Science.gov

Sample records for affect tropospheric ozone

  1. Climate-chemistry interaction affecting tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Mao, Huiting

    1999-09-01

    Tropospheric ozone, an important radiative-chemical species, has been observed increasing especially at northern midlatitudes during the past few decades. This dissertation addresses climate-chemistry interaction associated with such increases in three aspects using observations as well as atmospheric chemistry and climate models. Ozone impact on climate is first evaluated by radiative forcing calculations due to observed ozone changes. It is found that a 10% increase in tropospheric ozone causes a radiative forcing of 0.17 Wm-2 using a fixed temperature (FT) method or 0.13 Wm-2 using a fixed dynamic heating (FDH) method, which is comparable to the radiative forcing 0.26 (FT) and -0.09 Wm-2 (FDH) caused by the stratospheric ozone depletion during the 1980s. Second, radiative forcing due to changes in ozone precursors is estimated. Ozone changes in response to a 20% reduction in surface NOx emission in six regions around the globe differ between regions. A maximum decrease in ozone column reaches 5% in southeast Asia and the central Atlantic Ocean, inducing a local radiative forcing of up to -0.1 Wm-2 in those regions. It indicates that surface NOx emission changes can potentially affect regional climate. Third, the effects of climate and climate changes on atmospheric chemistry are addressed with two studies. One study investigates the effects of global warming on methane and ozone, and another looks into cloud effects on photodissociation rate constants. Calculations based on the IPCC business-as-usual scenario indicate that by 2050, temperature and moisture increases can suppress methane and tropospheric ozone increases by 17% and 11%, respectively, in reference to the 1990 concentrations. The combined effects offset the global warming induced forcing 3.90 Wm -2 by -0.46 Wm-2. A one-dimensional study suggests that a typical cirrus cloud (τ = 2) can significantly increase J(O1D) and J(NO2) around the tropopause with a maximum of 21%. Geographical and seasonal

  2. Processes Affecting Tropospheric Ozone over Africa

    NASA Technical Reports Server (NTRS)

    Diab, Roseanne D.; Thompson, Anne M.

    2004-01-01

    This is a Workshop Report prepared for Eos, the weekly AGU magazine, The workshop took place between 26-28 January 2004 at the University of KwaZulu-Natal in Durban, South Africa and was attended by 26 participants (http//www.geography.und.ac.za). Considerable progress has been made in ozone observations except for northern Africa (large data gaps) and west Africa (to be covered by the French-sponsored AMMA program). The present-day ozone findings were evaluated and reviewed by speakers using Aircraft data (MOZAIC program), NASA satellites (MOPITT, TRMM, TOMS) and ozone soundings (SHADOZ). Besides some ozone gaps, there are challenges posed by the need to assess the relative strengths of photochemical and dynamic influences on the tropospheric ozone budget. Biogenic, biofuels, biomass burning sources of ozone precursors remain highly uncertain. Recent findings (by NASA's Chatfield and Thompson, using satellite and sounding data) show significant impact of Indian Ocean pollution on African ozone. European research on pollutants over the Mediterranean and the middle east, that suggests that ozone may be exported to Africa from these areas, also needs to be considered.

  3. Ozone, Tropospheric

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1995-01-01

    In the early part of the 20th century, ground-based and balloon-borne measurements discovered that most of atmosphere's ozone is located in the stratosphere with highest concentrations located between 15 and 30 km (9,3 and 18.6 miles). For a long time, it was believed that tropospheric ozone originated from the stratosphere and that most of it was destroyed by contact with the earth's surface. Ozone, O3, was known to be produced by the photo-dissociation of molecular oxygen, O2, a process that can only occur at wavelengths shorter than 242 nm. Because such short-wave-length radiation is present only in the stratosphere, no tropospheric ozone production is possible by this mechanism. In the 1940s, however, it became obvious that production of ozone was also taking place in the troposphere. The overall reaction mechanism was eventually identified by Arie Haagen-Smit of the California Institute of Technology, in highly polluted southern California. The copious emissions from the numerous cars driven there as a result of the mass migration to Los Angeles after World War 2 created the new unpleasant phenomenon of photochemical smog, the primary component of which is ozone. These high levels of ozone were injuring vegetable crops, causing women's nylons to run, and generating increasing respiratory and eye-irritation problems for the populace. Our knowledge of tropospheric ozone increased dramatically in the early 1950s as monitoring stations and search centers were established throughout southern California to see what could be done to combat this threat to human health and the environment.

  4. Global tropospheric ozone investigations

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.

    1998-01-01

    Ozone (O3) is one of the most important trace gases in the troposphere, and it is responsible for influencing many critical chemical and radiative processes. Ozone contributes to the formation of the hydroxyl radical (OH), which is central to most chemical reactions in the lower atmosphere, and it absorbs UV, visible, and infrared radiation which affects the energy budget and atmospheric temperatures. In addition, O3 can be used as a tracer of atmospheric pollution and stratosphere troposphere exchange. At elevated concentrations, O3 can also produce detrimental biological and human health effects. The US National Research Council (NRC) Board on Sustainable Development reviewed the US Global Change Research Program (USGCRP) [NRC, 1995], and it identified tropospheric chemistry as one of the high priority areas for the USGCRP in the next decade. The NRC identified the following specific challenges in tropospheric chemistry. Although we understand the reason for the high levels of 03 over several regions of the world, we need to better establish the distribution of O3 in the troposphere in order to document and understand the changes in the abundance of global tropospheric O3. This information is needed to quantify the contribution of O3 to the Earth' s radiative balance and to understand potential impacts on the health of the biosphere. Having recognized the importance of particles in the chemistry of the stratosphere, we must determine how aerosols and clouds affect the chemical processes in the troposphere. This understanding is essential to predict the chemical composition of the atmosphere and to assess the resulting forcing effects in the climate system. We must determine if the self-cleansing chemistry of the atmosphere is changing as a result of human activities. This information is required to predict the rate at which pollutants are removed from the atmosphere. Over nearly two decades, airborne Differential Absorption Lidar (DIAL) systems have been used in

  5. How Tropospheric is Tropospheric Ozone?

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Scheel, Hans-Eckhart; Sprenger, Michael; Vogelmann, Hannes

    2010-05-01

    There has been a long debate on the reasons of the increase in tropospheric ozone during the past century. Mostly the photochemical ozone formation combined with the growing level of air pollution has been stressed. However, with decreasing European precursor emissions in the 1990s and the ongoing positive trend of O3 at the high-lying Alpine station Zugspitze (2962 m a.s.l.) until about 2000 this view has started to change. Data filtering of the Zugspitze data based on relative humidity (RH), 7Be and CO measurements have revealed that the only positive ozone trend could be found for descending air masses of dominating stratospheric origin whereas the trend for polluted air masses is around zero. The 7Be data, recorded since 1970, showed a positive trend since the mid-seventies. Based on daily model forecasts by ETH of stratospheric air intrusions co-ordinated lidar measurements of ozone and, more recently, water vapour (Vogelmann and Trickl, 2008) have been carried out. It could be shown that there is an excellent agreement between the intrusion forecasts, the lidar measurements and low-RH events at the Zugspitze summit (Trickl et al., 2010). The forecasts also allowed us to define intrusion types as well as to review and to revise the data-filtering criteria used for the in-situ data. This study, carried out for the period 2001-2005, yields a significantly higher number of intrusions reaching 3000 m than obtained in previous investigations, with even about 20 per cent more cases (mostly overpasses) predicted by the forecasts. Seasonal cycles of the intrusion frequency were derived and, in all but one intrusion type, peaked during the cold season. Recent measurements with the water-vapour lidar (see parallel contribution) have revealed RH values of 0-2 per cent even in very thin layers of stratospheric origin reaching the lower troposphere. This indicates that significant mixing with tropospheric air can only occur during the early phase of an intrusion, if not

  6. Sweet potato [Ipomoea batatas (L.) Lam.] cultivated as tuber or leafy vegetable supplier as affected by elevated tropospheric ozone.

    PubMed

    Keutgen, Norbert; Keutgen, Anna J; Janssens, Marc J J

    2008-08-13

    Sweet potato cultivars respond differently to elevated tropospheric ozone concentrations of ca. 130 mug m (-3), 8 h a day for 4 weeks, which affects their selection for cultivation. In the first cultivar presented here, an adequate leafy vegetable supplier, the ozone load resulted in a shift of biomass to maintain the canopy at the expense of tuber development. Starch content of leaves was reduced, indicating an impairment of quality, but carotenoid content remained stable. The second cultivar may be grown for tuber production. Although the ratio tuber/plant remained stable under ozone, tuber yield and its starch content were significantly reduced. The lower starch content indicated a worse quality for certain industrial processing, but it is desirable for chip production. Elevated tropospheric ozone concentrations also influenced free amino acids and macronutrient contents of tubers, but these modifications were of minor significance for tuber quality in the second cultivar.

  7. Tropospheric Ozone and Photochemical Smog

    NASA Astrophysics Data System (ADS)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  8. Source attribution of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  9. Tropospheric ozone variability over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Kulkarni, Pavan S.; Bortoli, D.; Salgado, R.; Antón, M.; Costa, M. J.; Silva, A. M.

    2011-01-01

    To study tropospheric ozone variability over the Iberian Peninsula (IP), NASA Langley TOR data have been analyzed for the 1979-2005 period. The maximum tropospheric ozone concentration over the entire IP was found in June (˜41 DU) and a minimum in December (˜29 DU). However the maximum tropospheric ozone concentration was found over West Atlantic Coast (WAC) (˜44 DU), followed by Mediterranean Coast (MC) (˜42 DU), North Atlantic Coast (NAC) (˜41 DU), Central Iberian Peninsula (CIP) (˜40 DU) and Pyrenees Mountain Range (PMR) (˜39 DU) during June-July. The high concentration of tropospheric ozone in July over the Atlantic Ocean near IP is due to the presence of Azores anticyclone and related photochemistry and dynamics, and affects the observed higher tropospheric ozone concentration over WAC zone. Strong seasonal cycle in tropospheric ozone concentration has been observed with large variation over NAC (˜49%), followed by WAC (˜48%) and MC (˜41%) compared to CIP and PMR (˜38%) zones. When the data are compared over the IP for the two periods (1979-1993 and 1997-2005), a systematic increase in the number of months with higher tropospheric ozone concentration has been observed during the second period with respect to the first. These increases are almost 8% to 24% over NAC, 6% to 17% over WAC, 5% to 24% over CIP, 6% to 23% over MC and 13% to 18% over PMR, zones. It has been observed that topography, climatology and population density distribution plays a crucial role in the variability of tropospheric ozone concentration over the IP.

  10. Observing Tropospheric Ozone From Space

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  11. Plant responses to tropospheric ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  12. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  13. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  14. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange?

    NASA Astrophysics Data System (ADS)

    Williamson, Jennifer L.; Mills, Gina; Hayes, Felicity; Jones, Timothy; Freeman, Chris

    2016-02-01

    In this study we have demonstrated that plants originating from upland peat bogs are sensitive to increasing background concentrations of ozone. Peatland mesocosms from an upland peat bog in North Wales, UK were exposed to eight levels of elevated background ozone in solardomes for 4 months from May to August, with 24 h mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr ranging from 45.98 ppm h to 259.63 ppm h. Our results show that plant senescence increased with increasing exposure to ozone, although there was no significant effect of increasing ozone on plant biomass. Assessments of carbon dioxide and methane fluxes from the mesocosms suggests that there was no change in carbon dioxide fluxes over the 4 month exposure period but that methane fluxes increased as cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 ppm h and then decreased as cumulative ozone exposure increased further.

  15. Discoveries about Tropospheric Ozone Pollution from Satellite and Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-real time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. This is most readily done for the tropics, where the stratospheric and tropospheric ozone column amounts can be discriminated readily. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: chttp://www.atmos.umd.edu/-trope>. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. Time permitting, examples of mid-latitude, intercontinental transport of ozone pollution sensed by TOMS will be shown. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (less than 2000 ozone profiles): (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) convective variability affects tropospheric ozone over the Indian and Pacific Ocean; (d) a "tropical Atlantic Paradox" appears in December-January-February.

  16. Tropospheric Ozone and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.

  17. Meteorological factors affecting lower tropospheric ozone mixing ratios in Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Janjai, S.; Buntoung, S.; Nunez, M.; Chiwpreecha, K.; Pattarapanitchai, S.

    2016-09-01

    This paper examines the influence of meteorological conditions in ozone mixing ratio measured at the Thai Meteorological Department (TMD) in Bangkok, Thailand. In addition to surface wind speed and direction, surface ozone concentrations, ozonesondes and CALIPSO Lidar images were collected during the study period extending from 01/01/2014 to 30/04/2015. Surface ozone concentrations show a strong seasonality, with maximum in the dry months of December to April and minimum during the wet southwest (SW) monsoon period extending from May to October. High ozone concentrations are related to biomass burning in the northeast highland regions of the country and neighboring Myanmar and southern China. These precursors travel in a southerly direction towards Bangkok in a well-defined aerosol layer which may be at ground level or at elevated heights. The growth of the daytime mixed layer scavenges some of the upper level aerosols, although local maxima in ozone concentrations at 1-2 km are a frequent feature at Bangkok. There is an evidence of fumigation in the Gulf of Thailand and a return flow via the southerly sea breezes.

  18. Student Investigations of Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Austin, S.; Johnson, L.; Merrill, J.; Johnson, R.; Renee, B.; Fortney, M.; Renee, D.

    2006-12-01

    Hands-on field work and data collection have been shown to be a major factor in motivating students in the study of geoscience and environmental science. An existing high-altitude balloon program at Medgar Evers College(MEC) has developed a new student research initiative focused on tropospheric ozone profile investigations. This effort was launched with involvement in the Ozonesonde Network Study (IONS) 2006 campaign of coordinated observations organized by the Goddard Space Flight Center (GSFC). The participation was stimulated by a collaboration between faculty at the University of Rhode Island (URI) and faculty at Medgar Evers College, a minority-serving institution. URI provided training, background material, access to lab facilities and continues to assist faculty at MEC in the engagement of minority students in this research experience. Undergraduate and graduate students are involved in all phases of the ozone study including ozonesonde preparation and calibration (URI), launch and communications (Paradox, NY), and data analysis (Medgar Evers College) which is being incorporated into selected courses in Environmental Science, Physical Science and Computer Science. A companion educational project involved high school students with a teacher-mentor in surface ozone measurements using the GLOBE protocol as well as linkages with the ozone profile study. This presentation describes the student-based participation, the URI-MEC collaboration, results from the ozone profiles as well as the details of ongoing curriculum integration and future work. The project is partially supported by the NASA Aura Education and Public Outreach program.

  19. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  20. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings.

    PubMed

    Zhang, Jianwei; Schaub, Marcus; Ferdinand, Jonathan A; Skelly, John M; Steiner, Kim C; Savage, James E

    2010-08-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g(wv)), foliar injury, and leaf nitrogen concentration (N(L)) to tropospheric ozone (O(3)) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g(wv), foliar injury, and N(L) (P < 0.05) among O(3) treatments. Seedlings in AA showed the highest A and g(wv) due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g(wv), N(L), and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g(wv), and foliar injury to O(3). Both VPD and N(L) had a strong influence on leaf gas exchange. Foliar O(3)-induced injury appeared when cumulative O(3) uptake reached 8-12 mmol m(-2), depending on soil water availability. The mechanistic assessment of O(3)-induced injury is a valuable approach for a biologically relevant O(3) risk assessment for forest trees. PMID:20537450

  1. Tropospheric Enhancement of Ozone over the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  2. Tropospheric ozone column retrieval from the Ozone Monitoring Instrument by means of a neural network algorithm

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Bojkov, B. R.; Liu, X.; Chance, K.; Del Frate, F.

    2011-05-01

    Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a Neural Network algorithms. An extended set of ozone sonde measurements at northern mid-latitudes has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  3. Impact of climate variability on tropospheric ozone.

    PubMed

    Grewe, Volker

    2007-03-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Niño), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO(x) emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  4. Impact of climate variability on tropospheric ozone.

    PubMed

    Grewe, Volker

    2007-03-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Niño), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO(x) emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  5. Influence of Mountains on Arctic Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Whiteway, J. A.; Seabrook, J.

    2015-12-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.

  6. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  7. Tracking the sources of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Churkina, G.; Coates, J.; Grote, R.; Mar, K.; von Schneidemesser, E.; Zhu, S.

    2013-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this set of studies we examine the attribution of tropospheric ozone to emissions of VOC using a tagging approach, whereby each VOC oxidation intermediate in model chemical mechanisms is tagged with the identity of its primary emitted compound, allowing modelled ozone production to be directly attributed to all emitted VOCs in the model. Using a global model we

  8. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  9. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  10. Tropospheric Ozone Lidar Network (TOLNet) - Long-term Tropospheric Ozone and Aerosol Profiling for Satellite Continuity and Process Studies

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.

    2012-12-01

    An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.

  11. Elevated Tropospheric Ozone over the Atlantic

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Tie, X.

    2003-01-01

    Tropospheric column ozone (TCO) is derived from differential measurements of TOMS total column ozone and Microwave Limb Sounder stratospheric column ozone. It is shown that TCO during summer months over the Atlantic and Pacific Oceans in northern midlatitudes is about the same (50 to 60 Dobson Units) as over the continents of North America, Europe, and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains, and Tibetan plateau where TCO is reduced by 20 to 30 Dobson Units. The zonal variation in TCO is well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO.

  12. Science Accomplishments from a Decade of Aura OMI/MLS Tropospheric Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Douglass, Anne R.; Joiner, Joanna; Duncan, Bryan N.; Olsen, Mark A.; Oman, Luke D.; Witte, Jacquelyn C.; Liu, X.; Wargan, K.; Schoeberl, Mark R.; Strahan, Susan E.; Pawson, Steven; Bhartia, Pawan K.; Newman, Paul A.; Froidevaux, Lucien; Cooper, Owen R.; Haffner, David P.

    2014-01-01

    Measurements of tropospheric ozone from combined Aura OMI and MLS instruments have yielded a large number of new and important science discoveries over the last decade. These discoveries have generated a much greater understanding of biomass burning, lightning NO, and stratosphere-troposphere exchange sources of tropospheric ozone, ENSO dynamics and photochemistry, intra-seasonal variability-Madden-Julian Oscillation including convective transport, radiative forcing, measuring ozone pollution from space, improvements to ozone retrieval algorithms, and evaluation of chemical-transport and chemistry-climate models. The OMI-MLS measurements have been instrumental in giving us better understanding of the dynamics and chemistry involving tropospheric ozone and the many drivers affecting the troposphere in general. This discussion will provide an overview focusing on our main science results.

  13. Tropospheric ozone in the vicinity of the ozone hole - 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Warren, Linda S.; Hypes, Warren D.; Tuck, Adrian F.; Kelly, Kenneth K.; Krueger, Arlin J.

    1989-01-01

    Results are presented on ozone measurements in the upper troposphere/lower stratosphere over Antarctica, obtained by NASA DC-8 aircraft during the August/September 1987 Airborne Antarctic Ozone Experiment. The ozone mixing ratios as high as several hundred ppbv were measured, but in all cases these ratios were observed in pockets of upper atmospheric air, both in the vicinity of and away from the location of the ozone hole. The background ozone values in the surrounding troposphere were typically in the range of 20-50 ppbv. Correlation of tropospheric ozone observations with the boundaries of the ozone hole differed in the course of the experiment. During the August 28 - September 2 flights, encounters with ozone-rich air were limited, and the background tropospheric ozone appeared to decrease beneath the hole. For the later flights, and as the ozone hole deepened, the ozone-rich air was frequently observed in the vicinity of the hole, and the average ozone values at the flight altitude were frequently higher than the background values.

  14. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  15. Tropospheric and stratospheric ozone from assimilation of Aura data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.

  16. Tropospheric ozone in the vicinity of the ozone hole: 1987 Airborne Antarctic Ozone Experiment

    SciTech Connect

    Gregory, G.L.; Warren, L.S. ); Hypes, W.D. ); Tuck, A.F.; Kelly, K.K. ); Krueger, A.J. )

    1989-11-30

    Tropospheric ozone measurements over Antarctica aboard the NASA DC-8 aircraft are summarized. As part of the August/September 1987 Airborne Antarctic Ozone Experiment, the aircraft flew 13 missions covering a latitude of 53{degree}-90{degree}S, at altitudes to 13 km. Ozone mixing ratios as high as several hundred parts per billion by volume (ppbv) were measured, but in all cases these ratios were observed in pockets or patches of upper atmospheric air. These pockets were observed both in the vicinity of and away from the location of the ozone hole. At times, and as a result of these pockets, the ozone levels at the flight altitude of the aircraft, as averaged beneath the boundaries of the stratospheric ozone hole, were 2-3 times higher than background tropospheric values. The data suggest that the ozone-rich air seldom penetrated below about 9-km altitude. Background ozone values in the surrounding troposphere were typically in the range of 20-50 ppbv. Correlation of tropospheric ozone observations with the boundaries of the ozone hole differed during the experiment. During the early flights (August 28 through September 2), encounters with ozone-rich air were limited and background tropospheric ozone (at the flight altitude) appeared to decrease beneath the hole. For many of the later flights, and as the hole deepened, the reverse was noted, in that ozone-rich air was frequently observed in the vicinity of the hole and, as noted earlier, average ozone at the flight altitude was frequently higher than background values.

  17. Quantifying isentropic stratosphere-troposphere exchange of ozone

    NASA Astrophysics Data System (ADS)

    Yang, Huang; Chen, Gang; Tang, Qi; Hess, Peter

    2016-04-01

    There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STE by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350-380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280-350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Furthermore, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.

  18. Ozone in the upper troposphere from Gasp measurements

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.

    1979-01-01

    Several aspects of tropospheric ozone variations are examined by using ozone measurements made from commercial airliners (Gasp data). Through visual inspection of the autocorrelation function it is shown that the east-west variations of ozone have a predominant wavelength near 2400 km, while temperature and wind have predominant wavelengths near 3300 km. Distance-lagged correlation functions of ozone with temperature and wind show a definite periodicity with wavelengths near 2400 km. Attention is given to the tropical tropospheric ozone values above 100 parts per billion by volume, which appear to be associated with meridional transport from middle latitudes, and in some cases, relatively large tropical ozone values are coincident with clouds.

  19. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.

    2012-09-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as lightning, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting lightning activity and lightning-generated NOx (LNOx). We find that lightning flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in lightning and LNOx, which is supported by modle simulations with prescribed lightning change. O3production increase from this aerosol-lightning-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that lightning activity, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-lightning-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and

  20. Linkages between ozone-depleting substances, tropospheric oxidation and aerosols

    NASA Astrophysics Data System (ADS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-05-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6 mW m-2 for CFCs and -6.7 mW m-2 for N2O) and sulfate aerosols (-3.0 mW m-2 for CFCs and +6.5 mW m-2 for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  1. Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-01-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  2. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  3. Sensitivity of Northern Hemispheric Tropospheric Ozone To Anthropogenic Emissions as Observed by Satellite Observations

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Worden, J. R.; Payne, V.; Bowman, K. W.; Kuai, L.; Jones, D. B. A.; Henze, D. K.

    2015-12-01

    Atmospheric composition is rapidly changing in response to changes in industrialization, land-use, and climate. Tropospheric ozone is at the nexus of atmospheric chemistry, air-quality, and climate as it is not only the third most important greenhouse gas and a primary air pollutant, but also affects carbon dioxide by damaging plants and the lifetime of atmospheric methane by influencing the oxidative capacity of the atmosphere. Observed trends in free-tropospheric ozone as observed by ozone-sondes and more recently by satellite measurements from the Aura TES and IASI instruments do not agree with models that are driven by observed changes in ozone pre-cursor emissions. As a consequence, estimates of ozone radiative forcing and the future trajectory of tropospheric ozone concentrations are highly uncertain. In this study, we explore the use of satellite observations of ozone and its pre-cursors for constraining the sensitivity of Northern hemispheric tropospheric ozone to anthropogenic emissions. New measurements of peroxyacetyl nitrate (PAN) from the Aura TES instrument suggest that one explanation for the model/data mismatch in trends is reduced ventilation of reactive nitrogen into the free-troposphere over Asia. Ultimately, continued well validated observation of ozone and its pre-cursors from IASI, AIRS, CRIS, and Trop-OMI will be needed to solve this critical scientific question.

  4. Information On Tropospheric Ozone From Space Borne Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O. P.; Landgraf, J.

    Tropospheric ozone retrieval from reflectance spectra is an important issue for many current and future satellite instruments.However, it is difficult to distinguish between stratospheric and tropospheric ozone on the basis of reflectance spectra only, because the reflectance is a quantity that is more sensitive to stratospheric ozone than to tro- pospheric ozone. In this paper we show that satellite measurements of the state of polarization of backscattered light contain valuable additional information on tropo- spheric ozone. The reason for this is the high sensitivity of the state of polarization to tropospheric ozone. This is because the state of polarization is most sensitive to ozone at that altitude where most scattering takes place, which is in the troposphere for wavelengths >300 nm. Retrievals performed on synthetic GOME-2 data show that the vertical resolution of the tropospheric ozone profile is significantly improved if a polarization measurement is used in addition to the reflectance spectrum. Prob- lems that are currently encountered in tropospheric ozone retrieval from reflectance spectra may be solved by using additional polarization measurements.

  5. Diagnosing changes in European tropospheric ozone: A model study of past and future changes

    NASA Astrophysics Data System (ADS)

    Tummon, Fiona; Revell, Laura; Stenke, Andrea; Staehelin, Johannes; Peter, Thomas

    2016-04-01

    In recent decades, the negative impacts of tropospheric ozone on human and ecosystem health have led to policy changes aimed at reducing emissions of ozone precursor gases such as nitrogen oxides (NOx) and carbon monoxide (CO). Although emissions of these species have significantly decreased in Europe and North America since the early 1990s, observational data indicate that free tropospheric ozone over Europe has not decreased as expected. Uncertainty remains as to how much of a role the transport of stratospheric ozone or tropospheric ozone from remote source regions has played in recent trends, as well as to how this will evolve in a changing climate. The global chemistry-climate model SOCOL (SOlar Chemistry Ozone Links) is used to investigate tropospheric ozone over Europe from 1960 to 2100. To fully disentangle the effects of both long-range transport and input from the stratosphere, simulations are run with ozone tracers from 21 different atmospheric regions. In addition to a standard reference run, several sensitivity simulations are run: one with emissions of NOx and CO held constant at 1960 levels, one with methane (CH4) held at constant 1960 levels (in addition to the NOx and CO), and a third with NOx and CO emissions from Asia fixed at 1960 levels. Results suggest that the largest contributions to European tropospheric ozone originate from the tropical and northern mid-latitude boundary layer and free troposphere. Contributions from these regions increase over the historical period (1960-2010), indicating that changes in source gas emissions have affected ozone concentrations in the European free troposphere most strongly. Contributions from these regions then decrease from 2010-2100, but remain considerably larger than input from the stratosphere, which is relatively small in all simulations throughout the entire simulated period (1960-2100). The stratospheric contribution does, however, increase slightly over the 21st century, in tandem with ozone

  6. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  7. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    chemical composition of the atmosphere including aerosols will also have an impact. For example, tropospheric OH is the 'cleaning' agent of the troposphere. While increased UV-B increases the OH concentration, increases in concentration of gases like methane, carbon monoxide and volatile organic compounds will act as sinks for OH in troposphere and hence change air quality and chemical composition in the troposphere. Also, changes in the aerosol content of the atmosphere resulting from global climate change may affect ozone photolysis rate coefficients and hence reduce or increase tropospheric ozone concentrations.

  8. Retrieval of tropospheric ozone columns from SCIAMACHY limb-nadir matching observations

    NASA Astrophysics Data System (ADS)

    Ebojie, F.; Savigny, C.; Ladstätter-Weissenmayer, A.; Bötel, S.; Weber, M.; Alexei, R.; Bovensmann, H.; Burrows, J.

    2012-04-01

    Satellite observations of tropospheric ozone are of critical importance in obtaining a global and more thorough knowledge of the phenomena affecting air quality. Tropospheric ozone has a significant adverse effect on the climate system. In the lower troposphere, during summer, it is a major constituent of photochemical smog and excess of it is toxic to the ecosystem, animal and man. It is equally known as a major oxidant and also involved in the production of other oxidants such as hydroxyl (OH) radicals. In the middle and upper troposphere, ozone acts as a greenhouse gas. The retrieval of tropospheric ozone from UV/VIS/NIR satellite spectrometer such as the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the ESA satellite Envisat is difficult because only about 10 % of the Total Ozone Column (TOC) is in the troposphere. In this analysis we present the retrieval of tropospheric ozone columns from SCIAMACHY limb-nadir matching observations. This technique is a residual approach that involves the subtraction of the stratospheric ozone columns derived from the limb observations from the total ozone columns derived from the nadir observations. The stratospheric ozone columns were derived by integrating the stratospheric ozone profiles from the tropopause, which was obtained from the re-analyses data of the European Centre for Medium-Range Weather Forecasts (ECMWF) in 1.5o x 1.5o x 91 levels based on both the thermal definition of tropopause using the WMO lapse-rate criterion as well as the potential vorticity definition of the tropopause. The total ozone columns were on the other hand retrieved using the Weighting Function DOAS algorithm (WFDOAS) at the spectral window of 326.6 - 334.5 nm. Equally of importance in our analysis is the tropospheric ozone columns derived from the ozonesondes by integrating the tropospheric ozone profiles from the bottom to the top of the troposphere, which was determined from the

  9. Ozone in the Pacific Troposphere from Ozonesonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Voemel, H.; Koshy, K.; Simon, P.; Bendura, R.; Thompson, A. M.; Logan, J. A.; Hasebe, F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Ozone vertical profile measurements obtained from ozonesondes flown at Fiji, Samoa, Tahiti and the Galapagos are used to characterize ozone in the troposphere over the tropical Pacific. There is a significant seasonal variation at each of these sites. At sites in both the eastern and western Pacific, ozone is highest at almost all levels in the troposphere during the September-November season and lowest during, March-May. There is a relative maximum at all of the sites in the mid-troposphere during all seasons of the year (the largest amounts are usually found near the tropopause). This maximum is particularly pronounced during, the September-November season. On average, throughout the troposphere at all seasons, the Galapagos has larger ozone amounts than the western Pacific sites. A trajectory climatology is used to identify the major flow regimes that are associated with the characteristic ozone behavior at various altitudes and seasons. The enhanced ozone seen in the mid-troposphere during September-November is associated with flow from the continents. In the western Pacific this flow is usually from southern Africa (although 10-day trajectories do not always reach the continent), but also may come from Australia and Indonesia. In the Galapagos the ozone peak in the mid-troposphere is seen in flow from the South American continent and particularly from northern Brazil. The time of year and flow characteristics associated with the ozone mixing ratio peaks seen in both the western and eastern Pacific suggest that these enhanced ozone values result from biomass burning. In the upper troposphere low ozone amounts are seen with flow that originates in the convective western Pacific.

  10. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie; McGregor, Glenn

    2009-01-01

    We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.

  11. The Response of Tropical Tropospheric Ozone to ENSO

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.

    2011-01-01

    We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to ENSO is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to ENSO variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation.

  12. The response of tropical tropospheric ozone to ENSO

    NASA Astrophysics Data System (ADS)

    Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.

    2011-07-01

    We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to ENSO is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to ENSO variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Niño 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation.

  13. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts

    PubMed Central

    Ebi, Kristie L.; McGregor, Glenn

    2008-01-01

    Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695

  14. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  15. AN APPROACH FOR CHARACTERIZING TROPOSPHERIC OZONE RISK TO FOREST

    EPA Science Inventory

    The risk tropospheric ozone poses to forests in the United States is dependent on the variation in ozone exposure across the distribution of the forests in question and the various environmental and climate factors predominant in the region. All these factors have a spatial natur...

  16. Discoveries about Tropospheric Ozone Pollution from Satellite and Soundings

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-red time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. Maps for 1996-2000 for the operational Earth-Probe instrument are at:. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical gradients in pollution. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (more than 2000 ozone profiles). Highly variable tropospheric ozone and a zonal wave-one pattern in tropospheric ozone suggest that dynamics is as important as pollution in determining tropical ozone distributions.

  17. Tropospheric ozone at 45 deg S

    NASA Technical Reports Server (NTRS)

    Matthews, W. Andrew

    1994-01-01

    In August of 1986 a program was initiated to measure atmospheric ozone profiles at mid-latitudes in the Southern Hemisphere by flying ECC ozonesondes on a regular basis from the DSIR Physical Sciences Atmospheric Laboratory at Lauder, New Zealand, 45 deg S. Flights since that time have been performed on a regular basis at the rate of two flights per week during the 5 month period August to December, the time of maximum variability at mid-latitudes, and once per week for the remainder of the year. These data, consisting now of more than 400 profiles has been analyzed and the free troposphere portion of the profiles binned as 1km slabs. These data have been combined to form a seasonal average values for each season of each year in 2 km slabs and the variation observed in these seasonal averages is the basis of this paper. A biennial component is apparent in these data and the lack of any increasing trend over this 5 year period is contrasted with that measured at similar latitudes in the Northern Hemisphere over the same period.

  18. Forced Planetary Waves, Stratospheric Ozone, and Critical Layers: Ingredients for the Stratospheric Forcing of the Troposphere

    NASA Astrophysics Data System (ADS)

    Nathan, T.; Cordero, E.

    2002-12-01

    Forced planetary waves generally extend throughout the troposphere and stratosphere and thus provide an important link between these two regions of the atmosphere. Because these planetary waves originate from mechanical and thermal forcing in the troposphere, planetary wave energy propagates upward into the stratosphere where momentum deposition via wave damping drives the zonal-mean stratospheric circulation. At the heart of this troposphere-stratosphere paradigm, wherein the troposphere forces the stratosphere, is the momentum deposition associated with the wave damping. Here we present striking evidence showing that the interactions between ozone and the planetary waves not only affects the wave damping rate, but the interactions also produce changes in planetary wave structure and planetary wave fluxes that radiate downward into the troposphere. Using analytical (WKB) and one-dimensional numerical modeling approaches, we show that there is a sensitive and intimate connection among the background flow, ozone, and forced planetary wave field in the stratosphere, a connection that in some cases leads to significant changes in the tropospheric wave fluxes. We find that this connection and thus the stratospheric forcing of the troposphere are dramatically strengthened if the critical level and the maximum in ozone advection are approximately coincident. Such conditions are most often met during Northern Hemisphere spring and summer. We also discuss these results in light of changes in ozone arising from natural (e.g., 11-year solar cycle) and anthropogenic (e.g., chlorofluorocarbons) perturbations.

  19. Impact of stratospheric changes on past and future tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lang, C.; Waugh, D. W.; Olsen, M. A.; Douglass, A. R.; Duncan, B. N.; Liang, Q.; Nielsen, J. E.; Oman, L. D.; Pawson, S.; Stolarski, R. S.

    2011-12-01

    A new version of the Goddard Earth Observing System chemistry-climate model (GEOS CCM) with a combined troposphere-stratospheric chemical mechanism is used to examine the impact of stratospheric changes on the evolution of tropospheric ozone. Time-slice integrations were performed for 1960, 2005 and 2100. These simulations differ in values of prescribed ozone depleting substances (ODSs), greenhouse gases (GHGs) and sea-surface temperatures (SSTs). The past decline and projected future recovery in stratospheric ozone lead that the influx of stratospheric ozone into the troposphere decreased between 1960 and 2005 and increases between 2005 and 2100. An increase in mass transport into the troposphere, due primarily to increases in GHGs and SSTs, further enhances the stratospheric contribution in the future. The net stratospheric impact in the past is the largest in the southern extratropics (10-15% decrease in tropospheric burden and surface ozone, compared to 1-3% decrease in northern hemisphere). However, for the scenario considered, the impact in the future is similar in both hemispheres (~10-15% increase in tropospheric burden).

  20. The global consequences of increasing tropospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1989-01-01

    Recent analyses of long term records of tropospheric ozone measurements in the Northern Hemisphere suggest that it is increasing at a rate of 1 to 2 percent per year. Because of this, it is argued that the amount of atmospheric warming due to increasing tropospheric ozone is comparable to, or possibly even greater than, the amount of warming due to the increase of carbon dioxide. Unlike all other climatically important trace gases, ozone is toxic, and increases in its concentration will result in serious environmental damage, as well as impairment of human health.

  1. New Insights in Tropospheric Ozone and its Variability

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerry R.; Rodriquez, Jose M.

    2011-01-01

    We have produced time-slice simulations using the Goddard Earth Observing System Version 5 (GEOS-5) coupled to a comprehensive stratospheric and tropospheric chemical mechanism. These simulations are forced with observed sea surface temperatures over the past 25 years and use constant specified surface emissions, thereby providing a measure of the dynamically controlled ozone response. We examine the model performance in simulating tropospheric ozone and its variability. Here we show targeted comparisons results from our simulations with a multi-decadal tropical tropospheric column ozone dataset obtained from satellite observations of total column ozone. We use SHADOZ ozonesondes to gain insight into the observed vertical response and compare with the simulated vertical structure. This work includes but is not limited to ENSO related variability.

  2. Tropical Tropospheric Ozone Climatology: Approaches Based on SHADOZ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Chatfield, Robert B.; Hudson, Robert D.; Andrade, Marcos; Coetzee, Geert J. R.; Posny, Francoise

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations that span the entire equatorial zone [Thompson et al., JGR, 108,8238, 2003]. The most striking features of tropospheric ozone profiles in SHADOZ are: (1) persistent longitudinal variability in tropospheric ozone profiles, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; (2) intense short-term variability triggered by changing meteorological conditions and advection of pollution. The implications of these results for profile climatologies and trends are described along with several approaches to classifying ozone profiles: 1) Seasonal means during MAM (March-April-May) and SON (September-October-November); 2) Maxima and minima, identified through correlation of TOMS-derived TTO (tropical tropospheric ozone) column depth with the sonde integrated tropospheric ozone column; and 3) Meteorological regimes, a technique that is effective in the subtropics where tropical and mid-latitude conditions alternate.

  3. Tropospheric Ozone Over the North Pacific from Ozonesdonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Voemel, H.; Chan, C. Y.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.

    2003-01-01

    As part of the TRACE-P mission, ozone vertical profile measurements were made at a number of locations in the North Pacific. At most of the sites there is also a multi-year record of ozonesonde observations. From seven locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, HI), and a site on the west coast of the U.S. (Trinidad Head, CA) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. At all of the sites there is a pronounced spring maximum through the troposphere. There are, however, differences in the timing and strength of this feature. Over Japan the northward movement of the jet during the spring and summer influences the timing of the seasonal maximum. The ozone profiles suggest that transport of ozone rich air from the stratosphere plays a strong role in the development of this maximum. During March and April at Hong Kong ozone is enhanced in a layer that extends from the lower free troposphere into the upper troposphere that likely has its origin in biomass burning in northern Southeast Asia and equatorial Africa. During the winter the Pacific subtropical sites (latitude -25N) are dominated by air with a low-latitude, marine source that gives low ozone amounts particularly in the upper troposphere. In the summer in the boundary layer at all of the sites marine air dominates and ozone amounts are generally quite low (less than 25 ppb). The exception is near large population centers (Tokyo and Taipei but not Hong Kong) where pollution events can give amounts in excess of 80 ppb. During the TRACE-P intensive campaign period (February-April 2001) tropospheric ozone amounts were rather typical of those seen in the long-term records of the stations with multi-year soundings.

  4. Tropospheric ozone over the North Pacific from ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Chan, C. Y.; VöMel, H.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.; Chen, J.-P.; Kim, J. H.; Chan, L. Y.; Chang, H.-W.

    2004-08-01

    As part of the Transport and Chemical Evolution over the Pacific (TRACE-P) mission, ozonesondes were used to make ozone vertical profile measurements at nine locations in the North Pacific. At most of the sites there is a multiyear record of observations. From locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, Hawaii), and a site on the west coast of the United States (Trinidad Head, California) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. Ozone profiles over the North Pacific generally show a prominent spring maximum throughout the troposphere. This maximum is tied to the location of the jet stream and its influence on stratosphere-troposphere exchange and the increase in photochemical ozone production through the spring. Prominent layers of enhanced ozone in the middle and upper troposphere north of about 30°N seem to be more closely tied to stratospheric intrusions while biomass burning leads to layers of enhanced ozone in the lower and upper troposphere at Hong Kong (22°N) and Taipei (25°N). The lower free tropospheric layers at Hong Kong are associated with burning in SE Asia, but the upper layer may be associated with either equatorial Northern Hemisphere burning in Africa or SE Asian biomass burning. In the boundary layer at Taipei very high mixing ratios of ozone were observed that result from pollution transport from China in the spring and local urban pollution during the summer. At the ozonesonde site near Tokyo (Tsukuba, 36°N) very large enhancements of ozone are seen in the boundary layer in the summer that are characteristic of urban air pollution. At sites in the mid and eastern Pacific the signature of transport of polluted air from Asia is not readily identifiable from the ozonesonde profile. This is likely due to the more subtle signal and the fact that from the ozone profile and

  5. Distribution of tropospheric ozone determined from satellite data

    SciTech Connect

    Fishman, J. ); Watson, C.E. ); Larsen, J.C. ); Logan, J.A. )

    1990-03-20

    An analysis of more than 22,000 ozone profiles from Stratospheric Aerosol and Gas Experiment 1 (SAGE 1) (1979-1981) and SAGE 2 (1984-1987) between 50{degree}N and 50{degree}S is used in conjunction with 9 years (1979-1987) of daily global depictions of total ozone from the Total Ozone Mapping Spectrometer (TOMS) instrument abroad Nimbus 7 to investigate the spatial distribution and seasonal cycle of the integrated amount of ozone in the troposphere. In the tropics, highest concentrations are found in the eastern Atlantic Ocean downwind (west) of Africa and maximize during the time when biomass burning is most prevalent, between July and October. A different seasonal cycle in the tropics is also observed over Indonesia where a relative maximum is present in the March-April time frame, likewise consistent with when biomass burning is most prevalent. At mid-latitudes, highest concentrations are found downwind of Asia and maximize in the summer. Relatively higher amounts of tropospheric ozone are similarly observed downwind of North America and Europe. At mid-latitudes, the ratio between the amount of tropospheric ozone in the northern hemisphere and the amount in the southern hemisphere is 1.4, in good agreement with in situ measurements. A detailed comparison of this satellite technique with available ozonesonde measurements suggests that the accuracy of this method for deriving the climatology of tropospheric ozone is probably better than 10% in the tropics and 15% at mid-latitudes. The authors also show that TOMS total ozone measurements in the tropics can often be used independently to provide important qualitative insight into the behavior of tropospheric ozone at these low latitudes.

  6. The characteristics of tropospheric ozone seasonality observed from ozone soundings at Pohang, Korea.

    PubMed

    Kim, Jae H; Lee, H J; Lee, S H

    2006-07-01

    This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.

  7. Lidar Measurements of Tropospheric Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-06-01

    This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  8. The photochemistry of synoptic-scale ozone synthesis Implications for the global tropospheric ozone budget

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Browell, E. V.; Vukovich, F. M.

    1985-01-01

    The oxidation of nonmethane hydrocarbons represents a source of tropospheric ozone that is primarily confined to the boundary layers of several highly industrialized regions. (Each region has an area greater than one million km/sq cm). Using a photochemical model, the global tropospheric ozone budget is reexamined by including the in-situ production from these localized regimes. The results from these calculations suggest that the net source due to this photochemistry, which takes place on the synoptic scale, is approximately as large as the amount calculated for global scale photochemical processes which consider only the oxidation of methane and carbon monoxide. Such a finding may have a considerable impact on our understanding of the tropospheric ozone budget. The model results for ozone show reasonable agreement with the climatological summer distribution of ozone and the oxides of nitrogen at the surface and with the vertical distribution of ozone and nonmethane hydrocarbons obtained during a 1980 field program.

  9. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-02-12

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.

  10. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    NASA Astrophysics Data System (ADS)

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-02-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.

  11. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    PubMed Central

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10–25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  12. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  13. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  14. Recent Changes in Tropospheric Ozone in the Tropics

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This paper presents a detailed characterization of tropical tropospheric column ozone variability on time scales varying from a few days to a solar cycle. The study is based on more than 20 years (1979 to the present) of tropospheric column ozone time series derived from the convective cloud differential (CCD) method using total ozone mapping spectrometer (TOMS) data. Results indicate three distinct regions in the tropics with distinctly three different zonal characteristics related to seasonal, interannual and solar variabilities. These three regions are the eastern Pacific, Atlantic, and western Pacific. Tropospheric column ozone in the Atlantic region peaks at about the same time (September-October) from 20 N to 20 S. The amplitude of the annual cycle, however, varies from about 3 to 6 Dobson unit (DU) from north to south of the equator. In comparison, the annual cycle in both the eastern and western Pacific is generally week and the phase varies from peak values in March and April in the northern hemisphere to September and October in the southern hemisphere. The interannual pattern in the three regions are also very different. The Atlantic region indicates a quasi biennial oscillation in the tropospheric column ozone which is out of phase with the stratospheric ozone. This is consistent with the photochemical control of this region caused by high pollution and high concentration of ozone producing precursors. The observed pattern, however, does not seem to be related to the interannual variability in ozone precursors related to biomass burning. Instead, it appears to be a manifestation of the UV modulation of upper tropospheric chemistry on a QBO time scale caused by stratospheric ozone. During El Nino events, there is anomalously low ozone in the eastern Pacific and high values in the western Pacific indicating the effects of convectively driven transport. The observed increase of 10-20 DU in tropospheric column ozone in the Indonesian region in the western

  15. Tropospheric ozone distributions measured with an airborne laser absorption spectrometer

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1978-01-01

    Measurements of tropospheric ozone have been made in the southern and middle California regions and over the Pacific Ocean during two series of flights in February and May 1977. The data were obtained by using a laser absorption spectrometer, a nadir-viewing instrument which remotely measures the ozone column abundance between ground level and aircraft altitude by interacting with ozone at specific wavelengths near 9.5 microns. The measurements indicate significantly lower ozone abundances above the Mojave Desert region as compared with farm, forest, and urban areas. The average tropospheric column density was found to be 0.0027 atm cm/km over the California region and 0.0035 atm cm/km over the Pacific Ocean region 1000-2000 km west of the coast of Mexico.

  16. On the role of climate variability on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2014-12-01

    The response of tropospheric ozone to changing atmospheric circulation is poorly understood owing to a lack of reliable long-term observations. There is great current interest in quantifying the extent to which observed ozone trends over recent decades at northern mid-latitude sites are driven by changes in precursor emissions versus shifts in atmospheric circulation patterns. In this talk, I present a detailed analysis of the impact of interannual to decadal climate variability on tropospheric ozone, based on observations and a suite of chemistry-climate model hindcast simulations. Decadal shifts in circulation regimes modulate long-range transport of Asian pollution, leading to very different seasonal ozone trends at Mauna Loa Observatory in the subtropical Pacific Ocean. During autumn, the flow of ozone-rich air from Eurasia towards Hawaii strengthened in the mid-1990s onwards, as a result of the positive phase of the Pacific North American pattern, increasing ozone at Mauna Loa. During spring, weakening airflow from Asia in the 2000s, tied to La-Niña-like decadal cooling in the equatorial Pacific Ocean, offsets ozone increases at Mauna Loa that otherwise would have occurred due to rising Asian emissions. The circulation-driven variability in Asian pollution over the subtropical North Pacific regions manifests mainly as changes in the mean as opposed to in transport events. At high-elevation Western U.S. sites, intrusions of stratospheric ozone deep into the troposphere during spring exert a greater influence than Asian pollution, particularly on the high tail of observed surface ozone distribution. We show that year-to-year variability in springtime high-ozone episodes measured in Western U.S. surface air is tied to known modes of climate variability, which modulate meanders in the polar frontal jet conducive to deep stratospheric ozone intrusions. Specifically, the La Niña-related increase in the frequency of deep stratospheric intrusion events plays a

  17. Ozone in the troposphere and stratosphere, part 2

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D. (Editor)

    1994-01-01

    This is the second of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  18. Ozone in the Troposphere and Stratosphere, part 1

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1994-01-01

    This is the first part of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at the Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  19. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Bojkov, B. R.; Liu, X.; Chance, K.; Del Frate, F.

    2011-11-01

    Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004-2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  20. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    NASA Astrophysics Data System (ADS)

    Liu, G.; Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeni, O.; Liu, X.; Sioris, C. E.

    2013-05-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically-based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal averages provides a global view of tropospheric ozone trends, which appear to be surprisingly modest over the last four decades.

  1. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  2. Influence of Chlorine Emissions on Ozone Levels in the Troposphere

    EPA Science Inventory

    Chlorine emissions from cooling towers are emitted mainly as hypochlous acid, not as molecular chlorine. Chlorine emissions from cooling towers in electric utilities in the U.S. are estimated to be 4,400 tons per year. Molecular chlorine increases more tropospheric ozone than hyp...

  3. Insights into Tropical Tropospheric Ozone from the SHADOZ Network

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Schmidlin, F. J.; Oltmans, S. J.

    2002-01-01

    The first view of lower stratospheric and upper tropospheric structure from sondes is provided by a 3-year, 10-site record from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network: http://code9 16.gsfc.nasa.gov/Data_services/shadoz. Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; La Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Taking the UT/LS (upper troposphere-lower stratosphere) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to- week and seasonal basis. The tropopause is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern (referring to ozone mixing ratios greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean), persists all year. The wave, predominantly in the troposphere and with variable magnitude, appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection - most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.

  4. Spatial distribution of tropospheric ozone in western Washington, USA

    USGS Publications Warehouse

    Cooper, S.M.; Peterson, D.L.

    2000-01-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.

  5. Spatial distribution of tropospheric ozone in western Washington, USA.

    PubMed

    Cooper, S M; Peterson, D L

    2000-03-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area approximately 6000 km(2)), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55-67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk. PMID:15092980

  6. Impact of Stratospheric Ozone Distribution on Features of Tropospheric Circulation

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2016-04-01

    In this work we study connections between stratospheric ozone distribution and general circulation patterns in the troposphere and aim to investigate the causal relationship between them, including the practical side of the influence of stratospheric ozone on tropospheric medium-range weather and regional climate. Analysis of several decades of observational data, which has been performed at the A.I. Voeikov Main Geophysical Observatory, suggests a clear relation between the stratospheric ozone distribution, upper stratospheric temperature field and planetary-scale air-masses boundaries in the troposphere [1]. Furthermore, it has been shown that each global air-mass, which can be attributed to the corresponding circulation cell in a conceptual model of tropospheric general circulation, has a distinct "regime" of ozone vertical distribution in the stratosphere [1-3]. Proceeding from atmospheric reanalyses combined with satellite and ground-based observations, we study time evolution of the upper-level frontal zones (stationary fronts) with the relevant jet streams, which can be treated as boundaries of global air-masses, in connection with the tropopause height and distribution of ozone in the stratosphere. For that, we develop an algorithm for automated identification of jet streams, stationary fronts and tropopause surface from gridded data (reanalyses or modelling results), and apply it for several cases associated with rapid changes in the stratospheric temperature and ozone fields, including SSW events over Eastern Siberia. Aiming to study the causal relationship between the features of tropospheric circulation and changes in the stratospheric ozone field, we estimate the time lag between these categories of processes on different time scales. Finally, we discuss the possibility to use the elementary circulation mechanisms classification (by B.L. Dzerdzeevski) in connection with analysis of the stratospheric ozone field and the relevant stratosphere-troposphere

  7. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    NASA Astrophysics Data System (ADS)

    Liu, G.; Liu, J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeini, O.; Liu, X.; Sioris, C. E.; Osman, M.

    2013-11-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1965 are used. The small number of stations results in a sparse geographical distribution. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal and annual averages can provide a global view of tropospheric ozone changes, although uncertainties with regard to the performance of older sonde types, as well as more recent variations in operating procedures, need to be taken into account.

  8. Differential absorption lidar system for routine monitoring of tropospheric ozone.

    PubMed

    Sunesson, J A; Apituley, A; Swart, D P

    1994-10-20

    A differential absorption lidar system for routine profiling of tropospheric ozone for daytime and nighttime operation is described. The system uses stimulated Raman scattering in hydrogen and deuterium of 266-nm radiation from a quadrupled Nd:YAG laser. Ozone profiles from altitudes of 600 m to approximately 5 km have been obtained with analog detection. Implementing corrections for differential Rayleigh scattering, differential absorption from oxygen, sulphur dioxide, and nitrogen dioxide, and differential aerosol extinction and backscatter can reduce the total system inaccuracy to 5-15% for a clear day and 20-30% for a hazy day, except at the top of the mixed layer. Photon counting must be installed to increase the measurement range from 5 to 15 km. An example of an application of routine measurements of tropospheric ozone profiles is given.

  9. An improved tropospheric ozone database retrieved from SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Rozanov, Alexei; Ladstätter-Weißenmayer, Annette; Ebojie, Felix; Rahpoe, Nabiz; Bötel, Stefan; Burrows, John

    2015-04-01

    Tropospheric ozone is one of the most important green-house gases and the main component of photochemical smog. It is either transported from the stratosphere or photochemically produced during pollution events in the troposphere that threaten the respiratory system. To investigate sources, transport mechanisms of tropospheric ozone in a global view, limb nadir matching (LNM) technique applied with SCIAMACHY instrument is used to retrieve tropospheric ozone. With the fact that 90% ozone is located in the stratosphere and only about 10% can be observed in the troposphere, the usage of satellite data requires highly qualified nadir and limb data. In this study we show an improvement of SCIAMACHY limb data as well as its influence on tropospheric ozone results. The limb nadir matching technique is also refined to increase the quality of the tropospheric ozone. The results are validated with ozone sonde measurements.

  10. Tropospheric Bromine Chemistry: Implications for Present and Pre-industrial Ozone and Mercury

    NASA Technical Reports Server (NTRS)

    Parella, J. P.; Jacob, D. J.; Liang, Q.; Zhang, Y.; Mickley, L. J.; Miller, B.; Evans, M. J.; Yang, X.; Pyle, J. A.; Theys, N.; VanRoozendael, M.

    2012-01-01

    We present a new model for the global tropospheric chemistry of inorganic bromine (Bry) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by <1-8 nmol/mol (6.5% globally), with the largest effects in the northern extratropics in spring. The global mean tropospheric OH concentration decreases by 4 %. Inclusion of bromine chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT) to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.

  11. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  12. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation

    NASA Astrophysics Data System (ADS)

    Miles, G. M.; Siddans, R.; Kerridge, B. J.; Latter, B. G.; Richards, N. A. D.

    2015-01-01

    This paper describes and assesses the performance of the RAL (Rutherford Appleton Laboratory) ozone profile retrieval scheme for the Global Ozone Monitoring Experiment 2 (GOME-2) with a focus on tropospheric ozone. Developments to the scheme since its application to GOME-1 measurements are outlined. These include the approaches developed to account sufficiently for UV radiometric degradation in the Hartley band and for inadequacies in knowledge of instrumental parameters in the Huggins bands to achieve the high-precision spectral fit required to extract information on tropospheric ozone. The assessment includes a validation against ozonesondes (sondes) sampled worldwide over 2 years (2007-2008). Standard deviations of the ensemble with respect to the sondes are considerably lower for the retrieved profiles than for the a priori, with the exception of the lowest subcolumn. Once retrieval vertical smoothing (averaging kernels) has been applied to the sonde profiles there is a retrieval bias of 6% (1.5 DU) in the lower troposphere, with smaller biases in the subcolumns above. The bias in the troposphere varies with latitude. The retrieval underestimates lower tropospheric ozone in the Southern Hemisphere (SH) (15-20% or ~ 1-3 DU) and overestimates it in the Northern Hemisphere (NH) (10% or 2 DU). The ability of the retrieval to reflect the geographical distribution of lower tropospheric ozone, globally (rather than just ozonesonde launch sites) is demonstrated by comparison with the chemistry transport model TOMCAT. For a monthly mean of cloud-cleared GOME-2 pixels, a correlation of 0.66 is found between the retrieval and TOMCAT sampled accordingly, with a bias of 0.7 Dobson Units. GOME-2 estimates higher concentrations in NH pollution centres but lower ozone in the Southern Ocean and South Pacific, which is consistent with the comparison to ozonesondes.

  13. Influence of Deep Convection On The Introduction of Ozone Into The Troposphere(stratosphere-troposphere Exchange).

    NASA Astrophysics Data System (ADS)

    Réchou, A.; Baray, J. L.; Baldy, S.

    Deep convection is very important in the tropics for its contribution to radiation, chemistry and transport. Baray et al.(1999) found a layer rich in ozone in the upper troposphere during the passage of the cyclone Marlene. Because of the season, this layer can't be explain by the inf luence of the biomass burning in Africa or in Madagascar. Neither, it can't be explain by the jet streak which was absent that day. Only the presence of the cyclone Marlene, which was far away from Reunion Island(55°E, 21°S), can explain this phenomenon. Downward motion from the stratosphere near the periphery of the cyclone can introduce such ozone levels. In analysing 8 years of data, we have found that this phenomenon is not isolated during the passage of cyclone. To advance our knowledge about the effects of the deep convection(not only the cyclones) on the injection of ozone into the troposphere, we will present results data from an experiment to be performed during February to March 2002. During this period, tropospheric and stratospheric Ozone and Rayleigh lidars will be operated. In conjunction with the lidar measurements, 10 PTU-O3 radiosondes will be lauched as the ITCZ approaches Reunion Island.The position of the ITCZ will be analysed by satellites NOAA - AVHRR data.

  14. Effects of stratospheric ozone recovery on tropospheric chemistry and air quality

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Wang, Y.

    2013-08-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increases by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  15. Impacts of Stratospheric Ozone Change on Tropospheric Chemistry and Air Quality

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zhang, H.

    2013-05-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its Amendments and Adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increased by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  16. Urban greening impacts on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Grote, R.; Churkina, G.; Butler, T. M.; Morfopoulos, C.

    2013-12-01

    Cities are characterized by elevated air temperatures as well as high anthropogenic emissions of air pollutants. Cities' greening in form of urban parks, street trees, and vegetation on roofs and walls of buildings is supposed to generally mitigate negative impacts on human health and well-being. However, high emissions of biogenic volatile organic compounds (BVOC) from certain popular urban plants in combination with the elevated concentrations of NOx have the potential to increase ground-level ozone concentrations - with negative impacts on health, agriculture, and climate. Policies targeting reduction of ground-level ozone in urban and suburban areas therefore must consider limiting BVOC emissions along with measures for decreasing NOx and VOC from anthropogenic sources. For this, integrated climate/ chemistry models are needed that take into account the species-specific physiological responses of urban plants which in turn drive their emission behavior. Current models of urban climate and air quality 1) do not account for the feedback between ozone concentrations, productivity, and BVOC emission and 2) do not distinguish different physiological properties of urban tree species. Instead environmental factors such as light, temperature, carbon dioxide, and water supply are applied disregarding interactions between such influences. Thus we may not yet be able to represent the impacts of air pollution under multiple changed conditions such as climate change, altered anthropogenic emission patterns, and new urban structures. We present here the implementation of the new BVOC emission model (Morfopolous et al., in press) that derives BVOC emissions directly from the electron production potential and consumption from photosynthesis calculation that is already supplied by the CLM land surface model. The new approach has the advantage that many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology. We

  17. Creating a Satellite-Based Record of Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Payne, Vivienne H.; Kulawik, Susan S.; Eldering, Annmarie; Worden, John; Edwards, David P.; Francis, Gene L.; Worden, Helen M.

    2013-01-01

    The TES retrieval algorithm has been applied to IASI radiances. We compare the retrieved ozone profiles with ozone sonde profiles for mid-latitudes for the year 2008. We find a positive bias in the IASI ozone profiles in the UTLS region of up to 22 %. The spatial coverage of the IASI instrument allows sampling of effectively the same air mass with several IASI scenes simultaneously. Comparisons of the root-mean-square of an ensemble of IASI profiles to theoretical errors indicate that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. The total degrees of freedom for signal of the retrieval for ozone are 3.1 +/- 0.2 and the tropospheric degrees of freedom are 1.0 +/- 0.2 for the described cases. IASI ozone profiles agree within the error bars with coincident ozone profiles derived from a TES stare sequence for the ozone sonde station at Bratt's Lake (50.2 deg N, 104.7 deg W).

  18. Seasonal Variability in Tropospheric Ozone Distribution Over Qatar

    NASA Astrophysics Data System (ADS)

    Ayoub, Mohammed; Ackermann, Luis

    2015-04-01

    We report on the vertical distribution and seasonal variability in tropospheric ozone over the Middle East through one year of weekly ozonesondes launched from Doha, Qatar during 2014. A total of 49 2Z-V7 DMT/EN-SCI Electrochemical Concentration Cell (ECC) ozonesondes employing a 1% buffered potassium iodide solution (KI), coupled with iMet-1-RS GPS radiosondes were launched around 1300 local time. The authors used the SkySonde telemetry software (developed by CIRES and NOAA/ESRL) and developed robust in-house data quality assurance and validation methodologies. The average height of the thermal tropopause is between 15-17.5 km (125-85 hPa). Monthly average relative humidity around the tropopause shows an enhancement during the months of June through the beginning of October. Monthly average temperature profiles show the development of the subtropical subsidence inversion around 5-6 km (450-520 hPa) between the months of April through October. The subsidence inversion is strongest during the months of June and July and is accompanied by a sharp drop in relative humidity over a 100-300 m in the vertical. The monthly average ozone background concentration between the Planetary Boundary Layer (PBL) height and the subsidence inversion increases from 50 ppb in the winter to almost 80 ppb in the summer months. An enhancement of up to 50% in the average ozone in the mid-to-upper troposphere (above the subsidence inversion) is strongest during the summer months (June through September) and results in average concentrations between 80-100 ppb. In the upper troposphere (above 13 km/200 hPa) ozone concentrations are highest during the spring and summer months. This is coupled with a drop in the average height of the tropopause. HYSPLIT back-trajectory analysis shows the enhancement in mid-to-upper tropospheric ozone in the summer is due to persistent high pressure over the Middle East between the months of June through September. Evidence of Stratosphere-Troposphere Exchange

  19. Distribution of total ozone and stratospheric ozone in the tropics - Implications for the distribution of tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Larsen, Jack C.

    1987-01-01

    Climatologies of total columnar ozone and integrated stratospheric ozone amounts at low latitudes (15 deg N to 15 deg S), derived from satellite observations, are presented. A significant longitudinal variability in total ozone is present, with highest values generally located between 60 deg W and 60 deg E. The integrated stratospheric component of total ozone, on the other hand, does not exhibit a longitudinal preference for high values. Therefore it is hypothesized that the climatological longitudinal distribution of total ozone reflects the variability of the abundance of tropospheric ozone at low latitudes. Furthermore, it is speculated that in situ photochemical production of ozone resulting from biomass burning may be responsible for the observed enhancement of total ozone at these longitudes.

  20. Trace Tropospheric Species Sensing-Fabry-Perot Interferometer (TTSS-FPI): spaceborne sensor concept studies for measuring tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Hastings, C. T.; Chrien, Thomas; Larar, Allen M.; Cook, William B.; Mills, Carl S.; Flood, Michael A.; Skinner, Wilbert R.

    2005-01-01

    We present results of studies of instrument concepts for a spaceborne imaging Fabry-Perot interferometer to measure tropospheric ozone. Ozone is recognized as one of the most important trace constituents of the troposphere. Tropospheric ozone is responsible for acute and chronic human health problems and contributes toward destruction of plant and animal populations. Furthermore, it is a greenhouse gas and contributes toward radiative forcing and climate change. Tropospheric ozone levels have been increasing and will continue to do so as concentrations of precursor gases (oxides of nitrogen, methane, and other hydrocarbons) necessary for the photochemical formation of tropospheric ozone continue to rise. Space-based detection and monitoring of tropospheric ozone is critical for enhancing scientific understanding of creation and transport of this important trace gas and for providing data needed to help develop strategies for mitigating impacts of exposure to elevated concentrations of tropospheric ozone. Measurement concept details are discussed in a companion paper by Larar et al. Development of an airborne prototype instrument for this application is discussed by Cook et al. in another companion paper.

  1. Factors controlling global tropospheric ozone: roles of isoprene chemistry, tropospheric halogen chemistry, convection, and lightning NOx sources

    NASA Astrophysics Data System (ADS)

    Hu, L.; Jacob, D. J.; Zhang, Y.; Liu, X.; Zhang, L.

    2015-12-01

    Ozone is central to our understanding of tropospheric oxidant chemistry through its driving of radical cycles. Yet our understanding of factors determining its spatial distribution and long-term trend is still poor. In this work, we use the GEOS-Chem chemical transport model as a platform to test our current knowledge of key factors controlling tropospheric ozone. We evaluate the most recent GEOS-Chem simulation against in-situ data using ozonesonde networks from WOUDC and NOAA-GMD and using aircraft observations from MOZAIC/IAGOS, to examine the vertical distribution of modeled tropospheric ozone. Satellite observed ozone data from OMI (Ozone Monitoring Instrument) are used to assess the spatial distribution of the predicted ozone concentrations. We also examine different versions of GEOS-Chem outputs from historical benchmarks and from sensitivity runs (such as changing in chemistry and meteorological fields) for their capabilities to reproduce observed tropospheric ozone patterns. In this presentation, we interpret these analyses in terms of present understanding in isoprene chemistry, tropospheric bromine chemistry, lightning NOx sources and deep convection, and examine their implications for key model processes controlling the abundance and variability of global tropospheric ozone.

  2. Role of ozone precursors in tropospheric ozone formation and control: A report to Congress

    SciTech Connect

    Not Available

    1993-07-01

    Tropospheric ozone pollution, which occurs at ground level and is the major component of ground-level summertime smog, remains an important environmental and health concern despite nearly 20 years of regulatory efforts. Ozone is a secondary pollutant formed in the atmosphere by reactions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx) in the presence of sunlight. Carbon monoxide (CO) also plays a role in the formation of ozone. Major sources of VOCs include exhaust and evaporative emissions from motor vehicles, emissions from solvent use and emissions from the chemical and petroleum industries. The following EPA perspectives identify two key components (strategy selection; modeling and data bases) which must be addressed in resolving the tropospheric ozone problem.

  3. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  4. Direct measurements of tropospheric ozone from TOMS data

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1993-01-01

    In the past year, we have made measurements of the tropospheric total column of ozone during the biomass burning season in Africa (August to October). Fishman et. al. had reported previously that by taking a time average of the low spatial resolution data from TOMS (Total Ozone Mapping Spectrometer) on Nimbus-7 (referred to as the Grid-T data set), during the biomass burning season in Africa, a plume of ozone extends from the East coast of Africa into the Atlantic. In this report, we present an analysis that we have made using the measured TOMS radiances taken from the High Density TOMS data set (referred as the HDT data set), which examines this plume in more detail.

  5. Tropospheric ozone production regions and the intercontinental origins of surface ozone over Europe

    NASA Astrophysics Data System (ADS)

    Derwent, Richard G.; Utembe, Steven R.; Jenkin, Michael E.; Shallcross, Dudley E.

    2015-07-01

    Ozone tagged labelling schemes have been implemented in a global Lagrangian chemistry-transport model to identify the intercontinental origins of surface ozone in Europe. Stratosphere-troposphere exchange gave rise to between 3 and 5 ppb across Europe, whereas the mid-latitudes of the Middle East, Asia and the Pacific Ocean region contributed 6-8 ppb. Surface ozone levels of 10-16 ppb were associated with the mid-latitudes of North America and the North Atlantic Ocean regions. Appreciable intercontinental ozone production occurred downwind of continental regions and above the surface layer. Intercontinental ozone formation and transport from tropical regions contributed about 4 ppb and was much less efficient compared with that from mid-latitudes. There were approaching 60 chemical processes driving intercontinental ozone formation, of which the HO2 + NO, CH3O2 + NO and CH3COO2 + NO reactions were the most important. Ozone production appeared to be driven by OH oxidation of secondary reaction products rather than the oxidation of primary emitted VOCs. The largest intercontinental ozone contributions amounted to about 20 ppb from North America to European baseline stations, 14 ppb from Asia to North American baseline stations and 10 ppb from Asia to European baseline stations. It is possible that changing intercontinental ozone production and transport could have led to seasonal ozone trends and shifts in seasonal cycles at northern hemisphere mid-latitude baseline ozone monitoring stations.

  6. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    NASA Astrophysics Data System (ADS)

    Koo, J.-H.; Wang, Y.; Kurosu, T. P.; Chance, K.; Rozanov, A.; Richter, A.; Oltmans, S. J.; Thompson, A. M.; Hair, J. W.; Fenn, M. A.; Weinheimer, A. J.; Ryerson, T. B.; Solberg, S.; Huey, L. G.; Liao, J.; Dibb, J. E.; Neuman, J. A.; Nowak, J. B.; Pierce, R. B.; Natarajan, M.; Al-Saadi, J.

    2012-07-01

    Arctic ozone depletion events (ODEs) are due to catalytic ozone loss driven by halogen chemistry. The presence of ODEs is affected not only by in situ chemistry but also by transport including advection of ozone-poor air mass and vertical mixing. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) experiments (April 2008). Tropospheric BrO columns retrieved from satellite measurements and back trajectories calculations are used to investigate the characteristics of observed ODEs. The implications of the analysis results for the validation of the retrieval of tropospheric column BrO are also discussed. Time-lagged correlation analysis between in situ (surface and ozonesonde) measurements of ozone and satellite derived tropospheric BrO indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (~1 day) transport from nearby regions with ozone depletion. The effect of in situ halogen-driven loss is also evident in the diurnal variation of surface ozone concentrations at Alert, Canada. High-BrO regions revealed by satellite measurements tend to be collocated with first-year sea ice, particularly over the Chukchi Sea. Aircraft observations indicate low-ozone air mass transported from these high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1-2 km) at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free tropospheric BrO through convective transport and explain the significant negative correlation between free tropospheric ozone and tropospheric BrO column

  7. Effects of 1997-1998 El Nino on Tropospheric Ozone and Water Vapor

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Min, W.; Read, W. G.

    1998-01-01

    This paper analyzes the impact of the 1997-1998 El Nino on tropospheric column ozone and tropospheric water vapor derived respectively from the Total Ozone Mapping Spectrometer (TOMS) on Earth Probe and the Microwave Limb Scanning instrument on the Upper Atmosphere Research Satellite. The 1997-1998 El Nino, characterized by an anomalous increase in sea-surface temperature (SST) across the eastern and central tropical Pacific Ocean, is one of the strongest El Nino Southern Oscillation (ENSO) events of the century, comparable in magnitude to the 1982-1983 episode. The major impact of the SST change has been the shift in the convection pattern from the western to the eastern Pacific affecting the response of rain-producing cumulonimbus. As a result, there has been a significant increase in rainfall over the eastern Pacific and a decrease over the western Pacific and Indonesia. The dryness in the Indonesian region has contributed to large-scale burning by uncontrolled wildfires in the tropical rainforests of Sumatra and Borneo. Our study shows that tropospheric column ozone decreased by 4-8 Dobson units (DU) in the eastern Pacific and increased by about 10-20 DU in the western Pacific largely as a result of the eastward shift of the tropical convective activity as inferred from National Oceanic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR) data. The effect of this shift is also evident in the upper tropospheric water vapor mixing ratio which varies inversely as ozone (O3). These conclusions are qualitatively consistent with the changes in atmospheric circulation derived from zonal and vertical wind data obtained from the Goddard Earth Observing System data assimilation analyses. The changes in tropospheric column O3 during the course of the 1997-1998 El Nino appear to be caused by a combination of large-scale circulation processes associated with the shift in the tropical convection pattern and surface/boundary layer processes associated with

  8. Tropical Tropospheric Ozone and Smoke Interactions: Satellite Observations During the 1997 Indonesian Fires

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Herman, J. R.; Hudson, R. D.; Frolov, A. D.; Kochhar, A. K.; Fujiwara, M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Biomass burning generates hydrocarbons, nitrogen oxides and carbon monoxide that lead to tropospheric ozone pollution. Other combustion products form soot and various aerosol particles that make up smoke. Since early 1997 smoke and tropospheric ozone have been monitored in real-time from TOMS (Total Ozone Mapping Spectrometer) at toms.gsfc.nasa.gov (smoke aerosol) and metosrv2.umd.edu/-tropo (tropospheric ozone). The striking increase in smoke and tropospheric ozone observed during the 1997 Indonesian fires was the first extreme episode observed. During the August-November period, plumes of excess ozone and smoke coincided at times but were decoupled at other times, a phenomenon followed with trajectories. Thus, trans-boundary evolution of smoke and ozone differed greatly. The second discovery of the 1997 TOMS record was a dynamical interaction of ozone with the strong El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) that led to a jump in tropospheric ozone in March 1997 over the entire Indian Ocean, well ahead of the intense burning period. A climatology of smoke and tropospheric ozone from a 1980's TOMS instrument shows offsets in the timing of these pollutants - further evidence that factors other than biomass burning exert a strong influence on tropical tropospheric ozone.

  9. Effects of the 2004 El Nino on Tropospheric Ozone and Water Vapor

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Schoeberl, M. R.; Froidevaux, L.; Read, W. G.; Levelt, P. F.; Bhartia, P. K.

    2007-01-01

    The global effects of the 2004 El Nino on tropospheric ozone and H2O based on Aura OM1 and MLS measurements are analyzed. Although it was a weak El Nino from a historical perspective, it produced significant changes in these parameters in tropical latitudes. Tropospheric ozone increased by 10-20% over most of the western Pacific region and decreased by about the same amount over the eastern Pacific region. H2O in the upper troposphere showed similar changes but with opposite sign. These zonal changes in tropospheric ozone and H2O are caused by the eastward shift in the Walker circulation in the tropical pacific region during El Nino. For the 2004 El Nino, biomass burning did not have a significant effect on the ozone budget in the troposphere unlike the 1997 El Nino. Zonally averaged tropospheric column ozone did not change significantly either globally or over the tropical and subtropical latitudes.

  10. Ozone and aerosol distributions in the summertime troposphere over Canada

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Fenn, M. A.; Butler, C. F.; Grant, W. B.; Harriss, R. C.; Shipham, M. C.

    1994-01-01

    Measurements of ozone (O3) and aerosol distributions were made with an airborne lidar system in the lowland and boreal forest regions of eastern Canada during July - August 1990 as part of the NASA Global Tropospheric Experiment/Arctic Boundary Layer Expedition (ABLE) 3B. Aerosol and O3 profiles were measured simultaneously above and below the Electra aircraft from near the surface to above the tropopause on long-range flights over these important ecosystems. A broad range of atmospheric conditions were encountered during repeated flights over intensive study sites in the Hudson Bay lowlands near Moosonee, Ontario, and over the boreal forest near Schefferville, Quebec. The tropospheric composition in this high-latitude region was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were correlated with descending air from the lower stratosphere. Over 33% of the troposphere (0-12 km) along our flight track at latitudes from about 45 deg to 55 deg N had significantly enhanced O3 due to stratospheric intrusions, and in the middle to upper troposphere the extent of the enhanced O3 gnerally exceeded 40%. Ozone mixing ratios of 80 parts per billion by volume (ppbv) near 6 km were common in strong intrusions. In the boundary layer over the lowlands, O3 was in the 20-30 ppbv range with a vertical O3 gradient of 6.7 ppbv/km to about 45 ppbv at 3 km. Above 6 km the background tropospheric O3 profile was nearly constant with an average value of 53 ppbv. Due to forest fires in Canada and Alaska, plumes from biomass-burning sources were observed on many flights. Biomass-burning plumes influenced about 25% of the free troposphere below 4 km, and in some of the plumes, O3 was enhanced by 10-20 ppbv over ambient levels of 30-45 ppbv. Several air masses transported from the tropical Pacific were observed over Canada in the middle to upper troposphere with O3 levels 10-20 ppbv below background values of 50

  11. Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.

    2003-01-01

    Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.

  12. Stratospheric-Tropospheric Interaction and the 2002 Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2003-01-01

    The 2002 ozone hole was remarkable for its small size and early break-up. This small size resulted from a series of wave events over the course of the 2002 winter. The major event of the 2002 winter was the major warming in late September 2002. This warming resulted from an extremely strong wave event that propagated out of the troposphere, reversed the zonal mean flow, and warmed the polar vortex. This late-September event was the culmination of a series of large wave events which occurred over the course of the 2002 winter. These waves collectively warmed the vortex and decelerated the stratospheric flow. In this talk, we will trace the origin of these wave events, and we will also analyze the feedback of the large disruption of the stratospheric flow on the troposphere.

  13. Effects of tropospheric ozone on methane and carbon dioxide fluxes from peatland mesocosms

    NASA Astrophysics Data System (ADS)

    Toet, Sylvia; Oliver, Vikki; Helgason, Thorunn; Peacock, Simon; Barnes, Jeremy; Ineson, Phil; Ashmore, Mike

    2010-05-01

    Tropospheric ozone is currently the third most important greenhouse gas, and also the most important gaseous air pollutant globally in terms of effects on vegetation world-wide. At present levels it poses a significant threat to crop yield and forest productivity of sensitive species, while background ozone concentrations are expected to increase further during the next decades. The potential importance of ozone in reducing carbon assimilation, and consequently in increasing atmospheric carbon dioxide concentrations, has been recognised. However, regional modelling studies are based on the impact of ozone on photosynthetic rates and above-ground growth, and do not consider effects of ozone on belowground carbon fluxes. The limited experimental data on the long-term effects of ozone on belowground carbon processes, mainly from arable crop and forest systems, are a major constraint to understanding the impacts of ozone on global carbon fluxes. Very little attention has been paid to ozone effects on peatland carbon dynamics, though northern peatlands store a third of the global soil organic carbon pool and are an important source of atmospheric methane. The aims of this study were to assess the long-term effects of elevated ozone on carbon dioxide and methane fluxes in temperate peatland mesocosms and to identify underlying plant, soil and microbial processes. Mesocosms from a wet heath (Isle of Skye, UK) with vegetation dominated by the peat moss Sphagnum papillosum and the sedge Schoenus nigricans have been exposed to ambient (control) and three elevated levels of ozone in open-top chambers from May 2008. Methane emission, carbon dioxide fluxes and relevant plant and soil variables were measured every 6 weeks (growing season) or 8 weeks (winter). Methane emissions were significantly reduced by elevated ozone over the first 18 months of the experiment. Ecosystem respiration only showed a significant increase in response to ozone in the second growing season, while

  14. Long-term observations of tropospheric ozone: GAW Measurement Guidelines

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Galbally, Ian E.; Schultz, Martin G.

    2013-04-01

    The Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) coordinates long-term observations of the chemical composition and physical properties of the atmosphere which are relevant for understanding of atmospheric chemistry and climate change. Atmospheric observations of reactive gases (tropospheric ozone, carbon monoxide, volatile organic compounds and nitrogen oxides) coordinated by the GAW Programme complement local and regional scale air quality monitoring efforts. As part of the GAW quality assurance (QA) system detailed measurement guidelines for atmospheric trace species are developed by international expert teams at irregular intervals. The most recent report focuses on continuous in-situ measurements of ozone in the troposphere, performed in particular at continental or island sites with altitudes ranging from sea level to mountain tops. Data Quality Objectives (DQOs) are defined for different applications of the data (e.g. trend analysis and verification of global model forecasts). These DQOs include a thorough discussion of the tolerable level of measurement uncertainty and data completeness. The guidelines present the best practices and practical arrangements adopted by the GAW Programme in order to enable the GAW station network to approach or achieve the defined tropospheric ozone DQOs. The document includes information on the selection of station and measurement locations, required skills and training of staff, recommendations on the measurement technique and the necessary equipment to perform highest quality measurements, rules for conducting the measurements, preparing the data and archiving them, and more. Much emphasis is given to discussions about how to ensure the quality of the data through tracing calibrations back to primary standards, proper calibration and data analysis, etc. In the GAW Programme the QA system is implemented through Central Facilities (Central Calibration Laboratories, World and Regional

  15. Development of a portable instrument to measure ozone production rates in the troposphere

    NASA Astrophysics Data System (ADS)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  16. Bayesian spatial models: Applications for tropospheric ozone data

    NASA Astrophysics Data System (ADS)

    Menezes, Kim Anne

    1999-12-01

    This research addresses issues pertaining to trend estimation in tropospheric ozone data as well as estimation of the spatial correlation structure of these data collected at multiple monitoring sites. Assessing long-term trends in tropospheric ozone data is imperative because of its adverse effect on human health and on agricultural crops. Moreover, we also estimate the spatial correlation structure of such data, which is essential for spatial trend estimation, spatial prediction and for redesigning an existing network of stations. The U.S. Environmental Protection Agency's (EPA) National Ambient Air Quality Standard for ozone is stated in terms of exceedances of a specified threshold level. Therefore, the EPA is concerned with the long-term trend in the probability of an exceedance. In the first part of my dissertation we build a multivariate nonparametric probit regression model estimated within a hierarchical Bayes framework to model the probability of an exceedance after allowing for the effects of changing meteorological conditions. There are three advantages to using this model. First, the trends estimated at each site in a region can be separated into a city-wide component that is common to all sites, and a site-specific component that is unique to the individual site. Second, the hierarchical Bayes framework allows for the ``borrowing of strength'' from data collected at other monitoring sites to increase the information available regarding the trend at each individual site. Third, the nonparametric model does not require the a priori specification of the functional forms relating the probability of an exceedance to the meteorological variables. Ozone data from four Houston monitoring sites for the period 1981-1997 are analyzed. In the second part we provide a penalized likelihood approach to estimating the spatial correlation structure when the assumptions of stationarity and isotropy are violated. The spatial correlation structure under these

  17. Tropospheric response to an 'ozone depletion'-like polar stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Sun, L.; Chen, G.; Robinson, W. A.

    2013-12-01

    By following the setup of Kushner and Polvani (2006) in a simplified dynamical model, we add a polar stratospheric cooling in the springtime to mimic the ozone depletion, and try to investigate the role of polar vortex breakdown, also known as stratospheric final warming (SFW), in the tropospheric response to stratospheric changes. Overall, the circulation anomaly associated with such cooling bears a remarkable resemblance to the Southern Hemisphere climate trends due to ozone depletion, including poleward shift of the tropospheric jet and poleward expansion of the Hadley cell. We then categorize the 80 members into those SFWs are delayed, and those SFWs are not, and calculate the response separately. The response for the years in which SFWs are delayed are very similar to the total one, while the stratosphere is only characterized by the localized cooling for those years in which SFWs are not delayed, without any clear downward influence. This suggests that ozone depletion affects the Southern Hemisphere climate through delaying the SFWs. We also find that interannual variability in the stratospheric and tropospheric circulation can be organized by the timing of SFWs, similar to the observed climate trends.

  18. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    NASA Astrophysics Data System (ADS)

    Koo, J.-H.; Wang, Y.; Kurosu, T. P.; Chance, K.; Rozanov, A.; Richter, A.; Oltmans, S. J.; Thompson, A. M.; Hair, J. W.; Fenn, M. A.; Weinheimer, A. J.; Ryerson, T. B.; Solberg, S.; Huey, L. G.; Liao, J.; Dibb, J. E.; Neuman, J. A.; Nowak, J. B.; Pierce, R. B.; Natarajan, M.; Al-Saadi, J.

    2012-10-01

    Arctic ozone depletion events (ODEs) are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC), and the Arctic Intensive Ozonesonde Network Study (ARCIONS) experiments (April 2008). Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2) measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde) measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day) transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles) and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone with

  19. Summertime tropospheric ozone distributions over central and eastern Canada

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Gregory, G. L.; Barrick, J. D.; Collins, J. E., Jr.; Sachse, G. W.; Shipham, M. C.; Hudgins, C. H.

    1994-01-01

    Ozone measurements were obtained between the surface and the 6-km altitude on aircraft flights over central and eastern Canada during the summer 1990 NASA Global Tropospheric Experiment Arctic Boundary Layer Expedition (GTE/ABLE 3B). Tropospheric O3 budgets for these regions were observed to be highly variable and significantly impacted by long-range transport and regional scale air mass modification processes. For example, integrated O3 abundance below 5-km altitude averaged 40% and 30% greater in air masses influenced by anthropogenic sources and biomass burning, respectively, than in background (polar) air. Conversely, aged air transported from subtropical areas of the Pacific at times reduced O3 abundance in this height interval by up to 20%. Though intrusion of anthropogenic air was infrequent during the experiment period, the influence of biomass-burning emissions was particularly notable as two thirds of the flights sampled air influenced by plumes from fires burning in Alaska and western Canada. The impinging pollution, both natural and anthropogenic, not only elevated O3 levels directly but also was a source of reactive nitrogen (and nonmethane hydrocarbons) which generally increases the tropospheric lifetime of O3 via moderation of photochemical destruction rates.

  20. The impact of tropospheric planetary wave variability on stratospheric ozone

    SciTech Connect

    McElroy, Michael B.; Schneider, Hans R.

    2002-06-25

    The goal of this project was to improve understanding of the role of the stratosphere in inducing long-term variations of the chemical composition of the troposphere. Changes in stratospheric transport occur on decadel timescales in response to changes in the structure of planetary wave patterns, forced in the troposphere. For many important tracers, such as column amounts of ozone, this variability of the transport leads to changes with signatures very similar to those induced by anthropogenic releases of chemicals into the atmosphere. During this project, a new interactive two-dimensional model of the dynamics, chemistry and radiation of the stratosphere was developed. The model was used to interpret available data of tracers. It was found that a fairly coherent picture of tracer distributions is obtained when a layer of reduced gravity wave drag is assumed for the lower stratosphere. The results suggest that the power of models to predict variability in tracer transport in the upper troposphere and lower stratosphere is limited until current theories of gravity wave breaking have been refined.

  1. The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Dennison, Fraser; McDonald, Adrian; Morgenstern, Olaf

    2015-04-01

    The aim of this study is to investigate the influence of ozone depletion and recovery on the Southern Annular Mode (SAM) and stratosphere-troposphere coupling. Using the NIWA-UKCA chemistry-climate model, we compare reference runs with forcing due to greenhouse gases and ozone depleting substances to sensitivity simulations in which ozone depleting substances are fixed at their 1960 levels. We find that ozone depletion leads to an increased frequency of extreme anomalies and increased persistence of the SAM in the stratosphere as well as stronger, more persistent stratosphere-troposphere coupling. This change in the strength of the stratosphere-troposphere coupling has implications for extended range weather forecasting. Currently the stratosphere provides an appreciable amount of predictability to the troposphere on time scales of one or two months, however we find that this effect reduces over time as stratospheric ozone recovers to pre-ozone hole levels towards the latter part of this century.

  2. Evaluation of Upper-Tropospheric and Lower-Stratospheric Ozone Profiles from a Global Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Stajner, Ivanka; Phelps, Carrie; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Data Assimilation Office at NASA's Goddard Space Flight Center provides global 3D ozone fields at six-hour time intervals. Data from Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument are used in the assimilation. TOMS provides total column information and SBUV provides profile information, primarily above the ozone peak. Information below the ozone peak comes from the model. This paper will explore the realism of the assimilated ozone in the upper troposphere and lower stratosphere through validation with ozonesondes, Halogen Occultation Experiment (HALOE), and Polar Ozone and Aerosol Measurement (POAM) observations. This work is in preparation of using the assimilated ozone in the radiative calculation for the meteorological assimilation as well as in the derivation of tropospheric ozone.

  3. Tropospheric Ozone Increases over the Southern Africa Region: Bellwether for Rapid Growth in Southern Hemisphere Pollution?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Balashov, Nikolay V.; Witte, J. C.; Coetzee, J. G. R.; Thouret, V.; Posny, F.

    2014-01-01

    Increases in free-tropospheric (FT) ozone based on ozonesonde records from the early 1990s through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion (21 deg. S, 55 deg. E; approx. 2800 km NE of Irene in the Indian Ocean), have been reported. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5-4 km) was also observed during the 18-year period, equivalent to 30%decade-1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990-2007 are re-examined, filling in a 1995-1999 gap with ozone profiles taken during the Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) project over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, El Niño-Southern Oscillation (ENSO) and possible tropopause changes was applied to monthly averaged Irene data from 4 to 11 km and to 1992-2011 Réunion sonde data from 4 to 15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT; 4-11 km over Irene, 4-15 km over Réunion) in winter (June-August), with increases 1 ppbv yr(exp. -1) over Irene and approx. 2 ppbv yr(exp. -1) over Réunion. These changes are equivalent to approx. 25 and 35-45%decade( exp. -1), respectively. Both stations also display smaller positive trends in summer, with a 45%decade(exp. -1) ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330-350 K. PV affects UT ozone over Irene in November-December but displays little relationship with ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory

  4. Tropospheric ozone retrieval by using SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Ladstätter-Weissenmayer, Annette; Ebojie, Felix; Rozanov, Alexei; Burrows, John

    2014-05-01

    Tropospheric ozone is photochemically produced during pollution events and transported from the stratosphere towards the troposphere. It is the third most important green house gases and the main component of summer smog. Global covered satellite measurements are well suitable to investigate sources, sinks, and transport mechanisms of tropospheric ozone in a global view, and to study a characteristic behaviour of the tropospheric ozone in regions. However, the usage of satellite data is associated to a large uncertainty as 90% ozone is located in the stratosphere and only the remaining part of 10% can be observed in the troposphere. The limb-nadir matching (LNM) technique is one of the methods suitable to retrieve tropospheric ozone distributions from space borne observations of the scattered solar light in the UV-visible spectral range. In this study we apply the LNM approach to alternating limb and nadir measurements performed by the SCIAMACHY instrument. A precise tropopause height is used to subtract the stratospheric ozone from the total ozone amount for each matching point. The focus of this work is to reduce the uncertainty of the resulting tropospheric ozone distributions by analysing possible error sources, refining both limb and nadir retrievals and the matching technique.

  5. Role of tropospheric ozone increases in 20th-century climate change

    NASA Astrophysics Data System (ADS)

    Shindell, Drew; Faluvegi, Greg; Lacis, Andrew; Hansen, James; Ruedy, Reto; Aguilar, Elliot

    2006-04-01

    Human activities have increased tropospheric ozone, contributing to 20th-century warming. Using the spatial and temporal distribution of precursor emissions, we simulated tropospheric ozone from 1890 to 1990 using the NASA Goddard Institute for Space Studies (GISS) chemistry model. Archived three-dimensional ozone fields were then used in transient GISS climate model simulations. This enables more realistic evaluation of the impact of tropospheric ozone increases than prior simulations using an interpolation between preindustrial and present-day ozone. We find that tropospheric ozone contributed to the greater 20th-century warming in the Northern Hemisphere extratropics compared with the tropics and in the tropics compared with the Southern Hemisphere extratropics. Additionally, ozone increased more rapidly during the latter half of the century than the former, causing more rapid warming during that time. This is especially apparent in the tropics and is consistent with observations, which do not show similar behavior in the extratropics. Other climate forcings do not substantially accelerate warming rates in the tropics relative to other regions. This suggests that accelerated tropospheric ozone increases related to industrialization in the developing world have contributed to the accelerated tropical warming. During boreal summer, tropospheric ozone causes enhanced warming (>0.5°C) over polluted northern continental regions. Finally, the Arctic climate response to tropospheric ozone increases is large during fall, winter, and spring when ozone's lifetime is comparatively long and pollution transported from midlatitudes is abundant. The model indicates that tropospheric ozone could have contributed about 0.3°C annual average and about 0.4°C-0.5°C during winter and spring to the 20th-century Arctic warming. Pollution controls could thus substantially reduce the rapid rate of Arctic warming.

  6. The impact of the stratospheric ozone distribution on large-scale tropospheric systems over South America

    NASA Astrophysics Data System (ADS)

    Da Silva, L. A.; Vieira, L. A.; Prestes, A.; Pacini, A. A.; Rigozo, N. R.

    2013-12-01

    Most of the large-scale changes of the climate can be attributed to the cumulative impact of the human activities since the beginning of the industrial revolution. However, the impact of natural drivers to the present climate change is still under debate, especially on regional scale. These regional changes over South America can potentially affect large vulnerable populations in the near future. Here, we show that the distribution of the stratospheric ozone can affect the climate patterns over South America and adjoin oceans. The impact of the stratospheric ozone distribution was evaluated employing the Global Atmospheric-Ocean Model developed by the Goddard Institute for Space Studies (GISS Model E). We conducted two numerical experiments. In the first experiment we used a realistic distribution of the stratospheric ozone, while in the second experiment we employed a uniform longitudinal distribution. We have integrated each model over 60 years. We find that the distribution of stratospheric ozone has a strong influence on the Intertropical Convergence Zone (ITCZ) and South Atlantic Convergence Zone (SACZ). However, the Upper Tropospheric Cyclonic Vortex (UTCV) is not affected by the ozone's distribution.

  7. Tropospheric Ozone Pollution Transport Traced from the TOMS (Total Ozone Mapping Spectrometer) Instrument During the Nashville-1999 Campaign

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.

  8. Evaluation of ACCMIP Outgoing Longwave Radiation from Tropospheric Ozone Using TES Satellite Observations.

    NASA Technical Reports Server (NTRS)

    Bowman, Kevin W.; Shindell, Drew Todd; Worden, H. M.; Lamarque, J. F.; Young, P. J.; Stevenson, D. S.; Qu, Z.; delaTorre, M.; Bergmann, D.; Cameron-Smith, P. J.; Collins, W. J.; Doherty, R.; Dalsoren, S. B.; Faluvegi, G.; Folberth, G.; Horowitz, L. W.; Josse, B. M.; Lee, Y. H.; MacKenzie, I. A.; Myhre, G.; Nagashima, T.; Naik, V.; Strode, S. A.; Kulawik, S. S..; Worden, J. R.

    2013-01-01

    We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005-2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120mW/ sq. m OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39+/- 41mW/ sq. m relative to TES data. We show that there is a correlation (Sq. R = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750-2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100mW/ sq. m. Removing these models leads to a mean ozone radiative forcing of 394+/- 42mW/ sq. m. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 +/- 60mW/ sq. m derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.

  9. Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data

    NASA Astrophysics Data System (ADS)

    Olsen, Mark A.; Wargan, Krzysztof; Pawson, Steven

    2016-06-01

    We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone observations to investigate the magnitude and spatial distribution of the El Niño Southern Oscillation (ENSO) influence on tropospheric column ozone (TCO) into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Niño 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Niño 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9-year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Niño influence on tropospheric ozone in the middle latitudes.

  10. TOLNET - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    NASA Astrophysics Data System (ADS)

    Newchurch, Michael J.; Kuang, Shi; Leblanc, Thierry; Alvarez, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Burris, John F.; McGee, Thomas J.; Sullivan, John T.; DeYoung, Russell J.; Al-Saadi, Jassim; Johnson, Matthew; Pszenny, Alex

    2016-06-01

    Ozone lidars measure continuous, high-resolution ozone profiles critical for process studies and for satellite validation in the lower troposphere. However, the effectiveness of lidar validation by using single-station data is limited. Recently, NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly timeresolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation. This article briefly describes the concept, stations, major specifications of the TOLNet instruments, and data archiving.

  11. Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology

    NASA Technical Reports Server (NTRS)

    Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.

    2011-01-01

    An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS

  12. TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.; McGee, Thomas J.; Sullivan, John T.

    2015-01-01

    NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation.

  13. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Astrophysics Data System (ADS)

    Olsen, M. A.; Schoeberl, M. R.; Ziemke, J. R.

    2006-12-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere- troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone from OMI total column measurements creates a high- resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that ozone transported from the stratosphere may be responsible for a significant fraction of the mean tropospheric ozone maxima.

  14. Increasing Springtime Ozone Mixing Ratios in the Free Troposphere Over Western North America

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Stohl, A.; Trainer, M.; Nedelec, P.; Thouret, V.; Cammas, J. P.; Oltmans, S. J.; Johnson, B. J.; Tarasick, D.; Leblanc, T.; McDermid, I. S.; Jaffe, D.; Gao, R.; Stith, J.; Ryerson, T.; Aikin, K.; Campos, T.; Weinheimer, A.; Avery, M. A.

    2010-01-01

    In the lowermost layer of the atmosphere - the troposphere - ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity1. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA s compliance with its ozone air quality standard.

  15. Increasing springtime ozone mixing ratios in the free troposphere over western North America.

    PubMed

    Cooper, O R; Parrish, D D; Stohl, A; Trainer, M; Nédélec, P; Thouret, V; Cammas, J P; Oltmans, S J; Johnson, B J; Tarasick, D; Leblanc, T; McDermid, I S; Jaffe, D; Gao, R; Stith, J; Ryerson, T; Aikin, K; Campos, T; Weinheimer, A; Avery, M A

    2010-01-21

    In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.

  16. Altitude troposphere ozone profiles over Kyiv-Goloseyev station by simultaneous Umkehr and FTIR observations

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Shavrina, Angelina; Udodov, Evgeny; Liptuga, Anatoly; Kyslyi, Volodymyr; Danylevsky, Vassyl; Kravchenko, Volodymyr; Ivanov, Yuri; Synyavski, Ivan; Romanyuk, Yaroslav; Pavlenko, Yakov; Veles, Oleksandr

    2016-04-01

    Total ozone column and ozone profile data have been obtained from both: (1) standard Dobson measurements and Umkehr method, and (2) using modeling of the ozone absorption spectral band profile near 9.6 microns with the MODTRAN4.3 Atmospheric Radiation Transfer Model based on the HITRAN molecular absorption database from Fourier transform infrared spectroscopy (FTIR) observations. The simultaneous ground-based Dobson/Umkehr and FTIR ozone observations have been performed in 2014-2015 at the mid-latitude Kyiv-Goloseyev KGV GAW station for joint altitude troposphere ozone profiles analysis. To retrieve ozone column estimates and ozone profiles from FTIR observations, we used the satellite Aqua-AIRS water vapor, temperature and ozone profiles, and the simultaneous with FTIR observations the Umkehr ozone profiles and surface ozone measurements as input a priori information for the MODTRAN4.3 model. The altitude ozone profiles retrieved from Umkehr method and satellite measurements are in good correspondence in stratosphere layer. However the troposphere part of ozone profiles is uncertain and reproduced with large errors. Therefore we use the MODTRAN4.3 model for interpretation of observed FTIR absorption spectrum to retrieve and improve the troposphere part of ozone altitude distribution. The synergy of Umkehr, satellite and FTIR simultaneous observations including surface ozone measurements allows rendering the ozone profile features in troposphere that indicate the stratosphere-troposphere exchange processes. Season ozone profile variations observed from Umkehr measurements are discussed as well. This work was partly supported by the Polar FORCeS project no. 4012 of the Australian Antarctic Science Program.

  17. Use of satellite data to study tropospheric ozone in the tropics

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Minnis, Patrick; Reichle, Henry G., Jr.

    1986-01-01

    Three independent examples are discussed which suggest that photochemical ozone production in the troposphere can be observed in the tropics from an analysis of total ozone data. The first finding shows that the seasonal cycle of total columnar ozone is dominated by the seasonal cycle of tropospheric ozone, even though tropospheric ozone accounts for only 5-15 percent of the total ozone. Second, a case study is presented which shows that enhanced total ozone observed over the Amazon Basin can be associated with the presence of biomass burning. In situ measurements have confirmed that biomass burning does result in the production of photochemically generated ozone, analogous to the formation of 'smog' near industrialized areas. Third, an analysis of the distribution of carbon monoxide obtained from a Space Shuttle platform is strongly correlated with the concurrent distribution of total ozone between 5 deg S and 10 deg N. Because all of the sources of carbon monoxide are located in the troposphere, this finding likewise suggests that the gradients of total ozone at low latitudes must also reflect processes occurring in the troposphere.

  18. Evaluation of lightning-induced tropospheric ozone enhancements observed by ozone lidar and simulated by WRF/Chem

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Follette-Cook, Melanie B.; Newchurch, M. J.; Pickering, Kenneth E.; Pour-Biazar, Arastoo; Kuang, Shi; Koshak, William; Peterson, Harold

    2015-08-01

    High spatial- and temporal-resolution ozone lidar profiles, in conjunction with ozonesonde and satellite observations, are well suited to characterize short-term ozone variations due to different physical and chemical processes, such as the impact of lightning-generated NOx (LNOx) on tropospheric ozone. This work presents the hourly variation of tropospheric-ozone profiles measured by an ozone lidar at the University of Alabama in Huntsville, on July 14, 18, and 27, 2011. These ozone lidar data are compared with two WRF/Chem simulations, one with lightning NO (LNO) emissions and the other without. On July 14, 2011, the ozone lidar observed an ozone laminar structure with elevated ozone concentrations of 65∼80 ppbv below 2 km, low ozone (50∼65) ppbv between 2 and 5 km, and high ozone up to 165 ppbv between 5 and 12 km AGL. WRF/Chem simulations, in conjunction with backward trajectory analysis, suggest that lightning events occurring within upwind regions resulted in an ozone enhancement of 28 ppbv at 7.5 km AGL over Huntsville. On July 27, LNO emissions were transported to Huntsville from upwind and account for 75% of NOx and an 8.3 ppbv of ozone enhancement at ∼10 km; the model overestimates ozone between 2.5 and 5 km AGL.

  19. Tropospheric ozone column retrieval from OMI data by means of neural networks: a validation exercise with ozone soundings over Europe

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Sellitto, Pasquale; Del Frate, Fabio; Cervino, Marco; Iarlori, Marco; Rizi, Vincenzo

    2013-12-01

    The retrieval of the tropospheric ozone column from satellite data is very important for the characterization of tropospheric chemical and physical properties. However, the task of retrieving tropospheric ozone from space has to face with one fundamental difficulty: the contribution of the tropospheric ozone to the measured radiances is overwhelmed by a much stronger stratospheric signal, which has to be reliably filtered. The Tor Vergata University Earth Observation Laboratory has recently addressed this issue by developing a neural network (NN) algorithm for tropospheric ozone retrieval from NASA-Aura Ozone Monitoring Instrument (OMI) data. The performances of this algorithm were proven comparable to those of more consolidated algorithms, such as Tropospheric Ozone Residual and Optimal Estimation. In this article, the results of a validation of this algorithm with measurements performed at six European ozonesonde sites are shown and critically discussed. The results indicate that systematic errors, related to the tropopause pressure, are present in the current version of the algorithm, and that including the tropopause pressure in the NN input vector can compensate for these errors, enhancing the retrieval accuracy significantly.

  20. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  1. Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA

    USGS Publications Warehouse

    Brace, S.; Peterson, D.L.

    1998-01-01

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  2. Tropospheric Ozone from Assimilation of Aura Data using Different Definitions of the Tropopause

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Pawson, Steven; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone data from Aura OMI and MLS instruments were assimilated into the general circulation model (GCM) constrained by assimilated meteorological fields from the Global Modeling and Assimilation Office at NASA Goddard. Properties of tropospheric ozone and their sensitivity to the definition of the tropopause are investigated. Three definitions of the tropopause are considered: (1) dynamical (using potential vorticity and potential temperature), (2) using temperature lapse rate, and (3) using a fixed ozone value. Comparisons of the tropospheric ozone columns using these tropopause definitions will be presented and evaluated against coincident profiles from ozone sondes. Assimilated ozone profiles are used to identify possible tropopause folding events, which are important for stratosphere-troposphere exchange. Each profile is searched for multiple levels at which ozone attains the value typical of the troposphere-stratosphere transition in order to identify possible tropopause folds. Constrained by the dynamics from a global model and by assimilation of Aura ozone data every 3-hours, this data set provides an opportunity to study ozone evolution in the upper troposphere and lower stratosphere with high temporal resolution.

  3. Long-term tropical tropospheric ozone column retrievals using the Convective Clouds Differential (CCD) technique

    NASA Astrophysics Data System (ADS)

    Leventidou, Elpida; Ebojie, Felix; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.

    2015-04-01

    Ozone influences most of the chemical reactions in the troposphere.Its tropospheric abundance can be retrieved using space-borne observations of vertically integrated ozone and cloud heights. The Convective Clouds Differential (CCD) technique (Ziemke et al., 1998 and Valks et al., 2014) takes advantage of the frequent occurrence of convective clouds in the western Pacific region by subtracting above-cloud ozone of this region from clear-sky ozone elsewhere to derive global monthly mean tropospheric amount. An important assumption is that the above-cloud ozone in the western Pacific simulates the stratospheric ozone and that the stratospheric ozone field is invariant with longitude; which is approximately true in the tropics. A CCD algorithm has been developed and is applied to optical remote sensing observations from three satellite instruments, so that a unique long-term record of monthly averaged tropical (20∘S, 20∘N) tropospheric vertically integrated ozone (1995-2012) is created. The validation of the CCD results with tropospheric ozone data from ozonesondes (Tompson et al., 2003) and Limb-Nadir matching observations (Ebojie et al. 2014) will be presented.

  4. Lower-Tropospheric Ozone (LTO) derived from TOMS near mountainous regions

    NASA Astrophysics Data System (ADS)

    Newchurch, M. J.; Liu, X.; Kim, J. H.

    2001-01-01

    Using Total Ozone Mapping Spectrometer (TOMS) version-7 level-2 clear-sky (reflectivity ≤ 20%) ozone measurements corrected for aerosol effects and sea-glint errors, we derived Lower Tropospheric Ozone (LTO) west and east of the Andes, the Mexican and Rocky Mountains, the mountains in Africa and the Arabian Peninsula, New Guinea, and the Himalayan Mountains. The derived results agree reasonably well with the seasonality of LTO from ozonesonde observations at Boulder, Cristobal, Fiji, Java, and Tahiti. The LTO seasonality found in the biomass burning seasons characterized by the ATSR World Fire Atlas west and east of the Andes (23°S-2°N), east of the Mexican Mountains (15°-23°N), South Sudan (6°-14°N), South Africa (30°-28°S), and west of New Guinea is consistent with the influence of biomass burning on the formation of tropospheric ozone in these regions. The significant El Niño influence on LTO west of New Guinea is evident throughout several El Niño cycles. The spring maximum in ozone west of the Mexican Mountains, in western China, and west of the Andes (32°-23°S) is consistent with a stratospheric intrusion source. East of the Mexican Mountains (23°-30°N), both west and east of the Rocky Mountains, in north Sudan and Iraq, and in western China, high concentrations of ozone are found in these continental and coastal regions which are affected by anthropogenic sources. The maximum ozone in these regions usually occurs in the summer due to photochemical ozone production. A summer LTO minimum occurs in coastal regions west of the Andes and west of Mexico, due to ozone destruction in low NOx and high H2O marine environment. A summer minimum also occurs in south Sudan in the rainy season. The LTO in the northern tropics of South America (4°-10°N), Africa (1°S-2°N), and east of New Guinea (7°-3°S) experiences little seasonal variation.

  5. UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; DeYoung, Russell J.

    2013-01-01

    A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy

  6. Interpretation of tropospheric ozone variability in data with different vertical and temporal resolution

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Disterhoft, P.; Johnson, B. J.; Rieder, H. E.; Manney, G. L.; Daffer, W.

    2012-12-01

    This work attributes tropospheric ozone variability derived from the ground-based Dobson and Brewer Umkehr measurements and from ozone sonde data to local sources and transport. It assesses capability and limitations in both types of measurements that are often used to analyze long- and short-term variability in tropospheric ozone time series. We will address the natural and instrument-related contribution to the variability found in both Umkehr and sonde data. Validation of Umkehr methods is often done by intercomparisons against independent ozone measuring techniques such as ozone sounding. We will use ozone-sounding in its original and AK-smoothed vertical profiles for assessment of ozone inter-annual variability over Boulder, CO. We will discuss possible reasons for differences between different ozone measuring techniques and its effects on the derived ozone trends. Next to standard evaluation techniques we utilize a STL-decomposition method to address temporal variability and trends in the Boulder Umkehr data. Further, we apply a statistical modeling approach to the ozone data set to attribute ozone variability to individual driving forces associated with natural and anthropogenic causes. To this aim we follow earlier work applying a backward selection method (i.e., a stepwise elimination procedure out of a set of total 44 explanatory variables) to determine those explanatory variables which contribute most significantly to the observed variability. We will present also some results associated with completeness (sampling rate) of the existing data sets. We will also use MERRA (Modern-Era Retrospective analysis for Research and Applications) re-analysis results selected for Boulder location as a transfer function in understanding of the effects that the temporal sampling and vertical resolution bring into trend and ozone variability analysis. Analyzing intra-annual variability in ozone measurements over Boulder, CO, in relation to the upper tropospheric

  7. Growth response to a changing environment-Impacts of tropospheric ozone dose on photosynthesis of Norway spruce forests in Austria

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Pietsch, Stephan; Hasenauer, Hubert

    2010-05-01

    Tropospheric ozone is an important air pollutant, although plants have active defense strategies (e.g. antioxidants), the cumulative ozone dose may lead to chronic damages to plant tissues. Ozone enters into plants through stomata and reacts with other chemicals to create toxic compounds. This affects plant photosynthesis and may reduce CO2 fixation, and consequently growth. Open top cambers (OTC) are usually used to study the effects of elevated ozone levels on photosynthesis; whereas field studies with on site occurring ozone levels are rare. A recent modelling study on Norway spruce stands in Austria exhibited trends in model errors indicating that an increase in ozone dose leads to a reduction in volume increment. This study aims to explore how different ozone doses affect photosynthesis under field conditions and may translate into growth response for 12 stands of Norway spruce, distributed along an ozone concentration gradient across Austria. A LI-6400xt photosynthesis system was utilized to collect physiological parameters including net photosynthesis, stomata conductance, internal CO2 concentration, transpiration, etc. Chlorophyll fluorescence data was collected by using a PEA chlorophyll fluorescence meter, and chlorophyll content was measured. Morphological characteristics and soil samples were also analyzed. Ozone dose to leaf tissue was calculated from external ozone concentration, the conductance of the stomata to ozone, the leaf area index and the time span of the day when ozone uptake takes place. Our results confirm that increasing cumulative ozone dose reduces maximum assimilation rate and carboxylation efficiency under field conditions. Our final goal is to quantify how far this ozone induced reduction in assimilation power ultimately translates into a growth reduction of Norway spruce in Austria.

  8. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  9. Upper Tropospheric Ozone Between Latitudes 60S and 60N Derived from Nimbus 7 TOMS/THIR Cloud Slicing

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil; Bhartia, P. K.

    2002-01-01

    This study evaluates the spatial distributions and seasonal cycles in upper tropospheric ozone (pressure range 200-500 hPa) from low to high latitudes (60S to 60N) derived from the satellite retrieval method called "Cloud Slicing." Cloud Slicing is a unique technique for determining ozone profile information in the troposphere by combining co-located measurements of cloud-top, pressure and above-cloud column ozone. For upper tropospheric ozone, co-located measurements of Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) above-cloud column ozone, and Nimbus 7 Temperature Humidity Infrared Radiometer (THIR) cloud-top pressure during 1979-1984 were incorporated. In the tropics, upper tropospheric ozone shows year-round enhancement in the Atlantic region and evidence of a possible semiannual variability. Upper tropospheric ozone outside the tropics shows greatest abundance in winter and spring seasons in both hemispheres with largest seasonal and largest amounts in the NH. These characteristics are similar to lower stratospheric ozone. Comparisons of upper tropospheric column ozone with both stratospheric ozone and a proxy of lower stratospheric air mass (i.e., tropopause pressure) from National Centers for Environmental Prediction (NCEP) suggest that stratosphere-troposphere exchange (STE) may be a significant source for the seasonal variability of upper tropospheric ozone almost everywhere between 60S and 60N except in low latitudes around 10S to 25N where other sources (e.g., tropospheric transport, biomass burning, aerosol effects, lightning, etc.) may have a greater role.

  10. The Spatial Distribution of Tropospheric Ozone Concentration Associated to Land Use in the Sao Paulo Metropolitan Area, Brazil

    NASA Astrophysics Data System (ADS)

    Chiquetto, Julio; Siqueira Silva, Maria Elisa

    2013-04-01

    Atmospheric Pollution presents a great challenge in the environmental and health management of the great urban centres, affecting all who reside in these locations. Presently, one of the most hazardous pollutants in the São Paulo Metropolitan Area (SPMA) is tropospheric ozone (O3). Its formation and control are influenced by a number of different factors, which involve precursor emission, atmospheric and environmental variables such as incoming shortwave solar radiation, and land use in the surroundings of the monitoring site (which alter atmospheric chemistry locally), creating a complex picture of temporal and spatial distribution of this pollutant in the study area. In addition to its complexity, O3 does not present a decreasing tendency through the years in the study area and its highest concentrations are measured in places often visited by the population, such as urban parks and squares, yet typical of having lower concentrations of vehicular pollution. In order to properly assess these issues, a better understanding of the processes related to the control of tropospheric ozone is required. Using data from the State Environmental Agency (CETESB), we intend to study the spatial distribution of tropospheric ozone in the SPMA. Previous works on the subject have shown that land use is an important factor in the control of O3 concentrations. From this understanding, we intend to look for associations between ozone concentrations and land use throughout the city, and also in specific locations, such as parks and squares, known for high ozone concentrations in the city. In order to assess the impact of land use change in the pollutant's concentration, the atmospheric model WRF/Chem will be used. This will be done by replacing, in the model, a typically urbanized area in the city by that of a park, and checking the impacts on ozone concentrations afterwards. Through sensitivity tests in the model, we also intend to work with other parametrizations that define the

  11. DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve

    2007-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

  12. PREDICTING THE IMPACT OF TROPOSPHERIC OZONE ON ECOLOGICAL RESOURCES FOR SETTING NATIONAL AMBIENT AIR QUALITY STANDARDS

    EPA Science Inventory

    The Clean Air Act provides for establishing National Ambient Air Quality Standards (NAAQS) to protect public welfare (including crops, forests, ecosystems, and soils) from adverrse effects of air pollutants, including tropospheric ozone. The formulation of policies is science-bas...

  13. MULTISCALE AIR QUALITY SIMULATION PLATFORM (MAQSIP): INITIAL APPLICATIONS AND PERFORMANCE FOR TROPOSPHERIC OZONE AND PARTICULATE MATTER

    EPA Science Inventory

    This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...

  14. Climate Response to the Increase in Tropospheric Ozone since Preindustrial Times: A Comparison between Ozone and Equivalent CO2 Forcings

    NASA Technical Reports Server (NTRS)

    Mickley L. J.; Jacob, D. J.; Field, B. D.; Rind, D.

    2004-01-01

    We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m(sup -2) due to the increase in tropospheric ozone since preindustrial times results in an increase in global mean surface temperature of 0.28 C. The increase is nearly 0.4 C in the Northern Hemisphere and about 0.2 C in the Southern Hemisphere. The largest increases (greater than 0.8 C) are downwind of Europe and Asia and over the North American interior in summer. In the lower stratosphere, global mean temperatures decrease by about 0.2 C due to the diminished upward flux of radiation at 9.6 micrometers. The largest stratospheric cooling, up to 1.0 C, occurs over high northern latitudes in winter, with possibly important implications for the formation of polar stratospheric clouds. To identify the characteristics of climate forcing unique to tropospheric ozone, we have conducted two additional climate equilibrium simulations: one in which preindustrial tropospheric ozone concentrations were increased everywhere by 18 ppb, producing the same global radiative forcing as present-day ozone but without the heterogeneity; and one in which CO2 was decreased by 25 ppm relative to present day, with ozone at present-day values, to again produce the same global radiative forcing but with the spectral signature of CO2 rather than ozone. In the first simulation (uniform increase of ozone), the global mean surface temperature increases by 0.25 C, with an interhemispheric difference of only 0.03 C, as compared with nearly 0.2 C for the heterogeneous ozone increase. In the second simulation (equivalent CO2), the global mean surface temperature increases by 0.36 C, 30% higher than the increase from tropospheric ozone. The stronger surface warming from CO2 is

  15. Multi-site tropospheric ozone measurements across the North Tropical Atlantic during the summer of 2010

    NASA Astrophysics Data System (ADS)

    Jenkins, Gregory S.; Robjhon, Miliaritiana L.; Demoz, Belay; Stockwell, William R.; Ndiaye, Seydi A.; Drame, Mamadou S.; Gueye, Moussa; Smith, Jonathan W.; Luna-Cruz, Yaitza; Clark, Johnathan; Holt, Jalisa; Paulin, Casey; Brickhouse, Ashley; Williams, Aneese; Abdullah, Ajamu; Reyes, Ashford; Mendes, Luis; Valentine, Adriel; Camara, Moctar

    2013-05-01

    Ozone soundings are launched during two Intensive Observing Periods (IOPs) from Dakar, Senegal; Sao Vicente, Cape Verde; and St James, Barbados to investigate ozone variability across the North Tropical Atlantic during June/July and August/September 2010. Two objectives of the campaign are to compare background tropospheric ozone mixing ratios and its variability associated with the Saharan Air Layer (SAL) and African Easterly Waves (AEWs) at sites located in the Eastern and Western Tropical Atlantic Ocean. During IOP1 (June-July), reduced ozone mixing ratios are found in the SAL with elevated ozone levels at the SAL's base and above it. During IOP I, the tropospheric column ozone (TCO) is higher at Cape Verde (27.5 DU) when compared to Barbados (19.8 DU). During IOP II (August-September) ozone-rich air is found above 500 hPa prior to the passage of AEW or developing tropical cyclones. The observed larger mixing ratios of middle/upper tropospheric ozone are most prominent at Dakar prior to the passage of an AEW, which we attribute to lightning NOx. During IOP II the tropospheric column ozone is highest at Dakar (30.5 DU) when compared to Cape Verde (20.2 DU) and Barbados (17.2 DU).

  16. Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; Oltmans, S. J.; Schwab, J.; Shindell, D. T.; Thompson, A. M.; Thouret, V.; Wang, Y.; Zbinden, R. M.

    2014-01-01

    Tropospheric ozone plays a major role in Earth's atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone's abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone's global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.

  17. Source attribution of interannual variability of tropospheric ozone over the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Liu, J.; Rodriguez, J. M.; Logan, J. A.; Steenrod, S. D.; Douglass, A. R.; Olsen, M. A.; Wargan, K.; Ziemke, J. R.

    2015-12-01

    Both model simulations and GMAO assimilated ozone product derived from OMI/MLS show a high tropospheric ozone column centered over the south Atlantic from the equator to 30S. This ozone maximum extends eastward to South America and the southeast Pacific; it extends southwestward to southern Africa, south Indian Ocean. In this study, we use hindcast simulations from the GMI model of tropospheric and stratospheric chemistry, driven by assimilated MERRA meteorological fields, to investigate the factors controlling the interannual variations (IAV) of this ozone maximum during the last two decades. We also use various GMI tracer diagnostics, including a stratospheric ozone tracer to tag the impact of stratospheric ozone, and a tagged CO tracer to track the emission sources, to ascertain the contribution of difference processes to IAV in ozone at different altitudes, as well as partial columns above different pressure level. Our initial model analysis suggests that the IAV of the stratospheric contribution plays a major role on in the IAV of the upper tropospheric ozone and explains a large portion of variance during its winter season. Over the south Atlantic region, the IAV of surface emissions from both South America and southern Africa also contribute significantly to the IAV of ozone, especially in the middle and lower troposphere

  18. The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Dennison, Fraser W.; McDonald, Adrian J.; Morgenstern, Olaf

    2015-07-01

    The aim of this study is to investigate the influence of ozone depletion and recovery on the Southern Annular Mode (SAM) and stratosphere-troposphere coupling. Using the National Institute of Water and Atmospheric Research-United Kingdom Chemistry and Aerosols chemistry-climate model, we compare reference runs that include forcing due to greenhouse gases and ozone-depleting substances to sensitivity simulations in which ozone-depleting substances are fixed at their 1960 levels. We find that ozone depletion leads to an increased frequency of extreme anomalies and increased persistence of the SAM in the stratosphere as well as stronger, more persistent stratosphere-troposphere coupling. Currently, the stratosphere provides an appreciable amount of predictability to the troposphere on timescales of 1 or 2 months; however, we find that this effect reduces over time as stratospheric ozone recovers to preozone hole levels toward the latter part of this century.

  19. Investigating Arctic Tropospheric Ozone Depletion Through a Flowing Chemical Reaction Method of Halogen Free Radical Measurement

    NASA Astrophysics Data System (ADS)

    Tackett, P. J.; Shepson, P. B.; Bottenheim, J. W.; Steffen, A.

    2008-12-01

    Arctic tropospheric halogen chemistry has been investigated through the measurement of halogen free radicals, ozone, and gaseous elemental mercury in the lower Arctic troposphere during spring 2008 in a unique sea ice surface environment onboard the research icebreaker CCGS Amundsen. Low-level ozone depletion events were observed beginning in early March, with more extensive events occurring later in the month. Bromine monoxide measurements were conducted using a new, flowing chemical reaction method in addition to established DOAS techniques, and was observed with good agreement at concentrations approaching 40 ppt during periods of significant ozone and mercury depletion. Air mass history was observed for the periods leading to depletion, suggesting a dependence on sea ice contact and ambient temperatures below -22 °C as necessary elements for the onset of halogen-induced tropospheric ozone depletion. Here we discuss our data further with the aim of better understanding how ozone depletion events are triggered.

  20. A joint data record of tropospheric ozone from Aura-TES and MetOp-IASI

    NASA Astrophysics Data System (ADS)

    Oetjen, Hilke; Payne, Vivienne H.; Neu, Jessica L.; Kulawik, Susan S.; Edwards, David P.; Eldering, Annmarie; Worden, Helen M.; Worden, John R.

    2016-08-01

    The Tropospheric Emission Spectrometer (TES) on Aura and Infrared Atmospheric Sounding Interferometer (IASI) on MetOp-A together provide a time series of 10 years of free-tropospheric ozone with an overlap of 3 years. We characterise the differences between TES and IASI ozone measurements and find that IASI's coarser vertical sensitivity leads to a small (< 5 ppb) low bias relative to TES for the free troposphere. The TES-IASI differences are not dependent on season or any other factor and hence the measurements from the two instruments can be merged, after correcting for the offset, in order to study decadal-scale changes in tropospheric ozone. We calculate time series of regional monthly mean ozone in the free troposphere over eastern Asia, the western United States (US), and Europe, carefully accounting for differences in spatial sampling between the instruments. We show that free-tropospheric ozone over Europe and the western US has remained relatively constant over the past decade but that, contrary to expectations, ozone over Asia in recent years does not continue the rapid rate of increase observed from 2004 to 2010.

  1. The Response of Tropospheric Ozone to ENSO in Observations and a Chemistry-Climate Simulation

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Rodriguez, J. M.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent results have revealed an ENSO induced wave-l anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show targeted comparisons with observations from NASA's Aura satellite Microwave Limb Sounder (MLS), and the Tropospheric Emissions Spectrometer (TES) to provide insight into the vertical structure of ozone changes. The tropospheric ozone response to ENSO could be a useful chemistry-climate model evaluation tool and should be considered in future modeling assessments.

  2. Sources of Ozone in the Free Troposphere in Houston During DISCOVER-AQ 2013

    NASA Astrophysics Data System (ADS)

    Kotsakis, A.; Lefer, B. L.; Morris, G. A.; Thompson, A. M.; Martins, D. K.; Weinheimer, A. J.; Orville, R. E.

    2014-12-01

    In September of 2013, NASA's DISCOVER-AQ (DAQ) air quality campaign took place in Houston, Texas. During the DAQ campaign, 58 ozonesondes were launched from the University of Houston-Main Campus and Smith Point, Texas combined. These launches were coordinated with the nine P-3B aircraft spirals and 4 TES (Tropospheric Emission Spectrometer) satellite overpasses. The combination of data sources provides useful insight into the composition and potential origins of free tropospheric ozone. Surface ozone production was not active during the 2013 DAQ Texas campaign with the Houston region only recording two eight-hour average ozone exceedance days during the campaign. The potential sources of free tropospheric ozone during DAQ include stratosphere-troposphere exchange, long-range transport of biomass burning, and lightning. High-resolution potential vorticity data from the NASA Goddard Trajectory Model is used to identify stratosphere-troposphere exchange. The HYSPLIT trajectory model is used to trace air parcels from areas of biomass burning. Lightning data provided by the Lightning Mapping Array will help determine ozone production from lightning. Through the use of these tools, this study will examine the origins of free tropospheric ozone over the Houston area during this campaign.

  3. Modeling and Observations of the Response of Tropical Tropospheric Ozone to ENSO

    NASA Astrophysics Data System (ADS)

    Oman, L.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.

    2011-12-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent results have revealed an ENSO induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show targeted comparisons with SHADOZ ozonesondes over these regions to provide insight into the vertical structure, along with comparisons of observations from NASA's Aura satellite Microwave Limb Sounder (MLS), the Tropospheric Emissions Spectrometer (TES), and other appropriate data sets. We are also investigating the water vapor response to ENSO to help illuminate its role relative to dynamics in impacting ozone concentrations. These results indicate that the tropospheric ozone response to ENSO is potentially a very useful chemistry-climate diagnostic and should be considered in future modeling assessments.

  4. Analysis of 1970-1995 Trends in Tropospheric Ozone at Northern Hemisphere Midlatitudes with the GEOS-CHEM Model

    NASA Technical Reports Server (NTRS)

    Fusco, Andrew C.; Logan, Jennifer A.

    2004-01-01

    I ] The causes of trends in tropospheric ozone at Northern Hemisphere midlatitudes from 1970 to 1995 are investigated with the GEOS-CHEM model, a global three-dimensional model of the troposphere driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS). This model is used to investigate the sensitivity of tropospheric ozone with respect to (1) changes in the anthropogenic emission of nitrogen oxides and nonmethane hydrocarbons, (2) increases in methane concentrations, (3) variations in the stratospheric source of ozone, (4) changes in solar radiation resulting from stratospheric ozone depletion, and ( 5 ) increases in tropospheric temperatures. Model results indicate that local increases in NO, emissions have caused most of the increases seen in lower tropospheric ozone over Europe and Japan. Increases in methane are responsible for roughly one fifth of the anthropogenically induced increase in tropospheric ozone at northern midlatitudes. However, changes in ozone precursors do not adequately explain either the spatial differences in observed ozone trends across midlatitudes or the observed decreases in ozone over Canada throughout the troposphere. We argue that ozone depletion in the lowermost stratosphere is likely to have reduced the stratospheric source by as much as 30% from the early 1970s to the mid 1990s. Model simulations that account for such a reduction along with reported changes in anthropogenic emissions show steep declines of ozone in the upper troposphere and variable increases in the lower troposphere that are more consistent with observations. Differential temperature trends in summer between North America and Europe may account for at least some of the remaining spatial variation in tropospheric ozone trends. Increases in ultraviolet (UV) radiation due to stratospheric ozone depletion do not appear to significantly reduce tropospheric ozone, except at midlatitudes in the Southern Hemisphere following the

  5. The Economic Impact of Climate, CO2, and Tropospheric Ozone Effects on Crop Yields in China, the US, and Europe

    NASA Astrophysics Data System (ADS)

    Reilly, J. M.; Felzer, B. S.; Paltsev, S.; Melillo, J. M.; Prinn, R. G.; Wang, C.; Sokolov, A. P.; Wang, X.

    2004-12-01

    Multiple environmental changes that may occur over the next century will affect crop productivity. Some of these effects are likely to be positive (CO2 fertilization), some negative (tropospheric ozone damage), and some may be either positive or negative (temperature and precipitation). Climate effects may operate in either direction because the direction of change may differ across regions (more precipitation in some areas and less in others) and warming may increase growing season lengths in cold-limited growing areas while acting as a detriment to productivity in areas with already high temperatures. Previous work has shown the effects of these combined environmental changes on carbon sequestration in natural and managed systems, and valued these effects in terms of avoided costs of fossil fuel carbon abatement. The more direct and obvious economic effect, however, is the changes in crop yields implied by these vegetation effects. Here we use the MIT Integrated Global Systems Model (IGSM) to analyze the potential economic impact of changes in crop yields. For this work we have augmented the Emissions Prediction and Policy Analysis (EPPA) model by further disaggregating the agricultural sector. This allows us to simulate economic effects of changes in yield (i.e. the productivity of cropland) on the regional economies of the world, including impacts on agricultural trade. The EPPA model includes multiple channels of market-based adaptation, including input substitution and trade. We are thus able to examine the extent to which market forces contribute toward adaptation and thus modify the initial yield effects. We examine multiple scenarios where tropospheric ozone precursors are controlled or not, and where greenhouse gas emissions are abated or not. This allows us to consider how these policies interact. We focus on China, the US, and Europe which are currently regions with high levels of tropospheric ozone damage. We find significant negative effects of

  6. Geospatial Interpolation and Mapping of Tropospheric Ozone Pollution Using Geostatistics

    PubMed Central

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Ahmad, Hafiz A.; Yerramilli, Anjaneyulu; Young, John H.

    2014-01-01

    Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels. PMID:24434594

  7. Development of a Portable, Ground-Based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zenker, Thomas

    1998-01-01

    The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.

  8. Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100

    NASA Astrophysics Data System (ADS)

    Banerjee, Antara; Maycock, Amanda C.; Archibald, Alexander T.; Abraham, N. Luke; Telford, Paul; Braesicke, Peter; Pyle, John A.

    2016-03-01

    A stratosphere-resolving configuration of the Met Office's Unified Model (UM) with the United Kingdom Chemistry and Aerosols (UKCA) scheme is used to investigate the atmospheric response to changes in (a) greenhouse gases and climate, (b) ozone-depleting substances (ODSs) and (c) non-methane ozone precursor emissions. A suite of time-slice experiments show the separate, as well as pairwise, impacts of these perturbations between the years 2000 and 2100. Sensitivity to uncertainties in future greenhouse gases and aerosols is explored through the use of the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The results highlight an important role for the stratosphere in determining the annual mean tropospheric ozone response, primarily through stratosphere-troposphere exchange (STE) of ozone. Under both climate change and reductions in ODSs, increases in STE offset decreases in net chemical production and act to increase the tropospheric ozone burden. This opposes the effects of projected decreases in ozone precursors through measures to improve air quality, which act to reduce the ozone burden. The global tropospheric lifetime of ozone (τO3) does not change significantly under climate change at RCP4.5, but it decreases at RCP8.5. This opposes the increases in τO3 simulated under reductions in ODSs and ozone precursor emissions. The additivity of the changes in ozone is examined by comparing the sum of the responses in the single-forcing experiments to those from equivalent combined-forcing experiments. Whilst the ozone responses to most forcing combinations are found to be approximately additive, non-additive changes are found in both the stratosphere and troposphere when a large climate forcing (RCP8.5) is combined with the effects of ODSs.

  9. Model calculations of tropospheric ozone production potential following observed convective events

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Dickerson, Russell R.; Luke, Winston T.; Mcnamara, Donna P.

    1990-01-01

    The profiles of CO, NO, O3, water vapor, and temperature, observed in 1985 during and after a series of convective events over rural areas of the south-central United States, were used to model the nonurban ozone production rates and to evaluate the effects of convective clouds on the tropospheric trace-gas chemistry. A comparison of trace-gas profiles measured in and around a large cumulonimbus during its dissipation showed that ozone production in the upper troposphere may be increased fourfold by convection relative to undisturbed air. The convective enhancement of O3 production for the entire tropospheric comlumn was found to be about 50 percent.

  10. The meteorological environment of the tropospheric ozone maximum over the tropical South Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Krishnamurti, T. N.; Fuelberg, H. E.; Sinha, M. C.; Oosterhof, D.; Bensman, E. L.; Kumar, V. B.

    1993-01-01

    Atmospheric flow patterns are examined over the South Atlantic Ocean where a maximum of tropospheric ozone has been observed just west of southern Africa. We investigate the flow climatology during October and perform a case study for six days during October 1989. Horizontal and vertical motions are examined and used to prepare 3D backward trajectories from the region of greatest ozone. An initially zonally symmetric distribution of ozone is treated as a passive tracer and advected by 3D flows forecast by the global model. Results from the passive tracer simulation indicate that 3D advection alone can produce a maximum of tropospheric ozone in the observed location. In addition, the trajectories suggest that by-products of biomass burning could be transported to the area of maximum ozone. Low-level flow from commonly observed regions of burning in Africa streams westward to the area of interest. Over Brazil, if the burning by-products are carried into the upper troposphere by convective process, they then could be transported eastward to the ozone feature in approximately five days. There is considerable subsidence over the tropical southern Atlantic, such that stratospheric influences also are a factor in producing the ozone maximum. Both planetary-scale and transient synoptic-scale circulation features play major roles in the various transport processes that influence the region. In summary, the observed tropospheric ozone maximum appears to be caused by a complex set of horizontal and vertical advections, transport from regions of biomass burning, and stratospheric influences.

  11. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI

    NASA Astrophysics Data System (ADS)

    Doche, C.; Dufour, G.; Foret, G.; Eremenko, M.; Cuesta, J.; Beekmann, M.; Kalabokas, P.

    2014-10-01

    The Mediterranean basin is one of the most sensitive regions in the world regarding climate change and air quality. This is partly due to the singular dynamical situation of the Mediterranean basin that leads to tropospheric-ozone concentrations that are among the highest over the Northern Hemisphere. Six years of summertime tropospheric ozone observed by the Infrared Atmospheric Sounding Interferometer (IASI) instrument from 2007 to 2012 have been analysed to document the variability of ozone over this region. The satellite observations have been examined together with meteorological analyses (from ECMWF) to understand the processes driving this variability. Our work confirmed the presence of a steep west-east ozone gradient in the lower troposphere with the highest concentrations observed over the eastern part of the Mediterranean basin. This gradient is mainly explained by diabatic convection over the Persian Gulf during the Indian monsoon season, which induces an important subsidence of ozone-rich air masses from the upper to the lower troposphere over the central and the eastern Mediterranean basin. IASI observations of ozone concentrations at a 3 km height show a clear summertime maximum in July that is well correlated to the maximum of downward transport of ozone-rich air masses from the upper troposphere. Even if this feature is robust over the six analysed years, we have also investigated monthly ozone anomalies - one positive (June 2008) and one negative (June and July 2009) - using daily IASI observations. We show that the relative position and the strength of the meteorological systems (Azores anticyclone and Middle Eastern depression) present over the Mediterranean are key factors in explaining both the variability and the anomalies of ozone in the lower troposphere in this region.

  12. A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements

    NASA Astrophysics Data System (ADS)

    Ziemke, J. R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-06-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean/Asia region in summer months. High levels of tropospheric ozone in the Northern Hemisphere also persist in mid-latitudes over the Eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the Northern Hemisphere in the latitude range 70° N-80° N in February-April and in the Southern Hemisphere around 40° S-50° S during months August-October. The largest stratospheric ozone abundances in the Northern Hemisphere lie over North America and Eastern Asia extending eastward across the Pacific Ocean and in the Southern Hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3-D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere. The OMI/MLS ozone gridded climatology data, both calculated mean values and RMS uncertainties are made available to the science community via the NASA total ozone mapping spectrometer (TOMS) website http://toms.gsfc.nasa.gov.

  13. Tropospheric ozone variability in the tropics from ENSO to MJO and shorter timescales

    NASA Astrophysics Data System (ADS)

    Ziemke, J. R.; Douglass, A. R.; Oman, L. D.; Strahan, S. E.; Duncan, B. N.

    2015-07-01

    Aura OMI and MLS measurements are combined to produce daily maps of tropospheric ozone beginning October 2004. We show that El Niño-Southern Oscillation (ENSO) related inter-annual change in tropospheric ozone in the tropics is small in relation to combined intra-seasonal/Madden-Julian Oscillation (MJO) and shorter timescale variability by a factor of ~ 3-10 (largest in the Atlantic). Outgoing longwave radiation (OLR), taken as a proxy for convection, suggests that convection is a dominant driver of large-scale variability of tropospheric ozone in the Pacific from inter-annual (e.g., ENSO) to weekly periods. We compare tropospheric ozone and OLR satellite observations with two simulations: (1) the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) that uses observed sea surface temperatures and is otherwise free-running, and (2) the NASA Global Modeling Initiative (GMI) chemical transport model (CTM) that is driven by Modern Era Retrospective-Analysis for Research and Applications (MERRA) analyses. It is shown that the CTM-simulated ozone accurately matches measurements for timescales from ENSO to intra-seasonal/MJO and even 1-2-week periods. The CCM simulation reproduces ENSO variability but not shorter timescales. These analyses suggest that a model used to delineate temporal and/or spatial properties of tropospheric ozone and convection in the tropics must reproduce both ENSO and non-ENSO variability.

  14. Tropospheric ozone variability in the tropics from ENSO to MJO and shorter timescales

    NASA Astrophysics Data System (ADS)

    Ziemke, J. R.; Douglass, A. R.; Oman, L. D.; Strahan, S. E.; Duncan, B. N.

    2015-03-01

    Aura OMI and MLS measurements are combined to produce daily maps of tropospheric ozone beginning October 2004. We show that El Ni no Southern Oscillation (ENSO) related inter-annual change in tropospheric ozone in the tropics is small compared to combined intra-seasonal/Madden-Julian Oscillation (MJO) and shorter timescale variability by a factor ~ 3-10 (largest in the Atlantic). Outgoing Longwave Radiation (OLR) indicates further that deep convection is the primary driver of the observed tropospheric ozone variability from ENSO down to weekly timescales. We compare tropospheric ozone and OLR satellite observations with two simulations: (1) the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) that uses observed sea surface temperatures and is otherwise free-running, and (2) the NASA Global Modeling Initiative (GMI) chemical transport model (CTM) that is driven by Modern-Era Retrospective Analysis for Research and Applications (MERRA) analyses. It is shown that the CTM-simulated ozone accurately matches measurements for timescales from ENSO to intra-seasonal/MJO and even 1-2 week periods; however (though not unexpected) the CCM simulation reproduces ENSO variability but not shorter timescales. These analyses suggest that using a model to delineate temporal/spatial properties of tropospheric ozone and convection in the tropics will require that the model reproduce the non-ENSO variability that dominates.

  15. Rapid increases in tropospheric ozone production and export from China: A view from AURA and TM5

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Neu, J. L.; Williams, J. E.; Bowman, K. W.; Worden, J. R.; Boersma, K. F.

    2015-12-01

    Eastern Asia has the fastest growing anthropogenic emissions in the world, possibly affecting both the pollution in the local troposphere as well as in the trans-Pacific region. Local measurements over Asia show that tropospheric ozone (O3) has increased by 1 to 3% per year since the start of the millennium. This increase is often invoked to explain positive tropospheric O3 trends observed in western US, but to date there is no unambiguous evidence showing that enhanced Asian pollution is responsible for these trends. In this research we use observations of tropospheric O3 from TES (Tropospheric Emission Spectrometer, onboard AURA), tropospheric NO2 measurements from OMI (Ozone Monitoring Instrument, onboard AURA) and lower stratospheric observations of O3 from MLS (Microwave Limb Sounder, onboard AURA) in combination with the TM5 CTM. Satellite-based studies focusing on tropospheric O3 and NO2 have the potential to close the gap left by previous studies on air quality since spaceborne data provide large-scale observational evidence that both O3 precursor concentrations and tropospheric O3 levels are rapidly changing over source receptor areas. We show the increased ability of TM5 to reproduce the 2005-2010 observed rapid rise in free tropospheric O3 of 7% over China from TES, once OMI NO2 measurements were implemented in TM5 to update NOX emissions. MLS observations on lower stratospheric O3 have the potential to improve the stratosphere-troposphere exchange (STE) estimate in TM5 which is mainly driven by ECMWF meteorological fields. Constraining the TM5 modelled trend of the STE contribution to the 3-9 km partial O3 column using MLS observations of stratospheric O3 lead to a better explanation of the sources of the free tropospheric O3 trends over China. Based on the OMI inferred TM5 updates in NOX emissions, the impact of Asian O3 and its precursors on the free troposphere (3-9 km) over the western US could be quantified. Large import from China offsets the

  16. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    NASA Technical Reports Server (NTRS)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  17. Inter-Annual and Decadal Changes in Tropospheric and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jr. R.; Chandra, S.

    2011-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and studying their long-term changes. Using this technique, we have produced a 32-year (1979-2010) long record of tropospheric and stratospheric ozone from the combined Total Ozone Mapping Spectrometer (Toms) and OMI. The analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual changes of 30-40 Dobson Units (DU). Tropospheric ozone also indicates a QBO signal in the peak to peak changes varying from 2 to 7 DU. Decadal changes in global stratospheric ozone indicate a turnaround in ozone loss around mid 1990's with most of these changes occurring in the Northern Hemisphere from the subtropics to high latitudes. The trend results are generally consistent with the prediction of chemistry climate models which include the reduction of ozone destroying substances beginning in the late 1980's mandated by the Montreal Protocol.

  18. TOMS Tropical Tropospheric Ozone Data Sets at the University of Maryland Website

    NASA Technical Reports Server (NTRS)

    Kochhar, A. K.; Thompson, A. M.; Hudson, R. D.; Frolov, A. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Since 1997, shortly after the launch of the Earth-Probe TOMS (Total Ozone Mapping Spectrometer) satellite instrument, we have been processing data in near-real time to post maps of tropical tropospheric ozone at a website: metosrv2.umd.edu/-tropo. Daily, 3-day and 9-day averages of tropical tropospheric ozone column depth (TTO) are viewable from 10N to 10S. Data can be downloaded (running 9-day means) from 20N-30S. Pollution events are trackable along with dynamically-induced variations in tropospheric ozone column. TOMS smoke aerosol (toms.gsfc.nasa.gov) can be used to interpret biomass burning ozone, as for example, during the extreme ozone and smoke pollution period during the ENSO-related fires of August November 1997. During that time plumes of ozone and smoke were frequently decoupled and ozone from Indonesian fires and from Africa merged in one large feature by late October 1997. In addition to the Earth-Probe TOMS record, data as half-month averages and as daily 9-day means from the Nimbus 7 TOMS instrument are at the metosrv2.umd.edu/-tropo website. A guide to the website and examples of ozone time-series and maps will be shown.

  19. Monitoring the distribution of tropospheric ozone concentration over Pakistan by using OMI/MLS satellite observations

    NASA Astrophysics Data System (ADS)

    Noreen, Asma; Fahim Khokhar, Muhammad; Murtaza, Rabbia; Zeb, Naila

    2016-07-01

    Pakistan is a semi-arid, agricultural country located in Indian Sub-continent, Asia. Due to exponential population growth, poor control and regulatory measures and practices in industries, it is facing a major problem of air pollution. The concentration of greenhouse gases and aerosols are showing an increasing trend in general. One of these greenhouse gases is tropospheric ozone, one of the criteria pollutant, which has a radiative forcing (RF) of about 0.4 ± 0.2 Wm-2, contributing about 14% of the present total RF. Spatial distribution and temporal evolution of tropospheric ozone concentration over Pakistan during 2004 to 2014 was studied by using combined OMI/MLS product, which was derived by tropospheric ozone residual (TOR) method. Results showed an overall increase of 3.2 ± 2.2 DU in tropospheric ozone concentration over Pakistan since October 2004. The mean spatial distribution showed high concentrations of ozone in the Punjab and southern Sindh where there is high population densities along with rapid urbanization and enhanced anthropogenic activities. The seasonal variations were observed in the provinces of the country and TO3 VCDs were found to be high during summer while minimum during winter. The statistical analysis by using seasonal Mann Kendal test also showed strong positive trends over the four provinces as well as in major cities of Pakistan. These variations were driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NOx and VOCs and agricultural fire activities in Pakistan. A strong correlation of 97% was found between fire events and tropospheric ozone concentration over the country. The results also depicted the influence of UV-B radiations on the tropospheric ozone concentration over different regions of Pakistan especially in Baluchistan and Sindh provinces.

  20. Elevated Tropospheric Ozone Over the South Tropical Atlantic in January-February 1999: An Ozone Paradox Due to Interhemispheric Transport, Lightning, or Stratospheric Exchange?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Doddridge, Bruce G.; Witte, Jacquelyn C.; Hudson, Robert D.; Luke, Winston T.; Johnson, James E.; Johnson, Bryan J.; Oltmans, Samuel J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On this first North American to southern African oceanographic cruise with ozonesonde launches (January and February 1999 on board the NOAA Research Vessel Ronald H Brown between Norfolk, VA, and Cape Town, South Africa) we found: (1) high ozone, CO, and aerosols off northern equatorial Africa from biomass burning, but even higher ozone concentrations off southern Africa which was not burning - an "ozone paradox"; (2) TOMS satellite evidence that south Atlantic elevated ozone in January-February 1999 was a regional feature similar in extent to the well-known September-October ozone maximum. Several mechanisms are considered to explain the "ozone paradox." Convection transporting air from the lower troposphere rich in ozone and/or ozone precursors to the upper troposphere through the ITCZ (intertropical Convergence Zone) may lead to cross-hemisphere transport of pollution. This is supported by trajectory linkage of lower-tropospheric ozone maxima with smoke seen by the TOMS satellite. Lightning-generated NO (nitric oxide) leading to ozone peaks of > 100 ppbv observed at 7-10 km altitude is another explanation. The TRMM (Tropical Rainfall Measuring Mission) Lightning Imaging Sounder shows many lightning flashes over southern Africa, which trajectories link to the high-ozone layers south of the ITCZ. The highest ozone peaks in the middle troposphere correspond to very low water vapor, which may point to photochemical destruction of ozone or subsidence from the upper troposphere which had interacted with stratospheric ozone.

  1. A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements

    NASA Astrophysics Data System (ADS)

    Ziemke, J. R.; Chandra, S.; Labow, G. J.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-09-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean/Asia region in summer months. High levels of tropospheric ozone in the Northern Hemisphere also persist in mid-latitudes over the eastern part of the North American continent extending across the Atlantic Ocean and the eastern part of the Asian continent extending across the Pacific Ocean. For stratospheric ozone climatology from MLS, largest column abundance is in the Northern Hemisphere in the latitude range 70° N-80° N in February-April and in the Southern Hemisphere around 40° S-50° S during August-October. Largest stratospheric ozone lies in the Northern Hemisphere and extends from the eastern Asian continent eastward across the Pacific Ocean and North America. With the advent of many newly developing 3-D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere. The OMI/MLS gridded ozone climatology data are made available to the science community via the NASA Goddard Space Flight Center ozone and air quality website http://ozoneaq.gsfc.nasa.gov/.

  2. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  3. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.

  4. Trends of Rural Tropospheric Ozone at the Northwest of the Iberian Peninsula

    PubMed Central

    Saavedra, S.; Rodríguez, A.; Souto, J. A.; Casares, J. J.; Bermúdez, J. L.; Soto, B.

    2012-01-01

    Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80's–90's, until the application of NOx reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions. PMID:22649298

  5. Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations

    NASA Astrophysics Data System (ADS)

    Pan, L. L.; Honomichl, S. B.; Randel, W. J.; Apel, E. C.; Atlas, E. L.; Beaton, S. P.; Bresch, J. F.; Hornbrook, R.; Kinnison, D. E.; Lamarque, J.-F.; Saiz-Lopez, A.; Salawitch, R. J.; Weinheimer, A. J.

    2015-09-01

    A recent airborne field campaign over the remote western Pacific obtained the first intensive in situ ozone sampling over the warm pool region from oceanic surface to 15 km altitude (near 360 K potential temperature level). The new data set quantifies ozone in the tropical tropopause layer under significant influence of convective outflow. The analysis further reveals a bimodal distribution of free tropospheric ozone mixing ratio. A primary mode, narrowly distributed around 20 ppbv, dominates the troposphere from the surface to 15 km. A secondary mode, broadly distributed with a 60 ppbv modal value, is prominent between 3 and 8 km (320 K to 340 K potential temperature levels). The latter mode occurs as persistent layers of ozone-rich drier air and is characterized by relative humidity under 45%. Possible controlling mechanisms are discussed. These findings provide new insight into the physical interpretation of the "S"-shaped mean ozone profiles in the tropics.

  6. Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer

    NASA Astrophysics Data System (ADS)

    Hayashida, S.; Liu, X.; Ono, A.; Yang, K.; Chance, K.

    2015-09-01

    We report observations from space using ultraviolet (UV) radiance for significant enhancement of ozone in the lower troposphere over central and eastern China (CEC). The recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite revealed the spatial and temporal variation of ozone distributions in multiple layers in the troposphere. We compared the OMI-derived ozone over Beijing with airborne measurements by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. The correlation between OMI and MOZAIC ozone in the lower troposphere was reasonable, which assured the reliability of OMI ozone retrievals in the lower troposphere under enhanced ozone conditions. The ozone enhancement was clearly observed over CEC, with Shandong Province as its center, and was most notable in June in any given year. Similar seasonal variations were observed throughout the 9-year OMI measurement period of 2005 to 2013. A considerable part of this ozone enhancement could be attributed to the emissions of ozone precursors from industrial activities and automobiles, and possibly from open crop residue burning (OCRB) after the winter wheat harvest. The ozone distribution presented in this study is also consistent with some model studies. The lower tropospheric ozone distribution is first shown from OMI retrieval in this study, and the results will be useful in clarifying any unknown factors that influence ozone distribution by comparison with model simulations.

  7. In-situ measurements of tropospheric and stratospheric ozone over Hyderabad

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sreenivasan, S.; Sinha, P. R.

    The Study of the ozone concentration and its variability is one of the key indexes for environmental and ecological degradation While the stratospheric ozone absorbs the harmful ultraviolet radiation between 280-320 nm band, the tropospheric ozone is formed in the elevated layers up to 10km above ground level through the photochemical decomposition of the precursor gases like NOx, VOCs and non-methane hydrocarbons (NMHCs) released from the earth surface. Ozone studies are also vital for the understanding of solar terrestrial coupling as well as the ozone chemistry on a given site and its surroundings. Continuous measurements of vertical profile of ozone and various meteorological parameters (i.e. temperature, pressure, humidity, wind speed and direction) over one year period were made over Hyderabad using high altitude plastic balloons, in order to investigate i. variations of ozone in the troposphere and stratosphere, ii. stratospheric warming iii. coupling between upper troposphere and lower stratosphere (UTLS) region. Ozonesonde (Electro Chemical Cell) coupled with GPS RS80-15N radiosonde was used for the measurement of Ozone and meteorological parameters.

  8. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    USGS Publications Warehouse

    Peterson, D.L.; Bowers, Darci

    1999-01-01

    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  9. The Impact of Emissions on Tropospheric Ozone over the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    David, L. M.; Ravishankara, A. R.; Brewer, J.

    2015-12-01

    Asia is a region of intense solar radiation, high water vapour abundance, and consequent high photochemical activity. The anthropogenic emissions from this region continue to grow. The abundance of tropospheric ozone-a product of this photochemical activity, an important climate gas, and an air pollutant-is examined using GEOS-Chem, a global three-dimensional chemical transport model (www.geos-chem.org). We have examined ozone abundances in the boundary layer, and mid and upper troposphere over the Indian subcontinent, a region with rapid growth in industrial, urbanization, transportation and agricultural activities. The work focuses on the export and import of tropospheric ozone and its precursors, out of and into the Indian subcontinent. The model simulations are compared against a comprehensive data set on ozone from soundings, MOZAIC aircraft data, and surface observations. Detailed modeling studies that enable an understanding of the impact of emission (particularly NOx) on tropospheric ozone are evaluated for the period of 15 years (2000-2014), when emissions were increasing rapidly. Modeling runs were conducted with emissions removed, emissions included, and emissions scaled by certain factors to study the sensitivity of ozone abundances to emissions from various regions of interest.

  10. Sources of HOx and production of ozone in the upper troposphere over the United States

    NASA Astrophysics Data System (ADS)

    Jaeglé, L.; Jacob, D. J.; Brune, W. H.; Tan, D.; Faloona, I. C.; Weinheimer, A. J.; Ridley, B. A.; Campos, T. L.; Sachse, G. W.

    The sources of HOx (OH+peroxy radicals) and the associated production of ozone at 8-12 km over the United States are examined by modeling observations of OH, HO2, NO, and other species during the SUCCESS aircraft campaign in April-May 1996. The HOx concentrations measured in SUCCESS are up to a factor of 3 higher than can be calculated from oxidation of water vapor and photolysis of acetone. The highest discrepancy was seen in the outflow of a convective storm. We show that convective injection of peroxides (CH3OOH and H2O2) and formaldehyde (CH2O) from the boundary layer to the upper troposphere could resolve this discrepancy. More generally, the data collected over the central United States during SUCCESS suggest that local convection was a major source of HOx and NOx to the upper troposphere. The OH and HO2 observations together with the observations of NO allow us to directly calculate the ozone production in the upper troposphere and its dependence on NOx. We find an average net ozone production of 2 ppbv day-1 between 8 and 12 km over the continental United States in the spring. Ozone production was NOx-limited under essentially all the conditions encountered in SUCCESS. The high levels of HOx present in the upper troposphere stimulate ozone production and increase the sensitivity of ozone to NOx emissions from aircraft and other sources.

  11. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  12. First look at the NOAA Aircraft-based Tropospheric Ozone Climatology

    NASA Astrophysics Data System (ADS)

    Leonard, M.; Petropavlovskikh, I. V.; McClure-Begley, A.; Lin, M.; Tarasick, D.; Johnson, B. J.; Oltmans, S. J.

    2015-12-01

    The Global Greenhouse Gas Reference Network's aircraft program has operated since the 1990s as part of the NOAA Global Monitoring Division network to capture spatial and temporal variability in greenhouse tracers (i.e. CO2, CO, N2O, methane, SF6, halo- and hydro-carbons). Since 2005 the suite of airborne measurements also includes ozone, humidity and temperature profiling through the troposphere (up to 8 km). Light commercial aircraft are equipped with modified 2B Technology ozone monitors (Model 205DB), incorporate temperature and humidity probes, and include global positioning system instrumentation. The dataset was analyzed for tropospheric ozone variability at five continental US stations. As site locations within the Tropospheric Aircraft Ozone Measurement Program have flights only once (four times at one site) a month and begun a decade ago, this raises the question of whether this sampling frequency allows the derivation of an accurate vertical climatology of ozone values. We interpret the representativeness of the vertical and seasonal ozone distribution from aircraft measurements using multi-decadal hindcast simulations conducted with the GFDL AM3 chemistry-climate model. When available, climatology derived from co-located ozone-sonde data will be used for comparisons. The results of the comparisons are analyzed to establish altitude ranges in the troposphere where the aircraft climatology would be deemed to be the most representative. Aircraft-based climatologies are tested from two approaches: comparing the aircraft-based climatology to the daily sampled model and to the subset of model data with matching aircraft dates. Whenever the model and aircraft climatologies show significant seasonal differences, further information is gathered from a seasonal Gaussian distribution plot. We will report on the minimum frequency in flights that can provide adequate climatological representation of seasonal and vertical variability in tropospheric ozone.

  13. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion

    SciTech Connect

    Montzka, S.A.; Butler, J.H.; Myers, R.C.

    1996-05-31

    Analyses of air sampled from remote locations across the globe reveal that tropospheric chlorine attributable to anthropogenic halocarbons peaked near the beginning of 1994 and was decreasing at a rate of 25 {+-} parts per trillion per year by mid-1995. Although bromine from halons was still increasing in mid-1995, the summed abundance of these halogens in the troposphere is decreasing. To assess the effect of this trend on stratospheric ozone, estimates of the future stratospheric abundance of ozone-depleting gases were made for mid-latitude and polar regions on the basis of these tropospheric measurements. These results suggest that the amount of reactive chlorine and bromine will reach a maximum in the stratosphere between 1997 and 1999 and will decline thereafter if limits outlined in the adjusted and amended Montreal Protocol on Substances That Deplete the Ozone Layer are not exceeded in future years. 30 refs., 4 figs., 1 tab.

  14. Decline in the Tropospheric Abundance of Halogen from Halocarbons: Implications for Stratospheric Ozone Depletion

    PubMed

    Montzka; Butler; Myers; Thompson; Swanson; Clarke; Lock; Elkins

    1996-05-31

    Analyses of air sampled from remote locations across the globe reveal that tropospheric chlorine attributable to anthropogenic halocarbons peaked near the beginning of 1994 and was decreasing at a rate of 25 ± 5 parts per trillion per year by mid-1995. Although bromine from halons was still increasing in mid-1995, the summed abundance of these halogens in the troposphere is decreasing. To assess the effect of this trend on stratospheric ozone, estimates of the future stratospheric abundance of ozone-depleting gases were made for mid-latitude and polar regions on the basis of these tropospheric measurements. These results suggest that the amount of reactive chlorine and bromine will reach a maximum in the stratosphere between 1997 and 1999 and will decline thereafter if limits outlined in the adjusted and amended Montreal Protocol on Substances That Deplete the Ozone Layer are not exceeded in future years.

  15. The impact of lightning on tropospheric ozone chemistry using a new global lightning parametrisation

    NASA Astrophysics Data System (ADS)

    Finney, D. L.; Doherty, R. M.; Wild, O.; Abraham, N. L.

    2016-06-01

    A lightning parametrisation based on upward cloud ice flux is implemented in a chemistry-climate model (CCM) for the first time. The UK Chemistry and Aerosols model is used to study the impact of these lightning nitric oxide (NO) emissions on ozone. Comparisons are then made between the new ice flux parametrisation and the commonly used, cloud-top height parametrisation. The ice flux approach improves the simulation of lightning and the temporal correlations with ozone sonde measurements in the middle and upper troposphere. Peak values of ozone in these regions are attributed to high lightning NO emissions. The ice flux approach reduces the overestimation of tropical lightning apparent in this CCM when using the cloud-top approach. This results in less NO emission in the tropical upper troposphere and more in the extratropics when using the ice flux scheme. In the tropical upper troposphere the reduction in ozone concentration is around 5-10 %. Surprisingly, there is only a small reduction in tropospheric ozone burden when using the ice flux approach. The greatest absolute change in ozone burden is found in the lower stratosphere, suggesting that much of the ozone produced in the upper troposphere is transported to higher altitudes. Major differences in the frequency distribution of flash rates for the two approaches are found. The cloud-top height scheme has lower maximum flash rates and more mid-range flash rates than the ice flux scheme. The initial Ox (odd oxygen species) production associated with the frequency distribution of continental lightning is analysed to show that higher flash rates are less efficient at producing Ox; low flash rates initially produce around 10 times more Ox per flash than high-end flash rates. We find that the newly implemented lightning scheme performs favourably compared to the cloud-top scheme with respect to simulation of lightning and tropospheric ozone. This alternative lightning scheme shows spatial and temporal differences in

  16. Distribution of tropospheric ozone in the tropics from satellite and ozonesonde measurements

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Brackett, V. G.; Fakhruzzaman, K.

    1992-01-01

    Measurements from two independent satellite data sets have been used to derive the climatology of the integrated amount of ozone in the troposphere. These data have led to the finding that large amounts of ozone pollution are generated by anthropogenic activity originating from both the industrialized regions of the Northern Hemisphere and from the southern tropical regions of Africa. To verify the existence of this ozone anomaly over this region of the world, an ozonesonde capability has been established at Ascension Island, located downwind of the primary source region of this ozone pollution, which likely results from the photochemical oxidation of emissions emanating from the widespread burning of savanna. These first ozonesonde profiles suggest that much of the ozone generated over Africa during the 'burning season' (primarily July-October) reaches Ascension Island. These high levels of ozone in the lower troposphere become much lower by December. Elevated ozone concentrations in the middle troposphere are once again evident in February, which may be the result of biomass burning emissions being transported from western and northern Africa.

  17. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements

    NASA Astrophysics Data System (ADS)

    Clain, G.; Baray, J. L.; Delmas, R.; Diab, R.; Leclair de Bellevue, J.; Keckhut, P.; Posny, F.; Metzger, J. M.; Cammas, J. P.

    2009-03-01

    This paper presents a climatology and trends of tropospheric ozone in the Southwestern Indian Ocean (Reunion Island) and South Africa (Irene and Johannesburg). This study is based on a multi-instrumental dataset: PTU-O3 ozonesondes, DIAL LIDAR and MOZAIC airborne instrumentation. The seasonal profiles of tropospheric ozone at Reunion Island have been calculated from two different data sets: ozonesondes and LIDAR. The two climatological profiles are similar, except in austral summer when the LIDAR profiles show greater values in the free troposphere, and in the upper troposphere when the LIDAR profiles show lower values during all seasons. These results show that the climatological value of LIDAR profiles must be discussed with care since LIDAR measurements can be performed only under clear sky conditions, and the upper limit of the profile depends on the signal strength. In addition, linear trends have been calculated from ozonesonde data at Reunion and Irene. Considering the whole tropospheric column, the trend is slightly positive for Reunion, and more clearly positive for Irene. Trend calculations have also been made separating the troposphere into three layers, and separating the dataset into seasons. Results show that the positive trend for Irene is governed by the lower layer that is affected by industrial pollution and biomass burning. On the contrary, for Reunion Island, the strongest trends are observed in the upper troposphere, and in winter when stratosphere-troposphere exchange is more frequently expected.

  18. Tropical and Midlatitude Tropospheric Column Ozone Response to ENSO in GEOS-5 Assimilation of OMI and MLS Ozone Data

    NASA Astrophysics Data System (ADS)

    Olsen, M. A.; Wargan, K.; Pawson, S.

    2015-12-01

    Nine years of ozone observations from the Ozone Monitoring Instrument and Microwave Limb Sounder have been assimilated into the Goddard Earth Observing System Version 5 data assimilation system. We investigate the magnitude and spatial distribution of the influence by the El Niño Southern Oscillation (ENSO) on tropospheric column ozone (TCO) in the tropics through the middle latitudes. The tropospheric response in the tropics agrees well with previous studies. A newly identified two-lobed response symmetric about the Equator in the western Pacific/Indonesian region is consistent with the large-scale vertical transport. The ozone response is weaker in the middle latitudes, but significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Niño 3.4 index is significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations. The associated vertical transport is consistent with the sign of the sensitivity. ENSO related changes to the mean depth of the tropospheric column have little impact on the TCO response in the tropics but can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the nine-year assimilation are representative of the longer-term. This investigation brings insight to several seemingly disparate prior studies of the El Niño influence on tropospheric ozone in the middle latitudes. In addition, these results are valuable as a process-oriented assessment of the tropospheric response in model simulations.

  19. Photochemistry and transport of tropospheric ozone and its precursors in urban and remote environments

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel Craig

    Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O 3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O 3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 +/- 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH 3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background

  20. Ozone production efficiencies of acetone and peroxides in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Folkins, Ian; Chatfield, R.; Singh, H.; Chen, Y.; Heikes, B.

    HOx concentrations in the upper tropical troposphere can be enhanced by the presence of acetone and the convective injection of peroxides. These enhancements in HOx might be expected to increase ozone production by increasing the rate of the HO2+NO reaction. We show however that the convective enhancements of hydrogen peroxide (H2O2) and methyl hydroperoxide (CH3OOH) above steady state during the PEM West B campaign were largely restricted to air parcels of marine boundary layer origin in which the mean NO concentration was 8 pptv. The ozone production efficiencies of the two peroxides at such low NO concentrations are very small. Their impact on the ozone budget of the upper tropical troposphere during PEM West B was therefore probably modest. Unlike the peroxides, acetone in the upper tropical troposphere during PEM West B exhibited a positive correlation with NO. It also has a much larger ozone production efficiency than either H2O2 or CH3OOH. It therefore has a much greater potential for significantly increasing ozone production rates in the upper tropical troposphere.

  1. Tropical Tropospheric Ozone: A Multi-Satellite View From TOMS and Other Instruments

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Guo, Hua; Witte, Jacquelyn C.; Kucsera, Tom L.; Seybold, Matthew G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument can resolve episodic pollution events in the tropics and interannual and seasonal variability. Modified-residual (MR) Nimbus 7 tropical tropospheric ozone (TTO), two maps/month (1979-1992, 1-deg latitude by 2-deg longitude) within the region in which total ozone displays a tropical wave-one pattern (maximum 20S to 20N), are available in digital form at http://metosrv2.umd.edu/tropo. Also available are preliminary 1996-1999 MR-TTO maps based on real-time Earth-Probe (EP)/TOMS observations. Examples of applications are given.

  2. Insights into Tropical Tropospheric Ozone from the 1998-2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) Data Record

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Volker, W.; Kirchhoff, J. H.; Posny, Franaoise; Gert, J.; Coetzee, R.; Hoegger, Bruno; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We describe the first overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropics based on a three year, ten site record of ozone soundings from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, are at an archive: http://code9l6. gsfc.nasa.gov/Data_services/shadoz. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts usually peak between August and November and are lowest in the first half of the year. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the waning 1997-1998 Indian Ocean Dipole and ENSO (El Nino / Southern Oscillation), seasonal convection and pollution transport from Africa. Tropospheric ozone over the Atlantic Basin reflects regional subsidence and recirculation as well as pollution ozone from biomass burning.

  3. Insights Into Tropical Tropospheric Ozone From The 1998-2000 Shadoz (southern Hemisphere Additional Ozonesondes) Data Record

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Witte, J. C.; Oltmans, S. J.; Schmidlin, F. J.; Kirchhoff, V. W. J. H.; Posny, F.; Coetzee, G. J. R.; Hoegger, B.; Kawakami, S.; Ogawa, T.

    We describe the first overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropics based on a 3-year, 10-site record of ozone soundings from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. Ob- servations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Réunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristóbal, Galapagos; Natal, Brazil. The ozone data, with simultaneous tem- perature profiles to 7 hPa and relative humidity to 200 hPa, are at an archive: . Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) col- umn ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts usually peak be- tween August and November and are lowest in the first half of the year. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the wan- ing 1997-1998 Indian Ocean Dipole and ENSO, seasonal convection and pollution transport from Africa. Tropospheric ozone over the Atlantic Basin reflects regional subsidence and recirculation as well as pollution ozone from biomass burning.

  4. The role of isoprene oxidation in the tropospheric ozone budget in the tropics

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Levine, J. S.

    1985-01-01

    A comprehensive chemical mechanism for the oxidation of isoprene (a hydrocarbon, C5H8 emitted primarily by vegetation) by OH and O3 in the troposphere was developed and incorporated into a one-dimensional steady-state photochemical model of the troposphere. Flux boundary conditions for NOx (NO + NO2), HNO3, O3, and CO were used to investigate the changes produced in the tropospheric concentrations and integrated column of ozone from including isoprene chemistry in the model. Two calculations were performed at 15 deg N latitude for annual conditions using identical flux boundary conditions for NOx, HNO3, O3, and CO; in one calculation, the chemistry describing isoprene oxidation was included while in the other it was not. Both sets of calculations included reactions describing the chemistry of anthropogenic nonmethane hydrocarbons. The calculations showed decreases in concentrations of ozone throughout the troposphere when isoprene chemistry was included. Concentrations of NOx and HNO3 increased in the lower troposphere and decreased in the upper troposphere while concentrations of CO and PAN increased throughout the troposphere when isoprene chemistry was included. Implications of this study to the budgets of these species in the tropics is discussed.

  5. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  6. The meteorological environment of the tropospheric ozone maximum over the tropical South Atlantic Ocean

    SciTech Connect

    Krishnamurti, T.N.; Fuelberg, H.E.; Sinha, M.C.

    1993-06-20

    Atmospheric flow patterns are examined over the South Atlantic Ocean where a maximum of tropospheric ozone has been observed just west of southern Africa. The authors investigate the flow climatology during October and perform a case study for 6 days during October 1989. Analyses from the European Center for Medium-Range Weather Forecasting are employed, and a high-resolution global spectral model is used to prepare forecasts during the period. Horizontal and vertical motions are examined and used to prepare three-dimensional backward trajectories from the region of greatest ozone. An initially zonally symmetric distribution of ozone is treated as a passive tracer and advected by three dimensional flows forecast by the global model. Results from the passive tracer and advected by three-dimensional advection alone can produce a maximum of tropospheric ozone in the observed location. In addition, the trajectories suggest that by-products of biomass burning could be transported to the area of maximum ozone. Low-level flow from commonly observed regions of burning in Africa streams westward to the area of interest. Over Brazil, if the burning by-products are carried into the upper troposphere by convective process, they then could be transported eastward to the ozone feature in approximately 5 days. There is considerable subsidence over the tropical southern Atlantic, such that stratospheric influences also are a factor in producing the ozone maximum. Both planetary-scale and transient synoptic-scale circulation features play major roles in the various transport processes that influence the region. In summary, the observed tropospheric ozone maximum appears to be caused by a complex set of horizontal and vertical advections, transport from regions of biomass burning, and stratospheric influences. 61 refs., 17 figs.

  7. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C.

  8. Lidar-derived Correlations Between Lower-tropospheric Column and Surface Ozone: Implications for Satellite Observations

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Alvarez, R. J. _II, II; Kirgis, G.; Choukulkar, A.; Brewer, A.; Banta, R. M.; Weickmann, A. M.; Sandberg, S.; Olson, E.

    2015-12-01

    One of the data products that will be provided by the TEMPO satellite mission is 0-2 km ozone column concentration. To make inferences about surface air quality from this data product, the relationship between lower-tropospheric column and surface ozone concentrations and their diurnal, seasonal, and spatial variations have to be well understood. To characterize these relationships, we have used ozone profile observations obtained with NOAA's truck-based, scanning TOPAZ ozone lidar from several recent field campaigns including Discover-AQ Houston and Colorado, the Uintah Basin Wintertime Ozone Study (UBWOS), and the Las Vegas Ozone Study (LVOS). The TOPAZ lidar is ideally suited for this kind of study because it provides ozone profiles from about 15 m above ground level (AGL) up to 3 km AGL at high spatial and temporal resolution. We have used the lidar observations closest to the ground as a proxy for surface ozone and compared them to the 0-2 km AGL average column ozone concentrations measured with the lidar. Results from the Discover-AQ Colorado campaign show that in the afternoon, when the boundary layer (BL) was deep and well mixed, ozone column and surface concentrations agreed quite well. However, during the morning hours, ozone column concentrations were significantly higher than those at the surface, because ozone was depleted in a shallow surface layer due to titration and deposition, whereas ozone levels in the residual layer aloft remained moderately high. The analysis of column and surface ozone correlations using ozone lidar observations from the Discover-AQ Houston, UBWOS and LVOS campaigns is currently underway. The results from these studies will provide additional insights into the relationship between column and surface ozone, in particular their variation as a function of measurement location and season, and their dependence on BL processes such as mixed layer height evolution, land-sea breeze circulation, and terrain-induced flows.

  9. Reactive Nitrogen, Ozone and Ozone Production in the Arctic Troposphere and the Impact of Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; daSilva, A.; Diskin, G. S.; Duncan, B. N.; Huey, L. C.; Knapp, D. J.; Montzka, D. D.; Nielsen, J. E.; Olson, J. R.; Pawson, S.; Weinheimer, A. J.

    2011-01-01

    We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3

  10. Biomonitoring of tropospheric ozone phytotoxicity in rural Catalonia

    NASA Astrophysics Data System (ADS)

    Ribas, Angela; Peñuelas, Josep

    The ozone (O 3) phytotoxicity in rural areas of Catalonia (NE Spain) and the biomonitoring capacity of Bel-W3 tobacco ( Nicotiana tabacum) cultivars were assessed by determining the percentage of leaf area injured by ozone in plants of this cultivar exposed from spring to autumn since 1995-1999. The study was conducted simultaneously on nine field sites where ground level ozone concentrations and meteorological parameters were continuously monitored. Geographical, seasonal and annual variations of ozone damage rate and their links with meteorological conditions were studied. Ozone concentrations and leaf damage increased at the end of spring and the beginning of summer. Coastal sites generally presented higher O 3 concentrations than inland and mountain sites. These mountain sites were the most sensitive ones to ozone toxicity. The ozone concentrations correlated well with ozone injury. However, at this local scale the ozone levels did not fully account for all the observed injury (only 11%). The response of tobacco plants to ozone concentrations and therefore its biomonitoring capacity depended also on different environmental conditions, mainly those linked to stomatal behaviour such as vapour pressure deficit. The categorization of leaf damage in 10% intervals and its averaging throughout the whole study period and the whole region, strongly improved (99% of variance accounted) the relationship with ozone concentrations expressed as AOT20 (accumulated over a cut-off of 20 ppb v). N. tabacum cultivar Bel-W3 is thus a very good biomonitor of ozone concentrations in the long term at the regional scale. Taking into account the phytotoxical response of this sensitive tobacco cultivar, we propose the 1.28 ppm v h biweekly AOT40 (with a solar radiation threshold of 50 W m -2) as a damage threshold level for sensitive species.

  11. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    NASA Technical Reports Server (NTRS)

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; Newchurch, Michael J.; Megretskaia, Inna A.; Chatfield, Robert B.

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of <30 DU uniformly distributed south of 35 S during all seasons, and relatively high tropospheric column ozone of >33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  12. Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument

    NASA Astrophysics Data System (ADS)

    Liu, Jane J.; Jones, Dylan B. A.; Worden, John R.; Noone, David; Parrington, Mark; Kar, Jay

    2009-03-01

    We use the GEOS-Chem chemical transport model to interpret observations of tropospheric ozone from the Tropospheric Emission Spectrometer (TES) satellite instrument in summer 2005. Observations from TES reveal elevated ozone in the middle troposphere (500-400 hPa) across North Africa and the Middle East. Observed ozone abundances in the middle troposphere are at a maximum in summer and a minimum in winter, consistent with the previously predicted summertime "Middle East ozone maximum." This summertime enhancement in ozone is associated with the Arabian and Sahara anticyclones, centered over the Zagros and Atlas Mountains, respectively. These anticyclones isolate the middle troposphere over northeast Africa and the Middle East, with westerlies to the north and easterlies to the south, facilitating the buildup of ozone. Over the Middle East, we find that in situ production and transport from Asia provides comparable contributions of 30-35% to the ozone buildup. Over North Africa, in situ production is dominant (at about 20%), with transport from Asia, North America, and equatorial Africa each contributing about 10-15% to the total ozone. We find that although the eastern Mediterranean is characterized by strong descent in the middle and upper troposphere in summer, transport from the boundary layer accounts for about 25% of the local Middle Eastern contribution to the ozone enhancement in the middle troposphere. This upward transport of boundary layer air is associated with orographic lifting along the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water.

  13. Insights into Tropospheric Ozone from the INTEX Ozonesonde Network Study (IONS)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; Kucsera, T. L.; Merrill, J. T.; Morris, G.; Newchurch, M. J.; Oltmans, S. J.; Schmidlin, F. J.; Tarasick, D. J.

    2004-01-01

    Ozone profile data from soundings integrate models, aircraft and other ground-based measurements for better interpretation of atmospheric chemistry and dynamics. A well-designed network of ozonesonde stations, with consistent sampling, can answer questions not possible with short campaigns or current satellite technology. The SHADOZ (Southern Hemisphere Additional Ozonesondes) project, for example, has led to these findings about tropical ozone: definition of the zonal tropospheric wave-one pattern in equatorial ozone, characterization of the "Atlantic ozone paradox" and establishment of a link between tropical Atlantic and Indian Ocean pollution. Building on the SHADOZ concept, a short-term ozone network was formed in July-August 2004 to coordinate ozonesonde launches during the ICARTT/INTEX/NEAQS (International Consortium on Atmospheric Research on Transport and Transformation)/Intercontinental Transport Experiment/New England Air Quality Study. In IONS (INTEX Ozonesonde Network Study), more than 250 soundings, with daily frequency at half the sites, were launched from eleven North American stations and an oceanographic ship in the Gulf of Maine. Although the goal was to examine pollution influences under stable high-pressure systems and transport associated with "warm conveyor belt" flows, the INTEX study region was dominated by a series of weak frontal system that mixed aged pollution with stratospheric ozone in the middle troposphere. Deconvoluting ozone sources provides new insights into ozone in the transition between mid-latitude and polar air.

  14. Impact of Flow-Dependent Error Correlations and Tropospheric Chemistry on Assimilated Ozone

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Stajner, I.; Hayashi, H.; Pawson, S.; Jones, D. B. A.

    2003-01-01

    The presentation compares different versions of a global three-dimensional ozone data assimilation system developed at NASA's Data Assimilation Office. The Solar Backscatter Ultraviolet/2 (SBUV/2) total and partial ozone column retrievals are the sole data assimilated in all of the experiments presented. We study the impact of changing the forecast error covariance model from a version assuming static correlations with a one that captures a short-term Lagrangian evolution of those correlations. This is further combined with a study of the impact of neglecting the tropospheric ozone production, loss and dry deposition rates, which are obtained from the Harvard GEOS-CHEM model. We compare statistical characteristics of the assimilated data and the results of validation against independent observations, obtained from WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres. On the other hand, the main sensitivity to tropospheric chemistry is in the Tropics and sub-Tropics. The best agreement between the assimilated ozone and the in-situ sonde data is in the experiment using both flow-dependent error covariances and tropospheric chemistry.

  15. Detection of a tropospheric ozone anomaly using a newly developed ozone retrieval algorithm for an up-looking infrared interferometer

    NASA Astrophysics Data System (ADS)

    Lightner, K. J.; McMillan, W. W.; McCann, K. J.; Hoff, R. M.; Newchurch, M. J.; Hintsa, E. J.; Barnet, C. D.

    2009-03-01

    On 2 June 2003, the Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI) recorded an infrared spectral time series indicating the presence of a tropospheric ozone anomaly. The measurements were collected during an Atmospheric Infrared Sounder (AIRS) validation campaign called the 2003 AIRS BBAERI Ocean Validation Experiment (ABOVE03) conducted at the United States Coast Guard Chesapeake Light station located 14 miles due east of Virginia Beach, Virginia (36.91°N, 75.71°W). Ozone retrievals were performed with the Kurt Lightner Ozone BBAERI Retrieval (KLOBBER) algorithm, which retrieves tropospheric column ozone, surface to 300 mbar, from zenith-viewing atmospheric thermal emission spectra. KLOBBER is modeled after the AIRS retrieval algorithm consisting of a synthetic statistical regression followed by a physical retrieval. The physical retrieval is implemented using the k-Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) to compute spectra. The time series of retrieved integrated ozone column on 2 June 2003 displays spikes of about 10 Dobson units, well above the error of the KLOBBER algorithm. Using instrumentation at Chesapeake Light, satellite imaging, trace gas retrievals from satellites, and Potential Vorticity (PV) computations, it was determined that these sudden increases in column ozone likely were caused by a combination of midtropospheric biomass burning products from forest fires in Siberia, Russia, and stratospheric intrusion by a tropopause fold occurring over central Canada and the midwestern United States.

  16. Ozone Enhancement in the Lower Troposphere over Central and Eastern China as Observed from the space

    NASA Astrophysics Data System (ADS)

    Maki, T.; Hayashida, S.; Ono, A.; Kayaba, S.; Kajino, M.; Deushi, M.; Sekiyama, T. T.; Yamaji, K.; Liu, X.

    2015-12-01

    The recent roducts of the Ozone Monitoring Instrument (OMI) retrieved by Liu et al. (2010) revealed spatial and temporal variations in ozone distributions in multiple tropospheric layers. We compared the OMI-derived ozone over Beijing with the airborne measurements conducted by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. The reliability of the OMI ozone retrievals was verified at the lower troposphere under enhanced ozone conditions (Hayashida et al. 2015). Ozone enhancement was clearly observed over Central and Eastern China (CEC), with Shandong Province as its center and most notably in June in any given year. The seasonality of the ozone enhancement was similar throughout the nine-year OMI measurement period of 2005 to 2013. As introduced by Hayashida et al. (2015), we have defined ΔO3 as the difference between the retrieved ozone and a priori value. To identify the area of significant ozone enhancement in further detail, the areas whose ΔO3 show similar seasonal variation were grouped into a cluster using the statistical tool R. As a result, the area covering the provinces of Shandong, Hebei, and Shanxi presents a clear seasonal variation, with the maximum in June. The time series of ΔO3 at around 115-125°E along 36°N indicate clear seasonal variation with significant enhancement in June or July every year. At the western locations (<110°E), there is only a slight ozone enhancement in summer. In the east of the CEC, the amplitude of ozone enhancement in summer diminishes toward the east, as observed at 130°E, suggesting an outflow of ozone plumes from China. The lower tropospheric ozone distribution maps retrieved using OMI products are generally consistent with the results from the model simulations by MRI-CCM2 of the Meteorological Research Institute Japan as far as emissions due to industrial activities and automobile exhaust are concerned, although there are still a few differences in the ozone mixing

  17. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  18. The Governing Processes and Timescales of Stratosphere-to-Troposphere Transport and its Contribution to Ozone in the Arctic Troposphere

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Douglass, A. R.; Duncan, B. N.; Stolarski, R. S.; Witte, J. C.

    2009-01-01

    We used the seasonality of a combination of atmospheric trace gases and idealized tracers to examine stratosphere-to-troposphere transport and its influence on tropospheric composition in the Arctic. Maximum stratosphere-to-troposphere transport of CFCs and O3 occurs in April as driven by the Brewer-Dobson circulation. Stratosphere-troposphere exchange (STE) occurs predominantly between 40 deg N to 80 deg N with stratospheric influx in the mid-latitudes (30-70 deg N) accounting for 67.81 percent of the air of stratospheric origin in the Northern Hemisphere extratropical troposphere. Transport from the lower stratosphere to the lower troposphere (LT) takes three months on average, one month to cross the tropopause, the second month to travel from the upper troposphere (UT) to the middle troposphere (MT), and the third month to reach the LT. During downward transport, the seasonality of a trace gas can be greatly impacted by wet removal and chemistry. A comparison of idealized tracers with varying lifetimes suggests that when initialized with the same concentrations and seasonal cycles at the tropopause, trace gases that have shorter lifetimes display lower concentrations, smaller amplitudes, and earlier seasonal maxima during transport to the LT. STE contributes to O3 in the Arctic troposphere directly from the transport of O3 and indirectly from the transport of NOy . Direct transport of O3 from the stratosphere accounts for 78 percent of O3 in the Arctic UT with maximum contributions occurring from March to May. The stratospheric contribution decreases significantly in the MT/LT (20.25 percent of total O3) and shows a very weak March.April maximum. Our NOx budget analysis in the Arctic UT shows that during spring and summer, the stratospheric injection of NO y-rich air increases NOx concentrations above the 20 pptv threshold level, thereby shifting the Arctic UT from a regime of net photochemical ozone loss to one of net production with rates as high as +16 ppbv/month.

  19. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    PubMed

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %. PMID:27376369

  20. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone.

    PubMed

    Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S

    2012-05-16

    Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.

  1. Final Report, "Laboratory Studies of the Role of Sea Salt Bromine in Determining Tropospheric Ozone"

    SciTech Connect

    B. J. Finlayson-Pitts

    2005-06-20

    This document is a final report for the project DE-FG03-98ER62578, "Laboratory Studies of the Role of Sea Salt Bromine in Determining Tropospheric Ozone". It includes a technical summary, collaborations, educational contributions and the peer-reviewed scientific publications that have resulted from this research.

  2. Tropical upper tropospheric ozone enhancements due to potential vorticity intrusions over Indian sector

    NASA Astrophysics Data System (ADS)

    Sandhya, M.; Sridharan, S.; Indira Devi, M.; Gadhavi, H.

    2015-09-01

    Influence of potential vorticity (PV) intrusions at 13.5°N over and near Indian sector (50°E-90°E) on tropical upper tropospheric ozone mixing ratio (OMR) variations is demonstrated based on two case studies. Increase of ECMWF (European Centre for Medium-range Weather Forecasting) reanalysis (ERA)-interim OMR in the upper troposphere (200-500 hPa) is observed during the intrusion events consistently in both cases. The OMR also shows similar tongue like structure as PV and it even follows the spatial shift of the PV tongue. In addition, the enhancements in the upper tropospheric OMR during the intrusion events are confirmed using microwave limb sounder (MLS) ozone data at 216 hPa. It is suggested that the existence of strong downdrafts, associated with the ageostrophic circulation due to jet stream, which is inferred from longitude-height cross-section of ERA-interim vertical velocity could bring the ozone further down, though high PV tongue remains only at higher level (above 400 hPa). The importance of these results lies in demonstrating the role of PV intrusion events on the enhancement of tropical upper tropospheric ozone over Indian sector, where the impact of the PV intrusions is not well understood when compared to that over Pacific and Atlantic sectors.

  3. Evaluation of Near-Tropopause Ozone Distributions in the Global Modeling Initiative Combined Stratosphere/Troposphere Model with Ozonesonde Data

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Logan, Jennifer A.; Olsen, Mark A.

    2008-01-01

    The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. Model ozone is high biased at the SH tropical and NH midlatitude tropopause by approx. 45% in a 4 deg. latitude x 5 deg. longitude model simulation. Increasing the resolution to 2 deg. x 2.5 deg. increases the NH tropopause high bias to approx. 60%, but decreases the tropical tropopause bias to approx. 30%, an effect of a better-resolved residual circulation. The tropopause ozone biases appear not to be due to an overly vigorous residual circulation or excessive stratosphere/troposphere exchange, but are more likely due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. NH and tropical mean model lower stratospheric biases are less than 20%. In the upper troposphere, the 2 deg. x 2.5 deg. simulation exhibits mean high biases of approx. 20% and approx. 35% during April in the tropics and NH midlatitudes, respectively, compared to the pressure averaged climatology. However, relative-to-tropopause averaging produces upper troposphere high biases of approx. 30% and 70% in the tropics and NH midlatitudes. This is because relative-to-tropopause averaging better preserves large cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily model profiles. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the

  4. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  5. Elevated middle and upper troposphere ozone observed downstream of Atlantic tropical cyclones

    NASA Astrophysics Data System (ADS)

    Jenkins, Gregory S.; Robjhon, Miliaritiana L.; Reyes, Ashford; Valentine, Adriel; Neves, Luis

    2015-10-01

    During the peak period of hurricane activity in the summer of 2010, vertical profiles of ozone using ozonesondes were taken downstream of tropical cyclones in the Western and Eastern Atlantic Ocean basin at Barbados and Cape Verde. Measurements are taken for tropical cyclones Danielle, Earl, Fiona, Gaston, Julia and Igor. The measurements show an increase in ozone mixing ratios with air originating from the tropical cyclones at 5-10 km altitude. We suggest that observed lightning activity associated tropical cyclones and the subsequent production of NOX followed by upper level outflow and subsidence ahead of the tropical cyclones and aged continental outflow from West Africa thunderstorms produced observed increases in ozone mixing ratios. Hurricane Danielle showed the largest changes in ozone mixing ratio with values increasing from 25 ppb to 70 ppb between 22 and 25 August in the middle troposphere, near 450 hPa; warming and drying in the middle and lower troposphere. Measurements of ozone mixing ratios in Cape Verde show higher ozone mixing ratios prior to the passage of tropical storm Julia but low ozone mixing ratios and high relative humidity up to 300 hPa when the storm was in close proximity. This is due most likely the vertically transported from the marine boundary layer.

  6. Polar tropospheric ozone depletion events observed in IGY

    NASA Astrophysics Data System (ADS)

    Roscoe, H. K.; Roscoe, J.

    2006-05-01

    The Royal Society expedition to Antarctica established a base at Halley Bay, in support of the International Geophysical Year of 1957-1958. Surface ozone was measured during 1958 only, using a prototype Brewer-Mast sonde. The envelope of maximum ozone was an annual cycle from 10 ppbv in January to 22 ppbv in August. These values are 35% less at the start of the year and 15% less at the end than modern values from Neumayer, also a coastal site. This may reflect a general increase in surface ozone since 1958 and differences in summer at the less windy site of Halley, or it may reflect ozone loss on the inlet together with long-term conditioning. There were short periods in September when ozone values decreased rapidly to near-zero, and some in August when ozone values were rapidly halved. Such ozone-loss episodes, catalysed by bromine compounds, became well-known in the Artic in the 1980s, and were observed more recently in the Antarctic. In 1958, very small ozone values were recorded for a week in midwinter during clear weather with light winds. The absence of similar midwinter reductions at Neumayer, or at Halley in the few measurements during 1987, means we must remain suspicious of these small values, but we can find no obvious reason to discount them. The dark reaction of ozone and seawater ice observed in the laboratory may be fast enough to explain them if the salinity and surface area of the ice is sufficiently amplified by frost flowers.

  7. Intercomparison among tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Urita, N.; Ohta, E.; Hayashida, S.; Richter, A.; Burrows, J. P.; Liu, X.; Chance, K.; Ziemke, J. R.

    2005-12-01

    Rapid economical growth and industrial development in East Asian regions are causing serious air pollution. The influence of such air pollution is not limited to a local scale but reaches an intercontinental or hemispheric scale. Satellite-borne observations can monitor the behaviors of air pollutants in a global scale for long periods with a single instrument. In particular, ozone and nitrogen dioxide in the troposphere have a crucial role in air pollution, and many studies have tried to derive those species. Recently, instrumentations and retrieval techniques have made a lot of progress in measurements of tropospheric constituents. However, tropospheric observations from space need careful validation because of difficulties in detecting signals from the lower atmosphere through the middle atmosphere. In the present study, we intercompare the tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements in order to validate the satellite measurements. For the validation of tropospheric ozone, we utilize ozonesonde data provided by WOUDC, and three satellite-borne data (Tropospheric Ozone Residual (TOR), Cloud Slicing, and GOME) are intercompared. For nitrogen dioxide, we compare GOME observations with ground-based air monitoring measurements in Japan which are operationally conducted by the Ministry of the Environment Japan. This study demonstrates the validity and potential of those satellite datasets to apply for quantitative analysis of dispersion of air pollutants and their chemical lifetime. Acknowledgments. TOR data is provided by J. Fishman via http://asd-www.larc.nasa.gov/TOR/data.html. The ground observation data of nitrogen dioxide over Japan is provided by National Institute for Environmental Studies (NIES) under the collaboration study with NIES and Nara Women's University.

  8. A modeling study of effective radiative forcing and climate response due to tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Xie, Bing; Zhang, Hua; Wang, Zhili; Zhao, Shuyun; Fu, Qiang

    2016-07-01

    This study simulates the effective radiative forcing (ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol-climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI (Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone (TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere; and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m-2, thereby causing an increase in the global annual mean surface temperature by 0.36°C, and precipitation by 0.02 mm d-1 (the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4°C in Siberia. There were opposite changes in precipitation near the equator, with an increase of 0.5 mm d-1 near the Hawaiian Islands and a decrease of about -0.6 mm d-1 near the middle of the Indian Ocean.

  9. Tropospheric Ozone Climatology over Irene, South Africa, From 1990-1994 and 1998-2002

    NASA Technical Reports Server (NTRS)

    Diab, R. D.; Thompson, A. M.; Marl, K.; Ramsay, L.; Coetzee, G. J. R.

    2004-01-01

    This paper describes ozone profiles from sonde data during the period of NASA s TRACE-A and the more recent SHADOZ (Southern Hemisphere Additional Ozonesondes) period. The data were taken by the South African Weather Service at the Irene (25 deg.54 min S; 28 deg. 13 min. E) station near Pretoria, South Africa, an area that is a unique mixture of local industry, heavy biofuels use and importation of biomass burning ozone from neighboring countries to the north. The main findings are: (1) With its geographical position at the edge of the subtropical transition zone, mid- latitude dynamical influences are evident at Irene, predominantly in winter when upper tropospheric ozone is enhanced as a result of stratospheric-tropospheric exchange. (2) There has been an increase in the near-surface ozone amount between the early 1990s and a decade later, presumably due to an influx of rural population toward the Johannesburg-Pretoria area, as well as with industrial growth and development. (3) Most significant for developing approaches for satellite ozone profile climatologies, cluster analysis has enabled the delineation of a background and "most polluted" profile. Enhancements of at least 30% occur throughout the troposphere in spring and in certain layers increases of 100 % are observed.

  10. Chemistry-Transport Modeling of the Satellite Observed Distribution of Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Peters, Wouter; Krol, Maarten; Dentener, Frank; Thompson, Anne M.; Leloeveld, Jos; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC) from the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) to TTOC calculated by a chemistry-transport model (CTM). An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparisons indicate a widespread, systematic (20%) discrepancy over the tropical Atlantic Ocean, which maximizes during austral Spring. Although independent evidence from ozonesondes shows that some of the disagreement is due to satellite over-estimate of TTOC, the Atlantic mismatch is largely due to a misrepresentation of seasonally recurring processes in the model. Only minor differences between the model and observations over the Pacific occur, mostly due to interannual variability not captured by the model. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOX abundances in free tropospheric biomass burning plumes. The model showed the largest response to lightning NOX emissions, but systematic improvements could not be found. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrating tropospheric satellite observations into global ozone modeling studies. Conversely

  11. Origin of tropospheric ozone: A global three-dimensional model analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yuhang

    1997-12-01

    A three-dimensional global model is developed for simulations of tropospheric O3-NO x- hydrocarbon chemistry. The model is applied to examine the factors controlling concentrations of tropospheric O3 and to investigate the anthropogenic impact on tropospheric O3 and the oxidizing power of the atmosphere. The model includes state-of-the-art inventories of anthropogenic emissions, process-based formulations of natural emissions and deposition, and a detailed O3- NO x-hydrocarbon chemical mechanism. Model results of O3, NO, PAN, CO, ethane, acetone, and H2O2 are evaluated extensively with surface, ozonesonde, and aircraft measurements. The model reproduces well the observed seasonal variations of ozone in the troposphere, but underestimates the vertical gradient due to excessive vertical mixing in the extratropical upper troposphere and across the tropical trade wind inversion. Model results indicate that tropospheric O3 at present is controlled at all latitudes largely by a balance between chemical production and chemical loss in the tropospheric column. The contribution of transport from the stratosphere to O3 concentrations is 30% at mid latitudes in winter, 10% in summer, and 5-10% in the tropics. Sources of ozone in the upper, middle, and continental lower troposphere contribute in similar proportions (20-40%) to O3 levels at all altitudes throughout the troposphere. The springtime maximum of O3 observed in the remote northern extratropics can be explained by a phase overlap between O3 transported from the stratosphere which peaks in late winter to early spring, and O3 produced in the continental lower troposphere which peaks in late spring to summer. A new conceptual framework is introduced. The supply of CO and hydrocarbons dictates a lower limit of chemical production of O3 within the troposphere, which is evidently a larger source for tropospheric O3 than that from the stratosphere, thus bringing a long-standing debate to a closure. Model simulations for

  12. North American Tropospheric Ozone Profiles from IONS (INTEX Ozonesonde Network Study, 2004, 2006): Ozone Budgets, Polution Statistics, Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Dougherty, M.; Thompson, A. M.; Witte, J. C.; Miller, S. K.; Oltmans, S. J.; Cooper, O. R.; Tarasick, D. W.; Chatfield, R. B.; Taubman, B. F.; Joseph, E.; Baumgardner, D.; Merrill, J. T.; Morris, G. A.; Rappenglueck, B.; Lefer, B.; Forbes, G.; Newchurch, M. J.; Schmidlin, F. J.; Pierce, R. B.; Leblanc, T.; Dubey, M.; Minschwaner, K.

    2007-12-01

    During INTEX-B (both Milagro and IMPEX phases in Spring 2006) and during the summer TEXAQS- 2006/GOMACCS period, the INTEX Ozonesonde Network Study (IONS-06) coordinated ozonesonde launches over North America for Aura overpasses. IONS-06 supported aircraft operations and provided profiles for ozone budgets and pollution transport, satellite validation and evaluation of models. In contrast to IONS-04, IONS-06 had a greater range (all but one 2004 IONS site plus a dozen in California, New Mexico, Mexico City, Barbados and southwestern Canada), yielding more than 700 profiles. Tropospheric pollution statistics to guide Aura satellite retrievals and contrasts in UT-LS (upper tropospheric-lower stratospheric) ozone between 2004 and 2006 are presented. With IONS-04 dominated by low-pressure conditions over northeastern North America, UT ozone originated 25% from the stratosphere [Thompson et al., 2007a,b] with significant amounts from aged or relatively fresh pollution and lightning [Cooper et al., 2006; Morris et al., 2006]. Both IONS-04 and IONS-06 summer periods displayed a persistent UT ozone maximum [Cooper et al., 2007] over the south-central US. March 2006 IONS sondes over Mexico manifested persistent UT/LS gravity wave influence and more sporadic pollution. Regional and seasonal contrasts in IONS-06 ozone distributions are described. intexb/ions06.html

  13. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  14. North American Tropospheric Ozone Sources During Summer 2008 ARCTAS/ARC-IONS Derived from Laminar Identification with Tracers and Fire Maps

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Luzik, A. M.; Gallager, S. D.; Oltmans, S. J.; Tarasick, D. W.; Fromm, M.; Forbes, G.; Witte, J. C.; Soja, A.

    2009-05-01

    The ARC-IONS (ARCTAS Intensive Ozonesonde Network Study;, coordinated ozonesonde network, following the model of IONS-04 and IONS-06 [Thompson et al., 2007; 2008], operated over 17 Canadian and US sites in 2008, with daily launches (1-20 April; 26 June-12 July) during A-Train satellite overpasses, ~1300 local. The summer phase of ARC-IONS supported ARCTAS (Arctic Research of the Composition of the Troposphere with Aircraft and Satellites); sampling of ozone, CO and other tracers from ground bases and aircraft operating from Yellowknife (NT) and Cold Lake (AB) in Canada. The laminar identification (LID; Thompson et al., 2008; Yorks et al., 2009) method is applied to ozone and P-T-U profiles to determine ozone sources in the free troposphere. In addition to stratospheric ozone and a mixture of regional pollution-convection-lightning, about half of free tropospheric ozone is made up of recently advected ozone and background, aged ozone. Ensembles of back- trajectories are combined with LID results and satellite maps to extract fire contributions to column ozone over each ARC-IONS site. In addition, each sonde budget is disaggregated with respect to regional fire sources, eg California, western Canada, eastern US. An upper limit of 25% pyrogenic ozone, on average, is obtained from trajectory-fire coincidences over central and western Canada, with the "cleanest" site at Whitehorse (YK) and the most fire-perturbed at Kelowna (BC) and Stonyplain (Edmonton). The fire fraction declines when likely altitude of fire impacts is considered. Western North American sounding sites in 2008 were heavily affected by US west coast and Siberian fires. Eastern Canadian and southern US fires were important sources of ozone over Goose Bay, Egbert and maritime Canada.

  15. Development of a Portable, Ground-based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zemker, Thomas; Fishman, Jack (Technical Monitor)

    1999-01-01

    The objective of this research project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This research project directly supports the goal of NASA's Earth Science Enterprise to understand the distribution and budget of tropospheric ozone (objective 1.5 of the Earth Science Strategic Enterprise Plan, 1998-2002). It can participate in ground validation experiments for TES, a tropospheric ozone satellite mission due to be launched in 2002. It can also be utilized for correlative ground measurements in future GTE (Global Tropospheric Experiment) and space-based ozone lidar missions, such as ORACLE. Multiple ground-based ozone lidar systems would improve the data obtained through current ozone-sonde networks. This prototype instrument could to serve as the basic unit for these and other future monitoring projects requiring multi-instrument networks, such as that proposed for the Global Tropospheric Ozone Project (GTOP). GTOP is currently being formulated by a scientific panel of the International Global Atmospheric Chemistry Project to meet its goal to better understand the processes that control the global distribution of tropospheric ozone. In order for the lidar to be widely deployed in networks, it must be fairly easy to use and maintain as well as being cost-competitive with a ground station launching ozonesondes several times a day. A second 2-year grant to continue this effort with students participating in ground tests and system improvements has been awarded by the Office of Equal Employment Opportunities (OEOP). This project also supports existing NASA lidar missions through its development of advanced, compact lidar technology. Innovations in both transmitters and receivers have been made in this project. Finally, this system could be modified in the future to probe more deeply into the stratosphere. This could be accomplished by increasing the

  16. The role of vegetation for tropospheric ozone balance: possible changes under future climate conditions

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Pullinen, Iida; Andres, Stefanie; Carriero, Giulia; Fares, Silvano; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Wahner, Andreas; Wildt, Jürgen; Mentel, Thomas F.

    2015-04-01

    Ozone (O3) is a phytotoxic trace gas in the troposphere where it is photochemically produced from volatile organic compounds (VOCs) and nitrogen oxides (NOx). The dominant sink of O3 in the air over areas with dense plant cover is dry deposition on plant surfaces. However, plants can also contribute to photochemical O3 formation because they emit biogenic VOCs (BVOCs). In this study, the role of vegetation for tropospheric ozone balance was investigated by considering the following processes: O3 depletion by dry deposition on plant surfaces, O3 depletion by gas phase reactions with plant emitted BVOCs, and photochemical O3 production from these BVOCs. Furthermore, drought and heat stress were applied to the plants, and the stress-induced changes of plant performance and the subsequent changes regarding the tropospheric ozone balance were investigated. Dry deposition of O3 in unstressed plants was dominated by O3 uptake through the plants stomata with negligible losses on cuticle and stem. For strong BVOC emitters, O3 destruction by gas phase reactions with BVOCs was significant at low NOx conditions. Switching from low NOx to high NOx conditions led to O3 production. A ratio of O3 formation rates over BVOC loss rates was measured for α-pinene as single BVOC and for BVOC mixtures emitted from real plants. For O3 formation under BVOC limited conditions, this ratio was in the range of 2-3 ppb/ppb. The ratio of O3 uptake/BVOC emission reflects the capability of a plant as a potential source of O3, while NOx concentrations and the BVOC/NOx ratio determine whether the emitted BVOCs act as an additional sink or a source of O3. O3 uptake rates and BVOC emission rates are affected by environmental variables such as temperature, light intensity and stresses to plants. The impacts of these variables on the two processes are different and thus the capability of a plant to be a source of O3 is also affected. As future climate change will bring more and intense heat waves and

  17. Ozone: Does It Affect Me?

    ERIC Educational Resources Information Center

    Wilson, Karla G.

    This curriculum unit on the ozone is intended for high school students and contains sections on environmental science and chemistry. It has been structured according to a learning cycle model and contains numerous activities, some of which are in a cooperative learning format. Skills emphasized include laboratory procedures, experimental design,…

  18. Global Radiative Forcing of Coupled Tropospheric Ozone and Aerosols in a Unified General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.

    2008-01-01

    Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.

  19. Improvement of GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.

    2015-12-01

    It has been shown that adding visible measurements in the Chappuis band to UV measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on ASTER and other surface reflectance spectra and MODIS BRDF climatology into the ozone profile algorithm using two approaches: fitting several EOFs (Empirical Orthogonal Functions) and scaling reflectance spectra. We also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval. These results clearly show the potential of using the visible to improve lower tropospheric ozone retrieval.

  20. Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Chen, Wei-Ting; Seinfeld, John H.

    2006-01-01

    A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II is applied to simulate an equilibrium CO2-forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols. The year 2100 CO2 concentration as well as the anthropogenic emissions of ozone precursors and aerosols/aerosol precursors are based on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2. Year 2100 global O3 and aerosol burdens predicted with changes in both climate and emissions are generally 5-20% lower than those simulated with changes in emissions alone; as exceptions, the nitrate burden is 38% lower, and the secondary organic aerosol burden is 17% higher. Although the CO2-driven climate change alone is predicted to reduce the global O3 concentrations over or near populated and biomass burning areas because of slower transport, enhanced biogenic hydrocarbon emissions, decomposition of peroxyacetyl nitrate at higher temperatures, and the increase of O3 production by increased water vapor at high NOx levels. The warmer climate influences aerosol burdens by increasing aerosol wet deposition, altering climate-sensitive emissions, and shifting aerosol thermodynamic equilibrium. Climate change affects the estimates of the year 2100 direct radiative forcing as a result of the climate-induced changes in burdens and different climatological conditions; with full gas-aerosol coupling and accounting for ozone and direct radiative forcings by the O2, sulfate, nitrate, black carbon, and organic carbon are predicted to be +0.93, -0.72, -1.0, +1.26, and -0.56 W m(exp -2), respectively, using present-day climate and year 2100 emissions, while they are predicted to be +0.76, -0.72, 0.74, +0.97, and -0.58 W m(exp -2

  1. Global Assimilation of EOS-Aura Data as a Means of Mapping Ozone Distribution in the Lower Stratosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Olsen, M.; Douglass, A.; Witte, J.; Strahan, S.; Livesey, N.

    2012-01-01

    Ozone in the lower stratosphere and the troposphere plays an important role in forcing the climate. However, the global ozone distribution in this region is not well known because of the sparse distribution of in-situ data and the poor sensitivity of satellite based observations to the lowermost of the atmosphere. The Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) instruments on EOS-Aura provide information on the total ozone column and the stratospheric ozone profile. This data has been assimilated into NASA s Global Earth Observing System, Version 5 (GEOS-5) data assimilation system (DAS). We will discuss the results of assimilating three years of OMI and MLS data into GEOS-5. This data was assimilated alongside meteorological observations from both conventional sources and satellite instruments. Previous studies have shown that combining observations from these instruments through the Trajectory Tropospheric Ozone Residual methodology (TTOR) or using data assimilation can yield useful, yet low biased, estimates of the tropospheric ozone budget. We show that the assimilated ozone fields in this updated version of GEOS-5 exhibit an excellent agreement with ozone sonde and High Resolution Dynamics Limb Sounder (HIRDLS) data in the lower stratosphere in terms of spatial and temporal variability as well as integrated ozone abundances. Good representation of small-scale vertical features follows from combining the MLS data with the assimilated meteorological fields. We then demonstrate how this information can be used to calculate the Stratosphere - Troposphere Exchange of ozone and its contribution to the tropospheric ozone column in GEOS-5. Evaluations of tropospheric ozone distributions from the assimilation will be made by comparisons with sonde and other in-situ observations.

  2. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  3. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-03-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m-2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the

  4. Evaluation of Global Model Simulation of Tropospheric Ozone from ECHAM6-HAMMOZ1 with Surface Measurements over the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Kaffashzadeh, Najmeh; Schultz, Martin G.; Lyapina, Olga; Schröder, Sabine; Stadtler, Scarlet

    2016-04-01

    Current chemistry transport models are generally successful in describing the principle features of the present-day global tropospheric ozone (O3) distribution, but they exhibit large differences of ozone concentrations over the Mediterranean region. The Mediterranean region can be perturbed by long-range pollution import from Northern Europe, North Africa and Asia, in addition to local emissions, which may all contribute to ozone concentrations in this area. Identifying the main drivers for Mediterranean ozone concentrations and understanding the reasons for the inter-model differences remain scientific challenges. To investigate the geographical distribution of tropospheric ozone over the Mediterranean, we analyze hourly surface ozone measurements from more than 1000 stations in the Tropospheric Ozone Assessment Report (TOAR) database and compare these to hourly model outputs from the global chemistry climate model ECHAM6-HAMMOZ1 for the year 2012. The daily maximum 8-hour running mean value of ozone mixing ratios is calculated for both model and observation and compared. The preliminary results show that the model captures many features of the ozone and its precursor concentrations in many regions of Europe throughout the year. However, it substantially underestimates ozone in the Po Valley region in summer and overestimates ozone over much of the Mediterranean region during spring. The reasons for this behavior will be investigated through detailed sensitivity studies with respect to VOC emissions, anthropogenic emissions, ozone deposition, specific chemical reactions, and long range-import of ozone and precursors.

  5. ``Cloud slicing'': A new technique to derive upper tropospheric ozone from satellite measurements

    NASA Astrophysics Data System (ADS)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.

    2001-05-01

    A new technique called cloud slicing has been developed for measuring upper tropospheric O3. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column O3 from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature-humidity and infrared radiometer (THIR) cloud-top pressure data to derive O3 column amounts in the upper troposphere. In this study, tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (referred to as TCO) measurements from the convective cloud differential (CCD) method with 100- to 400-hPa upper tropospheric column O3 amounts from cloud slicing, it is possible to estimate 400- to 1000-hPa lower tropospheric column O3 and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wave number 1 pattern in column O3 with the largest amounts in the Atlantic region (up to ˜15 DU in the 100- to 400-hPa pressure band and ˜25-30 DU in the 400- to 1000-hPa pressure band). Upper tropospheric O3 derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which are similar to the seasonal variability of CCD-derived TCO in the region. For the lower troposphere, the largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in the lower tropospheric O3 are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in O3 in the lower troposphere around the month of March which is not observed in the upper troposphere. The eastern Pacific indicates weak seasonal variability

  6. SHADOZ (Southern Hemisphere ADditional Ozonesondes): A Look at the First Three Years' (1998-2000) Tropospheric Ozone Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natai, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at an open archive: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, ENSO, and Madden-Julian circulation on convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude.

  7. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, FrançOise; Coetzee, Gert J. R.; Hoegger, Bruno; Kawakami, Shuji; Ogawa, Toshihiro; Fortuin, J. P. F.; Kelder, H. M.

    2003-01-01

    The first view of stratospheric and tropospheric ozone variability in the Southern Hemisphere tropics is provided by a 3-year record of ozone soundings from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network (http://croc.gsfc.nasa.gov/shadoz). Observations covering 1998-2000 were made over Ascension Island, Nairobi (Kenya), Irene (South Africa), Réunion Island, Watukosek (Java), Fiji, Tahiti, American Samoa, San Cristóbal (Galapagos), and Natal (Brazil). Total, stratospheric, and tropospheric column ozone amounts usually peak between August and November. Other features are a persistent zonal wave-one pattern in total column ozone and signatures of the quasi-biennial oscillation (QBO) in stratospheric ozone. The wave-one is due to a greater concentration of free tropospheric ozone over the tropical Atlantic than the Pacific and appears to be associated with tropical general circulation and seasonal pollution from biomass burning. Tropospheric ozone over the Indian and Pacific Oceans displays influences of the waning 1997-1998 El Niño, seasonal convection, and pollution transport from Africa. The most distinctive feature of SHADOZ tropospheric ozone is variability in the data, e.g., a factor of 3 in column amount at 8 of 10 stations. Seasonal and monthly means may not be robust quantities because statistics are frequently not Gaussian even at sites that are always in tropical air. Models and satellite retrievals should be evaluated on their capability for reproducing tropospheric variability and fine structure. A 1999-2000 ozone record from Paramaribo, Surinam (6°N, 55°W) (also in SHADOZ) shows a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone (ITCZ). A more representative tropospheric ozone climatology for models and satellite retrievals requires additional Northern Hemisphere tropical data.

  8. Tracking Potential Sources of Peak Ozone Concentrations in the Upper Troposphere over the Arabian Gulf Region

    NASA Astrophysics Data System (ADS)

    Spohn, Teresa; Rappenglück, Bernhard

    2015-04-01

    In August 2013, the Qatar Environment and Energy Research Institute (QEERI), was the first to launch temporally highly resolved ozonesondes in the Middle East region. The data from 20 launches consistently show changes in meteorological parameters at about 5.5 km above the surface, which are more pronounced following a change in synoptic conditions on 15 August 2013, including temperature inversions, corresponding change in potential temperatures, relative humidity, and significant wind shear. These changes are typically associated with a large scale subtropical subsidence layer in accordance with previous aircraft studies in this region. Below the inversion layer, the ozone follows typical patterns for lower tropospheric measurements, starting in the surface layer up to 0.5 km above the ground level around noon at about 66±15 ppbv. However, above the subsidence inversion, ozone mixing ratios begin to increase to 79±13 ppbv between 6-12 km with maximum values ~ 100 ppbv around 8 km, then decreasing again before reaching the stratosphere. Three-day HYSPLIT back trajectories indicate that ozone levels are typically about 17% lower in the 6-12 km range under wind flow conditions from the East than in cases when trajectories came from the Mediterranean. High pressure may lead to subsidence of ozone from the upper troposphere/lower stratosphere and eventually cause an increase of ozone mixing ratios by ~18% above average between 6-7 km, i.e. slightly above subtropical subsidence layer. Under the impact of regional convective activity and associated lightning, ozone mixing ratios can increase by more than 35% averaged over the 9-12 km altitude range. In both cases maximum ozone in the mid to upper troposphere reached more than 100 ppbv.

  9. Improving the Current Understanding of the Evolution and Vertical Processes of Tropospheric Ozone Using a Ground Based Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The GSFC TROPOZ DIAL measurements are analyzed alongside aircraft spirals over the lidar site, co-located ozonesonde launches, aerosol lidar profiles and other TOLNet ozone lidar profiles. In both case studies, back trajectories, meteorological maps, and comparisons to air quality models are presented to better explain the sources and evolution of ozone. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate

  10. Signature of tropospheric ozone and nitrogen dioxide from space: A case study for Athens, Greece

    NASA Astrophysics Data System (ADS)

    Varotsos, C.; Christodoulakis, J.; Tzanis, C.; Cracknell, A. P.

    2014-06-01

    The aim of the present study is to investigate the variability of the tropospheric ozone and nitrogen dioxide (NO2) columns over mainland Greece, by using observations carried out by satellite-borne instrumentation and Multi Sensor Reanalysis. The results obtained show that the tropospheric ozone residual (TOR) dispersed farther away than the tropospheric NO2 column (TNO), due to the longer TOR's lifetime in respect to that of TNO. This results in the influence of the air quality of the nearby southern islands from the air pollution of the greater Athens basin. Furthermore, the TOR and TNO columns over Athens, for the period October 2004 to December 2011 were found to be negatively correlated with a correlation coefficient -0.85, in contrast to recent findings which suggested strong positive correlation. Interestingly, this strong negative correlation into a slight positive correlation when the TNO concentration becomes higher than around 4 × 1015 molec cm-2, thus being best fitted by a quadratic relationship. In addition, the temporal evolution of TOR during 1979-1993 showed a decline of 0.2% per decade and just after 1993 it seems to obey a positive trend of 0.1% per decade, thus recovering during the period 1993-2011 almost 63% of the lost TOR amounts through the years 1979-1993. Finally, the association between TOR, the total ozone column (TOZ), the tropopause height and the outgoing longwave radiation (OLR) is presented by analysing observations during 1979-2011. An unexpected positive correlation between OLR and TOR was found, which may probably be attributed to the fact that enhanced abundance in tropospheric water vapor reduces the summertime TOR maximum by destructing ozone in the lower and middle troposphere through uptake mechanisms, thus emitting higher amounts of longwave radiation upwards.

  11. Impact of Surface Emissions to the Zonal Variability of Tropical Tropospheric Ozone and Carbon Monoxide for November 2004

    NASA Technical Reports Server (NTRS)

    Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.

    2008-01-01

    The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.

  12. Tropospheric ozone measurements at the equatorial region (1980-1988)

    NASA Technical Reports Server (NTRS)

    Ilyas, Mohammad

    1994-01-01

    Results from surface ozone measurements at Penang (5.5 deg N, 100 deg E) over 1980-88 period are presented. The study indicates the ozone concentrations undergoing significant diurnal and seasonal variations. The peak concentration are observed at around mid-day (up to 35 nb) but the O3 concentration generally drops to zero level in the early evening and remains unchanged until mid-morning. Monthly-averaged daily 1-h average concentrations are generally small (4-13 nb) and decrease continually from the early part of the year to the end. Frequently, varying local weather conditions seem to influence the O3 concentrations.

  13. Analysis of the effectiveness of the NEC Directive on the tropospheric ozone levels in Portugal

    NASA Astrophysics Data System (ADS)

    Barros, N.; Fontes, T.; Silva, M. P.; Manso, M. C.; Carvalho, A. C.

    2015-04-01

    The National Emission Ceilings Directive 2001/81/CE (NEC Directive) was adopted in the European Community in 2001 and went through a revision process in 2005. One of its main objectives is to improve the protection of the environment and human health against the risks of adverse effects from ground-level ozone, moving towards the long-term objective of not exceeding critical levels proved to effectively protect the populations and ecosystems. Considering such objectives, national emission ceilings were established imposing the years 2010 and 2020 as benchmarks. Ten years later, what was the effectiveness of this Directive concerning the control of tropospheric ozone levels in Portugal? In order to answer the previous question, annual ozone precursors' emissions (NOx, NMVOC) and annual atmospheric concentrations (NOx and O3) were analyzed between 1990 and 2011. The background concentrations were assessed in each environment type of air quality station (urban, suburban and rural) through their annual mean ozone concentration and the hourly information threshold exceedances (episodic peak levels). To evaluate the statistical differences in the inter-annual episodic peak levels, a Peak Ozone Index (POIx) was defined and calculated. The results show that, despite the achievement on the emissions NEC Directive goals, associated to the reduction of ozone precursors' emissions, and the decrease of ozone episodic peak levels, the mean tropospheric ozone concentrations significantly increased between 2003 and 2007 (p < 0.05) although the number of exceedances to the information threshold (180 μg m-3) has decreased. During the period of 1990-2000, before the implementation of the NEC Directive, the mean ozone values were 25% lower in rural stations, 26% in urban stations and 12% in suburban stations, demonstrating that the NEC policy based on NOx and NMVOCs emissions reduction does not lead to an effective overall reduction of ozone concentrations considering the reduction

  14. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (~20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories

  15. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (˜20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories

  16. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Yingying; Lin, Jintai; Chen, Jinxuan; Hu, Lu

    2016-02-01

    Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3), but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs) from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG), the United States National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory Global Monitoring Division (GMD), the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP), and the United States Environmental Protection Agency Air Quality System (AQS)), aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC)) and satellite measurements (two Ozone Monitoring Instrument (OMI) products). The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3 with the ground measurements

  17. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    PubMed

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results. PMID:22788103

  18. Effect of biomass burning, convective venting, and transport on tropospheric ozone over the Indian Ocean: Reunion Island field observations

    NASA Astrophysics Data System (ADS)

    Randriambelo, Tantely; Baray, Jean-Luc; Baldy, Serge

    2000-05-01

    Relationships between vertical distribution of tropospheric ozone at Reunion Island (21°S-55°E), satellite (NOAA advanced very high resolution radiometer) observations of fires, smoke plumes, and convective events in southeastern Africa and Madagascar, and analyses of meteorological situations (European Centre for Medium-Range Weather Forecasts) are presented. This study is based on 7 years (1992 to 1999) of 2-monthly PTU-O3 radiosoundings at Reunion. Results show, for the first time, that during 1995 tropospheric ozone content rose above average and that this year should be set apart as atypical. Stratospheric contributions are also ruled out using an identification method based on considerations of ozone, humidity, vertical stability, and meteorological conditions. The seasonal variation of ozone profiles during typical years and without the stratospheric contribution suggests that ozone contamination from biomass burning is a maximum during October in the whole free troposphere. During August, before the deep convection period, but already within the fire period, only the middle troposphere is contaminated by ozone inputs. By contrast, through November to December, well within the deep convection period, all the higher troposphere is contaminated. The comprehensive study of the observations in 1993, taken as a typical year, highlights the roles of convection and transport in contamination of remote oceanic regions. August contamination of the middle troposphere by about 70 ppbv of ozone is contrasted to October enhancement of the whole free troposphere by about 100 ppbv of ozone after the spreading of deep convective events. Fire satellite data further indicate that column integrated contamination level mainly depends on biomass burning intensity. Through August to October the fourfold increase of ozone concentration is comparable with the fivefold augmentation of fires. The redistribution of ozone with altitude depends on the convection intensity near source

  19. Human mortality effects of future concentrations of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    West, J. Jason; Szopa, Sophie; Hauglustaine, Didier A.

    2007-10-01

    Here we explore the effects of projected future changes in global ozone concentrations on premature human mortality, under three scenarios for 2030. We use daily surface ozone concentrations from a global atmospheric transport and chemistry model, and ozone-mortality relationships from daily time-series studies. The population-weighted annual average 8-h daily maximum ozone is projected to increase, relative to the present, in each of ten world regions under the SRES A2 scenario and the current legislation (CLE) scenario, with the largest growth in tropical regions, while decreases are projected in each region in the maximum feasible reduction (MFR) scenario. Emission reductions in the CLE scenario, relative to A2, are estimated to reduce about 190,000 premature human mortalities globally in 2030, with the most avoided mortalities in Africa. The MFR scenario will avoid about 460,000 premature mortalities relative to A2 in 2030, and 270,000 relative to CLE, with the greatest reductions in South Asia.

  20. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  1. Tropospheric Vertical Distribution of Tropical Atlantic Ozone Observed by TES during the Northern African Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Jourdain, L.; Worden, H. M.; Worden, J. R.; Bowman, K.; Li, Q.; Eldering, A.; Kulawik, S. S.; Osterman, G.; Boersma, K. F.; Fisher, B.; Rinsland, C. P.; Beer, R.; Gunson, M.

    2007-01-01

    We present vertical distributions of ozone from the Tropospheric Emission Spectrometer (TES) over the tropical Atlantic Ocean during January 2005. Between 10N and 20S, TES ozone retrievals have Degrees of Freedom for signal (DOF) around 0.7 - 0.8 each for tropospheric altitudes above and below 500 hPa. As a result, TES is able to capture for the first time from space a distribution characterized by two maxima: one in the lower troposphere north of the ITCZ and one in the middle and upper troposphere south of the ITCZ. We focus our analysis on the north tropical Atlantic Ocean, where most of previous satellite observations showed discrepancies with in-situ ozone observations and models. Trajectory analyses and a sensitivity study using the GEOS-Chem model confirm the influence of northern Africa biomass burning on the elevated ozone mixing ratios observed by TES over this region.

  2. PREDICTING THE IMPACT OF TROPOSPHERIC OZONE ON PLANTS AND ECOSYSTEMS AS A BASIS FOR SETTING NATIONAL AIR QUALITY STANDARDS

    EPA Science Inventory

    The Clean Air Act provides for establishing National Ambient Air Quality Standards (NAAQS) to protect public welfare (including crops, forests, ecosystems, and soils) from adverse effects of air pollutants, including tropospheric ozone. The formulation of policies is science-base...

  3. The reservoir of ozone in the boundary layer of the eastern United States and its potential impact on the global tropospheric ozone budget

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.; Fishman, J.; Browell, E. V.

    1985-01-01

    An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.

  4. Impact of road traffic emissions on tropospheric ozone in Europe for present day and future scenarios

    NASA Astrophysics Data System (ADS)

    Mertens, Mariano; Kerkweg, Astrid; Grewe, Volker; Jöckel, Patrick

    2016-04-01

    Road traffic is an important anthropogenic source of NOx, CO and non-methane hydrocarbons (NMHCs) which act as precursors for the formation of tropospheric ozone. The formation of ozone is highly non-linear. This means that the contribution of the road traffic sector cannot directly be derived from the amount of emitted species, because they are also determined by local emissions of other anthropogenic and natural sources. In addition, long range transport of precursors and ozone can play an important role in determining the local ozone budget. For a complete assessment of the impact of road traffic emissions it is therefore important to resolve both, local emissions and long range transport. This can be achieved by the use of the newly developed MECO(n) model system, which on-line couples the global chemistry-climate-model EMAC with the regional chemistry-climate-model COSMO-CLM/MESSy. Both models use the same chemical speciation. This allows a highly consistent model chain from the global to the local scale. To quantify the contribution of the road traffic emissions to tropospheric ozone we use an accounting system of the relevant reaction pathways of the different species from different sources (called tagging method). This tagging scheme is implemented consistently on all scales, allowing a direct comparison of the contributions. With this model configuration we investigate the impact of road traffic emissions to the tropospheric ozone budget in Europe. For the year 2008 we compare different emission scenarios and investigate the influence of both model and emission resolution. In addition, results of a mitigation scenario for the year 2030 are presented. They indicate that the contribution of the road traffic sector can be reduced by local reductions of emissions during summer. During winter the importance of long range transport increases. This can lead to increased contributions of the road traffic sector (e.g. by increased emissions in the US) even if local

  5. Environmental auditing: An approach for characterizing tropospheric ozone risk to forests

    SciTech Connect

    Hogsett, W.E.; Weber, J.E.; Tingey, D.; Herstrom, A.; Lee, E.H.; Laurence, J.A.

    1997-01-01

    The risk tropospheric ozone poses to forests in the United States dependents on the variation in ozone exposure across the forests and the various environmental and climate factors predominant in the region. All these factors have a spatial nature; an approach to characterization of ozone risk is presented that places ozone exposure-response functions for species as seedlings and model-simulated tree and stand responses in a spatial context using a geographical information systems (GIS). The GIS is used to aggregate factors considered important in a risk characterization: (1) estimated ozone exposures over forested regions, (2) measures of ozone effects on species` and stand growth, and (3) spatially distributed environmental, genetic, and exposure influences on species` response to ozone. The GIS-based risk characterization provides an estimation the extent and magnitude of the potential ozone impact on forests. A preliminary risk characterization demonstrating this considered only the eastern United States and only the limited empirical data quantifying the effect of ozone exposures on forest tree species as seedlings. The area-weighted response of the annual seedling biomass loss formed the basis for a sensitivity ranking: sensitive-aspen and black cherry (14%-33% biomass loss over 50% of their distribution); moderately sensitive-tulip popular, loblolly pine, eastern white pine, and sugar maple (5%-13% biomass loss); insensitive-Virginia pine and red maple (0%-1% loss). Future GIS-based risk characterizations will include process-based model simulations of the three- to 5-year growth response of individual species as large trees. The interactive nature of GIS provides a tool to explore consequences of the range of climate conditions across a species` distribution, forest management practices, changing ozone precursors, regulatory control strategies, and other factors influencing the spatial distribution of ozone over time. 43 refs., 11 figs., 3 tabs.

  6. Modelled and observed vertical ozone distribution in the troposphere over Europe

    NASA Astrophysics Data System (ADS)

    Struzewska, Joanna; Kaminski, Jacek W.; Szymankiewicz, Karol

    2016-04-01

    Air Quality models are usually validated against surface measurements of air pollutants concentrations. Some validation of the vertical structure of the modelled atmosphere in terms of the distribution and stratification of trace gases concentrations is limited to the boundary layer. We will focus on problems that face air quality models with reproducing the ozone profile in the troposphere that can be connected with an insufficient representation of stratospheric-tropospheric exchange due to with too low model top as well as to an inappropriate top boundary conditions. We will present the climatology of ozone vertical profiles in different locations across Europe based on the GEM-AQ model (Kaminski et al., 2008) calculation for the period 2008-2010. The core of the model domain covered the European continent with the resolution of 0.125 deg. Modelling results will be compared with ozone soundings from available stations. Seasonal variability of the observed and modelled ozone profiles will be discussed. Also, variability patterns will be compared for different regions of Europe. An attempt will be made to correlate the bias of the ozone profile in the ABL with NO2 column bias in corresponding locations.

  7. Large-scale circulation patterns associated with high concentrations of tropospheric ozone in the tropical South Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Fakhruzzaman, K. M.; Fishman, J.; Brackett, V. G.; Kendall, J. D.; Justice, C. O.

    1994-01-01

    Several years of satellite observations indicate the presence of enhanced amounts of tropospheric ozone over the tropical South Atlantic during the austral springs. Wide-spread biomass burning is prevalent over Africa and South America during the same time of the year. Another recent satellite technique has identified the locations of fires over the continents. In this study, we present an analysis of the prevailing meteorological conditions when the highest amounts of tropospheric ozone are present.

  8. The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Weiliang; Zhou, Xiuji; Isaksen, I. S. A.; Sundet, J. K.; He, Jinhai

    2003-11-01

    A 3-D chemical transport model (OSLO CTM2) is used to investigate the influences of the increasing anthropogenic emission in India. The model is capable of reproducing the observational results of the INDOEX experiment and the measurements in summer over India well. The model results show that when NO x and CO emissions in India are doubled, ozone concentration increases, and global average OH decreases a little. Under the effects of the Indian summer monsoon, NO x and CO in India are efficiently transported into the middle and upper troposphere by the upward current and the convective activities so that the NO x , CO, and ozone in the middle and upper troposphere significantly increase with the increasing NO x and CO emissions. These increases extensively influence a part of Asia, Africa, and Europe, and persist from June to September.

  9. Quantifying Stratospheric Ozone in the Upper Troposphere Using in situ Measurements of HCl

    SciTech Connect

    Atherton, C S; Bergmann, D J; Marcy, T P; Fahey, D W; Gao, R S; Popp, P J; Richard, E C; Thompson, T L; Rosenlof, K H; Ray, E A; Salawitch, R J; Ridley, B A; . Weinheimer, A J; Loewenstein, M; Weinstock, E M; Mahoney, M J

    2004-03-08

    A chemical ionization mass spectrometry (CIMS) technique has been developed for precise in situ measurements of hydrochloric acid (HCl) from a high-altitude aircraft. In measurements at subtropical latitudes, minimum HCl values found in the upper troposphere (UT) are often near or below the 0.005-ppbv detection limit of the measurements, indicating that background HCl values are much lower than a global mean estimate. However, significant abundances of HCl were observed in many UT air parcels as a result of stratosphere-to-troposphere transport events. A method for diagnosing the amount of stratospheric ozone in these UT parcels was developed using the compact linear correlation of HCl with ozone found throughout the lower stratosphere (LS). Expanded use of this method will lead to improved quantification of cross-tropopause transport events and validation of global chemical transport models.

  10. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  11. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  12. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    NASA Astrophysics Data System (ADS)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-04-01

    A regional air quality simulation framework including the Weather Research and Forecasting modelling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitorings, ozone zondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around north eastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  13. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  14. The effects of tropospheric ozone on net primary productivity and implications for climate change.

    PubMed

    Ainsworth, Elizabeth A; Yendrek, Craig R; Sitch, Stephen; Collins, William J; Emberson, Lisa D

    2012-01-01

    Tropospheric ozone (O(3)) is a global air pollutant that causes billions of dollars in lost plant productivity annually. It is an important anthropogenic greenhouse gas, and as a secondary air pollutant, it is present at high concentrations in rural areas far from industrial sources. It also reduces plant productivity by entering leaves through the stomata, generating other reactive oxygen species and causing oxidative stress, which in turn decreases photosynthesis, plant growth, and biomass accumulation. The deposition of O(3) into vegetation through stomata is an important sink for tropospheric O(3), but this sink is modified by other aspects of environmental change, including rising atmospheric carbon dioxide concentrations, rising temperature, altered precipitation, and nitrogen availability. We review the atmospheric chemistry governing tropospheric O(3) mass balance, the effects of O(3) on stomatal conductance and net primary productivity, and implications for agriculture, carbon sequestration, and climate change.

  15. Western Pacific Tropospheric Ozone and Potential Vorticity: Implications for Asian Pollution

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Newell, Reginald E.; Davis, Douglas D.; Liu, Shaw C.

    1997-01-01

    Tropospheric ozone (03) cross sections measured with lidar from a DC-8 aircraft over the western Pacific correspond closely with potential vorticity (PV). Both are transported from the middle latitude stratosphere, although this is not the only source of 03, and both have sinks in the tropical boundary layer. 03 and PV are good indicators of photochemical and transport process interactions. In summer, some Asian pollution, raised by convection to the upper troposphere, passes southward into the tropics and to the Southern Hemisphere. In winter, subsidence keeps the pollution at low altitudes where it moves over the ocean towards the Inter-Tropical Convergence Zone (ITCZ), with photochemical destruction and secondary pollutant generation occurring en route. Convection raises this modified air to the upper troposphere, where some re may enter the stratosphere. Thus winter Asian pollution may at have a smaller direct influence on the global atmosphere than it would if injected at other longitudes and seasons.

  16. The impact of greenhouse gases on past changes in tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lang, C.; Waugh, D. W.; Olsen, M. A.; Douglass, A. R.; Liang, Q.; Nielsen, J. E.; Oman, L. D.; Pawson, S.; Stolarski, R. S.

    2012-12-01

    The impact of changes in the abundance of greenhouse gases (GHGs) on the evolution of tropospheric ozone (O3) between 1960 and 2005 is examined using a version of the Goddard Earth Observing System chemistry-climate model (GEOS CCM) with a combined troposphere-stratosphere chemical mechanism. Simulations are performed to isolate the relative role of increases in methane (CH4) and stratospheric ozone depleting substances (ODSs) on tropospheric O3. The 1960 to 2005 increases in GHGs (CO2, N2O, CH4, and ODSs) cause increases of around 1-8% in zonal-mean tropospheric O3 in the tropics and northern extratropics, but decreases of 2-4% in most of the southern extratropics. These O3 changes are due primarily to increases in CH4 and ODSs, which cause changes of comparable magnitude but opposite sign. The CH4-related increases in O3are similar in each hemisphere (˜6%), but the ODS-related decreases in the southern extratropics are much larger than in northern extratropics (10% compared to 2%). This results in an interhemispheric difference in the sign of past O3 change. Increases in the other GHGs (CO2 and N2O) and SSTs have only a small impact on the total burden over this period, but do cause zonal variations in the sign of changes in tropical O3 that are coupled to changes in vertical velocities and water vapor.

  17. Foliar phenolics in sugar maple (Acer saccharum) as a potential indicator of tropospheric ozone pollution.

    PubMed

    Sager, E P S; Hutchinson, T C; Croley, T R

    2005-06-01

    Tropospheric O3 has been implicated in the declining health of forest ecosystems in Europe and North America and has been shown to have negative consequences on human health. We have measured tropospheric ozone (O3) in the lower canopy through the use of passive monitors located in five woodlots along a 150 km urban-rural transect, originating in the large urban complex of Toronto, Canada. We also sampled foliage from 10 mature sugar maple trees in each woodlot and measured the concentration of a number of phenolic compounds and macronutrients. O3 concentrations were highest in the two rural woodlots, located approximately 150 km downwind of Toronto, when compared to the woodlots found within the Greater Toronto Area. Foliar concentrations of three flavonoids, avicularin, isoquercitrin, and quercitrin, were significantly greater and nitrogen concentrations significantly lower at these same rural woodlots, suggesting some physiological disruption is occurring in those sites where exposure to tropospheric O3 is greater. We suggest that foliar phenolics of sugar maple may be a biochemical indicator of tropospheric ozone exposure.

  18. Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie

    2008-01-01

    A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.

  19. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.

    PubMed

    Wang, Qin'geng; Han, Zhiwei; Wang, Tijian; Zhang, Renjian

    2008-05-20

    This study is intended to understand and quantify the impacts of biogenic emissions of volatile organic compounds (VOC) and nitrogen oxides (NO(x)) on the formation of tropospheric ozone during summertime in eastern China. The model system consists of the non-hydrostatic mesoscale meteorological model (MM5) and a tropospheric chemical and transport model (TCTM) with the updated carbon-bond chemical reaction mechanism (CBM-IV). The spatial resolution of the system domain is 30 km x 30 km. The impacts of biogenic emissions are investigated by performing simulations (36 h) with and without biogenic emissions, while anthropogenic emissions are constant. The results indicate that biogenic emissions have remarkable impacts on surface ozone in eastern China. In big cities and their surrounding areas, surface ozone formation tends to be VOC-limited. The increase in ozone concentration by biogenic VOC is generally 5 ppbv or less, but could be more than 10 ppbv or even 30 ppbv in some local places. The impacts of biogenic NO(x) are different or even contrary in different regions, depending on the relative availability of NO(x) and VOC. The surface ozone concentrations reduced or increased by the biogenic NO(x) could be as much as 10 ppbv or 20 ppbv, respectively. The impacts of biogenic emissions on ozone aloft are generally restricted to the boundary layer and generally more obvious during the daytime than during the nighttime. This study is useful for understanding the role of biogenic emissions and for planning strategies for surface ozone abatement in eastern China. Due to limitations of the emission inventories used and the highly non-linear nature of zone formation, however, some uncertainties remain in the results.

  20. Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.

    2001-01-01

    Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.

  1. Tropospheric ozone variability during the monsoon season in Malaysia

    NASA Astrophysics Data System (ADS)

    Ahamad, Fatimah; Latif, Mohd Talib

    2013-11-01

    Vertical ozone (O3) profiles obtained from ozonesondes launched at Kuala Lumpur International Airport (KLIA), Malaysia were analyzed. Results of soundings between January to March 2011 and July to September 2011 are presented along with meteorological parameters (temperature and relative humidity (RH)). The overall O3 concentration range between the soundings made during the northeast monsoon (January - March) and the southwest monsoon (July - September) were not far from each other for altitudes below 8 km. However O3 variability is less pronounced between 2 km and 12 km during the southwest monsoon compared to the northeast monsoon season.

  2. Development of the Double Etalon Fabry-Perot Interferometer for Determining Total and Tropospheric Ozone Concentrations

    NASA Technical Reports Server (NTRS)

    Cook, William

    1999-01-01

    Measuring and understanding the distribution of ozone through the lower levels of Earth's atmosphere are high priorities in global change and climate research. Of particular interest now is the global distribution of ozone in the upper troposphere and lower stratosphere. Global coverage of the stratospheric ozone is feasible only via remote sensing instruments on a space-based platform. And though extensive monitoring tropospheric ozone is possible using instruments flown aboard conventional aircraft, a space-based system would be significantly less costly and provide information over a much broader area and produce more uniform coverage. Here we describe the prototype of an instrument being developed to monitor, from an orbiting spacecraft, the ozone found in Earth's upper troposphere and lower stratosphere. Our new spectrometer is an infrared Fabry-Perot interferometer which uses two synchrounously tuned etalons: a high resolution narrow band device and a lower resolution broader band filtering etalon. The prototype is a scanning device making use of nearly collimated input radiation and a single element detector. As presently configured, it is capable of providing a resolution better than 0.07/cm with a spectral band width approximately 5/cm wide and centered at 1054.7/cm. For the future space-based emission device a modification of the the prototype was to be made to employ innovative circle-to-line detector optics, those developed or in development at UM/SPRL, and a focal plane array detector. These enhancements would enable a simultaneous recording of the entire spectral range of interest, but with simple detection electronics and a significant gain in signal-to-noise over that of the scanning version.

  3. Sources of Tropospheric Ozone along the Asian Pacific Rim: An Analysis of Ozonesonde Observations

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Yu; Jacob, Daniel J.; Chan, Lo Yin; Oltmans, Samuel J.; Bey, Isabelle; Yantosca, Robert M.; Harris, Joyce M.; Duncan, Bryan N.; Martin, Randall V.

    2002-01-01

    The sources contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong and Japanese ozonesonde observations with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations. Particular focus is placed on the extensive observations available from Hong Kong in 1996. In the middle-upper troposphere (MT- UT), maximum Asian pollution influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution. In the lower troposphere (LT) the season of maximum Asian pollution influence shifts to summer at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability observed over Hong Kong in winter reflects frequent tropical intrusions alternating with stratospheric intrusions. Asian biomass burning makes a major contribution to ozone at less than 32 deg.N in spring. Maximum European pollution influence (less than 5 ppbv) occurs in spring in the LT. North American pollution influence exceeds European influence in the UT-MT, reflecting the uplift from convection and the warm conveyor belts over the eastern seaboard of North America. African outflow makes a major contribution to ozone in the low-latitude MT-UT over the Pacific Rim during November- April. Lightning influence over the Pacific Rim is minimum in summer due to westward UT transport at low latitudes associated with the Tibetan anticyclone. The Asian outflow flux of ozone to the Pacific is maximum in spring and fall and includes a major contribution from Asian anthropogenic sources year-round.

  4. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    NASA Astrophysics Data System (ADS)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-09-01

    A regional air quality simulation framework including the Weather Research and Forecasting modeling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitoring, ozonesondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around northeastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  5. A New NASA Data Product: Tropospheric and Stratospheric Column Ozone in the Tropics Derived from TOMS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.

    1999-01-01

    Tropospheric column ozone (TCO) and stratospheric column ozone (SCO) gridded data in the tropics for 1979-present are now available from NASA Goddard Space Flight Center via either direct ftp, world-NN,ide-NN,eb, or electronic mail. This note provides a brief overview of the method used to derive the data set including validation and adjustments.

  6. Elevated Ozone in the Troposphere over the Atlantic and Pacific Oceans in the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Tie, Xuexi

    2003-01-01

    Tropospheric column ozone (TCO) is derived from differential measurements of total column ozone from Nimus-7 and Earth Probe TOMS, and stratospheric column ozone from the Microwave Limb Sounder instrument on the Upper Atmospheric Research Satellite. It is shown that TCO during summer months over the Atlantic and Pacific Oceans at northern mid-latitudes is about the same (50-60 Dobson Units) as over the continents of North America, Europe and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains and Tibetan Plateau where TCO is reduced by 20-30 Dobson Units. The zonal characteristics of TCO derived from satellite measurements are well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO, and they are shown that the surface emission of NOx contributes about 50% of the TCO at northern mid-latitudes, especially over the continents of North America, Europe and Asia. The result of TCO derived from TOMS and the analysis from MOZART-2 indicate that TCO is a very useful tool to study tropospheric O3 pollution resulting from surface emissions of pollutants.

  7. Modeling the response of mature Pinus ponderosa Laws. to tropospheric ozone: Effects of genotypic variability

    SciTech Connect

    Constable, J.V.H.; Taylor, G.E. Jr. ); Weinstein, D.A.; Laurence, J.A. )

    1994-06-01

    Regionally distributed pollutants (e.g., tropospheric ozone and CO[sub 2]) can influence the growth of terrestrial plants. The mosaic of genotypes in natural populations makes it difficult to predict the ecological consequences of pollutants throughout a species' distribution. We simulated the response of Pinus ponderosa Laws to ambient, sub-ambient and above-ambient troposopheric O[sub 3] for 3 years using TREGRO, a physiologically based three growth model. Parameters controlling growth and carbon allocation were obtained from the literature and were varied to simulate intravarietal and intervarietal genotypes (western var. Ponderosa and eastern var. Scopulorum) of Ponderosa Pine. Parameter differences between the varieties include physiology, carbon allocation and phenoloy. Ozone altered 3 year biomass gain (+6% to 61%) and fine root to leaf mass ratio ([minus]8% to [minus]14%) in spite of a small effect on photosynthesis ([<=] 10%). Overall, O[sub 3] caused growth differences between varieties to be reduced. The reduction in growth differences between genotypes due to ozone has consequences for regional identification of populations sensitive to the effects of tropospheric ozone.

  8. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; bt Mohammad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S-Y; Da Silva, F. Raimundo; Paes Leme, N. M.; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stubi, Rene; Levrat, Gilbert; Calpini, Bertrand; Thouret, Valerie; Tsuruta, Haruo; Canossa, Jessica Valverde; Voemel, Holger; Yonemura, S.; Andres Diaz, Jorge; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  9. Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Miyazaki, Kazuyuki; Worden, John R.; Liu, Jane J.; Jones, Dylan B. A.; Henze, Daven K.

    2016-05-01

    Significant progress has been made in identifying the influence of different processes and emissions on the summertime enhancements of free tropospheric ozone (O3) at northern midlatitude regions. However, the exact contribution of regional emissions, chemical and transport processes to these summertime enhancements is still not well quantified. Here we focus on quantifying the influence of regional emissions on the summertime O3 enhancements over the Middle East, using updated reactive nitrogen (NOx) emissions. We then use the adjoint of the GEOS-Chem model with these updated NOx emissions to show that the global total contribution of lightning NOx on middle free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime middle free tropospheric O3 enhancement is primarily due to Asian NOx emissions, with approximately equivalent contributions from Asian anthropogenic activities and lightning. In the Middle Eastern lower free troposphere, lightning NOx from Europe and North America and anthropogenic NOx from Middle Eastern local emissions are the primary sources of O3. This work highlights the critical role of lightning NOx on northern midlatitude free tropospheric O3 and the important effect of the Asian summer monsoon on the export of Asian pollutants.

  10. Global 3-D Modeling Studies Of Tropospheric Ozone And Related Gases

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Logan, Jennifer A.

    2003-01-01

    Our research was targeted at three issues: (1) the factors controlling ozone in the tropical troposphere, (2) the Asian outflow of ozone and its precursors, and (3) the causes of decadal trends observed in ozone and CO. We have also used support from this ACMAP grant to (1) work with Kelly Chance on the retrieval and interpretation of HCHO and NO2 observations from GOME, and (2) develop GEOS-CHEM into a versatile model supporting the work of a large number of users including outside Harvard. ACMAP has provided the core support for GEOS-CHEM development. Applications of the GEOS-CHEM model with primary support from ACMAP are discussed below. A list of publications resulting from this grant is given at the end of the report.

  11. [A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar].

    PubMed

    Fan, Guang-Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Dong, Yun-Sheng; Zhao, Xue-Song

    2012-12-01

    Aerosols interfere with differential absorption lidar ozone concentration measurement and can introduce significant errors. A new retrieval method was introduced, and ozone concentration and aerosol extinction coefficient were gained simultaneously based on the retrieval method. The variables were analyzed by experiment including aerosol lidar ratio, aerosol wavelength exponent, and aerosol-molecular ratio at the reference point. The results show that these parameters introduce error less than 8% below 1 km. The measurement error derives chiefly from signal noise and the parameters introduce error less than 3% above 1 km. Finally the vertical profile of tropospheric ozone concentration and aerosol extinction coefficient were derived by using this algorithm. The retrieval results of the algorithm and traditional dual-wavelength difference algorithm are compared and analyzed. Experimental results indicate that the algorithm is feasible, and the algorithm can reduce differential absorption lidar measurement error introduced by aerosol.

  12. Elevated ozone layers in the lower free troposphere during CalNex

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J., II; Banta, R. M.; Brewer, A.; Hardesty, R.; Brioude, J.; Cooper, O. R.

    2010-12-01

    The NOAA ESRL/CSD nadir-viewing ozone and aerosol lidar (TOPAZ) was deployed aboard the NOAA AOC Twin Otter research aircraft during the 2010 CalNex campaign. Ozone measurements were made on a total of 46 research flights covering much of California between 23 May and 18 July 2010. Many of these flights found widespread layers of high ozone (i.e. >100 ppbv) at altitudes between 2 and 4 km above mean sea level in the free troposphere. Potential sources include stratospheric intrusions, orographic lifting, and transport from Asia. The lidar observations are compared to ground-based ozonesonde measurements, and the origins of these layers investigated using the FLEXPART trajectory and particle dispersion model.

  13. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers.

    PubMed

    Machol, Janet L; Marchbanks, Richard D; Senff, Christoph J; McCarty, Brandi J; Eberhard, Wynn L; Brewer, William A; Richter, Ronald A; Alvarez, Raul J; Law, Daniel C; Weickmann, Ann M; Sandberg, Scott P

    2009-01-20

    The Ozone Profiling Atmospheric Lidar is a scanning four-wavelength ultraviolet differential absorption lidar that measures tropospheric ozone and aerosols. Derived profiles from the lidar data include ozone concentration, aerosol extinction, and calibrated aerosol backscatter. Aerosol calibrations assume a clear air region aloft. Other products include cloud base heights, aerosol layer heights, and scans of particulate plumes from aircraft. The aerosol data range from 280 m to 12 km with 5 m range resolution, while the ozone data ranges from 280 m to about 1.2 km with 100 m resolution. In horizontally homogeneous atmospheres, data from multiple-elevation angles is combined to reduce the minimum altitude of the aerosol and ozone profiles to about 20 m. The lidar design, the characterization of the photomultiplier tubes, ozone and aerosol analysis techniques, and sample data are described. Also discussed is a double-gating technique to shorten the gated turn-on time of the photomultiplier tubes, and thereby reduce the detection of background light and the outgoing laser pulse.

  14. Model analysis of seasonal variations in tropospheric ozone and carbon monoxide over East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Lijie; Zhang, Meigen; Han, Zhiwei

    2009-03-01

    Temporal-spatial variations in tropospheric ozone concentrations over East Asia in the period from 1 January 2000 to 31 December 2004 were simulated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the Regional Atmospheric Modeling System (RAMS). The simulated concentrations of ozone and carbon monoxide were compared with ground level observations at two remote sites, Ryori (39.03°N, 141.82°E) and Yonagunijima (24.47°N, 123.02°E). The comparison shows that the model reproduces their seasonal variation patterns reasonably well, and simulated ozone levels are generally in good agreement with the observed ones, but carbon monoxide concentrations are underestimated. Analysis of horizontal distributions of monthly averaged ozone mixing ratios in the surface layer indicates that ozone concentrations have noticeable differences among the four seasons; they are generally higher in the spring and summer while lower in the winter, reflecting the seasonal variation of solar intensity and photochemical activity and the fact that the monsoons over East Asia are playing an important role in ozone distributions.

  15. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers.

    PubMed

    Machol, Janet L; Marchbanks, Richard D; Senff, Christoph J; McCarty, Brandi J; Eberhard, Wynn L; Brewer, William A; Richter, Ronald A; Alvarez, Raul J; Law, Daniel C; Weickmann, Ann M; Sandberg, Scott P

    2009-01-20

    The Ozone Profiling Atmospheric Lidar is a scanning four-wavelength ultraviolet differential absorption lidar that measures tropospheric ozone and aerosols. Derived profiles from the lidar data include ozone concentration, aerosol extinction, and calibrated aerosol backscatter. Aerosol calibrations assume a clear air region aloft. Other products include cloud base heights, aerosol layer heights, and scans of particulate plumes from aircraft. The aerosol data range from 280 m to 12 km with 5 m range resolution, while the ozone data ranges from 280 m to about 1.2 km with 100 m resolution. In horizontally homogeneous atmospheres, data from multiple-elevation angles is combined to reduce the minimum altitude of the aerosol and ozone profiles to about 20 m. The lidar design, the characterization of the photomultiplier tubes, ozone and aerosol analysis techniques, and sample data are described. Also discussed is a double-gating technique to shorten the gated turn-on time of the photomultiplier tubes, and thereby reduce the detection of background light and the outgoing laser pulse. PMID:19151820

  16. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-01

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.

  17. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-01

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model. PMID:26151227

  18. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

    PubMed

    Tang, X; Wilson, S R; Solomon, K R; Shao, M; Madronich, S

    2011-02-01

    Air pollution will be directly influenced by future changes in emissions of pollutants, climate, and stratospheric ozone, and will have significant consequences for human health and the environment. UV radiation is one of the controlling factors for the formation of photochemical smog, which includes tropospheric ozone (O(3)) and aerosols; it also initiates the production of hydroxyl radicals (˙OH), which control the amount of many climate- and ozone-relevant gases (e.g., methane and HCFCs) in the atmosphere. Numerical models predict that future changes in UV radiation and climate will modify the trends and geographic distribution of ˙OH, thus affecting the formation of photochemical smog in many urban and regional areas. Concentrations of ˙OH are predicted to decrease globally by an average of 20% by 2100, with local concentrations varying by as much as a factor of two above and below current values. However, significant differences between modelled and measured values in a limited number of case studies show that chemistry of hydroxyl radicals in the atmosphere is not fully understood. Photochemically produced tropospheric ozone is projected to increase. If emissions of anthropogenic air pollutants from combustion of fossil fuels, burning of biomass, and agricultural activities continue to increase, concentrations of tropospheric O(3) will tend to increase over the next 20-40 years in certain regions of low and middle latitudes because of interactions of emissions, chemical processes, and climate change. Climate-driven increases in temperature and humidity will also increase production of tropospheric O(3) in polluted regions, but reduce it in more pristine regions. Higher temperatures tend to increase emissions of nitrogen oxides (NO(x)) from some soils and release of biogenic volatile organic compounds (VOCs) from vegetation, leading to greater background concentrations of ozone in the troposphere. The net effects of future changes in UV radiation

  19. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    SciTech Connect

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  20. Shipboard and Satellite Views of Elevated Tropospheric Ozone over the Tropical Atlantic in January-February 1999

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Doddridge, Bruce G.; Hudson, Robert D.; Witte, Jacquelyn C.; Luke, Winston T.; Johnson, James E.; Johnson, Bryan J.; Oltmans, Samuel J.

    1999-01-01

    During the Aerosols99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, daily ozonesondes were launched from the NOAA R/V Ronald H Brown between 17 January and 6 February l999. A composite of tropospheric ozone profiles along the latitudinal transect shows 4 zones, which are interpreted using correlative shipboard ozone, CO, water vapor, and overhead aerosol optical thickness measurements. Elevated ozone associated with biomass burning north of the ITCZ (Intertropical Convergence Zone) is prominent at 3-5 km from 10-0N, but even higher ozone (100 ppbv, 7-10 km) occurred south of the ITCZ, where it was not burning. Column-integrated tropospheric ozone was 44 Dobson Units (DU) in one sounding, 10 DU lower than the maximum in a January-February 1993 Atlantic cruise with ozonesondes [Weller et al., 1996]. TOMS tropospheric ozone shows elevated ozone extending throughout the tropical Atlantic in January 1999. Several explanations are considered. Back trajectories, satellite aerosol observations and shipboard tracers suggest a combination of convection and interhemispheric transport of ozone and/or ozone precursors, probably amplified by a lightning NO source over Africa.

  1. Mechanisms for the Intraseasonal Variability of Tropospheric Ozone over the Indian Ocean during the Winter Monsoon

    NASA Technical Reports Server (NTRS)

    Chatfield, R. b.; Guan, H.; Thompson, A. M.; Smit, H. G. J.

    2007-01-01

    We synthesize daily sonde (vertical) information and daily satellite (horizontal) information to provide an empirical description of ozone origins over the northern Indian Ocean during the INDOEX (Indian Ocean Experiment) field campaign (February-March 1999). This area is shown to be a significant portion of the "high-ozone tropics". East-west O3 features and their flow are identified, and ozone origins are compared to other tropical regions, using water vapor as a second tracer. In the study period, multiple processes contribute to O3 column enhancements, their importance varying strongly by latitude: (1) Low-altitude O3 pollution over the northern Indian Ocean mainly originates from the Indian subcontinent and is traceable to high emission areas. Convective activity south of Sri Lanka helps direct ozone outflow from the northern Indian subcontinent. (2) Middle tropospheric O3 maxima over the northern Indian Ocean originate from various sources, often transitioning within a few hours. Convective venting of Asian pollutants can add 20-30 ppbv to the middle troposphere at 5degN-10degN, alternating with stratospheric influence. (3) A number of cases suggest that strong mixing-in of stratospheric air along the subtropical jet raised tropospheric O3 in early March by approx.40-50 ppbv, especially poleward of approx. 10degN. (4) Influences of lightning and large-scale biomass burning were not strong during this period, in contrast to the situation in Africa and the South Atlantic or locally in Southeast Asia. This work illustrates successes and limitations in approaches to synthesizing disparate information on trace-gas distributions taken from satellite retrieval products and ozonesondes.

  2. A Status Report on the SHADOZ (Southern Hemisphere Additional Ozonesondes) Project and Some Issues Affecting Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; McPeters, R. D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    SHADOZ aims to support the study of local and global patterns in stratospheric and tropospheric ozone and to provide a data set for the validation for satellite products and model calculations of ozone. Southern hemispheric tropical ozone is of particular interest because this region appears to have complex interplay among photochemical ozone formation (from biomass burning and lightning), stratospheric dynamics, convection and possibly cross-hemispheric transport. Balloon-borne ozone instrumentation (ozonesondes), joined with standard radiosondes for measurement of pressure, temperature and relative humidity, is used to collect profiles throughout the troposphere and lower- to mid-stratosphere. A network of 10 southern hemisphere tropical and subtropical stations, called the Southern Hemisphere ADditional OZonesondes (SHADOZ) project, has been established from operational sites to assemble sonde data for 1998-2000. A status report on the archive, with station operating characteristics, will be given, along with some operational issues that may affect data analysis and interpretation.

  3. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    EPA Science Inventory

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  4. Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Squire, O. J.; Archibald, A. T.; Abraham, N. L.; Beerling, D. J.; Hewitt, C. N.; Lathière, J.; Pike, R. C.; Telford, P. J.; Pyle, J. A.

    2014-01-01

    Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to explore a range of potential future (2095) changes in isoprene emissions caused by changes in climate (including natural land use changes), land use, and the inhibition of isoprene emissions by CO2. From the present-day (2000) value of 467 Tg C yr-1, we find that the combined impact of these factors could cause a net decrease in isoprene emissions of 259 Tg C yr-1 (55%) with individual contributions of +78 Tg C yr-1 (climate change), -190 Tg C yr-1 (land use) and -147 Tg C yr-1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally, all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present-day. At the surface, decreases in ozone of 6-10 ppb are calculated over the oceans and developed northern hemispheric regions, due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4-6 ppb are calculated in the continental tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions

  5. Study of Tropospheric Ozone and UV Reflectivity Using TOMS Data

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2002-01-01

    Perhaps the single most important result from the study of Chuang and Yung is that the interannual variability of the Earth's albedo (especially in Spring) on land is dominated by snow/ice, and not by clouds. This interannual variability could be the major driver of changes in the atmosphere and the biosphere. It is plausible that the interannual variability of snow/ice, through interactions with the atmosphere and biosphere, is responsible for the interannual variability of atmospheric CO2. By carefully studying the albedo variations off the Peru coast, we found evidence for indirect aerosol effect on clouds. Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (SCCP) in the years 1983-1991, we show that besides the reported 3 % variation in global cloudiness, the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectively measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO (El Nino Southern Oscillation) cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.

  6. Multiannual tropical tropospheric ozone columns and the case of the 2015 el Niño event

    NASA Astrophysics Data System (ADS)

    Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.

    2016-04-01

    Stratospheric ozone is well known for protecting the surface from harmful ultraviolet solar radiation whereas ozone in the troposphere plays a more complex role. In the lower troposphere ozone can be extremely harmful for human health as it can oxidize biological tissues and causes respiratory problems. Several studies have shown that the tropospheric ozone burden (300±30Tg (IPCC, 2007)) increases by 1-7% per decade in the tropics (Beig and Singh, 2007; Cooper et al., 2014) which makes the need to monitor it on a global scale crucial. Remote sensing from satellites has been proven to be very useful in providing consistent information of tropospheric ozone concentrations over large areas. Tropical tropospheric ozone columns can be retrieved with the Convective Cloud Differential (CCD) technique (Ziemke et al. 1998) using retrieved total ozone columns and cloud parameters from space-borne observations. We have developed a CCD-IUP algorithm which was applied to GOME/ ERS-2 (1995-2003), SCIAMACHY/ Envisat (2002-2012), and GOME-2/ MetOpA (2007-2012) weighting function DOAS (Coldewey-Egbers et al., 2005, Weber et al., 2005) total ozone data. A unique long-term record of monthly averaged tropical tropospheric ozone columns (20°S - 20°N) was created starting in 1996. This dataset has been extensively validated by comparisons with SHADOZ (Thompson et al., 2003) ozonesonde data and limb-nadir Matching (Ebojie et al. 2014) tropospheric ozone data. The comparison shows good agreement with respect to range, inter-annual variation, and variance. Biases where found to be within 5DU and the RMS errors less than 10 DU. This 17-years dataset has been harmonized into one consistent time series, taking into account the three instruments' difference in ground pixel size. The harmonised dataset is used to determine tropical tropospheric ozone trends and climatological values. The 2015 el Niño event has been characterised as one of the top three strongest el Niños since 1950. El Ni

  7. Monitoring Tropospheric Ozone Enhancement in the Front Range Using the Gsfc Tropoz DIAL during Discover - AQ 2014

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Hoff, R. M.; Twigg, L.; Sumnicht, G. K.

    2014-12-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Fort Collins, CO from 200 m to 16 km AGL. These measurements were taken as part of NASA's DISCOVER-AQ campaign in July/August 2014. Measurements were made during simultaneous aircraft spirals over the lidar site as well as collocated ozonesonde launches. Ozone enhancement from local sources typically occurred in the mid-afternoon convection period, especially when there was light winds and low cloud cover. Interesting ozone profiles and time series data will be shown. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. Three of these lidars, including the GSFC TROPOZ DIAL, recorded measurements during the DISCOVER-AQ campaign. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived.

  8. New Perspectives from Satellite and Profile Observations on Tropospheric Ozone over Africa and the Adjacent Oceans: An Indian-Atlantic Ocean Link to tbe "Ozone Paradox"

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Diab, Roseanne D.; Thouret, Valerie; Sauvage, Bastien; Chatfield, B.; Guan, Hong

    2004-01-01

    In the past few years, tropospheric ozone observations of Africa and its adjacent ocenas have been greatly enhanced by high resolution (spatial and temporal) satellite measurements and profile data from aircraft (MOZAIC) and balloon-borne (SHADOZ) soundings. These views have demonstrated for the first time the complexity of chemical-dynamical interactions over the African continent and the Indian and Atlantic Oceans. The tropical Atlantic "ozone paradax" refers to the observation that during the season of maximum biomass burning in west Africa north of the Intertropical Convergence Zone (ITCZ), the highest tropospheric ozone total column occurs south of the ITCZ over the tropical Atlantic. The longitudinal view of tropospheric ozone in the southern tropics from SHADOZ (Southern Hemisphere Additional Ozonesondes) soundings shown the persistence of a "zonal-wave one" pattern that reinforces the "ozone paradox". These ozone features interact with dynamics over southern and northern Africa where anthropogenic sources include the industrial regions of the South African Highveld and Mideastern-Mediterranean influences, respectively. Our newest studies with satellites and soundings show that up to half the ozone pollution over the Atlantic in the January-March "paradox" period may originate from south Asian pollution. Individual patches of pollurion over the Indian Ocean are transported upward by convective mixing and are enriched by pyrogenic, biogenic sources and lightning as they cross Africa and descend over the Atlantic. In summary, local sources, intercontinental import and export and unique regional transport patterns put Africa at a crossroads of troposheric ozone influences.

  9. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  10. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  11. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Emili, E.; Barret, B.; Massart, S.; Le Flochmoen, E.; Piacentini, A.; El Amraoui, L.; Pannekoucke, O.; Cariolle, D.

    2013-08-01

    Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI) in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE). The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000-225 hPa) should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa) excluded from the analysis. Furthermore, a longer analysis of 6 months (July-August 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE) of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70-225 hPa) and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S-30° N), whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere

  12. Tropospheric Ozone Over a Tropical Atlantic Station in the Northern Hemisphere: Paramaribo, Surinam (6 deg N, 55 deg W)

    NASA Technical Reports Server (NTRS)

    Peters, W.; Krol, M. C.; Fortuin, J. P. F.; Kelder, H. M.; Thompson, A. M.; Becker, C. R.; Lelieveld, J.; Crutzen, P. J.

    2003-01-01

    We present an analysis of 2.5 years of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6 deg N,55 deg W). This is currently one of only three ozone sounding stations in the northern hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is part of the Southern Hemisphere ADditional Ozone Sounding program (SHADOZ). Due to its position close to the equator, the Inter Tropical Convergence Zone (ITCZ) passes over Paramaribo twice per year, which results in a semi-annual seasonality of many parameters including relative humidity and ozone. The dataset from Paramaribo is used to: (1) evaluate ozone variability relative to precipitation, atmospheric circulation patterns and biomass burning; (2) contrast ozone at the NH equatorial Atlantic with that at nearby southern hemisphere (SH) stations Natal (6 deg S,35 deg W) and Ascension (8 deg S,14 deg W); (3) compare the seasonality of tropospheric ozone with a satellite-derived ozone product: Tropical Tropospheric Ozone Columns from the Modified Residual method (MR-TTOC). We find that Paramaribo is a distinctly Atlantic station. Despite its position north of the equator, it resembles nearby SH stations during most of the year. Transport patterns in the lower and middle troposphere during February and March differ from SH stations, which leads to a seasonality of ozone with two maxima. MR-TTOC over Paramaribo does not match the observed seasonality of ozone due to the use of a SH ozone sonde climatology in the MR method. The Paramaribo ozone record is used to suggest an improvement for northern hemisphere MR-TTOC retrievals. We conclude that station Paramaribo shows unique features in the region, and clearly adds new information to the existing SHADOZ record.

  13. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  14. Development of a Climate Record of Tropospheric and Stratospheric Column Ozone from Satellite Remote Sensing: Evidence of an Early Recovery of Global Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil

    2012-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  15. The Role of Lightning in Controlling Interannual Variability of Tropical Tropospheric Ozone and OH and its Implications for Climate

    NASA Technical Reports Server (NTRS)

    Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.; Hudman, Rynda C.; Koshak, William J.

    2012-01-01

    Nitrogen oxides (NO(x) = NO + NO2) produced by lightning make a major contribution to the production of the dominant tropospheric oxidants (OH and ozone). These oxidants control the lifetime of many trace gases including long-lived greenhouse gases, and control the source-receptor relationship of inter-hemispheric pollutant transport. Lightning is affected by meteorological variability, and therefore represents a potentially important tropospheric chemistry-climate feedback. Understanding how interannual variability (IAV) in lightning affects IAV in ozone and OH in the recent past is important if we are to predict how oxidant levels may change in a future warmer climate. However, lightning parameterizations for chemical transport models (CTMs) show low skill in reproducing even climatological distributions of flash rates from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) satellite instruments. We present an optimized regional scaling algorithm for CTMs that enables sufficient sampling of spatiotemporally sparse satellite lightning data from LIS to constrain the spatial, seasonal, and interannual variability of tropical lightning. We construct a monthly time series of lightning flash rates for 1998-2010 and 35degS-35degN, and find a correlation of IAV in total tropical lightning with El Nino. We use the IAV-constraint to drive a 9-year hindcast (1998-2006) of the GEOS-Chem 3D chemical transport model, and find the increased IAV in LNO(x) drives increased IAV in ozone and OH, improving the model fs ability to simulate both. Although lightning contributes more than any other emission source to IAV in ozone, we find ozone more sensitive to meteorology, particularly convective transport. However, we find IAV in OH to be highly sensitive to lightning NO(x), and the constraint improves the ability of the model to capture the temporal behavior of OH anomalies inferred from observations of methyl chloroform and other gases. The sensitivity of

  16. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology. 2; Stratospheric and Tropospheric Ozone Variability and the Zonal Wave-One

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gert J. R.; Hoegger, Bruno; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.

  17. The Role of Eddies in Tropospheric Circulation Trends Associated with Stratospheric Ozone Reduction in the Boreal Summer

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Yamazaki, K.; Akiyoshi, H.

    2013-12-01

    We examined the impact of long-term trends in stratospheric ozone on the troposphere by investigating radiative heating anomalies caused by stratospheric ozone changes and associated changes in dynamical fields. We applied a linear trend analysis to five reanalysis datasets and five chemistry climate models (CCM) for the boreal summer (June-July-August) during an ozone-depleting period (1981-2000). CCM simulations with depleting ozone and fixed GHGs and SSTs showed a poleward shift of the subtropical jet and Hadley cell expansion. Reanalysis data also showed this poleward shift. We inferred that the ozone anomaly induced negative potential vorticity (PV) anomalies near the tropopause by causing anomalous radiative cooling. To separate direct radiative impacts from indirect eddy forcing, we used a PV inversion technique. The PV-induced zonal wind anomalies showed a poleward shift of the subtropical jet, but magnitudes were small in the low to middle troposphere. We used a dry general circulation model to examine the modification of tropospheric eddies by the basic state change due to the PV anomalies. The result showed that anomalous wave forcing in the upper troposphere accelerates (decelerates) the zonal wind north (south) of the jet. The deceleration forcing south of the jet drives the anomalous residual mean circulation in the lower latitudes, explaining the Hadley cell expansion. The Coriolis force associated with the anomalous residual mean circulation extends the zonal wind anomaly to the lower troposphere. These results suggest that stratospheric ozone, by modifying eddy activity in the troposphere, plays an important role in tropospheric climate change.

  18. Discoveries about Tropical Tropospheric Ozone from Satellite and SHADOZ (Southern Hemisphere Additional Ozonesondes) and a Future Perspective on NASA's Ozone Sensors

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    We have been producing near-real tropical tropospheric ozone ('TTO') data from TOMS since 1997 with Prof. Hudson and students at the University of Maryland. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: . We also have archived 'TTO' data from the Nimbus 7/TOMS satellite (1979-1992). The tropics is a region strongly influenced by natural variability and anthropogenic activity and the satellite data have been used to track biomass burning pollution and to detect interannual variability and climate signals in ozone. We look forward to future ozone sensors from NASA; four will be launched in 2004 as part of the EOS AURA Mission. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center, NOAA's Climate Monitoring and Diagnostics Laboratory (CMDL) and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches at selected sites and provides a public archive of ozonesonde data from twelve tropical and subtropical stations at http://croc.nsfc.nasa.gov/shadoz. The stations are: Ascension Island; Nairobi, Kenya; Irene, South Africa; R,union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil, Malindi, Kenya; Paramaribo, Surinam. From the first 3-4 years of data (presently greater than 1700 sondes), the following features emerge: (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) tropospheric ozone variability over the Indian and Pacific Ocean displays strong convective signatures.

  19. A springtime comparison of tropospheric ozone and transport pathways on the east and west coasts of the United States

    NASA Astrophysics Data System (ADS)

    Cooper, O. R.; Stohl, A.; Eckhardt, S.; Parrish, D. D.; Oltmans, S. J.; Johnson, B. J.; NéDéLec, P.; Schmidlin, F. J.; Newchurch, M. J.; Kondo, Y.; Kita, K.

    2005-03-01

    We have conducted a study to determine the influence of Asian pollution plumes on free tropospheric ozone above the west coast of the United States during spring. We also explored the additional impact of North American emissions on east coast free tropospheric ozone. Long-term ozone monitoring sites in the United States are few, but we obtained ozonesonde profiles from Trinidad Head on the west coast, Huntsville, Alabama, in the southeast, and Wallops Island, Virginia, on the east coast. Additional east coast ozone profiles were measured by the MOZAIC commercial aircraft at Boston, New York City, and Philadelphia. Kilometer-averaged ozone was compared between Trinidad Head and the three east coast sites (MOZAIC, Wallops Island, and Huntsville). Only in the 0-1 km layer did the MOZAIC site have a statistically significant greater amount of ozone than Trinidad Head. Likewise only the 0-1 and 1-2 km layers had greater ozone at Wallops Island and Huntsville in comparison to Trinidad Head. While Wallops Island did show greater ozone than Trinidad Head at 6-9 km, this excess ozone was attributed to a dry air mass sampling bias. A particle dispersion model was used to determine the surface source regions for each case, and the amount of anthropogenic NOx tracer that would have been emitted into each air mass. Transport times were limited to 20 days to focus on the impact of direct transport of pollution plumes from the atmospheric boundary layer. As expected, the amount of NOx tracer emitted into the east coast profiles was much greater in the lower and mid troposphere than at the west coast. At various altitudes at both coasts there existed a significant positive correlation between ozone and the NOx tracer, but the explained variance was generally less than 30%. On the east coast, Wallops Island had the weakest relationship between ozone and the NOx tracer, while Huntsville had the strongest. During spring, differences in photochemistry and transport pathways in the

  20. Tropospheric ozone climatology at two southern subtropical sites, (Reunion Island and Irene, South Africa) from ozone sondes, LIDAR, aircraft and in situ measurements

    NASA Astrophysics Data System (ADS)

    Clain, G.; Baray, J. L.; Delmas, R.; Diab, R.; Leclair de Bellevue, J.; Keckhut, P.; Posny, F.; Metzger, J. M.; Cammas, J. P.

    2008-06-01

    This paper presents a climatology and trends of tropospheric ozone in the southwestern part of Indian Ocean (Reunion Island) and South Africa (Irene and Johannesburg). This study is based on a multi-instrumental dataset: PTU-O3 radiosoundings, DIAL LIDAR, MOZAIC airborne instrumentation and Dasibi UV ground based measurements. The seasonal profiles of tropospheric ozone at Reunion Island have been calculated from two different data sets: radiosondes and LIDAR. The two climatological profiles are similar, except in austral summer when smaller values for the LIDAR profiles in the free troposphere, and in the upper troposphere for all seasons occur. These results show that the LIDAR profiles are at times not representative of the true ozone climatological value as measurements can be taken only under clear sky conditions, and the upper limit reached depends on the signal. In the lower troposphere, climatological ozone values from radiosondes have been compared to a one year campaign of ground based measurements from a Dasibi instrument located at high altitude site (2150 m) at Reunion Island. The seasonal cycle is comparable for the two datasets, with Dasibi UV values displaying slightly higher values. This suggests that if local dynamical and possibly physico-chemical effects may influence the ozone level, the seasonal cycle can be followed with ground level measurements. Average ground level concentrations measured on the summits of the island seem to be representative of the lower free troposphere ozone concentration at the same altitude (~2000 m) whereas night time data would be representative of tropospheric concentration at a higher altitude (~3000 m) due to the subsidence effect. Finally, linear trends have been calculated from radiosondes data at Reunion and Irene. Considering the whole tropospheric column, the trend is slightly positive for Reunion, and more clearly positive for Irene. Trend calculations have also been made separating the troposphere into

  1. Development and field deployment of an instrument to measure ozone production rates in the troposphere

    NASA Astrophysics Data System (ADS)

    Sklaveniti, S.; Locoge, N.; Dusanter, S.; Leonardis, T.; Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Wood, E. C. D.; Kundu, S.; Gentner, D. R.

    2015-12-01

    Ozone is a greenhouse gas and a primary constituent of urban smog, irritating the respiratory system and damaging the vegetation. The current understanding of ozone chemistry in the troposphere indicates that net ozone production P(O3) occurs when peroxy radicals (HO2+RO2) react with NO producing NO2, whose photolysis leads to O3 formation. P(O3) values can be calculated from peroxy radical concentrations, either from ambient measurements or box model outputs. These two estimation methods often disagree for NOx mixing ratios higher than a few ppb, questioning our ability to measure peroxy radicals under high NOx conditions or indicating that there are still unknowns in our understanding of the radical and ozone production chemistry. Direct measurements of ozone production rates will help to address this issue and improve air quality regulations. We will present the development of an instrument for direct measurements of ozone production rates (OPR). The OPR instrument consists of three parts: (i) two quartz flow tubes sampling ambient air ("Ambient" and "Reference" flow tube), (ii) an O3-to-NO2 conversion unit, and (iii) a Cavity Attenuated Phase Shift (CAPS) monitor to measure NO2. The air in the Ambient flow tube undergoes the same photochemistry as in ambient air, while the Reference flow tube is covered by a UV filter limiting the formation of ozone. Exiting the flow tubes, ozone is converted into NO2 and the sum O3+NO2 (Ox) is measured by the CAPS monitor. The difference in Ox between the two flow tubes divided by the residence time yields the Ox production rate, P(Ox). P(O3) is assumed to be equal to P(Ox) when NO2 is efficiently photolyzed during daytime. We will present preliminary results from the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) campaign in Bloomington, Indiana, during July 2015, where ozone production rates were measured by introducing various amounts of NO inside the flow tubes to investigate the ozone

  2. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Emili, Emanuele; Barret, Brice; Massart, Sebastien; Piacentini, Andrea; Pannekoucke, Olivier; Cariolle, Daniel

    2013-04-01

    Ozone acts as the main shield against UV radiation in the stratosphere, it contributes to the greenhouse effect in the troposphere and it is a major pollutant in the planetary boundary layer. In the last decades models and satellite observations reached a mature level, providing estimates of ozone with an accuracy of few percents in the stratosphere. On the other hand, tropospheric ozone still represents a challenge, because its signal is less detectable by space-borne sensors, its modelling depends on the knowledge of gaseous emissions at the surface, and stratosphere/troposphere exchanges might rapidly increase its abundance by several times. Moreover there is generally lack of in-situ observations of tropospheric ozone in many regions of the world. For these reasons the assimilation of satellite data into chemical transport models represents a promising technique to overcome limitations of both satellites and models. The objective of this study is to assess the value of vertically resolved observations from the Infrared Atmospheric Sounding Interferometer (IASI) and the Microwave Limb Sounder (MLS) to constrain both the tropospheric and stratospheric ozone profile in a global model. While ozone total columns and stratospheric profiles from UV and microwave sensors are nowadays routinely assimilated in operational models, still few studies have explored the assimilation of ozone products from IR sensors such as IASI, which provide better sensitivity in the troposphere. We assimilate both MLS ozone profiles and IASI tropospheric (1000-225 hPa) ozone columns in the Météo France chemical transport model MOCAGE for 2008. The model predicts ozone concentrations on a 2x2 degree global grid and for 60 vertical levels, ranging from the surface up to 0.1 hPa. The assimilation is based on a 4D-VAR algorithm, employs a linear chemistry scheme and accounts for the satellite vertical sensitivity via the averaging kernels. The assimilation of the two products is first tested

  3. Global simulation of tropospheric O3-NO x -hydrocarbon chemistry: 2. Model evaluation and global ozone budget

    NASA Astrophysics Data System (ADS)

    Wang, Yuhang; Logan, Jennifer A.; Jacob, Daniel J.

    1998-05-01

    Results from a global three-dimensional model for tropospheric O3-NOx-hydrocarbon chemistry are presented and evaluated with surface, ozonesonde, and aircraft measurements. Seasonal variations and regional distributions of ozone, NO, peroxyacetylnitrate (PAN), CO, ethane, acetone, and H2O2 are examined. The model reproduces observed NO and PAN concentrations to within a factor of 2 for a wide range of tropospheric regions including the upper troposphere but tends to overestimate HNO3 concentrations in the remote troposphere (sometimes several fold). This discrepancy implies a missing sink for HNO3 that does not lead to rapid recycling of NOx; only in the upper troposphere over the tropical South Atlantic would a fast conversion of HNO3 to NOx improve the model simulation for NOx. Observed concentrations of acetone are reproduced in the model by including a large biogenic source (15 Tg C yr-1), which accounts for 40% of the estimated global source of acetone (37 Tg C yr-1). Concentrations of H2O2 in various regions of the troposphere are simulated usually to within a factor of 2, providing a test for HOx chemistry in the model. The model reproduces well the observed concentrations and seasonal variations of ozone in the troposphere, with some exceptions including an underestimate of the vertical gradient across the tropical trade wind inversion. A global budget analysis in the model indicates that the supply and loss of tropospheric ozone are dominated by photochemistry within the troposphere and that NOx. emitted in the southern hemisphere is twice as efficient at producing ozone as NOx emitted in the northern hemisphere.

  4. Role of deep cloud convection in the ozone budget of the troposphere.

    PubMed

    Lelieveld, J; Crutzen, P J

    1994-06-17

    Convective updrafts in thunderstorms prolong the lifetime of ozone (O(3)) and its anthropogenic precursor NOx [nitric oxide (NO) + nitrogen dioxide (NO(2))] by carrying these gases rapidly upward from the boundary layer into a regime where the O(3) production efficiency is higher, chemical destruction is slower, and surface deposition is absent. On the other hand, the upper troposphere is relatively rich in O(3) and NOx from natural sources such as downward transport from the stratosphere and lightning; convective overturning conveys the O(3) and NOx toward the Earth's surface where these components are more efficiently removed from the atmosphere. Simulations with a three-dimensional global model suggest that the net result of these counteractive processes is a 20 percent overall reduction in total tropospheric O(3). However, the net atmospheric oxidation efficiency is enhanced by 10 to 20 percent.

  5. Simulation of tropical tropospheric ozone variation from 1982 to 2010: The meteorological impact of two types of ENSO event

    NASA Astrophysics Data System (ADS)

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Zhu, Xiaoxin; Kang, Hanqing; Wang, Dongdong

    2016-08-01

    The effects of two types of ENSO events on tropical ozone (O3) variations from 1982 to 2010, and the mechanisms underlying these effects, were analyzed using observations and model simulations. Tropospheric column O3 anomalies (TCOA) during canonical El Niño were different from El Niño Modoki. Absolute TCOA values are larger during canonical El Niño than during El Niño Modoki in most regions. La Niña events were not separated into the different types because of their similarity in terms of sea surface temperature patterns. TCOA in La Niña showed a reversed dipole from canonical El Niño. During canonical El Niño, anomalous downward motion together with suppressed convection weakened O3 outflow from the troposphere, causing an increase in tropospheric O3 over western Pacific. Over central and eastern Pacific, decreased O3 concentrations resulted primarily from a change in net chemical production of O3. The change in net O3 chemical production relates to increased levels of HOx under wetter condition. During El Niño Modoki, transport and chemical fluxes were similar but weaker than during canonical El Niño. During La Niña, O3 anomalies and transport fluxes were the opposite of those during the El Niño Modoki. Stratospheric O3 played a key role in the development of O3 anomaly above 250 hPa during ENSO events, contributing >30% to the O3 anomalies. The change in free tropospheric O3 affected the O3 anomaly from 850 hPa to 200 hPa (60% of O3 anomaly). The contribution of O3 from planetary boundary layer was concentrated at the surface, with a contribution of <15%.

  6. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  7. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-01-01

    Because tropospheric ozone is both a~greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change and stratospheric ozone recovery on the tropospheric ozone budget, in a~simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0. Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximises in the early 21st century at 23%. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70 year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally-averaged northern midlatitude ozone because of increasing emissions from Asia, together with the longevity of ozone in the troposphere. A~simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6 % increase in global-mean tropospheric ozone, and an 11% increase at northern midlatitudes. This increase maximises in the 2080s, and is mostly caused by methane, which maximises in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its influence on other VOCs and CO. Enhanced flux of ozone from the stratosphere to the troposphere as well as climate change-induced enhancements in

  8. Application of natural radionuclides for determination of tropospheric ozone and aerosol transport.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Drayton, P. J.; Orlandini, K. A.

    2000-12-06

    Natural radionuclides have been proposed for use in assessing the transport of ozone and aerosols in the troposphere. For example, {sup 7}Be is known to be produced in the upper troposphere and lower stratosphere by interactions with cosmogenic particles. Beryllium-7 has a 53.28-day half-life and is a gamma emitter that attaches itself to fine particles in the atmosphere once it is formed. Indeed, in tropospheric aerosol samples TBe is typically found in association with aerosol particles that are 0.3 {micro}m in diameter. Some investigators have asserted that ozone from aloft can be transported into rural and urban regions during stratospheric/tropospheric folding events, leading to increased background levels of ozone. During the Texas 2000 Air Quality study, aerosol samples with a 2.5-{micro}m cutoff were collected during 12-hour cycles (day/night) for a 30-day period at the Deer Park, Texas, field site in August-September 2000. To monitor {sup 7}Be levels, high-volume samples were collected on glass fiber filters on Julian dates 225-259. Sample collection was at a field site near a city park, away from any nearby traffic. This site is under routine operation by the Texas Natural Resource Conservation Commission. Instruments operated at this same site during the study period included an ozone monitor (Dasibi), a nitrogen oxides instrument (API), a CO instrument (API), a nephelometer, a UV-B meter (Richardson-Berger), and a multifilter rotating shadow band radiometer (MFRSR, Yankee Environmental Systems). In addition, we made modified fast-response NO{sub 2} and peroxyacetyl nitrate (PAN) measurements by using a fast gas chromatography with luminol detection, to be described at this meeting (3). The results for {sup 7}Be (mBq m{sup {minus}3})are compared in Figure 1 with the maximum and average ozone values (ppb) observed at the site to identify potential correlations. In Figure 2, all of the {sup 7}Be data are plotted against the maximum and average ozone

  9. Autonomous Ozone and Aerosol LIDAR Profiling of the Troposphere: A Synergistic Approach

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2015-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model/satellite verification and validation. In recent years, Environment Canada has designed several autonomous aerosol LIDAR systems for deployment across several regions of Canada. The current system builds on the successes of these autonomous LIDARS but using a synergistic approach by combining tropospheric ozone DIAL (Differential Absorption LIDAR) technology with simultaneous 3+2+1 aerosol LIDAR measurements. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. A few case studies are shown emphasizing the synergistic approach of coupling ozone and aerosol profiles to better understand air quality impacts on local and regional scales.

  10. Impact of lightning-NO emissions on the relationship between ENSO and tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Allen, D. J.; Oman, L. D.; Pickering, K. E.; Ott, L. E.; Pawson, S.

    2011-12-01

    NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOS-CCM) is a tool that can be used to study the impact of various natural and anthropogenic perturbations on atmospheric chemistry and climate. In this study, the relationship between El Niño-Southern Oscillation (ENSO) and tropospheric ozone is examined for two different lightning-nitrogen oxide (NO) parameterizations; a default climatological scheme and a flash rate predictive scheme derived using a multiple regression between flash observations from the Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS) and cloud and other meteorological parameters from the GEOS-CCM. The LIS observational record will be examined to see if there is an ENSO signal. The sensitivity of model flash rates and the subsequent effect on ozone to the phase of ENSO will be examined over a five year period.

  11. Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer.

    PubMed

    Fadnavis, S; Beig, G; Buchunde, P; Ghude, Sachin D; Krishnamurti, T N

    2011-02-01

    Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.

  12. Transport of tropospheric ozone and precursors to the Arctic: lessons from a multi-model evaluation using aircraft, satellite and surface data

    NASA Astrophysics Data System (ADS)

    Arnold, Steve; Monks, Sarah; Emmons, Louisa; Law, Kathy; Ridley, David; Turquety, Solene; Tilmes, Simone; Thomas, Jennie; Rap, Alex; Bouarar, Idir; Flemming, Johannes; Huijnen, Vincent; Mao, Jinqui; Duncan, Bryan; Steenrod, Stephen; Langner, Joakim; Long, Yoann

    2015-04-01

    Changes in abundances of short-lived climate pollutants such as tropospheric ozone and aerosol may have contributed significantly to observed rapid Arctic warming in recent decades. Ozone in the Arctic troposphere is influenced by long-range transport of polluted air from Europe, Asia and N. America, and in summer from boreal wildfires. Our understanding of how different sources contribute to Arctic tropospheric ozone is limited, and is reliant on sparse observations and models of atmospheric transport and chemistry. In particular, our confidence in future high latitude tropospheric ozone response to projected changes in mid-latitude emissions, and subsequent climate impacts, is informed by the ability of models to accurately simulate poleward export from source regions, long-range transport to high latitudes, and photochemical transformation of ozone and its precursors during such events. We will present an overview of recent results from the evaluation of simulated distributions of ozone and its precursors in the Arctic troposphere from 10 chemical transport models, using an extensive suite of in-situ aircraft data, and data from surface stations and satellites. The models show substantial variability in their ability to simulate abundances of key ozone precursor species throughout the depth of the Arctic troposphere, with implications for in-situ ozone photochemical production and loss. Using results from synthetic model tracer experiments, we separate the impacts of inter-model differences in transport and chemical processes in driving inter-model variability in high-latitude ozone precursor sensitivities to different anthropogenic and biomass burning source regions. We will also highlight the importance of simulated vertical export from source regions for the high latitude tropospheric ozone budget and ozone radiaitive effects. Finally, we discuss some important chemical uncertainties in simulating Arctic tropospheric ozone response to mid-latitude emissions

  13. Global 3-d modeling of atmospheric ozone in the free troposphere and the stratosphere with emphasis on midlatitude regions. Final report, July 1, 1994--June 30, 1997

    SciTech Connect

    Brasseur, G.; Erickson, D.; Tie, X.; Walter, S.

    1997-12-01

    The objective of this research is to use global chemical-transport models to study the chemical and dynamical processes that affect midlatitude stratospheric ozone and to quantify the budget of tropospheric ozone. Four models will be improved and used: (1) a new version of the two-dimensional chemical-radiative-dynamical model with microphysical process of sulfate aerosols and polar stratospheric clouds (PSCs), and heterogeneous conversions on the surfaces of sulfate aerosols and PSCs; (2) the stratospheric version of three-dimensional off-line chemical-transport model (STARS) with a relatively high horizontal resolution (2.8 degree in latitudes) with a microphysical formation of PSCs; (3) the tropospheric version of three-dimensional off-line chemical-transport model (MOZART) with details in the surface emissions and hydrocarbon reactions to estimate the tropospheric ozone budget and perturbations; (4) the intermediate model of the global and annual evolution of species (IMAGES) with a detailed chemical reactions but relatively lower resolutions. Model results will be compared with available data.

  14. Tentative critical levels of tropospheric ozone for agricultural crops in Japan

    NASA Astrophysics Data System (ADS)

    Yonekura, T.

    2010-12-01

    Ground level ozone concentrations have increased year by year in Japan. High ozone concentrations have been known to affect growth and yield of agricultural crops. In the US and Europe, much effort has been directed to establish regulatory policies such as secondary air quality standard and critical levels to protect vegetation against ozone. On the contrary, in Japan, there is a few data of agricultural crops sensitivity to ozone. Furthermore, there is no information about the ozone risk of agricultural crop loss by based on ozone index (e.g. AOT40, SUM06, W126)-crop response relationship, yet. The objects of our research are: (1) to screen sensitivity of ozone on 10 crops cultivated in urban area in Japan. (2) to establish critical levels of ozone for protecting agricultural crops based on ozone index-crop response relationship. The 10 Japanese agricultural crops such as Japanese rice, Hanegi (Welsh onion), Shungiku (Crown daisy), Saradana (Lettus), Hatsukadaikon (Radish), Kokabu (Small Turnip), Santosai (Chinese cabbage), Tasai (Spinach mustard), Komatsuna (Japanese mustard spinach) and Chingensai (Bok Choy), were fumigated to three levels of ozone (clean air (< 5 ppbv), ambient level of ozone, 1.5 times ambient ozone) in open-top chambers during 30 to 120 days. Those experiments were repeated five times during two growing season. Throughout the experimental period, the growth or yield were measured, and the relationship between growth (or yield) and ozone index was examined. As a result, the influences of ozone on growth or yield were different among 10 crops. Relatively good correlations of coefficients of determination (r2) for linear regressions to growth or yield were obtained with “8h means” and “AOT40” rather than “SUM00”, “SUM06” and “W126”. Critical level for 10 crops in terms of an AOT40 were 1.1 to 2.1 ppm h per month. The ozone sensitive crop in our study was sound to be 1.0 ppm h per month in AOT40.

  15. Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Squire, O. J.; Archibald, A. T.; Beerling, D.; Hewitt, C. N.; Lathiere, J.; Pike, R. C.; Telford, P.; Pyle, J. A.

    2013-12-01

    Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to calculate potential future (2095) changes in isoprene emissions caused by changes in climate, land use, and the inhibition of isoprene emissions by CO2. From the present day (2000) value of 467 Tg C yr-1, we find that the combined impact of these factors causes a net decrease in isoprene emissions of 259Tg C yr-1 (55%) with individual contributions of +78 Tg C yr-1 (climate change), -190 Tg C yr-1 (land use) and -147 Tg C yr-1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present day. At the surface, decreases in ozone of 6-10 ppb are calculated over the oceans and developed northern hemispheric regions due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4-6 ppb are calculated in the continental Tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario

  16. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring

    NASA Astrophysics Data System (ADS)

    Cao, Le; Platt, Ulrich; Gutheil, Eva

    2016-05-01

    Tropospheric ozone depletion events (ODEs) in the polar spring are frequently observed in a stable boundary layer condition, and the end of the events occurs when there is a breakup of the boundary layer. In order to improve the understanding of the role of the boundary layer in the ozone depletion event, a one-dimensional model is developed, focusing on the occurrence and the termination period of the ozone depletion episode. A module accounting for the vertical air transport is added to a previous box model, and a first-order parameterization is used for the estimation of the vertical distribution of the turbulent diffusivity. Simulations are performed for different strengths of temperature inversion as well as for different wind speeds. The simulation results suggest that the reactive bromine species released from the underlying surface into the lowest part of the troposphere initially stay in the boundary layer, leading to an increase of the bromine concentration. This bromine accumulation causes the ozone destruction below the top of the boundary layer. After the ozone is totally depleted, if the temperature inversion intensity decreases or the wind speed increases, the severe ozone depletion event tends to transit into a partial ozone depletion event or it recovers to the normal ozone background level of 30-40 ppb. This recovery process takes about 2 h. Due to the presence of high-level HBr left from the initial occurrence of ODEs, the complete removal of ozone in the boundary layer is achieved a few days after the first termination of ODE. The time required for the recurrence of the ozone depletion in a 1000 m boundary layer is approximately 5 days, while the initial occurrence of the complete ozone consumption takes 15 days. The present model is suitable to clarify the reason for both the start and the termination of the severe ozone depletion as well as the partial ozone depletion in the observations.

  17. Transport of tropospheric and stratospheric ozone over India: Balloon-borne observations and modeling analysis

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Sahu, L. K.; Manchanda, R. K.; Sheel, V.; Deushi, M.; Kajino, M.; Schultz, M. G.; Nagendra, N.; Kumar, P.; Trivedi, D. B.; Koli, S. K.; Peshin, S. K.; Swamy, Y. V.; Tzanis, C. G.; Sreenivasan, S.

    2016-04-01

    This study describes the spatio-temporal variation of vertical profiles of ozone (O3) measured by balloon-borne ozonesondes over two tropical sites of Trivandrum (TVM) and Hyderabad (HYD) in India from January 2009 to December 2010. In the lower troposphere, the mixing ratios of O3 over HYD (18-66 ppbv) were similar to TVM (18-65 ppbv). In the free troposphere, the O3 mixing ratios over HYD were higher than those over TVM throughout the year. In the tropical tropopause layer (TTL) region (above 15 km), the mixing ratios of O3 over TVM were higher (83-358 ppbv) compared to those measured over HYD (89-216 ppbv). Prevailing of O3 laminae between about 14 and 17 km is seen for both sites for most profiles. A strong seasonal variation of O3 is observed in the lower stratosphere between 18 and 24 km over TVM, however, it is not pronounced for HYD. Transport of air masses from the biomass burning region of the central Africa, Southeast Asia and the Indo Gangetic plains (IGP) influenced and led to enhancements of lower and mid-tropospheric O3 over HYD and TVM while, the isentropic (325 K) potential vorticity (PV) at 100 hPa showed transport of O3-rich air from the lower stratosphere to the upper troposphere during winter and spring months over both sites. The free tropospheric O3 mixing ratios (FT-O3; 0-4 km) contribute substantially to the tropospheric column O3 (TCO) with an annual average fraction of 30% and reveal the similar seasonal variations over HYD and TVM. The vertical profiles of O3 obtained from the Monitoring Atmospheric Composition and Climate - Interim Implementation (MACC-II) reanalysis and the Meteorological Research Institute-Chemistry Climate Model version 2 (MRI-CCM2) are compared with the ozonesonde data over both sites. The simulated magnitude, phase and vertical gradient of O3 from both MRI-CCM2 and MACC-II are in good agreement with measurements in the stratosphere while there are significant differences in the tropospheric columns.

  18. Representation of the Bi-modal Distribution of Free Tropospheric Ozone Over the Tropical Western Pacific in CAM-CHEM

    NASA Astrophysics Data System (ADS)

    Honomichl, S.; Kinnison, D. E.; Lamarque, J. F.; Saiz-Lopez, A.; Randel, W. J.; Pan, L.

    2015-12-01

    During the CONTRAST field study, in situ aircraft observations revealed a distinct bi-modal distribution of ozone mixing ratios formed by persistent layers of enhanced of ozone relative to background concentrations in the Western Tropical Pacific middle troposphere during the Northern Hemispheric winter. These enhancements may have a measureable impact on the troposphere's oxidizing capacity in the tropics, which has a direct effect on the regional climate of the western tropical Pacific Ocean and beyond. In this work, we examine the representation of the bi-modal ozone characteristics in the NCAR chemistry-climate model (CAM-CHEM). We also investigate the controlling mechanisms of the bi-modal ozone distribution combining the model and aircraft observations.

  19. Nitrogen Oxides from Biogenic Alkyl Nitrates: A Natural Source of Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Lawler, M. J.; Saltzman, E. S.; Prather, M. J.

    2007-12-01

    Observations indicate that the tropical and southern oceans are source regions for biogenic emissions of alkyl nitrates. These compounds have lifetimes of several days to a month and are a significant source of reactive odd nitrogen (NOx) in remote regions of the atmosphere. These biogenically produced NOx precursors represent a natural control on atmospheric composition, including the important greenhouse gases methane (CH4) and tropospheric ozone (O3). We present simulations from the UCI global chemical transport model (CTM) using measurement-based fluxes of methyl and ethyl nitrate from their oceanic source regions and examine the contribution of these gases to global atmospheric composition. We also discuss the sensitivity of our results to our representation of two sub-gridscale processes: wet scavenging and photolysis in the presence of broken cloud fields. Quantification of the transport and chemistry of these compounds improves our understanding of natural tropospheric ozone production as well as hydroxyl radical (OH) chemistry in both the remote regions of the modern atmosphere and the pre-industrial atmosphere.

  20. A New Method of Deriving Time-Averaged Tropospheric Column Ozone over the Tropics Using Total Ozone Mapping Spectrometer (TOMS) Radiances: Intercomparison and Analysis Using TRACE A Data

    NASA Technical Reports Server (NTRS)

    Kim, J. H.; Hudson, R. D.; Thompson, A. M.

    1996-01-01

    Error analysis of archived total 03 from total ozone mapping spectrometer (TOMS) (version 6) presented. Daily total 03 maps for the tropics, from the period October 6-21, 1992, are derived from TOMS radiances following correction for these errors. These daily maps, averaged together, show a wavelike feature, which is observed in all latitude bands, underlying sharp peaks which occur at different longitudes depending on the latitude. The wave pattern is used to derive both time-averaged stratospheric and tropospheric 03 fields. The nature of the wave pattern (stratospheric or tropospheric) cannot be determined with certainty due to missing data (no Pacific sondes, no lower stratospheric Stratospheric Aerosol and Gas Experiment (SAGE) ozone for 18 months after the Mt. Pinatubo eruption) and significant uncertainties in the corroborative satellite record in the lower stratosphere (solar backscattered ultraviolet (SBUV), microwave limb sounder (MLS)). However, the time- averaged tropospheric ozone field, based on the assumption that the wave feature is stratospheric, agrees within 10% with ultraviolet differential absorption laser Transport and Atmospheric Chemistry near the Equator-Atlantic) (TRACE A) 03 measurements from the DC-8 and with ozonesonde measurements over Brazzaville, Congo, Ascension Island, and Natal, Brazil, for the period October 6-21, 1992. The derived background (nonpolluted) Indian Ocean tropospheric ozone amount, 26 Dobson units (DU), agrees with the cleanest African ozonesonde profiles for September-October 1992. The assumption of a totally tropospheric wave (flat stratosphere) gives 38 DU above the western Indian Ocean and 15-40% disagreements with the sondes. Tropospheric column 03 is high from South America to Africa, owing to interaction of dynamics with biomass burning emissions. Comparison with fire distributions from advanced very high resolution radiometer (AVHHR) during October 1992 suggests that tropospheric 03 produced from biomass

  1. Tropospheric Ozone Increases in the TTL over the Southern African Region (1990-2007): Insights from Sonde and Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Balashov, N. V.; Thompson, A. M.; Kollonige, D. E.; Coetzee, G.; Thouret, V.; Posny, F.

    2013-12-01

    Ozonesonde records from the early 1990s through 2007 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion Island (21S, 55W, ~3500 km NE of Irene in the southwest Indian Ocean) have been reported to exhibit free tropospheric (FT) ozone increases. We re-analyzed FT ozone in the1990-2007 Irene sondes, filling in mid-1990s gaps with ozone profiles taken by Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) over nearby Johannesburg. We applied a multivariate regression model to monthly averaged data from the combined dataset as well as to 1992-2011 FT and TTL ozone from Réunion sondes. Taking into account terms for the seasonal cycle, ENSO, and potential vorticity (PV) anomalies, we found that: (1) Statistically significant trends appear predominantly in the middle troposphere up to the tropopause layer (6-11 km over Irene, 6-15 km over Réunion) in winter (June-August), with an increase ~ 1 ppbv/yr over Irene and ~2 ppbv/yr over Réunion. Both stations display a less intense ozone increase above 7 km in November-December. (2) Variability in TTL dynamics and stratosphere-troposphere interactions were considered as plausible explanations for the Irene ozone increases. For the spring, there is a pronounced sensitivity to PV anomalies (+ 70 ppbv ozone/PV unit). We compare these results to our prior study of TTL wave activity at Irene and Réunion and relationships among waves, TTL ozone variability and oscillations like the ENSO. Trend (change in ppbv ozone/year) computed from multivariate regression model for 4-15 km, profiles from Réunion sondes, 1992-2011. Diagonal shading denotes statistical significance.

  2. CMAQ predictions of tropospheric ozone in the U.S. southwest: influence of lateral boundary and synoptic conditions.

    PubMed

    Shi, Chune; Fernando, H J S; Hyde, Peter

    2012-02-01

    Phoenix, Arizona, has been an ozone nonattainment area for the past several years and it remains so. Mitigation strategies call for improved modeling methodologies as well as understanding of ozone formation and destruction mechanisms during seasons of high ozone events. To this end, the efficacy of lateral boundary conditions (LBCs) based on satellite measurements (adjusted-LBCs) was investigated, vis-à-vis the default-LBCs, for improving the predictions of Models-3/CMAQ photochemical air quality modeling system. The model evaluations were conducted using hourly ground-level ozone and NO(2) concentrations as well as tropospheric NO(2) columns and ozone concentrations in the middle to upper troposphere, with the 'design' periods being June and July of 2006. Both included high ozone episodes, but the June (pre-monsoon) period was characterized by local thermal circulation whereas the July (monsoon) period by synoptic influence. Overall, improved simulations were noted for adjusted-LBC runs for ozone concentrations both at the ground-level and in the middle to upper troposphere, based on EPA-recommended model performance metrics. The probability of detection (POD) of ozone exceedances (>75ppb, 8-h averages) for the entire domain increased from 20.8% for the default-LBC run to 33.7% for the adjusted-LBC run. A process analysis of modeling results revealed that ozone within PBL during bulk of the pre-monsoon season is contributed by local photochemistry and vertical advection, while the contributions of horizontal and vertical advections are comparable in the monsoon season. The process analysis with adjusted-LBC runs confirms the contributions of vertical advection to episodic high ozone days, and hence elucidates the importance of improving predictability of upper levels with improved LBCs.

  3. An Intercomparison of Tropospheric Ozone Retrievals Derived from Two Aura Instruments and Measurements in Western North America in 2006

    NASA Technical Reports Server (NTRS)

    Doughty, D. C.; Thompson, A. M.; Schoeberl, M. R.; Stajner, I.; Wargan, K.; Hui, W. C. J.

    2011-01-01

    Two recently developed methods for quantifying tropospheric ozone abundances based on Aura data, the Trajectory-enhanced Tropospheric Ozone Residual (TTOR) and an assimilation of Aura data into Goddard Earth Observing System Version 4 (ASM), are compared to ozone measurements from ozonesonde data collected in April-May 2006 during the INTEX Ozonesonde Network Study 2006 (IONS-06) campaign. Both techniques use Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) observations. Statistics on column ozone amounts for both products are presented. In general, the assimilation compares better to sonde integrated ozone to 200 hPa (28.6% difference for TTOR versus 2.7% difference for ASM), and both products are biased low. To better characterize the performance of ASM, ozone profiles based on the assimilation are compared to those from ozonesondes. We noted slight negative biases in the lower troposphere, and slight positive biases in the upper troposphere/lower stratosphere (UT/ LS), where we observed the greatest variability. Case studies were used to further understand ASM performance. We examine one case from 17 April 2006 at Bratt's Lake, Saskatchewan, where geopotential height gradients appear to be related to an underestimation in the ASM in the UT/LS region. A second case, from 21 April 2006 at Trinidad Head, California, is a situation where the overprediction of ozone in the UT/LS region does not appear to be due to current dynamic conditions but seems to be related to uncertainty in the flow pattern and large differences in MLS observations upstream.

  4. Ozonesonde Climatology and Satellite Product Evaluation: Tropospheric Ozone in the Mid-Atlantic from 2005-2010

    NASA Astrophysics Data System (ADS)

    Normile, C.; Thompson, A. M.; Schmidlin, F. J.; Schoeberl, M. R.

    2011-12-01

    Geostationary satellite missions are proposed to remotely assess regional air quality over large swaths, although the precise capability of the current set of satellite instruments to accurately resolve urban scale pollution remains unverified. We use the Trajectory Enhanced Tropospheric Ozone Residual product derived from Aura's Ozone Monitoring Instrument/Microwave Limb Sounder satellite data to examine the regional climatology of ozone pollution in the mid-Atlantic, focusing on the Washington, D.C. area and downwind Delmarva. We use the North American Regional Reanalysis to determine the synoptic scale flow patterns in the lower troposphere. In addition, a set of proxies (OMI NO2, surface ozone, cloud cover, and air mass classification) are employed to understand TTOR performance and interacting meteorological and chemical effects in the region. We find that the TTOR product accuracy varies substantially both temporally and spatially, improving during summer months (0.22% error in May compared to 11% error in October) for example, and over urban areas more than rural ones (12% error versus 16% error). TTOR product accuracy is influenced by air mass effects on advection and on planetary boundary layer ozone concentrations. Conditions conducive to ozone production yield a higher near-surface proportion of the tropospheric column as measured by Wallops Island ozonesondes. We identify synoptic-scale flow regimes that strengthen correlations between urban tropospheric ozone density and column density off the coast of the mid-Atlantic. These results indicate that remotely sensed measurements may indeed be able to discriminate urban influences on regional ozone and their effects in more remote areas and have implications for air quality assessment and model validation.

  5. Modelling the Impacts of Climate Change on Tropospheric Ozone over three Centuries

    NASA Astrophysics Data System (ADS)

    Brandt Hedegaard, Gitte; Brandt, Jørgen; Christensen, Jesper H.; Gross, Allan; May, Wihelm; Hansen, Kaj M.; Skjøth, Carsten A.

    2010-05-01

    So far reduction of the anthropogenic emissions of chemical species to the atmosphere has been profoundly investigated. However, new research indicates that climate change on its own also has a significant impact on the future air pollution levels. Climate Change and its impact on air pollution levels are currently studied by a number of research groups using, global, hemispherical and regional modelling systems. In the Department of Atmospheric Environment, National Environmental Research Institute (NERI), Aarhus University, in Denmark, we have developed a hemispherical model system which is based on the DEHM model (Christensen, 1997; Frohn et al., 2002a; Frohn et al., 2002b). In the DEHM modelling system an option for modelling the impacts of climate change has been included by using meteorological input from global climate models. Here we present results by using climate data that are provided by the ECHAM5/MPI-OM Atmosphere-Ocean General Circulation Model (May, 2008; Roeckner et al., 2003). In the current experiment the anthropogenic emissions in the chemistry model DEHM are kept constant on a 2000 level to separate out the signal of climate change on air pollutants while the meteorological drivers simulated by the ECHAM5/MPI-OM climate model is based on the IPCC SRES A1B Scenario. To save computing time the experiment is carried out in time-slices representing four centuries (1890s, 1990s, 2090s and the 2190s). The results show that the dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. This temperature affects chemistry as well as emissions from nature. The largest changes in both meteorology and air quality is found to happen in the 21st century. However, significant changes are also found in some parameters including tropospheric ozone in the following century. In general the background ozone concentrations is predicted to decrease at surface level however in the densely

  6. Reactions of important OVOCs with hydrogen peroxide and ozone in the tropospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Schöne, Luisa; Weller, Christian; Herrmann, Hartmut

    2013-04-01

    Besides research on the microphysics of cloud droplets and similar aqueous systems in the troposphere, the chemistry of volatile organic compounds (VOCs) from anthropogenic and biogenic sources cannot be neglected for the understanding of tropospheric processes such as the organic particle mass formation. Emissions of biogenic volatile organic compounds (BVOCs) can exceed those of VOCs from anthropogenic sources by a factor of 10[1]. Oxidation products of BVOCs like glyoxal, methylglyoxal, glycolate, glyoxylate and pyruvate, glycolaldehyde, and the unsaturated compounds methacrolein and methyl vinyl ketone are known precursors for less volatile organic substances found in secondary organic aerosols[2,3]. Yet, the main decomposition of these substances is believed to occur via radical reactions. However, Tilgner and Herrmann[2] showed evidence that the turnovers by non-radical reactions with H2O2 or ozone and some non-oxidative organic accretion reactions may even exceed those from the most reactive species in the lower troposphere, the hydroxyl radical OH. This work investigated the reactivities of the atmospheric relevant oxidation products including pyruvic acid and glyoxylic acid towards O3 and H2O2 in the aqueous phase. Furthermore, pH effects were studied by measuring the kinetics of both the protonated and deprotonated forms. The measurements were performed using a UV/VIS-spectrometer (conventional and in addition a Stopped Flow technique) and capillary electrophoresis. In some cases the results indicate higher turnovers of H2O2 and ozone reactions compared to interactions with atmospheric radicals. The experimental data obtained will be presented and their implications for atmospheric multiphase chemistry are discussed. [1] Guenther et al., 1995, Journal of Geophysical Research - Atmosphere, 100(D5), 8873-8892. [2] Tilgner and Herrmann, 2010, Atmospheric Environment, 44, 5415-5422. [3] van Pinxteren et al., 2005, Atmospheric Environment, 39, 4305-4320.

  7. Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil.

    PubMed

    da Silva, Débora Bonfim Neves; Martins, Eduardo Monteiro; Corrêa, Sergio Machado

    2016-05-01

    The ozone in Rio de Janeiro has been in violation of national air quality standards. Among all of the monitoring stations, the Bangu neighbourhood has the most violations of the national standard of 160 μg m(-3) for the years 2012 and 2013. This study evaluated the reactivity of the carbonyls and aromatics in the tropospheric ozone formation processes. The samples were collected between July and October of 2013. Carbonyls were sampled using SiO2 cartridges coated with C18 and impregnated with 2,4-dinitrophenylhydrazine and were analysed by HPLC. Activated carbon cartridges and GC/MS were used to measure the concentration of monoaromatic hydrocarbons. An air quality monitoring station provided the concentrations of the criteria pollutants and the meteorological parameters. Cluster analysis and a Pearson correlation matrix were used to determine the formation of groups and the correlation of the variables. The evaluation of the volatile organic compounds (VOC) reaction with OH radicals and the MIR scale was used to extrapolate the reactivity of VOCs to the ozone formation. The average concentrations obtained were 19.7 and 51.9 μg m(-3) for formaldehyde and acetaldehyde, respectively. The mean concentrations obtained for aromatics were 1.5, 6.7, 1.5, 2.6 and 1.6 μg m(-3) for benzene, toluene, ethyl benzene, m+p-xylene and o-xylene, respectively. The cluster analysis indicated the presence of three similar groups, with one formed by gaseous criteria pollutants, another formed by the meteorological parameters, ozone and fine particles, and the last group formed by the aromatics. For the two reactivity scales evaluated, acetaldehyde and toluene were the main ozone precursors.

  8. Fluxes of BVOC and tropospheric ozone from a Citrus orchard in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Fares, S.; Park, J.; Weber, R.; Gentner, D. R.; Karlik, J. F.; Goldstein, A. H.

    2011-12-01

    Citrus plants, especially oranges, are widely cultivated in many countries experiencing Mediterranean climates. In many of these areas, orchards are often exposed to high levels of tropospheric ozone (O3) due to their location in polluted airsheds. Citrus take up O3 through their stomata and emit biogenic volatile organic compounds (BVOC), which can contribute to non-stomatal O3 removal through fast gas-phase reactions with O3. The study was performed in a valencia orange orchard in Exeter, California. From fall 2009 to winter 2010, CO2 & water fluxes, together with O3 uptake and BVOC emissions were measured continuously in situ with specific sensors (e.g. fast ozone analyzer and Proton Transfer Reaction Mass Spectrometer) using the eddy covariance techniques. Vertical concentration gradients of these compounds were also measured at 4 heights from the orchard floor to above the canopy. We observed high levels (up to 60 ppb) of volatile organic compounds including methanol, isoprene, monoterpenes, sesquiterpenes, and some additional oxygenated BVOC. Methanol dominated BVOC emissions (up to 7 nmol m-2 s-1) followed by acetone. Monoterpenes fluxes were also recorded during the all vegetative period, with the highest emissions taking place during flowering periods, and in general highly temperature dependent. The orchard represented a sink for ozone, with uptake rates on the order of 10 nmol m-2 s-1 during the central hours of the day. We found that BVOC played a major role in removing ozone through chemical reactions in the gas-phase, while only up to 40 % of ozone was removed via stomatal uptake. The current research aimed at investigating the fate of BVOC emitted from orange trees will help understanding the role of Citrus orchards in the complex oxidation mechanisms taking place in the polluted atmosphere of the San Joaquin Valley (California).

  9. Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil.

    PubMed

    da Silva, Débora Bonfim Neves; Martins, Eduardo Monteiro; Corrêa, Sergio Machado

    2016-05-01

    The ozone in Rio de Janeiro has been in violation of national air quality standards. Among all of the monitoring stations, the Bangu neighbourhood has the most violations of the national standard of 160 μg m(-3) for the years 2012 and 2013. This study evaluated the reactivity of the carbonyls and aromatics in the tropospheric ozone formation processes. The samples were collected between July and October of 2013. Carbonyls were sampled using SiO2 cartridges coated with C18 and impregnated with 2,4-dinitrophenylhydrazine and were analysed by HPLC. Activated carbon cartridges and GC/MS were used to measure the concentration of monoaromatic hydrocarbons. An air quality monitoring station provided the concentrations of the criteria pollutants and the meteorological parameters. Cluster analysis and a Pearson correlation matrix were used to determine the formation of groups and the correlation of the variables. The evaluation of the volatile organic compounds (VOC) reaction with OH radicals and the MIR scale was used to extrapolate the reactivity of VOCs to the ozone formation. The average concentrations obtained were 19.7 and 51.9 μg m(-3) for formaldehyde and acetaldehyde, respectively. The mean concentrations obtained for aromatics were 1.5, 6.7, 1.5, 2.6 and 1.6 μg m(-3) for benzene, toluene, ethyl benzene, m+p-xylene and o-xylene, respectively. The cluster analysis indicated the presence of three similar groups, with one formed by gaseous criteria pollutants, another formed by the meteorological parameters, ozone and fine particles, and the last group formed by the aromatics. For the two reactivity scales evaluated, acetaldehyde and toluene were the main ozone precursors. PMID:27080853

  10. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with backtrajectory calculation

    NASA Astrophysics Data System (ADS)

    Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.

    During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.

  11. The Influence of the North Atlantic Oscillation on Tropospheric Distributions of Ozone and Carbon Monoxide.

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Doherty, R. M.; Hodges, K.

    2015-12-01

    The influence of the North Atlantic Oscillation (NAO) on the tropospheric distributions of ozone (O3) and carbon monoxide (CO) has been quantified. The Monitoring Atmospheric Composition and Climate (MACC) Reanalysis, a combined meteorology and composition dataset for the period 2003-2012 (Innes et al., 2013), is used to investigate the composition of the troposphere and lower stratosphere in relation to the location of the storm track as well as other meteorological parameters over the North Atlantic associated with the different NAO phases. Cyclone tracks in the MACC Reanalysis compare well to the cyclone tracks in the widely-used ERA-Interim Reanalysis for the same 10-year period (cyclone tracking performed using the tracking algorithm of Hodges (1995, 1999)), as both are based on the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). A seasonal analysis is performed whereby the MACC reanalysis meteorological fields, O3 and CO mixing ratios are weighted by the monthly NAO index values. The location of the main storm track, which tilts towards high latitudes (toward the Arctic) during positive NAO phases to a more zonal location in the mid-latitudes (toward Europe) during negative NAO phases, impacts the location of both horizontal and vertical transport across the North Atlantic and into the Arctic. During positive NAO seasons, the persistence of cyclones over the North Atlantic coupled with a stronger Azores High promotes strong horizontal transport across the North Atlantic throughout the troposphere. In all seasons, significantly more intense cyclones occur at higher latitudes (north of ~50°C) during the positive phase of the NAO and in the southern mid-latitudes during the negative NAO phase. This impacts the location of stratospheric intrusions within the descending dry airstream behind the associated cold front of the extratropical cyclone and the venting of low-level pollution up into the free troposphere within

  12. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Northern California

    NASA Astrophysics Data System (ADS)

    Post, A.; Conley, S. A.; Zhao, Y.; Cliff, S. S.; Faloona, I. C.; Wexler, A. S.; Lighthall, D.

    2012-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley have prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County. Six months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, approximately monthly ozone surveys are conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. The measurements exhibit no systematic diurnal variations of ozone or water vapor, an indication that the site primarily samples lower free tropospheric air which has not been significantly influenced by either local emissions or convective coupling to the surface. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal patterns of influence that long range transport has on California air quality.

  13. Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Tai, A. P. K.

    2015-09-01

    Understanding how historical climate and land cover changes have affected tropospheric ozone in East Asia would help constrain the large uncertainties associated with future East Asian air quality projections. We perform a series of simulations using a global chemical transport model driven by assimilated meteorological data and a suite of land cover and land use data to examine the public health effects associated with changes in climate, land cover, land use, and anthropogenic emissions between the 5-year periods 1981-1985 and 2007-2011 in East Asia. We find that between these two periods land cover change alone could lead to a decrease in summertime surface ozone by up to 4 ppbv in East Asia and ~ 2000 fewer ozone-related premature deaths per year, driven mostly by enhanced dry deposition resulting from climate- and CO2-induced increase in vegetation density, which more than offsets the effect of reduced isoprene emission arising from cropland expansion. Climate change alone could lead to an increase in summertime ozone by 2-10 ppbv in most regions of East Asia and ~ 6000 more premature deaths annually, mostly attributable to warming. The combined impacts (-2 to +12 ppbv) show that while the effect of climate change is more pronounced, land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. While the changes in anthropogenic emissions remain the largest contributor to deteriorating ozone air quality in East Asia over the past 30 years, we show that climate change and land cover changes could lead to a substantial modification of ozone levels, and thus should come into consideration when formulating future air quality management strategies. We also show that the sensitivity of surface ozone to land cover change is more dependent on dry deposition than on isoprene emission in most of East Asia, leading to ozone responses that are quite distinct from that in North America, where most ozone

  14. Derivation of Tropospheric Column Ozone from the EPTOMS/GOES Co-Located Data Sets using the Cloud Slicing Technique

    NASA Technical Reports Server (NTRS)

    Ahn, C.; Ziemke, J. R.; Chandra, S.; Bhartia, P. K.

    2002-01-01

    A recently developed technique called cloud slicing used for deriving upper tropospheric ozone from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument combined together with temperature-humidity and infrared radiometer (THIR) is no longer applicable to the Earth Probe TOMS (EPTOMS) because EPTOMS does not have an instrument to measure cloud top temperatures. For continuing monitoring of tropospheric ozone between 200-500hPa and testing the feasibility of this technique across spacecrafts, EPTOMS data are co-located in time and space with the Geostationary Operational Environmental Satellite (GOES)-8 infrared data for 2001 and early 2002, covering most of North and South America (45S-45N and 120W-30W). The maximum column amounts for the mid-latitudinal sites of the northern hemisphere are found in the March-May season. For the mid-latitudinal sites of the southern hemisphere, the highest column amounts are found in the September-November season, although overall seasonal variability is smaller than those of the northern hemisphere. The tropical sites show the weakest seasonal variability compared to higher latitudes. The derived results for selected sites are cross validated qualitatively with the seasonality of ozonesonde observations and the results from THIR analyses over the 1979-1984 time period due to the lack of available ozonesonde measurements to study sites for 2001. These comparisons show a reasonably good agreement among THIR, ozonesonde observations, and cloud slicing-derived column ozone. With very limited co-located EPTOMS/GOES data sets, the cloud slicing technique is still viable to derive the upper tropospheric column ozone. Two new variant approaches, High-Low (HL) cloud slicing and ozone profile derivation from cloud slicing are introduced to estimate column ozone amounts using the entire cloud information in the troposphere.

  15. A Research Study of Tropospheric Ozone and Meteorological Parameters to Introduce High School Students to Scientific Procedures

    ERIC Educational Resources Information Center

    Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso; Adame, Jose Antonio; Parra, Alfonso; Romero, Eugenio; Parra, Jesus; Munoz, Fernando

    2011-01-01

    An environmental research project was carried out by a consortium established among scientists and university lecturers in collaboration with two high schools. High school students participated in a long-term study of the local temporal profiles of tropospheric ozone and the relationship to pollution and meteorological parameters. Low-cost…

  16. An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations

    NASA Astrophysics Data System (ADS)

    Allen, Dale J.; Dibb, Jack E.; Ridley, Brian; Pickering, Kenneth E.; Talbot, Robert W.

    2003-02-01

    Measurements of tropospheric ozone (O3) between 30°N and 70°N show springtime maxima at remote locations. The contribution of seasonal changes in stratosphere-troposphere exchange (STE) to these maxima was investigated using measurements from the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) campaign and the beryllium-7 (7Be) distribution from a calculation driven by fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Comparison with TOPSE measurements revealed that upper tropospheric model-calculated 7Be mixing ratios were reasonable (a change from previous calculations) but that lower tropospheric mixing ratios were too low most likely due to an overestimation of scavenging. Temporal fluctuations were well captured although their amplitudes were often underestimated. Analysis of O3 measurements indicated that O3 mixing ratios increased by 5-10% month-1 for θ < 300 K (the underworld) and by 10-15% month-1 for θ > 300 K (the tropospheric middleworld). 7Be mixing ratios decreased with time for θ < 290 K and increased with time for θ > 300 K. Model-calculated middleworld increases of 7Be were a factor of 2 less than measured increases. 7Be with a stratospheric source (strat-7Be) increased by 4.6-8.8% month-1 along TOPSE flight paths within the tropospheric middleworld. Increases in strat-7Be were not seen along TOPSE flight paths in the underworld. Assuming changes in tropospheric O3 with a stratospheric source are the same as changes in strat-7Be and that 50% of O3 in the region of interest is produced in the stratosphere, changes in STE explain 20-60% of O3 increases in the tropospheric middleworld and less than 33% of O3 increases in the underworld.

  17. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    NASA Astrophysics Data System (ADS)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  18. A model investigation of the impact of increases in anthropogenic NOx emissions between 1967 and 1980 on tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Dignon, J.; Hameed, S.

    1985-01-01

    The impact of anthropogenic NOx emission on tropospheric ozone has been investigated. Two statistical models were used for estimating annual global emissions of NOx and for driving the trend in the emission for the years 1966-1980. Both models show a steady increase in the NOx emission, except for two brief periods of leveling off: after 1973 and after 1978. The impact was estimated by calculating the rates of emissions as functions of latitude, longitude, and year, with a one-dimensional (latitudinal) model, which included coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NOx emissions appropriate for 1966 and 1980 indicate an ozone increase of 8-11 percent in the Northern Hemisphere, a result compatible with the rise in ozone suggested by the observations.

  19. Laboratory studies of the sensitivity of tropospheric ozone to the chemistry of sea salt aerosol. Final report, September 15, 1993--September 14, 1994

    SciTech Connect

    Finlayson-Pitts, B.J.

    1994-11-15

    Ozone plays a critical role in both the chemistry and radiation balance of the troposphere. Understanding the factors controlling tropospheric ozone levels is critical to our understanding of a variety of issues in global chemistry and climate change. Chlorine atoms have the potential to contribute significantly to the ozone balance in the free troposphere. They can react directly with ozone or alternately, with organics and may actually lead to the formation of ozone in the presence of sufficient NO. Reactions of alkali halides in sea salt particles are a potential source of atomic chlorine, hence reactions of these alkali halides, especially those producing precursors to atomic chlorine, are of great interest. Finally, the mechanisms, intermediates and products of the Cl-biogenic reactions are unknown; these could serve as unique markers of chlorine atom chemistry in the troposphere, and hence are important to define.

  20. On the Tropospheric Measurements of Ozone by the Stratospheric Aerosol and Gas Experiment II (SAGE II, version 6.1) in the Tropics

    NASA Technical Reports Server (NTRS)

    Kar, J.; Trepte, C. R.; Thomason, L. W.; Zawodny, J. M.; Cunnold, D. M.; Wang, H. J.

    2002-01-01

    Tropospheric measurements of ozone from SAGE II (version 6.1) in the tropics have been analyzed using 12 years of data (1985-1990, 1994-1999). The seasonally averaged vertical profiles of the ozone mixing ratio in the upper troposphere have been presented for the first time from satellite measurements. These profiles show qualitative similarities with corresponding seasonal mean ozonesonde profiles at northern and southern tropical stations and are about 40-50% less than the sonde values. Despite this systematic offset, the measurements appear to be consistent with a zonal wave one pattern in the upper tropospheric column ozone and with the recently predicted summertime ozone enhancement over the Middle East. These results thus affirm the usefulness of the occultation method in studying tropospheric ozone.

  1. Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Coates, J.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Butler, T. M.

    2016-06-01

    Non-methane volatile organic compounds (NMVOCs) are detrimental to human health owing to the toxicity of many of the NMVOC species, as well as their role in the formation of secondary air pollutants such as tropospheric ozone (O3) and secondary organic aerosol. The speciation and amount of NMVOCs emitted into the troposphere are represented in emission inventories (EIs) for input to chemical transport models that predict air pollutant levels. Much of the information in EIs pertaining to speciation of NMVOCs is likely outdated, but before taking on the task of providing an up-to-date and highly speciated EI, a better understanding of the sensitivity of models to the change in NMVOC input would be highly beneficial. According to the EIs, the solvent sector is the most important sector for NMVOC emissions. Here, the sensitivity of modelled tropospheric O3 to NMVOC emission inventory speciation was investigated by comparing the maximum potential difference in O3 produced using a variety of reported solvent sector EI speciations in an idealized study using a box model. The sensitivity was tested using three chemical mechanisms that describe O3 production chemistry, typically employed for different types of modelling scales - point (MCM v3.2), regional (RADM2), and global (MOZART-4). In the box model simulations, a maximum difference of 15 ppbv (ca. 22% of the mean O3 mixing ratio of 69 ppbv) between the different EI speciations of the solvent sector was calculated. In comparison, for the same EI speciation, but comparing the three different mechanisms, a maximum difference of 6.7 ppbv was observed. Relationships were found between the relative contribution of NMVOC compound classes (alkanes and oxygenated species) in the speciations to the amount of Ox produced in the box model. These results indicate that modelled tropospheric O3 is sensitive to the speciation of NMVOCs as specified by emission inventories, suggesting that detailed updates to the EI speciation

  2. The 'Weekend Effect' in Tropospheric NO2 Seen from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Bucsela, E.; Wenig, M.; Celarier, E.; Gleason, J.

    2007-01-01

    The Ozone Monitoring Instrument has gathered daily global data on NO2 and other atmospheric trace gases since its launch on the EOS Aura satellite in 2004. The large accumulated data set makes it possible to monitor changes of both meteorological and anthropogenic origin in tropospheric NOz amounts. In particular, averages on time scales on the order of a year show a distinct 'weekend effect' in NO2 variation, with smaller NO2 amounts seen on Saturday and/or Sunday than on the remaining weekdays. Using the OMI NO2 Standard Product (SP), we examine this effect in relation to geopolitical boundaries and investigate implications for identifying sources. We also use the SP data to find evidence for other short-term anthropogenic changes in NO2 emissions over heavily polluted regions including the United States, Europe and China.

  3. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Central California

    NASA Astrophysics Data System (ADS)

    Post, A.; Faloona, I. C.; Lighthall, D.; Wexler, A. S.; Cliff, S. S.; Conley, S. A.; Zhao, Y.

    2013-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, operated by the Monterey Institute for Research in Astronomy. Eighteen months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, several ozone surveys have been conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. Diurnal variations present at Chews Ridge indicate the formation of a convective boundary layer on the ridge during the daytime leading to a 6-8 ppb decrease in ozone accompanied by a rise in specific humidity of 2-3 g/kg due to coupling with the forest. During the nighttime, the sampled air masses are representative of free tropospheric conditions which have not been significantly influenced by either local emissions nor convective coupling to the surface. The maximum daily 8-hour average ozone concentration at Chews Ridge is used in lagged correlation analysis with two sites in the San Joaquin Valley, Fresno and Arvin, to de-emphasize the influence of locally produced, diurnally cycled ozone. The correlation coefficients (~0.60) peak between 9-21 hour lag and tend to decorrelate completely within 4-5 days. These and other analyses along with data provided by the aircraft sampling are used to provide a deeper understanding of ozone transport into the San Joaquin Valley. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal

  4. Highlights from the 11-year record of tropospheric ozone from OMI/MLS and continuation of that long record using OMPS measurements

    NASA Astrophysics Data System (ADS)

    Ziemke, Jerry; Kramarova, Natalya; Bhartia, Pawan; Degenstein, Doug; Deland, Matthew

    2016-04-01

    Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 - present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the SASKatchewan radiative TRANsfer (SASKTRAN) algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of ~10 DU over Indonesia and decreases ~5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific.

  5. Highlights from the 11-Year Record of Tropospheric Ozone from OMI/MLS and Continuation of that Long Record Using OMPS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Kramarova, N. A.; Bhartia, P. K.; Degenstein, D. A.; Deland, M. T.

    2016-01-01

    Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the University of Saskatchewan (USask) Algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of approximately 10 DU over Indonesia and decreases approximately 5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific.

  6. Trajectory model simulations of ozone and carbon monoxide in the Upper Troposphere and Lower Stratosphere (UTLS)

    NASA Astrophysics Data System (ADS)

    Wang, T.; Randel, W. J.; Dessler, A. E.; Schoeberl, M. R.; Kinnison, D. E.

    2014-03-01

    A domain-filling, forward trajectory model originally developed for simulating stratospheric water vapor is used to simulate ozone (O3) and carbon monoxide (CO) in the upper troposphere and lower stratosphere (UTLS). Trajectories are initialized in the upper troposphere, and the circulation is based on reanalysis wind fields. In addition, chemical production and loss rates along trajectories are included using calculations from the Whole Atmosphere Community Climate Model (WACCM). The trajectory model results show good overall agreement with satellite observations from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in terms of spatial structure and seasonal variability. The trajectory model results also agree well with the Eulerian WACCM simulations. Analysis of the simulated tracers shows that seasonal variations in tropical upwelling exerts strong influence on O3 and CO in the tropical lower stratosphere, and the coupled seasonal cycles provide a useful test of the transport simulations. Interannual variations in the tracers are also closely coupled to changes in upwelling, and the trajectory model can accurately capture and explain observed changes during 2005-2011. This demonstrates the importance of variability in tropical upwelling in forcing chemical changes in the tropical UTLS.

  7. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  8. SHADOZ (Southern Hemisphere ADditional Ozonesondes): What Have We Learned About Tropical Tropospheric Ozone from the First Three Years' (1998-2000) Data?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  9. SHADOZ (Southern Hemisphere ADditional Ozonesondes}: What Have We Learned About Tropical Tropospheric Ozone from the First Three Years (1998-2000) Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  10. Analysis of satellite remote sensing observations of low ozone events in the tropical upper troposphere and links with convection

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew J.; Martin, Randall V.; Livesey, Nathaniel J.; Degenstein, Doug A.; Walker, Kaley A.

    2013-07-01

    observations from three instruments (Microwave Limb Sounder, Optical Spectrograph and Infrared Imaging System, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer) reveal coherent patterns of low ozone events (<20 ppb) in the tropical upper troposphere. Using a chemical transport model (GEOS-Chem), we find that these events result from deep convective processes that rapidly transport air with low ozone concentrations from the marine boundary layer. These events occur with greater frequency over the tropical South Pacific warm pool, which is consistent with ozonesonde observations. The satellite observations indicate spatial shifts in the frequency of low ozone events that we attribute to changes in convection. As the location of the warm pool shifts eastward during El Niño events, the location of the most frequent low ozone events in the satellite record follows. Mapping of low ozone events over time reveals eastward propagating systems resembling the Madden-Julian Oscillation. These observations and analyses strengthen the link between deep convection and ozone concentrations in the tropical upper troposphere.

  11. Ozone production in the upper troposphere over West Africa: sensitivity to non-methane hydrocarbons under convective conditions

    NASA Astrophysics Data System (ADS)

    Bechara, Joelle; Borbon, Agnès.; Aumont, Bernard; Jambert, Corinne; Perros, Pascal

    2010-05-01

    Tropical deep convection is an efficient pathway of transporting up to the upper troposphere (UT) trace gas species such as volatile organic compounds (VOC). However, the impact of convective transport on UT composition and chemistry is still poorly characterized. The chemical impact of convection on the tropical UT over West Africa was studied during the AMMA Special Observation Period in August 2006 (SOP 2a2). Experimental strategy consisted in sampling at altitudes between 0 and 12 km downwind of Mesoscale Convective Systems (MCS) and at cloud base on-board the two French aircrafts, the ATR-42 and the French Falcon-20. Previous work pointed out that tropical deep convection in West Africa is efficient and is responsible with fast transport of VOC into the UT even the most reactive (isoprene) in less than one hour (Bechara et al., 2009). Here, we have investigated the impact of VOC precursors on ozone production. For that purpose, box modelling was implemented with the Master Chemical Mechanism scheme to simulate ozone variability in the upper troposphere downwind convection. The model is initialized with observed trace gases concentrations (NMHC, NOx, NOy, CO...) collected during the AMMA SOP 2a2 airborne campaign. Results show a positive ozone production several days downwind convective clouds at an average rate of 4 ppb/day. They confirm that UT ozone production is sensitive to NOx. Surprisingly, the sensitivity of NMHC initial concentrations on ozone production is negative. Indeed, an increase in NMHC favours PAN (peroxyacetyl nitrate) formation and thus decreases ozone production. The implication on ozone budget in the upper troposphere is crucial.

  12. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.-F.; Wespes, C.; Loyola, D.; Valks, P.; Hao, N.

    2013-09-01

    ozone (O3) columns in urban and rural regions as seen by the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed along with the Global Ozone Monitoring Experiment (GOME-2) tropospheric nitrogen dioxide (NO2) columns. Results over nine cities of the Northern Hemisphere for the period 2008-2011 show a typical seasonal behavior of tropospheric O3, with a first maximum reached in late spring because of stratospheric intrusion mainly and a continuous rise till the summer because of the anthropogenic-based ozone production. Over the East Asian cities, a decrease in the O3 tropospheric column is detected during the monsoon period. Seasonal cycling of tropospheric NO2 shows consistent higher values during winter because of the higher anthropogenic sources and longer lifetime. In rural regions, a complex relation between the O3 and NO2 columns is found, with good correlation in summer and winter. O3 concentrations in rural sites are found to be comparable to those closest to the anthropogenic emission sources, with peak values in spring and summer. Furthermore, the effect of the reduction of pollutant emissions in the Beijing region during the Olympic Games of 2008 compared to the same summer period in the following 3 years is studied. GOME-2 NO2 measurements show a reduction up to 54% above Beijing during this period compared to the following 3 years. IASI O3 measurements show an increase of 12% during July 2008 followed by a decrease of 5-6% during the months of August and September.

  13. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    NASA Technical Reports Server (NTRS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  14. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  15. Aircraft observations of the lower troposphere above a megacity: Alkyl nitrate and ozone chemistry

    NASA Astrophysics Data System (ADS)

    Aruffo, Eleonora; Di Carlo, Piero; Dari-Salisburgo, Cesare; Biancofiore, Fabio; Giammaria, Franco; Busilacchio, Marcella; Lee, James; Moller, Sarah; Hopkins, James; Punjabi, Shalini; Bauguitte, Stéphane; O'Sullivan, Debbie; Percival, Carl; Le Breton, Michael; Muller, Jennifer; Jones, Rod; Forster, Grant; Reeves, Claire; Heard, Dwayne; Walker, Hannah; Ingham, Trevor; Vaughan, Stewart; Stone, Daniel

    2014-09-01

    Within the framework of the RONOCO (ROle of Nighttime chemistry in controlling the Oxidising Capacity of the atmOsphere) campaign a daytime flight over the metropolitan area of London were carried out to study the nitrogen oxide chemistry and its role in the production and loss of ozone (O3) and alkyl and multifunctional nitrate (ΣANs). The FAAM BAe-146 aircraft, used for these observations, was equipped with instruments to measure the most relevant compounds that control the lower troposphere chemistry, including O3, NO, NO2, NO3, N2O5, HNO3, peroxy nitrates (ΣPNs), ΣANs, OH, and HO2. In the London's flight a strong ozone titration process was observed when flying above Reading (downwind of London) and when intercepting the London plume. The coupled cycles of NOx and HOx can have different terminations forming ΣPNs, ΣANs, HNO3 or peroxides (H2O2, ROOH) altering the O3 production. In the observations reported here, we found that a strong ozone titration (ΔO3 = -16 ppb), due to a rapid increase of NOx (ΔNOx = 27 ppb), corresponds also to a high increase of ΣANs concentrations (ΔΣANs = 3 ppb), and quite stable concentrations of HNO3 and ΣPNs. Unexpectedly, compared with other megacities, the production of ΣANs is similar to that of Ox (O3 + NO2), suggesting that in the London plume, at least during these observations, the formation of ΣANs effectively removes active NOx and hence reduces the amount of O3 production. In fact, we found that the ratio between the ozone production and the alkyl nitrates production (observed) approximate the unity; on the contrary the calculated ratio is 7. In order to explain this discrepancy, we made sensitivity tests changing the alkyl nitrates branching ratio for some VOCs and we investigated the impact of the unmeasured VOCs during the flight, founding that the calculated ratio decreases from 7 to 2 and that, in this condition, the major contribution to the ΣANs production is given by Alkanes. Observations and analysis

  16. Decadal Changes in Arctic Radiative Forcing from Aerosols and Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Breider, T. J.; Mickley, L. J.; Jacob, D. J.; Payer Sulprizio, M.; Croft, B.; Ridley, D. A.; Ge, C.; Yang, Q.; Bitz, C. M.; McConnell, J.; Sharma, S.; Skov, H.; Eleftheriadis, K.

    2014-12-01

    Annual average Arctic sea ice coverage has declined by 3.6% per decade since the 1980s, but factors driving this trend are uncertain. Long-term surface observations and ice core records suggest recent, large declines in the Arctic atmospheric burden of sulfate aerosol, which may account in part for the warming trend. The decline in black carbon (BC) aerosol in the Arctic during the same period may partly offset the warming due to decreases in sulfate. Here we use the GEOS-Chem chemical transport model together with a detailed inventory of historical anthropogenic trace gas and primary aerosol emissions to quantify changes in Arctic radiative forcing from tropospheric ozone and aerosol between 1980 and 2010. Previous studies have reported an increasing trend in observed ozone at 500 hPa over Canada, but our simulation shows no significant trend. Over Europe, good agreement is found with observed long-term trends in sulfate in surface air (observed = -0.14±0.02 μg m-3 yr-1, model = -0.13±0.01 μg m-3 yr-1), while the observed trend in sulfate in precipitation (-0.20±0.03 μg m-3 yr-1) is underestimated by 40%. At Alert, the timing of the observed decline in sulfate after 1991 is well captured in the simulation, but the observed trend between 1991 and 2001 (-36.3±4.1 ng m-3 yr-1) is underestimated by 26%. BC observations at remote Arctic surface stations are biased low throughout 1980-2010 by a factor of 2. At Greenland ice cores, observed 1980-2010 trends in sulfate deposition are underestimated by 35%. The smaller model bias in observed sulfate and BC deposition at ice cores in southern Greenland (5% and 65%) compared to northern Greenland (56% and 90%) indicates greater uncertainty in pollution emissions from Eurasian sources. We estimate a surface radiative forcing from atmospheric aerosols in the Arctic during 2008 of -0.51 W m-2. The forcing is largest in spring (-1.36 W m-2) and dominated by sulfate aerosol (87%). We will quantify the contributions to the

  17. Origin and Variability of Upper Tropospheric Nitrogen Oxides and Ozone at Northern Mid-Latitudes

    NASA Technical Reports Server (NTRS)

    Grewe, V.; Brunner, D.; Dameris, M.; Grenfell, J. L.; Hein, R.; Shindell, D.; Staehelin, J.

    1999-01-01

    Measurements of NO(x) and ozone performed during the NOXAR project are compared with results from the coupled chemistry-climate models ECHAM4.L39(DLR)/CHEM and GISS-model. The measurements are based on flights between Europe and the East coast of America and between Europe and the Far East in the latitude range 40 deg N to 65 deg N. The comparison concentrates on tropopause altitudes and reveals strong longitudinal variations of seasonal mean NO,, of 200 pptv. Either model reproduced strong variations 3 km below but not at the tropopause, indicating a strong missing NO(x) or NO(y) sink over remote areas, e.g. NO(x) to HNO3 conversion by OH from additional OH sources or HNO3 wash-out. Vertical profiles show maximum NO(x) values 2-3 km below the tropopause with a strong seasonal cycle. ECHAM4.L39(DLR)/CHEM reproduces a maximum, although located at the tropopause with a less pronounced seasonal cycle, whereas the GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NO(x) frequency distributions reveals that both models are capable of reproducing the observed variability, except that ECHAM4.L39(DLR)/CHEM shows no very high NO(x) mixing ratios. Ozone mean values, vertical profiles and frequency distributions are much better reproduced in either model, indicating that the NO(x) frequency distribution, namely the most frequent NO(x) mixing ratio, is more important for the tropospheric photochemical ozone production than its mean value. Both models show that among all sources, NO(x) from lightning contributes most to the seasonal cycle of NO(x) at tropopause altitudes. The impact of lightning in the upper troposphere on NO(x) does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. However, the models show significant differences in lightning induced NO(x) concentrations, especially in winter, which may be related to the different treatment of the lower

  18. BVOC and tropospheric ozone fluxes from an orange orchard in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Fares, S.; Gentner, D. R.; Park, J.; Weber, R.; Karlik, J. F.; Goldstein, A. H.

    2010-12-01

    Citrus plants, especially oranges, are widely cultivated in the Central Valley of California and in many other countries experiencing Mediterranean climates. In many of these areas, orchards are often exposed to high levels of tropospheric ozone (O3) due to their location in polluted airsheds. Citrus take up O3 through their stomata and emit biogenic volatile organic compounds (BVOC), which can contribute to non-stomatal O3 removal through fast gas-phase reactions with O3. The study was performed in a navel orange orchard in Exeter, California. The CO2 & water fluxes, together with O3 uptake and BVOC emissions were measured continuously using eddy covariance techniques. Vertical concentration gradients of these compounds were also measured at 4 heights from the orchard floor to above the canopy. We observed high levels (up to 40 ppb) of volatile organic compounds including methanol, isoprene, monoterpenes, sesquiterpenes, and some additional oxygenated BVOC. Methanol dominated BVOC emissions (up to 5 nmol m-2 s-1) followed by acetone. Monoterpenes fluxes were also recorded during the all vegetative period, with the highest emissions taking place during flowering periods. The orchard represented a sink for ozone, with uptake rates on the order of 10 nmol m-2 s-1 during the central hours of the day. BVOC fluxes were highly temperature dependent, while ozone fluxes were more dependent on the physiology of the orchard, consistent with dominant removal occurring through the stomatal opening. The current research is aimed at: 1. Quantifying the uptake of O3 by citrus and partitioning it into stomatal and non-stomatal processes; 2. Quantifying the BVOC emissions and their dependence on physical and ecophysiological parameters.

  19. Exploring the Production of NOx by Lightning and Its Impact on Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Gillani, Noor; Koshak, William; Biazar, Arastoo; Doty, Kevin; Mahon, Robert; Newchurch, Michael; Byun, Daewon; Emmons, Louisa

    2006-01-01

    Our quantitative understanding of free tropospheric (FT) chemistry is quite poor. State-of-the-art regional air quality models (e.g., US EPA's CMAQ) perform very poorly in simulating FT chemistry, with Uniform ozone around 70 ppb throughout the FT in summer, while ozonesonde data show much higher levels of ozone and much spatial-temporal structure. Such models completely neglect lightning-NOx (LNOx) emissions (the most significant source of NOx in the FT), and also contain large uncertainties in the specifications of intercontinental transport, stratosphere-troposphere exchange (STE) and PBLFT exchange (PFTE). Global air chemistry models include LNOx, but in very crude fashion, with the frequency and distribution of lightning being based on modeled cloud parameters (hence large uncertainty), lightning energetics being assumed to be constant for all flashes (literature value, while in reality there is at least a two-orders of magnitude variability from flash-to-flash), and the production of NOx in the surrounding heated air, per Joule of heating, being assumed to be constant also (literature value, while in fact it is a non-linear function of the dissipated heat and local air density, p). This situation is commonly blamed on paucity of pertinent observational data, but for the USA, there is now a wealth of surface- and satellite-based data of lightning available to permit much improved observation-based estimation of LNOx emissions. In the FT, such NOx has a long residence time, and also the ozone production efficiency from NOx there is considerably higher than in the PBL. It is, therefore, of critical importance in FT chemistry. This paper will describe the approach and data products of an ongoing NSSTC project aimed at a much-improved quantification of not only LNOx production on the scale of continental USA based on local and regional lightning observations, but also of intercontinental transport, STE and PFTE, all in upgraded simulations of tropospheric

  20. Understanding patterns of variability in tropospheric ozone over Europe and eastern Asia in 2005-2009 using TES observations and the TM5 chemistry transport model

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; van Geel, M. H. A.; Boersma, K. F.

    2012-04-01

    Tropospheric ozone is an important greenhouse gas and a global air pollutant. Because of its oxidizing power, it is harmful to the tissues of many living organisms. Ozone in the troposphere is produced by photo-chemical oxidation of precursors including volatile organic compounds (VOC's) and CO in the presence of NOx. These precursors may originate from anthropogenic emissions, but may also be naturally produced by vegetation, animals, bacteria and fungi. Intrusions of stratospheric ozone into the higher troposphere also contribute to the ozone abundance in the troposphere. The interpretation of tropospheric ozone observations remains a challenging task due to complex varying spatio-temporal emissions of ozone precursors with different lifetimes (from minutes to hours, days and weeks), stratospheric intrusion, and the effect of long-range transport of precursors and ozone driven by meteorological variables. In some areas the combination of favourable photochemical regimes and specific meteorological conditions may enhance the local tropospheric ozone productions. Thanks to their extensive spatial coverage and frequent overpasses, spaceborne sensors are excellent tools to map spatio-temporal patterns of tropospheric ozone. However, evaluating trends in tropospheric ozone concentrations over Europe (e.g. Mediterranean maxima) and China requires the use of advanced chemical transport models (CTM) for understanding and attributing the different sources to the observations. The objective of this study was to evaluate time series of tropospheric ozone observed from space by TES (Tropospheric Emission Spectrometer onboard NASA's EOS-Aura satellite) with the TM5 CTM using five years (2005-2009) of observations and simulations. From dedicated TM5 model runs, the spatio-temporal TES trends of tropospheric ozone are analysed aiming at understanding the different sources and mechanisms involved. First comparison of tropospheric ozone concentration from TES v4 observations and

  1. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  2. Short-lived halocarbons efficient at influencing climate through ozone loss in the upper troposphere-lower stratosphere

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Steven; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2015-04-01

    Halogenated very short-lived substances (VSLS) of both natural and anthropogenic origin are a significant source of atmospheric bromine, chlorine and iodine. Due to relatively short atmospheric lifetimes (typically <6 months), VSLS breakdown in the upper troposphere-lower stratosphere (UTLS), where ozone perturbations drive a disproportionately large climate impact compared to other altitudes. Here we present chemical transport model simulations that quantify VSLS-driven ozone loss in the UTLS and infer the climate relevance of these ozone perturbations using a radiative transfer model. Our results indicate that through their impact on UTLS ozone, VSLS are efficient at influencing climate. We calculate a whole atmosphere global mean radiative effect (RE) of -0.20 (-0.16 to -0.23) Wm-2 from natural and anthropogenic VSLS-driven ozone loss, including a tropospheric contribution of -0.12 Wm-2. In the stratosphere, the RE due to ozone loss from natural bromine-containing VSLS (e.g. CHBr3, CH2Br2) is almost half of that from long-lived anthropogenic compounds (e.g. CFCs) and normalized by equivalent chlorine is ~4 times larger. We show that the anthropogenic chlorine-containing VSLS, not regulated by the Montreal Protocol, also contribute to ozone loss in the UTLS and that the atmospheric concentration of dichloromethane (CH2Cl2), the most abundant of these, is increasing rapidly. Finally, we present evidence that VSLS have made a small yet previously unrecognized contribution to the ozone-driven radiative forcing of climate since pre-industrial times of -0.02 (-0.01 to -0.03) Wm-2. Given the climate leverage that VSLS possess, future increases to their emissions, either through continued industrial or altered natural processes, may be important for future climate forcing.

  3. Convective Distribution of Tropospheric Ozone and Tracers in the Central American ITCZ Region: Evidence from Observations During TC4

    NASA Technical Reports Server (NTRS)

    Avery, Melody; Twohy, Cynthia; MCabe, David; Joiner, Joanna; Severance, Kurt; Atlas, Eliot; Blake, Donald; Bui, T. P.; Crounse, John; Dibb, Jack; Diskin, Glenn; Lawson, Paul; McGill, Matthew; Rogers, David; Sachse, Glen; Scheuer, Eric; Thompson, Anne M.; Trepte, Charles; Wennberg, Paul; Ziemke, Jerald

    2010-01-01

    During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow.

  4. Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, P. D.; Cammas, J.-P.; Thouret, V.; Volz-Thomas, A.; Boulanger, D.; Repapis, C. C.

    2013-10-01

    In order to evaluate the observed high rural ozone levels in the eastern Mediterranean area during summertime, vertical profiles of ozone measured in the period 1994-2008 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft) over the eastern Mediterranean basin (Cairo, Tel Aviv, Heraklion, Rhodes, Antalya) were analyzed, focusing in the lower troposphere (1.5-5 km). At first, vertical profiles collected during extreme days with very high or very low tropospheric ozone mixing ratios have been examined together with the corresponding back-trajectories. Also, the average profiles of ozone, relative humidity, carbon monoxide, temperature gradient and wind speed corresponding to the 7% highest and the 7% lowest ozone mixing ratios for the 1500-5000 m height layer for Cairo and Tel Aviv have been examined and the corresponding composite maps of geopotential heights at 850 hPa have been plotted. Based on the above analysis, it turns out that the lower-tropospheric ozone variability over the eastern Mediterranean area is controlled mainly by the synoptic meteorological conditions, combined with local topographical and meteorological features. In particular, the highest ozone concentrations in the lower troposphere and subsequently in the boundary layer are associated with large-scale subsidence of ozone-rich air masses from the upper troposphere under anticyclonic conditions while the lowest ozone concentrations are associated with low pressure conditions inducing uplifting of boundary-layer air, poor in ozone and rich in relative humidity, to the lower troposphere.

  5. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  6. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.

    2012-10-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). We calculate a~value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 0.40 W m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (47%), nitrogen oxides (29%), carbon monoxide (15%) and non-methane volatile organic compounds (9%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 0.042 W m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (W m-2; relative to 1850 - add 0.04 W m-2 to make relative to 1750) for the Representative Concentration Pathways in 2030 (2100) of: RCP2.6: 0.31 (0.16); RCP4.5: 0.38 (0.26); RCP6.0: 0.33 (0.24); and RCP8.5: 0.42 (0.56). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport.

  7. Description and evaluation of a tropospheric ozone lidar implemented on an existing lidar in the southern subtropics.

    PubMed

    Baray, J L; Leveau, J; Porteneuve, J; Ancellet, G; Keckhut, P; Posny, F; Baldy, S

    1999-11-20

    Rayleigh-Mie lidar measurements of stratospheric temperature and aerosol profiles have been carried out at Reunion Island (southern tropics) since 1993. Since June 1998, an operational extension of the system is permitting additional measurements of tropospheric ozone to be made by differential absorption lidar. The emission wavelengths (289 and 316 nm) are obtained by stimulated Raman shifting of the fourth harmonic of a Nd:YAG laser in a high-pressure deuterium cell. A mosaic of four parabolic mirrors collects the backscattered signal, and the transmission is processed by the multiple fiber collector method. The altitude range of ozone profiles obtained with this system is 3¿17 km. Technical details of this lidar system working in the southern tropics, comparisons of ozone lidar profiles with radiosondes, and scientific perspectives are presented. The significant lack of tropospheric ozone measurements in the tropical and equatorial regions, the particular scientific interest in these regions, and the altitude range of the ozone measurements to 16¿17 km make this lidar supplement useful and its adaptation technically conceivable at many Rayleigh-Mie lidar stations.

  8. Tropical tropospheric ozone columns from nadir retrievals of GOME-1/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A (1996-2012)

    NASA Astrophysics Data System (ADS)

    Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.

    2016-07-01

    Tropical tropospheric ozone columns are retrieved with the convective cloud differential (CCD) technique using total ozone columns and cloud parameters from different European satellite instruments. Monthly-mean tropospheric column amounts [DU] are calculated by subtracting the above-cloud ozone column from the total column. A CCD algorithm (CCD_IUP) has been developed as part of the verification algorithm developed for TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel 5-precursor (S5p) mission, which was applied to GOME/ERS-2 (1995-2003), SCIAMACHY/Envisat (2002-2012), and GOME-2/MetOp-A (2007-2012) measurements. Thus a unique long-term record of monthly-mean tropical tropospheric ozone columns (20° S-20° N) from 1996 to 2012 is now available. An uncertainty estimation has been performed, resulting in a tropospheric ozone column uncertainty less than 2 DU ( < 10 %) for all instruments. The dataset has not been yet harmonised into one consistent; however, comparison between the three separate datasets (GOME/SCIAMACHY/GOME-2) shows that GOME-2 overestimates the tropical tropospheric ozone columns by about 8 DU, while SCIAMACHY and GOME are in good agreement. Validation with Southern Hemisphere ADditional OZonesondes (SHADOZ) data shows that tropospheric ozone columns from the CCD_IUP technique and collocated integrated ozonesonde profiles from the surface up to 200 hPa are in good agreement with respect to range, interannual variations, and variances. Biases within ±5 DU and root-mean-square (RMS) deviation of less than 10 DU are found for all instruments. CCD comparisons using SCIAMACHY data with tropospheric ozone columns derived from limb/nadir matching have shown that the bias and RMS deviation are within the range of the CCD_IUP comparison with the ozonesondes. The 17-year dataset can be helpful for evaluating chemistry models and performing climate change studies.

  9. Global tropospheric ozone variations from 2003 to 2011 as seen by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Ebojie, F.; Burrows, J. P.; Gebhardt, C.; Ladstätter-Weißenmayer, A.; von Savigny, C.; Rozanov, A.; Weber, M.; Bovensmann, H.

    2016-01-01

    An analysis of the tropospheric ozone (O3) columns (TOCs) derived from SCIAMACHY limb-nadir-matching (LNM) observations during the period 2003-2011, focusing on global variations in TOC, is described. The changes are derived using a multivariate linear regression model. TOC shows changes of -0.2 ± 0.4, 0.3 ± 0.4, 0.1 ± 0.5 and 0.1 ± 0.2 % yr-1, which are not statistically significant at the 2σ level in the latitude bands 30-50° N, 20° S-0, 0-20° N and 50-30° S, respectively. Tropospheric O3 shows statistically significant increases over some regions of South Asia (1-3 % yr-1), the South American continent (up to 2 % yr-1), Alaska (up to 2 % yr-1) and around Congo in Africa (up to 2 % yr-1). Significant increase in TOC is determined off the continents including Australia (up to 2 % yr-1), Eurasia (1-3 % yr-1) and South America (up to 3 % yr-1). Significant decrease in TOC (up to -3 % yr-1) is observed over some regions of the continents of North America, Europe and South America. Over the oceanic regions including the Pacific, North Atlantic and Indian oceans, significant decreases in TOC (-1 to -3 % yr-1) were observed. In addition, the response of the El Niño-Southern Oscillation (ENSO) and quasi-biennial oscillation (QBO) to changes in TOC for the period 2003-2011 was investigated. The result shows extensive regions, mostly in the tropics and Northern Hemisphere extratropics, of significant ENSO responses to changes in TOC and a significant QBO response to TOC changes over some regions.

  10. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.; Wespes, C.; Layola, D.; Valks, P.; Hao, N.

    2013-05-01

    Tropospheric ozone (O3) columns in urban and rural regions as seen by the infrared sounder IASI are analyzed along with GOME-2 tropospheric nitrogen dioxide (NO2) columns. Results over nine cities of the Northern Hemisphere for the period 2008-2011 show a typical seasonal behavior of tropospheric O3, with a first maximum reached in late spring because of stratospheric intrusion mainly, and a continuous rise till the summer because of the anthropogenic based ozone production. Over the East Asian cities, a decrease in the O3 tropospheric column is detected during monsoon period. Seasonal cycling of tropospheric NO2 shows consistent higher values during winter because of the higher anthropogenic sources and longer lifetime. In rural regions, a complex relation between the O3 and NO2 column is found, with higher linearity in summer. O3 concentrations in rural sites are found to be comparable to those found closest to the anthropogenic emission sources, with peak values in spring and summer. Furthermore, the effect of the reduction of pollutant emissions in China during the Olympic games of 2008 is studied. GOME-2 NO2 measurements show a reduction up to 54% above Beijing during this period compared to the following three years. IASI O3 measurements show an increase of 12% during July 2008 followed by a decrease of 5-6% during the months of August and September. A significant reduction in O3 tropospheric column values is also detected in the area downwind, few hundreds of kilometers to the south of Beijing.

  11. Research Spotlight: Ozone recovery and climate change will affect the atmosphere near Earth's surface

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi; Tretkoff, Ernie

    Ozone in the stratosphere (˜10-50 kilometers in altitude) helps protect life on Earth from harmful solar ultraviolet radiation. But at the lower altitudes in the troposphere, (0-10 kilometers in altitude), ozone is a major constituent of smog and has detrimental health effects. The stratospheric ozone layer had been depleted but recently has started to recover due to efforts to limit emissions of ozone- depleting chemicals.

  12. On the variability of tropospheric ozone in the Tropical Eastern Pacific and its impact on the oxidizing capacity

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Gomez Martin, J.; Hay, T.; Mahajan, A.; Ordoñez, C.; Parrondo Sempere, M.; Gil, M. J.; Agama Reyes, M.; Paredes Mora, J.; Voemel, H.

    2012-12-01

    Observations of surface ozone, NOx and meteorological variables were made during two ground based field campaigns in the Eastern Pacific marine boundary layer (MBL). The first study was PIQUERO (Primera Investigación de la Química, Evolución y Reparto de Ozono), running from September 2000 to July 2001 in parallel to the Southern Hemisphere ADditional OZonesondes (SHADOZ) in the Galápagos Islands. The second study is the Climate and HAlogen Reactivity tropicaL EXperiment (CHARLEX), running from September 2010 to present. These long-term, high frequency, measurements enable a detailed description of the daily, monthly, seasonal and interannual variability of ozone and help to constrain the MBL and lower free troposphere (FT) ozone budget. In the Equatorial Eastern Pacific "cold season" (August - October), net ozone photochemical destruction of ~ 2 ppb day-1 occurs in the MBL (~30% due to halogens, and the rest to HOx). Ozone recovers by entrainment from aloft at night. The monthly baseline is set by the tropical instability waves (TIW), which also impact the ozone concentration in the lower FT. In the cold phase of the TIWs the MBL is stratified and, apart from higher surface ozone, it may also contain an upper drier layer with higher ozone between ~ 500 m and the main inversion at ~1 km. In the warm phase the buoyant MBL expands upwards (as much as 500 m) and poor ozone air reaches the FT. As the system shifts to the warm season (February- April), the TIWs stop and the sea becomes warmer, increasing evaporation and reducing ozone. The inversion is pushed upwards and finally disappears or becomes very weak. Surface ozone is so low that even at the low background NOx levels observed ozone production balances photochemical destruction, so the daily profile is flat (observed local effects in the populated areas of Galapagos are discussed). In February Galapagos is almost in the doldrums because the Inter-Tropical Convergence Zone (ITCZ) shifts south. In this

  13. Influence of future cropland expansion on regional and global tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models

  14. Effects of the 2006 El Nino on Tropospheric Ozone and Carbon Monoxide: Implications for Dynamics and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Duncan, B. N.; Diehl, t. L.

    2008-01-01

    We have studied the effects of the 2006 El Nino on tropospheric O3 and CO at tropical and sub-tropical latitudes measured from the OMI and MLS instruments on the Aura satellite. The 2006 El Nino-induced drought allowed forest fires set to clear land to burn out of control during October and November in the Indonesian region. The effects of these fires are clearly seen in the enhancement of GO concentration measured from the MLS instrument. We have used a global model of atmospheric chemistry and transport (GMI CTM) to quantify the relative irrrportance of biomass burning and large scale transport: in producing observed changes in tropospheric O3 and CO . The model results show that during October and November both biomass burning and meteorological changes contributed almost equally to the observed increase in tropospheric O3 in the Indonesian region. The biomass component was 4-6 DU but it was limited to the Indonesian region where the fires were most intense, The dynamical component was 4-8 DU but it covered a much larger area in the Indian Ocean extending from South East Asia in the north to western Australia in the south. By December 2006, the effect of biomass taming was reduced to zero and the obsemed changes in tropospheric O3 were mostly due to dynamical effects. The model results show an increase of 2-3% in the global burden of tropospheric ozone. In comparison, the global burdean of CO increased by 8-12%.

  15. Ozone Destruction in the Upper Troposphere/Lower Stratosphere from Short-Lived Halogens and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Stephen; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2014-05-01

    Halogens released from very short-lived substances (VSLS) can deplete ozone in the upper-troposphere and lower stratosphere where the perturbation can exert a large climate impact. In addition to the known ozone loss from natural biogenic bromine VSLS, such as bromoform (CHBr3), using a global atmospheric model we show that anthropogenic chlorine VSLS such as dichloromethane (CH2Cl2) - not regulated by the Montreal Protocol - also contribute. Although this impact is small compared to bromine VSLS at present, CH2Cl2 has industrial sources and observations show its atmospheric loading is increasing rapidly. We estimate a significant radiative effect of the bromine and chlorine VSLS-driven lower stratospheric ozone destruction of -0.11 Wm-2. The largest impact comes from ozone loss at high latitudes, where column ozone decreases due to VSLS are up to 6%. The trend in anthropogenic chlorine VSLS could cause a significant radiative forcing, especially if augmented by any trend in natural bromine VSLS. We also used the model to study the impact of iodine-containing VSLS such as methyl iodide (CH3I). Of the three halogens iodine has the largest leverage to destroy lower stratospheric ozone, but current limits based on IO observations indicate only a minor impact at present.

  16. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia).

    PubMed

    Toro, María Victoria; Cremades, Lázaro V; Calbó, Josep

    2006-10-01

    Relationship between volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions and the chemical production of tropospheric ozone is studied through mathematical simulation. The study is applied to the Aburrá Valley, in the Colombian Andes, which is a practically unknown area from the point of view of ozone formation. The model used for this application is the European modelling of atmospheric constituents (EUMAC) zooming model (EZM) which consists of a mesoscale prognostic model (MEMO, mesoscale meteorological model) and a chemical reaction model (MUSE, multiscale for the atmospheric dispersion of reactive species), coupled to the chemical mechanism EMEP (European monitoring and evaluation program). The analysis is performed for a real episode that was characterized by high ozone production and that happened during the 23rd and 24th December, 1999 in Medellín (Colombia). From this real scenario, a sensitivity analysis has been carried out in order to assess the influence of VOC and NOx amounts on ozone production and to extract some conclusions for future ozone abatement policies in Andean regions. As far as ozone air quality is concerned, it is shown that in order to keep current levels the emphasis must be put to avoid increasing NOx emissions, or alternatively, to augment VOC emissions in order to have a high VOC/NOx ratio. PMID:16631888

  17. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations

    NASA Astrophysics Data System (ADS)

    Safieddine, Sarah; Boynard, Anne; Hao, Nan; Huang, Fuxiang; Wang, Lili; Ji, Dongsheng; Barret, Brice; Ghude, Sachin D.; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2016-08-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), aircraft data from the MOZAIC/IAGOS project, as well as observations from ground-based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years 2008-2013 of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon seen by a decrease in the tropospheric 0-6 km O3 column due to the EASM, and to reproduce this decrease from one year to the other. The year-to-year variability is found to be mainly dependent on meteorology. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric 0-6 km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC/IAGOS project for the EASM of 2008-2013 are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.73 (12 %) between the 0-6 km O3 column derived from IASI and aircraft data. IASI captures very well the inter-annual variation of tropospheric O3 observed by the aircraft data over the studied domain. Analysis of vertical profiles of the aircraft data shows a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at 10-20° N than elsewhere. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with a decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  18. Pre-industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Archibald, A. T.; Bowman, K. W.; Lamarque, J.-F.; Naik, V.; Stevenson, D. S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; Cameron-Smith, P.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R. M.; Eyring, V.; Faluvegi, G.; Horowitz, L. W.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Plummer, D. A.; Righi, M.; Strode, S. A.

    2013-01-01

    Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337+/-23 Tg, the ensemble mean burden for 1850 time slice is approx. 30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: -4% (-16 %) for RCP2.6, 2% (-7%) for RCP4.5, 1% (-9%) for RCP6.0, and 7% (18 %) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40-150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations

  19. The impact of cut-off lows on ozone in the upper troposphere and lower stratosphere over Changchun from ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Song, Yushan; Lü, Daren; Li, Qian; Bian, Jianchun; Wu, Xue; Li, Dan

    2016-02-01

    In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the variation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.

  20. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    PubMed

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3.

  1. Feasibility of global tropospheric and total ozone monitoring using a double-etalon Fabry-Perot interferometer

    SciTech Connect

    Larar, A.M.; Drayson, S.R.

    1994-12-31

    Monitoring of the global distribution of tropospheric ozone (O{sub 3}) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O{sub 3} lines while minimizing the impact of undesirable signal contributions (i.e., from the terrestrial surface and interfering species). The Fabry-Perot interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O{sub 3} measurements can simultaneously observe a stratospheric component and thus the total O{sub 3} column abundance. A conceptual instrument design to achieve the desired measurement will be presented. It involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm{sup {minus}1}, sampling a narrow spectral region within the strong 9.6 {micro}m ozone infrared band from a nadir-viewing satellite configuration. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis assessing the impact on retrieved O{sub 3} amounts of the most significant uncertainties associated with this particular measurement has been performed for several different types of atmospheres. Results show the proposed instrumentation to enable a good measurement of absolute ozone amounts and an even better determination of relative changes.

  2. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Dauphin, P.; Forêt, G.; Gaubert, B.; Beekmann, M.; Peuch, V.-H.; Flaud, J.-M.

    2012-09-01

    The lower tropospheric (LT) ozone concentration is a key factor for air quality (AQ). Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI) flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e. MetOp-B and C. IASI has demonstrated to have the capability to single out the LT ozone signal only at favourable conditions, i.e. in presence of high thermal contrast scenarios. New generation satellite instruments are being designed to address several pressing geophysical issues, including a better observation capability of LT ozone. IASI-NG (New Generation), now having reached the accomplishment of design phase-A for launch in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS) mission, may render feasible a better observation of AQ in terms of LT ozone. To evaluate the added-value brought by IASI-NG in this context, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We produced one month (August 2009) of tropospheric ozone pseudo-observations based on both IASI and IASI-NG instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude) pseudo-observations quality for IASI-NG. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI-NG. IASI-NG is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface-6 km of 0.70) and to be sensitive at lower altitudes (more

  3. Global Free Tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique Applied to Satellite Observations from the Aura Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B. N.; Bucsela, E.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in

  4. Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

    NASA Astrophysics Data System (ADS)

    Mauzerall, Denise L.; Logan, Jennifer A.; Jacob, Daniel J.; Anderson, Bruce E.; Blake, Donald R.; Bradshaw, John D.; Heikes, Brian; Sachse, Glenn W.; Singh, Hanwant; Talbot, Bob

    1998-04-01

    Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator-Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon-methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ˜20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4-km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4-km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm-2 s-1. This O3 production rate is sufficient to fully explain the observed enhancement in

  5. Shifting emissions to low latitudes had a greater influence on global tropospheric ozone than changing emission magnitude, 1980-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Cooper, O. R.; West, J. J.

    2015-12-01

    that the changing spatial distribution of emissions has been the most important influence on global tropospheric ozone, more important even than the change in the global emission magnitude. This work highlights the dominant role of the spatial distribution of emissions, and suggests that future ozone burdens will be determined mainly by emissions from the tropics.

  6. Limitations of Global models in Representing Arctic Tropospheric Ozone and its Precursors

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Arnold, S.; Monks, S. A.; Hannigan, J. W.; Blake, D. R.; Simpson, I. J.; Blake, N. J.; Meinardi, S.; Nussbaumer, E.

    2015-12-01

    To have confidence in model predictions of tropospheric pollutants in the Arctic under future conditions, the models need to reproduce current observations. The POLARCAT Model Intercomparison Project (POLMIP) evaluated nine global and two regional models using the observations of the POLARCAT aircraft experiments in 2008, as well as ground-based and satellite observations. These comparisons indicate a significant underestimate of emissions of CO and hydrocarbons in the Northern Hemisphere (NH), as well as large differences between models in OH concentrations and NOy (PAN vs HNO3) partitioning. This presentation will summarize the findings of the POLMIP exercise, as well as evaluations of additional model results for on-going intercomparison activities with several long-term observational datasets. The NOAA/GMD network of surface in situ observations of O3, CO and hydrocarbons provide long records at sites in the Arctic and throughout the NH. FTIR profile or column amounts of CO, C2H6, C2H4, C2H2, and other compounds are available at northern mid-latitude and Arctic sites (e.g., Thule, Eureka, Toronto, etc.) as part of the Network for the Detection of Atmospheric Composition Change (NDACC). The UC-Irvine Blake group has observed numerous hydrocarbons each season for several decades along the latitudinal extent of the Pacific Ocean, providing a global background record of ethane and propane. These three long-term records are used to evaluate model simulations provided for the IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) and the Task Force on Hemispheric Transport of Air Pollution (HTAP, phase 2), focusing on the model representations of ozone and its precursors in the northern mid and high latitudes. The possible sources of model errors (e.g., emissions, transport and/or chemical processing) will be discussed. Conclusions on what additional measurements (which compounds, where and how frequently) are needed to better constrain and improve global chemistry

  7. Role of genotype in the response of loblolly pine to tropospheric ozone: Effects at the whole-tree, stand, and regional level

    SciTech Connect

    Taylor, G.E. Jr.

    1994-01-01

    The interaction between tropospheric ozone and genotype in loblolly pine is explored, focusing on the consequences of different genotypes in a range of basic and applied issues. General conclusions for loblolly pine are: (1) a genetic component underlying phenotypic variation in ozone response is documented at the biochemical, physiological, and whole-plant level; (2) ozone resistance determined from needle injury is not associated with resistance determined from growth or gas exchange; (3) mode of inheritance of resistance based on growth is not documented, although evidences point to a multilocus model; (4) resistance involves avoidance and tolerance mechanisms, and evidence for pleiotropy indicates that resistance carries costs that are important in terms of physiologic ecology and breeding strategies; and (5) breadth of genetically determined variation has consequences for experimental designs, ecological risk assessment, genetic diversity and air quality standards. The threshold for growth effects on average seedlings approaches a 12-h mean concentration of 45 nL L{sup -1} which is below extant air quality in n=v Southeastern forests. The threshold for sensitive cohorts approaches 25 nL L{sup -1}, near the projected concentration a century ago (19 nL L{sup -1}). Extant ozone levels are affecting the average loblolly pine intermittently and sensitive cohorts frequently or continuously. The responsiveness of sensitive cohorts is important in understanding how regional stresses will impact ecological resources. Air pollution research in the last decade emphasized the development of exposure-response relationships, centering on selection of statistical indicators of atmospheric ozone. The conclusion that genetic variation is a major source of variation indicates that further improvement in exposure-response relationships will emerge from efforts addressing variability driven by biospheric rather than atmospheric processes. 98 refs., 7 figs., 5 tabs.

  8. Tropospheric Ozone Determined from Aura OMI and MLS: Evaluation of Measurements and Comparison with the Global Modeling Initiative's Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Duncan, B. N.; Froidevaux, L.; Bhartia, P. K.; Levelt, P. F.; Waters, J. W.

    2006-01-01

    Ozone measurements from the OMI and MLS instruments on board the Aura satellite are used for deriving global distributions of tropospheric column ozone (TCO). TCO is determined using the tropospheric ozone residual method which involves subtracting measurements of MLS stratospheric column ozone (SCO) from OMI total column ozone after adjusting for intercalibration differences of the two instruments using the convective-cloud differential method. The derived TCO field, which covers one complete year of mostly continuous daily measurements from late August 2004 through August 2005, is used for studying the regional and global pollution on a timescale of a few days to months. The seasonal and zonal characteristics of the observed TCO fields are also compared with TCO fields derived from the Global Modeling Initiative's Chemical Transport Model. The model and observations show interesting similarities with respect to zonal and seasonal variations. However, there are notable differences, particularly over the vast region of the Saharan desert.

  9. Large-scale variability of ozone and aerosols in the summertime Arctic and sub-Arctic troposphere

    SciTech Connect

    Browell, E.V.; Butler, C.F.; Kooi, S.A.; Fenn, M.A.; Harriss, R.C.; Gregory, G.L. Science Applications International Corp., Hampton, VA New Hampshire Univ., Durham )

    1992-10-01

    The results of mesoscale and large-scale studies of the distribution of aerosols and O3 using primarily an airborne DIAL system are reported. The tropospheric composition at high latitudes is found to be strongly influenced by stratospheric intrusions. Regions of low-aerosol scattering and enhanced O3 mixing ratios are correlated with descending air from the lower stratosphere. Over 37 percent of the troposphere along the flight track at latitudes higher than 57 deg N had significantly enhanced O3 levels due to stratospheric intrusions, and in the 4-6 km latitude range the tropospheric extent of the enhanced O3 exceeded 56 percent. Ozone mixing ratios of 80 ppbv at 6 km are common, with vertical O3 gradients of over 11 ppbv/km observed across the base of strong intrusions. In the mixed layer over the tundra, O3 was in the 25-35 ppbv range with a gradient of 5.5 ppbv/km, while in the continental polar air masses, the average gradient in the lower troposphere is 7.4 ppbv/km, indicating more downward transport of O3 at higher latitudes. 55 refs.

  10. Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century

    NASA Astrophysics Data System (ADS)

    Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Jenkin, M. E.; Smith, D.; Pyle, J. A.

    2015-05-01

    Isoprene is a~precursor to tropospheric ozone, a key pollutant and greenhouse gas. Anthropogenic activity over the coming century is likely to cause large changes in atmospheric CO2 levels, climate and land use, all of which will alter the global vegetation distribution leading to changes in isoprene emissions. Previous studies have used global chemistry-climate models to assess how possible changes in climate and land use could affect isoprene emissions and hence tropospheric ozone. The chemistry of isoprene oxidation, which can alter the concentration of ozone, is highly complex, therefore it must be parameterised in these models. In this work, we compare the effect of four different reduced isoprene chemical mechanisms, all currently used in Earth system models, on tropospheric ozone. Using a box model we compare ozone in these reduced schemes to that in a more explicit scheme (the Master Chemical Mechanism) over a range of NOx and isoprene emissions, through the use of O3 isopleths. We find that there is some variability, especially at high isoprene emissions, caused by differences in isoprene-derived NOx reservoir species. A global model is then used to examine how the different reduced schemes respond to potential future changes in climate, isoprene emissions, anthropogenic emissions and land use change. We find that, particularly in isoprene-rich regions, the response of the schemes varies considerably. The wide-ranging response is due to differences in the model descriptions of the peroxy radical chemistry, particularly their relative rates of reaction towards NO, leading to ozone formation, or HO2, leading to termination. Also important is the yield of isoprene nitrates and peroxyacyl nitrate precursors from isoprene oxidation. Those schemes that produce less of these NOx reservoir species, tend to produce more ozone locally and less away from the source region. We also note changes in other key oxidants such as NO3 and OH (due to the inclusion of

  11. Detection of stratospheric ozone intrusions by windprofiler radars.

    PubMed

    Hocking, W K; Carey-Smith, T; Tarasick, D W; Argall, P S; Strong, K; Rochon, Y; Zawadzki, I; Taylor, P A

    2007-11-01

    Stratospheric ozone attenuates harmful ultraviolet radiation and protects the Earth's biosphere. Ozone is also of fundamental importance for the chemistry of the lowermost part of the atmosphere, the troposphere. At ground level, ozone is an important by-product of anthropogenic pollution, damaging forests and crops, and negatively affecting human health. Ozone is critical to the chemical and thermal balance of the troposphere because, via the formation of hydroxyl radicals, it controls the capacity of tropospheric air to oxidize and remove other pollutants. Moreover, ozone is an important greenhouse gas, pa