate Visual Comfort

    PubMed Central

    Frey, Jérémy; Appriou, Aurélien; Lotte, Fabien; Hachet, Martin

    2016-01-01

    With stereoscopic displays a sensation of depth that is too strong could impede visual comfort and may result in fatigue or pain. We used Electroencephalography (EEG) to develop a novel brain-computer interface that monitors users' states in order to reduce visual strain. We present the first system that discriminates comfortable conditions from uncomfortable ones during stereoscopic vision using EEG. In particular, we show that either changes in event-related potentials' (ERPs) amplitudes or changes in EEG oscillations power following stereoscopic objects presentation can be used to estimate visual comfort. Our system reacts within 1 s to depth variations, achieving 63% accuracy on average (up to 76%) and 74% on average when 7 consecutive variations are measured (up to 93%). Performances are stable (≈62.5%) when a simplified signal processing is used to simulate online analyses or when the number of EEG channels is lessened. This study could lead to adaptive systems that automatically suit stereoscopic displays to users and viewing conditions. For example, it could be possible to match the stereoscopic effect with users' state by modifying the overlap of left and right images according to the classifier output. PMID:26819580

  4. Wear/comfort Pareto optimisation of bogie suspension

    NASA Astrophysics Data System (ADS)

    Milad Mousavi Bideleh, Seyed; Berbyuk, Viktor; Persson, Rickard

    2016-08-01

    Pareto optimisation of bogie suspension components is considered for a 50 degrees of freedom railway vehicle model to reduce wheel/rail contact wear and improve passenger ride comfort. Several operational scenarios including tracks with different curve radii ranging from very small radii up to straight tracks are considered for the analysis. In each case, the maximum admissible speed is applied to the vehicle. Design parameters are categorised into two levels and the wear/comfort Pareto optimisation is accordingly accomplished in a multistep manner to improve the computational efficiency. The genetic algorithm (GA) is employed to perform the multi-objective optimisation. Two suspension system configurations are considered, a symmetric and an asymmetric in which the primary or secondary suspension elements on the right- and left-hand sides of the vehicle are not the same. It is shown that the vehicle performance on curves can be significantly improved using the asymmetric suspension configuration. The Pareto-optimised values of the design parameters achieved here guarantee wear reduction and comfort improvement for railway vehicles and can also be utilised in developing the reference vehicle models for design of bogie active suspension systems.

  5. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    NASA Astrophysics Data System (ADS)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24

  6. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  7. Investigation of the pump reshaping effect on the thermally-affected Helmholtz-Gauss beams generated by a solid-state laser

    NASA Astrophysics Data System (ADS)

    Nadgaran, H.; Fallah, R.

    2015-08-01

    Reshaping is the gradual adaptation of the pump profile toward the laser output profile. This work investigates the effects of pump reshaping on the generation of Bessel-Gauss (BG), Mathieu-Gauss (MG) and cosine-Gauss (CG) beams. The study uses our previous thermal model and compares the outcome of the model for three different cases, with and without pump reshaping. The results show that in a high power regime, inclusion of reshaping effects in any thermal model is necessary for comprehensive analysis of the thermal problem, whereas this effect can be safely neglected in models describing low power lasers.

  8. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    PubMed

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  9. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions.

    PubMed

    Kwon, JuYoun; Choi, Jeongwha

    2013-07-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  10. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  11. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  12. Hugging My Uncle: The Impact of a Parent Training on Children’s Comfort Interacting with Persons Living with HIV

    PubMed Central

    Krauss, Beatrice J.; Godfrey, Christopher C.; O’Day, Joanne; Freidin, Elizabeth

    2009-01-01

    Objective HIV-related stigma affects not only persons living with HIV (PLwHIV) but also their communities and families including children. This study aimed to determine whether an interactive training administered to community parents significantly increases their children’s reported comfort interacting with PLwHIV. Methods A randomized clinical trial with random-quota dwelling unit sampling and a random invitation to treatment had 238 parent and 238 child participants. Results For children of trained parents, significant increases in comfort were obtained, baseline to 6-month follow-up, on 14 of 22 reported daily activities with PLwHIV. For children who recently interacted with a person living with HIV, this comfort predicted the number of recent activities, even after controlling for closeness to the person living with HIV and for the number of persons with HIV known, living or deceased. Conclusions Training parents to be HIV health educators of their children significantly impacts youth and shows promise for reducing HIV-related stigma and social isolation. PMID:16452647

  13. Development of an experimental methodology to evaluate the influence of a bamboo frame on the bicycle ride comfort

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Gerguri, S.; Coleman, F.; Doody, M.; Fisher, N.

    2013-09-01

    In the current environment of increased emphasis on sustainable transport, there is manifold increase in the use of bicycles for urban transport. One concern which might restrict the use is the ride comfort and fatigue. There has been limited research in addressing the difficulty in bicycle ride comfort quantification. The current study aims to develop a methodology to quantify bicycle discomfort so that performance of bicycles constructed from bamboo and aluminium alloy can be compared. Experimentally obtained frequency response functions are used to establish a relation between the road input and the seat and rider response. A bicycle track input profile based on standard road profiles is created so as to estimate the acceleration responses. The whole-body-vibration frequency weighting is applied to quantify the perception of vibration intensity so that eventual discomfort ranking can be obtained. The measured frequency response functions provide an insight into the effect of frame dynamics on the overall resonant behaviour of the bicycles. The beneficial effect of frame compliance and damping on lower modes of vibration is very clear in the case of bamboo frame, in turn affecting seat and rider response. In the bamboo frame, because of multiple resonances, the frequency response of the handlebar is smaller at higher frequencies suggesting effective isolation. Further improvements may have come from the joints made from natural composites. Overall, based on the comparative analysis and the methodology developed, bamboo frame shows significant improvement in ride comfort performance compared with the aluminium frame.

  14. Bimanual comfort depends on how extreme either hand's posture is, not on which hand is in the more extreme posture.

    PubMed

    Chapman, Kate M; Rosenbaum, David A

    2017-01-01

    Although hand preference is one of the best known features of performance, a recent study of object transfer behavior (Coelho, Studenka, & Rosenbaum, J Exp Psychol Human Percept Perform, 40:718-730, 2014) showed that people place greater emphasis on using the hand that avoids extreme joint angles than on using the hand they normally prefer. In the present study, we sought converging evidence for the hypothesis that adopting midrange joint angles by either hand (the preferred-posture hypothesis) is more important than using the preferred hand in particular to adopt midrange joint angles (the preferred-hand hypothesis). We asked participants to hold both of their hands in different orientations and to rate their comfort. Consistent with the preferred-posture hypothesis but contrary to the preferred-hand hypothesis, the bimanual comfort ratings were more strongly affected by how extreme the two hands' postures were than by which of the hands was in the more extreme posture. The data support a theory of action planning, the posture-based motion planning theory, which says that whole-body postural comfort is a key ingredient for physical action planning.

  15. High-Thermal-Conductivity Fabrics

    NASA Technical Reports Server (NTRS)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  16. Vehicle/guideway interaction and ride comfort in maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.

    1993-10-01

    The importance of vehicle/guideway dynamics in maglev systems is discussed. The particular interest associated with modeling vehicle guide-way interactions and explaining response characteristics of maglev systems for a multicar, multiload vehicle traversing on a single- or double-span flexible guideway are considered, with an emphasis on vehicle/guideway coupling effects, comparison of concentrated and distributed loads, and ride comfort. Coupled effects of vehicle/guideway interactions over a wide range of vehicle speeds with various vehicle and guideway parameters are investigated, and appropriate critical vehicle speeds or crossing frequencies are identified.

  17. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  18. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  19. On the transition thermal discomfort to heat stress as a function of the PMV value.

    PubMed

    D'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe

    2013-01-01

    ISO 15265 Standard - Ergonomics of the thermal environment - Risk assessment strategy for the prevention of stress or discomfort in thermal working conditions - can be considered as a key document for helping responsible for the health protection and prevention of working situations. According to the SOBANE strategy, this standard provides a three-step protocol aimed to the prevention, elimination or reduction of risks affecting the workplaces. Although both methods and procedures suggested by ISO 15265 appear very clear, this standard could bring in confusion both beginners and not specialists in occupational health concerning Predicted Mean Vote (PMV) threshold values consistent with comfort - hot discomfort and the discomfort - hot stress transitions. In this work such matter has been extensively discussed showing a certain difficulty in the definition of an unambiguous PMV threshold value for each working situation in any microclimate.

  20. Effect of lens diameter on lens performance and initial comfort of two types of GP lenses for keratoconus: a pilot study

    PubMed Central

    Sorbara, Luigina; Mueller, Katrin

    2011-01-01

    Purpose The purpose of this pilot study was to determine the effect of varying lens diameter of two types of keratoconic lenses on lens performance and initial comfort with participants with either centered or oval cones. Methods Sixteen eyes of ten keratoconic participants were fitted with lenses of five diameters i.e. 8.7, 9, 9.6, 10.1 and 10.4 diameters and two commercially available lens types; “KCGP-1” and “KCGP-2”. Lensmovement, centration and initial comfort were assessed. Results Ten subjects (2 female and 8 male, sixteen eyes) were enrolled to participate in the pilot study, themean age was 40.4 ± 14.33 years. Six eyes were in the early centred cone group, five in the early oval cone group and five in the late oval cone group. The lenses with the 9.6 lens diameter (TD) decentered the least for all lenses (p = 0.001). When compared to cone type, the 8.7/9 were more decentered for the late oval and late centred cones (p = 0.009). The movement of the smaller KCGP-1 was greater than the KCGP-2 for the centered early cones (p = 0.001) and the movement decreased for the larger KCGP-2 lenses for all cone types but not significantly (p > 0.05). The KCGP-1 lenses were more significantly comfortable than the KCGP-2 lenses for the centered cones (p = 0.003). Only for the early oval cones, was the larger KCGP-2 lenses more comfortable (p = 0.04). Conclusions Lens diameter affects comfort and centration especially for the small (8.7/9) and large (10.4/10.1) diameters in this pilot study. Lens movement was not correlated with comfort.

  1. Predicting bicycle setup for children based on anthropometrics and comfort.

    PubMed

    Grainger, Karl; Dodson, Zoe; Korff, Thomas

    2017-03-01

    Bicycling is a popular activity for children. In order for children to enjoy cycling and to minimize injury, it is important that they are positioned appropriately on the bicycle. The purpose of this study was therefore to identify a suitable bicycle setup for children aged between 7 and 16 years which accommodates developmental differences in anthropometrics, flexibility and perceptions of comfort. Using an adjustable bicycle fitting rig, we found the most comfortable position of 142 children aged 7 to 16. In addition, a number of anthropometric measures were recorded. Seat height and the horizontal distance between seat and handlebars were strongly predictable (R(2) > 0.999, p < 0.001 and R(2) = 0.649, p < 0.001 respectively), whilst the predictability of the vertical distance between seat and handlebars was weaker (R(2) = 0.231, p < 0.001). These results have practical implications for children and parents, paediatric researchers and clinicians as well as bicycle manufacturers.

  2. Cotton liners to mediate glove comfort for greenhouse applicators.

    PubMed

    Stone, J; Coffman, C; Imerman, P M; Song, K; Shelley, M

    2005-10-01

    Greenhouse applicators' acceptance of cotton knit gloves worn as liners under nitrile chemical-resistant gloves (CRG) for pesticide application was investigated through a wear study in Iowa and New York. Comfort was assessed by questionnaires and interviews with 10 applicators. Contamination levels of four pesticides on CRG and liners at thumb, forefinger, palm, and cuff locations were determined by chemical analysis using high-performance liquid chromatography or gas chromatography. Applicators reported feeling more comfortable with cotton liners under their CRG than without and that cotton liners were easy to manage. Contamination was significantly greater on nitrile CRG than on cotton liners underneath, but a few liner specimens had measurable contamination. No significant contamination differences were found between right- and left-hand gloves. Contamination varied significantly by hand location, with cuffs least, and by pesticide, with chlorpyrifos most. These results support the Environmental Protection Agency's recommendation that liners should be disposable, but further work on liners and their laundering feasibility seems indicated.

  3. Super stereoscopy technique for comfortable and realistic 3D displays.

    PubMed

    Akşit, Kaan; Niaki, Amir Hossein Ghanbari; Ulusoy, Erdem; Urey, Hakan

    2014-12-15

    Two well-known problems of stereoscopic displays are the accommodation-convergence conflict and the lack of natural blur for defocused objects. We present a new technique that we name Super Stereoscopy (SS3D) to provide a convenient solution to these problems. Regular stereoscopic glasses are replaced by SS3D glasses which deliver at least two parallax images per eye through pinholes equipped with light selective filters. The pinholes generate blur-free retinal images so as to enable correct accommodation, while the delivery of multiple parallax images per eye creates an approximate blur effect for defocused objects. Experiments performed with cameras and human viewers indicate that the technique works as desired. In case two, pinholes equipped with color filters per eye are used; the technique can be used on a regular stereoscopic display by only uploading a new content, without requiring any change in display hardware, driver, or frame rate. Apart from some tolerable loss in display brightness and decrease in natural spatial resolution limit of the eye because of pinho