Science.gov

Sample records for affect thyroid hormone

  1. Disruption of the melanin-concentrating hormone receptor 1 (MCH1R) affects thyroid function.

    PubMed

    Chung, Shinjae; Liao, Xiao-Hui; Di Cosmo, Caterina; Van Sande, Jacqueline; Wang, Zhiwei; Refetoff, Samuel; Civelli, Olivier

    2012-12-01

    Melanin-concentrating hormone (MCH) is a peptide produced in the hypothalamus and the zona incerta that acts on one receptor, MCH receptor 1 (MCH1R), in rodents. The MCH system has been implicated in the regulation of several centrally directed physiological responses, including the hypothalamus-pituitary-thyroid axis. Yet a possible direct effect of the MCH system on thyroid function has not been explored in detail. We now show that MCH1R mRNA is expressed in thyroid follicular cells and that mice lacking MCH1R [MCH1R-knockout (KO)] exhibit reduced circulating iodothyronine (T(4), free T(4), T(3), and rT(3)) levels and high TRH and TSH when compared with wild-type (WT) mice. Because the TSH of MCH1R-KO mice displays a normal bioactivity, we hypothesize that their hypothyroidism may be caused by defective thyroid function. Yet expression levels of the genes important for thyroid hormones synthesis or secretion are not different between the MCH1R-KO and WT mice. However, the average thyroid follicle size of the MCH1R-KO mice is larger than that of WT mice and contained more free and total T(4) and T(3) than the WT glands, suggesting that they are sequestered in the glands. Indeed, when challenged with TSH, the thyroids of MCH1R-KO mice secrete lower amounts of T(4). Similarly, secretion of iodothyronines in the plasma upon (125)I administration is significantly reduced in MCH1R-KO mice. Therefore, the absence of MCH1R affects thyroid function by disrupting thyroid hormone secretion. To our knowledge, this study is the first to link the activity of the MCH system to the thyroid function.

  2. Thyroid Hormones and Methylmercury Toxicity

    PubMed Central

    O’Mara, Daniel M.; Aschner, Michael

    2013-01-01

    Thyroid hormones are essential for cellular metabolism, growth, and development. In particular, an adequate supply of thyroid hormones is critical for fetal neurodevelopment. Thyroid hormone tissue activation and inactivation in brain, liver, and other tissues is controlled by the deiodinases through the removal of iodine atoms. Selenium, an essential element critical for deiodinase activity, is sensitive to mercury and, therefore, when its availability is reduced, brain development might be altered. This review addresses the possibility that high exposures to the organometal, methylmercury (MeHg), may perturb neurodevelopmental processes by selectively affecting thyroid hormone homeostasis and function. PMID:18716716

  3. [Thyroid hormone resistance syndromes].

    PubMed

    Bernal, Juan

    2011-04-01

    Thyroid hormone resistance syndromes are a group of genetic conditions characterized by decreased tissue sensitivity to thyroid hormones. Three syndromes, in which resistance to hormone action is respectively due to mutations in the gene encoding for thyroid hormone receptor TRβ, impaired T4 and T3 transport, and impaired conversion of T4 to T3 mediated by deiodinases. An updated review of each of these forms of resistance is provided, and their pathogenetic mechanisms and clinical approaches are discussed.

  4. Thyroid Stimulating Hormone Receptor.

    PubMed

    Tuncel, Murat

    2016-01-05

    Thyroid stimulating hormone receptor (TSHR) plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  5. Thyroid Stimulating Hormone Receptor

    PubMed Central

    Tuncel, Murat

    2017-01-01

    Thyroid stimulating hormone receptor (TSHR) plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases. PMID:28117293

  6. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  7. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  8. Thyroid Hormone Deiodinases and Cancer

    PubMed Central

    Casula, Sabina; Bianco, Antonio C.

    2012-01-01

    Deiodinases constitute a group of thioredoxin fold-containing selenoenzymes that play an important function in thyroid hormone homeostasis and control of thyroid hormone action. There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4) to T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and terminates T3 action. A number of studies indicate that deiodinase expression is altered in several types of cancers, suggesting that (i) they may represent a useful cancer marker and/or (ii) could play a role in modulating cell proliferation – in different settings thyroid hormone modulates cell proliferation. For example, although D2 is minimally expressed in human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS)-13 cells is threefold to fourfold higher. In basal cell carcinoma (BCC) cells, sonic hedgehog (Shh)-induced cell proliferation is accompanied by induction of D3 and inactivation of D2. Interestingly a fivefold reduction in the growth of BCC in nude mice was observed if D3 expression was knocked down. A decrease in D1 activity has been described in renal clear cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were significantly higher in follicular thyroid cancer tissue, in follicular adenoma, and in anaplastic thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor cells affect thyroid hormone signaling and possibly interfere with tumor progression could lead to new antineoplastic approaches. PMID:22675319

  9. Thyroid hormone transporter defects.

    PubMed

    Grüters, Annette

    2007-01-01

    In in vitro experiments, active transport of thyroid hormones had been repeatedly demonstrated. The membrane transporters for thyroid hormones which have been identified include the organic anion transporting polypeptide, heterodimeric amino acid transporters and the monocarboxylate transporters (MCT) which are the focus of this chapter. The gene encoding MCT8 which was identified as a specific thyroid hormone transporter is located on chromosome Xq13.2. The expression pattern of MCT8 indicates that MCT8 plays an important role in the development of the central nervous system by transporting thyroid hormone into neurons as its main target cells. Mutational analysis of the MCT8 gene revealed mutations or deletions in the MCT8 gene in unrelated male patients with severe psychomotor retardation and biochemical findings consistent with thyroid hormone resistance. Indeed, thyroid function tests in patients with MCT8 mutations demonstrated marked elevations of serum T3 (in the thyrotoxic range), a significant decrease in serum T4 or fT4 and normal to elevated TSH levels.

  10. Thyroid hormone, brain development, and the environment.

    PubMed Central

    Zoeller, Thomas R; Dowling, Amy L S; Herzig, Carolyn T A; Iannacone, Eric A; Gauger, Kelly J; Bansal, Ruby

    2002-01-01

    Thyroid hormone is essential for normal brain development. Therefore, it is a genuine concern that thyroid function can be altered by a very large number of chemicals routinely found in the environment and in samples of human and wildlife tissues. These chemicals range from natural to manufactured compounds. They can produce thyroid dysfunction when they are absent from the diet, as in the case of iodine, or when they are present in the diet, as in the case of thionamides. Recent clinical evidence strongly suggests that brain development is much more sensitive to thyroid hormone excess or deficit than previously believed. In addition, recent experimental research provides new insight into the developmental processes affected by thyroid hormone. Based on the authors' research focusing on the ability of polychlorinated biphenyls to alter the expression of thyroid hormone-responsive genes in the developing brain, this review provides background information supporting a new way of approaching risk analysis of thyroid disruptors. PMID:12060829

  11. Predictive Modeling of a Mixture of Thyroid Hormone Disrupting Chemicals that Affect Production and Clearance of Thyroxine

    EPA Science Inventory

    Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T4). This research tested the hypothesis that serum T4 concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticid...

  12. Histidines in potential substrate recognition sites affect thyroid hormone transport by monocarboxylate transporter 8 (MCT8).

    PubMed

    Braun, Doreen; Lelios, Iva; Krause, Gerd; Schweizer, Ulrich

    2013-07-01

    Mutations in monocarboxylate transporter 8 (MCT8; SLC16A2) cause the Allan-Herndon-Dudley syndrome, a severe X-linked psychomotor retardation syndrome. MCT8 belongs to the major facilitator superfamily of 12 transmembrane-spanning proteins and transports thyroid hormones across the blood-brain barrier and into neurons. How MCT8 distinguishes thyroid hormone substrates from structurally closely related compounds is not known. The goal of this study was to identify critical amino acids along the transport channel cavity, which participate in thyroid hormone recognition. The fact that T3 is bound between a His-Arg clamp in the crystal structure of the T3 receptor/T3 complex prompted us to investigate whether such a motif might potentially be relevant for T3 recognition in MCT8. We therefore replaced candidate histidines and arginines by site-directed mutagenesis and performed activity assays in MDCK-1 cells and Xenopus oocytes. Histidines were replaced by alanine, phenylalanine, and glutamine to probe for molecular properties like aromatic ring structure and H-bonding properties. It was found that some mutations in His192 and His415 significantly changed substrate transport kinetics. Arg301 at the intracellular end of the substrate channel is at an ideal distance to His415 to participate in a His-Arg clamp and mutation to alanine-abrogated hormone transport. Molecular modeling demonstrates a perfect fit of T3 poised into the substrate channel between His415 and Arg301 and observing the same geometry as in the T3 receptor.

  13. Thyroid hormones differentially affect sarcoplasmic reticulum function in rat atria and ventricles.

    PubMed

    Kaasik, A; Minajeva, A; Paju, K; Eimre, M; Seppet, E K

    1997-11-01

    The present study was undertaken to compare the effects of hypothyroidism and hyperthyroidism on sarcoplasmic reticulum (SR) Ca(2+)-pump activity, together with assessment of the functional role of SR in providing activator Ca2+ under these altered thyroid states. In response to a shift from hypothyroid to hyperthyroid state, a 10 fold and 2 fold increase in SR Ca(2+)-pump activity in atria and ventricles, respectively, were observed. This was associated with the 8-9 fold increases in atrial contractility (+dT/dt) and relaxation (-dT/dt), but only with a 3-4 fold increase in their ventricular counterparts. Also, the recirculation fraction of activator Ca2+ (RFA) increased to a far greater extent in atria (4 fold) than in papillary muscles, and the relative increment in inhibition of developed tension by ryanodine became 3 times larger in atria than in papillary muscles. A positive force-frequency relationship (FFR) was observed in hypothyroid atria, whereas the hyperthyroid atria, hypothyroid and hyperthyroid papillary muscles showed a negative FFR. These results suggest the greater role of transsarcolemmal (SL) Ca2+ and smaller role of SR Ca2+ in activating contraction in hypothyroid atria compared to other preparations. Thyroid hormones decrease the contribution of SL and increase that of SR in providing activator Ca2+ to the greater extent in atria than in ventricles. This effect of thyroid hormones is based on larger stimulation of SR Ca(2+)-pump in atria compared to ventricles.

  14. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis.

    PubMed

    Mohan, Vishwa; Sinha, Rohit A; Pathak, Amrita; Rastogi, Leena; Kumar, Praveen; Pal, Amit; Godbole, Madan M

    2012-10-01

    Neuronal progenitor cell proliferation and their optimum number are indispensable for neurogenesis, which is determined by cell cycle length and cell cycle quitting rate of the dividing progenitors. These processes are tightly orchestrated by transcription factors like Tbr2, Pax6, and E2f-1. Radial glia and intermediate progenitor cells (IPC) through direct and indirect neurogenesis maintain surface area and neocortical thickness during development. Here we show that fetal neurogenesis is maternal thyroid hormone (MTH) dependent with differential effect on direct and indirect neurogenesis. MTH deficiency (MTHD) impairs direct neurogenesis through initial down-regulation of Pax6 and diminished progenitor pool with recovery even before the onset of fetal thyroid function (FTF). However, persistent decrease in Tbr2 positive IPCs, diminished NeuN positivity in layers I-III of neocortex, and reduced cortical thickness indicate a non-compensatory impairment in indirect neurogenesis. TH deficiency causes disrupted cell cycle kinetics and deranged neurogenesis. It specifically affects indirect neurogenesis governed by intermediate progenitor cells (IPCs). TH replacement in hypothyroid dams partially restored the rate of neurogenesis in the fetal neocortex. Taken together we describe a novel role of maternal TH in promoting IPCs derived neuronal differentiation in developing neo-cortex. We have also shown for the first time that ventricular zone progenitors are TH responsive as they express its receptor, TR alpha-1, transporters (MCT8) and deiodinases. This study highlights the importance of maternal thyroid hormone (TH) even before the start of the fetal thyroid function.

  15. Thyroid hormone dysfunction during pregnancy: A review

    PubMed Central

    Alemu, Aynadis; Terefe, Betelihem; Abebe, Molla; Biadgo, Belete

    2016-01-01

    Thyroid dysfunctions such as hypothyroidism, thyrotoxicosis and thyroid nodules may develop during pregnancy leading to abortion, placental abruptions, preeclampsia, preterm delivery and reduced intellectual function in the offspring. Epidemiological data have shown the significant role of maternal thyroid hormone in fetal neurologic development and maternal health. It has been suggested that the deleterious effects of thyroid dysfunction can also extend beyond pregnancy and delivery to affect neuro-intellectual development in the early life of the child. Pregnancy poses an important challenge to the maternal thyroid gland as hormone requirements are increased during gestation as a result of an increase in thyroid- binding globulin, the stimulatory effect of HCG on TSH receptors, and increased peripheral thyroid hormone requirements. Maternal thyroid dysfunction is associated with increased risk for early abortion, preterm delivery, neonatal morbidity and other obstetrical complications. Early diagnosis for thyroid dysfunction of pregnant women and treatment of thyroid dysfunction during pregnancy is important and cost effective to avoid both fetal and maternal complications secondary to thyroid dysfunction. Therefore the aim of this review was to assess the thyroid function changes occurring during pregnancy, the different disorders with their maternal and fetal implications, the laboratory diagnosis and the best ways of management of these conditions. PMID:27981252

  16. Thyroid hormone, neural tissue and mood modulation.

    PubMed

    Bauer, M; Whybrow, P C

    2001-04-01

    The successful treatment of affective disorders with thyroid hormone exemplifies the suggested inter-relationship between endocrine and neuronal systems in these disorders. Thyroid hormones have a profound influence on behaviour and appear to be capable of modulating the phenotypic expression of major affective illness. Specifically, there is good evidence that triiodothyronine (T3) may accelerate the antidepressant response to tricylic antidepressants, and some studies suggest that T3 may augment the therapeutic response to antidepressants in refractory depressed patients. Open studies have also indicated that adjunctive supraphysiological doses of thyroxine (T4) can ameliorate depressive symptomatology and help stabilize the long-term course of illness in bipolar and unipolar patients, especially women refractory to standard medications. Despite acceptance of the essential role of thyroid hormone on brain maturation and differentiation, and the clinical and therapeutic observations in association with mood disorders, the molecular action that may underlie the mood-modulating properties of thyroid hormone in the adult brain has only recently become the focus of research. The identification of nuclear T3 receptors, the region-specific expression of deiodinase isoenzymes and the molecular analyses of thyroid-responsive genes in the adult brain have provided the biological bases for a better understanding of thyroid hormone action in mature neurons. Also the influence of thyroid hormones on the putative neurotransmitter systems that regulate mood and behaviour, serotonin and norepinephrine, may be helpful in explaining their mood-modulating effects.

  17. Thyroid Hormone Treatment

    MedlinePlus

    ... THE THYROID GLAND? The thyroid gland is a butterfly-shaped endocrine gland that is normally located in ... the thyroid gland? The thyroid gland is a butterfly-shaped endocrine gland that is normally located in ...

  18. Thyroid hormones and growth in health and disease.

    PubMed

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children.

  19. Thyroid hormones affect the membrane dipolar organization. Is it a general event in their non-genomic action?

    PubMed

    Isse, B; Fidelio, G; Farías, R N

    2003-02-01

    The surface balance technique was employed to study the interactions of 3,5,3',5' tetraiodo L-thyronine, 3,5,3' triiodo L-thyronine, and 3,5-diiodothyronine with monomolecular phospholipid monolayers spread at the air-water interface. With this technique the insertion of thyroid hormones into egg yolk phosphatidylcholine was investigated. An increase of surface pressure and a substantial decrement in surface potential were observed after the injection of these hormones beneath a phospholipid monolayer. The negative dipole contribution upon hormone interaction opposes the well-known positive contribution of phospholipids. These effects correlated with iodo content of the thyroid molecule analogues 3,5,3',5' tetraiodo L-thyronine >3,5,3' triiodo L-thyronine >3,5-diiodothyronine. To our knowledge, these observations suggest a new and surprising effect of thyroid hormones on the regulation of transmembrane dipolar organization.

  20. Thyroid Hormone Disruption by Water-Accommodated Fractions of Crude Oil and Sediments Affected by the Hebei Spirit Oil Spill in Zebrafish and GH3 Cells.

    PubMed

    Kim, Sujin; Sohn, Ju Hae; Ha, Sung Yong; Kang, Habyeong; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Jung, Dawoon; Choi, Kyungho

    2016-06-07

    A crude oil and the coastal sediments that were affected by the Hebei Spirit Oil Spill (HSOS) of Taean, Korea were investigated for thyroid hormone disruption potentials. Water-accommodated fractions (WAFs) of Iranian Heavy crude oil, the major oil type of HSOS, and the porewater or leachate of sediment samples collected along the coast line of Taean were tested for thyroid disruption using developing zebrafish and/or rat pituitary GH3 cells. Major polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms were also measured from the test samples. In zebrafish larvae, significant decreases in whole-body thyroxine (T4) and triiodothyronine (T3) levels, along with transcriptional changes of thyroid regulating genes, were observed following 5 day exposure to WAFs. In GH3 cells, transcriptions of thyroid regulating genes were influenced following the exposure to the sediment samples, but the pattern of the regulatory change was different from those observed from the WAFs. Composition of PAHs and their alkylated homologues in the WAFs could partly explain this difference. Our results clearly demonstrate that WAFs of crude oil can disrupt thyroid function of larval zebrafish. Sediment samples also showed thyroid disrupting potentials in the GH3 cell, even several years after the oil spill. Long-term ecosystem consequences of thyroid hormone disruption due to oil spill deserve further investigation.

  1. Affective cycling in thyroid disease

    SciTech Connect

    Tapp, A.

    1988-05-01

    Depression in an elderly man with primary recurrent unipolar depression responded to radioactive iodine treatment of a thyrotoxic nodule, without the addition of psychotropic medications. Two months later, manic symptoms developed concomitant with the termination of the hyperthyroid state secondary to the radioactive iodine treatment. Clinical implications of these findings in relation to the possible mechanism of action of thyroid hormones on affective cycling are discussed.

  2. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  3. Thyroid hormone biosynthesis and release.

    PubMed

    Carvalho, Denise P; Dupuy, Corinne

    2017-01-31

    Thyroid hormones (TH) 3,5,3',5'- tetraiodothyronine or thyroxine (T4) and 3,5,3'- triiodothyronine (T3) contain iodine atoms as part of their structure, and their synthesis occur in the unique structures called thyroid follicles. Iodide reaches thyroid cells through the bloodstream that supplies the basolateral plasma membrane of thyrocytes, where it is avidly taken up through the sodium/iodide symporter (NIS). Thyrocytes are also specialized in the secretion of the high molecular weight protein thyroglobulin (TG) in the follicular lumen. The iodination of the tyrosyl residues of TG preceeds TH biosynthesis, which depends on the interaction of iodide, TG, hydrogen peroxide (H2O2) and thyroid peroxidase (TPO) at the apical plasma membrane of thyrocytes. Thyroid hormone biosynthesis is under the tonic control of thyrotropin (TSH), while the iodide recycling ability is very important for normal thyroid function. We discuss herein the biochemical aspects of TH biosynthesis and release, highlighting the novel molecules involved in the process.

  4. Thyroid hormones and heart failure.

    PubMed

    Martinez, Felipe

    2016-07-01

    Heart failure is a major health problem and its relationship to thyroid dysfunction has been increasingly investigated in recent years. Since it has been demonstrated that thyroid hormones (TH) and mainly T3 have cardioprotective effects, it is easy to understand that in the scenario of thyroid disorder, cardiac function may be damaged, and inversely in cardiac dysfunction thyroid dysregulation may be seen. The increase in plasma TH produces a clear neurohormonal activation which impacts negatively on cardiac function. In hypothyroidism, and in addition to extracardiac dysfunction, myocardial and vascular remodelling is altered and they contribute to cardiac failure. Abnormal low plasma TSH has also been shown to be a risk factor for developing HF in several recent studies, and they suggest that TSH is an independent predictor of clinical outcome including death and cardiac hospitalizations. Therefore, physicians should consider all these concepts when managing a patient with heart failure, not only for a clear diagnosis, but also for better and accurate treatment.

  5. [Thyroid hormone action beyond classical concepts. The priority programme "Thyroid Trans Act" (SPP 1629) of the German Research Foundation].

    PubMed

    Führer, D; Brix, K; Biebermann, H

    2014-03-01

    Thyroid hormones are of crucial importance for the function of nearly all organ systems. In case of dysfunction of thyroid hormone production and function many organ systems may be affected. The estimation of normal thyroid function is based on determination of TSH and the thyroid hormones T3 and T4. However, international conventions about the normal TSH range are still lacking which bears consequences for patient`s treatment. Hence not unexpected, many patients complain although their thyroid hormone status is in the normal range by clinical estimation. Here, more precise parameters are needed for a better definition of the healthy thyroid status of an individual. Recently, new key players in the system of thyroid hormone action were detected, like specific transporters for uptake of thyroid hormones and thyroid hormone derivatives. DFG, the German Research Foundation supports the priority program Thyroid Trans Act to find answers to the main question: what defines the healthy thyroid status of an individual. The overall aim of this interdisciplinary research consortium is to specify physiological and pathophysiological functions of thyroid hormone transporters and thyroid hormone derivative as new players in thyroid regulation in order to better evaluate, treat, and prevent thyroid-related disease.

  6. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  7. Thyroid hormone transporters in the brain.

    PubMed

    Suzuki, Takehiro; Abe, Takaaki

    2008-01-01

    Thyroid hormone plays an essential role in proper mammalian development of the central nervous system and peripheral tissues. Lack of sufficient thyroid hormone results in abnormal development of virtually all organ systems, a syndrome termed cretinism. In particular, hypothyroidism in the neonatal period causes serious damage to neural cells and leads to mental retardation. Although thyroxine is the major product secreted by the thyroid follicular cells, the action of thyroid hormone is mediated mainly through the deiodination of T(4) to the biologically active form 3,3', 5-triiodo-L-thyronine, followed by the binding of T(3) to a specific nuclear receptor. Before reaching the intracellular targets, thyroid hormone must cross the plasma membrane. Because of the lipophilic nature of thyroid hormone, it was thought that they traversed the plasma membrane by simple diffusion. However, in the past decade, a membrane transport system for thyroid hormone has been postulated to exist in various tissues. Several classes of transporters, organic anion transporter polypeptide (oatp) family, Na(+)/Taurocholate cotransporting polypeptide (ntcp) and amino acid transporters have been reported to transport thyroid hormones. Monocarboxylate transporter8 (MCT8) has recently been identified as an active and specific thyroid hormone transporter. Mutations in MCT8 are associated with severe X-linked psycomotor retardation and strongly elevated serum T3 levels in young male patients. Several other molecules should be contributed to exert the role of thyroid hormone in the central nervous system.

  8. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  9. Thyroid hormone resistance and its management

    PubMed Central

    Lado-Abeal, Joaquin

    2016-01-01

    The syndrome of impaired sensitivity to thyroid hormone, also known as syndrome of thyroid hormone resistance, is an inherited condition that occurs in 1 of 40,000 live births characterized by a reduced responsiveness of target tissues to thyroid hormone due to mutations on the thyroid hormone receptor. Patients can present with symptoms of hyperthyroidism or hypothyroidism. They usually have elevated thyroid hormones and a normal or elevated thyroid-stimulating hormone level. Due to their nonspecific symptomatic presentation, these patients can be misdiagnosed if the primary care physician is not familiar with the condition. This can result in frustration for the patient and sometimes unnecessary invasive treatment such as radioactive iodine ablation, as in the case presented herein. PMID:27034574

  10. Endocrine disruptors and thyroid hormone physiology.

    PubMed

    Jugan, Mary-Line; Levi, Yves; Blondeau, Jean-Paul

    2010-04-01

    Endocrine disruptors are man-made chemicals that can disrupt the synthesis, circulating levels, and peripheral action of hormones. The disruption of sex hormones was subject of intensive research, but thyroid hormone synthesis and signaling are now also recognized as important targets of endocrine disruptors. The neurological development of mammals is largely dependent on normal thyroid hormone homeostasis, and it is likely to be particularly sensitive to disruption of the thyroid axis. Here, we survey the main thyroid-disrupting chemicals, such as polychlorinated biphenyls, perchlorates, and brominated flame-retardants, that are characteristic disruptors of thyroid hormone homeostasis, and look at their suspected relationships to impaired development of the human central nervous system. The review then focuses on disrupting mechanisms known to be directly or indirectly related to the transcriptional activity of the thyroid hormone receptors.

  11. The effects of thyroid hormone abnormalities on periodontal disease status.

    PubMed

    Zahid, Talal M; Wang, Bing-Yan; Cohen, Robert E

    2011-10-01

    Thyroid hormones play an important role in the regulation of physiologic processes. Thyroid disease can lead to imbalance in the homeostasis of the body and affect the healing capacity of tissues. However, limited data are available regarding the relationship between thyroid hormone imbalance (thyroid disease) and periodontal health. This review is carried out to summarize the relationship between thyroid disease and periodontal status. PUBMED and MEDLINE searches of both human and animal studies were performed to investigate the relationship between thyroid disease, periodontal status, and dental implants. Results suggest that thyroid diseases may affect the status of periodontal diseases, especially in hypothyroid conditions. The duration from disease onset to treatment of thyroid disorders may be critical, since uncontrolled thyroid disease may result in destruction of the periodontium. Further controlled studies are needed to explore the relationship between thyroid hormone imbalance and periodontal status. Periodontal therapies, including dental implant placement, appear to be safe with no increase in treatment failure, so long as the status of the thyroid gland is controlled.

  12. Thyroid hormone antibodies and Hashimoto's thyroiditis in mongrel dogs

    SciTech Connect

    Rajatanavin, R.; Fang, S.L.; Pino, S.; Laurberg, P.; Braverman, L.E.; Smith, M.; Bullock, L.P.

    1989-05-01

    Abnormally elevated serum T3 concentrations measured by RIA were observed in 19 clinically euthyroid or hypothyroid mongrel dogs. The serum T4 concentrations in these sera were low, normal, or high. Measurement of the intensity of thyroid hormone binding to serum proteins was determined by equilibrium dialysis. A marked decrease in the percent free T3 was observed in these abnormal sera. Polyacrylamide gel electrophoresis, pH 7.4, of normal dog serum enriched with tracer /sup 125/I-labeled thyroid hormones demonstrated binding of (/sup 125/I)T4 to transthyretin, thyroid hormone-binding globulin, and albumin and of (/sup 125/I)T3 primarily to thyroid hormone-binding globulin. In all abnormal sera, polyacrylamide gel electrophoresis demonstrated strikingly higher binding of T3 to immunoglobulin (Ig). Eleven of 16 abnormal sera had minimal to moderate binding of T4 to Ig. The percent free T4 was lower only in dogs whose sera demonstrated markedly increased binding of T4 to Ig. All abnormal sera tested had positive antithyroglobulin antibodies, consistent with the diagnosis of autoimmune lymphocytic thyroiditis. As in humans, antibodies to thyroid hormones in dogs are more common in the presence of Hashimoto's thyroiditis and should be considered when elevated serum thyroid hormone concentrations are observed in the absence of clinical thyrotoxicosis. When an antibody to only one thyroid hormone is present, a marked discrepancy in the serum concentrations of T3 and T4 will be observed.

  13. Does microbiota composition affect thyroid homeostasis?

    PubMed

    Virili, Camilla; Centanni, Marco

    2015-08-01

    The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.

  14. THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.

    EPA Science Inventory

    A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...

  15. Thyroid hormone and the growth plate.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2006-12-01

    Thyroid hormone was first identified as a potent regulator of skeletal maturation at the growth plate more than forty years ago. Since that time, many in vitro and in vivo studies have confirmed that thyroid hormone regulates the critical transition between cell proliferation and terminal differentiation in the growth plate, specifically the maturation of growth plate chondrocytes into hypertrophic cells. However these studies have neither identified the molecular mechanisms involved in the regulation of skeletal maturation by thyroid hormone, nor demonstrated how the systemic actions of thyroid hormone interface with the local regulatory milieu of the growth plate. This article will review our current understanding of the role of thyroid hormone in regulating the process of endochondral ossification at the growth plate, as well as what is currently known about the molecular mechanisms involved in this regulation.

  16. Thyroid Hormone Function in the Rat Testis

    PubMed Central

    Gao, Ying; Lee, Will M.; Cheng, C. Yan

    2014-01-01

    Thyroid hormones are emerging regulators of testicular function since Sertoli, germ, and Leydig cells are found to express thyroid hormone receptors (TRs). These testicular cells also express deiodinases, which are capable of converting the pro-hormone T4 to the active thyroid hormone T3, or inactivating T3 or T4 to a non-biologically active form. Furthermore, thyroid hormone transporters are also found in the testis. Thus, the testis is equipped with the transporters and the enzymes necessary to maintain the optimal level of thyroid hormone in the seminiferous epithelium, as well as the specific TRs to execute thyroid hormone action in response to different stages of the epithelial cycle of spermatogenesis. Studies using genetic models and/or goitrogens (e.g., propylthiouracil) have illustrated a tight physiological relationship between thyroid hormone and testicular function, in particular, Sertoli cell differentiation status, mitotic activity, gap junction function, and blood–testis barrier assembly. These findings are briefly summarized and discussed herein. PMID:25414694

  17. Minireview: Pathophysiological importance of thyroid hormone transporters.

    PubMed

    Heuer, Heike; Visser, Theo J

    2009-03-01

    Thyroid hormone metabolism and action are largely intracellular events that require transport of iodothyronines across the plasma membrane. It has been assumed for a long time that this occurs by passive diffusion, but it has become increasingly clear that cellular uptake and efflux of thyroid hormone is mediated by transporter proteins. Recently, several active and specific thyroid hormone transporters have been identified, including monocarboxylate transporter 8 (MCT8), MCT10, and organic anion transporting polypeptide 1C1 (OATP1C1). The latter is expressed predominantly in brain capillaries and transports preferentially T(4), whereas MCT8 and MCT10 are expressed in multiple tissues and are capable of transporting different iodothyronines. The pathophysiological importance of thyroid hormone transporters has been established by the demonstration of MCT8 mutations in patients with severe psychomotor retardation and elevated serum T(3) levels. MCT8 appears to play an important role in the transport of thyroid hormone in the brain, which is essential for the crucial action of the hormone during brain development. It is expected that more specific thyroid hormone transporters will be discovered in the near future, which will lead to a better understanding of the tissue-specific regulation of thyroid hormone bioavailability.

  18. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones.

  19. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  20. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  1. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  2. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  3. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  4. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  5. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  6. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  7. Thyroid hormones in fetal growth and prepartum maturation.

    PubMed

    Forhead, A J; Fowden, A L

    2014-06-01

    The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.

  8. Thyroid Hormone Replacement in Patients Following Thyroidectomy for Thyroid Cancer

    PubMed Central

    Hannoush, Zeina C.; Weiss, Roy E.

    2016-01-01

    Thyroid hormone replacement therapy in patients following thyroidectomy for thyroid cancer, although a potentially straightforward clinical problem, can present the clinician and patient with a variety of challenges. Most often the problems are related to the dose and preparation of thyroid hormone (TH) to use. Some patients feel less well following thyroidectomy and/or radioiodine ablation than they did before their diagnosis. We present evidence that levothyroxine (L-T4) is the preparation of choice, and keeping the thyroid-stimulating hormone (TSH) between detectable and 0.1 mU/L should be the standard of care in most cases. In unusual circumstances, when the patient remains clinically hypothyroid despite a suppressed TSH, we acknowledge there may be as yet unidentified factors influencing the body’s response to TH, and individualized therapy may be necessary in such patients. PMID:26886951

  9. Thyroid hormone receptors in brain development and function.

    PubMed

    Bernal, Juan

    2007-03-01

    Thyroid hormones are important during development of the mammalian brain, acting on migration and differentiation of neural cells, synaptogenesis, and myelination. The actions of thyroid hormones are mediated through nuclear thyroid hormone receptors (TRs) and regulation of gene expression. The purpose of this article is to review the role of TRs in brain maturation. In developing humans maternal and fetal thyroid glands provide thyroid hormones to the fetal brain, but the timing of receptor ontogeny agrees with clinical data on the importance of the maternal thyroid gland before midgestation. Several TR isoforms, which are encoded by the THRA and THRB genes, are expressed in the brain, with the most common being TRalpha1. Deletion of TRalpha1 in rodents is not, however, equivalent to hormone deprivation and, paradoxically, even prevents the effects of hypothyroidism. Unliganded receptor activity is, therefore, probably an important factor in causing the harmful effects of hypothyroidism. Accordingly, expression of a mutant receptor with impaired triiodothyronine (T(3)) binding and dominant negative activity affected cerebellar development and motor performance. TRs are also involved in adult brain function. TRalpha1 deletion, or expression of a dominant negative mutant receptor, induces consistent behavioral changes in adult mice, leading to severe anxiety and morphological changes in the hippocampus.

  10. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  11. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  12. Thyroid hormones and renin secretion.

    PubMed

    Ganong, W F

    Circulating angiotensin is produced by the action of renin from the kidneys on circulating angiotensinogen. There are other renin-angiotensin systems in various organs in the body, and recent observations raise the intriguing possibility that angiotensin II is produced by a totally intracellular pathway in the juxtaglomerular cells, the gonadotrops of the anterior pituitary, neurons, in the brain, salivary duct cells, and neuroblastoma cells. Circulating angiotensin II levels depend in large part on the plasma concentration of angiotensinogen, which is hormonally regulated, and on the rate of renin secretion. Renin secretion is regulated by an intrarenal baroreceptor mechanism, a macula densa mechanism, angiotensin II, vasopressin, and the sympathetic nervous system. The increase in renin secretion produced by sympathetic discharge is mediated for the most part by beta-adrenergic receptors, which are probably located on the juxtaglomerular cells. Hyperthyroidism would be expected to be associated with increased renin secretion in view of the increased beta-adrenergic activity in this condition, and hypothyroidism would be associated with decreased plasma renin activity due to decreased beta-adrenergic activity. Our recent research on serotonin-mediated increases in renin secretion that depend on the integrity of the dorsal raphe nucleus and the mediobasal hypothalamus has led us to investigate the effect of the pituitary on the renin response to p-chloroamphetamine. The response is potentiated immediately after hypophysectomy, but 22 days after the operation, it is abolished. This slowly developing decrease in responsiveness may be due to decreased thyroid function.

  13. Thyroid hormone signaling in energy homeostasis and energy metabolism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2014-01-01

    The thyroid hormone plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. Thyroid hormone signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the thyroid hormone exerts its effects after concerted mechanisms facilitate binding to the thyroid hormone receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma thyroid hormone at the appropriate level to preserve energy homeostasis. At the tissue level, thyroid hormone actions on metabolism are controlled by transmembrane transporters, deiodinases, and thyroid hormone receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and thus understanding the contribution of the thyroid hormone to cellular and organism metabolism is increasingly relevant. PMID:24697152

  14. Coexistence of resistance to thyroid hormone and papillary thyroid carcinoma

    PubMed Central

    Igata, Motoyuki; Tsuruzoe, Kaku; Kawashima, Junji; Kukidome, Daisuke; Kondo, Tatsuya; Motoshima, Hiroyuki; Shimoda, Seiya; Furukawa, Noboru; Nishikawa, Takeshi; Miyamura, Nobuhiro

    2016-01-01

    Summary Resistance to thyroid hormone (RTH) is a syndrome of reduced tissue responsiveness to thyroid hormones. RTH is majorly caused by mutations in the thyroid hormone receptor beta (THRB) gene. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. Here, we report a rare case of RTH with a papillary thyroid carcinoma (PTC). A 26-year-old woman was referred to our hospital due to a thyroid tumor and hormonal abnormality. She had elevated serum thyroid hormones and non-suppressed TSH levels. Genetic analysis of THRB identified a missense mutation, P452L, leading to a diagnosis of RTH. Ultrasound-guided fine-needle aspiration biopsy of the tumor and lymph nodes enabled the cytological diagnosis of PTC with lymph node metastases. Total thyroidectomy and neck lymph nodes dissection were performed. Following surgery, thyroxine replacement (≥500 μg) was necessary to avoid the symptoms of hypothyroidism and to maintain her TSH levels within the same range as before the operation. During the follow-up, basal thyroglobulin (Tg) levels were around 6 ng/ml and TSH-stimulated Tg levels were between 12 and 20 ng/ml. Up to present, the patient has had no recurrence of PTC. This indicates that these Tg values are consistent with a biochemical incomplete response or an indeterminate response. There is no consensus regarding the management of thyroid carcinoma in patients with RTH, but aggressive treatments such as total thyroidectomy followed by radioiodine (RAI) and TSH suppression therapy are recommended. Learning points There are only a few cases reporting the coexistence of RTH and thyroid carcinoma. Moreover, our case would be the first case presenting one with lymph node metastases. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. When total thyroidectomy is performed in

  15. Hypothalamic effects of thyroid hormones on metabolism.

    PubMed

    Martínez-Sánchez, Noelia; Alvarez, Clara V; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2014-10-01

    Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.

  16. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  17. Multiple genetic factors in the heterogeneity of thyroid hormone resistance

    SciTech Connect

    Weiss, R.E.; Refetoff, S. ); Marcocci, C.; Bruno-Bossio, G. )

    1993-01-01

    Generalized resistance to thyroid hormone (GRTH), a syndrome of inherited tissue hyposensitivity to thyroid hormone, is linked to thyroid hormone receptor (TR) mutations. A typical feature of GRTH is variable severity of organ involvement among families that, surprisingly, does not correlate with the degree of T[sub 3]-binding impairment of the corresponding in vitro synthesized mutant TRs. Furthermore, variations in the clinical severity among family members harboring identical TR[beta] mutations have been reported. The authors compared serum levels of thyroid hormones that maintained a normal TSH in members of a large family with GRTH divided in three groups: Group A, 8 affected subjects with a mutation replacing arginine-320 with a histidine in the T[sub 3]-binding domain of TR[beta]; Group B, 11 first degree relatives (sibs and children of affected subjects) with no TR[beta] mutation; Group C, 16 controls related by marriage. TSH values were not different among the three groups. As expected, total and free T[sub 4] and T[sub 3], and rT[sub 3] levels were significantly higher in Group A vs Groups B and C. However, with the exception of T[sub 3], the same tests were also significantly higher in Group B vs Group C. The latter differences are not due to thyroid hormone transport in serum since TBG concentrations were not different. It is postulated that genetic variability of factors that contribute to the action of thyroid hormone modulate the phenotype of GRTH associated with TR[beta] mutations. 23 refs., 2 figs., 1 tab.

  18. Thyroid hormones states and brain development interactions.

    PubMed

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical

  19. Modification of Chromatin Structure by the Thyroid Hormone Receptor.

    PubMed

    Li; Sachs; Shi; Wolffe

    1999-05-01

    Pioneering experiments and recent observations have established the thyroid hormone receptor as a master manipulator of the chromosomal environment in targeting the activation and repression of transcription. Here we review how the thyroid hormone receptor is assembled into chromatin, where in the absence of thyroid hormone the receptor recruits histone deacetylase to silence transcription. On addition of hormone, the receptor undergoes a conformational change that leads to the release of deacetylase, while facilitating the recruitment of transcriptional coactivators that act as histone acetyltransferases. We discuss the biological importance of these observations for gene control by the thyroid hormone receptor and for oncogenic transformation by the mutated thyroid hormone receptor, v-ErbA.

  20. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication.

  1. Expression of thyroid hormone receptor isoforms down-regulated by thyroid hormone in human medulloblastoma cells.

    PubMed

    Monden, Tsuyoshi; Nakajima, Yasuyo; Hashida, Tetsu; Ishii, Sumiyasu; Tomaru, Takuya; Shibusawa, Nobuyuki; Hashimoto, Koshi; Satoh, Teturou; Yamada, Masanobu; Mori, Masatomo; Kasai, Kikuo

    2006-04-01

    The role of thyroid hormone (T3) in the regulation of growth and development of the central nervous system including the cerebellum has been well established. However, the effects of thyroid hormone on malignant tumors derived from the cerebellum remain poorly understood. Our analysis mainly focused on expression levels of TR isoforms and the effects of thyroid hormone in human medulloblastoma HTB-185 cells. Northern blot analysis revealed TRalpha2 mRNA but not TRalpha1, beta1 or beta2 mRNA in the cell. The TRalpha1 and TRbeta1 mRNAs were detected only by RT-PCR method and TRbeta2 was not expressed. Incubation of T3 for 24 h decreased TRalpha1, TRalpha2 and TRbeta1 mRNA. Addition of actinomycin D caused an acute increase in the basal TR mRNA levels and the rate of decrease of all kinds of TR isoform mRNA was accelerated in the T3-treated groups compared to controls, indicating that the stability of TR mRNA was affected by T3. Incubation with cycloheximide also blocked a decrease in TR mRNA levels in the T3-treated HTB-185 cells suggesting that down-regulation of TR mRNA required the synthesis of new protein. Our data provide novel evidence for the expression of TRs down-regulated by T3 in HTB-185 cells, suggesting that TR expression is post-transcriptionally regulated by T3 at the level of RNA stability.

  2. Thyroid Hormones, Metabolic Syndrome and Its Components.

    PubMed

    Delitala, Alessandro P; Fanciulli, Giuseppe; Pes, Giovanni M; Maioli, Margherita; Delitala, Giuseppe

    2017-03-20

    Metabolic syndrome is a clustering of various metabolic parameters, which included diabetes, low high-density lipoprotein cholesterol, elevated triglycerides, abdominal obesity, and hypertension. It has merged as a worldwide epidemic and a major public health care concern. However, due to the different criteria used for the assessment, the frequency of metabolic syndrome in the general population is variable but it more common in the older people. Metabolic syndrome is closely linked to cardiovascular risk and increases cardiovascular outcomes and all-cause mortality. Recent evidences showed that alterations of the thyroid function could have an impact on the components of the metabolic syndrome, suggesting that thyroid hormones have a variety of effects on energy homeostasis, lipid and glucose metabolism, and blood pressure. In this review we summarize available data on the action of thyroid hormone on the components of metabolic syndrome.

  3. Thyroid hormone transporters in health and disease.

    PubMed

    Jansen, Jurgen; Friesema, Edith C H; Milici, Carmelina; Visser, Theo J

    2005-08-01

    Cellular entry is required for conversion of thyroid hormone by the intracellular deiodinases and for binding of 3,3',5-triiodothyronine (T(3)) to its nuclear receptors. Recently, several transporters capable of thyroid hormone transport have been identified. Functional expression studies using Xenopus laevis oocytes have demonstrated that organic anion transporters (e.g., OATPs), and L-type amino acid transporters (LATs) facilitate thyroid hormone uptake. Among these, OATP1C1 has a high affinity and specificity for thyroxine (T(4)). OATP1C1 is expressed in capillaries throughout the brain, suggesting it is critical for transport of T(4) over the blood-brain barrier. We have also characterized a member of the monocarboxylate transporter family, MCT8, as a very active and specific thyroid hormone transporter. Human MCT8 shows preference for T(3) as the ligand. MCT8 is highly expressed in liver and brain but is also widely distributed in other tissues. The MCT8 gene is located on the X chromosome. Recently, mutations in MCT8 have been found to be associated with severe X-linked psychomotor retardation and strongly elevated serum T(3) levels.

  4. Abnormal serum thyroid hormones concentration with healthy functional gland: a review on the metabolic role of thyroid hormones transporter proteins.

    PubMed

    Azad, Reza Mansourian

    2011-03-01

    Laboratory findings can definitely help the patients not to enter into status, where the damage might be happen due to a miss-diagnosis based on clinical assessment alone. The secondary disease accompanied with thyroid patients should also carefully check out due to the interference which some diseases can cause in the amount of serum thyroid hormone, particularly the free thyroxin. The dilemma over thyroid clinical diagnosis occur due to variation on serum thyroid hormone which initiated by other non-thyroidal disorders which can play an important roles in metabolic disorders of thyroid hormone due to the alteration which occur on the serum level of thyroid hormone transporter proteins. The majority of serum thyroid hormones of up to 95-99% are bound to the carrier proteins mainly to Thyroxin-Binding Globulins (TBG), some transthyretin already known as pre-albumin and albumin which are all synthesis in the liver and any modification which alter their production may alter the status of thyroid hormones. It seems TBG, transthyretin and albumin carries 75, 20, 5% of thyroid hormones within blood circulation, respectively. The dilemma facing the thyroid hormones following disruption of thyroid hormone transporter protein synthesis originate from this fact that any alteration of these protein contribute to the alteration of total thyroid and free serum thyroid hormones which are in fact the biologically active form of thyroid hormones. The subsequent of latter implication result in miss-understanding and miss-diagnosis of thyroid function tests, with possible wrongly thyroid clinical care, followed by undesired therapy of otherwise healthy thyroid.

  5. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  6. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos.

    PubMed

    Fini, Jean-Baptiste; Mughal, Bilal B; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A

    2017-03-07

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  7. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    PubMed Central

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-01-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development. PMID:28266608

  8. Thyroid hormone and seasonal regulation of reproduction.

    PubMed

    Yoshimura, Takashi

    2013-08-01

    Organisms living outside the tropics use changes in photoperiod to adapt to seasonal changes in the environment. Several models have contributed to an understanding of this mechanism at the molecular and endocrine levels. Subtropical birds are excellent models for the study of these mechanisms because of their rapid and dramatic response to changes in photoperiod. Studies of birds have demonstrated that light is perceived by a deep brain photoreceptor and long day-induced thyrotropin (TSH) from the pars tuberalis (PT) of the pituitary gland causes local thyroid hormone activation within the mediobasal hypothalamus (MBH). The locally generated bioactive thyroid hormone, T₃, regulates seasonal gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion. In mammals, the eyes are the only photoreceptor involved in photoperiodic time perception and nocturnal melatonin secretion provides an endocrine signal of photoperiod to the PT to regulate TSH. Here, I review the current understanding of the hypothalamic mechanisms controlling seasonal reproduction in mammals and birds.

  9. Growth and development in a child with resistance to thyroid hormone and ectopic thyroid gland.

    PubMed

    Heather, Natasha; Hall, Kate; Neas, Katherine; Potter, Howard; Wiltshire, Esko

    2012-03-01

    Resistance to thyroid hormone is an uncommon problem, which has rarely been associated with thyroid dysgenesis. We report a case with both thyroid gland ectopy and resistance to thyroid hormone and, thus, a reduced capacity to produce and respond to thyroid hormone. The patient presented at 2 years of age with developmental delay, dysmorphic features, and elevation in both thyroxine and thyrotropin. We document her response to therapy with thyroxine, with particular regard to her growth and development. Persistent elevation of thyrotropin is commonly recognized during treatment of congenital hypothyroidism. Resistance to thyroid hormone may be an important additional diagnosis to consider in cases where thyrotropin remains persistently elevated.

  10. Thyroid hormones and fear learning but not anxiety are affected in adult apoE transgenic mice exposed postnatally to decabromodiphenyl ether (BDE-209).

    PubMed

    Reverte, Ingrid; Pujol, Andreu; Domingo, José L; Colomina, Maria Teresa

    2014-06-22

    Polybrominated diphenyl ethers (PBDEs) are a family of industrial chemicals used as flame retardants. The fully brominated deca-BDE (BDE-209) is the most used and its potential risk for humans is controversial. The ability of PBDEs to target nervous and endocrine systems suggests multiple enduring effects after perinatal exposure. Cognitive and motor behavior alterations have been reported after developmental exposure to PBDEs, including BDE-209, whereas very little work has been carried out on anxiety and emotional learning. We have previously reported long-term effects of postnatal BDE-209 exposure on spatial memory dependent upon apolipoprotein E (apoE) polymorphism and age. ApoE is involved in lipid transport and its different polymorphisms (ε2, ε3, ε4) confer different vulnerabilities to neurodegeneration, cognitive impairment and anxiety. In the present study we assessed the long term effects of early exposure to BDE-209 on anxiety, fear learning and thyroid hormone levels in mice carrying different apoE polymorphisms (ε2, ε3, ε4). BDE-209 (0, 10 and 30 mg/kg) was orally administered on postnatal day 10 (PND 10). At 4 and 12 months of age mice were tested in an open field (OF) and an elevated zero maze (EZM). Fear conditioning and thyroid hormone levels were evaluated in mice at 5-6 months of age. Postnatal exposure to BDE-209 impaired cued fear learning in apoE2 and apoE3 mice. Levels of thyroid hormones were increased in apoE3 female mice exposed to BDE-209. Our findings indicate long lasting effects of BDE-209 on emotional learning and thyroid hormone levels after a single postnatal exposure.

  11. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management.

    PubMed

    Mousa, Shaker A; Lin, Hung-Yun; Tang, Heng Yuan; Hercbergs, Aleck; Luidens, Mary K; Davis, Paul J

    2014-07-01

    Acting via a cell surface receptor on integrin αvβ3, thyroid hormone is pro-angiogenic. Nongenomic mechanisms of actions of the hormone and hormone analogues at αvβ3 include modulation of activities of multiple vascular growth factor receptors and their ligands (vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, epidermal growth factor), as well as of angiogenic chemokines (CX3 family). Thyroid hormone also may increase activity of small molecules that support neovascularization (bradykinin, angiotensin II) and stimulate endothelial cell motility. Therapeutic angio-inhibition in the setting of cancer may be opposed by endogenous thyroid hormone, particularly when a single vascular growth factor is the treatment target. This may be a particular issue in management of aggressive or recurrent tumors. It is desirable to have access to chemotherapies that affect multiple steps in angiogenesis and to examine as alternatives in aggressive cancers the induction of subclinical hypothyroidism or use of antagonists of the αvβ3 thyroid hormone receptor that are under development.

  12. Thyroid Hormone Signaling in the Mouse Retina

    PubMed Central

    Arbogast, Patrick; Flamant, Frédéric; Godement, Pierre; Glösmann, Martin

    2016-01-01

    Thyroid hormone is a crucial regulator of gene expression in the developing and adult retina. Here we sought to map sites of thyroid hormone signaling at the cellular level using the transgenic FINDT3 reporter mouse model in which neurons express β-galactosidase (β-gal) under the control of a hybrid Gal4-TRα receptor when triiodothyronine (T3) and cofactors of thyroid receptor signaling are present. In the adult retina, nearly all neurons of the ganglion cell layer (GCL, ganglion cells and displaced amacrine cells) showed strong β-gal labeling. In the inner nuclear layer (INL), a minority of glycineric and GABAergic amacrine cells showed β-gal labeling, whereas the majority of amacrine cells were unlabeled. At the level of amacrine types, β-gal labeling was found in a large proportion of the glycinergic AII amacrines, but only in a small proportion of the cholinergic/GABAergic ‘starburst’ amacrines. At postnatal day 10, there also was a high density of strongly β-gal-labeled neurons in the GCL, but only few amacrine cells were labeled in the INL. There was no labeling of bipolar cells, horizontal cells and Müller glia cells at both stages. Most surprisingly, the photoreceptor somata in the outer nuclear layer also showed no β-gal label, although thyroid hormone is known to control cone opsin expression. This is the first record of thyroid hormone signaling in the inner retina of an adult mammal. We hypothesize that T3 levels in photoreceptors are below the detection threshold of the reporter system. The topographical distribution of β-gal-positive cells in the GCL follows the overall neuron distribution in that layer, with more T3-signaling cells in the ventral than the dorsal half-retina. PMID:27942035

  13. Pituitary resistance to thyroid hormones: pathophysiology and therapeutic options.

    PubMed

    Suzuki, Satoru; Shigematsu, Satoshi; Inaba, Hidefumi; Takei, Masahiro; Takeda, Teiji; Komatsu, Mitsuhisa

    2011-12-01

    Thyroid hormone secretion suppresses the expression of thyroid stimulating hormone (TSH), both of which are strictly controlled by a negative feedback loop between the hypothalamus-pituitary and thyroid. Pituitary resistance to thyroid hormone (PRTH) is defined as resistance to the action of thyroid hormone that is more severe in the pituitary than at the peripheral tissue level. Although the molecular basis of PRTH is not well understood, the clinical issue mainly involves imbalance between the hypothalamus-pituitary and peripheral thyroid hormone responsivity, which may induce peripheral thyrotoxic phenomena. Here, we review the pathogenesis and molecular aspects of PRTH, present a single case with inappropriate TSH secretion suffering from thyrotoxicosis treated with PTU, and discuss the possible choice of therapeutic options to correct the imbalance of thyroid hormone responsivity in both the hypothalamus-pituitary and peripheral tissues.

  14. Does normal thyroid gland by ultrasonography match with normal serum thyroid hormones and negative thyroid antibodies?

    PubMed

    Trimboli, P; Rossi, F; Condorelli, E; Laurenti, O; Ventura, C; Nigri, G; Romanelli, F; Guarino, M; Valabrega, S

    2010-10-01

    Few papers have shown that a hypoechoic appearance of the thyroid gland at ultrasonography (US) is related to a hypofunction and serum positivity of thyroid antibodies (T-Ab). However, it is not ascertained if normal thyroid appearance at US correspond to normal thyroid laboratory tests. The aim of this study was to assess the value of normal thyroid at US in predicting normal thyroid hormones and negative T-Ab in a cohort of 48 adult patients. All patients (37 females and 11 males) were referred to our hospital to undergo their first thyroid US examination, followed by a thyroid function evaluation. All subjects had normal thyroid gland at US. As a control group 65 patients with hypoechoic and inhomogeneous thyroid gland were enrolled. All 48 patients had normal free-T (3) and free-T (4) levels. While 41 patients (85.4%) showed normal TSH, in 7 subjects (14.6%) TSH was elevated and a significant (p < 0.001) difference was recorded between the two groups in mean TSH value. Positive T-Ab value was found in 5 patients (10.4%) and the remaining 43 patients (89.6%) had negative T-Ab. TSH was not significantly correlated with age, thyroid volume or BMI. The multivariate model showed that only BMI was significantly correlated to thyroid volume (p < 0.01, r(2)=0.31). These results showed that normal thyroid recorded by US matches with normal thyroid laboratory assessment to a large degree. These preliminary data need to be confirmed in a prospective study and in a larger series and should suggest the evaluation of thyrotropin and thyroid antibodies in subjects with normal thyroid gland as assessed by US.

  15. Thyroid Disease

    MedlinePlus

    ... your menstrual period. Your thyroid helps control your menstrual cycle. Too much or too little thyroid hormone can ... Problems getting pregnant. When thyroid disease affects the menstrual cycle, it also affects ovulation. This can make it ...

  16. Animal models to study thyroid hormone action in cerebellum.

    PubMed

    Koibuchi, Noriyuki

    2009-06-01

    Thyroid hormone plays a crucial role in the development and functional maintenance of the central nervous system including the cerebellum. To study the molecular mechanisms of thyroid hormone action, various animal models have been used. These are classified: (1) congenital hypothyroid animals due to thyroid gland dysgenesis or thyroid dyshormonogenesis, (2) thyroid hormone receptor (TR) gene-mutated animals, and (3) thyroid hormone transport or metabolism-modified animals. TR is a ligand-activated transcription factor. In the presence of ligand, it activates transcription of target gene, whereas it represses the transcription without ligand. Thus, phenotype of TR-knockout mouse is different from that of hypothyroid animal (low thyroid hormone level), in which unliganded TR actively represses the transcription. On the other hand, human patient harboring mutant TR expresses different phenotypes depending on the function of mutated TR. To mimic this phenotype, other animal models are generated. In addition, recent human studies have shown that thyroid hormone transporters such as monocarboxylate transporter (MCT) 8 may play an important role in thyroid hormone-mediated brain development. However, MCT8 knockout mouse show different phenotypes from a human patient. This article introduces representative animal models currently used to study various aspects of thyroid hormone, particularly to study the involvement of the thyroid hormone system on the development and functional maintenance of the cerebellum.

  17. Thyroid Hormone Action: Astrocyte–Neuron Communication

    PubMed Central

    Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone (TH) action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase (D2), expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by D2. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article, we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local TH action during development. PMID:24910631

  18. Resistance to thyroid hormone due to defective thyroid receptor alpha

    PubMed Central

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  19. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters.

    PubMed

    Richardson, Samantha J; Wijayagunaratne, Roshen C; D'Souza, Damian G; Darras, Veerle M; Van Herck, Stijn L J

    2015-01-01

    Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor protein: transthyretin. This transthyretin is secreted into the cerebrospinal fluid and moves thyroid hormones from the blood into the cerebrospinal fluid. Maximal transthyretin synthesis in the choroid plexus occurs just prior to the period of rapid brain growth, suggesting that choroid plexus-derived transthyretin moves thyroid hormones from blood into cerebrospinal fluid just prior to when thyroid hormones are required for rapid brain growth. The structure of transthyretin has been highly conserved, implying strong selection pressure and an important function. In mammals, transthyretin binds T4 (precursor form of thyroid hormone) with higher affinity than T3 (active form of thyroid hormone). In all other vertebrates, transthyretin binds T3 with higher affinity than T4. As mammals are the exception, we should not base our thinking about the role of transthyretin in the choroid plexus solely on mammalian data. Thyroid hormone transmembrane transporters are involved in moving thyroid hormones into and out of cells and have been identified in many tissues, including the choroid plexus. Thyroid hormones enter the choroid plexus via thyroid hormone transmembrane transporters and leave the choroid plexus to enter the cerebrospinal fluid via either thyroid hormone transmembrane transporters or via choroid plexus-derived transthyretin secreted into the cerebrospinal fluid. The quantitative contribution of each route during development remains to be elucidated. This is part of a review series on ontogeny and phylogeny of brain barrier mechanisms.

  20. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters

    PubMed Central

    Richardson, Samantha J.; Wijayagunaratne, Roshen C.; D'Souza, Damian G.; Darras, Veerle M.; Van Herck, Stijn L. J.

    2015-01-01

    Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor protein: transthyretin. This transthyretin is secreted into the cerebrospinal fluid and moves thyroid hormones from the blood into the cerebrospinal fluid. Maximal transthyretin synthesis in the choroid plexus occurs just prior to the period of rapid brain growth, suggesting that choroid plexus-derived transthyretin moves thyroid hormones from blood into cerebrospinal fluid just prior to when thyroid hormones are required for rapid brain growth. The structure of transthyretin has been highly conserved, implying strong selection pressure and an important function. In mammals, transthyretin binds T4 (precursor form of thyroid hormone) with higher affinity than T3 (active form of thyroid hormone). In all other vertebrates, transthyretin binds T3 with higher affinity than T4. As mammals are the exception, we should not base our thinking about the role of transthyretin in the choroid plexus solely on mammalian data. Thyroid hormone transmembrane transporters are involved in moving thyroid hormones into and out of cells and have been identified in many tissues, including the choroid plexus. Thyroid hormones enter the choroid plexus via thyroid hormone transmembrane transporters and leave the choroid plexus to enter the cerebrospinal fluid via either thyroid hormone transmembrane transporters or via choroid plexus-derived transthyretin secreted into the cerebrospinal fluid. The quantitative contribution of each route during development remains to be elucidated. This is part of a review series on ontogeny and phylogeny of brain barrier mechanisms. PMID:25784853

  1. Iodotyrosine deiodinase, a novel target of environmental halogenated chemicals for disruption of the thyroid hormone system in mammals.

    PubMed

    Shimizu, Ryo

    2014-01-01

    Many synthetic chemicals have been identified as environmental contaminants with activity to disrupt normal function of the thyroid hormone system. Thyroid hormones play important roles in growth, development, differentiation, and basal metabolic homeostasis, as well as in brain development in human fetus and children, and thyroid dysfunction can have very serious consequences, including mental retardation. Environmental chemicals may affect thyroid hormone action in multiple ways, including reduced thyroid hormone synthesis owing to direct toxicity at the thyroid gland, interaction with thyroid hormone receptors and transporters such as transthyretin, and disturbance of thyroid hormone metabolism (e.g., glucuronidation, sulfation and deiodination). In addition, iodotyrosine deiodinase, which is involved in iodide salvage by catalyzing deiodination of iodinated by-products of thyroid hormone production, was recently identified as a possible new target for disruption of thyroid hormone homeostasis by environmental halogenated chemicals. This topic, after briefly summarizing findings on the thyroid hormone-disrupting action of environmental chemicals in mammals, focuses on the effects of environmental halogenated chemicals on iodotyrosine deiodinase activity.

  2. Clinical implications of thyroid hormones effects on nervous system development.

    PubMed

    Carreón-Rodríguez, Alfonso; Pérez-Martínez, Leonor

    2012-03-01

    Thyroid hormones have an important role throughout prenatal and postnatal nervous system development. They are involved in several processes such as neurogenesis, gliogenesis, myelination, synaptogenesis, etc., as shown in many cases of deficiency like congenital hypothyroidism or hypothyroxinemia. Those pathologies if untreated could lead to severe damages in cognitive, motor, neudoendocrine functions among other effects. Some could be reversed after adequate supplementation of thyroid hormones at birth, however there are other cellular processes highly sensitive to low levels of thyroid hormones and lasting a limited period of time during which if thyroid hormone action is lacking or deficient, the functional and structural damages would produce permanent defects.

  3. ON THE EFFECT OF NEUROHYPOPHYSIAL HORMONE ON THYROID ACTIVITY.

    DTIC Science & Technology

    THYROID GLAND, BIOCHEMISTRY, HORMONES , INJECTION, DRUGS, CARDIOVASCULAR AGENTS, SECRETION, THYROXINE, EXPOSURE(PHYSIOLOGY), THYROTROPIN, STIMULATION(PHYSIOLOGY), TEMPERATURE, BODY WEIGHT, PATHOLOGY, HISTOLOGY.

  4. The importance of thyroid hormone transporters for brain development and function.

    PubMed

    Heuer, Heike

    2007-06-01

    Thyroid hormone is essential for proper brain development and function. As a prerequisite for its action, transporters must exist to mediate its cellular entry. As impaired uptake of thyroid hormone into the CNS causes severe neurological symptoms, it is of utmost importance to identify these carriers. The monocarboxylate transporter 8 (MCT8) was recently characterized as a very specific thyroid hormone transporter. Inactivating mutations in the MCT8 gene are associated with a severe syndrome of psychomotor retardation and abnormal thyroid hormone parameters. To elucidate the underlying pathogenic mechanisms, MCT8-deficient mice that replicate the human thyroid phenotype, despite the absence of overt neurological symptoms, have been generated. Here, we summarize recent findings obtained by analyzing these animals and discuss their potential impact for the treatment of affected patients.

  5. Overlapping nongenomic and genomic actions of thyroid hormone and steroids

    PubMed Central

    Hammes, Stephen R.; Davis, Paul J.

    2016-01-01

    The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events—either activation or suppression—at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical “nuclear” thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical “nuclear” steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors. PMID:26303085

  6. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways

    SciTech Connect

    Vickers, Alison E.M.; Heale, Jason; Sinclair, John R.; Morris, Stephen; Rowe, Josh M.; Fisher, Robyn L.

    2012-04-01

    Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered

  7. Novel biological and clinical aspects of thyroid hormone metabolism.

    PubMed

    Dumitrescu, Alexandra M; Refetoff, Samuel

    2007-01-01

    Intracellular metabolism of thyroid hormone (TH) and availability of the active hormone T3 is regulated by three selenoprotein iodothyronine deiodinases (Ds). D1 and D2 convert the precursor T4 into the active hormone, T3. D3 is the principal inactivator of T4 and T3 to their respective metabolites, rT3 and T2. While acquired changes in D activities are common, inherited defects in humans were not known. Recently, two families with abnormal thyroid function tests, high serum T4, high rT3, low T3 and slightly increased TSH, were identified. Linkage analysis and sequencing excluded abnormalities in all 3 DIO genes, yet clinical studies showed reduced responsiveness to T4 but not to T3. Extensive search for putative defects in genes involved in D2 metabolism led to the identification of mutations in the Sec insertion sequence binding protein (SBP)2 gene, involved in the synthesis of selenoproteins, including Ds. Affected children were either homozygous or compound heterozygous for these mutations. Other selenoproteins, including glutathione peroxidase, were also reduced in affected subjects, confirming a generalized effect of the SBP2 defect. Opposite thyroid test abnormalities are found in mutations of the TH transporter MCT8, and appear to be caused by the resulting increases in D2 and D1 activities.

  8. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  9. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  10. Molecules important for thyroid hormone synthesis and action - known facts and future perspectives.

    PubMed

    Brix, Klaudia; Führer, Dagmar; Biebermann, Heike

    2011-08-03

    Thyroid hormones are of crucial importance for the functioning of nearly every organ. Remarkably, disturbances of thyroid hormone synthesis and function are among the most common endocrine disorders affecting approximately one third of the working German population. Over the last ten years our understanding of biosynthesis and functioning of these hormones has increased tremendously. This includes the identification of proteins involved in thyroid hormone biosynthesis like Thox2 and Dehal where mutations in these genes are responsible for certain degrees of hypothyroidism. One of the most important findings was the identification of a specific transporter for triiodothyronine (T3), the monocarboxylate transporter 8 (MCT8) responsible for directed transport of T3 into target cells and for export of thyroid hormones out of thyroid epithelial cells. Genetic disturbances of MCT8 in patients result in a biochemical constellation of high T3 levels in combination with low or normal TSH and thyroxine levels leading to a new syndrome of severe X-linked mental retardation. Importantly mice lacking MCT8 presented only with a mild phenotype, indicating that compensatory mechanisms exist in mice. Moreover, it has become clear that not only genomic actions of T3 exist. T3 is also capable to activate adhesion receptors and it signals via activation of PI3K and MAPK pathways. Most recently, thyroid hormone derivatives were identified, the thyronamines which are decarboxylated thyroid hormones initiating physiological actions like lowering body temperature and heart rate, thereby acting in opposite direction to the classical thyroid hormones. So far it is believed that thyronamines function via the activation of a G-protein coupled receptor, TAAR1. The objective of this review is to summarise the recent findings in thyroid hormone synthesis and action and to discuss their implications for diagnosis of thyroid disease and for treatment of patients.

  11. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish.

    PubMed

    Yu, Li-Qin; Zhao, Gao-Feng; Feng, Min; Wen, Wu; Li, Kun; Zhang, Pan-Wei; Peng, Xi; Huo, Wei-Jie; Zhou, Huai-Dong

    2014-01-01

    Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development.

  12. The role of thyroid hormone in sleep deprivation.

    PubMed

    Pereira, José Carlos; Andersen, Mônica Levy

    2014-03-01

    Sleep deprivation is a stressful condition, as the subject experiences feelings of inadequate well-being and exhibits impairments in his/her functioning. However, in some circumstances sleep deprivation may be crucial for survival of the individual. Most likely, complex neural circuits and hormones play a role in allowing sleep deprivation to occur. For instance, thyroid hormone activity sharply increases when an individual is in a state of sleep deprivation. We believe that this increase is central to sleep deprivation physiology. During sleep deprivation, the hypothalamic-pituitary-thyroid axis initially increases as a consequence of increased release of thyroid stimulating hormone from the pituitary. Subsequently, as sleep deprivation continues, the sympathetic nervous system is recruited through its anatomical connection with the thyroid gland. While thyroid stimulating hormone levels markedly increase during sleep deprivation, it has been suggested that these increases are secondary to sleep deprivation. However, there is little evidence to support this assumption. We believe that the physiology of the thyroid axis during sleep deprivation and the actions of the effector hormone thyroid hormone suggest that thyroid hormone inhibits sleep and not the contrary. To our knowledge, few studies have addressed the possible neural functions that enable sleep deprivation. In this article, we discuss the hypothesis that an augmentation in the thyroid hormone axis is central to a subject's ability to curtail sleep.

  13. Association of thyroid-stimulating hormone with insulin resistance and androgen parameters in women with PCOS.

    PubMed

    Dittrich, Ralf; Kajaia, Natia; Cupisti, Susanne; Hoffmann, Inge; Beckmann, Matthias W; Mueller, Andreas

    2009-09-01

    There is a relationship between thyroid function and insulin sensitivity and alterations in lipids and metabolic parameters. Little information is available regarding this relationship in women with polycystic ovary syndrome. However all those pathologies are also described as often affecting women with polycystic ovary syndrome. The association between thyroid-stimulating hormone <2.5 mIU/l and > or =2.5 mIU/l with insulin resistance and endocrine parameters in 103 women with polycystic ovary syndrome was studied. Clinical, metabolic and endocrine parameters were obtained and an oral glucose tolerance test was performed with calculation of insulin resistance indices. Women with thyroid-stimulating hormone > or =2.5 mIU/l had a significantly higher body mass index (P = 0.003), higher fasting insulin concentrations (P = 0.02) and altered insulin resistance indices (P = 0.007), higher total testosterone (P = 0.009) and free androgen indices (P = 0.001) and decreased sex hormone-binding globulin concentrations (P = 0.01) in comparison with women with thyroid-stimulating hormone <2.5 mIU/l. Generally, all of these parameters correlated significantly (P < 0.05) with thyroid-stimulating hormone only in women with thyroid-stimulating hormone > or =2.5 mIU/l. Women with polycystic ovary syndrome and with thyroid-stimulating hormone > or =2.5 mIU/l had significantly altered endocrine and metabolic changes.

  14. Thyroid hormone influences muscle mechanics in carp (Cyprinus carpio) independently from SERCA activity.

    PubMed

    James, Rob S; Little, Alexander G; Tallis, Jason; Seebacher, Frank

    2016-09-15

    Thyroid hormone is a key regulator of metabolism, and in zebrafish, hypothyroidism decreases sustained and burst swimming performance. These effects are accompanied by decreases in both metabolic scope and the activity of sarco-endoplasmic reticulum ATPase (SERCA) in zebrafish. Our aim was to determine whether thyroid hormone affects skeletal muscle contractile function directly and whether these effects are mediated by influencing SERCA activity. We show that hypothyroidism reduces sustained locomotor performance but not sprint performance in carp (Cyprinus carpio). We accept our hypothesis that hypothyroidism reduces force production in isolated skeletal muscle, when compared with the thyroid hormone T2, but we reject the hypothesis that this effect is mediated by influencing SERCA activity. Blocking SERCA activity with thapsigargin reduced muscle fatigue resistance, but hypothyroidism had no effect on fatigue. Hence, thyroid hormone plays a role in determining isolated skeletal muscle mechanics, but its effects are more likely to be mediated by mechanisms other than affecting SERCA activity.

  15. American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    PubMed Central

    Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.

    2014-01-01

    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133

  16. Serum leptin, thyroxine and thyroid-stimulating hormone levels interact to affect cognitive function among US adults: evidence from a large representative survey.

    PubMed

    Beydoun, May A; Beydoun, Hind A; Shroff, Monal R; Kitner-Triolo, Melissa H; Zonderman, Alan B

    2012-08-01

    Neuroanatomical connections point to possible interactions between areas influencing energy homeostasis and those influencing cognition. We assessed whether serum leptin, thyroxine, and thyroid stimulating hormone (TSH) levels are associated with and interact to influence cognitive performance among US adults. Data from the National Health and Nutrition Examination Survey III (1988-1994) were used. Measures included a battery of neuropsychological tests and serum leptin, thyroxine, and TSH levels (20-59-year-old: n = 1114-2665; 60-90-year-old: n = 1365-5519). Among those 20-59-year-old, the middle tertile of leptin (vs. first tertile) was inversely related to the number of errors on the symbol digits substitution test. Increased thyroxine level was associated with a poorer performance on the serial digits test in the 20-59-year-old, but a better performance on the math test in 60-90-year-old group. TSH was associated with poor performance on various tests in the 20-59-year-old, but better performance in the 60-90-year-old group. Significant antagonistic interactions were found in both age groups between thyroxine, TSH, and leptin for a number of tests, including between leptin and thyroxine in the 60-90-year-old group in their association with word recall-correct score. We found significant associations of our main exposures with cognitive function among US adults, going in opposite directions between age groups in the cases of thyroid hormonal levels, as well as some interactive effects between exposures. It is important to conduct prospective cohort studies to provide further insight into potential interventions that would assess interactive effects of various hormonal replacement regimens.

  17. Dietary contaminant exposure affects plasma testosterone, but not thyroid hormones, vitamin A, and vitamin E, in male juvenile arctic foxes (Vulpes lagopus).

    PubMed

    Hallanger, Ingeborg G; Jørgensen, Even H; Fuglei, Eva; Ahlstrøm, Øystein; Muir, Derek C G; Jenssen, Bjørn Munro

    2012-01-01

    Levels of persistent organic pollutants (POP), such as polychlorinated biphenyls (PCB), are high in many Arctic top predators, including the Arctic fox (Vulpes lagopus). The aim of this study was to examine possible endocrine-disruptive effects of dietary POP exposure in male juvenile Arctic foxes in a controlled exposure experiment. The study was conducted using domesticated farmed blue foxes (Vulpes lagopus) as a model species. Two groups of newly weaned male foxes received a diet supplemented with either minke whale (Baleneoptera acutorostrata) blubber that was naturally contaminated with POP (exposed group, n = 5 or 21), or pork (Sus scrofa) fat (control group, n = 5 or 21). When the foxes were 6 mo old and had received the 2 diets for approximately 4 mo (147 d), effects of the dietary exposure to POP on plasma concentrations of testosterone (T), thyroid hormones (TH), thyroid-stimulating hormone (TSH), retinol (vitamin A), and tocopherol (viramin E) were examined. At sampling, the total body concentrations of 104 PCB congeners were 0.1 ± 0.03 μg/g lipid weight (l.w.; n = 5 [mean ± standard deviation]) and 1.5 ± 0.17 μg/g l.w. (n = 5) in the control and exposed groups, respectively. Plasma testosterone concentrations in the exposed male foxes were significantly lower than in the control males, being approximately 25% of that in the exposed foxes. There were no between-treatment differences for TH, TSH, retinol, or tocopherol. The results suggest that the high POP levels experienced by costal populations of Arctic foxes, such as in Svalbard and Iceland, may result in delayed masculine maturation during adolescence. Sex hormone disruption during puberty may thus have lifetime consequences on all aspects of reproductive function in adult male foxes.

  18. TSH (Thyroid-Stimulating Hormone) Test

    MedlinePlus

    ... symptoms of a thyroid disorder , including hyperthyroidism or hypothyroidism . TSH is produced by the pituitary gland , a ... thyroid Monitor thyroid replacement therapy in people with hypothyroidism Monitor anti-thyroid treatment in people with hyperthyroidism ...

  19. Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy.

    PubMed

    Stanická, Sona; Vondra, Karel; Pelikánová, Terezie; Vlcek, Petr; Hill, Martin; Zamrazil, Václav

    2005-01-01

    We examined insulin sensitivity and secretion, together with the levels of selected glucoregulatory hormones, in 15 female patients with severe hypothyroidism (H) and during subsequent thyroid hormone replacement therapy (HRT) using the euglycaemic hyperinsulinaemic clamp technique. Insulin action, as evaluated by glucose disposal, the insulin sensitivity index, and fasting post-hepatic insulin delivery rate were established. The basal levels of insulin, C-peptide and counter-regulatory hormones were measured in basal condition. In H, glucose disposal (p<0.01), the insulin sensitivity index (p<0.01) and post-hepatic insulin delivery rate (p<0.05) were significantly lower than during HRT. No significant changes in the levels of fasting insulin and C-peptide were observed. The levels of counter-regulatory hormones in patients with H were significantly higher than during HRT (glucagon, p<0.05; epinephrine, p<0.01; cortisol, p<0.05; growth hormone, p<0.05). In H, an inverse correlation between insulin sensitivity and insulin secretion was observed (p<0.05). Cortisol was the most important factor affecting the variability of insulin sensitivity values, regardless of thyroid function (p=0.0012). In conclusion, H altered both insulin sensitivity and the levels of selected counter-regulatory hormones. The situation was restored by HRT, as manifested not only by normalisation of insulin sensitivity, secretion and levels of glucoregulatory hormones, but also by improvement of their relationships.

  20. Diagnostic Dilemma in Discordant Thyroid Function Tests Due to Thyroid Hormone Autoantibodies

    PubMed Central

    Srichomkwun, Panudda; Scherberg, Neal H.; Jakšić, Jasminka; Refetoff, Samuel

    2016-01-01

    Objective Assay interference could be the cause of abnormal thyroid function tests. Early recognition prevents inappropriate patient management. The objective of this report is to present a case with discordant thyroid function tests in different thyroid assay platforms due to thyroid autoantibodies. Methods We present a case her family, laboratory data and methods that investigate immunoassay interference. Results A 21-year-old woman with autoimmune thyroid disease was treated for hypothyroidism with levothyroxine and noted to have elevated total and free thyroxine, free triiodothyronine but normal thyroid-stimulating hormone. Repeat thyroid function tests using different platforms revealed discrepant results. Further investigation showed that the patient had positive thyroid hormone autoantibodies (THAAbs). Conclusion We demonstrates abnormal thyroid function tests caused by THAAbs. The latter were the cause of interference with assays resulting in discrepant test results inconsistent with the clinical presentation. Early recognition would prevent inappropriate patient management. PMID:28078322

  1. Illness-induced changes in thyroid hormone metabolism: focus on the tissue level.

    PubMed

    Kwakkel, J; Fliers, E; Boelen, A

    2011-05-01

    During illness changes in thyroid hormone metabolism occur, collectively known as the non-thyroidal illness syndrome (NTIS). NTIS is characterised by low serum thyroid hormone levels without the expected rise in serum thyroid-stimulating hormone, indicating a major change in thyroid hormone feedback regulation. Recent studies have made clear that during NTIS differential changes in thyroid hormone metabolism occur in various tissues, the net effect of which may be either activation or inhibition of thyroid hormone action. In this review we discuss systemic and local changes in thyroid hormone metabolism during illness, highlighting their physiological implications in terms of disease course.

  2. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken.

  3. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  4. Thyroiditis

    MedlinePlus

    ... Hashimoto’s thyroiditis is the most common cause of hypothyroidism in the United States. Postpartum thyroiditis, which causes ... hormone levels in the blood) followed by temporary hypothyroidism, is a common cause of thyroid problems after ...

  5. Thyroid

    MedlinePlus

    Thyroid is used to treat the symptoms of hypothyroidism (a condition where the thyroid gland does not produce enough thyroid hormone). Symptoms of hypothyroidism include lack of energy, depression, constipation, weight gain, ...

  6. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  7. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  8. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor. beta

    SciTech Connect

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J. )

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine {yields} cytosine replacement in the codon for amino acid 340 resulted in a glycine {yields} arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor {beta} gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor {beta} gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  9. Circulating thyroid hormone levels in children

    PubMed Central

    Corcoran, J. M.; Eastman, C. J.; Carter, J. N.; Lazarus, L.

    1977-01-01

    Extensive use of radioimmunoassay for routine measurement of serum thyroid hormones in paediatric thyroid disorders showed inconsistencies between laboratory results based upon adult criteria and clinical observation. To resolve this disparity, serum triiodothyronine (T3) and thyroxine (T4) levels were measured by radioimmunoassay in 354 healthy children aged between 3 weeks and 17 years. The mean serum T3 concentration in children up to 10 years of age was 1·94±0·35 ng/ml (SD) which was higher than the mean serum T3 of 1·37±0·25 ng/ml in healthy adults. Similarly, the mean serum T4 of 10±2·5 μg/100 ml was higher than the adult mean serum T4 of 8·5±1·5 μg/100 ml. Neither concentration changed significantly from 3 weeks to 10 years of age, nor was there any sex difference. In girls serum T3 and T4 concentrations declined gradually from age 10 to maturity. A perimenarcheal nadir observed in the T4 data was thought to reflect the joint effects of the age-dependent fall in circulating T4 and the concomitant oestrogen-dependent rise in thyroxine-binding globulin. In boys the decline in serum T3 occurred approximately 2 years later than in the girls. These observations show that the normal ranges for serum T3 and T4 in children are higher than those in adults and that reference to normal adult ranges may lead to misclassification in diagnosis and monitoring of paediatric thyroid disorders. PMID:921322

  10. Role of thyroid hormones in ventricular remodeling.

    PubMed

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  11. Multiple exportins influence thyroid hormone receptor localization

    PubMed Central

    Subramanian, Kelly S.; Dziedzic, Rose C.; Nelson, Hallie N.; Stern, Mary E.; Roggero, Vincent R.; Bondzi, Cornelius; Allison, Lizabeth A.

    2015-01-01

    The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted towards the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function. PMID:25911113

  12. Multiple exportins influence thyroid hormone receptor localization.

    PubMed

    Subramanian, Kelly S; Dziedzic, Rose C; Nelson, Hallie N; Stern, Mary E; Roggero, Vincent R; Bondzi, Cornelius; Allison, Lizabeth A

    2015-08-15

    The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted toward the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function.

  13. Thyroid hormone transport by monocarboxylate transporters.

    PubMed

    Visser, W Edward; Friesema, Edith C H; Jansen, Jurgen; Visser, Theo J

    2007-06-01

    Thyroid hormone (TH) is essential for the normal development and metabolism of different tissues. TH action and metabolism take place intracellularly, which requires cellular uptake via transporters. Several transporter families have been identified, of which the monocarboxylate transporter (MCT) family deserves special attention. So far, only MCT1, MCT2, MCT3, MCT4 and MCT6 have been demonstrated to transport monocarboxylates; MCT8 has been identified as a specific TH transporter. MCT8 mutations in humans are associated with severe psychomotor retardation and elevated 3,3',5-triiodothyronine (T(3)) levels. Recently, MCT8 knockout mice have been shown to perfectly imitate the thyroid state in patients with MCT8 mutations; however, they lack the neurological defects. Although it was long hypothesized that a T-type amino acid transporter also transports iodothyronines, it only recently became clear that MCT10 is involved in the bidirectional transport of aromatic amino acids and iodothyronines. MCT10 preferentially transports T(3) even more effectively than does MCT8. However, its precise function in the human body is poorly understood.

  14. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri).

    PubMed

    Johnson, Kaitlin M; Lema, Sean C

    2011-07-01

    In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status.

  15. Hyponatremia after thyroid hormone withdrawal in a patient with papillary thyroid carcinoma.

    PubMed

    Jo, Hyo Jin; Kim, Yong Hyun; Shin, Dong Hyun; Kim, Mi Jeoung; Lee, Sang Jin; Jeon, Dong Ok; Im, Sung Gyu; Jang, Sun Kyung; Choi, Jin Young

    2014-03-01

    Hyponatremia is an electrolyte abnormality commonly found in clinical practice. It is important to diagnose the underlying etiology of the hyponatremia and correct it appropriately because severe hyponatremia can cause serious complications and substantially increase the risk of mortality. Although hypothyroidism is known to be a cause of hyponatremia, it is rare that hyponatremia occurs in relation to hypothyroidism induced by thyroid hormone withdrawal in patients with differentiated thyroid cancer. We report a case of a 76-year-old woman with papillary thyroid carcinoma presenting with severe hyponatremia related to hypothyroidism induced by thyroid hormone withdrawal for radio-active iodine whole-body scanning, who was treated by thyroid hormone replacement and hydration. Considering that the incidence of differentiated thyroid cancer is rapidly increasing, physicians should be aware that, although uncommon, hyponatremia can occur in patients undergoing radioiodine therapy or diagnostic testing.

  16. The MCT8 thyroid hormone transporter and Allan--Herndon--Dudley syndrome

    PubMed Central

    Schwartz, Charles E.; Stevenson, Roger E.

    2007-01-01

    Thyroid hormone is essential for the proper development and function of the brain. The active form of thyroid hormone is T3, which binds to nuclear receptors. Recently, a transporter specific for T3, MCT8 (monocarboxylate transporter 8) was identified. MCT8 is highly expressed in liver and brain. The gene is located in Xq13 and mutations in MCT8 are responsible for an X-linked condition, Allan--Herndon--Dudley syndrome (AHDS). This syndrome is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays. Affected males also present with muscle hypoplasia, generalized muscle weakness, and limited speech. Importantly, these patients have elevated serum levels of free T3, low to below normal serum levels of free T4, and levels of thyroid stimulating hormone that are within the normal range. This constellation of measurements of thyroid function enables quick screening for AHDS in males presenting with mental retardation, congenital hypotonia, and generalized muscle weakness. PMID:17574010

  17. The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome.

    PubMed

    Schwartz, Charles E; Stevenson, Roger E

    2007-06-01

    Thyroid hormone is essential for the proper development and function of the brain. The active form of thyroid hormone is T(3), which binds to nuclear receptors. Recently, a transporter specific for T(3), MCT8 (monocarboxylate transporter 8) was identified. MCT8 is highly expressed in liver and brain. The gene is located in Xq13 and mutations in MCT8 are responsible for an X-linked condition, Allan-Herndon-Dudley syndrome (AHDS). This syndrome is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays. Affected males also present with muscle hypoplasia, generalized muscle weakness, and limited speech. Importantly, these patients have elevated serum levels of free T(3), low to below normal serum levels of free T(4), and levels of thyroid stimulating hormone that are within the normal range. This constellation of measurements of thyroid function enables quick screening for AHDS in males presenting with cognitive impairment, congenital hypotonia, and generalized muscle weakness.

  18. Transport of thyroid hormone in brain.

    PubMed

    Wirth, Eva K; Schweizer, Ulrich; Köhrle, Josef

    2014-01-01

    Thyroid hormone (TH) transport into the brain is not only pivotal for development and differentiation, but also for maintenance and regulation of adult central nervous system (CNS) function. In this review, we highlight some key factors and structures regulating TH uptake and distribution. Serum TH binding proteins play a major role for the availability of TH since only free hormone concentrations may dictate cellular uptake. One of these proteins, transthyretin is also present in the cerebrospinal fluid (CSF) after being secreted by the choroid plexus. Entry routes into the brain like the blood-brain-barrier (BBB) and the blood-CSF-barrier will be explicated regarding fetal and adult status. Recently identified TH transmembrane transporters (THTT) like monocarboxylate transporter 8 (Mct8) play a major role in uptake of TH across the BBB but as well in transport between cells like astrocytes and neurons within the brain. Species differences in transporter expression will be presented and interference of TH transport by endogenous and exogenous compounds including endocrine disruptors and drugs will be discussed.

  19. Transport of Thyroid Hormone in Brain

    PubMed Central

    Wirth, Eva K.; Schweizer, Ulrich; Köhrle, Josef

    2014-01-01

    Thyroid hormone (TH) transport into the brain is not only pivotal for development and differentiation, but also for maintenance and regulation of adult central nervous system (CNS) function. In this review, we highlight some key factors and structures regulating TH uptake and distribution. Serum TH binding proteins play a major role for the availability of TH since only free hormone concentrations may dictate cellular uptake. One of these proteins, transthyretin is also present in the cerebrospinal fluid (CSF) after being secreted by the choroid plexus. Entry routes into the brain like the blood–brain-barrier (BBB) and the blood–CSF-barrier will be explicated regarding fetal and adult status. Recently identified TH transmembrane transporters (THTT) like monocarboxylate transporter 8 (Mct8) play a major role in uptake of TH across the BBB but as well in transport between cells like astrocytes and neurons within the brain. Species differences in transporter expression will be presented and interference of TH transport by endogenous and exogenous compounds including endocrine disruptors and drugs will be discussed. PMID:25009532

  20. JNK pathway decreases thyroid hormones via TRH receptor: a novel mechanism for disturbance of thyroid hormone homeostasis by PCB153.

    PubMed

    Liu, Changjiang; Ha, Mei; Cui, Yushan; Wang, Chengmin; Yan, Maosheng; Fu, Wenjuan; Quan, Chao; Zhou, Jun; Yang, Kedi

    2012-12-08

    PCBs, widespread and well-characterized endocrine disruptors, cause the disruption of thyroid hormone (TH) homeostasis in humans and animals. In order to verify the hypotheses that MAPK pathways would play roles in disturbance of TH levels caused by PCBs, and that TH-associated receptors could function in certain MAPK pathway, Sprague-Dawley rats were dosed with PCB153 intraperitoneally (i.p.) at 0, 4, 16 and 32mg/kg for 5 consecutive days, and Nthy-ori 3-1 cells were treated with PCB153 (0, 1, 5, 10μM) for 30min. Results showed that after the treatment with PCB153, serum total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3) and thyrotropin releasing hormone (TRH) were decreased, whereas free triiodothyronine (FT3) and serum thyroid stimulating hormone (TSH) were not altered. In vivo and in vitro studies indicated that JNK pathway was activated after PCB153 exposure. Moreover, TRH receptor (TRHr) level was suppressed after the activation of JNK pathway and was elevated after the inhibition of JNK pathway, but TSH receptor (TSHr) level was not affected by the status of JNK pathway though it was reduced after PCB153 treatment. The activated signs of ERK and P38 pathways were not observed in this study. Taken together, observed effects suggested that JNK pathway could decrease TH levels via TRHr, and that would be one novel mechanism of PCB153-mediated disruption of THs.

  1. Developmental Thyroid Hormone Disruption: Prevalence, Environmental Contaminants and Neurodevelopmental Consequences

    EPA Science Inventory

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to...

  2. Inhibition of the Thyroid Hormone Pathway in Xenopus by Mercaptobenzothiazole

    EPA Science Inventory

    Amphibian metamorphosis is a thyroid hormone-dependent process that provides a potential model system to assess chemicals for their ability to disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Several studies have demonstrated the sensitivity of this system to a variety of ...

  3. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    PubMed

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  4. Impaired Hair Growth and Wound Healing in Mice Lacking Thyroid Hormone Receptors

    PubMed Central

    Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M.; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies. PMID:25254665

  5. The thyroid gland and thyroid hormones in sheepshead minnow (Cyprinodon variegatus) during early development and metamorphosis.

    PubMed

    Schnitzler, Joseph G; Klaren, Peter H M; Mariavelle, Emeline; Das, Krishna

    2016-04-01

    The sheepshead minnow is widely used in ecotoxicological studies that only recently have begun to focus on disruption of the thyroid axis by xenobiotics and endocrine disrupting compounds. However, reference levels of the thyroid prohormone thyroxine (T4) and biologically active hormone 3,5,3'-triiodothyronine (T3) and their developmental patterns are unknown. This study set out to describe the ontogeny and morphology of the thyroid gland in sheepshead minnow, and to correlate these with whole-body concentrations of thyroid hormones during early development and metamorphosis. Eggs were collected by natural spawning in our laboratory. T4 and T3 were extracted from embryos, larvae and juveniles and an enzyme-linked immunoassay was used to measure whole-body hormone levels. Length and body mass, hatching success, gross morphology, thyroid hormone levels and histology were measured. The onset of metamorphosis at 12-day post-hatching coincided with surges in whole-body T4 and T3 concentrations. Thyroid follicles were first observed in pre-metamorphic larvae at hatching and were detected exclusively in the subpharyngeal region, surrounding the ventral aorta. Follicle size and thyrocyte epithelial cell heights varied during development, indicating fluctuations in thyroid hormone synthesis activity. The increase in the whole-body T3/T4 ratio was indicative of an increase in outer ring deiodination activity. This study establishes a baseline for thyroid hormones in sheepshead minnows, which will be useful for the understanding of thyroid hormone functions and in future studies of thyroid toxicants in this species.

  6. Thyroid hormone and the developing hypothalamus

    PubMed Central

    Alkemade, Anneke

    2015-01-01

    Thyroid hormone (TH) plays an essential role in normal brain development and function. Both TH excess and insufficiency during development lead to structural brain abnormalities. Proper TH signaling is dependent on active transport of the prohormone thyroxine (T4) across the blood-brain-barrier and into brain cells. In the brain T4 undergoes local deiodination into the more active 3,3′,5-triiodothyronine (T3), which binds to nuclear TH receptors (TRs). TRs are already expressed during the first trimester of pregnancy, even before the fetal thyroid becomes functional. Throughout pregnancy, the fetus is largely dependent on the maternal TH supply. Recent studies in mice have shown that normal hypothalamic development requires intact TH signaling. In addition, the development of the human lateral hypothalamic zone coincides with a strong increase in T3 and TR mRNA concentrations in the brain. During this time the fetal hypothalamus already shows evidence for TH signaling. Expression of components crucial for central TH signaling show a specific developmental timing in the human hypothalamus. A coordinated expression of deiodinases in combination with TH transporters suggests that TH concentrations are regulated to prevent untimely maturation of brain cells. Even though the fetus depends on the maternal TH supply, there is evidence suggesting a role for the fetal hypothalamus in the regulation of TH serum concentrations. A decrease in expression of proteins involved in TH signaling towards the end of pregnancy may indicate a lower fetal TH demand. This may be relevant for the thyrotropin (TSH) surge that is usually observed after birth, and supports a role for the hypothalamus in the regulation of TH concentrations during the fetal period anticipating birth. PMID:25750617

  7. Effects of thyroid hormone on serum glycated albumin levels: study on non-diabetic subjects.

    PubMed

    Koga, M; Murai, J; Saito, H; Matsumoto, S; Kasayama, S

    2009-05-01

    Glycated albumin (GA) is used alongside glycated hemoglobin (HbA(1C)) as an indicator of glycemic control. Although serum GA levels are affected mainly by plasma glucose, they are also influenced by serum albumin metabolism. Thyroid hormone is known to promote albumin catabolism, and it is thus thought to affect serum GA levels. In the present study, the effects of thyroid hormone on serum GA measurements were investigated in patients with thyroid dysfunction. Six patients with untreated hypothyroidism and 17 patients with untreated thyrotoxicosis were investigated. Patients who had anemia or diabetes were excluded. A total of 25 non-diabetic, euthyroid individuals were enrolled as controls. HbA(1C), serum GA, thyroid-stimulating hormone (TSH), free triiodothyronine (T(3)), and free thyroxine (T(4)) levels were measured in all these subjects, and their relationships were examined. Although no intergroup differences were observed for HbA(1C), serum GA was significantly higher among patients with hypothyroidism than controls, and significantly lower among patients with thyrotoxicosis. Serum GA had a significant positive correlation with serum TSH and significant inverse correlations with free T(3) and free T(4). Thyroid hormone levels are inversely associated with serum GA levels. Cautions are necessary when evaluating serum GA levels in patients with thyroid dysfunction.

  8. Prolonged weightlessness effect on postflight plasma thyroid hormones

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Driscoll, T. B.

    1977-01-01

    Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 micro g/dl and in thyroid-stimulating hormone (TSH) of 4 microunits ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.

  9. Thyroid hormones changes in infants and children with metabolic acidosis.

    PubMed

    Tahirović, H F

    1991-10-01

    The influence of the acidotic state on the thyroxine (T4) peripheral metabolism was studied in two different forms of metabolic acidosis, ie infantile diarrhea and diabetic ketoacidosis. The serum concentrations of T4, free T4 (FT4), triiodothyronine (T3), reverse T3 (rT3), thyrotropin (TSH) and thyroxine-binding globulin (TBG) were measured and compared to healthy control groups. Lower T4 and T3 and higher rT3 serum concentrations were found in both tested groups of patients in relation to the control groups. In infants with severe metabolic acidosis FT4 values were lower than those observed in the control group. In addition, serum TBG levels were lower in diabetic patients as compared to control subjects. Despite the reduced serum T3 and T4 concentrations in both groups of patients, TSH concentrations, were within the normal range. Therefore, we concluded that acidosis caused either by diarrhea (not so far described) or by diabetes mellitus (well documented up to now) affects the thyroid hormones metabolism in a similar way, at least as far as the thyroid hormones blood levels are concerned.

  10. Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California

    PubMed Central

    Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C.; Miller, Mark D.; Pearce, Elizabeth N.; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N.; Liaw, Jane

    2015-01-01

    Background: Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. Objectives: We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Methods: Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000–2003, a period when much of the area’s water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. Results: The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. population. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = –0.70; 95% CI: –1.06, –0.34], decreasing free thyroxine (fT4) (β = –0.053; 95% CI: –0.092, –0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). Conclusions: These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Citation: Steinmaus C, Pearl M, Kharrazi M, Blount BC

  11. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    PubMed

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  12. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  13. Recombinant human TSH increases uptake and effective half-life of radioiodine in thyroid hormone secreting metastases of follicular thyroid cancer.

    PubMed

    Schneider, C; Dietlein, M; Eschner, W; Schmidt, M; Kahraman, D; Kobe, C

    2012-03-01

    Follicular thyroid cancer with thyroid hormone secreting metastases is an extremely rare condition, with only a few cases reported world-wide. We here present the case of a 64-year-old female patient affected by follicular thyroid cancer with extensive thyroid hormone secreting metastases leading to TSH-suppression. We have also summarized the relevant diagnostic and therapeutic approaches and describe, for the first time, the effects of rhTSH-application in this rare tumor entity. In this patient, we found that rhTSH increased ¹³¹I-uptake into the thyroid hormone secreting metastases and prolonged the effective half-life of ¹³¹I. These effects of rhTSH should be considered when fixed activities of ¹³¹I are prescribed.

  14. Thyroid hormones induce browning of white fat

    PubMed Central

    Martínez-Sánchez, Noelia; Moreno-Navarrete, José M; Contreras, Cristina; Rial-Pensado, Eva; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos

    2016-01-01

    The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3′,5,5′ tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3′,5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4. Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance. PMID:27913573

  15. Oncogenic mutations of thyroid hormone receptor β

    PubMed Central

    Park, Jeong Won; Zhao, Li; Willingham, Mark; Cheng, Sheue-yann

    2015-01-01

    The C-terminal frame-shift mutant of the thyroid hormone receptor TRβ1, PV, functions as an oncogene. An important question is whether the oncogenic activity of mutated TRβ1 is uniquely dependent on the PV mutated sequence. Using four C-terminal frame-shift mutants—PV, Mkar, Mdbs, and AM—we examined that region in the oncogenic actions of TRβ1 mutants. Remarkably, these C-terminal mutants induced similar growth of tumors in mouse xenograft models. Molecular analyses showed that they physically interacted with the p85α regulatory subunit of PI3K similarly in cells. In vitro GST-binding assay showed that they bound to the C-terminal Src-homology 2 (CSH2) of p85α with markedly higher avidity. The sustained association of mutants with p85α led to activation of the common PI3K-AKT-ERK/STAT3 signaling to promote cell proliferation and invasion and to inhibit apoptosis. Thus, these results argue against the oncogenic activity of PV being uniquely dependent on the PV mutated sequence. Rather, these four mutants could favor a C-terminal conformation that interacted with the CSH2 domain of p85α to initiate activation of PI3K to relay downstream signaling to promote tumorigenesis. Thus, we propose that the mutated C-terminal region of TRβ1 could function as an “onco-domain” and TRβ1 is a potential therapeutic target. PMID:25924236

  16. Deiodination as an index of chemical disruption of thyroid hormone homeostasis and thyroidal status in fish

    SciTech Connect

    Eales, J.G.; Brown, S.B.; Cyr, D.G.; Adams, B.A.; Finnson, K.R.

    1999-07-01

    Commonly used indices of fish thyroidal status are based on thyroxine (T4) secretion by thyroid tissue under control of the central brain-pituitary-thyroid axis. However, much of the control of the fish thyroid system also occurs in peripheral tissues, such as liver, by regulating T4 prohormone conversion to biologically active 3,5,3{prime}-triiodothyronine (T3) or to biologically inactive 3,3{prime},5{prime}-triiodothyronine and by regulating T3 conversion to inactive 3,3{prime}-diiodothyronine. These extrathyroidal conversions depend on a family of independently-regulated selenocysteine-containing microsomal deiodinases. The authors describe deiodination assays and evaluate their potential as biomarkers for exposure to chemicals that directly or indirectly disrupt thyroid hormone homeostasis or thyroidal status. The authors conclude that deiodination be included in a minimum suite of assays to detect xenobiotic effects on the fish thyroid system.

  17. Control of pituitary thyroid-stimulating hormone synthesis and secretion by thyroid hormones during Xenopus metamorphosis.

    PubMed

    Sternberg, Robin M; Thoemke, Kara R; Korte, Joseph J; Moen, Scott M; Olson, Jessica M; Korte, Lisa; Tietge, Joseph E; Degitz, Sigmund J

    2011-09-15

    We used ex vivo and in vivo experiments with Xenopus laevis tadpoles to examine the hypothesis that the set-point for negative feedback on pituitary thyroid-stimulating hormone (TSH) synthesis and secretion by thyroid hormones (THs) increases as metamorphosis progresses to allow for the previously documented concomitant increase in serum TH concentrations and pituitary TSH mRNA expression during this transformative process. First, pituitaries from climactic tadpoles were cultured for up to 96 h to characterize the ability of pituitary explants to synthesize and secrete TSHβ in the absence of hypothalamic and circulating hormones. Next, pituitary explants from tadpoles NF stages 54-66 were exposed to physiologically-relevant concentrations of THs to determine whether stage-specific differences exist in pituitary sensitivity to negative feedback by THs. Finally, in vivo exposures of tadpoles to THs were conducted to confirm the results of the ex vivo experiments. When pituitaries from climactic tadpoles were removed from the influence of endogenous hormones, TSHβ mRNA expression increased late or not at all whereas the rate of TSHβ secreted into media increased dramatically, suggesting that TSH secretion, but not TSH mRNA expression, is under the negative regulation of an endogenous signal during the climactic stages of metamorphosis. Pituitaries from pre- and prometamorphic tadpoles were more sensitive to TH-induced inhibition of TSHβ mRNA expression and secretion than pituitaries from climactic tadpoles. The observed decrease in sensitivity of pituitary TSHβ mRNA expression to negative feedback by THs from premetamorphosis to metamorphic climax was confirmed by in vivo experiments in which tadpoles were reared in water containing THs. Based on the results of this study, a model is proposed to explain the seemingly paradoxical, concurrent rise in serum TH concentrations and pituitary TSH mRNA expression during metamorphosis in larval anurans.

  18. Endogenous excitatory amino acid neurotransmission regulates thyroid-stimulating hormone and thyroid hormone secretion in conscious freely moving male rats.

    PubMed

    Arufe, M C; Durán, R; Perez-Vences, D; Alfonso, M

    2002-04-01

    The role of neurotransmission of endogenous excitatory amino acid (EAA) on serum thyroid hormones and thyroid-stimulating hormone (TSH) levels was examined in conscious and freely moving adult male Sprague-Dawley rats. The rats were cannulated at the third ventricle 2 d before the experiments. Several glutamate receptor agonists, such as kainic acid and domoic acid, and antagonists, such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and dizocilpine (MK-801) were administered into the third ventricle. Serum TSH levels were assesed by radioimmunoassay, and serum thyroid hormone levels were assessed by enzyme immunoassay. The results showed that the administration of CNQX and MK-801 produced a decrease in serum levels of TSH and thyroid hormones. The administration of kainic acid and domoic acid increased TSH concentrations, whereas CNQX completely blocked the release of TSH induced by kainic acid and domoic acid. These results suggest the importance of endogenous EAA in the regulation of hormone secretion from the pituitary-thyroid axis, as well as the role of the N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the stimulatory effect of EAAs on the pituitary-thyroid axis.

  19. In Vitro, Ex Vivo, and In Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles.

    PubMed

    Hornung, Michael W; Kosian, Patricia A; Haselman, Jonathan T; Korte, Joseph J; Challis, Katie; Macherla, Chitralekha; Nevalainen, Erica; Degitz, Sigmund J

    2015-08-01

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of 6 benzothiazoles to affect endpoints related to thyroid hormone synthesis inhibition were assessed using in vitro, ex vivo, and in vivo assays. Inhibition of thyroid peroxidase (TPO) derived from pig thyroid glands was determined for benzothiazole (BTZ), 2-mercaptobenzothiazole (MBT), 5-chloro-2-mercaptobenzothiazole (CMBT), 2-aminobenzothiazole (ABT), 2-hydroxybenzothiazole (HBT), and 2-methylthiobenzothiazole (MTBT). Their rank order potency for TPO inhibition was MBT=CMBT>ABT>BTZ, whereas HBT and MTBT exhibited no inhibitory activity. The benzothiazoles were tested further in a Xenopus laevis thyroid gland explant culture assay in which inhibition of thyroxine (T4) release was the measured endpoint. In this assay all 6 benzothiazoles inhibited T4 release. The activity of the benzothiazoles for disrupting thyroid hormone activity was verified in vivo using X. laevis tadpoles in a 7-day assay. The 2 most potent chemicals for TPO inhibition, MBT and CMBT, produced responses in vivo indicative of T4 synthesis inhibition including induction of sodium iodide symporter mRNA and decreases in glandular and circulating thyroid hormones. The capability to measure thyroid hormone levels in the glands and blood by ultrahigh performance LC-MS/MS methods optimized for small tissue samples was critical for effects interpretation. These results indicate that inhibition of TPO activity in vitro was a good indicator of a chemical's potential for thyroid hormone disruption in vivo and may be useful for prioritizing chemicals for further investigation.

  20. Tissue specific regulation of lipogenesis by thyroid hormone

    SciTech Connect

    Blennemann, B.; Freake, H. )

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  1. Early Temporal Effects of Three Thyroid Hormone Synthesis Inhibitors in Xenopus laevis

    EPA Science Inventory

    Thyroid axis disruption is an important consideration when evaluating the risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone ...

  2. Thyroid hormone transporters--functions and clinical implications.

    PubMed

    Bernal, Juan; Guadaño-Ferraz, Ana; Morte, Beatriz

    2015-07-01

    The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.

  3. [Biological markers reflecting peripheral effects of thyroid hormones in autonomous thyroid adenoma].

    PubMed

    Földes, J; Németh, J; Bános, C; Tarján, G; Büki, B

    1991-09-08

    In some patients with functioning thyroid autonomous nodules preclinical hyperthyroidism is detected. It is important to know, whether in this intermediate clinical state beside the suppression of pituitary TSH secretion other target organs are also affected by serum free-thyroxine and free-triiodothyronine levels still within the normal range. Determining some sensitive, but not specific biologic markers reflecting the impact of thyroid hormones at the peripheral tissue level, it was demonstrated that in the group of preclinical hyperthyroidism the mean level of plasma fibronectin exceeded that of the controls (mean +/- S. D.: 583.5 +/- 163.9 vs. 424.2 +/- 84.1 micrograms/ml, p less than 0.001), serum procollagen-III-peptide concentration was already significantly raised, though its value was still within the normal range (mean +/- S. D.: 0.73 +/- 0.17 vs. 0.57 +/- 0.16 U/ml, p less than 0.05), conversely, mean sex-hormone binding globulin level was the same as in euthyroid controls (mean +/- S. D. 47.4 +/- 18.2 vs. 48.3 +/- 16.3 nmol/l). The value of all three parameters was significantly elevated in patients with toxic nodular goiter. Based on the results of this study "tissue"-thyrotoxicosis is suspected in some patients with preclinical hyperthyroidism, which may have therapeutical implications.

  4. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    EPA Science Inventory

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  5. Establishing Adverse Outcome Pathways of Thyroid Hormone Disruption in an Amphibian Model

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) provides a framework for understanding the relevance of toxicology data in ecotoxicological hazard assessments. The AOP concept can be applied to many toxicological pathways including thyroid hormone disruption. Thyroid hormones play a critical r...

  6. Energy balance regulation by thyroid hormones at central level.

    PubMed

    López, Miguel; Alvarez, Clara V; Nogueiras, Rubén; Diéguez, Carlos

    2013-07-01

    Classically, medical textbooks taught that most effects of thyroid hormones (THs) on energy homeostasis are directly exerted in peripheral tissues. However, current evidence is changing (and challenging) our perspective about the role of THs from a 'peripheral' to a 'central' vision, implying that they affect food intake, energy expenditure, and metabolism by acting, to a large extent, at the central level. Interestingly, effects of THs are interrelated with global energy sensors in the central nervous system (CNS), such as uncoupling protein 2 (UCP2), AMP-activated protein kinase (AMPK; the 'AMPK-BAT axis'), and mechanistic target of rapamycin (mTOR). Here, we review what is currently known about THs and their regulation of energy balance and metabolism in both peripheral and central tissues.

  7. A new point mutation (C446R) in the thyroid hormone receptor-{beta} gene of a family with resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Chyna, B.; Hayashi, Yoshitaka; Sunthornthepvarakul, T.; Refetoff, S.; Duell, P.B.

    1994-05-01

    Resistance to thyroid hormone (RTH) is a condition of impaired end-organ responsiveness to thyroid hormone characterized by goiter and elevated thyroid hormone levels with an appropriately normal TSH. RTH has been associated with mutations in the thyroid hormone receptor-{beta} (TR{beta}) gene. The authors report studies carried out in 21 members of a family (F119), 12 of whom exhibited the RTH phenotype. A point mutation was detected in the T{sub 3}-binding domain of the TR{beta} gene. It resulted in replacement of the normal cysteine-446 with an arginine (C446R) that has not been previously reported. The clinical characteristics of this family are similar to those reported in other families with RTH, namely goiter, tachycardia, and learning disabilities. Thyroid function tests are also typical of other subjects with RTH. The mean values ({+-}SD) in untreated affected subjects compared to those in unaffected family members were: free T{sub 4} index, 250 {+-} 21 vs. 108 {+-} 13; total T{sub 3}, 4.3 {+-} 0.4 vs. 2.4 {+-} 0.4 nmol/L; and TSH, 4.5 {+-} 1.1 vs. 2.4 {+-} 1.1 mU/L. DNA samples from 18 family members were screened for the TR{beta} mutation, which results in the loss of a BsmI restriction site, and each of the 11 subjects with abnormal thyroid function tests were heterozygous for the mutant allele. The mutant TR{beta} expressed in Cos-I cells did not bind T{sub 3} (K{sub a} of C446R/wild-type, <0.05). T{sub 3} at a concentration up to 100 nmol/L failed to enhance the transactivation of a reporter gene, and the mutant receptor inhibited the T{sub 3}-mediated transcriptional activation of the wild-type TR{beta}. 17 refs., 3 figs., 1 tab.

  8. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay

    PubMed Central

    Miyata, Kaori; Ose, Keiko

    2012-01-01

    There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach. PMID:22481853

  9. In vitro, ex vivo, and in vivo determination of thyroid hormone modulating activity of benzothiazoles

    EPA Science Inventory

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of six benzothiazoles to affect endpoints related to thyroid hormone ...

  10. Effects of thyroid hormone on the cardiovascular system.

    PubMed

    Fazio, Serafino; Palmieri, Emiliano A; Lombardi, Gaetano; Biondi, Bernadette

    2004-01-01

    Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that overt hyperthyroidism induces a hyperdynamic cardiovascular state (high cardiac output with low systemic vascular resistance), which is associated with a faster heart rate, enhanced left ventricular (LV) systolic and diastolic function, and increased prevalence of supraventricular tachyarrhythmias - namely, atrial fibrillation - whereas overt hypothyroidism is characterized by the opposite changes. However, whether changes in cardiac performance associated with overt thyroid dysfunction are due mainly to alterations of myocardial contractility or to loading conditions remains unclear. Extensive evidence indicates that the cardiovascular system responds to the minimal but persistent changes in circulating thyroid hormone levels, which are typical of individuals with subclinical thyroid dysfunction. Subclinical hyperthyroidism is associated with increased heart rate, atrial arrhythmias, increased LV mass, impaired ventricular relaxation, reduced exercise performance, and increased risk of cardiovascular mortality. Subclinical hypothyroidism is associated with impaired LV diastolic function and subtle systolic dysfunction and an enhanced risk for atherosclerosis and myocardial infarction. Because all cardiovascular abnormalities are reversed by restoration of euthyroidism ("subclinical hypothyroidism") or blunted by beta-blockade and L-thyroxine (L-T4) dose tailoring ("subclinical hyperthyroidism"), timely treatment is advisable in an attempt to avoid adverse cardiovascular effects. Interestingly, some data indicate that patients with acute and chronic cardiovascular disorders and those undergoing cardiac surgery may have altered peripheral thyroid hormone metabolism that, in turn, may contribute to altered cardiac function. Preliminary clinical investigations suggest that administration of

  11. Marsupial models for understanding evolution of thyroid hormone distributor proteins.

    PubMed

    Richardson, Samantha J

    2008-10-10

    Marsupials are a group of mammals that are under-exploited, in particular in developmental and evolutionary studies of biological systems. In this review, the roles that marsupials have played in elucidating the evolution of thyroid hormone distribution systems are summarised. Marsupials are born at very early developmental stages, and most development occurs during lactation rather than in utero. Studying thyroid hormone distribution systems during marsupial development, in addition to comparing the two Orders of marsupials, gave clues as to the selection pressures acting on the hepatic gene expression of transthyretin (TTR), one of the major thyroid hormone distributor proteins in blood. The structure of TTR in marsupials is intermediate between that of avian/reptilian TTRs and eutherian ("placental mammalian") TTRs. Consequently, the function of marsupial TTR is intermediate between those of avian/reptilian TTRs and eutherian TTRs. Thus, in some respects marsupials can be considered as "missing links" in vertebrate evolution.

  12. Neonatal detection of generalized resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Balzano, S.; Scherberg, N.H.; Refetoff, S. )

    1990-11-07

    Generalized resistance to thyroid hormone (GRTH) is an inherited disease that is usually suspected when elevated serum thyroid hormone levels are associated with nonsuppressed thyrotropin. Often these test results are obtained because of short stature, decreased intelligence, and/or hyperactivity with learning disability noted in childhood and adolescence, or because of goiter in adulthood. The authors detected GRTH at birth by analysis of blood obtained during routine neonatal screening. The proposita, born to a mother with GRTH, had a thyrotropin level of 26 mU/L and a corresponding thyroxine concentration of 656 nmol/L. Administration of thyroid hormone in doses eightfold to 10-fold above replacement levels were required to reduce serum thyrotropin to normal levels without induction of hypermetabolism. This case, and the retrospective finding of high thyroxine levels in five newborns subsequently diagnosed as having GRTH, suggest that measurement of thyroxine at birth, in conjunction with thyrotropin, could allow the early detection of GRTH.

  13. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    PubMed Central

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  14. Thyroid Hormone Signaling and Adult Neurogenesis in Mammals

    PubMed Central

    Remaud, Sylvie; Gothié, Jean-David; Morvan-Dubois, Ghislaine; Demeneix, Barbara A.

    2014-01-01

    The vital roles of thyroid hormone in multiple aspects of perinatal brain development have been known for over a century. In the last decades, the molecular mechanisms underlying effects of thyroid hormone on proliferation, differentiation, migration, synaptogenesis, and myelination in the developing nervous system have been gradually dissected. However, recent data reveal that thyroid signaling influences neuronal development throughout life, from early embryogenesis to the neurogenesis in the adult brain. This review deals with the latter phase and analyses current knowledge on the role of T3, the active form of thyroid hormone, and its receptors in regulating neural stem cell function in the hippocampus and the subventricular zone, the two principal sites harboring neurogenesis in the adult mammalian brain. In particular, we discuss the critical roles of T3 and TRα1 in commitment to a neuronal phenotype, a process that entails the repression of a number of genes notably that encoding the pluripotency factor, Sox2. Furthermore, the question of the relevance of thyroid hormone control of adult neurogenesis is considered in the context of brain aging, cognitive decline, and neurodegenerative disease. PMID:24808891

  15. Thyroid hormone action: identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase.

    PubMed

    Sterling, K

    1991-01-01

    A preliminary report from our laboratory suggested that the thyroid hormone triiodothyronine (T3) is bound with an association constant (Ka) approximating 2 x 10(11) M-1 by adenine nucleotide translocase (AdNT) purified from beef heart mitochondria. We now report that [125I]T3 is capable of photoaffinity labeling not only purified AdNT but also the carrier in intact beef heart mitochondria. Photoaffinity labeling in intact mitochondria was appreciably greater than that observed with purified AdNT. The covalently labeled AdNT was identified by 2-dimensional electrophoresis with pI of 10 on electrofocusing and M(r) of 31,000 on SDS gel. Identification of the covalently labeled protein as authentic AdNT was substantiated by its interaction with a specific monoclonal antibody preparation.

  16. Regulation of Mammary Gland Sensitivity to Thyroid Hormones during the Transition from Pregnancy to Lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thyroid hormones are galactopoietic and appear to assist in establishing the mammary gland’s metabolic priority during lactation. Expression patterns for genes that can alter tissue sensitivity to thyroid hormones and thyroid hormone activity were evaluated in the mammary gland and liver of Holstei...

  17. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  18. Deiodinases: implications of the local control of thyroid hormone action

    PubMed Central

    Bianco, Antonio C.; Kim, Brian W.

    2006-01-01

    The deiodinases activate or inactivate thyroid hormone, and their importance in thyroid hormone homeostasis has become increasingly clear with the availability of deiodinase-deficient animals. At the same time, heightened interest in the field has been generated following the discovery that the type 2 deiodinase can be an important component in both the Hedgehog signaling pathway and the G protein–coupled bile acid receptor 1–mediated (GPBAR1-mediated) signaling cascade. The discovery of these new roles for the deiodinases indicates that tissue-specific deiodination plays a much broader role than once thought, extending into the realms of developmental biology and metabolism. PMID:17016550

  19. Thyroid hormone testing in the 21st century.

    PubMed

    Singh, Ravinder J; Kaur, Parmpreet

    2016-08-01

    Thyroid dysfunction and treatment follow up require accurate measurement of thyroid hormones. Most thyroid disease is treated on an outpatient basis; thus, assays have to be rapid and cost effective for optimal patient care. There are no rapid or point-of-care thyroid tests yet available, which could replace centralized automated thyroid testing. With the high population of thyroid dysfunction, it is important for thyroid assays to be available widely and locally. Immunoassays are most commonly used due to their ease and availability, but are limited in their accuracy. MS assays are much more specific, but are laborious with a high machine cost. Many hospitals may not be able to afford the machines and lack technical expertise. Sensitivity, specificity and standardization issues still result in substantial differences between various tests currently used for this population. To address these issues, new performance standards are being established by the professional organizations and technological advancements are being undertaken by instrument manufacturers. Automation solution is provided by various manufacturers and offers a choice for the hospital labs to select a platform which helps in their workflow and other chemistry testing. This has also resulted in decentralization and easy access to the thyroid testing. Even with these advancements, it is understandably confusing for clinicians to choose an assay for various clinical scenarios (20). As it becomes more available and standardized, LC-MS will continue to demonstrate its superiority to immunoassay.

  20. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  1. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  2. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  3. A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis.

    PubMed

    Furlow, J David; Neff, Eric S

    2006-03-01

    Thyroid hormone induces the complete metamorphosis of anuran tadpoles into juvenile frogs. Arguably, anuran metamorphosis is the most dramatic effect of a hormone in any vertebrate. Recent advances in pharmacology and molecular biology have made the study of this remarkable process in the frog Xenopus laevis attractive to developmental biologists and endocrinologists alike. In particular, the availability of a straightforward transgenesis assay and the near completion of the Xenopus tropicalis genome are enabling significant advances to be made in our understanding of the major remaining problems of metamorphosis: the extraordinary tissue specificity of responses, the precise timing of morphological changes, the degree of cell autonomy of hormone responses and developmental competence. We argue that X. laevis metamorphosis presents an exciting opportunity for understanding the role of thyroid hormone in vertebrate development.

  4. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development

    PubMed Central

    Kim, Ha-Young; Mohan, Subburaman

    2013-01-01

    The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates proliferation and/or differentiated actions of multiple cell types in bone including chondrocytes, osteoblasts and osteoclasts. Thyroid hormone effects on the target cells are mediated via ligand-inducible nuclear receptors/transcription factors, thyroid hormone receptor (TR) α and β, of which TRα seems to be critically important in regulating bone cell functions. In terms of mechanisms for thyroid hormone action, studies suggest that thyroid hormone regulates a number of key growth factor signaling pathways including insulin-like growth factor-I, parathyroid hormone related protein, fibroblast growth factor, Indian hedgehog and Wnt to influence skeletal growth. In this review we describe findings from various genetic mouse models and clinical mutations of thyroid hormone signaling related mutations in humans that pertain to the role and mechanism of action of thyroid hormone in the regulation of skeletal growth and maintenance. PMID:26273499

  5. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes.

    PubMed

    Paolino, Donatella; Cosco, Donato; Gaspari, Marco; Celano, Marilena; Wolfram, Joy; Voce, Pasquale; Puxeddu, Efisio; Filetti, Sebastiano; Celia, Christian; Ferrari, Mauro; Russo, Diego; Fresta, Massimo

    2014-08-01

    Various tissue-specific antibodies have been attached to nanoparticles to obtain targeted delivery. In particular, nanodelivery systems with selectivity for breast, prostate and cancer tissue have been developed. Here, we have developed a nanodelivery system that targets the thyroid gland. Nanoliposomes have been conjugated to the thyroid-stimulating hormone (TSH), which binds to the TSH receptor (TSHr) on the surface of thyrocytes. The results indicate that the intracellular uptake of TSH-nanoliposomes is increased in cells expressing the TSHr. The accumulation of targeted nanoliposomes in the thyroid gland following intravenous injection was 3.5-fold higher in comparison to untargeted nanoliposomes. Furthermore, TSH-nanoliposomes encapsulated with gemcitabine showed improved anticancer efficacy in vitro and in a tumor model of follicular thyroid carcinoma. This drug delivery system could be used for the treatment of a broad spectrum of thyroid diseases to reduce side effects and improve therapeutic efficacy.

  6. Role of thyroid hormone deiodination in the hypothalamus.

    PubMed

    Lechan, Ronald M; Fekete, Csaba

    2005-08-01

    Iodothyronine deiodinases (D1, D2, and D3) comprise a family of selenoproteins that are involved in the conversion of thyroxine (T(4)) to active triiodothyronine (T(3)), and also the inactivation of both thyroid hormones. The deiodinase enzymes are of critical importance for the normal development and function of the central nervous system. D1 is absent from the human brain, suggesting that D2 and D3 are the two main enzymes involved in the maintenance of thyroid hormone homeostasis in the central nervous system, D2 as the primary T(3)-producing enzyme, and D3 as the primary inactivating enzyme. While the coordinated action of D2 and D3 maintain constant T(3) levels in the cortex independently from the circulating thyroid hormone levels, the role of deiodinases in the hypothalamus may be more complex, as suggested by the regulation of D2 activity in the hypothalamus by infection, fasting and changes in photoperiod. Tanycytes, the primary source of D2 activity in the hypothalamus, integrate hormonal and probably neuronal signals, and under specific conditions, may influence neuroendocrine functions by altering local T(3) tissue concentrations. This function may be of particular importance in the regulation of the hypothalamic-pituitary-thyroid axis during fasting and infection, and in the regulation of appetite and reproductive function. Transient expression of D3 in the preoptic region during a critical time of development suggests a special role for this deiodinase in sexual differentiation of the brain.

  7. μ-Crystallin controls muscle function through thyroid hormone action.

    PubMed

    Seko, Daiki; Ogawa, Shizuka; Li, Tao-Sheng; Taimura, Akihiro; Ono, Yusuke

    2016-05-01

    μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action.

  8. Role of thyroid hormone in postnatal circulatory and metabolic adjustments.

    PubMed Central

    Breall, J A; Rudolph, A M; Heymann, M A

    1984-01-01

    significant differences in blood flow to other organs in the three groups. These studies indicate that plasma thyroid concentrations in the 2-3 wk prior to delivery and not the increase in thyroid hormone concentrations which occur after birth are important for postnatal cardiovascular and metabolic adjustments. We speculate that lack of circulating triiodothyronine in late gestation may affect postnatal cardiovascular adaptation by modifying normal beta adrenergic receptor development. PMID:6715545

  9. Modulating the function of the immune system by thyroid hormones and thyrotropin.

    PubMed

    Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2017-04-01

    Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system.

  10. Thyroid hormone status regulates the expression of secretory phospholipases.

    PubMed

    Sharma, Pragya; Levesque, Tania; Boilard, Eric; Park, Edwards A

    2014-01-31

    Thyroid hormone (T3) stimulates various metabolic pathways and the hepatic actions of T3 are mediated primarily through the thyroid hormone receptor beta (TRβ). Hypothyroidism has been linked with low grade inflammation, elevated risk of hepatic steatosis and atherosclerosis. Secretory phospholipases (sPLA2) are associated with inflammation, hyperlipidemia and atherosclerosis. Due to potential linkage between thyroid hormone and sPLA2, we investigated the effect of thyroid hormone status on the regulation of secretory phospholipases in mice, rats and human liver. T3 suppressed the expression of the sPLA2 group IIa (PLA2g2a) gene in the liver of BALB/c mice and C57BL/6 transgenic mice expressing the human PLA2g2a. PLA2g2a was elevated with hypothyroidism and high fat diets which may contribute to the low grade inflammation associated with hypothyroidism and diet induced obesity. We also examined the effects of the TRβ agonist eprotirome on hepatic gene regulation. We observed that eprotirome inhibited the expression of selected sPLA2 genes and furthermore the cytokine mediated induction PLA2g2a was suppressed. In addition, eprotirome induced genes involved in fatty acid oxidation and cholesterol clearance while inhibiting lipogenic genes. Our results indicate that in vivo thyroid hormone status regulates the abundance of sPLA2 and the inhibition of PLA2g2a by T3 is conserved across species. By regulating sPLA2 genes, T3 may impact processes associated with atherosclerosis and inflammation and TRβ agonists may ameliorate inflammation and hyperlipidemia.

  11. Thyroid hormone status regulates the expression of secretory phospholipases

    PubMed Central

    Sharma, Pragya; Levesque, Tania; Boilard, Eric; Park, Edwards A.

    2014-01-01

    Thyroid hormone (T3) stimulates various metabolic pathways and the hepatic actions of T3 are mediated primarily through the thyroid hormone receptor beta (TRβ). Hypothyroidism has been linked with low grade inflammation, elevated risk of hepatic steatosis and atherosclerosis. Secretory phospholipases (sPLA2) are associated with inflammation, hyperlipidemia and atherosclerosis. Due to potential linkage between thyroid hormone and sPLA2, we investigated the effect of thyroid hormone status on the regulation of secretory phospholipases in mice, rats and human liver. T3 suppressed the expression of the sPLA2 group IIa (PLA2g2a) gene in the liver of BALB/c mice and C57BL/6 transgenic mice expressing the human PLA2g2a. PLA2g2a was elevated with hypothyroidism and high fat diets which may contribute to the low grade inflammation associated with hypothyroidism and diet induced obesity. We also examined the effects of the TRβ agonist eprotirome on hepatic gene regulation. We observed that eprotirome inhibited the expression of selected sPLA2 genes and furthermore the cytokine mediated induction PLA2g2a was suppressed. In addition, eprotirome induced genes involved in fatty acid oxidation and cholesterol clearance while inhibiting lipogenic genes. Our results indicate that in vivo thyroid hormone status regulates the abundance of sPLA2 and the inhibition of PLA2g2a by T3 is conserved across species. By regulating sPLA2 genes, T3 may impact processes associated with atherosclerosis and inflammation and TRβ agonists may ameliorate inflammation and hyperlipidemia. PMID:24440706

  12. Effect of thyroid hormones on pituitary neuromedin B and possible interaction between thyroid hormones and neuromedin B on thyrotropin secretion.

    PubMed

    Ortiga-Carvalho, T M; Polak, J; McCann, S; Pazos-Moura, C C

    1996-11-14

    Neuromedin B (NB), a bombesin-like peptide, has been recently characterized as a physiological paracrine/autocrine inhibitor of thyrotropin (TSH) secretion. We hypothesized on the basis of our prior experiments that thyroid hormones stimulate pituitary NB secretion which mediates, at least in part, the TSH-suppressive effect of thyroid hormone. Here, we evaluated the time-course of the effect of thyroid hormones administration to eu- and hypothyroid rats on the anterior pituitary content of NB and on serum TSH. As previously reported, the pituitary content of NB increased in hyperthyroidism and decreased in hypothyroidism. Chronic treatment of hypothyroid rats with a physiological dose of thyroxine (0.8 microgram/100 g b.w. s.c, for 3 or 5 days) normalized pituitary NB content, while 5 days of treatment with a pharmacological dose of thriiodothyronine (0.4 microgram/100 g b.w.) induced an increase above that of normal pituitaries. Thyroxine and triiodothyronine injected once, s.c., into hypothyroid rats required 30 min to normalize NB content, which reached higher than normal values in 3-6 h. At these times, the increment in NB preceded or was simultaneous with the suppression of serum TSH. This rapid and marked effect on pituitary neuromedin B content, associated in time with TSH suppression, is in agreement with the hypothesis that neuromedin B may mediate at least in part, the acute suppression of TSH release by thyroid hormone, a hypothesis that still needs further verification.

  13. THE THYROID HORMONE TRANSPORTER, MCT8, SELECTIVELY RESPONDS TO THYROID HORMONE INSUFFICIENCY IN THE DEVELOPMENT RAT BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, it is not surprising that a variety of adaptive mechanisms are activated in response to TH insufficiency. However, not all brain regions respond in the same fashion to TH insufficiency. This observation...

  14. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds.

    PubMed

    Elliott, Kyle H; Welcker, Jorg; Gaston, Anthony J; Hatch, Scott A; Palace, Vince; Hare, James F; Speakman, John R; Anderson, W Gary

    2013-06-15

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field-and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements-we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  15. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  16. Thyroid hormones and thyroid disease in relation to perchlorate dose and residence near a superfund site.

    PubMed

    Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-07-01

    Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.

  17. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    PubMed

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-06

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene.

  18. Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection.

    PubMed

    Bendo, Luana; Casanova, Monise; Figueira, Ana Carolina M; Polikarpov, Igor; Zucolotto, Valtencir

    2014-05-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptors (NRs) superfamily, being encoded by two genes: TRa and TRbeta. In this paper, the ligand-binding domain (LBD) of the TRbeta1 isoform was immobilized on the surface of nanostructured electrodes for TR detection. The platforms containing TRbeta1-LBD were applied to the detection of specific ligand agonists, including the natural hormones T3 (triiodothyronine) and T4 (thyroxine), and the synthetic agonists TRIAC (3,5,3'-triiodothyroacetic acid) and GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl phenoxy) acetic acid]. Detection was performed via impedance spectroscopy. The biosensors were capable of distinguishing between the thyroid hormones T3 and T4, and/or the analogues TRIAC and GC-1 at concentrations as low as 50 nM. The detection and separation of thyroid hormones and analogue ligands by impedance techniques represents an innovative tool in the field of nanomedicine because it allows the design of inexpensive devices for the rapid and real-time detection of distinct ligand/receptor systems.

  19. Glucocorticoids, thyroid hormones, and iodothyronine deiodinases in embryonic saltwater crocodiles.

    PubMed

    Shepherdley, Caroline A; Daniels, Christopher B; Orgeig, Sandra; Richardson, Samantha J; Evans, Barbara K; Darras, Veerle M

    2002-11-01

    We investigated the relationship between glucocorticoids, thyroid hormones, and outer ring and inner ring deiodinases (ORD and IRD) during embryonic development in the saltwater crocodile (Crocodylus porosus). We treated the embryos with the synthetic glucocorticoid dexamethasone (Dex), 3,3',5-triiodothyronine (T(3)), and a combination of these two hormones (Dex + T(3)). The effects of these treatments were specific in different tissues and at different stages of development and also brought about changes in plasma concentrations of free thyroid hormones and corticosterone. Administration of Dex to crocodile eggs resulted in a decrease in 3,3',5,5'-tetraiodothyronine (T(4)) ORD activities in liver and kidney microsomes, and a decrease in the high-K(m) rT(3) ORD activity in kidney microsomes, on day 60 of incubation. Dex treatment increased the T(4) ORD activity in liver microsomes, but not kidney microsomes, on day 75 of incubation. Dex administration decreased T(3) IRD activity in liver microsomes. However, this decrease did not change plasma-free T(3) concentrations, which suggests that free thyroid hormone levels are likely to be tightly regulated during development.

  20. Free and total thyroid hormones in humans at extreme altitude

    NASA Astrophysics Data System (ADS)

    Basu, Minakshi; Pal, K.; Malhotra, A. S.; Prasad, R.; Sawhney, R. C.

    1995-03-01

    Alterations in circulatory levels of total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3), thyrotropin (TSH) and T3 uptake (T3U) were studied in male and female sea-level residents (SLR) at sea level, in Armed forces personnel staying at high altitude (3750 m) for prolonged duration (acclimatized lowlanders, ALL) and in high-altitude natives (HAN). Identical studies were also performed on male ALL who trekked to an extreme altitude of 5080 m and stayed at an altitude of more than 6300 m for about 6 months. The total as well as free thyroid hormones were found to be significantly higher in ALL and HAN as compared to SLR values. Both male as well as female HAN had higher levels of thyroid hormones. The rise in hormone levels in different ALL ethnic groups drawn from amongst the southern and northern parts of the country was more or less identical. In both HAN and ALL a decline in FT3 and FT4 occurred when these subjects trekked at subzero temperatures to extreme altitude of 5080 m but the levels were found to be higher in ALL who stayed at 6300 m for a prolonged duration. Plasma TSH did not show any appreciable change at lower altitudes but was found to be decreased at extreme altitude. The increase in thyroid hormones at high altitude was not due to an increase in hormone binding proteins, since T3U was found to be higher at high altitudes. A decline in TSH and hormone binding proteins and an increase in the free moiety of the hormones is indicative of a subtle degree of tissue hyperthyroidism which may be playing an important role in combating the extreme cold and hypoxic environment of high altitudes.

  1. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish.

  2. Circulating thyroid stimulating hormone receptor messenger RNA and differentiated thyroid cancer: A diagnostic meta-analysis

    PubMed Central

    Kong, Chao-Yue; Li, Zhan-Ming; Wang, Li-Shun

    2017-01-01

    Thyroid stimulating hormone receptor messenger RNA (TSHR-mRNA) is over-expressed in thyroid cancer patients, which indicates that TSHR-mRNA is a potential biomarker of thyroid cancer. However, system evaluation for TSHR-mRNA as a diagnostic biomarker of thyroid cancer is deficient. The performance of TSHR-mRNA for thyroid cancer diagnosis was evaluated in this study. Three common international databases as well as a Chinese database were applied for literature researching. Quality assessment of the included literatures was conducted by the QUADAS-2 tool. Totally, 1027 patients from nine studies eligible for the meta-analysis were included in this study. Global sensitivity and specificity for the positivity of TSHR-mRNA in the thyroid cancer diagnosis is 72% and 82%. The value of AUC for this test performance was 0.84. Our meta-analysis suggests that TSHR-mRNA might be a potential biomarker to complete present diagnostic methods for early and precision diagnosis of thyroid cancer. Notably, this findings need validation thorough large-scale clinical studies. PMID:28036261

  3. Visualisation of thyroid hormone synthesis by ion imaging

    NASA Astrophysics Data System (ADS)

    Audinot, J. N.; Senou, M.; Migeon, H.-N.; Many, M.-C.

    2008-12-01

    The main function of the thyroid gland is to make hormones, T4 and T3, which are essential for the regulation of metabolic processes throughout the body. Caveolae harbour is the key enzymes involved in this iodide organification. The analyses of thyroids from normal mice and caveolin-1 Knockout mice (mice deficient in caveolin) have been performed using the SIMS imaging. In the thyroid of control mice, the epithelium is homogeneous and iodine ( 127I) is observed in the follicle lumen. In Knockout mice, we observe an accumulation of intracellular vesicles and apoptotic nuclei resulting from oxidative stress due to H 2O 2 overproduction also inducing apical lesions of the thyrocytes, at the site of iodine organification and H 2O 2 generation. We also observe in the Knockout mice an accumulation of 127I in the cellular cytoplasm and an absence of the iodine in some follicular lumina, indicating a problem at the level of iodine organification.

  4. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8.

    PubMed

    Trajkovic, Marija; Visser, Theo J; Mittag, Jens; Horn, Sigrun; Lukas, Jan; Darras, Veerle M; Raivich, Genadij; Bauer, Karl; Heuer, Heike

    2007-03-01

    In humans, inactivating mutations in the gene of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8; SLC16A2) lead to severe forms of psychomotor retardation combined with imbalanced thyroid hormone serum levels. The MCT8-null mice described here, however, developed without overt deficits but also exhibited distorted 3,5,3'-triiodothyronine (T3) and thyroxine (T4) serum levels, resulting in increased hepatic activity of type 1 deiodinase (D1). In the mutants' brains, entry of T4 was not affected, but uptake of T3 was diminished. Moreover, the T4 and T3 content in the brain of MCT8-null mice was decreased, the activity of D2 was increased, and D3 activity was decreased, indicating the hypothyroid state of this tissue. In the CNS, analysis of T3 target genes revealed that in the mutants, the neuronal T3 uptake was impaired in an area-specific manner, with strongly elevated thyrotropin-releasing hormone transcript levels in the hypothalamic paraventricular nucleus and slightly decreased RC3 mRNA expression in striatal neurons; however, cerebellar Purkinje cells appeared unaffected, since they did not exhibit dendritic outgrowth defects and responded normally to T3 treatment in vitro. In conclusion, the circulating thyroid hormone levels of MCT8-null mice closely resemble those of humans with MCT8 mutations, yet in the mice, CNS development is only partially affected.

  5. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  6. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Alt...

  7. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones.

    PubMed

    Duarte-Guterman, Paula; Navarro-Martín, Laia; Trudeau, Vance L

    2014-07-01

    Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors.

  8. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    SciTech Connect

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  9. Influence of Thyroid Hormone Disruption on the Incidence of Shingles

    PubMed Central

    Ajavon, Amakoe; Killian, Dennis; Odom, Randy; Figliozzi, Robert W.; Chen, Feng; Balish, Matthew; Parmar, Jayesh; Freeman, Robert; Snitzer, Jack; Hsia, S. Victor

    2015-01-01

    SUMMARY The reactivation of dormant alpha-Human Herpes Virus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes Simplex Virus Type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by Thyroid hormone (TH) using molecular biology approaches. Varicella Zoster Virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claim database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An OR of 2.95 with a Chi-square of 51.74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited much higher chance of simultaneous diagnoses. These results showed that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups. PMID:26189668

  10. Influence of thyroid hormone disruption on the incidence of shingles.

    PubMed

    Ajavon, A; Killian, D; Odom, R; Figliozzi, R W; Chen, F; Balish, M; Parmar, J; Freeman, R; Snitzer, J; Hsia, S V

    2015-12-01

    The reactivation of dormant alpha-human herpesvirus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes simplex virus type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by thyroid hormone (TH) using molecular biology approaches. Varicella zoster virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claims database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An odds ratio of 2·95 with a χ 2 value of 51·74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited a much higher chance of simultaneous diagnoses. These results show that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups.

  11. Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders.

    PubMed

    Voss, S R; Kump, D K; Walker, J A; Shaffer, H B; Voss, G J

    2012-11-01

    The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1-3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size.

  12. Imprinting of maternal thyroid hormones in the offspring.

    PubMed

    Opazo, María Cecilia; Haensgen, Henny; Bohmwald, Karen; Venegas, Luis F; Boudin, Helene; Elorza, Alvaro A; Simon, Felipe; Fardella, Carlos; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2017-03-08

    Thyroid hormones (THs) during pregnancy contribute significantly to cellular differentiation and development in several tissues of the offspring, principally the central nervous system (CNS). TH deficiencies, such as hypothyroidism or hypothyroxinemia, are highly frequent during pregnancy worldwide and known to be detrimental for the development of the fetus. The function of CNS in the offspring gestated under TH deficiency will be irreversible impaired, causing low intellectual quotient, attention deficit, and mental retardation. On the other hand, little is known about the effects of TH deficiency in the offspring immune system, being the prevalent notion that the effects are reversible and only for a while will affect the number of B and T cells. Recent studies have shown that maternal hypothyroidism can altered the function of immune system in the offspring, rendering the female offspring more susceptible to suffer autoimmune-inflammatory diseases, such as experimental autoimmune encephalomyelitis (EAE) and to be more resistant to a bacterial infection. In this article we discuss these recent findings, as well as the possible mechanisms underlying these effects and the potential implications for human health.

  13. Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders

    PubMed Central

    Voss, S R; Kump, D K; Walker, J A; Shaffer, H B; Voss, G J

    2012-01-01

    The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size. PMID:22850698

  14. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  15. The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates.

    PubMed

    Little, Alexander G; Seebacher, Frank

    2014-05-15

    The evolution of endothermy is one of the most intriguing and consistently debated topics in vertebrate biology, but the proximate mechanisms that mediated its evolution are unknown. Here, we suggest that the function of thyroid hormone in regulating physiological processes in response to cold is key to understanding the evolution of endothermy. We argue that the capacity of early chordates to produce thyroid hormone internally was the first step in this evolutionary process. Selection could then act on the capacity of thyroid hormone to regulate metabolism, muscle force production and cardiac performance to maintain their function against the negative thermodynamic effects of decreasing temperature. Thyroid-mediated cold acclimation would have been the principal selective advantage. The actions of thyroid hormone during cold acclimation in zebrafish are very similar to its role during endothermic thermogenesis. The thyroid-mediated increases in metabolism and locomotor performance in ectotherms eventually resulted in sufficient heat production to affect body temperature. From this point onwards, increased body temperature per se could be of selective advantage and reinforce thyroid-induced increases in physiological rates. Selection for increased body temperature would promote those mechanisms that maximise heat production, such as increased Na(+)/K(+)-ATPase activity, futile cycling by SERCA, and mitochondrial uncoupling, all of which are regulated by thyroid hormone. The specific end point of this broader evolutionary process would be endothermic thermoregulation. However, considering the evolution of endothermy in isolation is misleading because the selective advantages that drove the evolutionary process were independent from endothermy. In other words, without the selective advantages of thyroid-mediated cold acclimation in fish, there would be no endotherms.

  16. Secretion of Parathyroid Hormone in Patients with Medullary Thyroid Carcinoma

    PubMed Central

    Deftos, Leonard J.; Parthemore, Jacqueline G.

    1974-01-01

    The secretion of parathyroid hormone (PTH) and calcitonin (CT) was studied in 30 patients with medullary thyroid carcinoma. Most patients with elevated levels of CT were normocalcemic and also had normal basal levels of PTH. Five of six patients with associated hyperparathyroidism were hypercalcemic and had elevated basal PTH levels. Hormone secretion was also studied during infusions with standard and low doses of calcium. PTH unexpectedly increased during 12 of 18 calcium infusions. Such a paradoxical increase in PTH was seen in those patients with the greatest increase in CT and the least increase in calcium during the calcium infusion. Accordingly, increases in PTH concentration during the calcium infusions could be correlated directly with increases in CT and correlated inversely with increases in calcium. These observations suggest that, in some patients with medullary thyroid carcinoma, a further increase in the abnormally elevated CT levels may stimulate PTH secretion. Therefore, at least in acute studies, there may be a functional, as well as a genetic, relationship between the secretion of these two hormones in patients with this thyroid tumor. PMID:4847251

  17. Thyroid hormone regulated genes in cerebral cortex development.

    PubMed

    Bernal, Juan

    2017-02-01

    The physiological and developmental effects of thyroid hormones are mainly due to the control of gene expression after interaction of T3 with the nuclear receptors. To understand the role of thyroid hormones on cerebral cortex development, knowledge of the genes regulated by T3 during specific stages of development is required. In our laboratory, we previously identified genes regulated by T3 in primary cerebrocortical cells in culture. By comparing these data with transcriptomics of purified cell types from the developing cortex, the cellular targets of T3 can be identified. In addition, many of the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of T3-regulated genes in the different stages of cortex development within the physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons. On the other hand, T3 regulates transcriptionally genes encoding extracellular matrix proteins, involved in cell migration and the control of diverse signaling pathways.

  18. Coupling between Nutrient Availability and Thyroid Hormone Activation*

    PubMed Central

    Lartey, Lattoya J.; Werneck-de-Castro, João Pedro; O-Sullivan, InSug; Unterman, Terry G.; Bianco, Antonio C.

    2015-01-01

    The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway. PMID:26499800

  19. Evaluation of thyroid hormones in children receiving carbamazepine or valproate: a prospective study.

    PubMed

    Kafadar, İhsan; Kılıç, Betül Aydın; Arapoglu, Mujde; Yalçın, Koray; Dalgıç, Nazan

    2015-01-01

    The aim of this study was to determine the alterations in thyroid function during carbamazepine or valproate monotherapy in a prospective study. Forty patients treated with valproate, 33 patients treated with carbamazepine, and 36 control patients, all aged between 2 and 18 years, were enrolled in our study. Serum levels of thyroid hormones were measured before the beginning of the antiepileptic therapy and at 6 and 12 months of treatment. Carbamazepine-treated patients showed mean serum thyroid hormone levels significantly lower than baseline evaluation and the control group. Thyroid-stimulating hormone levels at 6 and 12 months were not significantly different in carbamazepine treated patients. Serum hormone levels did not change during valproate treatment. Thyroid-stimulating hormone levels were significantly higher at the 12th month of valproate treatment. Our data suggest that although carbamazepine causes significant alterations in thyroid hormone levels, these changes do not lead to clinical symptoms at the follow-up period of 12 months.

  20. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  1. Developmental Profile and effects of perinatal PBDE exposure in Hepatic Phase I, II, III and deiodinase I gene expression involved in thyroid hormone metabolism in male rat pups

    EPA Science Inventory

    Previous studies demonstrated that perinatal exposure to PBDEs, a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of the commerc...

  2. Thyroid-stimulating hormone increases active transport of perchlorate into thyroid cells.

    PubMed

    Tran, Neil; Valentín-Blasini, Liza; Blount, Benjamin C; McCuistion, Caroline Gibbs; Fenton, Mike S; Gin, Eric; Salem, Andrew; Hershman, Jerome M

    2008-04-01

    Perchlorate blocks thyroidal iodide transport in a dose-dependent manner. The human sodium/iodide symporter (NIS) has a 30-fold higher affinity for perchlorate than for iodide. However, active transport of perchlorate into thyroid cells has not previously been demonstrated by direct measurement techniques. To demonstrate intracellular perchlorate accumulation, we incubated NIS-expressing FRTL-5 rat thyroid cells in various concentrations of perchlorate, and we used a sensitive ion chromatography tandem mass spectrometry method to measure perchlorate accumulation in the cells. Perchlorate caused a dose-related inhibition of 125-iodide uptake at 1-10 microM. The perchlorate content from cell lysate was analyzed, showing a higher amount of perchlorate in cells that were incubated in medium with higher perchlorate concentration. Thyroid-stimulating hormone increased perchlorate uptake in a dose-related manner, thus supporting the hypothesis that perchlorate is actively transported into thyroid cells. Incubation with nonradiolabeled iodide led to a dose-related reduction of intracellular accumulation of perchlorate. To determine potential toxicity of perchlorate, the cells were incubated in 1 nM to 100 microM perchlorate and cell proliferation was measured. Even the highest concentration of perchlorate (100 microM) did not inhibit cell proliferation after 72 h of incubation. In conclusion, perchlorate is actively transported into thyroid cells and does not inhibit cell proliferation.

  3. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  4. Thyroid function and stress hormones in children with stress hyperglycemia.

    PubMed

    Bordbar, Mohammad Reza; Taj-Aldini, Reza; Karamizadeh, Zohre; Haghpanah, Sezaneh; Karimi, Mehran; Omrani, Gholam Hossein

    2012-12-01

    The purpose of the study is to determine the prevalence of stress hyperglycemia and to investigate how thyroid and stress hormones alter during stress hyperglycemia in children admitted to pediatric emergency wards. A prospective cross-sectional study was conducted in children, less than 19 years old, who were admitted to pediatric emergency wards of Nemazee and Dastgheib Hospitals, Shiraz, Southern Iran. Those patients taking steroids, beta-agonists or intravenously administered glucose before venipuncture, and patients with diabetes mellitus (DM) or thyroid diseases were excluded. Children with blood glucose ≥ 150 mg/dL during admission were regarded as cases. The controls were age- and- sex- matched, euglycemic children. Stress hormones including cortisol, insulin, growth hormone, and prolactin were measured, and thyroid function was tested with a radioimmunoassay (RIA) method in all cases and controls. The results showed that among 1,054 screened children, 39 cases (3.7 %) had stress hyperglycemia and 89 controls were included in the study. The occurrence of hyperglycemia was independent of sex, but it occurred mostly in children under 6 years old. Hyperglycemia occurred more frequently in patients with a positive family history of DM (odds ratio = 3.2, 95 % CI = 1.3-7.9, and P = 0.009). There were no significant differences between cases and controls regarding any hormones except higher cortisol, and lower total T3 and T4 in cases compared with controls. Neither of cases developed diabetes in the 24-month follow-up period. These findings led us to the conclusion that stress hyperglycemia is occasionally seen in critically ill patients. Among the stress hormones measured, only cortisol increased during hyperglycemia. It seems that hyperglycemia is not an important risk factor for future diabetes.

  5. THYROID HORMONE INSUFFICIENCY AND BRAIN DEVELOPMENT -- DETERMINATION OF NEUROTOXICITY AT LOW LEVELS OF HORMONE DISRUPTION.

    EPA Science Inventory

    Thyroid hormone (TH) deficiencies during development produce deleterious effects on brain structure and function. The degree to which TH must be perturbed to induce neurotoxicity remains unclear. The present study was conducted as part of a Cooperative Agreement between US EPA, U...

  6. Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland.

    PubMed

    Weber, Jonas; McInnes, Joseph; Kizilirmak, Cise; Rehders, Maren; Qatato, Maria; Wirth, Eva K; Schweizer, Ulrich; Verrey, Francois; Heuer, Heike; Brix, Klaudia

    2017-03-05

    Thyroid hormone (TH) target cells need to adopt mechanisms to maintain sufficient levels of TH to ensure regular functions. This includes thyroid epithelial cells, which generate TH in addition to being TH-responsive. However, the cellular and molecular pathways underlying thyroid auto-regulation are insufficiently understood. In order to investigate whether thyroglobulin processing and TH export are sensed by thyrocytes, we inactivated thyroglobulin-processing cathepsins and TH-exporting monocarboxylate transporters (Mct) in the mouse. The states of thyroglobulin storage and its protease-mediated processing and degradation were related to the levels of TH transporter molecules by immunoblotting and immunofluorescence microscopy. Thyroid epithelial cells of cathepsin-deficient mice showed increased Mct8 protein levels at the basolateral plasma membrane domains when compared to wild type controls. While the protein amounts of the thyroglobulin-degrading cathepsin D remained largely unaffected by Mct8 or Mct10 single-deficiencies, a significant increase in the amounts of the thyroglobulin-processing cathepsins B and L was detectable in particular in Mct8/Mct10 double deficiency. In addition, it was observed that larger endo-lysosomes containing cathepsins B, D, and L were typical for Mct8- and/or Mct10-deficient mouse thyroid epithelial cells. These data support the notion of a crosstalk between TH transporters and thyroglobulin-processing proteases in thyroid epithelial cells. We conclude that a defect in exporting thyroxine from thyroid follicles feeds back positively on its cathepsin-mediated proteolytic liberation from the precursor thyroglobulin, thereby adding to the development of auto-thyrotoxic states in Mct8 and/or Mct10 deficiencies. The data suggest TH sensing molecules within thyrocytes that contribute to thyroid auto-regulation.

  7. Deiodination of thyroid hormones by the perfused rat liver

    PubMed Central

    Hillier, A. P.

    1972-01-01

    1. An investigation has been made into the deiodination of thyroid hormones by the perfused rat liver. The hormones were labelled with 125I in the phenolic ring and the rate of deiodination was estimated by measuring the release of radio-iodide into the perfusate. 2. At tracer concentrations, 0·98% of the liver thyroxine is deiodinated/5 min. The deiodination of tri-iodothyronine is considerably faster, 3·3%/5 min. 3. Deiodination is very sensitive to changes in temperature. 4. The reaction shows saturation kinetics typical of many enzymes, the reciprocal of the rate of deiodination being proportional to the reciprocal of the hormone concentration in the tissue. The maximum rate of deiodination of each hormone is about 1·5 μg/min for a whole liver preparation weighing 16 g. 5. Tri-iodothyronine inhibits thyroxine deiodination and vice versa, suggesting that a single enzyme is responsible for both reactions. 6. Propyl thiouracil (PTU) at high concentrations inhibits the deiodination of both hormones. 7. An abnormally high rate of deiodination is associated with the actual injection of hormone into the preparation. This suggests that only the free (unbound) hormone in the tissue is directly available to the deiodinating enzyme. 8. About half of the whole body deiodination of thyroxine is relatively insensitive to PTU. It is suggested that most of this type of deiodination is performed in the liver and that the process is one of inactivation. PMID:5033472

  8. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis).

    PubMed

    Sun, Hong-Jie; Xiang, Ping; Tang, Ming-Hu; Sun, Li; Ma, Lena Q

    2016-02-13

    Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis.

  9. Attenuation of kindling-induced decreases in NT-3 mRNA by thyroid hormone depletion.

    PubMed

    Kim, S Y; Smith, M A; Post, R M; Rosen, J B

    1998-02-01

    The expression of neurotrophins is altered by amygdala kindled seizures. Because thyroid hormone can regulate the transcription of neurotrophins, we asked whether thyroid hormone regulates neurotrophin mRNA expression following amygdala kindling. Rats with electrodes implanted in the basolateral nucleus of the amygdala were either depleted of thyroid hormone or given excess thyroid hormone. The rats were then kindled daily until they had one generalized seizure. The brains were removed 4 h after the seizure and processed for in situ hybridization of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) mRNAs. In non-kindled rats, thyroid hormone depletion increased the levels of BDNF mRNA in the paraventricular nucleus of the hypothalamus and the pituitary gland. NGF and NT-3 mRNA expression was not altered. In addition, thyroid hormone manipulations had no effect on kindling or on kindling-induced BDNF and NGF mRNA. However, the kindling-induced decrease in NT-3 mRNA expression in the dentate gyrus granule cell layer was significantly attenuated by thyroid hormone depletion. These effects were reversed by thyroid hormone replacement. The results indicate that thyroid hormone plays a modulatory role in the seizure-induced changes of NT-3 mRNA expression found in the dentate gyrus.

  10. Maternal thyroid hormones early in pregnancy and fetal brain development.

    PubMed

    de Escobar, Gabriella Morreale; Obregón, María Jesús; del Rey, Francisco Escobar

    2004-06-01

    During the last few decades our understanding of the possible role of thyroid hormones during brain development has increased and contributed to resolve previously discordant hypotheses, although much remains to be clarified. Thyroid hormones of maternal origin are present in the fetal compartment, despite the very efficient uterine-placental 'barrier', necessary to avoid potentially toxic concentrations of free T4 and T3 from reaching fetal tissues before they are required for development. T3 remains low throughout pregnancy, whereas FT4 in fetal fluids increases rapidly to adult levels, and is determined by the maternal availability of T4. It is present in embryonic fluids 4 weeks after conception, with FT4 steadily increasing to biologically relevant values. T3, generated from T4 in the cerebral cortex, reaches adult values by mid-gestation and is partly bound to specific nuclear receptor isoforms. Iodothyronine deioidinases are important for the spatial and temporal regulation of T3 bioavailability, tailored to the differing and changing requirements of thyroid hormone-sensitive genes in different brain structures, but other regulatory mechanism(s) are likely to be involved. Maternal transfer constitutes a major fraction of fetal serum T4, even after onset of fetal thyroid secretion, and continues to have an important protective role in fetal neurodevelopment until birth. Prompt treatment of maternal hypothyroidism, identified by increased TSH, is being advocated to mitigate a negative effect on the woman and her child. However, even a moderate transient period of maternal hypothyroxinemia at the beginning of rat neurogenesis disrupts neuronal migration into cortical layers. These findings reinforce the epidemiological evidence that early maternal hypothyroxinemia-when neuronal migratory waves are starting-is potentially damaging for the child. Detection of an inappropiate first trimester FT4 surge that may not result in increased TSH, may be crucial for the

  11. Magnetic resonance imaging of cerebral anomalies in subjects with resistance to thyroid hormone

    SciTech Connect

    Leonard, C.M.; Hauser, P.; Weintraub, B.D. |

    1995-06-19

    Resistance to thyroid hormone (RTH) is an autosomal dominant disease caused by mutations in the human thyroid receptor beta gene on chromosome 3. Individuals with RTH have an increased incidence of attention deficit hyperactivity disorder (ADHD). The purpose of this study was to search for developmental brain malformations associated with RTH. Forty-three subjects (20 affected males [AM], 23 affected females [AF]) with resistance to thyroid hormone and 32 unaffected first degree relatives (18 unaffected males [UM], 14 unaffected females [UF]) underwent MRI brain scans with a volumetric acquisition that provided 90 contiguous 2 mm thick sagittal images. Films of six contiguous images beginning at a standard sagittal position lateral to the insula were analyzed by an investigator who was blind with respect to subject characteristics. The presence of extra or missing gyri in the parietal bank of the Sylvian fissure (multimodal association cortex) and multiple Heschl`s transverse gyri (primary auditory cortex) were noted. There was a significantly increased frequency of anomalous Sylvian fissures in the left hemisphere in males with RTH (AM: 70%; AF: 30%; UM: 28% UF: 28%). Also, there was an increased frequency of anomalous Sylvian fissures on the left combined with multiple Heschl`s gyri in either hemisphere in males with RTH (AM: 50%; AF: 9%; UM: 6%; UF: 0%). However, RTH subjects with anomalies did not have an increased frequency of ADHD as compared with RTH subjects with no anomalies. Abnormal thyroid hormone action in the male fetus early during brain development may be associated with grossly observable cerebral anomalies of the left hemisphere. The effects of mutations in the thyroid receptor beta gene provide a model system for studying the complex interaction of genetic and non-genetic factors on brain and behavioral development. 19 refs., 2 figs., 2 tabs.

  12. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences.

    PubMed

    Gilbert, Mary E; Rovet, Joanne; Chen, Zupei; Koibuchi, Noriyuki

    2012-08-01

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to neurodevelopment, there is less information regarding the consequences of modest degrees of thyroid. The impact of low level TH disruptions induced by environmental contaminants has not been defined. This paper is a synopsis from four invited speakers who presented at the 13th International Neurotoxicology Association meeting held in Xi'an, China during the summer of 2011. An overview of the role of TH in brain development and a review of human and animal data on the neurological sequelae of disruption of the thyroid axis in the pre- and early post-natal periods were presented by Mary Gilbert and Joanne Rovet. Iodine deficiency, a common cause of TH insufficiency and mental retardation in many countries, including China, was addressed by Zupei Chen. In this presentation the current incidence of iodine deficiency and neurological outcome in China and the efficacy of recently implemented iodinization programs to eliminate this cause of mental retardation were reviewed. Joanne Rovet described the impact of TH disruption during pregnancy and under conditions of congenital hypothyroidism. Children born with normal thyroid function, but who experienced TH insufficiency in the womb, display subtle cognitive impairments and abnormalities in brain imaging. Despite early detection and treatment, deficiencies also exist in children born with thyroid disorders. Different patterns of cognitive effects result from prenatal versus postnatal TH insufficiency. Mary Gilbert reported on the effects of environmental contaminants with thyroid disrupting action on brain development in animals. Results of neurophysiological, behavioral, structural and molecular alterations that accompany modest perturbations of

  13. Thyroid hormones in chronic heat exposed men

    NASA Astrophysics Data System (ADS)

    Gertner, A.; Israeli, R.; Lev, A.; Cassuto, Y.

    1983-03-01

    Previous reports have indicated that thyroid gland activity, is depressed in the heat. Total thyroxine (T4) and triiodothyronine (T3) serum levels in 17 workers of the metal work shop at a plant near the Dead Sea and 8 workers in Beer Sheva, Israel were examined. The metal workshop of the plant near the Dead Sea is part of a large chemical plant. The one in Beer Sheva is part of a large construction company. Maintenance work, as well as metal work projects are performed in both workshops. During the work shifts, the workers of the Dead Sea plant were exposed to temperatures ranging from 30 36°C (May Oct.) and 14 21°C (Dec. Feb). In Beer Sheva the range was 25 32°C (June Sept.) and 10 17°C (Dec. Feb.). Total T4 was measured by competitive protein binding and total T3 by radioimmunoassay in blood drawn before work (0700) in July and January. In summer. T4 was higher and T3 was lower for both groups than in winter. The observed summer T3 decrease may result from depressed extrathyroidal conversion of T4 to T3. We conclude that the regulation of energy metabolism in hot climates may be related to extrathyroidal conversion of T4 to T3.

  14. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes.

    PubMed

    Kneer, N; Lardy, H

    2000-03-01

    The importance of the sn-glycerol- 3-phosphate (G-3-P) electron transfer shuttle in hormonal regulation of gluconeogenesis was examined in hepatocytes from rats with decreased mitochondrial G-3-P dehydrogenase activity (thyroidectomized) or increased G-3-P dehydrogenase activity [triiodothyronine (T(3)) or dehydroepiandrosterone (DHEA) treated]. Rates of glucose formation from 10 mM lactate, 10 mM pyruvate, or 2.5 mM dihydroxyacetone were somewhat less in hypothyroid cells than in cells from normal rats but gluconeogenic responses to calcium addition and to norepinephrine (NE), glucagon (G), or vasopressin (VP) were similar to the responses observed in cells from normal rats. However, with 2. 5 mM glycerol or 2.5 mM sorbitol, substrates that must be oxidized in the cytosol before conversion to glucose, basal gluconeogenesis was not appreciably altered by hypothyroidism but responses to calcium and to the calcium-mobilizing hormones were abolished. Injecting thyroidectomized rats with T(3) 2 days before preparing the hepatocytes greatly enhanced gluconeogenesis from glyc erol and restored the response to Ca(2+) and gluconeogenic hormones. Feeding dehydroepiandrosterone for 6 days depressed gluconeogenesis from lactate or pyruvate but substantially increased glucose production from glycerol in euthyroid cells and restored responses to Ca(2+) in hypothyroid cells metabolizing glycerol. Euthyroid cells metabolizing glycerol or sorbitol use the G-3-P and malate/aspartate shuttles to oxidize excess NADH generated in the cytosol. The transaminase inhibitor aminooxyacetate (AOA) decreased gluconeogenesis from glycerol 40%, but had little effect on responses to Ca(2+) and NE. However, in hypothyroid cells, with minimal G-3-P dehydrogenase, AOA decreased gluconeogenesis from glycerol more than 90%. Thus, the basal rate of gluconeogenesis from glycerol in the euthyroid cells is only partly dependent on electron transport from cytosol to mitochondria via the malate

  15. Melatonin in the thyroid gland: regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression.

    PubMed

    Garcia-Marin, R; Fernandez-Santos, J M; Morillo-Bernal, J; Gordillo-Martinez, F; Vazquez-Roman, V; Utrilla, J C; Carrillo-Vico, A; Guerrero, J M; Martin-Lacave, I

    2015-10-01

    Melatonin is an indoleamine with multiple functions in both plant and animal species. In addition to data in literature describing many other important roles for melatonin, such as antioxidant, circadian rhythm controlling, anti-aging, antiproliferative or immunomodulatory activities, our group recently reported that thyroid C-cells synthesize melatonin and suggested a paracrine role for this molecule in the regulation of thyroid activity. To discern the role played by melatonin at thyroid level and its involvement in the hypothalamic-pituitary-thyroid axis, in the present study we have analyzed the effect of thyrotropin in the regulation of the enzymatic machinery for melatonin biosynthesis in C cells as well as the effect of melatonin in the regulation of thyroid hormone biosynthesis in thyrocytes. Our results show that the key enzymes for melatonin biosynthesis (AANAT and ASMT) are regulated by thyroid-stimulating hormone. Furthermore, exogenous melatonin increases thyroglobulin expression at mRNA and protein levels on cultured thyrocytes and this effect is not strictly mediated by the upregulation of TTF1 or, noteworthy, PAX8 transcription factors. The present data show that thyroid C-cells synthesize melatonin under thyroid-stimulating hormone control and, consistently with previous data, support the hypothesis of a paracrine role for C-cell-synthesised melatonin within the thyroid gland. Additionally, in the present study we show evidence for the involvement of melatonin in thyroid function by directly-regulating thyroglobulin gene expression in follicular cells.

  16. Stimulation of thyroid hormone secretion by thyrotropin in beluga whales, Delphinapterus leucas.

    PubMed Central

    St Aubin, D J

    1987-01-01

    Bovine thyroid stimulating hormone administered to three beluga whales, Delphinapterus leucas, was effective in producing an increase in circulating levels of triiodothyronine and thyroxine. A single dose of 10 I.U. of thyroid stimulating hormone resulted in a 145% increase in triiodothyronine and a 35% increase in thyroxine after nine hours in a whale tested within two hours after capture. The response was less pronounced in an animal tested with the same does on two occasions after four and eight weeks in captivity. In the third whale, 10 I.U. of thyroid stimulating hormone given on each of three consecutive days produced a marked increase in triiodothyronine and thyroxine. The elevation of thyroxine concentration persisted for at least two days after the last injection of thyroid stimulating hormone. A subsequent decrease in thyroxine to levels below baseline signalled the suppression of endogenous thyroid stimulating hormone. This preliminary study helps to establish a protocol for testing thyroid function in cetaceans. PMID:3651900

  17. Direct modulation of simian virus 40 late gene expression by thyroid hormone and its receptor.

    PubMed Central

    Zuo, F; Kraus, R J; Gulick, T; Moore, D D; Mertz, J E

    1997-01-01

    Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of primate cells by the binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors (S. R. Wiley, R. J. Kraus, F. R. Zuo, E. E. Murray, K. Loritz, and J. E. Mertz, Genes Dev. 7:2206-2219, 1993). Recently, we showed that IBP-s consists of several members of the steroid/thyroid hormone receptor superfamily (F. Zuo and J. E. Mertz, Proc. Natl. Acad. Sci. USA 92:8586-8590, 1995). Here, we show that the thyroid hormone receptor TRalpha1, in combination with retinoid X receptor alpha (RXRalpha), is specifically bound at the transcriptional initiation site of the major late promoter of SV40. This binding repressed transcription from the SV40 late promoter by preventing the formation of pre-initiation complexes. Addition of the thyroid hormone 3,5,3'-L-triiodothyronine (T3) resulted in reversal of this repression in cotransfected CV-1 cells. Interestingly, repression did not occur when this thyroid response element (TRE) was translocated to 50 bp upstream of the major late initiation site. Binding of TRalpha1/RXRalpha heterodimers to this TRE induced bending of the promoter DNA. We conclude that hormones and their receptors can directly affect the expression of SV40, probably by affecting protein-protein and protein-DNA interactions involved in the formation of functional preinitiation complexes. PMID:8985367

  18. Adverse effects of thyroid hormone preparations and antithyroid drugs.

    PubMed

    Bartalena, L; Bogazzi, F; Martino, E

    1996-07-01

    Thyroid hormone preparations, especially thyroxine, are widely used either at replacement doses to correct hypothyroidism or at suppressive doses to abolish thyrotropin (thyroid-stimulating hormone) secretion in patients with differentiated thyroid carcinoma after total thyroidectomy or with diffuse/ nodular nontoxic goitre. In order to suppress thyrotropin secretion, it is necessary to administer slightly supraphysiological doses of thyroxine. Possible adverse effects of this therapy include cardiovascular changes (shortening of systolic time intervals, increased frequency of atrial premature beats and, possibly, left ventricular hypertrophy) and bone changes (reduced bone density and bone mass), but the risk of these adverse effects can be minimised by carefully monitoring serum free thyroxine and free liothyronine (triiodothyronine) measurements and adjusting the dosage accordingly. Thionamides [thiamazole (methimazole), carbimazole, propylthiouracil] are the most widely used antithyroid drugs. They are given for long periods of time and cause adverse effects in 3 to 5% of patients. In most cases, adverse effects are minor and transient (e.g. skin rash, itching, mild leucopenia). The most dangerous effect is agranulocytosis, which occurs in 0.1 to 0.5% of patients. This life-threatening condition can now be effectively treated by granulocyte colony-stimulating factor administration. Other major adverse effects (aplastic anaemia, thrombocytopenia, lupus erythematosus-like syndrome, vasculitis) are exceedingly rare.

  19. IN VITRO METABOLISM OF THYROID HORMONES BY RECOMBINANT HUMAN UDP-GLUCORONOSYLTRANSFERASES AND SULFOTRANSFERASES

    EPA Science Inventory

    Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...

  20. The Role of Thyroid Hormones as Inductors of Oxidative Stress and Neurodegeneration

    PubMed Central

    Villanueva, I.; Alva-Sánchez, C.; Pacheco-Rosado, J.

    2013-01-01

    Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases. PMID:24386502

  1. Medullary thyroid carcinoma with ectopic adrenocorticotropic hormone syndrome.

    PubMed

    Choi, Hong Seok; Kim, Min Joo; Moon, Chae Ho; Yoon, Jong Ho; Ku, Ha Ra; Kang, Geon Wook; Na, Im Il; Lee, Seung-Sook; Lee, Byung-Chul; Park, Young Joo; Kim, Hong Il; Ku, Yun Hyi

    2014-03-01

    Ectopic adrenocorticotropic hormone (ACTH) syndrome is caused most frequently by a bronchial carcinoid tumor or by small cell lung cancer. Medullary thyroid carcinoma (MTC) is a rare etiology of ectopic ACTH syndrome. We describe a case of Cushing syndrome due to ectopic ACTH production from MTC in a 48-year-old male. He was diagnosed with MTC 14 years ago and underwent total thyroidectomy, cervical lymph node dissection and a series of metastasectomies. MTC was confirmed by the pathological examination of the thyroid and metastatic mediastinal lymph node tissues. Two years after his last surgery, he developed Cushingoid features, such as moon face and central obesity, accompanied by uncontrolled hypertension and new-onset diabetes. The laboratory results were compatible with ectopic ACTH syndrome. A bilateral adrenalectomy improved the clinical and laboratory findings that were associated with Cushing syndrome. This is the first confirmed case of ectopic ACTH syndrome caused by MTC in Korea.

  2. Thyroid Hormones, T3 and T4, in the Brain

    PubMed Central

    Schroeder, Amy C.; Privalsky, Martin L.

    2014-01-01

    Thyroid hormones (THs) are essential for fetal and post-natal nervous system development and also play an important role in the maintenance of adult brain function. Of the two major THs, T4 (3,5,3′,5′-tetraiodo-l-thyronine) is classically viewed as an pro-hormone that must be converted to T3 (3,5,3′-tri-iodo-l-thyronine) via tissue-level deiodinases for biological activity. THs primarily mediate their effects by binding to thyroid hormone receptor (TR) isoforms, predominantly TRα1 and TRβ1, which are expressed in different tissues and exhibit distinctive roles in endocrinology. Notably, the ability to respond to T4 and to T3 differs for the two TR isoforms, with TRα1 generally more responsive to T4 than TRβ1. TRα1 is also the most abundantly expressed TR isoform in the brain, encompassing 70–80% of all TR expression in this tissue. Conversion of T4 into T3 via deiodinase 2 in astrocytes has been classically viewed as critical for generating local T3 for neurons. However, deiodinase-deficient mice do not exhibit obvious defectives in brain development or function. Considering that TRα1 is well-established as the predominant isoform in brain, and that TRα1 responds to both T3 and T4, we suggest T4 may play a more active role in brain physiology than has been previously accepted. PMID:24744751

  3. Thyroid hormones, t3 and t4, in the brain.

    PubMed

    Schroeder, Amy C; Privalsky, Martin L

    2014-01-01

    Thyroid hormones (THs) are essential for fetal and post-natal nervous system development and also play an important role in the maintenance of adult brain function. Of the two major THs, T4 (3,5,3',5'-tetraiodo-l-thyronine) is classically viewed as an pro-hormone that must be converted to T3 (3,5,3'-tri-iodo-l-thyronine) via tissue-level deiodinases for biological activity. THs primarily mediate their effects by binding to thyroid hormone receptor (TR) isoforms, predominantly TRα1 and TRβ1, which are expressed in different tissues and exhibit distinctive roles in endocrinology. Notably, the ability to respond to T4 and to T3 differs for the two TR isoforms, with TRα1 generally more responsive to T4 than TRβ1. TRα1 is also the most abundantly expressed TR isoform in the brain, encompassing 70-80% of all TR expression in this tissue. Conversion of T4 into T3 via deiodinase 2 in astrocytes has been classically viewed as critical for generating local T3 for neurons. However, deiodinase-deficient mice do not exhibit obvious defectives in brain development or function. Considering that TRα1 is well-established as the predominant isoform in brain, and that TRα1 responds to both T3 and T4, we suggest T4 may play a more active role in brain physiology than has been previously accepted.

  4. Influx of Thyroid Hormones into Rat Liver In Vivo

    PubMed Central

    Pardridge, William M.; Mietus, Lawrence J.

    1980-01-01

    The transport of [125I]thyroxine (T4) and [125I]triiodothyronine (T3) into liver was investigated with a tissue sampling-portal vein injection technique in the anesthetized rat. The method allows the investigation of the effects of plasma proteins in human serum on the unidirectional influx of T4 or T3 into liver cells. The percent extraction of unidirectional clearance of T3 and T4 was 77±2% and 43±2%, respectively, after portal injection of a bolus of Ringer's solution. Cell membrane transport of T4 or T3 was nonsaturable because 50-μM concentrations of unlabeled hormone had no effect on transport. The addition of bovine albumin in concentrations of 1, 5, or 10 g/100 ml bound >98% of T4 or T3 in vitro, but had no significant effect on T3 or T4 transport in vivo. Conversely, 10% rabbit antisera specific for T3 or T4, completely abolished the intracellular distribution of thyroid hormone into liver. In the presence of rat serum, which contains albumin and thyroid hormone binding pre-albumin (TBPA), 18 and 81% of total plasma T4 and T3, respectively, were available for transport in vivo. The fraction of hormone available for transport in the presence of normal human serum, which contains albumin, TBPA, and thyroid hormone binding globulin (TBG) was 11% for T4 and 72% for T3. The fraction of hormone transported into liver after injection of serum obtained from pregnant or birth control pilltreated volunteers was 4% for T4 (but this was not significantly different from zero) and 54% for T3. These data suggest: (a) The mechanism by which T4 and T3 traverse the liver cell membrane is probably free diffusion. (b) Albumin-bound T4 or T3 is freely cleared by liver, ∼50% of TBG-bound T3 is transported, but little, if any, of TBPA-bound T4 or TBG-bound T4 is cleared by liver cells. (c) Although the albumin-bound fraction of T4 greatly exceeds the free (dialyzable) moiety, the two fractions are both inversely related to the existing TBA or TBG level; therefore, in vitro

  5. Improved response of growth hormone to growth hormone-releasing hormone and reversible chronic thyroiditis after hydrocortisone replacement in isolated adrenocorticotropic hormone deficiency.

    PubMed

    Inagaki, Miho; Sato, Haruhiro; Miyamoto, Yoshiyasu; Hirukawa, Takashi; Sawaya, Asako; Miyakogawa, Takayo; Tatsumi, Ryoko; Kakuta, Takatoshi

    2009-07-20

    We report a 44-year-old Japanese man who showed a reversible blunted response of growth hormone (GH) to GH-releasing hormone (GRH) stimulation test and reversible chronic thyroiditis accompanied by isolated ACTH deficiency. He was admitted to our hospital because of severe general malaise, hypotension, and hypoglycemia. He showed repeated attacks of hypoglycemia, and his serum sodium level gradually decreased. Finally, he was referred to the endocrinology division, where his adrenocorticotropic hormone (ACTH) and cortisol values were found to be low, and his GH level was slightly elevated. An increased value of thyroid stimulating hormone (TSH) and decreased values of free triidothyronine and free thyroxine were observed along with anti-thyroglobulin antibody, suggesting chronic thyroiditis. Pituitary stimulation tests revealed a blunted response of ACTH and cortisol to corticotropin-releasing hormone, and a blunted response of GH to GRH. Hydrocortisone replacement was then started, and this improved the patient's general condition. His hypothyroid state gradually ameliorated and his titer of anti-thyroglobulin antibody decreased to the normal range. Pituitary function was re-evaluated with GRH stimulation test under a maintenance dose of 20 mg/day hydrocortisone and showed a normal response of GH to GRH. It is suggested that re-evaluation of pituitary and thyroid function is useful for diagnosing isolated ACTH deficiency after starting a maintenance dose of hydrocortisone in order to avoid unnecessary replacement of thyroid hormone.

  6. Magnetic Resonance Imaging and Volumetric Analysis: Novel Tools to Study Thyroid Hormone Disruption and Its Effect on White Matter Development

    EPA Science Inventory

    Humans and wildlife are exposed to environmental pollutants that have been shown to interfere with the thyroid hormone system and thus may affect brain development. Our goal was to expose pregnant rats to propylthiouracil (PTU) to measure the effects of a goitrogen on white matte...

  7. Thyroid-pituitary interaction: Feedback regulation of thyrotropin secretion by thyroid hormones

    SciTech Connect

    Larsen, P.R.; Bleich, H.L.; Moore, M.J.

    1982-01-07

    Thyroid-hormone regulation of TSH production involves a response to plasma concentrations of T4 and T3. A substantial fraction of intracellular T3 in the pituitary derives from the conversion of T4 to T3, and recent studies indicate that this process is physiologically regulated. Changes in pituitary conversion of T4 to T3 are often the opposite of those that occur in the liver and kidney under similar circumstances. The presence of this pathway for T3 production indicates that the pituitary can respond independently to changes in plasma levels of T4 and T3; in contrast, many tissues appear to be sensitive mainly to the plasma T3 concentration. Recent studies suggest that conversion of T4 to T3 in the cerebral cortex and cerebellum is also important in providing intracellular T3 to these particular tissues. Given these results, it is not suprising that a complete definition of thyroid status requires more than the measurement of the serum concentrations of thyroid hormones. For some tissues, among them the brain and pituitary, the intracellular T3 concentrations may only partly reflect those in the serum. Recognition that the intracellular T3 concentration in each tissue may be subject to local regulation and an understanding of the importance of this process to the regulation of TSH production shoul permit a better appreciation of the limitations of radioimmunoassay serum thyroid hormone and TSH levels. These concepts also provide a physiologic rationale for the use of thyroxine for replacement in hypothyroid patients or for TSH suppression.

  8. Screening for thyroid disease in a primary care unit with a thyroid stimulating hormone assay with a low detection limit.

    PubMed Central

    Eggertsen, R.; Petersen, K.; Lundberg, P. A.; Nyström, E.; Lindstedt, G.

    1988-01-01

    In a study at a primary care centre in a predominantly rural area of Sweden the records of all patients with established thyroid disease were scrutinised and 2000 consecutive adult patients screened with an immunoenzymometric thyroid stimulating hormone assay. The aims of the study were fourfold: firstly, to assess the total burden of thyroid disease in primary care centres in Sweden; secondly, to assess the efficacy of clinical diagnosis of the disease in unselected populations of patients; thirdly, to assess the efficacy of clinical evaluation of treatment with thyroxine; and, lastly, to see whether a single analysis of the serum thyroid stimulating hormone concentration by recent methods would be enough to identify an abnormality of thyroid function. Of the roughly 17,400 adults in the study community, 111 women and 10 men were being treated for thyroid disease. Screening detected 68 patients (3.5%) not receiving thyroxine who had a serum thyroid stimulating hormone concentration of 0.20 mU/l or less, all of whom were followed up clinically. Fifty of these patients were also studied biochemically during follow up. Only nine of the 68 patients had thyroid disease (three with thyrotoxicosis requiring treatment), no evidence of the disease being found in the remainder. Sixteen patients had spontaneous hypothyroidism requiring treatment, and neither these nor three patients with thyrotoxicosis had been detected at the preceding clinical examination. Of 35 patients in whom thyroid disease was suspected clinically at screening, none had laboratory evidence of thyroid dysfunction. In this series 1.3% of all women in the study community (2.6% of all 50-59 year olds) and 0.1% of the men were being treated for thyroid disease at the primary care centre, roughly 1.0% of adults subjected to screening were found to have thyroid disease requiring treatment, and most patients with a thyroid stimulating hormone concentration of 0.20 mU/l or less did not have thyroid dysfunction

  9. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  10. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs with thyroid hormone activity for human use... AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling Requirements for Specific Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a)...

  11. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs with thyroid hormone activity for human use... AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling Requirements for Specific Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a)...

  12. A novel thyroid stimulating hormone beta-subunit isoform in human pituitary, peripheral blood leukocytes, and thyroid.

    PubMed

    Schaefer, Jeremy S; Klein, John R

    2009-07-01

    Thyroid stimulating hormone (TSH) is produced by the anterior pituitary and is used to regulate thyroid hormone output, which in turn controls metabolic activity. Currently, the pituitary is believed to be the only source of TSH used by the thyroid. Recent studies in mice from our laboratory have identified a TSHbeta isoform that is expressed in the pituitary, in peripheral blood leukocytes (PBL), and in the thyroid. To determine whether a human TSHbeta splice variant exists that is analogous to the mouse TSHbeta splice variant, and whether the pattern of expression of the splice variant is similar to that observed in mice, PCR amplification of RNAs from pituitary, thyroid, PBL, and bone marrow was done by reverse-transcriptase PCR and quantitative realtime PCR. Human pituitary expressed a TSHbeta isoform that is analogous to the mouse TSHbeta splice variant, consisting of a 27 nucleotide portion of intron 2 and all of exon 3, coding for 71.2% of the native human TSHbeta polypeptide. Of particular interest, the TSHbeta splice variant was expressed at significantly higher levels than the native form or TSHbeta in PBL and the thyroid. The TSHalpha gene also was expressed in the pituitary, thyroid, and PBL, but not the BM, suggesting that the TSHbeta polypeptide in the thyroid and PBL may exist as a dimer with TSHalpha. These findings identify an unknown splice variant of human TSHbeta. They also have implications for immune-endocrine interactions in the thyroid and for understanding autoimmune thyroid disease from a new perspective.

  13. Polybrominated Diphenyl Ether (DE-71)Interferes with Thyroid Hormone Action Independent Of Effects On Circulating Levels of Thyroid Hormone in Male Rats

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological stud...

  14. Thyroid hormone signaling in energy homeostasis and energy metabolism.

    PubMed

    McAninch, Elizabeth A; Bianco, Antonio C

    2014-04-01

    The thyroid hormone (TH) plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. TH signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the TH exerts its effects after concerted mechanisms facilitate binding to the TH receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma TH at the appropriate level to preserve energy homeostasis. At the tissue level, TH actions on metabolism are controlled by transmembrane transporters, deiodinases, and TH receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and, thus, understanding the contribution of the TH to cellular and organism metabolism is increasingly relevant.

  15. Effects of the synthetic liver X receptor agonist T0901317 on the growth hormone and thyroid hormone axes in male rats.

    PubMed

    Davies, Jeffrey S; Kotokorpi, Pia; Lindahl, Ulrika; Oscarsson, Jan; Wells, Timothy; Mode, Agneta

    2008-04-01

    Liver X receptors (LXRs), activated by oxysterols, play an important role in the regulation of lipid and glucose metabolism, which is also markedly dependent on thyroid hormone and growth hormone (GH) status. Here, we investigated how a 1-week exposure to the synthetic LXR agonist T0901317 affected GH secretion and thyroid hormone status in male rats. While the pulse frequency of GH secretion was marginally affected there was a highly significant decrease in the triiodo-L-thyronine/thyroxine (T3/T4) ratio in plasma. This effect was associated with decreased expression of deiodinase 1 (DIO1) and 2 (DIO2) mRNA in the liver and thyroid gland, respectively. Expression of sterol regulatory element binding protein-1c (SREBP-1c), the hallmark of stimulated lipogenesis, was markedly increased in both thyroid and pituitary implying that protracted pharmacological LXR activation may promote lipid accumulation in these endocrine tissues. These findings suggest that attention must be given to pituitary hormone dependent axes when developing therapeutic strategies based on agonism of the LXRs, e.g. for treatment of atherosclerosis.

  16. Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton.

    PubMed

    Capelo, Luciane P; Beber, Eduardo H; Huang, Stephen A; Zorn, Telma M T; Bianco, Antonio C; Gouveia, Cecília H A

    2008-11-01

    Thyroid hormone (TH) plays a key role on post-natal bone development and metabolism, while its relevance during fetal bone development is uncertain. To study this, pregnant mice were made hypothyroid and fetuses harvested at embryonic days (E) 12.5, 14.5, 16.5 and 18.5. Despite a marked reduction in fetal tissue concentration of both T4 and T3, bone development, as assessed at the distal epiphyseal growth plate of the femur and vertebra, was largely preserved up to E16.5. Only at E18.5, the hypothyroid fetuses exhibited a reduction in femoral type I and type X collagen and osteocalcin mRNA levels, in the length and area of the proliferative and hypertrophic zones, in the number of chondrocytes per proliferative column, and in the number of hypertrophic chondrocytes, in addition to a slight delay in endochondral and intramembranous ossification. This suggests that up to E16.5, thyroid hormone signaling in bone is kept to a minimum. In fact, measuring the expression level of the activating and inactivating iodothyronine deiodinases (D2 and D3) helped understand how this is achieved. D3 mRNA was readily detected as early as E14.5 and its expression decreased markedly ( approximately 10-fold) at E18.5, and even more at 14 days after birth (P14). In contrast, D2 mRNA expression increased significantly by E18.5 and markedly ( approximately 2.5-fold) by P14. The reciprocal expression levels of D2 and D3 genes during early bone development along with the absence of a hypothyroidism-induced bone phenotype at this time suggest that coordinated reciprocal deiodinase expression keeps thyroid hormone signaling in bone to very low levels at this early stage of bone development.

  17. Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton

    PubMed Central

    Capelo, Luciane P.; Beber, Eduardo H.; Huang, Stephen A.; Zorn, Telma M.T.; Bianco, Antonio C.; Gouveia, Cecília H.A.

    2015-01-01

    Thyroid hormone (TH) plays a key role on post-natal bone development and metabolism, while its relevance during fetal bone development is uncertain. To study this, pregnant mice were made hypothyroid and fetuses harvested at embryonic days (E) 12.5, 14.5, 16.5 and 18.5. Despite a marked reduction in fetal tissue concentration of both T4 and T3, bone development, as assessed at the distal epiphyseal growth plate of the femur and vertebra, was largely preserved up to E16.5. Only at E18.5, the hypothyroid fetuses exhibited a reduction in femoral type I and type X collagen and osteocalcin mRNA levels, in the length and area of the proliferative and hypertrophic zones, in the number of chondrocytes per proliferative column, and in the number of hypertrophic chondrocytes, in addition to a slight delay in endochondral and intramembranous ossification. This suggests that up to E16.5, thyroid hormone signaling in bone is kept to a minimum. In fact, measuring the expression level of the activating and inactivating iodothyronine deiodinases (D2 and D3) helped understand how this is achieved. D3 mRNA was readily detected as early as E14.5 and its expression decreased markedly (~ 10-fold) at E18.5, and even more at 14 days after birth (P14). In contrast, D2 mRNA expression increased significantly by E18.5 and markedly (~2.5-fold) by P14. The reciprocal expression levels of D2 and D3 genes during early bone development along with the absence of a hypothyroidism-induced bone phenotype at this time suggest that coordinated reciprocal deiodinase expression keeps thyroid hormone signaling in bone to very low levels at this early stage of bone development. PMID:18682303

  18. Thyroid Storm Caused by a Chinese Herb Contaminated with Thyroid Hormones

    PubMed Central

    St-Onge, Maude; Vandenberghe, Hilde; Thompson, Margaret

    2015-01-01

    Patient: Male, 70 Final Diagnosis: Thyroid storm Symptoms: Atrial fibrillation • confusion • hyperthermia • tachycardia Medication: — Clinical Procedure: Intubation • cardioversion Specialty: Critical Care Medicine Objective: Adverse events of drug therapy Background: We report a case of thyroid storm caused by consuming a Chinese herb contaminated with thyroid hormones. Case Report: A 70-year-old man presented to an emergency department after 2 days of nausea, vomiting, and weakness. Three days previously, he had started taking Cordyceps powder and “Flower Man Sang Hung” as recommended by his Chinese physician. Following admission, the patient deteriorated and was eventually diagnosed with thyroid storm complicated by rapid atrial fibrillation requiring cardioversion, intubation, and intensive care admission. The analysis of the Chinese herb “Flower Man Sang Hung” was positive for levothyroxine. The patient was extubated 11 days after admission and discharged to a rehabilitation centre after 17 days of hospitalization. The Chinese medicine physician was informed of the events. Conclusions: Herbal products can be the source of illness, medication interactions, and contamination. Awareness should be raised among Chinese medicine physicians, allopathic physicians, and their patients. Clinicians should also have a low threshold of suspicion to seek laboratory analysis of suspect substances when the cause of the clinical presentation is unclear. PMID:25644333

  19. Iodothyronine deiodinases and thyroid hormone receptors regulation during flatfish (Solea senegalensis) metamorphosis.

    PubMed

    Isorna, Esther; Obregon, Maria Jesus; Calvo, Rosa Maria; Vázquez, Rosa; Pendón, Carlos; Falcón, Jack; Muñoz-Cueto, José Antonio

    2009-05-15

    Thyroid hormone-induced metamorphosis seems to represent an ancestral feature of chrordates (urochordates, cephalochordates and vertebrates), but also of nonchordate animals. Although thyroid hormones and thyroid hormone receptor profiles during metamorphosis have been analyzed in different vertebrate taxa, including fish, developmental expression and activity of type 2 (dio2, D2) and type 3 (dio3, D3) iodothyronine deiodinases, two key enzymes in anuran metamorphosis, remain unknown in any fish species. The aim of this work was to investigate the development of thyroid hormone system during the metamorphosis of a flatfish species, the Senegalese sole, focusing on the deiodinases developmental profile. We have cloned sole D2 and D3 and analyzed several parameters of thyroid hormones system in pre-, early-, middle-, and late-metamorphic larvae. Both deiodinases contain in their catalytic centers an UGA triplet encoding for a selenocystein (Sec) residue as expected. Left eye migration and rotation in body position were associated with a significant increase in both thyroid hormones and thyroid hormone receptors at the middle-late metamorphic stages. Although dio2 expression slightly increased during metamorphosis, D2 activity augmentation was much more significant. Sole dio3 expression declined only slightly, whereas the D3 activity clearly decreased at mid-late metamorphic period. This developmental profile of deiodinases sustained the rise of thyroid hormones levels observed during sole metamorphosis. No clear cut daily rhythms were observed in the parameters analyzed although it seemed that thyroid hormone system was more active during daytime, in particular at late metamorphic stages. These developmental changes point out the importance not only of thyroid hormones and their receptors but also of dio2 and dio3 in mediating flatfish metamorphosis, as it has been described in amphibians.

  20. Non-genomic actions of thyroid hormone in brain development.

    PubMed

    Leonard, Jack L

    2008-10-01

    Thyroid hormone (TH) is essential for neuronal migration and synaptogenesis in the developing brain. Assembly of neuronal circuits depends on guidance cues provided by the extracellular matrix. These cues are interpreted by the migrating neuron and its growing neurites through transmembrane signaling proteins anchored in place by the actin cytoskeleton. One of the best examples of a non-genomic action of thyroid hormone is its dynamic regulation of the number and quantity of actin fibers in astrocytes. Thyroxine (T4) and its transcriptionally inactive metabolite, 3',5',3-triiodothyronine (reverse T3) are responsible for modulating microfilament organization, while the transcriptional activator, 3',3,5-triiodothyronine (T3) is inert. The biological consequence of the loss of the actin filaments in astrocytes is the inability of the cell to anchor laminin, to its cell surface, and the loss of this key guidance molecule interrupts neurite pathfinding and neuronal migration. These data provide the essentials to construct a physiological pathway where TH-dependent regulation of the polymerization state of actin in the astrocyte and the developing neuron modulates the production and recognition of guidance cues--cues that if disrupted lead to abnormal neuronal migration and neuronal process formation--and lead to the morphological deficits observed in the cretinous brain.

  1. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes.

    PubMed

    Roman, Corina; Fuior, Elena V; Trusca, Violeta G; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.

  2. Effects of domoic acid on serum levels of TSH and thyroid hormones.

    PubMed

    Arufe, M C; Arias, B; Durán, R; Alfonso, M

    1995-08-01

    The actions of Domoic Acid (Dom), a marine toxin, on the levels of serum TSH and thyroid hormones (T4 and T3) has been studied to determine if these actions could be mediated by the serotoninergic system. In all the experiments, adult male Wistar rats were used. The Dom dissolved in saline was administered via i.p. in doses of 0.5 and 1 mg/kg. The T4 and T3 concentrations were determined by enzimoinmunoassay and TSH concentration was determined by radioinmunoassay. The results show that Dom 1 mg/kg increases the serum T4 levels one hour after treatment and decreases these levels 2 and 3 hr after treatment. Dom 0.5 mg/kg decreased the serum T4 levels 2 and 3 hr after treatment. The concentrations of T3 in serum were unchanged by both doses of Dom. The concentration of TSH was increased by Dom. In order to study the possible mediation of the serotoninergic system in the effect of Dom on the hormone levels, PCPA, a tryptophan hydroxylase inhibitor, was administered i.p. 90 min before blood sampling. In this case, with both doses of Dom a decrease in the levels of both hormones occurred with respect to the PCPA group. These results indicate that the serotoninergic system could affect the actions of Dom on TSH and thyroid hormone secretion.

  3. Gene Expression as a Biomarker of Effect of Thyroid Hormone Action in Developing Brain: Relation to Serum Hormones.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...

  4. Developmental thyroid hormone insufficiency reduces expression of brain-derived neurotrophic factor (BDNF) in adults but not in neonates.

    PubMed

    Lasley, S M; Gilbert, M E

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expression of BDNF in a number of brain regions. The present study examined the impact of modest levels of developmental thyroid hormone insufficiency on BDNF protein expression in the hippocampus, cortex and cerebellum in the neonatal and adult offspring of rat dams treated throughout pregnancy and lactation. Graded levels of hormone insufficiency were induced by adding propylthiouracil (PTU, 0, 1, 2, 3 and 10 ppm) to the drinking water of pregnant dams from early gestation (gestational day 6) until weaning of the pups. Pups were sacrificed on postnatal days (PN) 14 and 21, and -PN100, and trunk blood collected for thyroid hormone analysis. Hippocampus, cortex, and cerebellum were separated from dissected brains and assessed for BDNF protein. Dose-dependent reductions in serum hormones in dams and pups were produced by PTU. Consistent with previous findings, age and regional differences in BDNF concentrations were observed. However, no differences in BDNF expression were detected in the preweanling animals as a function of PTU exposure; yet dose-dependent alterations emerged in adulthood despite the return of thyroid hormone levels to control values. Males were more affected by PTU than females, BDNF levels in hippocampus and cortex were altered but not those in cerebellum, and biphasic dose-response functions were detected in both sexes. These findings indicate that BDNF may mediate some of the adverse effects accompanying developmental thyroid hormone insufficiency, and reflect the potential for delayed impact of modest reductions in thyroid hormones during critical periods of brain development on a protein important for normal synaptic function.

  5. Thyroid Hormones and Electrocardiographic Parameters: Findings from the Third National Health and Nutrition Examination Survey

    PubMed Central

    Zhang, Yiyi; Post, Wendy S.; Cheng, Alan; Blasco-Colmenares, Elena; Tomaselli, Gordon F.; Guallar, Eliseo

    2013-01-01

    Introduction Altered thyroid status exerts a major effect on the heart. Individuals with hypo- or hyperthyroidism showed various changes in electrocardiograms. However, little is known about how variations in thyroid hormone levels within the normal range affect electrical activities of the heart in the general population. Methods and Results We conducted a cross-sectional analysis of 5,990 men and women from the Third National Health and Nutrition Examination Survey. Serum total T4 was measured by immunoassay and TSH was measured by chemiluminescent assay. We categorized T4 and TSH into 7 groups with cut-offs at the 5th, 20th, 40th, 60th, 80th, and 95th percentiles of the weighted population distribution. Electrocardiographic parameters were measured from the standard 12-lead electrocardiogram. We found a positive linear association between serum total T4 level and heart rate in men, and a U-shape association between T4 and PR interval in men and women. TSH level was positively associated with QRS interval in men, while a U-shape association between TSH and QRS was observed in women. No clear graded association between thyroid hormones and corrected QT or JT was found, except that men in the highest category of T4 levels appeared to have longer corrected QT and JT, and men in the lowest category of T4 appeared to have shorter corrected QT and JT. Conclusions Variation in thyroid hormone levels in the general population, even within the normal range, was associated with various ECG changes. PMID:23593140

  6. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.

    PubMed Central

    Forrest, D; Hanebuth, E; Smeyne, R J; Everds, N; Stewart, C L; Wehner, J M; Curran, T

    1996-01-01

    The diverse functions of thyroid hormone (T3) are presumed to be mediated by two genes encoding the related receptors, TRalpha and TRbeta. However, the in vivo functions of TRalpha and TRbeta are undefined. Here, we report that targeted inactivation of the mouse TRbeta gene results in goitre and elevated levels of thyroid hormone. Also, thyroid-stimulating hormone (TSH), which is released by pituitary thyrotropes and which is normally suppressed by increased levels of thyroid hormone, was present at elevated levels in homozygous mutant (Thrb-/-) mice. These findings suggest a unique role for TRbeta that cannot be substituted by TRalpha in the T3-dependent feedback regulation of TSH transcription. Thrb-/- mice provide a recessive model for the human syndrome of resistance to thyroid hormone (RTH) that exhibits a similar endocrine disorder but which is typically caused by dominant TRbeta mutants that are transcriptional inhibitors. It is unknown whether TRalpha, TRbeta or other receptors are targets for inhibition in dominant RTH; however, the analysis of Thrb-/- mice suggests that antagonism of TRbeta-mediated pathways underlies the disorder of the pituitary-thyroid axis. Interestingly, in the brain, the absence of TRbeta may not mimic the defects often associated with dominant RTH, since no overt behavioural or neuroanatomical abnormalities were detected in Thrb-/- mice. These data define in vivo functions for TRbeta and indicate that specificity in T3 signalling is conferred by distinct receptor genes. Images PMID:8670802

  7. Resistance to Thyroid Hormone Complicated with Type 2 Diabetes and Cardiomyopathy in a Patient with a TRβ Mutation

    PubMed Central

    Wakasaki, Hisao; Matsumoto, Miyuki; Tamaki, Shinya; Miyata, Kaori; Yamamoto, Shohei; Minaga, Takamasa; Hayashi, Yoshitaka; Komukai, Kenichi; Imanishi, Toshio; Yamaoka, Hiroyuki; Matsuno, Shohei; Nishi, Masahiro; Akamizu, Takashi

    2016-01-01

    Resistance to thyroid hormone (RTH) is a genetic disorder characterized by reduced tissue responsiveness to thyroid hormone. We herein describe a 60-year old man who presented with the clinical features of cardiomyopathy, diabetes mellitus and elevated thyroid hormones with unsuppressed thyroid stimulating hormone. A genetic analysis of thyroid hormone receptor (TR) revealed a missense mutation (A268D) in the TRβ gene. Clinical manifestations of RTH may be variable due to different tissue distributions of TR subtypes and different actions of mutant receptors. The current case demonstrates that patients with a TRβ mutation may have impaired his glucose metabolism and a reduced cardiac function, although patients appear clinically euthyroid. PMID:27853072

  8. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    SciTech Connect

    Nakai, A.; Seino, S.; Sakurai, A.; Szilak, I.; Bell, G.I.; DeGroot, L.J.

    1988-04-01

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 10/sup 9/ M/sup /minus/1/. This protein, designated human thyroid hormone receptor type ..cap alpha..2 (hTR..cap alpha..2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type ..cap alpha.. described in chicken and rat and less similar to human thyroid hormone receptor type ..beta.. (formerly referred to as c-erbA..beta..) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type ..cap alpha..1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type ..cap alpha..2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes.

  9. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  10. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    PubMed

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  11. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System

    PubMed Central

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks

  12. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  13. Effect of metformin on thyroid stimulating hormone and thyroid volume in patients with prediabetes: A randomized placebo-controlled clinical trial

    PubMed Central

    Karimifar, Mozhgan; Aminorroaya, Ashraf; Amini, Masoud; Mirfendereski, Taghi; Iraj, Bijan; Feizi, Awat; Norozi, Atsa

    2014-01-01

    Background: The people with prediabetes have insulin resistance (IR). IR may affect thyroid function, size and nodules. We investigated the effects of metformin on the thyroid gland in prediabetic people. Materials and Methods: In a randomized, double-blind placebo-control clinical trial, 89 people with prediabetes, aged 18-65 years were studied for 3 months. They were divided into two, metformin (n = 43) and placebo (n = 46) treated groups. Serum thyroid stimulating hormone (TSH) was measured and thyroid nodules and volume was studied by ultrasonography. The data were compared between and within groups, before and after the study. Results: Mean of the baseline characteristics in metformin and placebo-treated groups had no statistically significant difference. At the end of the study, serum TSH was not significantly different between the two groups. However, if the TSH range was divided into two low normal (0.3-2.5 μU/ml) and high-normal (2.6-5.5 μU/ml) ranges, significant decrease was observed in metformin-treated group with a high-normal basal serum TSH (P = 0.01). Thyroid volume did not change in metformin-treated group. However, in placebo-treated group, the thyroid was enlarged (P = 0.03). In 53.9% of participants, thyroid nodule was observed. There was just a decrease in the volume of small solid (not mixed) nodules from median of 0.07 ml to 0.04 ml in metformin-treated group (P = 0.01). Conclusion: In prediabetic people, metformin decreases serum TSH, only, in those people with TSH >2.5 μU/ml and reduces the size of small solid thyroid nodules. It also prevents an increase in the thyroid volume. PMID:25657744

  14. Thyroid hormone concentrations in captive and free-ranging West Indian manatees (Trichechus manatus).

    PubMed

    Ortiz, R M; MacKenzie, D S; Worthy, G A

    2000-12-01

    Because thyroid hormones play a critical role in the regulation of metabolism, the low metabolic rates reported for manatees suggest that thyroid hormone concentrations in these animals may also be reduced. However, thyroid hormone concentrations have yet to be examined in manatees. The effects of captivity, diet and water salinity on plasma total triiodothyronine (tT(3)), total thyroxine (tT(4)) and free thyroxine (fT(4)) concentrations were assessed in adult West Indian manatees (Trichechus manatus). Free-ranging manatees exhibited significantly greater tT(4) and fT(4) concentrations than captive adults, regardless of diet, indicating that some aspect of a captive existence results in reduced T(4) concentrations. To determine whether this reduction might be related to feeding, captive adults fed on a mixed vegetable diet were switched to a strictly sea grass diet, resulting in decreased food consumption and a decrease in body mass. However, tT(4) and fT(4) concentrations were significantly elevated over initial values for 19 days. This may indicate that during periods of reduced food consumption manatees activate thyroid-hormone-promoted lipolysis to meet water and energetic requirements. Alterations in water salinity for captive animals did not induce significant changes in thyroid hormone concentrations. In spite of lower metabolic rates, thyroid hormone concentrations in captive manatees were comparable with those for other terrestrial and marine mammals, suggesting that the low metabolic rate in manatees is not attributable to reduced circulating thyroid hormone concentrations.

  15. Postpartum Thyroiditis

    MedlinePlus

    ... high thyroid hormone levels in the blood) and hypothyroidism (low thyroid hormone levels in the blood). In postpartum thyroiditis, thyrotoxicosis occurs first followed by hypothyroidism. What causes postpartum thyroiditis? The exact cause is ...

  16. Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus.

    PubMed

    Schnitzler, Joseph G; Frédérich, Bruno; Dussenne, Mélanie; Klaren, Peter H M; Silvestre, Frédéric; Das, Krishna

    2016-12-01

    Thyroid hormones are critically involved in somatic growth, development and metamorphosis of vertebrates. The structural similarity between thyroid hormones and triclosan, an antimicrobial compound widely employed in consumer personal care products, suggests triclosan can have adverse effects on the thyroid system. The sheepshead minnow, Cyprinodon variegatus, is now used in ecotoxicological studies that have recently begun to focus on potential disruption of the thyroid axis by endocrine disrupting compounds. Here, we investigate the in vivo effects of exposure to triclosan (20, 50, and 100μgL(-1)) on the thyroid system and the embryonic and larval development of C. variegatus. Triclosan exposure did not affect hatching success, but delayed hatching time by 6-13h compared to control embryos. Triclosan exposure affected the ontogenetic variations of whole body thyroid hormone concentrations during the larval phase. The T3 peak around 12-15 dph, described to be indicative for the metamorphosis climax in C. variegatus, was absent in triclosan-exposed larvae. Triclosan exposure did not produce any deformity or allometric repatterning, but a delayed development of 18-32h was observed. We conclude that the triclosan-induced disruption of the thyroid system delays in vivo the start of metamorphosis in our experimental model. We observed a global developmental delay of 24-45h, equivalent to 4-7% prolongation of the developmental time in C. variegatus. The costs of delayed metamorphosis can lead to reduction of juvenile fitness and could be a determining factor in the outcome of competitive interactions.

  17. The targeted inactivation of TRβ gene in thyroid follicular cells suggests a new mechanism of regulation of thyroid hormone production.

    PubMed

    Selmi-Ruby, Samia; Bouazza, Lamia; Obregon, Maria-Jesus; Conscience, Aude; Flamant, Frédéric; Samarut, Jacques; Borson-Chazot, Françoise; Rousset, Bernard

    2014-02-01

    Thyroid epithelial cells, or thyrocytes, express functional thyroid hormone receptors but no precise role has yet been assigned to either TRα or TRβ in the thyroid gland. In this study, we analyzed the impact of inactivating the TRβ gene in the thyroid of mice. First, we generated a mouse line named Thyr-Cre, expressing the Cre recombinase under the control of the thyroglobulin gene promoter, which led to a complete recombination of floxed genes in thyrocytes. Thyr-Cre mice were then crossed with TRβ floxed mice (TRβ(flox/flox)) to obtain a thyrocyte-selective deletion of TRβ. Thyr-TRβ(-/-) mice were characterized by a decrease in the size and functional activity of the thyroid gland. These alterations were associated with a decrease in plasma TSH concentration. Surprisingly, Thyr-TRβ(-/-) displayed elevated serum T(4) and rT(3) concentrations with no significant change in serum T(3) levels. Their intrathyroidal free T(4) and rT(3) contents were also elevated, whereas the ratio of serum T(4) to thyroid free T(4) was decreased by comparison with wild-type littermates. Also, within the thyroid, deiodinases D1 and D2 were reduced as well as the expression levels of genes encoding monocarboxylate transporters (Mct8 and Mct10). Such a decrease in intrathyroidal deiodination of T(4) and in the expression of genes encoding thyroid hormone transporters may contribute to the primary overproduction of T(4) observed in Thyr-TRβ(-/-) mice. In conclusion, these data show that the control of thyroid hormone production involves not only TRβ-dependent mechanisms acting at the level of hypothalamus and pituitary but also TRβ-dependent mechanisms acting at the thyroid level.

  18. Differentiated thyroid cancer in patients with resistance to thyroid hormone syndrome. A novel case and a review of the literature

    PubMed Central

    Vinagre, João; Borges, Fátima; Costa, António; Alvelos, Maria Inês; Mazeto, Glaúcia; Sobrinho-Simões, Manuel; Soares, Paula

    2014-01-01

    Resistance to thyroid hormone (RTH) represents a syndrome in which patients present elevated circulating thyroid hormones in the presence of non-suppressed TSH. We report a novel case where a patient with RTH presented a differentiated thyroid cancer. A19 year-old female had been referred due to thyroid disease that disclosed features characteristic of a RTH. During the follow up it was detected a follicular tumor that led to the recommendation for thyroid surgical ablation, where an incidental papillary thyroid microcarcinoma (mPTC) was found. The increase of thyroglobulin (TG) levels following thyroid removal referred the patient for radioiodine treatment. Post-treatment, it was detected jugular adenopathies and the patient was subjected to cervical lymph node drainage where metastases of the mPTC were found. RTH syndrome was confirmed by the detection of a THRB germline mutation. A BRAF mutation was also found in the mPTC but not detected in the follicular adenoma or normal adjacent tissue. The young age of the patient, the rarity of BRAF mutations in childhood and the high dissemination of the malignancy, lead us to the speculation that increased TSH stimulation in a RTH background and oncogenic activation of BRAF could have served as (co) drivers and might have triggered an advanced stage of the neoplastic disease. These findings together with a review of published cases add novel information to the management of RTH patients with differentiated thyroid cancer. PMID:25988151

  19. Effects of amiodarone and thyroid dysfunction on myocardial calcium, serum calcium and thyroid hormones in the rat.

    PubMed Central

    Gammage, M. D.; Franklyn, J. A.; Logan, S. D.

    1987-01-01

    1 Myocardial calcium content was found to be elevated and serum calcium reduced in hypothyroid rats. 2 Treatment of rats with amiodarone at either 30 mg kg-1 or 150 mg kg-1 daily did not result in any significant changes in myocardial or serum calcium. 3 The administration of amiodarone to hypothyroid rats attenuated the changes in serum but not myocardial calcium, suggesting that amiodarone may exert a thyroid hormone-like effect in the hypothyroid state. 4 The administration of amiodarone to thyroid hormone-treated rats resulted in attenuation of the effects on serum calcium and calculated intracellular calcium; this was consistent with an antagonistic interaction between amiodarone and thyroid hormones. 5 Administration of amiodarone resulted in significant changes in circulating thyroid hormone levels in the rat; triiodothyronine was reduced and basal thyrotrophin elevated compared to euthyroid controls. Serum thyroxine was not changed; this is in contrast to the effects in man. 6 Amiodarone does not exert its anti-arrhythmic action via changes in total myocardial calcium content in the euthyroid rat; nonetheless the described interactions between the drug and thyroid hormones may be involved in its mechanism of action. PMID:3676598

  20. Multigenic control of thyroid hormone functions in the nervous system

    PubMed Central

    Nunez, Jacques; Celi, Francesco S.; Ng, Lily; Forrest, Douglas

    2008-01-01

    Summary Thyroid hormone (TH) has a remarkable range of actions in the development and function of the nervous system. A multigenic picture is emerging of the mechanisms that specify these diverse functions in target tissues. Distinct responses are mediated by α and β isoforms of TH receptor which act as ligand-regulated transcription factors. Receptor activity can be regulated at several levels including that of uptake of TH ligand and the activation or inactivation of ligand by deiodinase enzymes in target tissues. Processes under the control of TH range from learning and anxiety-like behaviour to sensory function. At the cellular level, TH controls events as diverse as axonal outgrowth, hippocampal synaptic activity and the patterning of opsin photopigments necessary for colour vision. Overall, TH coordinates this variety of events in both central and sensory systems to promote the function of the nervous system as a complete entity. PMID:18448240

  1. Thyroid hormone transport in and out of cells.

    PubMed

    Visser, W Edward; Friesema, Edith C H; Jansen, Jurgen; Visser, Theo J

    2008-03-01

    Thyroid hormone (TH) is essential for the proper development of numerous tissues, notably the brain. TH acts mostly intracellularly, which requires transport by TH transporters across the plasma membrane. Although several transporter families have been identified, only monocarboxylate transporter (MCT)8, MCT10 and organic anion-transporting polypeptide (OATP)1C1 demonstrate a high degree of specificity towards TH. Recently, the biological importance of MCT8 has been elucidated. Mutations in MCT8 are associated with elevated serum T(3) levels and severe psychomotor retardation, indicating a pivotal role for MCT8 in brain development. MCT8 knockout mice lack neurological damage, but mimic TH abnormalities of MCT8 patients. The exact pathophysiological mechanisms in MCT8 patients remain to be elucidated fully. Future research will probably identify novel TH transporters and disorders based on TH transporter defects.

  2. Association of thyroid hormones with obesity and metabolic syndrome in Japanese children.

    PubMed

    Minami, Yukako; Takaya, Ryuzo; Takitani, Kimitaka; Ishiro, Manabu; Okasora, Keisuke; Niegawa, Tomomi; Tamai, Hiroshi

    2015-09-01

    Obesity is associated with health consequences, and thyroid dysfunction may be an adaption to the increased energy expenditure in obesity. With the rising prevalence of obesity in childhood, the prevalence of metabolic syndrome may also increase. In the current study, we have shown gender differences in the association of thyroid hormones with obesity, and attempted to elucidate the relationship between thyroid hormones and anthropometric parameters and biochemical data in obese Japanese children. We analyzed anthropometric measurements, blood pressure, body composition, thyroid hormones, and lipid profiles in 283 obese children. The association between thyroid hormones and several parameters differed by gender. The free T3 to free T4 ratio (fT3/fT4) in boys was negatively associated with the quantitative insulin sensitivity check index, whereas in girls, thyroid-stimulating hormone levels were positively correlated with levels of glucose, diastolic blood pressure, and non-high density lipoprotein-cholesterol, and fT3/fT4 was positively correlated with uric acid levels. FT3/fT4 in boys with metabolic syndrome was relatively higher than in those without metabolic syndrome. The cause of gender differences is unknown. Therefore, further studies with larger sample sizes and a long-term follow-up period are needed to address the influence of thyroid hormones on various parameters.

  3. Association of thyroid hormones with obesity and metabolic syndrome in Japanese children

    PubMed Central

    Minami, Yukako; Takaya, Ryuzo; Takitani, Kimitaka; Ishiro, Manabu; Okasora, Keisuke; Niegawa, Tomomi; Tamai, Hiroshi

    2015-01-01

    Obesity is associated with health consequences, and thyroid dysfunction may be an adaption to the increased energy expenditure in obesity. With the rising prevalence of obesity in childhood, the prevalence of metabolic syndrome may also increase. In the current study, we have shown gender differences in the association of thyroid hormones with obesity, and attempted to elucidate the relationship between thyroid hormones and anthropometric parameters and biochemical data in obese Japanese children. We analyzed anthropometric measurements, blood pressure, body composition, thyroid hormones, and lipid profiles in 283 obese children. The association between thyroid hormones and several parameters differed by gender. The free T3 to free T4 ratio (fT3/fT4) in boys was negatively associated with the quantitative insulin sensitivity check index, whereas in girls, thyroid-stimulating hormone levels were positively correlated with levels of glucose, diastolic blood pressure, and non-high density lipoprotein-cholesterol, and fT3/fT4 was positively correlated with uric acid levels. FT3/fT4 in boys with metabolic syndrome was relatively higher than in those without metabolic syndrome. The cause of gender differences is unknown. Therefore, further studies with larger sample sizes and a long-term follow-up period are needed to address the influence of thyroid hormones on various parameters. PMID:26388669

  4. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1985-07-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.

  5. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...

  6. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region

    PubMed Central

    2004-01-01

    The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle. PMID:15496137

  7. A metabolic basis for fibromyalgia and its related disorders: the possible role of resistance to thyroid hormone.

    PubMed

    Garrison, R L; Breeding, P C

    2003-08-01

    It has long been recognized that the symptom complex of fibromyalgia can be seen with hypothyroidism. Hypothyroidism may been categorized, like diabetes, into type I (hormone deficient) and type II (hormone resistant). Most cases of fibromyalgia fall into the latter category. The syndrome is reversible with treatment, and is usually of late onset. It is likely more often acquired than due to mutated receptors. Now that there is evidence to support the hypothesis that fibromyalgia may be due to thyroid hormone resistance, four major questions appear addressable. First, can a simple biomarker be found to help diagnose it? Second, what other syndromes similar to Fibromyalgia may share a thyroid-resistant nature? Third, in non-genetic cases, how is resistance acquired? Fourth, what other methods of treatment become available through this new understanding? Preliminary evidence suggests that serum hyaluronic acid is a simple, inexpensive, sensitive, and specific test that identifies fibromyalgia. Overlapping symptom complexes suggest that chronic fatigue syndrome, Gulf war syndrome, premenstrual syndrome, post traumatic stress disorder, breast implant silicone sensitivity syndrome, bipolar affective disorder, systemic candidiasis, myofascial pain syndrome, and idiopathic environmental intolerance are similar enough to fibromyalgia to merit investigation for possible thyroid resistance. Acquired resistance may be due most often to a recently recognized chronic consumptive coagulopathy, which itself may be most often associated with chronic infections with mycoplasmids and related microbes or parasites. Other precipitants of thyroid resistance may use this or other paths as well. In addition to experimentally proven treatment with supraphysiologic doses of thyroid hormone, the thyroid-resistant disorders might be treatable with anti-hypercoagulant, anti-infective, insulin-sensitizing, and hyaluronolytic strategies.

  8. Serum levels of sex hormones and expression of their receptors in thyroid tissue in female patients with various types of thyroid neoplasms.

    PubMed

    Liu, Jia; Chen, Guang; Meng, Xian-Ying; Liu, Zhong-Hui; Dong, Su

    2014-12-01

    Previous studies have demonstrated the expression of estrogen receptor (ER) and progesterone receptor (PR) in thyroid cancer; however, little is known regarding the levels of estrogen, progesterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in serum and the expression of ER, PR, FSH receptor (FSHR), and LH receptor (LHR) in thyroid tissues of patients with different types of thyroid neoplasms. Serum levels of estrogen, progesterone, FSH, and LH were measured by chemiluminescence, and expression of ER, PR, FSHR, and LHR in thyroid tissue was detected by immunohistochemistry in female patients with thyroid adenoma (n = 70), nodular goiter (n = 73), thyroid papillary cancer (n = 149), poorly differentiated thyroid carcinoma (n = 12), or undifferentiated thyroid carcinoma (n = 8) and in normal controls (n = 60). The positive rates of serum estrogen level and ERα expression were significantly greater in patients with various types of thyroid neoplasms than in normal controls. The positive rates of ERβ expression were significantly less in various types of thyroid neoplasms than in normal thyroid tissues, especially in poorly differentiated carcinoma and undifferentiated carcinoma. The negative rates of serum progesterone level and positive rates of PR expression in thyroid tissue were significantly greater in patients with thyroid adenoma, nodular goiter, or thyroid papillary cancer than in normal controls. The positive rates of serum FSH and LH levels and FSHR and LHR expression were significantly greater in the thyroid adenoma group than in other groups. Our findings suggest that thyroid neoplasms might be sex hormone-dependent. The positive expression of ERα and PR often indicates thyroid papillary carcinoma, and the ERβ expression status is important for the diagnosis of poorly differentiated carcinoma and undifferentiated carcinoma. In addition, thyroid adenoma is often accompanied by an increase in serum FSH and LH levels, as well as

  9. Thyroid gland removal - discharge

    MedlinePlus

    ... will make your scar show less. Thyroid Hormone Replacement You may need to take thyroid hormone medicine ... natural thyroid hormone. You may not need hormone replacement if only part of your thyroid was removed. ...

  10. Frogs model man: In vivo thyroid hormone signaling during development.

    PubMed

    Sachs, Laurent M; Buchholz, Daniel R

    2017-01-01

    Thyroid hormone (TH) signaling comprises TH transport across cell membranes, metabolism by deiodinases, and molecular mechanisms of gene regulation. Proper TH signaling is essential for normal perinatal development, most notably for neurogenesis and fetal growth. Knowledge of perinatal TH endocrinology needs improvement to provide better treatments for premature infants and endocrine diseases during gestation and to counteract effects of endocrine disrupting chemicals. Studies in amphibians have provided major insights to understand in vivo mechanisms of TH signaling. The frog model boasts dramatic TH-dependent changes directly observable in free-living tadpoles with precise and easy experimental control of the TH response at developmental stages comparable to fetal stages in mammals. The hormones, their receptors, molecular mechanisms, and developmental roles of TH signaling are conserved to a high degree in humans and amphibians, such that with respect to developmental TH signaling "frogs are just little people that hop." The frog model is exceptionally illustrative of fundamental molecular mechanisms of in vivo TH action involving TH receptors, transcriptional cofactors, and chromatin remodeling. This review highlights the current need, recent successes, and future prospects using amphibians as a model to elucidate molecular mechanisms and functional roles of TH signaling during post-embryonic development.

  11. Hatching the Cleidoic Egg: The Role of Thyroid Hormones

    PubMed Central

    De Groef, Bert; Grommen, Sylvia V.H.; Darras, Veerle M.

    2013-01-01

    A major life stage transition in birds and other oviparous sauropsids is the hatching of the cleidoic egg. Not unlike amphibian metamorphosis, hatching in these species can be regarded as a transition from a relatively well-protected “aqueous” environment to a more hazardous and terrestrial life outside the egg, a transition in which thyroid hormones (THs) (often in concert with glucocorticoids) play an important role. In precocial birds such as the chicken, the perihatch period is characterized by peak values of THs. THs are implicated in the control of muscle development, lung maturation and the switch from chorioallantoic to pulmonary respiration, yolk sac retraction, gut development and induction of hepatic genes to accommodate the change in dietary energy source, initiation of thermoregulation, and the final stages of brain maturation as well as early post-hatch imprinting behavior. There is evidence that, at least for some of these processes, THs may have similar roles in non-avian sauropsids. In altricial birds such as passerines on the other hand, THs do not rise significantly until well after hatching and peak values coincide with the development of endothermy. It is not known how hatching-associated processes are regulated by hormones in these animals or how this developmental mode evolved from TH-dependent precocial hatching. PMID:23755041

  12. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    SciTech Connect

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.; Muskhelishvili, L.; Warbritton, A.R.; Thomas, M.; Tareke, E.; McDaniel, L.P.; Doerge, D.R.

    2008-07-15

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that is neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk

  13. Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids.

    PubMed

    Terrien, Xavier; Fini, Jean-Baptiste; Demeneix, Barbara A; Schramm, Karl-Werner; Prunet, Patrick

    2011-09-01

    Several environmental chemicals disrupt thyroid function, a key regulator of normal development involved in many physiological processes in fish. We studied the effects of such chemicals in vivo using transient transgenic zebrafish (Danio rerio), expressing Green Fluorescent Protein (GFP) under the control of a TH/bZIP promoter from Xenopus laevis. Exposure to thyroid hormone (T3) at 10(-8)M increased GFP fluorescence in F0 embryos and larvae. Transient transgenic embryos were exposed to a T3 signaling agonist (TRIAC) or antagonists (NH(3) or NaClO(4)), or to the endocrine disruptor Bisphenol A (BPA). When tested alone, TRIAC increased fluorescence, confirming the specificity of our model. Exposure to NH(3) or NaClO(4) decreased fluorescence, reflecting inhibition of thyroid function. When tested alone, BPA did not modify fluorescence, but when tested with T3, it significantly reduced T3-induced fluorescence, suggesting disruption of the thyroid function by BPA. The expression of genes involved in the TH axis (TR-alpha, TR-beta, TSH) and the corticoid axis (GR and MR) was followed by q-PCR after T3 or BPA exposure (24 or 48h) and at different developmental stages (0, 1, or 5 days post-fertilization). Expression of TR-alpha, TR-beta, and TSH genes increased after 48h T3 exposure in 1-day-old larvae. When tested alone, BPA only slightly affected gene expression. When applied with T3, BPA decreased expression of all candidate genes in 1-day-old embryos compared to the T3 treated group, in agreement with data obtained with the TH/bZIP-eGFP zebrafish model. Finally, we show that T3 exposure leads to up-regulation of MR and GR genes. This study provides a new rapid diagnostic tool for characterizing the disrupting effects of toxicants on thyroid function and suggests possible crosstalk between the TR and Corticoid Signaling system.

  14. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.

    PubMed

    Morte, Beatriz; Ceballos, Ainhoa; Diez, Diego; Grijota-Martínez, Carmen; Dumitrescu, Alexandra M; Di Cosmo, Caterina; Galton, Valerie Anne; Refetoff, Samuel; Bernal, Juan

    2010-05-01

    Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T(3) in the brain depends on T(3) transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T(3) from T(4). The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T(3) because Dio2 inactivation selectively affects the expression of negatively regulated genes.

  15. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    EPA Science Inventory

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  16. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  17. Computational Modeling of Thyroid Hormone Regulated Neurodevelopment for Chemical Prioritization (SOT)

    EPA Science Inventory

    Thyroid hormones (TH) are critical for normal brain development. Environmental chemicals may disrupt TH homeostasis through a variety of physiological systems including membrane transporters, serum transporters, synthesis and catabolic enzymes, and nuclear receptors. Current comp...

  18. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    EPA Science Inventory

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  19. Developmental Thyroid Hormone Insufficiency Impairs Visual Contrast Sensitivity in Adult Male Offspring.

    EPA Science Inventory

    Severe thyroid hormone (TH) insufficiency during early development results in alterations in brain structure and function. Many environmental agents produce subtle alterations in TH status, but the dose-response relationships for such effects are unclear. We have previously demon...

  20. Characterization of Thyroid Hormone Transporter Protein Expression during Tissue-specific Metamorphic Events in Xenopus tropicalis

    EPA Science Inventory

    Thyroid hormone (TH) induces the dramatic morphological and physiological changes that together comprise amphibian metamorphosis. TH-responsive tissues vary widely with developmental timing of TH-induced changes. How larval tadpole tissues are able to employ distinct metamorphi...

  1. DEVELOPMENTAL THYROID HORMONE INSUFFICIENCY ALTERS THE AMPLITUDE OF THE ACOUSTIC STARTLE RESPONSE IN RATS

    EPA Science Inventory

    Purpose: The thyroid hormone (TH) system is one of the targets of endocrine disrupting chemicals. Since TH is essential for proper brain development, disruption by exposure to chemicals during development can result in adverse neurological outcomes. Previous studies revealed th...

  2. Neonatal screening for congenital hypothyroidism by measurement of plasma thyroxine and thyroid stimulating hormone concentrations.

    PubMed Central

    Griffiths, K D; Virdi, N K; Rayner, P H; Green, A

    1985-01-01

    Neonatal screening for congenital hypothyroidism was introduced in the City of Birmingham in 1980 by measuring concentrations of both thyroid stimulating hormone and thyroxine in plasma. Over two years 30 108 babies were tested. Thirty one babies were recalled because of thyroid stimulating hormone concentrations greater than 40 mU/l, of whom 12 were treated with replacement thyroxine. Six babies were found to have low thyroxine concentrations because of reduced thyroxine binding globulin and five raised thyroxine values because of increased thyroxine binding globulin. As a result of this study screening was continued with measurement of thyroid stimulating hormone only as the primary test for congenital hypothyroidism, the thyroxine value being measured only when the concentration of thyroid stimulating hormone exceeded 20 mU/l. PMID:3926078

  3. MEASUREMENT OF THYROID HORMONES IN THE RAT SERA CONTAINING PERFLUOROOCTANESULFONATE (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS), a persistent and bioaccumulative acid, is widely distributed in humans and wildlife. Prior studies with PFOS (rats and monkeys) have observed decreased total and free thyroid hormones (TH) in serum without a rise in thyrotropin (TSH). Measuremen...

  4. RISK ASSESSMENT OF THYROID HORMONE DISRUPTION AND MIXTURES IN MARINE BIOTA

    EPA Science Inventory

    Varieties of chemicals alter thyroid hormones (THs) in vertabrates. The importance of THs during neurodevelopment, suggest that these chemicals would likely be developmental neurotoxicants. A number of epidemiological studies have demonstrated associations between exposure to p...

  5. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals

    EPA Science Inventory

    The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...

  6. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    SciTech Connect

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui; Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I; Chen, Wei-Jan; Lin, Kwang-Huei

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  7. HPLC-ICP/MS Analysis of Thyroid Hormone and Related Iodinated Compounds in Tissues and Media

    EPA Science Inventory

    Quantifying thyroid hormone (TH) and the synthetic precursors and metabolic products of TH is important for developing models of the hypothalamic-pituitary-thyroid (HPT) axis as well as for understanding the effects of xenobiotics on HPT axis function. In this study, the developm...

  8. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  9. Analysis of thyroid hormones in gland and serum using liquid chromatography-tandem mass spectrometry

    EPA Science Inventory

    Thyroid hormones (THs), which are critical for growth and development in all vertebrates, can be impacted through chemical perturbation of the hypothalamic-pituitary-thyroid (HPT)-axis. Amphibian and mammalian models are being used to address this research priority within US EPA...

  10. [The disturbances of the thyroid hormone homeostasis caused by chemical substances occurring in natural environment].

    PubMed

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa; Krzysiek, Józef

    2014-01-01

    The thyroid is an endocrine gland synthesizing, storaging and secreting thyroxine (T4) and triiodothyronine (T3). Currently, there are more and more reports and evidences that various chemical contaminants present in the environment, mainly polychlorinated biphenyls, interfere with stages of regulation, synthesis, secretion, transport of thyroid hormones. That can have a significant negative impact on the human body's endocrine homeostasis.

  11. Thyroid Hormone Role on Cerebellar Development and Maintenance: A Perspective Based on Transgenic Mouse Models

    PubMed Central

    Faustino, Larissa C.; Ortiga-Carvalho, Tania M.

    2014-01-01

    Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neuronal migration, differentiation, and myelination. Most effects of THs are mediated by the thyroid hormone receptor (TR) isoforms TRβ1, TRβ2, and TRα1. Studies aimed at identifying TH target genes during cerebellum development have only achieved partial success, as some of these genes do not possess classical TH-responsive elements, and those that do are likely to be temporally and spatially regulated by THs. THs may also affect neurodevelopment by regulating transcription factors that control particular groups of genes. Furthermore, TH action can also be affected by TH transport, which is mediated mainly by monocarboxylate transporter family members. Studies involving transgenic animal models and genome-wide expression analyses have helped to address the unanswered questions regarding the role of TH in cerebellar development. Recently, a growing body of evidence has begun to clarify the molecular, cellular, and functional aspects of THs in the developing cerebellum. This review describes the current findings concerning the effects of THs on cerebellar development and maintenance as well as advances in the genetic animal models used in this field. PMID:24904526

  12. Analysis of the correlation between lipotoxicity and pituitary-thyroid axis hormone levels in men and male rats

    PubMed Central

    Yang, Jianmei; Zhou, Xiaoming; Zhang, Xu; Hu, Jianting; Gao, Ling; Song, Yongfeng; Yu, Chunxiao; Shao, Shanshan; Yuan, Zhongshang; Sun, Yan; Yan, Huili; Li, Guimei; Zhao, Jiajun

    2016-01-01

    Lipotoxicity seriously harms human health, but it is unclear whether lipotoxicity is detrimental to the pituitary. We investigated the correlation between serum triglyceride and pituitary axis hormone levels in epidemiological and animal studies. In the epidemiological study, serum thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were greater in male patients with isolated hypertriglyceridemia than in controls, whereas adrenocorticotropin (ACTH) levels were lower in the patients with hypertriglyceridemia. Pituitary hormone levels correlated with triglyceride levels, even after adjustment for potential confounders. In the animal study, male rats were fed a high-fat or control diet for 28 weeks. As the duration of high-fat feeding increased, the serum and pituitary triglyceride concentrations increased. At early times, the high-fat diet elevated serum TSH and triiodothyronine. At later times, much higher serum TSH levels coupled with reduced thyroxine were observed in the high-fat group. Serum levels of pituitary-gonadal and pituitary-adrenal axis hormones were not affected by the diet. The mRNA and protein expression of Tshβ were greater in the high-fat group than in the control group, whereas expression of Fshβ, Lhβ and Acth had no difference between the groups. Overall, serum triglyceride levels were associated with pituitary-thyroid axis hormone levels. PMID:27322428

  13. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection.

    PubMed

    Boelen, Anita; Kwakkel, Joan; Fliers, Eric

    2011-10-01

    Decreased serum thyroid hormone concentrations in severely ill patients were first reported in the 1970s, but the functional meaning of the observed changes in thyroid hormone levels, together known as nonthyroidal illness syndrome (NTIS), remains enigmatic. Although the common view was that NTIS results in overall down-regulation of metabolism in order to save energy, recent work has shown a more complex picture. NTIS comprises marked variation in transcriptional and translational activity of genes involved in thyroid hormone metabolism, ranging from inhibition to activation, dependent on the organ or tissue studied. Illness-induced changes in each of these organs appear to be very different during acute or chronic inflammation, adding an additional level of complexity. Organ- and timing-specific changes in the activity of thyroid hormone deiodinating enzymes (deiodinase types 1, 2, and 3) highlight deiodinases as proactive players in the response to illness, whereas the granulocyte is a novel and potentially important cell type involved in NTIS during bacterial infection. Although acute NTIS can be seen as an adaptive response to support the immune response, NTIS may turn disadvantageous when critical illness enters a chronic phase necessitating prolonged life support. For instance, changes in thyroid hormone metabolism in muscle during critical illness may be relevant for the pathogenesis of myopathy associated with prolonged ventilator dependence. This review focuses on NTIS as a timing-related and organ-specific response to illness, occurring independently from the decrease in serum thyroid hormone levels and potentially relevant for disease progression.

  14. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  15. Food intake regulation of circulating thyroid hormones in domestic fowl.

    PubMed

    Klandorf, H; Harvey, S

    1985-11-01

    The relationship between food intake and thyroid function has been investigated in immature domestic fowl. Starvation delayed, but did not suppress, the triiodothyronine (T3) response to intravenously administered thyrotropin-releasing hormone (10 micrograms/kg). This probably resulted from a suppression of monodeiodinase activity, since the conversion of thyroxine (T4) to T3 in thyroidectomised birds following an intramuscular injection of T4 (10 micrograms/kg) was markedly reduced by starvation. Starvation, for 24 or 48 hr, lowered the circulating T3 level but increased the T4 concentration. When fasted birds were refed the T4 concentration was initially enhanced but subsequently declined as the T3 concentration progressively increased. The accompanying decline in the T4:T3 ratio in fasted-refed birds indicated that the rise in the T3 level resulted from the peripheral monodeiodination of T4. The increase in T3 concentration could be induced solely by carbohydrate; the intraperitoneal administration of glucose (2.0 g/kg) to fasted birds resulting in a slight, transient rise in the T3 concentration and a fall in the T4:T3 ratio. The generation of T3 was also energy dependent, in that the magnitude of the T3 response of fasted birds to refeeding was proportional to the amount of food consumed and to the metabolisable energy (ME) content of the diet. Moreover, when exogenous T4 (100 micrograms/kg) was intramuscularly administered to thyroidectomised birds fed a diet with a high ME content, the conversion of T4 to T4 was greater than that in birds fed a diet of lower ME content. These results demonstrate that nutritional stimuli are involved in the regulation of thyroid function in birds, particularly in the peripheral generation of T3.

  16. Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor beta gene and the detection of a new mutation.

    PubMed Central

    Takeda, K; Balzano, S; Sakurai, A; DeGroot, L J; Refetoff, S

    1991-01-01

    Generalized resistance to thyroid hormone (GRTH) is a syndrome characterized by impaired tissue responsiveness to thyroid hormone. Two distinct point mutations in the hormone binding domain of the thyroid hormone receptor (TR) beta have recently been identified in two unrelated families with GRTH. One, Mf, involves a replacement of the normal glycine-345 for arginine in exon 7 and another, Mh, replaces the normal proline-453 for histidine in exon 8. To probe for the presence of the Mf and Mh defect in 19 unrelated families with GRTH, we applied separate polymerase chain reactions using allele-specific oligonucleotide primers containing the normal and each of the two mutant nucleotides at the 3'-position. A total of 24 affected subjects and 13 normal family members were studied. The mode of inheritance was dominant in 13 families, was unknown in 5 families, and was clearly recessive in 1 family in which only the consanguineous subjects were affected. Primers containing the substitutions specific for Mf and Mh amplified exons 7 and 8, respectively, only in affected members of each of the two index families. Primers containing the normal sequences amplified exons 7 and 8 of the TR beta gene in all subjects except affected members of one family. In this family with recessively inherited GRTH, neither exon could be amplified using any combinations of primers and DNA blot revealed absence of all coding exons. These results indicate a major deletion of the TR beta gene, including both DNA and hormone binding domains. Since heterozygous members of this family are not affected, the presence of a single normal allele is sufficient for normal function of the TR beta. These data also support the hypothesis that in the dominant mode of GRTH inheritance the presence of an abnormal TR beta interferes with the function of the normal TR beta. Distinct mutations are probably responsible for GRTH in unrelated families. Images PMID:1991834

  17. Economic Evaluation of Recombinant Human Thyroid Stimulating Hormone Stimulation vs. Thyroid Hormone Withdrawal Prior to Radioiodine Ablation for Thyroid Cancer: The Korean Perspective

    PubMed Central

    Sohn, Seo Young; Jang, Hye Won; Cho, Yoon Young; Kim, Sun Wook

    2015-01-01

    Background Previous studies have suggested that recombinant human thyroid stimulating hormone (rhTSH) stimulation is an acceptable alternative to thyroid hormone withdrawal (THW) when radioiodine remnant ablation is planned for thyroid cancer treatment, based on superior short-term quality of life with non-inferior remnant ablation efficacy. This study evaluated the cost-effectiveness of radioiodine remnant ablation using rhTSH, compared with the traditional preparation method which renders patients hypothyroid by THW, in Korean perspective. Methods This economic evaluation considered the costs and benefits to the Korean public healthcare system. Clinical experts were surveyed regarding the current practice of radioiodine ablation in Korea and their responses helped inform assumptions used in a cost effectiveness model. Markov modelling with 17 weekly cycles was used to assess the incremental costs per quality-adjusted life year (QALY) associated with rhTSH. Clinical inputs were based on a multi-center, randomized controlled trial comparing remnant ablation success after rhTSH preparation with THW. The additional costs associated with rhTSH were considered relative to the clinical benefits and cost offsets. Results The additional benefits of rhTSH (0.036 QALY) are achieved with an additional cost of Korean won ₩961,105, equating to cost per QALY of ₩26,697,361. Sensitivity analyses had only a modest impact upon cost-effectiveness, with one-way sensitivity results of approximately ₩33,000,000/QALY. Conclusion The use of rhTSH is a cost-effective alternative to endogenous hypothyroid stimulation prior to radioiodine ablation for patients who have undergone thyroidectomy in Korea. PMID:26394733

  18. Effects of sub-lethal heroin administration on thyroid stimulating hormone (TSH), thyroid hormones (T3, T4) and thyroid gland of Mus norvegicus.

    PubMed

    Bhoir, Kaminidevi K; Suryawanshi, S A; Pandey, A K

    2009-11-01

    Serum TSH level of control Mus norvegicus fluctuated between 498.20 +/- 21.92 and 506.80 +/- 22.35 ng ml(-1), thyroxine (T4) between 68.17 +/- 3.46 and 69.03 +/- 4.12 microg dl(-1) and triiodothyronine (T3) between 4.76 +/- 0.52 and 5.00 +/- 0.66 microg dl(-1). Sub-lethal heroin administration induced a significant decline in the levels of all the three hormones at 24 hr and 15 days post-administration. Decline in the levels of these hormones registered the lowest values (p<0.001) by day 30 of the treatment. Thyroid gland of control rat consisted of spherical, round follicles lined with low cuboidal and columnar epithelial cells and lumina filled with eosinophilic colloid. Ultrastructurally, the thyroid follicular cells showed the presence of round nuclei, polymorphic mitochondria, Golgi complex as well as lysosomes located on the apical side of the nucleus and cytoplasm with different sizes of lipid droplets and smooth along with rough endoplasmic reticulum. Basal lamina of the follicular cells was often in association with the endothelium of the capillaries. Sub-lethal heroin administration for 30 days elicited degenerative changes in the follicular epithelial cells as evident by the vacuolization of cytoplasm, pycnotic nuclei and reduced colloidal content. Ultrastructurally, the thyroid follicular cells showed indented nuclei with heavy deposition of chromatin material on the inner membrane of nucleus and dilated rough endoplasmic reticulum. Along with RBC infiltration, vesiculated mitochondria owing to the loss of cristae were also seen. Diffused electron-dense material was seen at the periphery of the cell body. Heroin treatment caused cellular necrosis as revealed by the fragmentation of cytoplasmic materials in follicular epithelial cells of the gland.

  19. Polybrominated Diphenyl Ether (DE-71) Interferes With Thyroid Hormone Action Independent of Effects on Circulating Levels of Thyroid Hormone in Male Rats

    PubMed Central

    Bansal, Ruby; Tighe, Daniel; Danai, Amin; Rawn, Dorothea F. K.; Gaertner, Dean W.; Arnold, Doug L.; Gilbert, Mary E.

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological studies is that PBDE effects on serum TH levels will reflect PBDE effects on TH action in tissues. To test whether this assumption is correct, we performed the following experiments. First, five concentrations of diphenyl ether (0–30 mg/kg) were fed daily to pregnant rats to postnatal day 21. PBDEs were measured in dam liver and heart to estimate internal dose. The results were compared with a separate study in which four concentrations of propylthiouracil (PTU; 0, 1, 2, and 3 ppm) was provided to pregnant rats in drinking water for the same duration as for diphenyl ether. PBDE exposure reduced serum T4 similar in magnitude to PTU, but serum TSH was not elevated by PBDE. PBDE treatment did not affect the expression of TH response genes in the liver or heart as did PTU treatment. PTU treatment reduced T4 in liver and heart, but PBDE treatment reduced T4 only in the heart. Tissue PBDEs were in the micrograms per gram lipid range, only slightly higher than observed in human fetal tissues. Thus, PBDE exposure reduces serum T4 but does not produce effects on tissues typical of low TH produced by PTU, demonstrating that the effects of chemical exposure on serum T4 levels may not always be a faithful proxy measure of chemical effects on the ability of thyroid hormone to regulate development and adult physiology. PMID:25060363

  20. [Efficacy of quinagolide in the treatment of a patient with hypophyseal resistance to thyroid hormones].

    PubMed

    De Luis, D A; Lahera, M; Botella, J I; Valero, M A; Varela, C

    2001-05-01

    The pituitary resistance to thyroid hormones (PRTH) is not very frequent and well-known entity, their treatment it continues being topic of controversy. In this work we have evaluated the quinagolida effectiveness in the treatment of it unites patient with (PRTH). The relationship among thyroid stimulating hormone (TSH) and free triiodothyronine (FT3) it was used as marker of the thyroid resistance and of the response to the treatment. The concentrations of TSH and FT3 were normalized after adding quinagolida to methimazole. These results suggest that the quinagolida could be an useful drug in the treatment of this pathology, next to the classic treatments.

  1. Degradation of Thyroid Hormones by Phagocytosing Human Leukocytes

    PubMed Central

    Klebanoff, Seymour J.; Green, William L.

    1973-01-01

    Thyroxine (T4) and triiodothyronine (T9) are rapidly degraded by a purified preparation of myeloperoxidase (MPO) and H2O2 with the formation of iodide and material which remains at the origin on paper chromatography. Deiodination by MPO and H2O2 occurs more readily at pH 7.0 than at pH 5.0 in contrast to iodination by this system which is known to occur more readily at pH 5.0 than at pH 7.0. Degradation is inhibited by azide, cyanide, ascorbic acid, and propylthiouracil. Methimazole stimulates deiodination by MPO and H2O2 but inhibits this reaction when MPO is replaced by lactoperoxidase or horseradish peroxidase. Intact human leukocytes, in the resting state, degrade T4 and T3 slowly: degradation, however, is increased markedly during phagocytosis of preopsonized particles. Serum inhibits this reaction. T3 can be detected as a minor product of T4 degradation. Proteolytic digestion of the reaction products increases the recovery of monoiodotyrosine. The fixation of iodine in the cytoplasm of leukocytes which contain ingested bacteria was detected radioautographically. Chronic granulomatous disease leukocytes, which are deficient in H2O2 formation, degrade T4 and T3 poorly during phagocytosis. MPO-deficient leukocytes degrade the thyroid hormones at a slower rate than do normal leukocytes although considerable degradation is still observed. Azide, cyanide, ascorbic acid, and propylthiouracil which inhibit certain peroxidasecatalyzed reactions inhibit degradation by normal leukocytes; however, inhibition is incomplete. Formation of iodinated origin material is inhibited to a greater degree by azide, cyanide, and propylthiouracil than is deiodination. Methimazole inhibits the formation of iodinated origin material by both normal and MPO-deficient leukocytes. However, deiodination by normal leukocytes is stimulated and that of MPO-deficient leukocytes is unaffected by methimazole. Hypoxia inhibits the degradation of T4 and T3 by untreated normal or MPO

  2. Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement

    PubMed Central

    Bianco, Antonio C.; Bauer, Andrew J.; Burman, Kenneth D.; Cappola, Anne R.; Celi, Francesco S.; Cooper, David S.; Kim, Brian W.; Peeters, Robin P.; Rosenthal, M. Sara; Sawka, Anna M.

    2014-01-01

    Background: A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. Methods: Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. Results: We reviewed the

  3. The Effect of Central Injection of Ghrelin and Bombesin on Mean Plasma Thyroid Hormones Concentration

    PubMed Central

    Mahmoudi, Fariba; Mohsennezhad, Fatemeh; Khazali, Homayoun; Ehtesham, Haleh

    2011-01-01

    Ghrelin increases food intakes and body weight. Bombesin decreases food intakes and inhibits the stimulatory effect of Ghrelin on food intakes. Thyroid hormones have a crucial role in the regulation of body weight and yet the effect of bombesin on thyroid axis activity is not fully clear. Therefore, the goal of this study was to determine the effect of different doses of Ghrelin or bombesin on mean plasma thyroid-stimulating hormone (TSH), Triiodothyronine (T3) and Thyroxin (T4) concentration and also, the effect of interaction between Ghrelin and bombesin on thyroid axis activity. Forty-nine rats in seven groups received saline or different doses of Ghrelin (4, 10 or 15 nmol) and bombesin ( 2.5, 5 or 10 nmol) and forty-two rats in six groups received simultaneous injection of Ghrelin (10 or 15 nmol) and different doses of bombesin (2.5, 5 or 10 nmol) via lateral cerebral ventricle. Blood samples were collected via decapitation 20 min after the injection and plasma was assayed for plasma TSH, T3 and T4 concentration by Radioimmunoassay (RIA). Ghrelin significantly decreased the concentration of mean plasma thyroid hormones compared to saline. Bombesin did not significantly increase thyroid hormones concentration compared to saline but bombesin blocked the inhibitory effect of Ghrelin on thyroid axis activity. Bombesin may be the antagonist of Ghrelin action. PMID:24250396

  4. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  5. Effect of thyroid hormone on concentrations of plasma calcitonin in broiler chicks.

    PubMed

    Klandorf, H; Boyce, C S; Holt, S B; Iqbal, M; Killefer, J; Peterson, R A; Deaver, D R

    1999-01-01

    The purpose of these studies was to determine the effect of thyroidectomy (Tx), and thyroid hormone (T3/T4) treatment on concentrations of plasma CT in chicks. In addition, the turnover of CT in Tx- and T3/T4-treated chicks was estimated using a novel nonradioactive salmon CT preparation. One-week-old broiler chicks (Gallus domesticus) (n = 75) were divided into three groups. Group I was sham-injected daily (i.m. saline), Group II was injected with 50 micrograms/day of T3/T4 while Group III was injected with the goitrogen, methimazole, (150 mg/kg BW per day) for 8 weeks. Chicks (8-9 weeks old) were implanted with catheters in the brachial wing vein and administered ruthenium-labeled salmon CT. Blood samples were collected at 30 s, 1, 2, 4, 8, 20 min, and 3 h after injection. Results showed that concentrations of plasma CT were decreased in T3/T4-injected birds. There was no significant effect of methimazole on circulating concentrations of plasma CT. The half-life of CT was significantly increased (P < 0.05) in both T3/T4-injected (n = 6; 1.34 +/- 0.16 min) and goitrogen-treated birds (n = 2; 5.81 +/- 2.83 min) compared to controls (n = 7; 54 +/- 3 s) The results demonstrate that changes in concentrations of plasma thyroid hormones can significantly affect concentrations of plasma CT.

  6. Catechin induced modulation in the activities of thyroid hormone synthesizing enzymes leading to hypothyroidism.

    PubMed

    Chandra, Amar K; De, Neela

    2013-02-01

    Catechins, the flavonoids found in abundance in green tea, have many beneficial health effects such as antioxidative, anticarcinogenic, anti-inflammatory, antiallergic, and hypotensive properties. However, flavonoids have antithyroid/goitrogenic effect, although less information is available about the effect of pure catechin on thyroid physiology. The present investigation has been undertaken to explore the effect of catechin administration on thyroid physiology in rat model. For the in vivo experiment catechin was injected intraperitoneally (i.p.) at doses of 10, 20 and 30 mg/kg body to male albino rats for 15 and 30 days, respectively, and thyroid activities were evaluated with respect to determination of serum levels of thyroid hormones, thyroid peroxidase, 5'-deiodinase I (5'-DI), and Na(+), K(+)-ATPase activities that are involved in the synthesis of thyroid hormone. Catechin decreased the activities of thyroid peroxidase and thyroidal 5'-deiodinase I, while Na(+), K(+)-ATPase activity significantly increased in dose-dependent manner; substantial decrease in serum T3 and T4 levels coupled with significant elevation of serum TSH were also noted. Histological examinations of the thyroid gland revealed marked hypertrophy and/or hyperplasia of the thyroid follicles with depleted colloid content. In in vitro study, short-term exposure of rat thyroid tissue to catechin at the concentrations of 0.10, 0.20, and 0.30 mg/ml leads to decrease in the activities of thyroid peroxidase and 5'-deiodinase I, while the activity of thyroidal Na(+), K(+)-ATPase remains unaltered even at high concentration of catechin treatment. The present study reinforces the concept that catechin, tea flavonoids possess potent antithyroid activity as evidenced from in vivo and in vitro studies.

  7. Hyperresponse to Thyrotropin-Releasing Hormone Accompanying Small Decreases in Serum Thyroid Hormone Concentrations

    PubMed Central

    Vagenakis, Apostolos G.; Rapoport, Basil; Azizi, Fereidoun; Portnay, Gary I.; Braverman, Lewis E.; Ingbar, Sidney H.

    1974-01-01

    To determine whether pituitary thyrotropin (TSH) responsiveness to thyrotropin-releasing hormone (TRH) is enhanced by small decreases in serum thyroxine (T4) and triiodothyronine (T3), 12 euthyroid volunteers were given 190 mg iodide po daily for 10 days to inhibit T4 and T3 release from the thyroid. Basal serum T4, T3, and TSH concentrations and the serum T4 and TSH responses to 400 μg TRH i.v. were assessed before and at the end of iodide administration. Iodide induced small but highly significant decreases in basal serum T4 (8.0±1.6 vs. 6.6±1.7 μg/100 ml; mean ± SD) and T3 (128±15 vs. 110±22 ng/100 ml) and increases in basal serum TSH (1.3±0.9 vs. 2.1±1.0 μU/ml). During iodide administration, the TSH response to TRH was significantly increased at each of seven time points up to 120 min. The maximum increment in serum TSH after TRH increased from a control mean of 8.8±4.1 to a mean of 13.0±2.8 μU/ml during iodide administration. As evidence of the inhibitory effect of iodide on hormonal release, the increment in serum T3 at 120 min after TRH was significantly lessened during iodide administration (61±42 vs. 33±24 ng/100 ml). These findings demonstrate that small acute decreases in serum T4 and T3 concentrations, resulting in values well within the normal range, are associated both with slight increases in basal TSH concentrations and pronounced increases in the TSH response to TRH. These results demonstrate that a marked sensitivity of TSH secretion and responsiveness to TRH is applicable to decreasing, as well as increasing, concentrations of thyroid hormones. PMID:4214837

  8. Analysis of thyroid hormones in raw and treated waste water.

    PubMed

    Svanfelt, Jesper; Eriksson, Johan; Kronberg, Leif

    2010-10-15

    An analytical method for the quantification of thyroid hormones (3,5,3',5'-tetraiodo-L-thyronine, 3,3',5-triiodo-L-thyronine, 3,3',5'-triiodothyronine, 3,5-diiodothyronine, 3,3'-diiodothyronine) in different water matrices has been developed. The method, consisting of solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), was validated for tap and surface water as well as raw and treated waste water. The limits of quantifications (LOQs) were lowest in tap water, where they ranged from 1.1 to 13.3 ng L(-1), and highest in raw wastewater (10.5-84.9 ng L(-1)). Of the target analytes 3,5,3',5'-tetraiodo-L-thyronine (T(4)) could be quantified in the influent and effluent of a waste water treatment plant (WWTP) in Finland. The study showed that despite a relatively high removal rate during treatment (66%), part of the incoming T(4) will reach the aquatic environment and, due to the high endocrine activity of this compound, further studies are needed in order to assess its environmental fate and impact on natural ecosystems.

  9. Thyroid hormone mediates otolith growth and development during flatfish metamorphosis.

    PubMed

    Schreiber, A M; Wang, X; Tan, Y; Sievers, Q; Sievers, B; Lee, M; Burrall, K

    2010-11-01

    Flatfish begin life as bilaterally symmetrical larvae that swim up-right, then abruptly metamorphose into asymmetrically shaped juveniles with lateralized swimming postures. Flatfish metamorphosis is mediated entirely by thyroid hormone (TH). Changes in flatfish swim posture are thought to be regulated via vestibular remodeling, although the influence of TH on teleost inner ear development remains unclear. This study addresses the role of TH on the development of the three otolith end-organs (sacculus, utricle, and lagena) during southern flounder (Paralichthys lethostigma) metamorphosis. Compared with pre-metamorphosis, growth rates of the sacculus and utricle otoliths increase dramatically during metamorphosis in a manner that is uncoupled from general somatic growth. Treatment of P. lethostigma larvae with methimazol (a pharmacological inhibitor of endogenous TH production) inhibits growth of the sacculus and utricle, whereas treatment with TH dramatically accelerates their growth. In contrast with the sacculus and utricle otoliths that begin to form and mineralize during embryogenesis, a non-mineralized lagena otolith is first visible 10-12 days after hatching. The lagena grows during pre- and pro-metamorphosis, then abruptly mineralizes during metamorphic climax. Mineralization of the lagena, but not growth, can be induced with TH treatment, whereas treatment with methimazol completely inhibits lagena mineralization without inhibiting its growth. These findings suggest that during southern flounder metamorphosis TH exerts differential effects on growth and development among the three types of otolith.

  10. Basic mechanisms of augmentation of antidepressant effects with thyroid hormone.

    PubMed

    Lifschytz, Tsuri; Segman, Ronen; Shalom, Galit; Lerer, Bernard; Gur, Eitan; Golzer, Tanya; Newman, Michael E

    2006-02-01

    The thyroid hormone triiodothyronine (T3) has been used both to augment and accelerate the clinical effects of antidepressants, particularly the tricyclics. More recent work indicates that it may have similar actions with regard to the SSRIs. Two main mechanisms have been put forward to explain its antidepressant actions, (a) an action at the nuclear level involving stimulation of gene transcription, (b) an action at the cell membrane level involving potentiation of neurotransmission. In particular, there is considerable evidence for potentiation by T3 of the actions of the neurotransmitter 5-HT or serotonin. This evidence, which is mainly based on in vivo microdialysis studies, is reviewed, and evidence based on human and animal neuroendocrine studies considered. The effects of T3, alone and together with the SSRI fluoxetine, on mRNA levels for the 5-HT1A and 5-HT1B autoreceptors, which mediate serotonergic neurotransmission by feedback actions at the levels of cell firing(somatodendritic 5-HT1A autoreceptors) and neurotransmitter release (nerve terminal 5-HT1B autoreceptors) were also determined. Administration of a combination of fluoxetine and T3 induced reductions in the transcription of these autoreceptors, which may explain the clinical potentiating effects of this combination, and thus link the nuclear and neurotransmitter hypotheses of T3 action.

  11. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2.

    PubMed

    Li, Yujie; Wang, Laicheng; Zhou, Lingyan; Song, Yongfeng; Ma, Shizhan; Yu, Chunxiao; Zhao, Jiajun; Xu, Chao; Gao, Ling

    2017-02-15

    Epidemiological evidence indicates that thyroid stimulating hormone (TSH) is positively correlated with abnormal glucose levels. We previously reported that TSH has direct effects on gluconeogenesis. However, the underlying molecular mechanism remains unclear. In this study, we observed increased fasting blood glucose and glucose production in a mouse model of subclinical hypothyroidism (only elevated TSH levels). TSH acts via the classical cAMP/PKA pathway and CRTC2 regulates glucose homeostasis. Thus, we explore whether CRTC2 is involved in the process of TSH-induced gluconeogenesis. We show that TSH increases CRTC2 expression via the TSHR/cAMP/PKA pathway, which in turn upregulates hepatic gluconeogenic genes. Furthermore, TSH stimulates CRTC2 dephosphorylation and upregulates p-CREB (Ser133) in HepG2 cells. Silencing CRTC2 and CREB decreases the effect of TSH on PEPCK-luciferase, the rate-limiting enzyme of gluconeogenesis. Finally, the deletion of TSHR reduces the levels of the CRTC2:CREB complex in mouse livers. This study demonstrates that TSH activates CRTC2 via the TSHR/cAMP/PKA pathway, leading to the formation of a CRTC2:CREB complex and increases hepatic gluconeogenesis.

  12. Genetics and phenomics of thyroid hormone transport by MCT8.

    PubMed

    Friesema, Edith C H; Visser, W Edward; Visser, Theo J

    2010-06-30

    Thyroid hormone (TH) is crucial for the development of different organs, in particular the brain, as disturbances in TH supply cause severe neurological abnormalities. TH transporters are necessary for the intracellular availability of TH to have access to the deiodinases and nuclear receptors inside the cell. The clinical importance of TH transporters is dramatically shown in patients with mutations in MCT8, suffering from severe X-linked psychomotor retardation in combination with disturbed TH levels, especially high serum T(3) levels, now referred as Allan-Herndon-Dudley Syndrome (AHDS). Worldwide >45 families have now been identified with MCT8 mutations. Most MCT8 mutations result in a complete loss of TH transport function when tested in vitro, but some mutations show significant residual activity and are associated with a somewhat milder clinical phenotype. It is difficult to identify MCT8 patients only on the basis of the clinical characteristics of X-linked mental retardation. Therefore, the criterion for MCT8 mutation screening in these patients is the profile of increased T(3) and low-normal to low FT(4) serum levels.

  13. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  14. Endocrine disrupting chemicals affect the gonadotropin releasing hormone neuronal network.

    PubMed

    Mueller, Johanna K; Heger, Sabine

    2014-04-01

    Endocrine disrupting chemicals have been shown to alter the pubertal process. The controlling levels of the Gonadotropin releasing hormone (GnRH) network involve GnRH itself, KiSS1, and the transcriptional regulators enhanced at puberty 1 (EAP1), Thyroid Transcription Factor 1 (TTF1), and Yin Yang 1 (YY1). While Genistein and Bisphenol A (BPA) have been shown to advance the advent of puberty, exposure to Dioxin delayed pubertal onset. Utilizing in vitro approaches, we observed that Genistein and BPA suppress inhibitory and activate stimulatory components of the GnRH network, while Dioxin exhibit an inhibitory effect at all regulatory hierarchical levels of the GnRH network. It repressed KiSS1, Gnrh, Ttf1 and Yy1 transcription via the xenobiotic response element (XRE), while EAP1 was not affected. Therefore, EDCs alter the neuroendocrine GnRH regulatory network at all hierarchical levels.

  15. Methodology of the thyroid gland disease decision-making using profiling in steroid hormone pathway.

    PubMed

    Kim, Young Sun; Yoon, Chang No

    2007-02-19

    To find out the genetic factors of outbreak of thyroid gland disease, we developed the thyroid gland decision-making system, which processes the metabolic profile in steroid hormone map using a statistical method. Metabolic profile is a measured data of lots of mixed materials that includes not only known metabolites, but also unknown ones, which is estimated to have an influence on the thyroid gland disease. Therefore, to develop thyroid gland disease decision-making system, analyzing metabolic profile containing multi-materials would be useful for diagnosing thyroid gland disease. Because experimental values used for system construction are area values for the retention time, the observations are preprocessed through variable transition and t-test to use the area values concurrently and the highly correlated materials are estimated by principal component analysis. The thyroid gland decision-making system developed through the logistic regression is an excellent system demonstrating 98.7% accuracy in the classification table.

  16. Thyroid hormone modulation of the hypothalamic growth hormone (GH)-releasing factor-pituitary GH axis in the rat.

    PubMed Central

    Miki, N; Ono, M; Hizuka, N; Aoki, T; Demura, H

    1992-01-01

    Both thyroid hormone and hypothalamic growth hormone (GH)-releasing factor (GRF) facilitate pituitary somatotroph function. However, the pathophysiological role of thyroid hormone in GRF secretion is less well understood. Thyrotoxicosis, induced by administration of thyroxine (T4) in rats, inhibited both pituitary GH levels and immunoreactive GRF secretion from incubated hypothalamus. At the highest dose of T4 given for 12 d, GRF secretion and pituitary GH decreased by 50 and 39%, respectively. Hypothyroidism induced by thyroidectomy (Tx) enhanced GRF secretion approximately twofold while depleting pituitary GH by greater than 99%. Both of these hypothalamic and pituitary effects were reversed by replacement of T4 but not human GH for 7 or 14 d. Human GH was as potent as T4 in restoring decreased body weight gains or serum insulin-like growth factor-1 levels in Tx rats. These results indicate that at both physiological and pathological concentrations in serum, thyroid hormone acts as an inhibitory modulator of GRF secretion, probably not involving a feedback mechanism through GH. A biphasic effect of thyroid hormone on pituitary GH levels appears to derive from the difference in primary target tissues of hyper- and hypothyroidism, the hypothalamus and the pituitary, respectively. PMID:1634603

  17. Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8.

    PubMed

    Braun, Doreen; Wirth, Eva K; Wohlgemuth, Franziska; Reix, Nathalie; Klein, Marc O; Grüters, Annette; Köhrle, Josef; Schweizer, Ulrich

    2011-10-15

    LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper that targeted inactivation of Slc7a8 leads to increased urinary loss of small neutral amino acids. Development and growth of Slc7a8(-/-) mice appears normal, suggesting functional compensation of neutral amino acid transport by alternative transporters in kidney, intestine and placenta. Movement co-ordination is slightly impaired in mutant mice, although cerebellar development and structure remained inconspicuous. Circulating thyroid hormones, thyrotropin and thyroid hormone-responsive genes remained unchanged in Slc7a8(-/-) mice, possibly because of functional compensation by the thyroid hormone transporter Mct8 (monocarboxylate transporter 8), which is co-expressed in many cell types. The reason for the mild neurological phenotype remains unresolved.

  18. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.

    PubMed

    Sharlin, David S; Visser, Theo J; Forrest, Douglas

    2011-12-01

    Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.

  19. Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export*

    PubMed Central

    Mavinakere, Manohara S.; Powers, Jeremy M.; Subramanian, Kelly S.; Roggero, Vincent R.; Allison, Lizabeth A.

    2012-01-01

    Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we identified a novel nuclear localization signal in the A/B domain of thyroid hormone receptor α1 that is absent in thyroid hormone receptor β1 and inactive in the oncoprotein v-ErbA. Our prior studies showed that thyroid hormone receptor α1 exits the nucleus through two pathways, one dependent on the export factor CRM1 and the other CRM1-independent. Here, we identified three novel CRM1-independent nuclear export signal (NES) motifs in the ligand-binding domain as follows: a highly conserved NES in helix 12 (NES-H12) and two additional NES sequences spanning helix 3 and helix 6, respectively. Mutations predicted to disrupt the α-helical structure resulted in a significant decrease in NES-H12 activity. The high degree of conservation of helix 12 suggests that this region may function as a key NES in other nuclear receptors. Furthermore, our mutagenesis studies on NES-H12 suggest that altered shuttling of thyroid hormone receptor β1 may be a contributing factor in resistance to thyroid hormone syndrome. Taken together, our findings provide a detailed mechanistic understanding of the multiple signals that work together to regulate TR shuttling and transcriptional activity, and they provide important insights into nuclear receptor function in general. PMID:22815488

  20. Laboratory diagnosis of multiple pituitary hormone deficiencies: issues with testing of the growth and thyroid axes.

    PubMed

    Nakamoto, Jon

    2009-01-01

    Clinical manifestations of hypopituitarism are variable and depend on the severity of hormone deficiency, creating a diagnostic challenge for diagnosis of the non-classical patient who may have a less severe growth hormone (GH) deficiency and only a suggestion of possible hypothyroidism. Laboratory tests contribute to the diagnostic process, but the tests for growth and thyroid dysfunction, two of the most common manifestations of multiple pituitary hormone deficiency, are some of the most problematic from a methodological perspective. Patients in the "grey zone" of diagnosis, for whom there is no distinct dividing line or gold standard diagnostic test, are the focus of this article. Issues relating to the use of laboratory tests involving GH, insulin-like growth factor-I, and free thyroxine in the diagnosis of GH and thyroid deficiency are reviewed. Assay harmonization initiatives are required before clinical research studies are performed to establish diagnostic thresholds for GH and thyroid hormone deficiencies.

  1. Optimized FPGA Implementation of the Thyroid Hormone Secretion Mechanism Using CAD Tools.

    PubMed

    Alghazo, Jaafar M

    2017-02-01

    The goal of this paper is to implement the secretion mechanism of the Thyroid Hormone (TH) based on bio-mathematical differential eqs. (DE) on an FPGA chip. Hardware Descriptive Language (HDL) is used to develop a behavioral model of the mechanism derived from the DE. The Thyroid Hormone secretion mechanism is simulated with the interaction of the related stimulating and inhibiting hormones. Synthesis of the simulation is done with the aid of CAD tools and downloaded on a Field Programmable Gate Arrays (FPGAs) Chip. The chip output shows identical behavior to that of the designed algorithm through simulation. It is concluded that the chip mimics the Thyroid Hormone secretion mechanism. The chip, operating in real-time, is computer-independent stand-alone system.

  2. Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer.

    PubMed

    Fernie, Kim J; Marteinson, Sarah C

    2016-08-01

    High concentrations of polybrominated diphenyl ethers (PBDEs) accumulate in predatory birds. Several PBDE congeners are considered thyroid disruptors; however, avian studies are limited. The authors examined circulating thyroid hormones and thyroid gland function of nestling American kestrels (Falco sparverius) at 17 d to 20 d of age, following embryonic exposure by maternal transfer only to environmentally relevant levels of PBDEs (DE-71 technical mixture). Nestlings were exposed to in ovo sum (Σ) PBDE concentrations of 11 301 ± 95 ng/g wet weight (high exposure), 289 ± 33 ng/g wet weight (low exposure), or 3.0 ± 0.5 ng/g wet weight (controls, background exposure). Statistical comparisons are made to controls of the respective sexes and account for the relatedness of siblings within broods. Circulating concentrations of plasma total thyroxine (TT4 ) and total triiodothyronine (TT3 ) in female nestlings were significantly influenced overall by the exposure to DE-71. Following intramuscular administration of thyroid-stimulating hormone, the temporal response of the thyroid gland in producing and/or releasing TT4 was also significantly affected by the females' exposure to DE-71. The altered availability of T4 for conversion to T3 outside of the gland and/or changes in thyroid-related enzymatic activity may explain the lower TT3 concentrations (baseline, overall) and moderately altered temporal TT3 patterns (p = 0.06) of the treatment females. Controlling for the significant effect on TT3 levels of the delayed hatching of treatment females, baseline TT3 levels were significantly and positively correlated with body mass (10 d, 15 d, 20 d), with PBDE-exposed females generally being smaller and having lower TT3 concentrations. Given that exposure concentrations were environmentally relevant, similar thyroidal changes and associated thyroid-mediated processes relating to growth may also occur in wild female nestlings. Environ Toxicol Chem 2016

  3. Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows.

    PubMed

    Noyes, Pamela D; Lema, Sean C; Macaulay, Laura J; Douglas, Nora K; Stapleton, Heather M

    2013-09-03

    Polybrominated diphenyl ether (PBDE) flame retardants have been shown to disrupt thyroid hormone regulation, neurodevelopment, and reproduction in some animals. However, effects of the most heavily used PBDE, decabromodiphenyl ether (BDE-209), on thyroid functioning remain unclear. This study examined low-dose effects of BDE-209 on thyroid hormone levels and signaling in fathead minnows. Adult males received dietary exposures of BDE-209 at a low dose (∼3 ng/g bw-day) and high dose (∼300 ng/g bw-day) for 28 days followed by a 14-day depuration to evaluate recovery. Compared to controls, fish exposed to the low dose for 28 days experienced a 53% and 46% decline in circulating total thyroxine (TT4) and 3,5,3'-triiodothyronine (TT3), respectively, while TT4 and TT3 deficits at the high dose were 59% and 62%. Brain deiodinase activity (T4-ORD) was reduced by ∼65% at both doses. BDE-209 elevated the relative mRNA expression of genes encoding deiodinases, nuclear thyroid receptors, and membrane transporters in the brain and liver in patterns that varied with time and dose, likely in compensation to hypothyroidism. Declines in the gonadal-somatic index (GSI) and increased mortality were also measured. Effects at the low dose were consistent with the high dose, suggesting nonlinear relationships between BDE-209 exposures and thyroid dysfunction.

  4. Physiologic implications of inter-hormonal interference in fish: lessons from the interaction of adrenaline with cortisol and thyroid hormones in climbing perch (Anabas testudineus Bloch).

    PubMed

    George, Nimta; Peter, Valsa S; Peter, M C Subhash

    2013-01-15

    Adrenaline and cortisol, the major stress hormones, are known for its direct control on stress response in fish. Likewise, as an important stress modifier hormone, thyroid hormone has also been implicated in stress response of fish. We tested whether the hypothesis on the phenomenon of inter-hormonal interference, a process that explains the hormonal interactions, operates in fish particularly between adrenaline, cortisol and thyroid hormones. To achieve this goal, indices of acid-base, osmotic and metabolic regulations were quantified after adrenaline challenge in propranolol pre-treated air-breathing fish (Anabas testudineus). Short-term adrenaline (10 ng g(-1)) injection for 30 min produced a rise in plasma cortisol without affecting plasma T(3) and T(4). On the contrary, blocking of adrenaline action with a non-selective blocker, propranolol (25 ng g(-1)) for 90 min reduced plasma cortisol along with plasma T(4) and that indicate a possible interference of these hormones in the absence of adrenaline challenge. Similarly, a reduction in plasma T(3) was found after adrenaline challenge in propranolol pre-treated fish and that suggests a functional synergistic interference of adrenaline with T(3). Adrenaline challenge in these fish, however, failed to abolish this propranolol effect. The remarkable systemic hypercapnia and acidosis by propranolol pre-treatment were reversed by adrenaline challenge, pointing to a direct action of adrenaline on acid-base indices probably by a mechanism which may not require β-adrenergic receptor systems. Interestingly, the prominent adrenaline-induced hyperglycemia, hyperlactemia and hyperuremea were not altered by propranolol treatment. Similarly, adrenaline challenge promoted and propranolol reduced the osmotic competencies of the gills, kidneys and liver of this fish as evident in the sodium and proton pump activities. The modified physiologic actions of adrenaline and its modified interaction with THs and cortisol in blocked

  5. SEX-STEROID AND THYROID HORMONE CONCENTRATIONS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE LAKES IN FLORIDA, USA

    EPA Science Inventory

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-...

  6. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats.

    PubMed

    Fedail, Jaafar Sulieman; Zheng, Kaizhi; Wei, Quanwei; Kong, Lingfa; Shi, Fangxiong

    2014-08-01

    Thyroid hormones (TH) play a critical role in ovarian follicular development, maturation and the maintenance of various endocrine functions. However, whether TH can affect ovarian follicular development in neonatal and immature rats remains unclear. Therefore, the aim of the present study was to elucidate the effect of TH on ovarian follicular development in neonatal and immature rats. Thirty female post-lactation mothers of Sprague-Dawley rat pups were randomly divided into three groups: control, hyperthyroid (hyper), and hypothyroid (hypo). On postnatal days (PND) 10 and 21, body weights, serum hormones, ovarian histologic changes, and immunohistochemistry of thyroid hormone receptor alpha 1 (TRα1) and nitric oxide synthase types (NOS), and NOS activities, were determined. The data showed that body weights significantly decreased in both hyper and hypo groups compared with the control group (P < 0.05). In addition, the hyper group had increased serum concentrations of T3, T4, and E2; whereas the hypo group manifested reduced serum concentrations of T3, T4, and E2 on PND 10 and 21. The hyper and hypo groups showed significantly reduced total number of primordial, primary and secondary follicles on PND 10 and 21 compared with the control group (P < 0.05). Similarly, antral follicle numbers in the hyper and hypo groups were significantly decreased on PND 21 compared with the control group (P < 0.05). Immunostaining indicated that TRα1 and NOS were expressed in ovarian surface epithelium and oocytes of growing and antral follicles, with strong staining of the granulosa and theca cells of follicles. NOS activities were significantly augmented in the hyper, but diminished in the hypo groups on PND 10 and 21. In summary, our findings suggest that TH play important roles in ovarian functions and in the regulation of NOS activity. Our results also indicate that a relationship exists between the TH and NO signaling pathways during the process of ovarian follicular

  7. Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice.

    PubMed

    Trajkovic-Arsic, Marija; Visser, Theo J; Darras, Veerle M; Friesema, Edith C H; Schlott, Bernhard; Mittag, Jens; Bauer, Karl; Heuer, Heike

    2010-02-01

    Patients carrying inactivating mutations in the gene encoding the thyroid hormone transporting monocarboxylate transporter (MCT)-8 suffer from a severe form of psychomotor retardation and exhibit abnormal serum thyroid hormone levels. The thyroidal phenotype characterized by high-serum T(3) and low-serum T(4) levels is also found in mice mutants deficient in MCT8 although the cause of these abnormalities is still unknown. Here we describe the consequences of MCT8 deficiency for renal thyroid hormone transport, metabolism, and function by studying MCT8 null mice and wild-type littermates. Whereas serum and urinary parameters do not indicate a strongly altered renal function, a pronounced induction of iodothyronine deiodinase type 1 expression together with increased renal T(3) and T(4) content point to a general hyperthyroid state of the kidneys in the absence of MCT8. Surprisingly, accumulation of peripherally injected T(4) and T(3) into the kidneys was found to be enhanced in the absence of MCT8, indicating that MCT8 deficiency either directly interferes with the renal efflux of thyroid hormones or activates indirectly other renal thyroid hormone transporters that preferentially mediate the renal uptake of thyroid hormones. Our findings indicate that the enhanced uptake and accumulation of T(4) in the kidneys of MCT8 null mice together with the increased renal conversion of T(4) into T(3) by increased renal deiodinase type 1 activities contributes to the generation of the low-serum T(4) and the increase in circulating T(3) levels, a hallmark of MCT8 deficiency.

  8. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex.

    PubMed

    Stenzel, Denise; Wilsch-Bräuninger, Michaela; Wong, Fong Kuan; Heuer, Heike; Huttner, Wieland B

    2014-02-01

    Neocortex expansion during evolution is associated with the enlargement of the embryonic subventricular zone, which reflects an increased self-renewal and proliferation of basal progenitors. In contrast to human, the vast majority of mouse basal progenitors lack self-renewal capacity, possibly due to lack of a basal process contacting the basal lamina and downregulation of cell-autonomous production of extracellular matrix (ECM) constituents. Here we show that targeted activation of the ECM receptor integrin αvβ3 on basal progenitors in embryonic mouse neocortex promotes their expansion. Specifically, integrin αvβ3 activation causes an increased cell cycle re-entry of Pax6-negative, Tbr2-positive intermediate progenitors, rather than basal radial glia, and a decrease in the proportion of intermediate progenitors committed to neurogenic division. Interestingly, integrin αvβ3 is the only known cell surface receptor for thyroid hormones. Remarkably, tetrac, a thyroid hormone analog that inhibits the binding of thyroid hormones to integrin αvβ3, completely abolishes the intermediate progenitor expansion observed upon targeted integrin αvβ3 activation, indicating that this expansion requires the binding of thyroid hormones to integrin αvβ3. Convergence of ECM and thyroid hormones on integrin αvβ3 thus appears to be crucial for cortical progenitor proliferation and self-renewal, and hence for normal brain development and the evolutionary expansion of the neocortex.

  9. Associations of birth outcomes with maternal polybrominated diphenyl ethers and thyroid hormones during pregnancy

    PubMed Central

    Miranda, Marie Lynn; Anthopolos, Rebecca; Wolkin, Amy; Stapleton, Heather M.

    2015-01-01

    Background Previous research has linked polybrominated diphenyl ether (PBDE) exposure to poor birth outcomes and altered thyroid hormone levels. Objectives We examined whether maternal PBDE serum levels were associated with infant birth weight (g), head circumference (cm), birth length (cm), and birth weight percentile for gestational age. We explored the potential for a mediating role of thyroid hormone levels. Methods During 2008–2010, we recruited 140 pregnant women in their third trimester as part of a larger clinical obstetrics study known as Healthy Pregnancy, Healthy Baby. Blood samples were collected during a routine pre-natal clinic visit. Serum was analyzed for PBDEs, phenolic metabolites, and thyroid hormones. Birth outcome information was abstracted from medical records. Results In unadjusted models, a two-fold increase in maternal BDE 153 was associated with an average decrease in head circumference of 0.32 cm (95% CI: −0.53, −0.12); however, this association was attenuated after control for maternal risk factors. BDE 47 and 99 were similarly negatively associated but with 95% confidence intervals crossing the null. Associations were unchanged in the presence of thyroid hormones. Conclusions Our data suggest a potential deleterious association between maternal PBDE levels and infant head circumference; however, confirmatory studies are needed in larger sample sizes. A mediating role of thyroid hormones was not apparent. PMID:26431883

  10. The role of thyroid hormone and brown adipose tissue in energy homoeostasis.

    PubMed

    Bianco, Antonio C; McAninch, Elizabeth A

    2013-11-01

    The presence of brown adipose tissue (BAT) in adults has become increasingly well defined as a result of functional imaging studies of thermogenically active BAT. Findings from these studies have created a surge of scientific interest in BAT, because it represents a potential therapeutic target for obesity--a condition with profound health consequences and few successful therapies. BAT contributes to overall energy expenditure in small mammals and neonates through adaptive thermogenesis. Thyroid-hormone signalling, particularly through induction of type II deiodinase, has a central role in brown adipogenesis in vitro and BAT development in mouse embryos. Additionally, because of high intracellular expression of type II deiodinase, adult BAT has enhanced thyroid-hormone signalling with several thyroid-hormone-dependent thermogenic pathways, including expression of the genes Ppargc1a and Ucp1. BAT thermogenesis explains the essential part played by thyroid hormone in energy homoeostasis and adaptation to cold. Stimulation of BAT in adults, specifically through thyroid-hormone-mediated pathways, is a promising therapeutic target for obesity.

  11. Cellular and Molecular Basis of Deiodinase-Regulated Thyroid Hormone Signalinga

    PubMed Central

    Gereben, Balázs; Zavacki, Ann Marie; Ribich, Scott; Kim, Brian W.; Huang, Stephen A.; Simonides, Warner S.; Zeöld, Anikó; Bianco, Antonio C.

    2008-01-01

    The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T3 during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-κB, growth factors, bile acids, hypoxia-inducible factor-1α, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults. PMID:18815314

  12. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8).

    PubMed

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A

    2010-08-27

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.

  13. Effect of excitatory amino acids on serum TSH and thyroid hormone levels in freely moving rats.

    PubMed

    Alfonso, M; Durán, R; Arufe, M C

    2000-01-01

    The actions of glutamate (L-Glu), and glutamate receptor agonists on serum thyroid hormones (T4 and T3) and TSH levels have been studied in conscious and freely moving adult male rats. The excitatory amino acids (EAA), L-Glu, N-methyl-D-aspartate (NMDA), kainic acid (KA) and domoic acid (Dom) were administered intraperitoneally. Blood samples were collected through a cannula implanted in the rats jugular 0--60 min after injection. Thyroid hormone concentrations were measured by enzyme immunoassay, and thyrotrophin (TSH) concentrations were determined by radioimmunoassay. The results showed that L-Glu (20 and 25 mg/kg) and NMDA (25 mg/kg) increased serum thyroxine (T4), triiodothyronine (T3) and TSH concentrations. Serum thyroid hormone levels increased 30 min after treatment, while serum TSH levels increased 5 min after i.p. administration, in both cases serum levels remained elevated during one hour. Injection of the non-NMDA glutamatergic agonists KA (30 mg/kg) and Dom (1 mg/kg) produced an increase in serum thyroid hormones and TSH levels. These results suggest the importance of EAAs in the regulation of hormone secretion from the pituitary-thyroid axis, as well as the importance of the NMDA and non-NMDA receptors in this stimulatory effect.

  14. Thyroid hormones association with depression severity and clinical outcome in patients with major depressive disorder.

    PubMed

    Berent, Dominika; Zboralski, Krzysztof; Orzechowska, Agata; Gałecki, Piotr

    2014-01-01

    The clinical implications of thyroid hormones in depression have been studied extensively and still remains disputable. Supplementation of thyroid hormones is considered to augment and accelerate antidepressant treatment. Studies on the role of thyroid hormones in depression deliver contradictory results. Here we assess theirs impact on depression severity and final clinical outcome in patients with major depression. Thyrotropin, free thyroxine (FT4), and free triiodothyronine (FT3) concentrations were measured with automated quantitative enzyme immunoassay. Depression severity and final clinical outcome were rated with 17-itemic Hamilton Rating Scale for Depression [HDRS(17)] and Clinical Global Impression Scales for severity and for improvement (CGIs, CGIi). FT3 and FT4 concentrations were significantly positively correlated with clinical improvement evaluated with CGIi (R = 0.38, P = 0.012; R = 0.33, P = 0.034, respectively). There was a significant correlation between FT4 concentrations and depression severity assessed in HDRS(17) (R = 0.31, P = 0.047). Male patients presented significantly higher FT3 serum levels (Z = 2.34, P = 0.018) and significantly greater clinical improvement (Z = 2.36, P = 0.018) when compared to female patients. We conclude that free thyroid hormones concentrations are associated with depression severity and have an impact on final clinical outcome. It can be more efficient to augment and accelerate the treatment of major depressive disorder with triiodothyronine instead of levothyroxine because of individual differences in thyroid hormones metabolism.

  15. Sex steroid and thyroid hormone receptor expressions in the thyroid of the American alligator (Alligator mississippiensis) during different life stages.

    PubMed

    Bermudez, Dieldrich S; Skotko, Jeremy P; Ohta, Yasuhiko; Boggs, Ashley S P; Iguchi, Taisen; Guillette, Louis J

    2011-06-01

    The expression of estrogen receptors, ESR1 (ERα) and ESR2 (ERβ), and androgen receptors (AR) in the thyroid gland has been reported in few vertebrate species other than a few mammals. This study reports the presence of sex steroid hormone receptors and thyroid receptors (ERα, ERβ, AR, TRα, and TRβ) in the thyroid gland of the American alligator at several life stages. It provides a semiquantification and distribution of ERα in the thyroid follicle cells using an immunohistochemical approach as well as reports quantitative differences in mRNA expression of ERα, ERβ, TRα, TRβ, and AR in the same tissue using quantitative real time-PCR (Q-PCR) with primers designed specifically for alligators. The thyroid tissue of the American alligator expresses ERα, ERβ, and AR at all of the life stages examined here although no statistically significant differences were observed between male and female in thyroid mRNA expression for any of the genes analyzed. No sexual dimorphism was observed in ERα immunostaining. No statistical analysis across life stages were performed due to confounding factor of season.

  16. Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer.

    PubMed

    Carr, Frances E; Tai, Phillip W L; Barnum, Michael S; Gillis, Noelle E; Evans, Katherine G; Taber, Thomas H; White, Jeffrey H; Tomczak, Jennifer A; Jaworski, Diane M; Zaidi, Sayyed K; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2016-08-01

    Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.

  17. Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation R316H in the thyroid hormone receptor {beta} gene

    SciTech Connect

    Weiss, R.E.; Stein, M.A.; Chyna, B.; Phillips, W.; O`Brien, T.; Gutermuth, L.; Refetoff, S.; Duck, S.C.

    1994-06-01

    Resistance to thyroid hormone (RTH) is a syndrome of reduced responsiveness of tissues to thyroid hormone. The clinical manifestations are variable and 46-50% of children with RTH have attention deficit hyperactivity disorder (ADD). The authors present a new family with RTH (F120) found to have a mutation R316H in the thyroid hormone receptor {beta} (TR{beta}) gene identical for that reported in an unrelated family. Assignment of the mutant allele and haplotyping based on CA repeat polymorphism were done on 16 family members. Semistructured diagnostic interviews and psychometric testing were used to determine the psychiatric diagnosis of 12 family members by examiners blinded to the genotype. Three subjects were identified to have the R316H allele as well as mildly elevated free T{sub 4} index (168 {+-} 12; normal range 77-135) and nonsuppressed TSH (4.1 {+-} 1.7 mU/L). Only 2 of the subjects with RTH were found to have ADD, while one family member homozygous for the wild type TR{beta} and normal thyroid function tests also had ADD. Unaffected family members had higher full scale intelligence quotients ({vert_bar}Q) (93 {+-} 7) than any of the 3 family members with RTH (77 {+-} 5, p = 0.006). These data do not support the genetic linkage of ADD and RTH, but do suggest that RTH is associated with lower IQ scores that may confer a high likelihood of exhibiting ADD symptoms. 20 refs., 2 figs., 2 tabs.

  18. Role of calmodulin in thyroid hormone stimulation in vitro of human erythrocyte Ca2+-ATPase activity.

    PubMed

    Davis, F B; Davis, P J; Blas, S D

    1983-03-01

    Because human erythrocyte membrane Ca2+-ATPase is a calmodulin-dependent enzyme, and because physiological levels of thyroid hormone stimulate this enzyme system in vitro, we have studied the role of calmodulin in this model of extranuclear thyroid hormone action. Ca2+-ATPase activity in the absence of thyroid hormone ("basal activity") was increased by inclusion in the preassay incubation mixture of purified calmodulin or hypothyroid erythrocyte hemolysate that contained calmodulin (39 micrograms calmodulin/ml packed cells, determined by radioimmunoassay); addition of L-thyroxine or 3,5,3'-triiodo-L-thyronine (10(-10)M) significantly enhanced (P less than 0.001) enzyme activity in the presence of calmodulin or hemolysate. The stimulatory effects of thyroid hormone, calmodulin, and hemolysate were additive. At 5-10 microM, trifluoperazine, an antagonist of calmodulin, inhibited thyroid hormone stimulation of Ca2+-ATPase activity. Higher concentrations of trifluoperazine (50-100 microM) inhibited basal and hormone-stimulated enzyme activity, with or without added calmodulin. Anti-calmodulin antibody (10-50 micrograms antibody/mg membrane protein) inhibited basal, calmodulin-stimulated and thyroid hormone-stimulated Ca2+-ATPase activity. Membrane preparations were shown by radioimmunoassay to contain residual endogenous calmodulin (0.27 +/- 0.02 micrograms/mg membrane protein). The latter accounts for the effect of trifluoperazine and calmodulin antibody on membrane Ca2+-ATPase activity in the absence of added purified calmodulin. These results support the conclusion that the in vitro action of physiological levels of iodothyronines on human erythrocyte Ca2+-ATPase activity requires the presence of calmodulin.

  19. Dissecting thyroid hormone transport and metabolism in dendritic cells.

    PubMed

    Gigena, Nicolás; Alamino, Vanina A; Montesinos, María Del Mar; Nazar, Magalí; Louzada, Ruy A; Wajner, Simone M; Maia, Ana L; Masini-Repiso, Ana M; Carvalho, Denise P; Cremaschi, Graciela A; Pellizas, Claudia G

    2017-02-01

    We reported thyroid hormone (TH) receptor expression in murine dendritic cells (DCs) and 3,5,3'-triiodothyronine (T3)-dependent stimulation of DC maturation and ability to develop a Th1-type adaptive response. Moreover, an increased DC capacity to promote antigen-specific cytotoxic T-cell activity, exploited in a DC-based antitumor vaccination protocol, was revealed. However, putative effects of the main circulating TH, l-thyroxine (T4) and the mechanisms of TH transport and metabolism at DC level, crucial events for TH action at target cell level, were not known. Herein, we show that T4 did not reproduce those registered T3-dependent effects, finding that may reflect a homoeostatic control to prevent unspecific systemic activation of DCs. Besides, DCs express MCT10 and LAT2 TH transporters, and these cells mainly transport T3 with a favored involvement of MCT10 as its inhibition almost prevented T3 saturable uptake mechanism and reduced T3-induced IL-12 production. In turn, DCs express iodothyronine deiodonases type 2 and 3 (D2, D3) and exhibit both enzymatic activities with a prevalence towards TH inactivation. Moreover, T3 increased MCT10 and LAT2 expression and T3 efflux from DCs but not T3 uptake, whereas it induced a robust induction of D3 with a parallel slight reduction in D2. These findings disclose pivotal events involved in the mechanism of action of THs on DCs, providing valuable tools for manipulating the immunogenic potential of these cells. Furthermore, they broaden the knowledge of the TH mechanism of action at the immune system network.

  20. Perfluoroalkyl substances, thyroid hormones, and neuropsychological status in older adults.

    PubMed

    Shrestha, Srishti; Bloom, Michael S; Yucel, Recai; Seegal, Richard F; Rej, Robert; McCaffrey, Robert J; Wu, Qian; Kannan, Kurunthachalam; Fitzgerald, Edward F

    2016-12-30

    Minimal data exist regarding the neurotoxicity of perfluoroalkyl substances (PFASs) in aging populations and the possible mediating effects of thyroid hormones (THs). Hence, the aims of this study were to: (i) assess associations between PFASs and neuropsychological function, and (ii) determine if such associations are mediated by changes in circulating THs in an aging population. We measured perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), total thyroxine (T4) and free thyroxine (fT4) in serum and performed neuropsychological tests in 157 men and women aged 55-74 years and living in upper Hudson River communities. Multivariable linear regressions were conducted to assess associations between PFASs and neuropsychological test scores. Mediation analyses were performed in a subset of 87 participants for whom information was available on both PFASs and THs. We obtained TH-mediated, non-TH mediated, and total effects of PFASs on neuropsychological test scores. Overall, our results suggested a protective association between higher PFOA and tasks of executive function. A one interquartile range higher PFOA was associated with a 16% lower perseverative score (that is, improved performance) on the Wisconsin Card Sorting Test (p-value=0.04). T4 and fT4 partially mediated the protective effect of PFOS on Block Design Subtest total scores, a measure of visuospatial function, in the 87 person subsample. Our findings do not suggest that PFASs are associated with poor neuropsychological function. There was some evidence of mediation for the association between PFASs and neuropsychological functions by THs, although some other modes of action also appear likely.

  1. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  2. Targeting Thyroid Hormone Receptor Beta in Triple Negative Breast Cancer

    PubMed Central

    Gu, Guowei; Gelsomino, Luca; Covington, Kyle R.; Beyer, Amanda R.; Wang, John; Rechoum, Yassine; Huffman, Kenneth; Carstens, Ryan; Ando, Sebastiano; Fuqua, Suzanne A.W.

    2015-01-01

    Purpose Discover novel nuclear receptor targets in triple negative breast cancer Methods Expression microarray, western blot, qRT-PCR, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, statistical analysis. Results We performed microarray analysis using 227 triple negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. Conclusions TRβ represents a novel nuclear receptor target in triple negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy. PMID:25820519

  3. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  4. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge.

    PubMed

    Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G

    2013-03-01

    Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis.

  5. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  6. Effects of pre- and postnatal polychlorinated biphenyl exposure on metabolic rate and thyroid hormones of white-footed mice

    USGS Publications Warehouse

    French, J.B.; Voltura, M.B.; Tomasi, T.E.

    2001-01-01

    Energy budgets have proven to be a valuable tool for predicting life history from physiological data in terrestrial vertebrates, yet these concepts have not been applied to the physiological effects of contaminants. Contaminants might affect energy budgets by imposing an additional metabolic cost or by reducing the overall amount of energy taken in; either process will reduce the energy available for production (i.e., growth or reproduction). This study examined whole animal energetic effects of polychlorinated biphenyl (PCB) exposure in white-footed mice (Peromyscus leucopus). Exposure to PCBs is known to reduce concentrations of plasma thyroid hormones, and thyroid hormones exert strong control over the rate of energy metabolism in mammals. Peromyscus leucopus that were proven breeders were fed PCBs in their food at 0, 10, and 25 ppm. Through lactation, offspring were exposed to PCB from conception and were maintained on the maternal diet to adulthood. No effects were seen on energy metabolism (O-2 consumption, measured in adulthood) or on growth, but there were large dose-dependent decreases in thyroid hormone concentrations, particularly T-4. The apparent disparity in our data between unchanged metabolic rates and 50% reductions in T-4 concentrations can be rationalized by noting that free T-3 (the fraction not bound to plasma protein) in treated mice was not significantly different from controls and that metabolism is most strongly influenced by free T-3. Overall, this study did not demonstrate any energetic consequences of PCB exposure in P. leucopus at dietary concentrations up to 25 ppm.

  7. Microbiome impact on metabolism and function of sex, thyroid, growth and parathyroid hormones.

    PubMed

    Kunc, Michał; Gabrych, Anna; Witkowski, Jacek M

    2016-01-01

    Commensal bacteria and their genes associated with host are known as microbiome. In recent years, microbial influence on host endocrine system has been under detailed investigation. The role of microbiome in the pathogenesis of insulin resistance and obesity, the function of hypothalamic-pituitary-adrenal axis and secretion of hormones regulating appetite is well described in world literature. In this article we discuss poorly reviewed issues: the microbiome role in modulation of non-peptide (sex and thyroid) and peptide (growth hormone and parathyroid hormone) functions. Understanding complex bidirectional relations between host endocrine system and bacteria is of fundamental importance to understanding microbial impact on host reproduction, risk of endocrine-related cancers, pathogenesis of non-thyroidal illness syndrome, growth failure in children and hormonal changes during chronic kidney disease. This article also highlights effects of dietary compounds on microbiome composition and bacterial enzymes activity, and thus host hormonal status.

  8. The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China.

    PubMed

    Li, Chengcheng; Cheng, Yibin; Tang, Quan; Lin, Shaobin; Li, Yonghong; Hu, Xiaojian; Nian, Juan; Gu, Heng; Lu, Yifu; Tang, Hong; Dai, Shougui; Zhang, Hongqun; Jin, Cong; Zhang, Haijing; Jin, Yuanyuan; Jin, Yinlong

    2014-02-01

    Organochlorine pesticides can interfere with the thyroid hormones that play an important role in early neurodevelopment. Although organochlorine pesticides have been banned in China since 1983, their residues are still detectable in the environment. However, few studies have investigated the adverse health effects of prenatal exposure to organochlorine pesticide residues on newborns in China. The present study, conducted in Yancheng City, Jiangsu Province, China, aimed to examine the association between the levels of organochlorine pesticides in maternal and cord sera and to assess the impact of prenatal exposure to organochlorine pesticides on thyroid hormone levels in cord serum. Eleven organochlorine pesticides in maternal and cord sera were measured in 247 mother-infant pairs recruited from Yancheng City between February 2010 and June 2010. The concentration of the thyroid hormones free triiodothyronine (FT3), free thyroxine (FT4), and thyrotropin (TSH) were determined in cord serum. Among the 11 tested organochlorine pesticides, the detectable levels of hexachlorobenzene (HCB), β-hexachlorocycolohexane (β-HCH) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) in both maternal and cord sera were above 50%. The levels of β-HCH and p,p'-DDE in maternal sera were positively associated with the levels in cord sera (r=0.421, P<0.01; r=0.288, P<0.01). After adjusting for confounders, the TSH level in cord serum samples was negatively associated with the HCB level (OR=0.535, 95% CI=(0.304-0.941)). Our data demonstrated that DDT, β-HCH and HCB residues bioconcentrate in maternal and cord sera. Moreover, the correlation analysis suggested that organochlorine pesticides in maternal blood can transfer through the placenta and affect newborn thyroid hormone levels.

  9. The Relationship between Perchlorate in Drinking Water and Cord Blood Thyroid Hormones: First Experience from Iran

    PubMed Central

    Javidi, Ashraf; Rafiei, Nasim; Amin, Mohammad Mehdi; Hovsepian, Silva; Hashemipour, Mahin; Kelishadi, Roya; Taghian, Zahra; Mofateh, Samaneh; Poursafa, Parinaz

    2015-01-01

    Background: Considering the controversial information regarding the effects of perchlorate on thyroid function of high risk population as neonates, and given the high prevalence rate of thyroid disorders specially congenital hypothyroidism in our region, this study aims to investigate for the first time in Iran, the relationship between drinking groundwater perchlorate and cord blood thyroid hormones level in an industrial region. Methods: In this cross-sectional study, drinking groundwater perchlorate level of rural areas of Zarinshahr, Isfahan was measured. Simultaneously, cord blood level of thyroid hormones of neonates born in the studied region was measured. Thyroid function test of neonates in regions with low and high perchlorate level were compared. Results: In this study, 25 tap water samples were obtained for perchlorate measurement. Level of cord blood thyroid stimulating hormone (TSH), T4 and T3 of 25 neonates were measured. Mean (standard deviation) of perchlorate, TSH, T4 and T3 was 3.59 (5.10) μg/l, 7.81 (4.14) mIU/m, 6.06 (0.85) mg/dl, and 63.46 (17.53) mg/dl, respectively. Mean levels of thyroid function tests were not different in low (<5 μg/l) and high level of drinking ground water perchlorate (P > 0.05). Conclusions: Perchlorate did not appear to be related to thyroid function of neonates in the studied industrial region. It seems that iodine status of the regions, as well as other environmental contaminants and genetic background, could impact on its relation with thyroid function of neonates. PMID:25789149

  10. Benign breast and gynecologic conditions, reproductive and hormonal factors, and risk of thyroid cancer.

    PubMed

    Braganza, Melissa Z; de González, Amy Berrington; Schonfeld, Sara J; Wentzensen, Nicolas; Brenner, Alina V; Kitahara, Cari M

    2014-04-01

    The higher incidence of thyroid cancer in women compared with men suggests an influence of sex steroid hormones in the etiology of this malignancy. We investigated a comprehensive set of potential indicators of lifetime sex steroid hormone exposure in relation to thyroid cancer risk. Using data from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, which enrolled 70,047 women, 50 to 78 years old, we prospectively examined associations of self-reported history of benign breast and gynecologic conditions, reproductive factors, and exogenous sex hormone use with thyroid cancer risk. Multivariable-adjusted HRs and 95% confidence intervals (CI) were calculated in models using age as the time metric. During follow-up (median, 11 years), 127 women were diagnosed with first primary thyroid cancer. Older age at natural menopause (≥55 vs. <50 years; HR, 2.24; 95% CI, 1.20-4.18), greater estimated lifetime number of ovulatory cycles (≥490 vs. <415 cycles; HR, 2.40; 95% CI, 1.33-4.30), greater number of live births (≥5 vs. 1-2; HR, 1.72; 95% CI, 1.05-2.82), and history of uterine fibroids (HR, 1.72; 95% CI, 1.18-2.50) were associated with an increased risk of thyroid cancer. Earlier age at menarche, greater number of reproductive years, history of a tubal ligation, and history of ovarian cysts were nonsignificantly associated with increased thyroid cancer risk. No associations were observed for oral contraceptive use, menopausal hormone therapy, or history of benign breast disease or endometriosis. In general, we found that factors reflecting a greater length of exposure to endogenous hormones, particularly during the reproductive years, were associated with risk of postmenopausal thyroid cancer.

  11. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells.

    PubMed

    Psarra, A-M G; Solakidi, S; Sekeris, C E

    2006-02-26

    Mitochondria are key cellular organelles that regulate events related to energy production and apoptosis. These processes are modulated, in turn, by steroid and thyroid hormones in the course of their actions on metabolism, growth and development. In this context, a direct effect of these hormones on the mitochondrial-linked processes, possibly by way of cognate mitochondrial receptors, has been proposed. In this paper we review data from the literature and present new findings supporting this concept. Receptors for steroid hormones, glucocorticoids and estrogens, and for T(3), have been detected in mitochondria by immunofluorescence labeling and confocal laser microscopy, by Western blotting of mitochondrial proteins and by immunogold electron microscopy. Furthermore, the mitochondrial genome contains nucleotide sequences with high similarity to known hormone-responsive elements, which interact with the appropriate receptors to confer hormone-dependent activation of reporter genes in transfection experiments. Thus, thyroid hormone stimulates mitochondrial transcription mediated by the cognate receptor when added to an in organello mitochondrial system, capable of faithful transcription.

  12. Dependency of maximum goitrogenic response on some minimal level of thyroid hormone production

    SciTech Connect

    March, B.E.; Poon, R.

    1981-04-01

    Thyroidal activity was studied in chicks given dietary thiouracil in conjunction with daily doses of thyroxine and with diets adequate and deficient in iodine. DL-thyroxine administered at doses up to 1.0 microgram per day for 10 to 12 days had no effect or slightly increased thyroid weight. Both the epithelial and colloid components of the thyroid gland were increased in response to thiouracil and to thiouracil in combination with low dosages of exogenous thyroxine. Radioiodine uptake was increased above the control with thiouracil and with thiouracil in conjunction with .5 and 1.0 microgram DL-thyroxine given daily. Birds receiving thiouracil, with and without exogenous thyroxine, showed a different pattern of radioiodine uptake and release than the control birds. Thiouracil-treated birds showed a rapid uptake of iodine following its administration, which was followed by a rapid decline immediately after peak accumulation, whereas in control birds thyroidal radioiodine concentration reached a plateau at the maximum concentration attained. The goitrogenic response to thiouracil was much greater when the diet was supplemented with iodine than when the diet was iodine-deficient. Thyroids under iodine deficiency contained greater percentages of epithelial tissue than with iodine-supplemented diets. Thyroid glands of chicks given thiouracil in an iodine-supplemented diet contained much more colloid than glands from iodine-deficient chicks with or without thiouracil. DL-thyroxine at a dosage of .5 microgram per day to chicks given thiouracil in an iodine-adequate diet increased, whereas higher dosages decreased thyroidal colloid. It is concluded that some minimal concentration of thyroid hormone is required for maximum goitrogenic response. It is not clear whether the response is entirely due to an effect on thyrotropin production or whether there is an effect of thyroid hormone on the thyroid gland itself.

  13. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  14. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8.

    PubMed

    Horn, Sigrun; Kersseboom, Simone; Mayerl, Steffen; Müller, Julia; Groba, Claudia; Trajkovic-Arsic, Marija; Ackermann, Tobias; Visser, Theo J; Heuer, Heike

    2013-02-01

    The monocarboxylate transporter 8 (MCT8) plays a critical role in mediating the uptake of thyroid hormones (THs) into the brain. In patients, inactivating mutations in the MCT8 gene are associated with a severe form of psychomotor retardation and abnormal serum TH levels. Here, we evaluate the therapeutic potential of the TH analog 3,5,3',5'-tetraiodothyroacetic acid (tetrac) as a replacement for T(4) in brain development. Using COS1 cells transfected with TH transporter and deiodinase constructs, we could show that tetrac, albeit not being transported by MCT8, can be metabolized to the TH receptor active compound 3,3',5-triiodothyroacetic acid (triac) by type 2 deiodinase and inactivated by type 3 deiodinase. Triac in turn is capable of replacing T(3) in primary murine cerebellar cultures where it potently stimulates Purkinje cell development. In vivo effects of tetrac were assessed in congenital hypothyroid Pax8-knockout (KO) and Mct8/Pax8 double-KO mice as well as in Mct8-KO and wild-type animals after daily injection of tetrac (400 ng/g body weight) during the first postnatal weeks. This treatment was sufficient to promote TH-dependent neuronal differentiation in the cerebellum, cerebral cortex, and striatum but was ineffective in suppressing hypothalamic TRH expression. In contrast, TSH transcript levels in the pituitary were strongly down-regulated in response to tetrac. Based on our findings we propose that tetrac administration offers the opportunity to provide neurons during the postnatal stage with a potent TH receptor agonist, thereby eventually reducing the neurological damage in patients with MCT8 mutations without deteriorating the thyrotoxic situation in peripheral tissues.

  15. Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats.

    PubMed

    Ross, Alexander W; Helfer, Gisela; Russell, Laura; Darras, Veerle M; Morgan, Peter J

    2011-01-01

    Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be

  16. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children.

    PubMed Central

    Osius, N; Karmaus, W; Kruse, H; Witten, J

    1999-01-01

    As part of an epidemiologic study on exposure to a toxic waste incineration plant we investigated whether blood concentrations of polychlorinated biphenyls (PCBs), lead, and cadmium, as well as concentration of mercury in 24-hr urine samples were associated with thyroid hormone status. As an indication of status, we determined levels of thyroid-stimulating hormone (TSH), free thyroxine (FT(4)), and free triiodothyronine (FT(3)) in children living in households where [less than/equal to] 10 cigarettes were smoked per day. Eight PCB congeners (PCBs 101, 118, 138, 153, 170, 180, 183, and 187) were measured in whole blood samples. Of these, seven congeners (PCB 101 was not detected in any sample) and the sum of all PCB congeners were analyzed as predictors for thyroid hormone status in separate linear regression models adjusted for potential confounders. In addition, the possible effects of cadmium, lead, and mercury on levels of thyroid hormones were examined. Blood concentrations and information on questionnaire data were available for 320 children 7-10 years of age. We found a statistically significant positive association between the mono-ortho congener PCB 118 and TSH as well as statistically significant negative relationships of PCBs 138, 153, 180, 183, and 187 to FT(3). There was no association for the PCB congeners and FT(4). Blood cadmium concentration was associated with increasing TSH and diminishing FT(4). Blood lead and urine concentration of mercury were of no importance to thyroid hormone levels. The results stress the need for future studies on the possible influences of PCB and cadmium exposure on thyroid hormones, particularly in children. These studies should also take neurologic development into account. PMID:10504153

  17. Monocarboxylate transporter 10 functions as a thyroid hormone transporter in chondrocytes.

    PubMed

    Abe, Sanae; Namba, Noriyuki; Abe, Makoto; Fujiwara, Makoto; Aikawa, Tomonao; Kogo, Mikihiko; Ozono, Keiichi

    2012-08-01

    Thyroid hormone is essential for normal proliferation and differentiation of chondrocytes. Thus, untreated congenital hypothyroidism is marked by severe short stature. The monocarboxylate transporter 8 (MCT8) is a highly specific transporter for thyroid hormone. The hallmarks of Allan-Herndon-Dudley syndrome, caused by MCT8 mutations, are severe psychomotor retardation and elevated T(3) levels. However, growth is mostly normal. We therefore hypothesized that growth plate chondrocytes use transporters other than MCT8 for thyroid hormone uptake. Extensive analysis of thyroid hormone transporter mRNA expression in mouse chondrogenic ATDC5 cells revealed that monocarboxylate transporter 10 (Mct10) was most abundantly expressed among the transporters known to be highly specific for thyroid hormone, namely Mct8, Mct10, and organic anion transporter 1c1. Expression levels of Mct10 mRNA diminished with chondrocyte differentiation in these cells. Accordingly, Mct10 mRNA was expressed most abundantly in the growth plate resting zone chondrocytes in vivo. Small interfering RNA-mediated knockdown of Mct10 mRNA in ATDC5 cells decreased [(125)I]T(3) uptake up to 44% compared with negative control (P < 0.05). Moreover, silencing Mct10 mRNA expression abolished the known effects of T(3), i.e. suppression of proliferation and enhancement of differentiation, in ATDC5 cells. These results suggest that Mct10 functions as a thyroid hormone transporter in chondrocytes and can explain at least in part why Allan-Herndon-Dudley syndrome patients do not exhibit significant growth impairment.

  18. Near-lethal respiratory failure after recombinant human thyroid-stimulating hormone use in a patient with metastatic thyroid carcinoma.

    PubMed

    Goffman, Thomas; Ioffe, Vladimir; Tuttle, Michael; Bowers, John T; Mason, M Elizabeth

    2003-08-01

    A patient with widely metastatic differentiated thyroid cancer who had been heavily pretreated with (131)I was given recombinant human thyroid stimulating hormone (rhTSH) prior to (131)I treatment. Clinical and physical data from both this case and the literature suggest that the recombinant hormone, not the (131)I, may have caused a significant portion of the tumor swelling, which in turn was the most likely cause of the patient's symptoms. The potential effect of (131)I-induced tumor swelling and direct radiation effect on the lung is also analyzed. We review the potential hazards associated with rhTSH in patients with metastasis and propose means of minimizing this risk.

  19. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears.

    PubMed

    Bechshøft, T Ø; Sonne, C; Dietz, R; Born, E W; Muir, D C G; Letcher, R J; Novak, M A; Henchey, E; Meyer, J S; Jenssen, B M; Villanger, G D

    2012-07-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p'-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis.

  20. Effects of thyroid hormones on cardiac structure: a tissue characterization study in patients with thyroid disorders before and after treatment.

    PubMed

    Ciulla, M M; Paliotti, R; Cortelazzi, D; Tortora, G; Barelli, M V; Buonamici, V; Magrini, F; Beck-Peccoz, P

    2001-07-01

    Experimental evidence suggests an involvement of thyroid hormones in myocardial nonmyocyte component growth. We evaluated the possible role of thyroid hormones in myocardial remodeling by ultrasonic tissue characterization (videodensitometry) in 8 hyperthyroid patients, in 10 hypothyroid patients, and in 2 patients with thyroid hormone resistance syndrome (RTH), before, 60, and 120 days after treatment (T0, T60, T120), and in 10 age-matched euthyroids. According to a previously described procedure, the derived collagen volume fraction (dCVF%, an echocardiographic index estimating the collagen content) was predicted from the pixel-level frequency distribution width (broadband, Bb) of the selected echocardiographic images. Thyrotropin (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) were assessed by immunometric method. QT interval dispersion (QTd) on basal electrocardiogram was measured as a marker of dyshomogeneous ventricular repolarization. At T0, Bb and dCVF% were normal in hyperthyroid and euthyroid patients, and slightly increased in RTH patients, whereas significantly higher values were found in hypothyroids. At T60, a significant reduction in Bb was observed in hypothyroids, with nearly normal dCVF% values. This trend was confirmed at T120 with complete normalization of echoreflectivity. No echoreflectivity changes were observed in hyperthyroid and RTH patients during treatment. QTd was significantly increased in hypothyroids at T0, while no significant differences were found among groups at T60 and T120. Because the different videodeonsitometric myocardial properties observed in hypothyroid versus hyperthyroid patients correspond to an increase of dCVF%, this study suggests that thyroid hormones exert an inhibitory effect on myocardial collagen synthesis in humans.

  1. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  2. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  3. Thyroid-stimulating hormone-secreting ectopic pituitary adenoma of the nasopharynx.

    PubMed

    Nishiike, Suetaka; Tatsumi, Ke-ita; Shikina, Takashi; Masumura, Chisako; Inohara, Hidenori

    2014-12-01

    Thyroid-stimulating hormone-secreting ectopic pituitary adenoma of the nasopharynx is highly unusual, with only three reported cases in the world literature. We describe the clinical presentation and radiologic findings in one patient with such rare lesions. A 46-year-old male with typical symptoms of Grave's disease was found to have a mass on magnetic resonance imaging. An otolaryngologic examination revealed a nasopharyngeal mass lesion, which was endoscopically resected. The results of immunohistochemical staining for thyroid-stimulating hormone were positive. After the resection, the patient's TSH was within normal limits. The clinical significance of the case and a brief literature review are presented.

  4. Negative Feedback Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Metamorphosis in Xenopus laevis

    EPA Science Inventory

    A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...

  5. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice.

    PubMed

    Dumitrescu, Alexandra M; Liao, Xiao-Hui; Weiss, Roy E; Millen, Kathleen; Refetoff, Samuel

    2006-09-01

    Mutations of the X-linked thyroid hormone (TH) transporter (monocarboxylate transporter, MCT8) produce in humans unusual abnormalities of thyroid function characterized by high serum T3 and low T4 and rT3. The mechanism of these changes remains obscure and raises questions regarding the regulation of intracellular availability and metabolism of TH. To study the pathophysiology of MCT8 deficiency, we generated Mct8 knockout mice. Male mice deficient in Mct8 (Mct8(-/y)) replicate the thyroid abnormalities observed in affected men. TH deprivation and replacement with L-T3 showed that suppression of TSH required higher serum levels T3 in Mct8(-/y) than wild-type (WT) littermates, indicating hypothalamus and/or thyrotroph resistance to T3. Furthermore, T4 is required to maintain the high serum T3 level because the latter was not different between the two genotypes during administration of T3. Mct8(-/y) mice have 2.3-fold higher T3 content in liver associated with 6.1- and 3.1-fold increase in deiodinase 1 mRNA and enzymatic activity, respectively. The relative T3 excess in liver of Mct8(-/y) mice produced a decrease in serum cholesterol (79 +/- 18 vs. 137 +/- 38 mg/dl in WT) and an increase in alkaline phosphatase (107 +/- 23 vs. 58 +/- 3 U/liter in WT) levels. In contrast, T3 content in cerebrum was 1.8-fold lower in Mct8(-/y) mice, associated with a 1.6- and 10.6-fold increase in D2 mRNA and enzymatic activity, respectively, as previously observed in TH-deprived WT mice. We conclude that cell-specific differences in intracellular TH content due to differences in contribution of the various TH transporters are responsible for the unusual clinical presentation of this defect, in contrast to TH deficiency.

  6. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    PubMed

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin.

  7. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier.

    PubMed

    Roberts, Lori M; Woodford, Kathleen; Zhou, Mei; Black, Deborah S; Haggerty, Jill E; Tate, Emily H; Grindstaff, Kent K; Mengesha, Wondwessen; Raman, Chandrasekaran; Zerangue, Noa

    2008-12-01

    Thyroid hormones require transport across cell membranes to carry out their biological functions. The importance of transport for thyroid hormone signaling was highlighted by the discovery that inactivating mutations in the human monocarboxylate transporter-8 (MCT8) (SLC16A2) cause severe psychomotor retardation due to thyroid hormone deficiency in the central nervous system. It has been reported that Mct8 expression in the mouse brain is restricted to neurons, leading to the model that organic ion transporter polypeptide-14 (OATP14, also known as OATP1C1/SLCO1C1) is the primary thyroid hormone transporter at the blood-brain barrier, whereas MCT8 mediates thyroid hormone uptake into neurons. In contrast to these reports, we report here that in addition to neuronal expression, MCT8 mRNA and protein are expressed in cerebral microvessels in human, mouse, and rat. In addition, OATP14 mRNA and protein are strongly enriched in mouse and rat cerebral microvessels but not in human microvessels. In rat, Mct8 and Oatp14 proteins localize to both the luminal and abluminal microvessel membranes. In human and rodent choroid plexus epithelial cells, MCT8 is concentrated on the epithelial cell apical surface and OATP14 localizes primarily to the basal-lateral surface. Mct8 and Oatp14 expression was also observed in mouse and rat tanycytes, which are thought to form a barrier between hypothalamic blood vessels and brain. These results raise the possibility that reduced thyroid hormone transport across the blood-brain barrier contributes to the neurological deficits observed in affected patients with MCT8 mutations. The high microvessel expression of OATP14 in rodent compared with human brain may contribute to the relatively mild phenotype observed in Mct8-null mice, in contrast to humans lacking functional MCT8.

  8. Serum thyroid hormone, insulin, glucose, triglycerides and protein concentrations in normal horses: association with topical dexamethasone usage.

    PubMed

    Abraham, Getu; Allersmeier, Maren; Schusser, Gerald F; Ungemach, Fritz R

    2011-06-01

    The aim of this study was to determine if topical application of dexamethasone affected the serum concentrations of thyroid hormones (triiodothyronine T(3) and thyroxine T(4)), glucose, triglycerides, total protein and insulin in normal horses. Ten horses were treated twice daily for 10 days with 50 g dexamethasone using an ointment formulation. Thyroid hormones and insulin were assayed using standard radioimmunoassay methods, while glucose, triglycerides and total protein were determined using a standard enzymatic method and the Biuret reaction, respectively. An increase in serum glucose and triglyceride concentrations was accompanied by 2-6-fold increases in serum insulin concentrations, but there was no change in serum total protein concentration. Insulin secretion increased with concomitant hyperglycemia and hypertriglyceridemia. A non-significant decline in T(4) secretion was noted. Serum T(3) and T(4) concentrations declined continuously below baseline values from 48 h. Glucose and insulin levels returned to baseline values 3 days after treatment withdrawal, whereas triglycerides reverted to baseline by 7 days. In contrast, baseline values of serum T(3) and T(4) were not reached by 20 days following drug withdrawal. The results indicated that topical administration of dexamethasone affected thyroid function and physiological metabolic functions, which may have implications for potential doping cases in racing horses.

  9. Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages.

    PubMed Central

    Brix, K; Herzog, V

    1994-01-01

    Thyroglobulin appears in the circulation of vertebrates at species-specific concentrations. We have observed that the clearance of thyroglobulin from the circulation occurs in the liver by macrophages. Here we show that the thyroid hormones T3 and T4 were released by incubation of mouse macrophages (J774) with thyroglobulin. Thyroid hormone release was a fast process, with an initial rate of approximately 20 pmol T4/mg per min and approximately 0.6 pmol T3/mg per min, indicating that macrophages preferentially release T4. The bulk of released thyroid hormones appeared after 5 min of incubation of macrophages with thyroglobulin, whereas degradation of the protein was detectable only after several hours. During internalization of thyroglobulin, endocytic vesicles and endosomes were reached at 5 min and lysosomes at 60 min. T4 release started extracellularly by secreted proteases and continued along the endocytic pathway of thyroglobulin, whereas T3 release occurred mainly intracellularly when thyroglobulin had reached the lysosomes. This shows that the release of both hormones occurred at distinct cellular sites. Our in vitro observations suggest that macrophages in situ represent an extrathyroidal source for thyroid hormones from circulating thyroglobulin. Images PMID:8163643

  10. Novel functions of thyroid hormone receptor mutants: Beyond nucleus-initiated transcription

    PubMed Central

    Furuya, Fumihiko; Ying, Hao; Zhao, Li; Cheng, Sheue-yann

    2009-01-01

    Study of molecular actions of thyroid hormone receptor β (TRβ) mutants in vivo has been facilitated by creation of a mouse model (TRβPV mouse) that harbors a knockin mutant of TRβ (denoted PV). PV, which was identified in a patient with resistance to thyroid hormone, has lost T3 binding activity and transcription capacity. The striking phenotype of thyroid cancer exhibited by TRβPV/PV mice has allowed the elucidation of novel oncogenic activity of a TRβ mutant (PV) [PAS1]beyond nucleus-initiated transcription. PV was found to physically interact with the regulatory p85α subunit of phosphatidylinositol 3-kinase (PI3K) in both the nuclear and cytoplasmic compartments. This protein-protein interaction activates the PI3K signaling by increasing phosphorylation of AKT, mammalian target of rapamycin (mTOR), and p70S6K. PV, via interaction with p85α, also activates the PI3K-integrin-linked kinase-matrix metalloproteinase-2 signaling pathway in the extra-nuclear compartment. The PV-mediated PI3K activation results in increased cell proliferation, motility, migration, and metastasis. In addition to affecting these membrane-initiated signaling events, PV affects [PAS2]the stability of the pituitary tumor-transforming gene (PTTG) product. PTTG (also known as securin), a critical mitotic checkpoint protein, is physically associated with TRβ or PV in vivo. Concomitant with T3-induced degradation of TRβ, PTTG is degraded by the proteasome machinery, but no such degradation occurs when PTTG is associated with PV. The degradation of PTTG/TRβ is activated by the direct interaction of the T3-bound TRβ with the steroid receptor coactivator-3 (SRC-3) that recruits a proteasome activator (PA28γ). PV that does not bind T3 cannot interact directly with SRC-3/PA28γ to activate proteasome degradation, and the absence of degradation results in an aberrant accumulation of PTTG. The PV-induced failure of timely degradation of PTTG results in mitotic abnormalities. PV, via novel

  11. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

    PubMed Central

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3′-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  12. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  13. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance.

    PubMed

    Ando, S; Sarlis, N J; Krishnan, J; Feng, X; Refetoff, S; Zhang, M Q; Oldfield, E H; Yen, P M

    2001-09-01

    Patients with TSH-secreting pituitary tumors (TSHomas) have high serum TSH levels despite elevated thyroid hormone levels. The mechanism for this defect in the negative regulation of TSH secretion is not known. We performed RT-PCR to detect mutations in TRbeta from a surgically resected TSHoma. Analyses of the RT-PCR products revealed a 135-bp deletion within the sixth exon that encodes the ligand-binding domain of TRbeta2. This deletion was caused by alternative splicing of TRbeta2 mRNA, as near-consensus splice sequences were found at the junction site and no deletion or mutations were detected in the tumoral genomic DNA. This TRbeta variant (TRbeta2spl) lacked thyroid hormone binding and had impaired T3-dependent negative regulation of both TSHbeta and glycoprotein hormone alpha-subunit genes in cotransfection studies. Furthermore, TRbeta2spl showed dominant negative activity against the wild-type TRbeta2. These findings strongly suggest that aberrant alternative splicing of TRbeta2 mRNA generated an abnormal TR protein that accounted for the defective negative regulation of TSH in the TSHoma. This is the first example of aberrant alternative splicing of a nuclear hormone receptor causing hormonal dysregulation. This novel posttranscriptional mechanism for generating abnormal receptors may occur in other hormone-resistant states or tumors in which no receptor mutation is detected in genomic DNA.

  14. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata)

    PubMed Central

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J.

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3′-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds. PMID:28060907

  15. The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles.

    PubMed

    Lorenz, Claudia; Opitz, Robert; Trubiroha, Achim; Lutz, Ilka; Zikova, Andrea; Kloas, Werner

    2016-08-01

    The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression.

  16. IL-1β a potential factor for discriminating between thyroid carcinoma and atrophic thyroiditis.

    PubMed

    Kammoun-Krichen, Maha; Bougacha-Elleuch, Noura; Mnif, Mouna; Bougacha, Fadia; Charffedine, Ilhem; Rebuffat, Sandra; Rebai, Ahmed; Glasson, Emilie; Abid, Mohamed; Ayadi, Fatma; Péraldi-Roux, Sylvie; Ayadi, Hammadi

    2012-01-01

    Interactions between cytokines and others soluble factors (hormones, antibodies...) can play an important role in the development of thyroid pathogenesis. The purpose of the present study was to examine the possible correlation between serum cytokine concentrations, thyroid hormones (FT4 and TSH) and auto-antibodies (Tg and TPO), and their usefulness in discriminating between different thyroid conditions. In this study, we investigated serum from 115 patients affected with a variety of thyroid conditions (44 Graves' disease, 17 Hashimoto's thyroiditis, 11 atrophic thyroiditis, 28 thyroid nodular goitre and 15 papillary thyroid cancer), and 30 controls. Levels of 17 cytokines in serum samples were measured simultaneously using a multiplexed human cytokine assay. Thyroid hormones and auto-antibodies were measured using ELISA. Our study showed that IL-1β serum concentrations allow the discrimination between atrophic thyroiditis and papillary thyroid cancer groups (p = 0.027).

  17. Liver X receptor β: new player in the regulatory network of thyroid hormone and 'browning' of white fat.

    PubMed

    Miao, Yifei; Warner, Margaret; Gustafsson, Jan-Ke

    2016-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type II diabetes. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride and glucose metabolism. Following our previous finding that LXRs serve as repressors of UCP1 in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyrotropin releasing hormone positive neurons in the paraventricular area of the hypothalamus, and thus stimulated secretion of thyroid-stimulating hormone from the pituitary. Consequently production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. One unexpected finding of our study is that LXRs are indispensable in the thyroid hormone negative feedback loop at the level of the hypothalamus. LXRs maintain expression of thyroid receptors in the brain and when they are inactivated there is no negative feedback of thyroid hormone in the hypothalamus. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knock-out mice and provided support for targeting LXRs in treatment of obesity.

  18. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    PubMed Central

    Jansen, S. W.; Akintola, A. A.; Roelfsema, F.; van der Spoel, E.; Cobbaert, C. M.; Ballieux, B. E.; Egri, P.; Kvarta-Papp, Z.; Gereben, B.; Fekete, C.; Slagboom, P. E.; van der Grond, J.; Demeneix, B. A.; Pijl, H.; Westendorp, R. G. J.; van Heemst, D.

    2015-01-01

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism. PMID:26089239

  19. Atrial natriuretic factor (ANF) inhibits thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B. )

    1990-01-01

    Recently, thyroid follicular cells were shown to exhibit atrial natriuretic factor (ANF)-like immunoreactivity and high affinity ANF receptors. In this study, we therefore examined the effects of synthetic rat ANF{sub 1-28} on basal and stimulated thyroid hormone secretion in the mouse, according to the McKenzie technique. Iodine deficient mice were pretreated with {sup 125}I and thyroxine. ANF (3 nmol/animal) was found to inhibit the increase in blood radioiodine levels that was induced by TSH or vasoactive intestinal polypeptide (VIP). Furthermore, ANF and norepinephrine additively inhibited the TSH-induced increase in blood radioiodine levels. It is concluded that ANF inhibits thyroid hormone secretion, which, therefore, might be locally regulated by intrathyroidal ANF.

  20. [Syndromes of resistance to thyroid hormone and inappropriate secretion of TSH (SITSH)].

    PubMed

    Murata, Yoshiharu

    2012-11-01

    Resistance to thyroid hormone (RTH) is a syndrome in which the responsiveness of end organs to thyroid hormone (TH) is reduced. Given that the TH-responsive end-organs include pituitary thyrotrophs, almost all patients with RTH manifest unsuppressed thyrotropin (TSH) despite elevated free-T4 and free-T3 levels. This abnormal finding in the thyroid function test is termed "syndrome of inappropriate secretion of TSH" (SITSH) or "central hyperthyroidism". Patients with TSH-secreting pituitary tumors(TSHoma) also manifest SITSH. Thus, the differential diagnosis of RTH vs. TSHoma is sometimes difficult and challenging. In this review article, the etiology of RTH and diagnostic approach for SITSH are explained and an algorithm for differential diagnosis of RTH vs. TSHoma is proposed.

  1. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  2. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system

    PubMed Central

    Abel, E. Dale; Boers, Mary-Ellen; Pazos-Moura, Carmen; Moura, Egberto; Kaulbach, Helen; Zakaria, Marjorie; Lowell, Bradford; Radovick, Sally; Liberman, M. Charles; Wondisford, Fredric

    1999-01-01

    Thyroid hormone receptors (TRs) modulate various physiological functions in many organ systems. The TRα and TRβ isoforms are products of 2 distinct genes, and the β1 and β2 isoforms are splice variants of the same gene. Whereas TRα1 and TRβ1 are widely expressed, expression of the TRβ2 isoform is mainly limited to the pituitary, triiodothyronine-responsive TRH neurons, the developing inner ear, and the retina. Mice with targeted disruption of the entire TRβ locus (TRβ-null) exhibit elevated thyroid hormone levels as a result of abnormal central regulation of thyrotropin, and also develop profound hearing loss. To clarify the contribution of the TRβ2 isoform to the function of the endocrine and auditory systems in vivo, we have generated mice with targeted disruption of the TRβ2 isoform. TRβ2-null mice have preserved expression of the TRα and TRβ1 isoforms. They develop a similar degree of central resistance to thyroid hormone as TRβ-null mice, indicating the important role of TRβ2 in the regulation of the hypothalamic-pituitary-thyroid axis. Growth hormone gene expression is marginally reduced. In contrast, TRβ2-null mice exhibit no evidence of hearing impairment, indicating that TRβ1 and TRβ2 subserve divergent roles in the regulation of auditory function. PMID:10430610

  3. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses

    PubMed Central

    Alonso-Merino, Elvira; Martín Orozco, Rosa; Ruíz-Llorente, Lidia; Martínez-Iglesias, Olaia A.; Velasco-Martín, Juan Pedro; Fanjul-Rodríguez, Luisa; Contreras-Jurado, Constanza; Regadera, Javier; Aranda, Ana

    2016-01-01

    TGF-β, the most potent profibrogenic factor, acts by activating SMAD (mothers against decapentaplegic) transcription factors, which bind to SMAD-binding elements in target genes. Here, we show that the thyroid hormone triiodothyronine (T3), through binding to its nuclear receptors (TRs), is able to antagonize transcriptional activation by TGF-β/SMAD. This antagonism involves reduced phosphorylation of SMADs and a direct interaction of the receptors with SMAD3 and SMAD4 that is independent of T3-mediated transcriptional activity but requires residues in the receptor DNA binding domain. T3 reduces occupancy of SMAD-binding elements in response to TGF-β, reducing histone acetylation and inhibiting transcription. In agreement with this transcriptional cross-talk, T3 is able to antagonize fibrotic processes in vivo. Liver fibrosis induced by carbon tetrachloride is attenuated by thyroid hormone administration to mice, whereas aged TR knockout mice spontaneously accumulate collagen. Furthermore, skin fibrosis induced by bleomycin administration is also reduced by the thyroid hormones. These findings define an important function of the thyroid hormone receptors and suggest TR ligands could have beneficial effects to block the progression of fibrotic diseases. PMID:27247403

  4. Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease.

    PubMed

    Maia, Ana Luiza; Goemann, Iuri Martin; Meyer, Erika L Souza; Wajner, Simone Magagnin

    2011-06-01

    Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T(4)) molecule, thus producing either the active form triiodothyronine (T(3); activation) or inactive metabolites (reverse T(3); inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T(3) production contributes to a portion of plasma T(3) in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T(3) concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.

  5. Early thyroid hormone-induced gene expression changes in N2a-β neuroblastoma cells.

    PubMed

    Bedó, Gabriela; Pascual, Angel; Aranda, Ana

    2011-10-01

    Thyroid hormone has long been known to regulate neural development. Hypothyroidism during pregnancy and early postnatal period has severe neurological consequences including even mental retardation. The purpose of this study was to characterize gene expression pattern during thyroid hormone-induced differentiation of neuro-2a β cells in order to select "direct response genes" for further analysis. In this neuroblastoma cell line, thyroid hormone blocks proliferation and induces differentiation. Changes in gene expression level were examined after a T3 treatment of 3 and 24 h using cDNA arrays. Sixteen genes were significantly up-regulated and 79 down-regulated by T3 treatment. Five up-regulated genes not previously described as regulated by thyroid hormone and selected for their putative significance to understand T3 action on cell differentiation, were verified by RT-PCR analysis. The transcription factors Phox2a and basic helix-loop-helix domain containing, class B2 mRNAs exhibited a clear increase after 3- and 24-h treatment. The guanine-nucleotide exchange factor RalGDS was greatly up-regulated after 3-h treatment but not 24 h after. The results suggest an early involvement of these genes in T3 action during neuroblastoma cell differentiation probably mediating later changes in gene expression pattern.

  6. Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study

    PubMed Central

    Yang, Lin; Li, Jingguang; Lai, Jianqiang; Luan, Hemi; Cai, Zongwei; Wang, Yibaina; Zhao, Yunfeng; Wu, Yongning

    2016-01-01

    Perfluoroalkyl substances (PFASs) have been detected in wildlife and human samples worldwide. Toxicology research showed that PFASs could interfere with thyroid hormone homeostasis. In this study, eight PFASs, fifteen PFAS precursors and five thyroid hormones were analyzed in 157 paired maternal and cord serum samples collected in Beijing around delivery. Seven PFASs and two precursors were detected in both maternal and cord sera with significant maternal-fetal correlations (r = 0.336 to 0.806, all P < 0.001). The median ratios of major PFASs concentrations in fetal versus maternal serum were from 0.25:1 (perfluorodecanoic acid, PFDA) to 0.65:1 (perfluorooctanoic acid, PFOA). Spearman partial correlation test showed that maternal thyroid stimulating hormone (TSH) was negatively correlated with most maternal PFASs (r = −0.261 to −0.170, all P < 0.05). Maternal triiodothyronin (T3) and free T3 (FT3) showed negative correlations with most fetal PFASs (r = −0.229 to −0.165 for T3; r = −0.293 to −0.169 for FT3, all P < 0.05). Our results suggest prenatal exposure of fetus to PFASs and potential associations between PFASs and thyroid hormone homeostasis in humans. PMID:26898235

  7. Thyroid Hormone Indices in Computer Workers with Emphasis on the Role of Zinc Supplementation

    PubMed Central

    Amin, Ahmed Ibrahim; Hegazy, Noha Mohamed; Ibrahim, Khadiga Salah; Mahdy-Abdallah, Heba; Hammouda, Hamdy A. A.; Shaban, Eman Essam

    2016-01-01

    AIM: This study aimed to investigate the effects of computer monitor-emitted radiation on thyroid hormones and the possible protective role of zinc supplementation. MATERIAL AND METHODS: The study included three groups. The first group (group B) consisted of 42 computer workers. This group was given Zinc supplementation in the form of one tablet daily for eight weeks. The second group (group A) comprised the same 42 computer workers after zinc supplementation. A group of 63 subjects whose job does not entail computer use was recruited as a control Group (Group C). All participants filled a questionnaire including detailed medical and occupational histories. They were subjected to full clinical examination. Thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4) and zinc levels were measured in all participants. RESULTS: TSH, FT3, FT4 and zinc concentrations were decreased significantly in group B relative to group C. In group A, all tested parameters were improved when compared with group B. The obtained results revealed that radiation emitted from computers led to changes in TSH and thyroid hormones (FT3 and FT4) in the workers. CONCLUSION: Improvement after supplementation suggests that zinc can ameliorate hazards of such radiation on thyroid hormone indices. PMID:27335605

  8. The Nature of Compensatory Response to Low Thyroid Hormone in Developing Brain.

    EPA Science Inventory

    Abstract Thyroid hormone is essential for normal brain development, but the degree to which the developing brain is sensitive to small perturbations in serum thyroxin is not clear. An important concept related to this is that the developing brain possesses potent mechanisms to co...

  9. TRICLOSAN AND ENDOCRINE DISRUPTION: EVIDENCE FOR ALTERATIONS IN THYROID HORMONE HOMEOSTASIS.

    EPA Science Inventory

    Impact Statement: Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound found as an active ingredient in many personal care and household products. Recent studies suggest that triclosan may alter thyroid hormone (TH) homeostasis via ...

  10. ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    EPA Science Inventory

    ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    Stoker, Tammy E.1; Laws, Susan C.1; Ferrell, Janet M.1; Cooper, Ralph L.1.

    Endocrinology Branch, RTD, NHEERL, ORD, U.S. EPA, RTP, NC, 27711.

    The...

  11. THE EFFECTS OF LOW DOSE PTU ON ENDPOINTS OF THYROID HORMONE ACTION IN THE DEVELOPING BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, there is concern that any factor that reduces TH levels may permanently alter brain development. As part of an EPA Cooperative Agreement, the goal of this work was to characterize the degree to which cir...

  12. TRICLOSAN ALTERS THYROID HORMONES HOMEOSTASIS VIA UP-REGULATION OF HEPATIC CATABOLISM.

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound used in household and hygiene products. The structural similarity of triclosan to thyroid hormones, in vitro studies demonstrating activation of the human pregnane X receptor (PXR)...

  13. Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Li, Jingguang; Lai, Jianqiang; Luan, Hemi; Cai, Zongwei; Wang, Yibaina; Zhao, Yunfeng; Wu, Yongning

    2016-02-01

    Perfluoroalkyl substances (PFASs) have been detected in wildlife and human samples worldwide. Toxicology research showed that PFASs could interfere with thyroid hormone homeostasis. In this study, eight PFASs, fifteen PFAS precursors and five thyroid hormones were analyzed in 157 paired maternal and cord serum samples collected in Beijing around delivery. Seven PFASs and two precursors were detected in both maternal and cord sera with significant maternal-fetal correlations (r = 0.336 to 0.806, all P < 0.001). The median ratios of major PFASs concentrations in fetal versus maternal serum were from 0.25:1 (perfluorodecanoic acid, PFDA) to 0.65:1 (perfluorooctanoic acid, PFOA). Spearman partial correlation test showed that maternal thyroid stimulating hormone (TSH) was negatively correlated with most maternal PFASs (r = ‑0.261 to ‑0.170, all P < 0.05). Maternal triiodothyronin (T3) and free T3 (FT3) showed negative correlations with most fetal PFASs (r = ‑0.229 to ‑0.165 for T3; r = ‑0.293 to ‑0.169 for FT3, all P < 0.05). Our results suggest prenatal exposure of fetus to PFASs and potential associations between PFASs and thyroid hormone homeostasis in humans.

  14. Thyroid Hormone Levels and Psychological Symptoms in Sexually Abused Adolescent Girls

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Sonne, Janet L.; Anderson, Donald L.; Nelson, Jerald C.; Sheridan-Matney, Clare; Nichols, Joy G.; Carlton, Esther I.; Murdoch, William G. C.

    2006-01-01

    Objective: To explore the relationships between psychological symptoms and thyroid hormone levels in adolescent girls who had experienced the traumatic stress of sexual abuse. Method: The study design was cross-sectional/correlational. Subjects ("N"=22; age range=12-18 years) had their blood drawn, and they completed 2 psychological tests…

  15. Thyrotropic activity of salmon pituitary glycoprotein hormones in the Hawaiian parrotfish thyroid in vitro.

    PubMed

    Swanson, P; Grau, E G; Helms, L M; Dickhoff, W W

    1988-02-01

    The thyrotropic activities of salmon pituitary extract, thyroid-stimulating hormone (TSH), gonadotropins (GTH), and glycoprotein fractions obtained during purification of salmon TSH and GTH were measured using the parrotfish thyroid culture system. Purified salmon TSH was approximately 1,000 times more potent than bovine TSH in stimulating thyroxine release into the culture medium. Most of the forms of salmon GTH had no thyrotropic activity. One of the forms of salmon GTH (GTH-F) and three chromatofocusing fractions (CF-B, -C, and -E) that were devoid of activity in the coho salmon in vivo had some thyrotropic activity in the parrotfish thyroid culture. Whether the activity of these fractions was due to contamination with TSH, less potent forms of TSH, or inherent thyrotropic activity of a form of GTH is discussed. These results indicate that the parrotfish thyroid culture system can be used to detect thyrotropic activity of fractions obtained during the purification of teleost TSH.

  16. Insulin Plant (Costus pictus) Extract Restores Thyroid Hormone Levels in Experimental Hypothyroidism

    PubMed Central

    Ashwini, S.; Bobby, Zachariah; Sridhar, M. G.; Cleetus, C. C.

    2017-01-01

    Background: The aim of the present study was to investigate the preventive effect of Costus pictus leaf extract in experimental hypothyroidism. Materials and Methods: Forty male Wistar rats were randomly divided into four groups with ten rats in each group: Control (C), hypothyroid (H), control+extract (C+E), and hypothyroid+extract (H+E). Rats in C group did not receive any intervention throughout the experimental period. The rats in the C+E and H+E groups received pretreatment with C. pictus leaf extract for 4 weeks. Subsequently, for the next 6 weeks, rats in the H group received 0.05% propylthiouracil in drinking water while C+E group received C. pictus leaf extract and H+E group received propyl thiouracil and C. pictus leaf extract. Results: Hypothyroid group rats exhibited dramatic increase in thyroid-stimulating hormone (TSH) levels with concomitant depletion in the levels of thyroid hormones. Treatment with the extract resulted in remarkable improvement in thyroid profile. Extract produced 10.59-fold increase in plasma free T3, 8.65-fold increase in free T4, and 3.59-fold decrease in TSH levels in H+E group in comparison with H group. Treatment with the extract ameliorated hypercholesterolemia, decreased levels of plasma C-reactive protein and tumor necrosis factor alpha, suppressed tissue oxidative stress and prevented hepatic and renal damage caused due to thyroid hormone depletion in the H+E group. Pentacyclic triterpenes alpha and beta amyrins were identified and quantified in the extract. Conclusions: This is the first study to reveal that C. pictus extract has therapeutic potential to restore thyroid hormone levels and prevent the biochemical complications due to thyroid hormone insufficiency in the animal model of experimental hypothyroidism. SUMMARY The preventive effect of Costus pictus leaf extract in experimental hypothyroidism was evaluated in the present study.Hypothyroidism was induced in the experimental animals by giving 0

  17. Thyroid hormone signaling: Contribution to neural function, cognition, and relationship to nicotine

    PubMed Central

    Leach, Prescott T.; Gould, Thomas J.

    2015-01-01

    Cigarette smoking is common despite its adverse effects on health, such as cardiovascular disease and stroke. Understanding the mechanisms that contribute to the addictive properties of nicotine makes it possible to target them to prevent the initiation of smoking behavior and/or increase the chance of successful quit attempts. While highly addictive, nicotine is not generally considered to be as reinforcing as other drugs of abuse. There are likely other mechanisms at work that contribute to the addictive liability of nicotine. Nicotine modulates aspects of the endocrine system, including the thyroid, which is critical for normal cognitive functioning. It is possible that nicotine’s effects on thyroid function may alter learning and memory, and this may underlie some of its addictive potential. Here, we review the literature on thyroid function and cognition, with a focus on how nicotine alters thyroid hormone signaling and the potential impact on cognition. Changes in cognition are a major symptom of nicotine addiction. Current anti-smoking therapies have modest success at best. If some of the cognitive effects of nicotine are mediated through the thyroid hormone system, then thyroid hormone agonists may be novel treatments for smoking cessation therapies. The content of this review is important because it clarifies the relationship between smoking and thyroid function, which has been ill-defined in the past. This review is timely because the reduction in smoking rates we have seen in recent decades, due to public awareness campaigns and public smoking bans, has leveled off in recent years. Therefore, novel treatment approaches are needed to help reduce smoking rates further. PMID:26344666

  18. Longitudinal Profiles of Thyroid Hormone Parameters in Pregnancy and Associations with Preterm Birth

    PubMed Central

    Johns, Lauren E.; Ferguson, Kelly K.; McElrath, Thomas F.; Mukherjee, Bhramar; Seely, Ellen W.; Meeker, John D.

    2017-01-01

    Introduction Overt thyroid disease in pregnancy is associated with numerous maternal and neonatal complications including preterm birth. Less is known about the contribution of trimester-specific subclinical alterations in individual thyroid hormones, especially in late gestation, on the risk of preterm birth. Herein, we examined the associations between subclinical changes in maternal thyroid hormone concentrations (TSH, total T3, free and total T4), measured at multiple time points in pregnancy, and the odds of preterm birth in pregnant women without clinical thyroid disease. Participants and Methods Data were obtained from pregnant women participating in a nested case-control study of preterm birth within on ongoing birth cohort study at Brigham and Women’s Hospital in Boston, MA (N = 439; 116 cases and 323 controls). We measured thyroid hormones in plasma collected at up to four time points in pregnancy (median = 10, 18, 26, and 35 weeks). We used multivariate logistic regression models stratified by study visit of sample collection to examine associations. To reveal potential biological pathways, we also explored these relationships by obstetric presentation of preterm birth (e.g., spontaneous preterm delivery) that have been previously hypothesized to share common underlying mechanisms. Results In samples collected at median 10 and 26 weeks of gestation, we found inverse associations between FT4 and the odds of overall preterm birth (odds ratio [OR] = 0.57, 95% confidence interval (CI) = 0.33, 1.00; and OR = 0.53, 95% CI = 0.34, 0.84, respectively). Positive associations were detected for total T3 at these same time points (OR = 2.52, 95% CI = 1.20, 5.31; and OR = 3.40, 95% CI = 1.56, 7.40, respectively). These effect estimates were stronger for spontaneous preterm birth. Conclusions Our results suggest that subclinical alterations in individual maternal thyroid hormones may influence the risk of preterm birth, and the strength of these associations vary by

  19. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion.

    PubMed

    Di Cosmo, Caterina; Liao, Xiao-Hui; Dumitrescu, Alexandra M; Philp, Nancy J; Weiss, Roy E; Refetoff, Samuel

    2010-09-01

    The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid-precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients.

  20. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis.

    PubMed

    Pereira, Jose Carlos; Pradella-Hallinan, Marcia; Lins Pessoa, Hugo de

    2010-05-01

    Data collected from medical literature indicate that dopaminergic agonists alleviate Restless Legs Syndrome symptoms while dopaminergic agonists antagonists aggravate them. Dopaminergic agonists is a physiological regulator of thyroid-stimulating hormone. Dopaminergic agonists infusion diminishes the levels of thyroid hormones, which have the ability to provoke restlessness, hyperkinetic states, tremors, and insomnia. Conditions associated with higher levels of thyroid hormones, such as pregnancy or hyperthyroidism, have a higher prevalence of Restless Legs Syndrome symptoms. Low iron levels can cause secondary Restless Legs Syndrome or aggravate symptoms of primary disease as well as diminish enzymatic activities that are involved in dopaminergic agonists production and the degradation of thyroid hormones. Moreover, as a result of low iron levels, dopaminergic agonists diminishes and thyroid hormones increase. Iron therapy improves Restless Legs Syndrome symptoms in iron deprived patients. Medical hypothesis. To discuss the theory that thyroid hormones, when not counterbalanced by dopaminergic agonists, may precipitate the signs and symptoms underpinning Restless Legs Syndrome. The main cause of Restless Legs Syndrome might be an imbalance between the dopaminergic agonists system and thyroid hormones.

  1. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  2. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats.

    PubMed

    de Vries, E M; van Beeren, H C; Ackermans, M T; Kalsbeek, A; Fliers, E; Boelen, A

    2015-01-01

    A variety of illnesses that leads to profound changes in the hypothalamus-pituitary-thyroid (HPT) are axis collectively known as the nonthyroidal illness syndrome (NTIS). NTIS is characterized by decreased tri-iodothyronine (T3) and thyroxine (T4) and inappropriately low TSH serum concentrations, as well as altered hepatic thyroid hormone (TH) metabolism. Spontaneous caloric restriction often occurs during illness and may contribute to NTIS, but it is currently unknown to what extent. The role of diminished food intake is often studied using experimental fasting models, but partial food restriction might be a more physiologically relevant model. In this comparative study, we characterized hepatic TH metabolism in two models for caloric restriction: 36 h of complete fasting and 21 days of 50% food restriction. Both fasting and food restriction decreased serum T4 concentration, while after 36-h fasting serum T3 also decreased. Fasting decreased hepatic T3 but not T4 concentrations, while food restriction decreased both hepatic T3 and T4 concentrations. Fasting and food restriction both induced an upregulation of liver D3 expression and activity, D1 was not affected. A differential effect was seen in Mct10 mRNA expression, which was upregulated in the fasted rats but not in food-restricted rats. Other metabolic pathways of TH, such as sulfation and UDP-glucuronidation, were also differentially affected. The changes in hepatic TH concentrations were reflected by the expression of T3-responsive genes Fas and Spot14 only in the 36-h fasted rats. In conclusion, limited food intake induced marked changes in hepatic TH metabolism, which are likely to contribute to the changes observed during NTIS.

  3. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia

    PubMed Central

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  4. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-08-03

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.

  5. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  6. The Effect of a Mutation in the Thyroid Stimulating Hormone Receptor (TSHR) on Development, Behaviour and TH Levels in Domesticated Chickens

    PubMed Central

    Karlsson, Anna-Carin; Svemer, Frida; Eriksson, Jonas; Darras, Veerle M.; Andersson, Leif; Jensen, Per

    2015-01-01

    The thyroid stimulating hormone receptor (TSHR) has been suggested to be a “domestication locus” in the chicken, due to a strong selective sweep over the gene found in domesticated chickens, differentiating them from their wild ancestor the Red Junglefowl (RJF). We investigated the effect of the mutation on development (incubation time), behaviour and thyroid hormone levels in intercross chickens homozygous for the mutation (d/d), wild type homozygotes (w/w) or heterozygotes (d/w). This allowed an assessment of the effect of genotype at this locus against a random mix of RJF and WL genotypes throughout the rest of the genome, controlling for family effects. The d/d genotype showed a longer incubation time, less fearful behaviours, lower number of aggressive behaviours and decreased levels of the thyroid hormone T4, in comparison to the w/w genotype. The difference between TSHR genotypes (d/d vs. w/w) in these respects mirrors the differences in development and behaviour between pure domesticated White Leghorns and pure RJF chickens. Higher individual T3 and T4 levels were associated with more aggression. Our study indicates that the TSHR mutation affects typical domestication traits, possibly through modifying plasma levels of thyroid hormones, and may therefore have been important during the evolution of the domestic chicken. PMID:26053744

  7. PTTG-binding factor (PBF) is a novel regulator of the thyroid hormone transporter MCT8.

    PubMed

    Smith, V E; Read, M L; Turnell, A S; Sharma, N; Lewy, G D; Fong, J C W; Seed, R I; Kwan, P; Ryan, G; Mehanna, H; Chan, S Y; Darras, V M; Boelaert, K; Franklyn, J A; McCabe, C J

    2012-07-01

    Within the basolateral membrane of thyroid follicular epithelial cells, two transporter proteins are central to thyroid hormone (TH) biosynthesis and secretion. The sodium iodide symporter (NIS) delivers iodide from the bloodstream into the thyroid, and after TH biosynthesis, monocarboxylate transporter 8 (MCT8) mediates TH secretion from the thyroid gland. Pituitary tumor-transforming gene-binding factor (PBF; PTTG1IP) is a protooncogene that is up-regulated in thyroid cancer and that binds NIS and modulates its subcellular localization and function. We now show that PBF binds MCT8 in vitro, eliciting a marked shift in MCT8 subcellular localization and resulting in a significant reduction in the amount of MCT8 at the plasma membrane as determined by cell surface biotinylation assays. Colocalization and interaction between PBF and Mct8 was also observed in vivo in a mouse model of thyroid-specific PBF overexpression driven by a bovine thyroglobulin (Tg) promoter (PBF-Tg). Thyroidal Mct8 mRNA and protein expression levels were similar to wild-type mice. Critically, however, PBF-Tg mice demonstrated significantly enhanced thyroidal TH accumulation and reduced TH secretion upon TSH stimulation. Importantly, Mct8-knockout mice share this phenotype. These data show that PBF binds and alters the subcellular localization of MCT8 in vitro, with PBF overexpression leading to an accumulation of TH within the thyroid in vivo. Overall, these studies identify PBF as the first protein to interact with the critical TH transporter MCT8 and modulate its function in vivo. Furthermore, alongside NIS repression, PBF may thus represent a new regulator of TH biosynthesis and secretion.

  8. [Thyroid hormone levels and thyroid dysfunction of French adults participating in the SU.VI.MAX study].

    PubMed

    Valeix, P; Dos Santos, C; Castetbon, K; Bertrais, S; Cousty, C; Hercberg, S

    2004-12-01

    Abnormal thyroid function has important public health consequences. However, the various degrees of thyroid dysfunction remain unsettled. The SU.VI.MAX cohort provided a unique opportunity to conduct a cross-sectional study of abnormal thyroid function in a large representative population of 11256 men and women representing the geographic distribution of the French continental adult population. Thyroid status was measured, in fasting blood samples, at baseline in 1994-1995. Serum thyrotropin (TSH) levels (abnormal < 0.4 mU/l or > or =4.0 mU/l) and free thyroxine (fT4) were both performed in duplicate on the same sample. Subjects with previous or present thyroid diseases or who were taking thyroid hormones or antithyroid drugs (n=920) were excluded (8.1%). Thus, the final study group consisted of 10346 subjects, 4121 men aged 45-60 years (mean +/-SD) (51.8+/-4.7 yrs), 2641 women aged 35-44 years (40.6+/-2.8 yrs), and 3584 women aged 45-60 years (51.4+/-4.4 yrs). Median (2.5th and 97.5th percentiles) for TSH (mU/l) were 1.52 (0.20-4.54) for men, 1.78 (0.22-5.54) for women aged 35-44 years, and 1.96 (0.22-6.80) for women aged 45-60 years. The TSH distribution of women was shifted to the right compared with men. Arithmetic mean fT4 (+/-SD) was 10.7+/-1.7 ng/l (13.8 +/-2.2 pmol/l) for men and 10.9+/-1.8 ng/l (14.0+/-2.3 pmol/l) for women. The prevalence of abnormal TSH values in men, and in women (35-44 yrs and 45-60 yrs) were TSH<0.4 mU/l 7.0%, 5.3% and 4.4%; TSH 4.0-9.9 mU/l 4.0%, 7.2% and 11.1% and TSH > or =10.0 mU/l 0.2%, 0.4% and 0.7%, respectively. Geometric mean serum TSH and arithmetic mean serum fT4 concentrations showed significant overall inter-regional differences for men and women (p<0.0001). There was also an inter-regional difference in the prevalence of thyroid dysfunction for men (p=0.003), and for the older group of women (i.e. > or =45 yrs) (p=0.04) exclusively. Over the age of 45 years, the women: men ratio for unrecognized elevated TSH levels (> or

  9. Sequential Amniotic Fluid Thyroid Hormone Changes Correlate with Goiter Shrinkage following in utero Thyroxine Therapy.

    PubMed

    Munoz, Jessian L; Kessler, Alan A; Felig, Philip; Curtis, Jenifer; Evans, Mark I

    2016-01-01

    Several isolated reports of fetal goiter treatment have shown limited generalizability of approaches and provide no real guidance for optimal timing, dosages, and treatment strategies. Graves' disease accounts for >60% of these cases. Maternal treatments of hyperthyroidism include antithyroid medications such as methimazole and more commonly propylthiouracil (PTU). Here, our management of a patient with a fetal thyroid goiter from maternal exposure to PTU diagnosed at 23.6 weeks' gestation and the management of other cases allow us propose a general strategy for treatment. Intrauterine therapy with 200 and then 400 μg of levothyroxine (3 weeks apart) showed an 85% reduction in fetal thyroid goiter volume. We collected amniotic fluid samples at the time of treatments and assayed thyroid hormones and associated antibodies which closely reflected the changes in thyroid goiter mass volume. Our observations suggest a weekly or biweekly therapeutic intervention schedule. Utilizing both goiter size as well as a novel approach in using amniotic fluid hormone levels to monitor therapy efficacy might improve the quality of treatments. Only with a standardized approach and collection of amniotic fluid thyroid panels do we have the opportunity to develop the database required to determine the number and timing of treatments needed.

  10. Reduced effects of thyroid hormone on gene expression and metamorphosis in a paedomorphic plethodontid salamander.

    PubMed

    Aran, Robert P; Steffen, Michael A; Martin, Samuel D; Lopez, Olivia I; Bonett, Ronald M

    2014-07-01

    It has been over a century since Gudernatsch (1912, Wilhelm Roux Arch Entwickl Mech Org 35:457-483) demonstrated that mammalian thyroid gland extracts can stimulate tadpole metamorphosis. Despite the tremendous developmental diversity of amphibians, mechanisms of metamorphosis have mostly been studied in a few model systems. This limits our understanding of the processes that influence the evolution of developmental aberrations. Here we isolated thyroid hormone receptors alpha (TRα) and beta (TRβ) from Oklahoma salamanders (Eurycea tynerensis), which exhibit permanently aquatic (paedomorphic) or biphasic (metamorphic) developmental modes in different populations. We found that TRα and TRβ were upregulated by thyroid hormone (T3 ) in tail tissues of larvae from metamorphic populations, but basal levels of TR expression and T3 responsiveness were reduced in larvae from paedomorphic populations. Likewise, we found that T3 treatment resulted in complete loss of larval epibranchials in larvae from metamorphic populations, but little to no epibranchial remodeling occurred in larvae from paedomorphic populations over the same duration. This is the first study to directly demonstrate reduced gene expression and metamorphic responses to T3 in a paedomorphic plethodontid compared to metamorphic conspecifics, and the first salamander system to show differential expression of thyroid hormone receptors associated with alternative developmental patterns.

  11. Thyroid hormones in conditions of chronic malnutrition. A study with special reference to cancer cachexia.

    PubMed Central

    Persson, H; Bennegård, K; Lundberg, P A; Svaninger, G; Lundholm, K

    1985-01-01

    Circulating levels of thyroid hormones (T4, free T4, T3) and reverse tri-iodo thyronine (rT3) and thyroid-hormone binding globulin were related to the nutritional state of patients with cancer cachexia, patients with malnutrition due to other reasons and to well-nourished patients with acute illness. Hospitalized weight-stable and well-nourished patients served as controls. Malnourished patients with or without cancer and acutely ill patients had a low T3 syndrome involving both peripheral metabolism of thyroid hormones and the hypothalamus-pituitary-thyroid gland axis. T3 levels were correlated to altered protein metabolism and protein nutritional state. There were pronounced elevations of circulating rT3 concentrations in patients with serum albumin concentration less than 35 g/l irrespective of diagnosis. The results indicate that the low T3 syndrome in our patients is secondary to insufficient caloric intake. It seems to be maintained by the abnormal nutritional state and is related closely to protein metabolism. The authors found no differences between the low T3 syndrome in cancer patients suffering from cachexia compared with that of patients with malnutrition caused by other factors. PMID:3917657

  12. Effects of sex steroid hormones, thyroid hormone levels, and insulin regulation on thyrotoxic periodic paralysis in Chinese men.

    PubMed

    Li, Wang; Changsheng, Chen; Jiangfang, Fu; Bin, Gao; Nanyan, Zhang; Xiaomiao, Li; Deqiang, Li; Ying, Xing; Wensong, Zai; Qiuhe, Ji

    2010-12-01

    Our study is to determine the expression of thyroid hormone, sex hormone, insulin, and C-peptide in Chinese male patients with thyrotoxic periodic paralysis (TPP). This study covered 102 patients with hyperthyroidism from Xijing Hospital. According to whether occurrence of TPP or not, patients were divided into two groups (those that were hyperthyroid with and without TPP) that were, matched with age, blood pressure, urea, and creatinine. We found the body mass index (BMI) in patients with TPP was higher than that in pure hyperthyroidism patients. The levels of the total thyroxine (T4), free triiodothyronine (FT3), and free thyroxine (FT4) were significantly lower in patients with TPP compared with pure hyperthyroidism patients, while serum testosterone levels were higher compared with pure hyperthyroidism patients. Moreover, after glucose administration, the concentration of insulin at 60, 120, and 180 min were significantly higher in patients with TPP than those in pure hyperthyroidism patients. The insulin area under the curve (AUC) was significantly increased in patients with TPP compared with pure hyperthyroidism patients. The levels of thyroid hormone, sex hormone, and insulin were different in Chinese male patients with TPP compared to those with only hyperthyroidism.

  13. THYROID HORMONE IS REQUIRED FOR GROWTH ADAPTATION TO PRESSURE LOAD IN THE OVINE FETAL HEART

    PubMed Central

    Segar, Jeffrey L; Volk, Ken A; Lipman, Michael H.B.; Scholz, Thomas D

    2012-01-01

    Thyroid hormone exerts broad effects on the adult heart, however little is known regarding the role of thyroid hormone on regulating cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth related gene expression in control and pulmonary artery banded fetal sheep. Fetal thyroidectomy (THX) and placement of a restrictive pulmonary artery band (PAB) was performed at 126 ± 1 d gestation (term 145 d). Four groups of animals (n = 5–6 in each group): 1) control; 2) fetal THX; 3) fetal PAB; and 4) fetal PAB + THX; were monitored for 1 week prior to being euthanized. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kg fetal weight, was significantly increased in PAB (6.27 ± 0.85 g/kg) compared to control animals (4.72 ± 0.12 g/kg). THX significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g/kg) while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g/kg). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX (~16%) compared to the non-THX groups (~27%). No differences in levels of activated Akt, ERK or JNK were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth related genes were lower in the THX and THX+ PAB groups relative to thyroid intact animals. These findings suggest that in the late gestation fetal heart, thyroid hormone has important cellular growth functions in both physiologic and pathophysiologic states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in response to pressure overload. PMID:23104936

  14. The Relationship between Aggression and Serum Thyroid Hormone Level in Individuals Diagnosed with Antisocial Personality Disorder

    PubMed Central

    EVRENSEL, Alper; ÜNSALVER, Barış Önen; ÖZŞAHİN, Aytekin

    2016-01-01

    Introduction Aggression is one of the leading clinical characteristics of antisocial personality disorder (APD). Studies aiming to clarify and control the biological basis of aggression are ongoing. Thyroid hormones have been indicated to play a role in the development of aggression. The aim of this study was to examine the level of aggression and serum thyroid hormone in a sample of APD and to make contributions to this field with the current findings. Methods The sample consisted of 96 subjects with a diagnosis of APD and 97 subjects as a control group. Structured Clinical Interview for DSM-IV Axis (SCID) 1 and 2 were used for the diagnosis, and the Buss–Perry Aggression Questionnaire was administered. Based on criminal patterns, the APD group was then divided into two subgroups: “criminal” and “noncriminal” APD groups. The day after the interview, after one night of fasting, blood was collected from the subjects between 7:00 a.m. and 9:00 a.m.. Thyroid function tests and other biochemical analyses related to the confounding variables were also administered. The study group and the control group were compared in terms of their aggression scores and thyroid hormone levels. Results The mean score of free T3 level in the criminal APD group was found to be significantly higher than that in the noncriminal APD group. APD subjects with higher free T3 levels also had higher aggression scores. In the noncriminal APD group, as serum free T3 and T4 levels increased, there was also an increment in the aggression scores. However, in the criminal APD group, there was no significant correlation between thyroid hormone levels and aggression. Conclusion The findings of this study indicated that criminal and noncriminal APD groups actually show different properties. PMID:28360783

  15. [Study on behavior of thyroid gland hormones in Bydgoszcz province children and teenagers with simplex struma].

    PubMed

    Wawrzeńczyk, M; Balcar-Boroń, A; Kretowicz, W; Kurylak, A

    1998-01-01

    Struma caused by iodine deficit is an endemic disorder in specified regions. The purpose of the study was a biochemical characteristic of struma simplex in children from Bydgoszcz province and evalued correlation between laboratory exponents of thyroid gland function, size of the gland and kind of the struma. It was confirmed that neutral struma of children generally takes a course with euthyroidism. In children with struma were confirmed significant lower values of T4 and no significant higher values of T3. Value of TSH was no different in comparison with the control group. Proved was that hormonal thyroid activity is lower when struma is getting bigger.

  16. Effects of prenatal exposure to organochlorines on thyroid hormone status in newborns from two remote coastal regions in Quebec, Canada

    SciTech Connect

    Dallaire, Renee; Dewailly, Eric Ayotte, Pierre; Muckle, Gina; Laliberte, Claire; Bruneau, Suzanne

    2008-11-15

    Background: Several prospective studies have revealed that prenatal exposure to polychlorinated biphenyls (PCBs) and other organochlorine compounds (OCs) affect neurodevelopment during infancy. One of the mechanisms by which PCBs might interfere with neurodevelopment is a deficit in thyroid hormone (TH) concentrations. Objectives: We investigated the potential impact of transplacental exposure to PCBs and hexachlorobenzene (HCB) on TH concentrations in neonates from two remote coastal populations exposed to OCs through the consumption of seafood products. Methods: Blood samples were collected at birth from the umbilical cord of neonates from Nunavik (n=410) and the Lower North Shore of the St. Lawrence River (n=260) (Quebec, Canada) for thyroid parameters [thyroid-stimulating hormone (TSH), free T{sub 4} (fT{sub 4}), total T{sub 3} (tT{sub 3}), and thyroxine-binding globuline (TBG)] and contaminants analyses. Results: In multivariate models, umbilical cord plasma concentrations of PCB 153, the predominant PCB congener, were not associated with TH and TSH levels in both populations. Prenatal exposure to HCB was positively associated with fT{sub 4} levels at birth in both populations (Nunavik, {beta}=0.12, p=0.04; St. Lawrence, {beta}=0.19, p<0.01), whereas TBG concentrations were negatively associated with PCB 153 concentrations ({beta}=-0.13, p=0.05) in the St. Lawrence cohort. Conclusion: OCs levels were not associated to a reduction in THs in neonates from our two populations. Essential nutrients derived from seafood such as iodine may have prevented the negative effects of OCs on the thyroid economy during fetal development.

  17. Thyroid hormones correlate with field metabolic rate in ponies, Equus ferus caballus.

    PubMed

    Brinkmann, Lea; Gerken, Martina; Hambly, Catherine; Speakman, John R; Riek, Alexander

    2016-08-15

    During winter, free-living herbivores are often exposed to reduced energy supply at the same time that energy needs for thermoregulation increase. Several wild herbivores as well as robust horse breeds reduce their metabolism during times of low ambient temperature and food shortage. Thyroid hormones (THs) affect metabolic intensity and a positive effect of THs on basal metabolic rate (BMR) has been demonstrated in mammals and birds. As BMR and field metabolic rate (FMR) are often assumed to be intrinsically linked, THs may represent a reliable indicator for FMR. To test this hypothesis, 10 Shetland pony mares were kept under semi-extensive central European conditions. During the winter season, one group was fed 60% and one group 100% of their maintenance energy requirements. We measured FMR, locomotor activity, resting heart rate and TH levels in summer and winter. FMR, locomotor activity, resting heart rate and total T3 concentrations decreased substantially in winter compared with summer, whereas total T4 increased. Food restriction led to a reduced FMR and resting heart rate, while THs and locomotor activity were not affected. Across both seasons, FMR, resting heart rate and locomotor activity were positively correlated with total T3 but negatively and more weakly correlated with total T4.

  18. Tissue thyroid hormone metabolism is differentially regulated during illness in mice.

    PubMed

    Boelen, Anita; van der Spek, Anne H; Bloise, Flavia; de Vries, Emmely M; Surovtseva, Olga V; van Beeren, Mieke; Ackermans, Mariette T; Kwakkel, Joan; Fliers, Eric

    2017-04-01

    Illness induces major modifications in central and peripheral thyroid hormone (TH) metabolism, so-called nonthyroidal illness syndrome (NTIS). As a result, organ-specific changes in local TH availability occur depending on the type and severity of illness. Local TH availability is of importance for the regulation of the tissue-specific TH target genes and determined by the interplay between deiodinating enzymes, TH transport and TH receptor (TR) expression. In the present study, we evaluated changes in TH transport, deiodination and TR expression, the resulting tissue TH concentrations and the expression of TH target genes in liver and muscle in three animal models of illness. We induced (1) acute systemic inflammation by intraperitoneal injection of bacterial endotoxin (LPS), (2) chronic local inflammation by a turpentine injection in the hind limb and (3) severe pneumonia and sepsis by intranasal inoculation with Streptococcus pneumoniae We found that all aspects of peripheral TH metabolism are differentially regulated during illness, depending on the organ studied and severity of illness. In addition, tissue TH concentrations are not equally affected by the decrease in serum TH concentrations. For example, the decrease in muscle TH concentrations is less severe than the decrease observed in liver. In addition, despite lower TH concentrations in muscle in all three models, muscle T3 action is differentially affected. These observations help to understand the complex nature of the nonthyroidal illness syndrome.

  19. Importance of cysteine residues in the thyroid hormone transporter MCT8.

    PubMed

    Lima de Souza, Elaine C; Groeneweg, Stefan; Visser, W Edward; Peeters, Robin P; Visser, Theo J

    2013-05-01

    The thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) is crucial for brain development as demonstrated by the severe psychomotor retardation in patients with MCT8 mutations. MCT8 contains 10 residues of the reactive amino acid cysteine (Cys) whose functional roles were studied using the Cys-specific reagent p-chloromercurybenzenesulfonate (pCMBS) and by site-directed mutagenesis. Pretreatment of JEG3 cells with pCMBS resulted in a dose- and time-dependent decrease of subsequent T3 uptake. Pretreatment with dithiothreitol did not affect TH transport or its inhibition by pCMBS. However, pCMBS inhibition of MCT8 was reversed by dithiothreitol. Inhibition of MCT8 by pCMBS was prevented in the presence of T3. The single and double mutation of C481A and C497A did not affect T3 transport, but the single mutants were less sensitive and the double mutant was completely insensitive to pCMBS. Similar effects on MCT8 were obtained using HgCl2 instead of pCMBS. In conclusion, we have identified Cys481 and Cys497 in MCT8 as the residues modified by pCMBS or HgCl2. These residues are probably located at or near the substrate-recognition site in MCT8. It remains to be investigated whether MCT8 function is regulated by modification of these Cys residues under pathophysiological conditions.

  20. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics.

    PubMed

    Butt, Craig M; Stapleton, Heather M

    2013-11-18

    Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity.

  1. The relationship between the thyroid gland and the liver.

    PubMed

    Malik, R; Hodgson, H

    2002-09-01

    Thyroxine and tri-iodothyronine are essential for normal organ growth, development and function. These hormones regulate the basal metabolic rate of all cells, including hepatocytes, and thereby modulate hepatic function; the liver in turn metabolizes the thyroid hormones and regulates their systemic endocrine effects. Thyroid dysfunction may perturb liver function, liver disease modulates thyroid hormone metabolism, and a variety of systemic diseases affect both organs. We highlight the intricate relations between the thyroid gland and the liver in health and disease.

  2. The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function.

    PubMed

    Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan

    2017-03-28

    Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders.

  3. Serum Vitamin B12 and thyroid hormone levels in Saudi patients with multiple sclerosis

    PubMed Central

    Al-Khamis, Fahd A.

    2016-01-01

    Objectives: To determine the relationship between Vitamin B12 levels and thyroid hormones in patients with multiple sclerosis (MS). Materials and Methods: One hundred and ten patients with MS were recruited for this study after Institutional Review Board approval. All patients signed a written informed consent form and donated a single blood sample. Plasma Vitamin B12 levels, triiodothyronine (T3), and thyroxine (T4) hormone levels were measured. Data were analyzed using the Statistical Package for Social Sciences (SPSS) software. Results: Analysis of Vitamin B12 levels in 110 patients with MS revealed that 65% had normal levels of Vitamin B12 (200–900 pg/ml), 30% had low levels of Vitamin B12 (<200 pg/ml), and 5% high levels of Vitamin B12 (higher than 900 pg/ml). Further analysis of patients with low levels of Vitamin B12 revealed that this cohort exhibited a significantly high number of patients with low levels of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) (P < 0.005). Conclusion: This study suggests a relationship between Vitamin B12 levels and thyroid hormones. This opens the possibility that the use of therapies that increase triiodothyronine (T3) and thyroxine (T4) levels might be beneficial to patients with MS. PMID:27625581

  4. Thyroid hormone treatment among pregnant women with subclinical hypothyroidism: US national assessment

    PubMed Central

    Maraka, Spyridoula; Mwangi, Raphael; Yao, Xiaoxi; Sangaralingham, Lindsey R; Singh Ospina, Naykky M; O’Keeffe, Derek T; De Ycaza, Ana E Espinosa; Rodriguez-Gutierrez, Rene; Coddington, Charles C; Stan, Marius N; Brito, Juan P; Montori, Victor M

    2017-01-01

    Objective To estimate the effectiveness and safety of thyroid hormone treatment among pregnant women with subclinical hypothyroidism. Design Retrospective cohort study. Setting Large US administrative database between 1 January 2010 and 31 December 2014. Participants 5405 pregnant women with subclinical hypothyroidism, defined as untreated thyroid stimulating hormone (TSH) concentration 2.5-10 mIU/L. Exposure Thyroid hormone therapy. Main outcome measure Pregnancy loss and other pre-specified maternal and fetal pregnancy related adverse outcomes. Results Among 5405 pregnant women with subclinical hypothyroidism, 843 with a mean pre-treatment TSH concentration of 4.8 (SD 1.7) mIU/L were treated with thyroid hormone and 4562 with a mean baseline TSH concentration of 3.3 (SD 0.9) mIU/L were not treated (P<0.01). Pregnancy loss was significantly less common among treated women (n=89; 10.6%) than among untreated women (n=614; 13.5%) (P<0.01). Compared with the untreated group, treated women had lower adjusted odds of pregnancy loss (odds ratio 0.62, 95% confidence interval 0.48 to 0.82) but higher odds of preterm delivery (1.60, 1.14 to 2.24), gestational diabetes (1.37, 1.05 to 1.79), and pre-eclampsia (1.61, 1.10 to 2.37); other pregnancy related adverse outcomes were similar between the two groups. The adjusted odds of pregnancy loss were lower in treated women than in untreated women if their pre-treatment TSH concentration was 4.1-10 mIU/L (odds ratio 0.45, 0.30 to 0.65) but not if it was 2.5-4.0 mIU/L (0.91, 0.65 to 1.23) (P<0.01). Conclusion Thyroid hormone treatment was associated with decreased risk of pregnancy loss among women with subclinical hypothyroidism, especially those with pre-treatment TSH concentrations of 4.1-10 mIU/L. However, the increased risk of other pregnancy related adverse outcomes calls for additional studies evaluating the safety of thyroid hormone treatment in this patient population. PMID:28122781

  5. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    PubMed

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region.

  6. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system.

    PubMed

    Axelband, F; Dias, J; Ferrão, F M; Einicker-Lamas, M

    2011-01-01

    Thyroid hormones play a wide range of important physiological activities in almost all organism. As changes in these hormones levels-observed in hypothyroidism and hyperthyroidism-promote serious derangements of the cardiovascular system, it is important to know their mechanisms of action. Although the classic genomic actions which are dependent on interaction with nuclear receptors to modulate cardiac myocytes genes expression, there is growing evidence about T(3) and T(4)-triggered nongenomic pathways, resulted from their binding to plasma membrane, cytoplasm, or mitocondrial receptors that leads to a rapidly regulation of cardiac functions. Interestingly both actions converge to amplify thyroid hormone effects on cardiovascular system. T(3) and T(4) nongenomic actions modify inotropic and chronotropic effects, cardiac action potential duration, cardiac growth, and myocyte shape by protein translation through protein kinases-dependent signaling cascades, which include PKA, PKC, PI3K, and MAPK, and changes on ion channels and pumps activity. In respect to the decreased systemic vascular resistance seen in hyperthyroidism, T(3) appears to activate NOS or ATP-sensitive K(+) channels. In addition, a novel biologically active T(4)-derived metabolite has been described, 3-iodothyronamine, T(1)AM, which also acts through membrane receptors to mediate nongenomic cardiac effects. This metabolite influences the physiological manifestations of thyroid hormone actions by inducing opposite effects from those stimulated by T(3) and T(4), such as negative inotropic and chronotropic effects. Therefore, beyond genomic and nongenomic effects of thyroid hormones, it is crucial for there to be an equilibrium between T(3) or T(4) and T(1)AM levels for maintaining cardiac homeostasis.

  7. A structural abnormality associated with graded levels of thyroid hormone insufficiency: Dose dependent increases in heterotopia volume

    EPA Science Inventory

    A large number of environmental contaminants reduce circulating levels of thyroid hormone (TH), but clear markers of neurological insult associated with modest TH insufficiency are lacking. We have previously identified the presence of an abnormal cluster of misplaced neurons in ...

  8. Structural Abnormalities and Learning Impairments Induced by Low Level Thyroid Hormone Insufficiency: A Cross-Fostering Study

    EPA Science Inventory

    Severe reductions in thyroid hormones (TH) during development alter brain structure and impair learning. Uncertainty surrounds both the impact oflower levels of TH disruption and the sensitivity of available metrics to detect neurodevelopmental deficits of this disruption. We ha...

  9. Thyroid Hormone Disruption Effects Lamination of the Neocortex but not the Cerebellum in a Model of Developmental Hypothyroidism and Hypothyroxinemia

    EPA Science Inventory

    Introduction: Research on neurodevelopmental changes resulting from thyroid hormone (TH) disruption has important basic and clinical implications. We previously demonstrated, in a rodent model, that developmental hypothyroidism or hypothyroxinemia can cause ...

  10. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats

    EPA Science Inventory

    Severe thyroid hormone (TH) deficiency during critical phases of brain development results in irreversible neurological and cognitive impairments. The mechanisms accounting for this are likely multifactorial, and are not fully understood. Here we pursue the possibility that one i...

  11. POSSIBLE MECHANISMS OF THYROID HORMONE DISRUPTION IN MICE BY BDE 47, A MAJOR POLYBROMINATED DIPHENYL ETHER CONGENER

    EPA Science Inventory

    ABSTRACT Polybromindated diphenyl ethers (PBDEs) are a class of polyhalogenated aromatic compounds commercially used as fire retardants in consumer products. These compounds have been shown to decrease thyroid hormone concentrations in rodents after acute exposures. Based on t...

  12. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3 × 10(-5)mol/L and GW0742 IC50 4.9 × 10(-6) mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5) mol/L), beraprost (10(-5) mol/L) and GW0742 (10(-5) mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors.

  13. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  14. Effects of thyroid hormone withdrawal on metabolic and cardiovascular parameters during radioactive iodine therapy in differentiated thyroid cancer.

    PubMed

    An, Jee Hyun; Song, Kee-Ho; Kim, Dong-Lim; Kim, Suk Kyeong

    2017-02-01

    Objective To investigate the cardiometabolic effects of a severe hypothyroid state induced by withdrawal of thyroid hormone replacement before radioactive iodine therapy. Methods Patients with thyroid cancer who were scheduled to receive radioactive iodine ablation were enrolled. Cardiometabolic parameters were measured using blood samples taken immediately before levothyroxine withdrawal, 4 weeks following withdrawal (on radiotherapy day), and 4 weeks following reinstitution of levothyroxine. Results Out of 48 patients (age 49.4 ± 10.5 years; 77.1% [37/48] female), the severe hypothyroid state induced by levothyroxine withdrawal significantly aggravated the majority of lipid parameters, particularly in patients with a greater number of metabolic syndrome components. Fasting plasma glucose levels and homeostatic model assessment values for insulin resistance and β-cell function significantly decreased following levothyroxine withdrawal. Serum high-sensitivity C-reactive protein, fibrinogen and cystatin C levels significantly decreased, and homocysteine levels increased during the severe hypothyroid state. All of these changes were reversed by levothyroxine reinstitution. Conclusions Severe hypothyroid state induced pronounced changes in cardiometabolic parameters. Further studies should identify the long-term effects of changes in these parameters on cardiovascular morbidity and mortality in relation to thyroid disease.

  15. Inherited defects in thyroid hormone cell-membrane transport and metabolism

    PubMed Central

    Fu, Jiao

    2013-01-01

    The description of two novel human defects in the last ten years has uncovered new aspects of thyroid hormone physiology with regard to cellular-membrane transport and intracellular metabolism. Mutations in the X-linked monocarboxylate transporter 8 (MCT8) gene result in an invalidating neurodevelopmental phenotype in males and pathognomonic thyroid functions tests with high T3, low rT3, low or low normal T4, and normal or slightly high TSH. Recessive mutations in the selenocysteine insertion sequence binding protein 2 (SBP2) gene present a variable clinical phenotype depending on the severity of the defect and its consequences on the selenoprotein hierarchy. Most characteristic is the thyroid phenotype of low serum T3, high T4, high rT3, and slightly elevated TSH levels. Herein we review all known cases of MCT8 and SBP2 deficiency and describe each disease in terms of the clinical, biochemical, genetic, and therapeutic aspects. PMID:24629861

  16. Anemia in thyroid diseases.

    PubMed

    Szczepanek-Parulska, Ewelina; Hernik, Aleksandra; Ruchała, Marek

    2017-03-28

    Anemia is a frequent, although often underestimated, clinical condition accompanying thyroid diseases. In spite of the fact that anemia and thyroid dysfunction often occur simultaneously, the causative relationship between these two disorders remains ambiguous. Thyroid hormones stimulate erythrocytes precursors proliferation directly, as well as via erythropoietin production enhancement, whereas iron-deficient anemia negatively influences thyroid hormonal status. Thus, different forms of anemia might emerge in the course of thyroid dysfunction. In fact, normocytic anemia is most common, while macrocytic or microcytic anemia occur less frequently. Anemia in hypothyroidism might result from bone marrow depression, decreased erythropoietin production, comorbid diseases, or concomitant iron, vitamin B12 or folate deficiency. Altered iron metabolism and oxidative stress may contribute to anemia in hyperthyroidism. The risk of anemia in autoimmune thyroid disease (AITD) may be posed by pernicious anemia and atrophic gastritis, celiac disease, autoimmune hemolytic syndrome, or rheumatic disorders. The simultaneous occurrence of anemia and thyroid disease, as well as their close relation, make the diseases an important clinical problem. The aim of the study is to provide a comprehensive review summarizing data on the prevalence, potential mechanisms, and therapy of anemia in the course of thyroid diseases from the clinical and pathogenetic perspective. Thyroid dysfunction and autoimmune thyroid disease should be considered in differential diagnosis of treatment-resistant or refractory anemia, as well as in case of increased red blood cell distribution width (RDW). Of note is that the presence of AITD itself, independently from thyroid hormonal status, might affect hemoglobin level.

  17. Thyroid hormones in the skeletogenesis and accessory sources of endogenous hormones in Xenopus laevis (Amphibia; Anura) ontogeny: Experimental evidence.

    PubMed

    Smirnov, S V; Vassilieva, A B

    2014-03-01

    Skeletal development was studied in normal and goitrogen-treated Xenopus laevis tadpoles reared under thyroid hormone (TH) deficiency. Early stages of skeletal development proceed similarly in both groups. Later stages are retarded or completely arrested in goitrogen-treated tadpoles. After goitrogen-treated tadpoles were transferred into pure water or into a medium containing both goitrogen and exogenous TH, tadpoles resumed development. Consequently, late stages of skeletogenesis are TH-dependent and TH-induced. Athyroid X. laevis "giant tadpoles" described in literature differ from goitrogen-arrested tadpoles in that they have features which require TH to appear. The appearance of TH-depended features in giant tadpoles indicates the occurrence of the additional sources of TH other than thyroid gland.

  18. Inhibition of Thyroid Hormone Release from Cultured Amphibian Thyroid Glands by Methimazole, 6-Propylthiouracil, and Perchlorate

    EPA Science Inventory

    The research presented here is the development of an in vitro thyroid gland culture system to test the effect of chemicals directly on the gland without influence of other parts of the HPT axis. . . This information can then be used to select chemicals for further evaluation in v...

  19. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  20. Urinary iodine and stable isotope analysis to examine habitat influences on thyroid hormones among coastal dwelling American alligators.

    PubMed

    Boggs, Ashley S P; Hamlin, Heather J; Nifong, James C; Kassim, Brittany L; Lowers, Russell H; Galligan, Thomas M; Long, Stephen E; Guillette, Louis J

    2016-01-15

    The American alligator, generally a freshwater species, is known to forage in marine environments despite the lack of a salt secreting gland found in other crocodylids. Estuarine and marine foraging could lead to increased dietary uptake of iodine, a nutrient necessary for the production of thyroid hormones. To explore the influence of dietary iodine on thyroid hormone health of coastal dwelling alligators, we described the seasonal plasma thyroxine and triiodothyronine concentrations measured by radioimmunoassay and urinary iodine (UI) concentrations measured by inductively coupled plasma mass spectrometry. We also analyzed long-term dietary patterns through stable isotope analysis of scute tissue. Snout-to-vent length (SVL) was a significant factor among UI and stable isotope analyses. Large adult males greater than 135cm SVL had the highest UI concentrations but did not display seasonality of thyroid hormones. Alligators under 135 SVL exhibited seasonality in thyroid hormones and a positive relationship between UI and triiodothyronine concentrations. Isotopic signatures provided supporting evidence that large males predominantly feed on marine/estuarine prey whereas females showed reliance on freshwater/terrestrial prey supplemented by marine/estuarine prey. UI measurement provided immediate information that correlated to thyroid hormone concentrations whereas stable isotope analysis described long-term dietary patterns. Both techniques demonstrate that adult alligators in coastal environments are utilizing estuarine/marine habitats, which could alter thyroid hormone physiology.

  1. APPLICATION OF ORGANIC IODINE SPECIES ANALYTICS: DETERMINING THYROID HORMONE STATUS IN ADULT DANIO RERIO AND DEVELOPING XENOPUS LAEVIS USING LC/ICP-MS

    EPA Science Inventory

    Disruption of normal thyroid function by xenobiotic chemicals is an important ecological issue. Theoretically, normal thyroid hormone (TH) homeostasis and action can be disrupted at several sites in the synthetic and elimination pathways. Indeed, xenobiotic chemicals, which are k...

  2. Photoperiod-dependent negative feedback effects of thyroid hormones in Fundulus heteroclitus

    SciTech Connect

    Brown, C.L.; Stetson, M.H.

    1985-05-01

    In Fundulus heteroclitus, an annual cycle in the response of the thyroid to ovine thyroid-stimulating hormone (oTSH) is characterized by maximal thyroxin (T4) secretion in mid-winter and minimal T4 secretion in summer. Four daily injections of oTSH, given in winter caused serum T4 to plateau at elevated levels for several days, while in summer fish similar treatment resulted in far more fluctuating titers of serum T4; maximum levels were similar in both groups. The difference in sustenance rather than magnitude of Peak T4 led to an examination of the negative feedback effects of thyroid hormones as they might relate to these seasonal changes. Radioiodine uptake by thyroid follicles served as a simple, but effective bioassay for endogenous TSH. Fish collected in summer were more sensitive to negative feedback of T3 than those collected in winter; feedback effects of T4 in the two groups were not significantly different. The effects of specific photoperiods on negative feedback sensitivity to T3 and T4 were also tested. Exposure of winter fish for one month to long days (LD 14:10) enhanced the degree of reduction of iodine uptake caused by T4 in the aquarium water (10 micrograms/100 ml). Negative feedback in short-day (LD 8:16) winter fish was not demonstrated. It is concluded that long days increase and short days diminish the negative feedback sensitivity of the hypothalamus-pituitary axis to thyroid hormones in F. heteroclitus. Such photoperiodically induced changes may act to aid in the year-round maintenance of T4 levels necessary for seasonal adaptation and survival.

  3. Thyroid Antibodies

    MedlinePlus

    ... blocking production of thyroid hormones and resulting in hypothyroidism . TBII is not routinely tested, but TSI is ... autoimmune disease . A low level of thyroid hormones ( hypothyroidism ) can cause symptoms, such as: Weight gain Fatigue ...

  4. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: The HOME Study

    SciTech Connect

    Romano, Megan E.; Webster, Glenys M.; Vuong, Ann M.; Thomas Zoeller, R.; Chen, Aimin; Hoofnagle, Andrew N.; Calafat, Antonia M.; Karagas, Margaret R.; Yolton, Kimberly; Lanphear, Bruce P.; Braun, Joseph M.

    2015-04-15

    Bisphenol A (BPA), an endocrine disruptor used in consumer products, may perturb thyroid function. Prenatal BPA exposure may have sex-specific effects on thyroid hormones (THs). Our objectives were to investigate whether maternal urinary BPA concentrations during pregnancy were associated with THs in maternal or cord serum, and whether these associations differed by newborn sex or maternal iodine status. We measured urinary BPA concentrations at 16 and 26 weeks gestation among pregnant women in the HOME Study (2003–2006, Cincinnati, Ohio). Thyroid stimulating hormone (TSH) and free and total thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) were measured in maternal serum at 16 weeks (n=181) and cord serum at delivery (n=249). Associations between BPA concentrations and maternal or cord serum TH levels were estimated by multivariable linear regression. Mean maternal urinary BPA was not associated with cord THs in all newborns, but a 10-fold increase in mean BPA was associated with lower cord TSH in girls (percent change=−36.0%; 95% confidence interval (CI): −58.4, −1.7%), but not boys (7.8%; 95% CI: −28.5, 62.7%; p-for-effect modification=0.09). We observed no significant associations between 16-week BPA and THs in maternal or cord serum, but 26-week maternal BPA was inversely associated with TSH in girls (−42.9%; 95% CI: −59.9, −18.5%), but not boys (7.6%; 95% CI: −17.3, 40.2%; p-for-effect modification=0.005) at birth. The inverse BPA–TSH relation among girls was stronger, but less precise, among iodine deficient versus sufficient mothers. Prenatal BPA exposure may reduce TSH among newborn girls, particularly when exposure occurs later in gestation. - Highlights: • Examined associations of BPA with thyroid hormones in pregnant women and newborns. • Assessed effect modification of BPA–thyroid hormone associations by newborn sex. • Greater BPA related to decreased thyroid stimulating hormone in girls' cord serum. • Results may

  5. Dietary effects on thyroid hormones in the red drum, Sciaenops ocellatus.

    PubMed

    Mackenzie, D S; Moon, H Y; Gatlin, D M; Perez, L R

    1993-07-01

    Juvenile red drum (Sciaenops ocellatus) were cultured at 25°C on a variety of diets and blood sampled over eight weeks to examine the relationship between growth and plasma thyroid hormone levels. Maximum growth rates were achieved on formulated experimental diets and a simulated natural shrimp diet. Associated with these maximal rates was a significant increase in triidothyronine (T3), but no consistent change in thyroxine (T4). Reduced rations of diets resulted in low growth rates associated with significantly lowered levels of T3 but not T4. To determine whether weight gain could be increased by application of exogeneous hormone, diets were supplemented with T3 or T4 at 2, 10, and 50 mg hormone/kg diet. Significantly elevated T3 was induced by supplementation with 10 and 50 mg T3/kg diet, although there were no indications of an anabolic effect of T3 incorporation, and 50 mg T3/kg diet was in fact associated with decreased weight gain. Incorporation of T4 into diets had no effect on growth or T3, and had effects on T4 which were small and inconsistent, indicating that T4 may not be effectively absorbed from the gut. No difference was found in response to hormone feeding between low (6 ppt) or high (35 ppt) water salinity. T3 levels thus appear to closely parallel growth in fish on unsupplemented diets, whereas T4 which were small and manipulation. Supplementation with T3 is not an effective means of stimulating growth in red drum fed optimum diets. Whereas thyroid hormones may function to regulate intermediary metabolism in red drum, elevated endogenous thyroid hormone levels appear adequate to supply tissue needs during juvenile growth in culture.

  6. The Role of the Multiple Hormonal Dysregulation in the Onset of “Anemia of Aging”: Focus on Testosterone, IGF-1, and Thyroid Hormones

    PubMed Central

    Maggio, Marcello; De Vita, Francesca; Fisichella, Alberto; Lauretani, Fulvio; Ticinesi, Andrea; Ceresini, Graziano; Cappola, Anne; Ferrucci, Luigi; Ceda, Gian Paolo

    2015-01-01

    Anemia is a multifactorial condition whose prevalence increases in both sexes after the fifth decade of life. It is a highly represented phenomenon in older adults and in one-third of cases is “unexplained.” Ageing process is also characterized by a “multiple hormonal dysregulation” with disruption in gonadal, adrenal, and somatotropic axes. Experimental studies suggest that anabolic hormones such as testosterone, IGF-1, and thyroid hormones are able to increase erythroid mass, erythropoietin synthesis, and iron bioavailability, underlining a potential role of multiple hormonal changes in the anemia of aging. Epidemiological data more consistently support an association between lower testosterone and anemia in adult-older individuals. Low IGF-1 has been especially associated with anemia in the pediatric population and in a wide range of disorders. There is also evidence of an association between thyroid hormones and abnormalities in hematological parameters under overt thyroid and euthyroid conditions, with limited data on subclinical statuses. Although RCTs have shown beneficial effects, stronger for testosterone and the GH-IGF-1 axis and less evident for thyroid hormones, in improving different hematological parameters, there is no clear evidence for the usefulness of hormonal treatment in improving anemia in older subjects. Thus, more clinical and research efforts are needed to investigate the hormonal contribution to anemia in the older individuals. PMID:26779261

  7. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    SciTech Connect

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  8. Comparison of cortisol and thyroid hormones between tuberculosis-suspect and healthy elephants of Nepal

    PubMed Central

    PAUDEL, Sarad; BROWN, Janine L.; THAPALIYA, Sharada; DHAKAL, Ishwari P.; MIKOTA, Susan K.; GAIRHE, Kamal P.; SHIMOZURU, Michito; TSUBOTA, Toshio

    2016-01-01

    We compared cortisol and thyroid hormone (T3 and T4) concentrations between tuberculosis (TB)-suspected (n=10) and healthy (n=10) elephants of Nepal. Whole blood wa