Science.gov

Sample records for affect vascular remodeling

  1. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  2. Maternal Uterine Vascular Remodeling During Pregnancy

    PubMed Central

    Osol, George; Mandala, Maurizio

    2009-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms. PMID:19196652

  3. Endothelial cell dynamics in vascular remodelling.

    PubMed

    Barbacena, Pedro; Carvalho, Joana R; Franco, Claudio A

    2016-01-01

    In this ESCHM 2016 conference talk report, we summarise two recently published original articles Franco et al. PLoS Biology 2015 and Franco et al. eLIFE 2016. The vascular network undergoes extensive vessel remodelling to become fully functional. Is it well established that blood flow is a main driver for vascular remodelling. It has also been proposed that vessel pruning is a central process within physiological vessel remodelling. However, despite its central function, the cellular and molecular mechanisms regulating vessel regression, and their interaction with blood flow patterns, remain largely unexplained. We investigated the cellular process governing developmental vascular remodelling in mouse and zebrafish. We established that polarised reorganization of endothelial cells is at the core of vessel regression, representing vessel anastomosis in reverse. Moreover, we established for the first time an axial polarity map for all endothelial cells together with an in silico method for the computation of the haemodynamic forces in the murine retinal vasculature. Using network-level analysis and microfluidics, we showed that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/11 renders endothelial cells more sensitive to shear, resulting in axial polarisation at lower shear stress levels. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  4. Vascular remodeling underlies rebleeding in hemophilic arthropathy.

    PubMed

    Bhat, Vikas; Olmer, Merissa; Joshi, Shweta; Durden, Donald L; Cramer, Thomas J; Barnes, Richard Fw; Ball, Scott T; Hughes, Tudor H; Silva, Mauricio; Luck, James V; Moore, Randy E; Mosnier, Laurent O; von Drygalski, Annette

    2015-11-01

    Hemophilic arthropathy is a debilitating condition that can develop as a consequence of frequent joint bleeding despite adequate clotting factor replacement. The mechanisms leading to repeated spontaneous bleeding are unknown. We investigated synovial, vascular, stromal, and cartilage changes in response to a single induced hemarthrosis in the FVIII-deficient mouse. We found soft-tissue hyperproliferation with marked induction of neoangiogenesis and evolving abnormal vascular architecture. While soft-tissue changes were rapidly reversible, abnormal vascularity persisted for months and, surprisingly, was also seen in uninjured joints. Vascular changes in FVIII-deficient mice involved pronounced remodeling with expression of α-Smooth Muscle Actin (SMA), Endoglin (CD105), and vascular endothelial growth factor, as well as alterations of joint perfusion as determined by in vivo imaging. Vascular architecture changes and pronounced expression of α-SMA appeared unique to hemophilia, as these were not found in joint tissue obtained from mouse models of rheumatoid arthritis and osteoarthritis and from patients with the same conditions. Evidence that vascular changes in hemophilia were significantly associated with bleeding and joint deterioration was obtained prospectively by dynamic in vivo imaging with musculoskeletal ultrasound and power Doppler of 156 joints (elbows, knees, and ankles) in a cohort of 26 patients with hemophilia at baseline and during painful episodes. These observations support the hypothesis that vascular remodeling contributes significantly to bleed propagation and development of hemophilic arthropathy. Based on these findings, the development of molecular targets for angiogenesis inhibition may be considered in this disease.

  5. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  6. Soluble Endoglin Modulates Aberrant Cerebral Vascular Remodeling

    PubMed Central

    Chen, Yongmei; Hao, Qi; Kim, Helen; Su, Hua; Letarte, Michelle; Karumanchi, S. Ananth; Lawton, Michael T.; Barbaro, Nicholas M.; Yang, Guo-Yuan; Young, William L.

    2009-01-01

    Objective Brain arteriovenous malformations (AVMs) are an important cause of neurological morbidity in young adults. The pathophysiology of these lesions is poorly understood. A soluble form of endoglin (sEng) has been shown to cause endothelial dysfunction and induce preeclampsia. We tested if sEng would be elevated in brain AVM tissues relative to epilepsy brain tissues, and also investigated whether sEng overexpression via gene transfer in the mouse brain would induce vascular dysplasia and associated changes in downstream signaling pathways. Methods Expression levels of sEng in surgical specimens were determined by Western blot assay and ELISA. Vascular dysplasia, levels of MMP and oxidative stress were determined by immunohistochemistry and gelatin zymography. Results Brain AVMs (n=33) had higher mean sEng levels (245 ± 175 vs 100 ± 60, % of control, P=0.04) compared with controls (n=8), as determined by Western blot. In contrast, membrane-bound Eng was not significantly different (108 ± 79 vs 100 ± 63, % of control, P=0.95). sEng gene transduction in the mouse brain induced abnormal vascular structures. It also increased matrix metalloproteinase (MMP) activity by 490 ± 30% (MMP-9), 220 ± 30% (MMP-2), and oxidants by 260 ± 20% (4-hydroxy-2-nonenal) at 2 weeks after injection, suggesting that MMPs and oxidative radicals may mediate sEng-induced pathological vascular remodeling. Interpretation The results suggest that elevated sEng may play a role in the generation of sporadic brain AVMs. Our findings may provide new targets for therapeutic intervention for patients with brain AVMs. PMID:19670444

  7. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  8. PECAM-1 is necessary for flow-induced vascular remodeling

    PubMed Central

    Chen, Zhongming; Tzima, Ellie

    2009-01-01

    OBJECTIVE Vascular remodeling is a physiological process that occurs in response to long-term changes in hemodynamic conditions, but may also contribute to the pathophysiology of intima-media thickening (IMT) and vascular disease. Shear stress detection by the endothelium is thought to be an important determinant of vascular remodeling. Previous work showed that Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a component of a mechanosensory complex that mediates endothelial cell (EC) responses to shear stress. METHODS AND RESULTS We tested the hypothesis that PECAM-1 contributes to vascular remodeling by analyzing the response to partial carotid artery ligation in PECAM-1 knockout mice and wild-type littermates. PECAM-1 deficiency resulted in impaired vascular remodeling and significantly reduced IMT in areas of low flow. Inward remodeling was associated with PECAM-1-dependent NFκB activation, surface adhesion molecule expression and leukocyte infiltration as well as Akt activation and vascular cell proliferation. CONCLUSIONS PECAM-1 plays a crucial role in the activation of the NFκB and Akt pathways and inflammatory cell accumulation during vascular remodeling and IMT. Elucidation of some of the signals that drive vascular remodeling represent pharmacologically tractable targets for the treatment of restenosis after balloon angioplasty or stent placement. PMID:19390054

  9. Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling.

    PubMed

    Hoshikawa, Y; Voelkel, N F; Gesell, T L; Moore, M D; Morris, K G; Alger, L A; Narumiya, S; Geraci, M W

    2001-07-15

    Prostacyclin (PGI(2)) reduces pulmonary vascular resistance and attenuates vascular smooth muscle cell proliferation through signal transduction following ligand binding to its receptor. Because patients with severe pulmonary hypertension have a reduced PGI(2) receptor (PGI-R) expression in the remodeled pulmonary arterial smooth muscle, we hypothesized that pulmonary vascular remodeling may be modified PGI-R dependently. To test this hypothesis, PGI-R knockout (KO) and wild-type (WT) mice were subjected to a simulated altitude of 17,000 ft or Denver altitude for 3 wk, and right ventricular pressure and lung histology were assessed. The PGI-R KO mice developed more severe pulmonary hypertension and vascular remodeling after chronic hypoxic exposure when compared to the WT mice. Our results indicate that PGI(2) and its receptor play an important role in the regulation of hypoxia-induced pulmonary vascular remodeling, and that the absence of a functional receptor worsens pulmonary hypertension.

  10. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

    PubMed Central

    Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that is precipitated by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance in the absence of left heart, lung parenchymal, or thromboembolic disease. Despite available medical therapy, pulmonary artery remodeling and its attendant hemodynamic consequences result in right ventricular dysfunction, failure, and early death. To limit morbidity and mortality, attention has focused on identifying the cellular and molecular mechanisms underlying aberrant pulmonary artery remodeling to identify pathways for intervention. While there is a well-recognized heritable genetic component to PAH, there is also evidence of other genetic perturbations, including pulmonary vascular cell DNA damage, activation of the DNA damage response, and variations in microRNA expression. These findings likely contribute, in part, to dysregulation of proliferation and apoptosis signaling pathways akin to what is observed in cancer; changes in cellular metabolism, metabolic flux, and mitochondrial function; and endothelial-to-mesenchymal transition as key signaling pathways that promote pulmonary vascular remodeling. This review will highlight recent advances in the field with an emphasis on the aforementioned molecular mechanisms as contributors to the pulmonary vascular disease pathophenotype. PMID:27213345

  11. Role of microRNAs in Vascular Remodeling

    PubMed Central

    Fang, Y.-C.; Yeh, C.-H.

    2015-01-01

    Besides being involved in the gradual formation of blood vessels during embryonic development, vascular remodeling also contributes to the progression of various cardiovascular diseases, such as; myocardial infarction, heart failure, atherosclerosis, pulmonary artery hypertension, restenosis, aneurysm, etc. The integrated mechanisms; proliferation of medial smooth muscle cell, dysregulation of intimal endothelial cell, activation of adventitial fibroblast, inflammation of macrophage, and the participation of extracellular matrix proteins are important factors in vascular remodeling. In the recent studies, microRNAs (miRs) have been shown to be expressed in all of these cell-types and play important roles in the mechanisms of vascular remodeling. Therefore, some miRs may be involved in prevention and others in the aggravation of the vascular lesions. miRs are small, endogenous, conserved, single-stranded, non-coding RNAs; which degrade target RNAs or inhibit translation post-transcriptionally. In this paper, we reviewed the function and mechanisms of miRs, which are highly expressed in various cells types, especially endothelial and smooth muscle cells, which are closely involved in the process of vascular remodeling. We also assess the functions of these miRs in the hope that they may provide new possibilities of diagnosis and treatment choices for the related diseases. PMID:26391551

  12. Remodelling the vascular microenvironment of glioblastoma with alpha-particles

    PubMed Central

    Behling, Katja; Maguire, William F.; Di Gialleonardo, Valentina; Heeb, Lukas E.M.; Hassan, Iman F.; Veach, Darren R.; Keshari, Kayvan R.; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Tumors escape anti-angiogenic therapy by activation of pro-angiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We investigated targeted α-particle therapy with 225Ac-E4G10 as an anti-vascular approach and previously showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here we investigate changes in tumor-vascular morphology and functionality caused by 225Ac-E4G10. Methods We investigated remodeling of tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4 kBq dose of 225Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphological changes in the tumor blood brain barrier microenvironment. Multi-color flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted magnetic resonance imaged functional changes of the tumor vascular network. Results The mechanism of drug action is a combination of glioblastoma vascular microenvironment remodeling, edema relief, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis was lessened and resulted in increased perfusion and reduced diffusion. Pharmacological uptake of dasatinib into tumor was enhanced following α-particle therapy. Conclusion Targeted anti-vascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of Platelet-derived growth factor driven glioblastoma. PMID:27261519

  13. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  14. Rapid remodeling of airway vascular architecture at birth.

    PubMed

    Ni, Amy; Lashnits, Erin; Yao, Li-Chin; Baluk, Peter; McDonald, Donald M

    2010-09-01

    Recent advances have documented the development of lung vasculature before and after birth, but less is known of the growth and maturation of airway vasculature. We sought to determine whether airway vasculature changes during the perinatal period and when the typical adult pattern develops. On embryonic day 16.5 mouse tracheas had a primitive vascular plexus unlike the adult airway vasculature, but instead resembling the yolk sac vasculature. Soon after birth (P0), the primitive vascular plexus underwent abrupt and extensive remodeling. Blood vessels overlying tracheal cartilage rings regressed from P1 to P3 but regrew from P4 to P7 to form the hierarchical, segmented, ladder-like adult pattern. Hypoxia and HIF-1α were present in tracheal epithelium over vessels that survived but not where they regressed. These findings reveal the plasticity of airway vasculature after birth and show that these vessels can be used to elucidate factors that promote postnatal vascular remodeling and maturation.

  15. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    PubMed Central

    Nicolosi, Pier Andrea; Tombetti, Enrico; Maugeri, Norma; Rovere-Querini, Patrizia; Brunelli, Silvia; Manfredi, Angelo A.

    2016-01-01

    Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc). The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment. PMID:27069480

  16. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth.

    PubMed

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C

    2017-03-22

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5(+) cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling.

  17. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth

    PubMed Central

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C.

    2017-01-01

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5+ cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling. PMID:28327604

  18. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves.

    PubMed

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-04-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types.

  19. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    PubMed Central

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-01-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136

  20. Adrenal Androgen Dehydroepiandrosterone Sulfate Inhibits Vascular Remodeling Following Arterial Injury

    PubMed Central

    Ii, Masaaki; Hoshiga, Masaaki; Negoro, Nobuyuki; Fukui, Ryosuke; Nakakoji, Takahiro; Kohbayashi, Eiko; Shibata, Nobuhiko; Furutama, Daisuke; Ishihara, Tadashi; Hanafusa, Toshiaki; Losordo, Douglas W.; Ohsawa, Nakaaki

    2009-01-01

    Recent epidemiologic studies have suggested that serum dehydroepiandrosterone sulfate (DHEAS) levels have a significant inverse correlation with the incidence of cardiovascular diseases. However, direct evidence for the association with DHEAS and vascular disorders has not yet been explored. DHEAS significantly reduced neointima formation 28 days after surgery without altering other serum metabolite levels in a rabbit carotid balloon injury model. Immunohistochemical analyses revealed the reduction of proliferating cell nuclear antigen (PCNA) index and increase of TdT-mediated dUTP-biotin Nick End Labeling (TUNEL) index, expressing differentiated vascular smooth muscle cell (VSMC) markers in the media 7 days after surgery. In vitro, DHEAS exhibited inhibitory effects on VSMC proliferation and migration activities, inducing G1 cell cycle arrest with upregulation of one of the cyclin dependent kinase (CDK) inhibitors p16INK4a and apoptosis with activating peroxisome proliferator-activated receptor (PPAR)-α in VSMCs. DHEAS inhibits vascular remodeling reducing neointima formation after vascular injury via its effects on VSMC phenotypic modulation, functions and apoptosis upregulating p16INK4a/activating PPARα. DHEAS may play a pathophysiological role for vascular remodeling in cardiovascular disease. PMID:19298964

  1. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    PubMed Central

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  2. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    PubMed

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (P<0.05). In addition, catalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  3. Regulation of tyrosine phosphatases in the adventitia during vascular remodelling

    SciTech Connect

    Micke, Patrick; Hackbusch, Daniel; Mercan, Sibel; Stawowy, Philipp; Ostman, Arne; Kappert, Kai

    2009-05-15

    Protein tyrosine phosphatases (PTPs) are regulators of growth factor signalling in vascular remodelling. The aim of this study was to evaluate PTP expression in the context of PDGF-signalling in the adventitia after angioplasty. Utilising a rat carotid artery model, the adventitial layers of injured and non-injured vessels were laser microdissected. The mRNA expression of the PDGF {beta}-receptor, the ligands PDGF-A/B/C/D and the receptor-antagonising PTPs (DEP-1, TC-PTP, SHP-2, PTP1B) were determined and correlated to vascular morphometrics, proliferation markers and PDGF {beta}-receptor phosphorylation. The levels of the PDGF {beta}-receptor, PDGF-C and PDGF-D were upregulated concurrently with the antagonising PTPs DEP-1 and TC-PTP at day 8, and normalised at day 14 after vessel injury. Although the proliferation parameters were time-dependently altered in the adventitial layer, the phosphorylation of the PDGF {beta}-receptor remained unchanged. The expression dynamics of specific PTPs indicate a regulatory role of PDGF-signalling also in the adventitia during vascular remodelling.

  4. Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis.

    PubMed

    Lund, Amie K; Knuckles, Travis L; Obot Akata, Chrys; Shohet, Ralph; McDonald, Jacob D; Gigliotti, Andrew; Seagrave, Jean Clare; Campen, Matthew J

    2007-02-01

    Epidemiological evidence indicates that environmental air pollutants are positively associated with the development of chronic vascular disease; however, the mechanisms involved have not been fully elucidated. In the present study we examined molecular pathways associated with chronic vascular disease in atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice, including markers of vascular remodeling and oxidative stress, in response to exposure to the ubiquitous environmental pollutant, gasoline engine emissions. ApoE(-/-) mice, on a high-fat diet, were exposed by inhalation to either filtered air; 8, 40, or 60 mug/m(3) particulate matter whole exhaust; or filtered exhaust with gases matching the 60-mug/m(3) concentration, for 7 weeks. Aortas and plasma were collected and assayed for changes in histochemical markers, real-time reverse transcriptase-polymerase chain reaction, and indicators of oxidative damage. Inhalational exposure to gasoline engine emissions resulted in increased aortic mRNA expression of matrix metalloproteinase-3 (MMP-3), MMP-7, and MMP-9, tissue inhibitor of metalloproteinases-2, endothelin-1 and heme oxygenase-1 in ApoE(-/-) mice; increased aortic MMP-9 protein levels were confirmed through immunohistochemistry. Elevated reactive oxygen species were also observed in arteries from exposed animals, despite absence of plasma markers. Similar findings were also observed in the aortas of ApoE(-/-) mice exposed to particle-filtered atmosphere, implicating the gaseous components of the whole exhaust in mediating the expression of markers associated with the vasculopathy. These findings demonstrate that exposure to gasoline engine emissions results in the transcriptional upregulation of factors associated with vascular remodeling, as well as increased markers of vascular oxidative stress, which may contribute to the progression of atherosclerosis and reduced stability of vulnerable plaques.

  5. Tie1 controls angiopoietin function in vascular remodeling and inflammation

    PubMed Central

    Korhonen, Emilia A.; Lampinen, Anita; Giri, Hemant; Kim, Minah; Allen, Breanna; D’Amico, Gabriela; Sipilä, Tuomas J.; Lohela, Marja; Vaheri, Antti; Ylä-Herttuala, Seppo; Koh, Gou Young; McDonald, Donald M.

    2016-01-01

    The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin–dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability. PMID:27548530

  6. Integrative models of vascular remodeling during tumor growth

    PubMed Central

    Rieger, Heiko; Welter, Michael

    2015-01-01

    Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551

  7. Aberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia

    PubMed Central

    Alvira, Cristina M.

    2016-01-01

    In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past decade, tremendous progress has been made in the elucidation of mechanisms that promote postnatal lung development, including extensive data suggesting that impaired pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition to impaired vascular growth, patients with BPD also frequently demonstrate alterations in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia and the development of pulmonary hypertension. In this review, an overview of normal lung development will be presented, and the pathologic features of arrested development observed in BPD will be described, with a specific emphasis on the pulmonary vascular abnormalities. Key pathways that promote normal pulmonary vascular development will be reviewed, and the experimental and clinical evidence demonstrating alterations of these essential pathways in BPD summarized. PMID:27243014

  8. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  9. The Adventitia: Essential Role in Pulmonary Vascular Remodeling

    PubMed Central

    Stenmark, Kurt R.; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia; Anwar, Adil; Li, Min; Riddle, Suzette; Frid, Maria

    2014-01-01

    A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in “sensing” vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the “outside in.” PMID:23737168

  10. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials

    PubMed Central

    Liu, Jialing; Wang, Yongting; Akamatsu, Yosuke; Lee, Chih Cheng; Stetler, R Anne; Lawton, Michael T.; Yang, Guo-Yuan

    2014-01-01

    The brain vasculature has been increasingly recognized as a key player that directs brain development, regulates homeostasis, and contributes to pathological processes. Following ischemic stroke, the reduction of blood flow elicits a cascade of changes and leads to vascular remodeling. However, the temporal profile of vascular changes after stroke is not well understood. Growing evidence suggests that the early phase of cerebral blood volume (CBV) increase is likely due to the improvement in collateral flow, also known as arteriogenesis, whereas the late phase of CBV increase is attributed to the surge of angiogenesis. Arteriogenesis is triggered by shear fluid stress followed by activation of endothelium and inflammatory processes, while angiogenesis induces a number of pro-angiogenic factors and circulating endothelial progenitor cells (EPCs). The status of collaterals in acute stroke has been shown to have several prognostic implications, while the causal relationship between angiogenesis and improved functional recovery has yet to be established in patients. A number of interventions aimed at enhancing cerebral blood flow including increasing collateral recruitment are under clinical investigation. Transplantation of EPCs to improve angiogenesis is also underway. Knowledge in the underlying physiological mechanisms for improved arteriogenesis and angiogenesis shall lead to more effective therapies for ischemic stroke. PMID:24291532

  11. Matrix Metalloproteinases and their Inhibitors in Vascular Remodeling and Vascular Disease

    PubMed Central

    Raffetto, Joseph D.; Khalil, Raouf A.

    2008-01-01

    Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade various components of the extracellular matrix (ECM). Members of the MMP family include collagenases, gelatinases, stromelysins, matrilysins and membrane-type MMPs. ProMMPs are cleaved into active forms that promote degradation of ECM proteins. Also, recent evidence suggests direct or indirect effects of MMPs on ion channels in the endothelium and vascular smooth muscle, and on other mechanisms of vascular relaxation/contraction. Endogenous tissue inhibitors of metalloproteinases (TIMPs) reduce excessive proteolytic ECM degradation by MMPs. The balance between MMPs and TIMPs plays a major role in vascular remodeling, angiogenesis, and the uterine and systemic vasodilation during normal pregnancy. An imbalance in the MMPs/TIMPs activity ratio may underlie the pathogenesis of vascular diseases such as abdominal aortic aneurysm, varicose veins, hypertension and preeclampsia. Downregulation of MMPs using genetic manipulations of endogenous TIMPs, or synthetic pharmacological inhibitors such as BB-94 (Batimastat) and doxycycline, and Ro-28-2653, a more specific inhibitor of gelatinases and membrane type 1-MMP, could be beneficial in reducing the MMP-mediated vascular dysfunction and the progressive vessel wall damage associated with vascular disease. PMID:17678629

  12. Intrapulmonary vascular remodeling: MSCT-based evaluation in COPD and alpha-1 antitrypsin deficient subjects

    NASA Astrophysics Data System (ADS)

    Crosnier, Adeline; Fetita, Catalin; Thabut, Gabriel; Brillet, Pierre-Yves

    2016-03-01

    Whether COPD is generally known as a small airway disease, recent investigations suggest that vascular remodeling could play a key role in disease progression. This paper develops a specific investigation framework in order to evaluate the remodeling of the intrapulmonary vascular network and its correlation with other image or clinical parameters (emphysema score or FEV1) in patients with smoking- or genetic- (alpha-1 antitrypsin deficiency - AATD) related COPD. The developed approach evaluates the vessel caliber distribution per lung or lung region (upper, lower, 10%- and 20%- periphery) in relation with the severity of the disease and computes a remodeling marker given by the area under the caliber distribution curve for radii less than 1.6mm, AUC16. It exploits a medial axis analysis in relation with local caliber information computed in the segmented vascular network, with values normalized with respect to the lung volume (for which a robust segmentation is developed). The first results obtained on a 34-patient database (13 COPD, 13 AATD and 8 controls) showed significant vascular remodeling for COPD and AATD versus controls, with a negative correlation with the emphysema degree for COPD, but not for AATD. Significant vascular remodeling at 20% lung periphery was found both for the severe COPD and AATD patients, but not for the moderate groups. Also the vascular remodeling in AATD did not correlate with the FEV1, nor with DLCO, which might suggest independent mechanisms for bronchial and vascular remodeling in the lung.

  13. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  14. The Role of Hippo/YAP Signaling in Vascular Remodeling and Related Diseases.

    PubMed

    He, Jinlong; Bao, Qiankun; Yan, Meng; Liang, Jing; Zhu, Yi; Wang, Chunjiong; Ai, Ding

    2017-04-03

    Vascular remodeling is a vital process of a wide range of cardiovascular diseases and represents the altered structure and arrangement of blood vessels. The Hippo pathway controls organ size by regulating cell survival, proliferation and apoptosis. Yes-associated protein (YAP), a transcription coactivator, is a downstream effector of the Hippo pathway. Emerging evidence supports that the Hippo/YAP pathway plays an important role in vascular-remodeling and related cardiovascular diseases. The Hippo/YAP pathway has been shown to alter extracellular matrix production or degradation and the growth, death and migration of vascular smooth muscle cells and endothelial cells, which contributes to vascular remodeling in cardiovascular diseases such as pulmonary hypertension, atherosclerosis, restenosis, aortic aneurysms and angiogenesis. In this review, we summarize and discuss recent findings about the roles and mechanisms of Hippo/YAP signaling in vascular-remodeling and related diseases.

  15. Circulating microparticles enhanced rat vascular wall remodeling following endothelial denudation

    PubMed Central

    Lee, Fan-Yen; Lu, Hung-I; Chai, Han-Tan; Sheu, Jiunn-Jye; Chen, Yi-Ling; Huang, Tein-Hung; Kao, Gour-Shenq; Chen, Sheng-Yi; Chung, Sheng-Ying; Sung, Pei-Hsun; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that circulating microparticles (MPs) exacerbated vascular wall (VW) remodeling after endothelial denudation by 0.014 wire in a rat model. Adult male Sprague Dawley rats (n = 40) were equally categorized into group 1 [sham-control (SC); 3.0 mL saline intravenous injection], group 2 [SC + intravenous MPs (1.0 × 107) derived from patients with carotid artery stenosis (CAS)], group 3 [femoral arterial endothelial denudation (FAED)], group 4 (FAED + MPs derived from healthy subjects), and group 5 (FAED + CAS-derived MPs). Animals were euthanized by day 28 after FAED procedure. The results demonstrated that neointimal area (NIA) (mm2), medial area, and number of infiltrated cells in medial layer were highest in group 5 and lowest in groups 1 and 2, and significantly higher in group 4 than those in group 3 (all P<0.0001), but no differences were noted between groups 1 and 2. However, the ratio of luminal area to VW area showed an opposite pattern compared to that of NIA among five groups (P<0.0001). Immunofluorescent study showed an identical pattern of changes in the numbers of inflammatory (F4/80, CD14, CD40, IL-β) and proliferative (Ki-67, Cx43) cells in VW compared to that of NIA among the five groups (all P<0.00). The mNRA expressions of inflammatory (MMP-9, NF-κB, TNF-α, IL-1β, iNOS, PDGF) and cell activation (c-Fos, c-Myc, osteopontin, PCNA) biomarkers showed an identical pattern compared to that of NIA among all groups (all P<0.001). Take altogether, CAS-derived MPs further aggravated MP-mediated VW remodeling after endothelial damage compared to that observed after administration of MPS derived from healthy subjects. PMID:27904658

  16. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  17. The Fractal-based Analysis of the Regulation of Vascular Remodeling in the Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Smith, Genee S.

    2004-01-01

    Critical to the advancement of space exploration is the safety and well being of astronauts while in space. This study focuses on the second highest of NASA-defined risk categories for human space exploration, cardiovascular alterations. Current research of this problem is being tackled by investigating angiogenesis through vascular remodeling. Angiogenesis is the growth and formation of new blood vessels. Angiogenesis is an important part of maintaining normal development and bodily functions. The loss of control of this process, either insufficient or excessive vascular growth, is considered a common denominator in many diseases, such as cancer, diabetes, and coronary artery disease. Objectives are presently being met by observing the effects of various regulators, like thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), through the use of the chorioallantoic membrane (CAM) of Japanese quail embryos, which enables the direct optical imaging of 2-dimensional vascular branching trees. Research within the CAM is being performed to deduce numerous methods of regulating vessel growth. This project centers on the ability of a novel vessel regulator to affect angiogenesis. For example, it is hypothesized that the TSP-1 will inhibit the growth of CAM vasculature. Fractal/VESGEN-based techniques and PTV analysis are the methodologies used to investigate vascular differentiation. This tactic is used to quantify results and measure the growth patterns and morphology of blood vessels. The regulatory mechanisms posed by this vessel regulator can be deduced by alterations found within the vasculature patterns of quail embryos.

  18. Defining the critical hypoxic threshold that promotes vascular remodeling in the brain.

    PubMed

    Boroujerdi, Amin; Milner, Richard

    2015-01-01

    In animal models, hypoxic pre-conditioning confers protection against subsequent neurological insults, mediated in part through an extensive vascular remodeling response. In light of the therapeutic potential of this effect, the goal of this study was to establish the dose-response relationship between level of hypoxia and the extent of cerebrovascular modeling, and to define the mildest level of hypoxia that promotes remodeling. Mice were exposed to different levels of continuous hypoxia (8-21% O2) for seven days before several aspects of vascular remodeling were evaluated, including endothelial proliferation, total vascular area, arteriogenesis, and fibronectin/α5β1 integrin expression. For most events, the threshold level of hypoxia that stimulated remodeling was 12-13% O2. Interestingly, many parameters displayed a biphasic dose-response curve, with peak levels attained at 10% O2, but declined thereafter. Further analysis in the 12-13% O2 range revealed that vascular remodeling occurs by two separate mechanisms: (i) endothelial hyperplasia, triggered by a hypoxic threshold of 13% O2, which leads to increased capillary growth, and (ii) endothelial hypertrophy, triggered by a more severe hypoxic threshold of 12% O2, which leads to expansion of large vessels and arteriogenesis. Taken together, these results define the hypoxic thresholds for vascular remodeling in the brain, and point to two separate mechanisms mediating this process.

  19. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy.

  20. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    PubMed Central

    Chen, Qishan; Jin, Min; Yang, Feng; Zhu, Jianhua; Xiao, Qingzhong; Zhang, Li

    2013-01-01

    Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction with extracellular matrix (ECM) play a critical role in the processes. Matrix metalloproteinases (MMPs), well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential. PMID:23840100

  1. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    PubMed

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-01-18

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases.

  2. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

    PubMed Central

    Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth

    2014-01-01

    The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145

  3. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    PubMed

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  4. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.

    PubMed

    Zhang, Li-Fan

    2013-12-01

    Evidence from recent ground and spaceflight studies with animals and humans supports the notion that microgravity-induced vascular remodeling contributes to postflight orthostatic intolerance. In the vascular beds of lower body, such as in splanchnic and lower limb circulation, resistance vessels would undergo hypotrophy and decrement in myogenic tone and vasoreactivity. Thus, despite the concurrent sympathetic activation, the increase in peripheral vascular resistance would still be compromised while astronauts were re-exposed to Earth's 1-G gravity, since ~75 % of the total vascular conductance lies below the heart. On the contrary, cerebral arteries would undergo hypertrophy and vasoreactivity enhancement due to adaptation to cerebral hypertension, which protects the down-stream microcirculation in the brain during spaceflight. However, the enhanced vasoreactivity of cerebral vessels might also aggravate postflight orthostatic intolerance, particularly after long-duration spaceflight. Animal studies have indicated that the underlying mechanisms may involve ion-channel remodeling in vascular smooth muscle cells and vascular NO-NOS and local renin-angiotensin system (L-RAS). Furthermore, vascular remodeling and associated ion-channel and L-RAS changes can be prevented by a countermeasure of daily short-duration restoring to normal standing posture. These findings substantiate in general the hypothesis that redistribution of transmural pressure along the arterial vasculature due to the removal of gravity might be the primary factor that initiates vascular remodeling in microgravity, and daily short-duration restoring its normal distribution by intermittent artificial gravity (IAG) can effectively prevent the vascular adaptation and hence postflight cardiovascular deconditioning. IAG might also be beneficial in maintaining vascular health during future long-duration space flight.

  5. Aqueous garlic extracts prevent oxidative stress and vascular remodeling in an experimental model of metabolic syndrome.

    PubMed

    Vazquez-Prieto, Marcela Alejandra; González, Roxana Elizabeth; Renna, Nicolás Federico; Galmarini, Claudio Rómulo; Miatello, Roberto Miguel

    2010-06-09

    The organosulfur profile and the effect on oxidative stress and vascular remodeling in fructose-fed rats (FFR) were evaluated in Fuego INTA and Morado INTA garlic cultivars. Wistar rats were fed either normal rat chow (control) or the same diet plus 10% fructose in drinking water. During the last 6 weeks of a 12 week period of the corresponding diet, a subgroup of control and FFR received an aqueous extract of Fuego INTA and Morado INTA. Fuego INTA showed higher levels of total thiosulfinates, allicin, and pungency than Morado INTA. FFR showed an increase of systolic blood pressure, aortic NAD(P)H oxidase activity, plasma thiobarbituric acid reactive substances, and vascular remodeling that was significantly reduced after both garlic administrations. The beneficial effect was slightly higher when Fuego INTA was administered. Both aqueous garlic extracts prevent oxidative stress and vascular remodeling in rats with metabolic syndrome, suggesting the existence of slight differences among cultivars.

  6. Berberine Attenuates Vascular Remodeling and Inflammation in a Rat Model of Metabolic Syndrome.

    PubMed

    Li, Xiao-Xing; Li, Chuan-Bao; Xiao, Jie; Gao, Hai-Qing; Wang, He-Wen; Zhang, Xin-Yu; Zhang, Cheng; Ji, Xiao-Ping

    2015-01-01

    Berberine is a natural product that shows benefits for metabolic syndrome (MS). However, the effects of berberine on the improvement of vascular inflammation and remodeling in MS remain unclear. This study aimed to investigate whether berberine could prevent vascular remodeling and inflammation in the MS condition. A rat model of MS was established, and MS rats were divided into two groups: MS group without berberine treatment, and MSB group with berberine treatment (each group n-10). Ten normal Wistar rats were used as controls (NC group). Vascular damage was examined by transmission electron microscopy and pathological staining. Compared to the NC group, the secretion of inflammatory factors was increased and the aortic wall thicker in the MS group. The MSB group exhibited decreased secretion of inflammatory factors and improved vascular remodeling, compared to the MS group. In addition, the levels of p38 mitogen-activated protein kinase (p38 MAPK), activating transcription factor 2 (ATF-2) and matrix metalloproteinase 2 (MMP-2) were significantly decreased in the MSB group compared to the MS group. In conclusion, our data show that berberine improves vascular inflammation and remodeling in the MS condition, and this is correlated with the ability of berberine to inhibit p38 MAPK activation, ATF-2 phosphorylation, and MMP-2 expression.

  7. Decreased Neprilysin and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Wick, Marilee J.; Buesing, Erica J.; Wehling, Carol A.; Loomis, Zoe L.; Cool, Carlyne D.; Zamora, Martin R.; Miller, York E.; Colgan, Sean P.; Hersh, Louis B.; Voelkel, Norbert F.; Dempsey, Edward C.

    2011-01-01

    Rationale: Studies with genetically engineered mice showed that decreased expression of the transmembrane peptidase neprilysin (NEP) increases susceptibility to hypoxic pulmonary vascular remodeling and hypertension; in hypoxic wild-type mice, expression is decreased early in distal pulmonary arteries, where prominent vascular remodeling occurs. Therefore, in humans with smoke- and hypoxia-induced vascular remodeling, as in chronic obstructive pulmonary disease (COPD), pulmonary activity/expression of NEP may likewise be decreased. Objectives: To test whether NEP activity and expression are reduced in COPD lungs and pulmonary arterial smooth muscle cells (SMCs) exposed to cigarette smoke extract or hypoxia and begin to investigate mechanisms involved. Methods: Control and advanced COPD lung lysates (n = 13–14) were analyzed for NEP activity and protein and mRNA expression. As a control, dipeptidyl peptidase IV activity was analyzed. Lung sections were assessed for vascular remodeling and oxidant damage. Human pulmonary arterial SMCs were exposed to cigarette smoke extract, hypoxia, or H2O2, and incubated with antioxidants or lysosomal/proteasomal inhibitors. Measurements and Main Results: COPD lungs demonstrated areas of vascular rarification, distal muscularization, and variable intimal and prominent medial/adventitial thickening. NEP activity was reduced by 76%; NEP protein expression was decreased in alveolar walls and distal vessels; mRNA expression was also decreased. In SMCs exposed to cigarette smoke extract, hypoxia, and H2O2, NEP activity and expression were also reduced. Reactive oxygen species inactivated NEP activity; NEP protein degradation appeared to be substantially induced. Conclusions: Mechanisms responsible for reduced NEP activity and protein expression include oxidative reactions and protein degradation. Maintaining or increasing lung NEP may protect against pulmonary vascular remodeling in response to chronic smoke and hypoxia. PMID:20813891

  8. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy

    PubMed Central

    Kim, Minah; Park, Hyeung Ju; Seol, Jae Won; Jang, Jeon Yeob; Cho, Young-Suk; Kim, Kyu Rae; Choi, Youngsok; Lydon, John P; DeMayo, Francesco J; Shibuya, Masabumi; Ferrara, Napoleone; Sung, Hoon-Ki; Nagy, Andras; Alitalo, Kari; Koh, Gou Young

    2013-01-01

    The features and regulation of uterine angiogenesis and vascular remodelling during pregnancy are poorly defined. Here we show that dynamic and variable decidual angiogenesis (sprouting, intussusception and networking), and active vigorous vascular remodelling such as enlargement and elongation of ‘vascular sinus folding’ (VSF) and mural cell drop-out occur distinctly in a spatiotemporal manner in the rapidly growing mouse uterus during early pregnancy — just after implantation but before placentation. Decidual angiogenesis is mainly regulated through VEGF-A secreted from the progesterone receptor (PR)-expressing decidual stromal cells which are largely distributed in the anti-mesometrial region (AMR). In comparison, P4-PR-regulated VEGF-A-VEGFR2 signalling, ligand-independent VEGFR3 signalling and uterine natural killer (uNK) cells positively and coordinately regulate enlargement and elongation of VSF. During the postpartum period, Tie2 signalling could be involved in vascular maturation at the endometrium in a ligand-independent manner, with marked reduction of VEGF-A, VEGFR2 and PR expressions. Overall, we show that two key vascular growth factor receptors — VEGFR2 and Tie2 — strikingly but differentially regulate decidual angiogenesis and vascular remodelling in rapidly growing and regressing uteri in an organotypic manner. PMID:23853117

  9. Procontractile G protein–mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling

    PubMed Central

    Althoff, Till F.; Juárez, Julián Albarrán; Troidl, Kerstin; Tang, Cong; Wang, Shengpeng; Wirth, Angela; Takefuji, Mikito; Wettschureck, Nina

    2012-01-01

    Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G12/G13 and Gq/G11 antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking Gα12/Gα13 or their effector, the RhoGEF protein LARG, RhoA-dependent SRF-regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Gαq/Gα11 deficiency blocked activation of extracellular signal-regulated kinase 1/2 and the TCF Elk-1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein–mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies. PMID:23129751

  10. Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype

    PubMed Central

    Coll-Bonfill, Núria; Peinado, Victor I.; Pisano, María V.; Párrizas, Marcelina; Blanco, Isabel; Evers, Maurits; Engelmann, Julia C.; García-Lucio, Jessica; Tura-Ceide, Olga; Meister, Gunter

    2016-01-01

    Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. Conclusions Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases. PMID:27441378

  11. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    PubMed

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  12. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2015-01-01

    A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC “contractile” phenotype to the “synthetic” phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles. PMID:26221589

  13. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    PubMed

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with (225)Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by (225)Ac-E4G10.

  14. Inhibition of vascular remodelling in a porcine coronary injury model by herbal extract XS0601

    PubMed Central

    Xu, Hao; Shi, Dazhuo; Chen, Keji

    2006-01-01

    Background Arterial remodelling is a major pathologic change of restenosis after percutaneous coronary intervention (PCI). Our previous studies showed that XS0601 (consisting of Chuangxingol and paeoniflorin) had some effects on the prevention of restenosis after PCI. Therefore, the purpose of this study was to examine whether and how its mechanism was related to the regulation of the arterial remodelling after endothelial injury by balloon dilation. Methods Twenty Chinese mini-pigs were randomized into four groups: control, probucol, low-dose XS0601 and high-dose XS0601 group before oversized balloon injury of the left anterior descending coronary arteries. Starting from two days before balloon injury, the mini-pigs in the treated group were administered with probucol (2 g/day) and XS0601 (0.02 g/kg/day for low dose; 0.04 g/kg/day for high dose) for four weeks after balloon injury. The animals receiving balloon injury alone were used as control. Morphometric and angiographic analysis of the injured arteries were performed. Results The contribution of intimal hyperplasia and arterial remodelling to angiographic late lumen loss was 41% and 59% respectively. XS0601 markedly inhibited proliferation of smooth muscle cells (SMCs) and transformation of SMCs from contractile to synthetic phenotype in neointima, inhibited hyperplasia-related indices of morphometric analysis and reduce late angiographic lumen loss. The reduction of the late angiographic lumen loss resulting from vascular remodelling was greater after XS0601 treatment. Conclusion Both intimal hyperplasia and vascular remodelling are attributed to late lumen loss in this porcine coronary injury model. XS0601 markedly reduced angiographic late lumen loss resulting from intimal hyperplasia, vascular remodelling and XS0601 may be a potential agent to prevent restenosis after PCI. PMID:17302965

  15. Antagonism of Stem Cell Factor/c-kit Signaling Attenuates Neonatal Chronic Hypoxia-Induced Pulmonary Vascular Remodeling

    PubMed Central

    Young, Karen C; Torres, Eneida; Hehre, Dorothy; Wu, Shu; Suguihara, Cleide; Hare, Joshua M.

    2015-01-01

    Background Accumulating evidence suggests that c-kit positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/ c-kit regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the hypothesis that attenuated c-kit signaling would decrease chronic hypoxia-induced pulmonary vascular remodeling by decreasing pulmonary vascular cell mitogenesis. Methods Neonatal FVB/NJ mice treated with non-immune IgG (PL), or c-kit neutralizing antibody (ACK2) as well as c-kit mutant mice (WBB6F1- Kit W− v/ +) and their congenic controls, were exposed to normoxia (FiO2=0.21) or hypoxia (FiO2=0.12) for two weeks. Following this exposure, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), pulmonary vascular cell proliferation and remodeling were evaluated. Results As compared to chronically hypoxic controls, c-kit mutant mice had decreased RVSP, RVH, pulmonary vascular remodeling and proliferation. Consistent with these findings, administration of ACK2 to neonatal mice with chronic hypoxia-induced PH decreased RVSP, RVH, pulmonary vascular cell proliferation and remodeling. This attenuation in PH was accompanied by decreased extracellular signal-regulated protein kinase (ERK) 1/2 activation. Conclusion SCF/c-kit signaling may potentiate chronic hypoxia-induced vascular remodeling by modulating ERK activation. Inhibition of c-kit activity may be a potential strategy to alleviate PH. PMID:26705118

  16. Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect.

    PubMed

    Tanaka, Leonardo Y; Araújo, Haniel A; Hironaka, Gustavo K; Araujo, Thaís L S; Takimura, Celso K; Rodriguez, Andres I; Casagrande, Annelise S; Gutierrez, Paulo S; Lemos-Neto, Pedro Alves; Laurindo, Francisco R M

    2016-03-01

    Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (≈25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of β1-integrin, and levels of reduced cell-surface β1-integrin, were diminished after PDI antibody treatment, implicating β1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream β1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to

  17. The Effects of Protein Regulators on the Vascular Remodeling of Japanese Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Deshpande, Arati

    2004-01-01

    Contributing to NASA s mission, the Microgravity Fluid Physics research program conducts experiments to promote space exploration and improvement of processes and products on Earth. One of the projects through this program deals with the affect of regulators on vascular remodeling and angiogenesis. This project is being led by Dr. Patricia Parsons-Wingerter. To perform the experiments, protein regulators are tested on the chorioallantoic membrane (CAM) of the Japanese quail embryos. The different types of regulators used can be broken down into two major groups of stimulators, and inhibitors. Stimulators increase the rate of blood vessel growth and inhibitors decrease of blood vessel growth. The specified regulator proteins include thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), these are just the ones used in this specific experiment; other various protein regulators can also be used. The novel vessel tortuosity factor (TF) is a special kind of stimulator because it stimulates vessel tortuosity and curvature, rather than actual blood vessel growth. These regulators are being tested on Japanese quail embryos. The Japanese quail embryos naturally form a chorioallantoic membrane (CAM) from which blood flow, vascular remodeling, and angiogenesis can be observed. Chorioallantoic membranes are also easier to use because they are two dimensional when mounted onto a slide for examination. The analysis of the affect of the regulators on the CAM can be studied through PIVPROC; the program is used to analyze the altered blood flow in response to application of TF. Regulators are being thoroughly studied because cardiovascular alterations are the second highest, NASA-defined, risk categories in human space exploration. This research done on the quail is extending to even more projects that will be done on lab animals such as mice and also in human clinical studies like the diabetic retina. Not only will this research be beneficial to further space

  18. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    SciTech Connect

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  19. A Role for Soluble ST2 in Vascular Remodeling Associated with Obesity in Rats

    PubMed Central

    Martínez-Martínez, Ernesto; Miana, María; Jurado-López, Raquel; Rousseau, Elodie; Rossignol, Patrick; Zannad, Faiez; Cachofeiro, Victoria; López-Andrés, Natalia

    2013-01-01

    Background The function of the Interleukin-33 (IL-33)/ST2 system has been mainly investigated on immunological aspects, but recent data suggest that this pathway plays also an important role in cardiovascular system and adipose tissue. Whereas IL-33 has been demonstrated to exert anti-inflammatory and protective effects, circulating soluble ST2 (sST2) has emerged as a prognostic biomarker in patients with myocardial infarction and heart failure. Furthermore, sST2 is increased in severe obesity, although its role in the pathogenesis of vascular remodeling associated with obesity is still not well defined. Methodology/Principal Findings Male Wistar rats fed standard diet (Control) or high fat diet (HFD) for 6 weeks. Aortic tunica media from diet-induced obese animals showed hypertrophy and fibrosis. The IL-33/ST2 system was spontaneously expressed in the aorta from Wistar rats. Administration of HFD in animals did not modify IL-33 expression at the transcriptional level. By contrast, HFD group showed an increase in aortic soluble sST2 and a decrease in the transmembrane isoform (ST2L) levels, resulting in decreased protective pathway activity. Aortic sST2 mRNA levels were associated with parameters showing vascular hypertrophy and fibrosis. In vitro experiments showed that primary cultured vascular smooth muscle cells (VSMCs) spontaneously expressed the IL-33/ST2 system. VSMCs stimulated with sST2 showed an increase in collagen type I, fibronectin and profibrotic factors. Conclusions This is the first study demonstrating a deleterious role for sST2 in the vascular remodeling associated with obesity. In addition, we demonstrated that sST2 may act not only as a decoy receptor by binding IL-33 and preventing ST2L, but also modulating ECM remodeling and turnover. Thus, sST2 could be a new therapeutic target to reduce vascular remodeling in the context of obesity. PMID:24265755

  20. Nox4 Is Expressed In Pulmonary Artery Adventitia And Contributes To Hypertensive Vascular Remodeling

    PubMed Central

    Barman, Scott A.; Chen, Feng; Su, Yunchao; Dimitropoulou, Christiana; Wang, Yusi; Catravas, John D.; Han, Weihong; Orfi, Laszlo; Szantai-Kis, Csaba; Keri, Gyorgy; Szabadkai, Istvan; Barabutis, Nektarios; Rafikova, Olga; Rafikov, Ruslan; Black, Stephen M.; Jonigk, Danny; Giannis, Athanassios; Asmis, Reto; Stepp, David W.; Ramesh, Ganesan; Fulton, David J.R.

    2014-01-01

    OBJECTIVE Pulmonary Hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PA) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species (ROS) by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PA and determine the functional relevance of Nox4 in PH. APPROACH AND RESULTS Elevated expression of Nox4 was detected in hypertensive PA from 3 rat PH models and human PH using qRT-PCR, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of ROS production. Small molecule inhibitors of Nox4 reduced adventitial ROS generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and non-invasive indices of PA stiffness in monocrotaline (MCT)-treated rats as determined by morphometric analysis and high resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PA. In fibroblasts, Nox4 over-expression stimulated migration and proliferation and was necessary for matrix gene expression. CONCLUSIONS These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling and the development of PH. PMID:24947524

  1. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling

    PubMed Central

    Rey, Sergio; Semenza, Gregg L.

    2010-01-01

    The vascular system delivers oxygen and nutrients to every cell in the vertebrate organism. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of hypoxic/ischaemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and the mobilization and homing of bone marrow-derived angiogenic cells. This review will focus on the pivotal role of HIF-1 in vascular homeostasis, the involvement of HIF-1 in vascular diseases, and recent advances in targeting HIF-1 for therapy in preclinical models. PMID:20164116

  2. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model.

  3. Vascular remodeling in primary pulmonary hypertension. Potential role for transforming growth factor-beta.

    PubMed Central

    Botney, M. D.; Bahadori, L.; Gold, L. I.

    1994-01-01

    Active exogenous transforming growth factor-beta s (TGF-beta s) are potent modulators of extracellular matrix synthesis in cell culture and stimulate matrix synthesis in wounds and other remodeling tissues. The role of endogenous TGF-beta s in remodeling tissues is less well defined. Vascular remodeling in the pulmonary arteries of patients with primary pulmonary hypertension is characterized, in part, by abnormal deposition of immunohistochemically detectable procollagen, thereby identifying actively remodeling vessels. We used this marker of active matrix synthesis to begin defining the in vivo role of TGF-beta in the complex milieu of actively remodeling tissues. Immunohistochemistry using isoform-specific anti-TGF-beta antibodies was performed to determine whether TGF-beta was present in actively remodeling hypertensive pulmonary arteries 20 to 500 microns in diameter. Intense, cell-associated TGF-beta 3 immunoreactivity was observed in the media and neointima of these hypertensive muscular arteries. Immunostaining was present, but less intense, in normal arteries of comparable size. TGF-beta 2 immunoreactivity was observed in normal vessels and was increased slightly in hypertensive vessels, in a pattern resembling TGF-beta 3 immunoreactivity. No staining was associated with the adventitia. TGF-beta 1 immunostaining was either faint or absent in both normal and hypertensive vessels. Comparison of procollagen and TGF-beta localization demonstrated that TGF-beta 2 and TGF-beta 3 colocalized at all sites of procollagen synthesis. However, TGF-beta was observed in vessels, or vascular compartments, where there was no procollagen synthesis. Procollagen immunoreactivity was not present in normal vessels that showed immunoreactivity for TGF-beta 2 and TGF-beta 3. These observations suggest: a) the stimulation of procollagen synthesis by TGF-beta in vivo is more complex than suggested by in vitro studies and b) a potential role for TGF-beta 2 or TGF-beta 3, but not

  4. Effect of glucocorticoids on collagen accumulation in pulmonary vascular remodeling in the rat.

    PubMed

    Poiani, G J; Tozzi, C A; Thakker-Varia, S; Choe, J K; Riley, D J

    1994-04-01

    Administration of corticosteroids may attenuate the development of pulmonary hypertension by inhibiting the cell proliferation and protein synthesis that occur in early pulmonary vascular remodeling. However, in vitro studies show that corticosteroids stimulate collagen synthesis in vascular smooth muscle cells, and corticosteroid administration may be deleterious in stimulating collagen deposition. To test whether corticosteroid treatment promotes vascular collagen production in vivo, we administered triamcinolone diacetate to rats exposed to 10% O2 for 3 days and measured pro alpha 1(I) collagen mRNA and the hydroxyproline/protein ratio in the main pulmonary artery. Triamcinolone treatment (12 mg/kg intraperitoneally, once daily for 3 days) reduced mean right ventricular pressure (11 +/- 1 versus 14 +/- 1 mm Hg) and protein content of pulmonary arteries (1.8 +/- 0.1 versus 2.7 +/- 0.1 mg/vessel) (both p < 0.05). However, corticosteroid treatment produced a dose-related increase in pro alpha 1(I) mRNA levels and increased the ratio of hydroxyproline/protein (47 +/- 2 versus 38 +/- 3 micrograms/mg; p < 0.05). Thus, corticosteroid administration ameliorated the increase in pulmonary hypertension in early hypoxia, but increased the proportion of collagen in the vessel wall. Corticosteroid treatment in pulmonary vascular remodeling may be deleterious in increasing the concentration of collagen in the vessel wall.

  5. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    PubMed

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling.

  6. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling

    PubMed Central

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M.; Kirkby, Nicholas S.; van de Putte, Elisabeth E. Fransen; Christen, Sibylle; Kimmitt, Robert A.; Moorhouse, Rebecca; Castellan, Raphael F.P.; Kotelevtsev, Yuri V.; Kuc, Rhoda E.; Davenport, Anthony P.; Dhaun, Neeraj; Webb, David J.

    2017-01-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade–mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling. PMID:28028193

  7. MMP-2 Is Mainly Expressed in Arterioles and Contributes to Cerebral Vascular Remodeling Associated with TGF-β1 Signaling.

    PubMed

    Hua, Ye; Zhang, Weifeng; Xie, Zhenying; Xu, Nanfei; Lu, Yunnan

    2016-07-01

    There is increasing evidence to suggest that matrix metalloproteinases (MMPs) play a crucial role in vascular remodeling. It has been reported that hypoxia stimulated MMP-9 expression in brain endothelial cells and MMP-9 plays an important role in cerebral vascular remodeling. However, little is known about MMP-2 in the cerebral vessels remodeling. Herein, the aim of this study is to examine the class of vessel and cell type expressing MMP-2 in cerebral vessels and to investigate its potential role in vascular remodeling. In the present study, dual-immunofluorescence assay showed that MMP-2 was mainly expressed in arterioles. In addition, we found that MMP-2 expression in cerebral vessels was derived from endothelial cells, not astrocyte cells. Notably, in the normoxic central nervous system (CNS), there was no effect on vascular development, integrity, or endothelial proliferation when MMP-2 was knocked out, but lack of MMP-2 led to defective arteriolar remodeling and associated with transforming growth factor β1 (TGF-β1) signaling in CNS. Moreover, blocking TGF-β with SB431542, a specific TGF-β inhibitor, significantly reduced the messenger RNA (mRNA) and protein expression levels of MMP-2 in human umbilical vein endothelial cells (HUVECs). Our findings reveal that the level of MMP-2 is high in arteriolar endothelial cells and demonstrate a novel connection between MMP-2 and TGF-β1 signaling in cerebral vascular remodeling.

  8. Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension

    PubMed Central

    Liu, Fei; Haeger, Christina Mallarino; Dieffenbach, Paul B.; Sicard, Delphine; Chrobak, Izabela; Coronata, Anna Maria F.; Velandia, Margarita M. Suárez; Vitali, Sally; Colas, Romain A.; Norris, Paul C.; Marinković, Aleksandar; Liu, Xiaoli; Ma, Jun; Rose, Chase D.; Lee, Seon-Jin; Comhair, Suzy A.A.; Erzurum, Serpil C.; McDonald, Jacob D.; Serhan, Charles N.; Walsh, Stephen R.; Tschumperlin, Daniel J.; Fredenburgh, Laura E.

    2016-01-01

    Pulmonary arterial (PA) stiffness is associated with increased mortality in patients with pulmonary hypertension (PH); however, the role of PA stiffening in the pathogenesis of PH remains elusive. Here, we show that distal vascular matrix stiffening is an early mechanobiological regulator of experimental PH. We identify cyclooxygenase-2 (COX-2) suppression and corresponding reduction in prostaglandin production as pivotal regulators of stiffness-dependent vascular cell activation. Atomic force microscopy microindentation demonstrated early PA stiffening in experimental PH and human lung tissue. Pulmonary artery smooth muscle cells (PASMC) grown on substrates with the stiffness of remodeled PAs showed increased proliferation, decreased apoptosis, exaggerated contraction, enhanced matrix deposition, and reduced COX-2–derived prostanoid production compared with cells grown on substrates approximating normal PA stiffness. Treatment with a prostaglandin I2 analog abrogated monocrotaline-induced PA stiffening and attenuated stiffness-dependent increases in proliferation, matrix deposition, and contraction in PASMC. Our results suggest a pivotal role for early PA stiffening in PH and demonstrate the therapeutic potential of interrupting mechanobiological feedback amplification of vascular remodeling in experimental PH. PMID:27347562

  9. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling

    PubMed Central

    Kasaai, Bahar; Caolo, Vincenza; Peacock, Hanna M.; Lehoux, Stephanie; Gomez-Perdiguero, Elisa; Luttun, Aernout; Jones, Elizabeth A. V.

    2017-01-01

    Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development. PMID:28272478

  10. Nitric Oxide Synthase 3-Dependent Vascular Remodeling and Circulatory Dysfunction in Cirrhosis

    PubMed Central

    Fernández-Varo, Guillermo; Ros, Josefa; Morales-Ruiz, Manuel; Cejudo-Martín, Pilar; Arroyo, Vicente; Solé, Manel; Rivera, Francisca; Rodés, Juan; Jiménez, Wladimiro

    2003-01-01

    Vascular remodeling is an active process that consists in important modifications in the vessel wall. Endothelium-derived nitric oxide (NO) plays a major role in this phenomenon. We assessed wall thickness (WT), total wall area (TWA), lumen diameter, and total nuclei number/cross-section (TN) in cirrhotic rats with ascites and in control rats. A second group of cirrhotic rats received the NO synthesis inhibitor, L-NAME, or vehicle daily for 11 weeks and systemic hemodynamics, arterial compliance, aortic NO synthase 3 (NOS3) protein expression, and vascular morphology were analyzed. Cirrhotic vessels showed a significant reduction in WT, TWA, and TN as compared to control vessels. Long-term inhibition of NOS activity in cirrhotic rats resulted in a significant increase in WT, TWA, and TN as compared to cirrhotic rats receiving vehicle. NOS3 protein abundance was higher in aortic vessels of nontreated cirrhotic animals than in controls. This difference was abolished by chronic treatment with L-NAME. NOS inhibition in cirrhotic rats resulted in higher arterial pressure and peripheral resistance and lower arterial compliance than cirrhotic rats receiving vehicle. Therefore, vascular remodeling in cirrhosis with ascites is a generalized process with significant functional consequences that can be negatively modulated by long-term inhibition of NOS activity. PMID:12759254

  11. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model

    PubMed Central

    Chen, Yu-cai; Yuan, Tian-yi; Zhang, Hui-fang; Wang, Dan-shu; Yan, Yu; Niu, Zi-ran; Lin, Yi-huang; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. Methods: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg−1·d−1) or a positive control bosentan (30 mg·kg−1·d−1) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. Results: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. Conclusion: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH. PMID:27180980

  12. Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones.

    PubMed

    Dantas, Ana Paula; Onetti, Yara; Oliveira, María Aparecida; Carvalho, Maria Helena; Heras, Magda; Vila, Elisabet; Jiménez-Altayó, Francesc

    2014-07-01

    Senescence accelerated mice (SAM) are susceptible to developing vascular dysfunction and remodeling. Food intake and type of diet have also been identified as determining factors in vascular remodeling. However, the interplay between senescence and diet in vascular remodeling is largely unknown. We aimed to analyze structure of large (aorta) and small (mesenteric; MA) arteries from seven-month-old SAM prone (SAMP8) and resistant (SAMR1) mice that received a Western-type high-fat diet (WD; 8weeks). Aortic structure was assessed by morphometric analysis of hematoxylin and eosin-stained cross sections, and collagen content by qRT-PCR, immunofluorescence and picrosirius red. In MAs, structural and mechanical properties were measured by pressure myography; elastin and collagen content by qRT-PCR and immunofluorescence; nuclei distribution by confocal microscopy; and apoptosis by qRT-PCR and TUNEL assay. In aorta, wall thickness (WT), but not cross-sectional area (CSA), was increased by senescence, and WD only increased WT in SAMR1. WD intake, but not senescence, was associated with increased collagen deposition. In MAs, senescence diminished WT and CSA, without altering collagen and elastin deposition, reduced the number of MA wall cells, and increased pro apoptotic activation. WD consumption promoted in SAMR1 the same remodeling observed with senescence, while in SAMP8 the senescence-associated changes remained unaffected. The mechanisms involved in WD-induced MA remodeling in SAMR1 mimicked those observed in senescence per se. Our study reveals qualitatively different remodeling in aortas and MAs from senescent mice. Consumption of a WD induced remodeling of the SAMR1 vasculature similar to that induced by senescence, while it did not promote any further alteration in the latter. Therefore, we propose that increased consumption of fat-enriched diets could promote accelerated senescence of the non-senescent vasculature, although it does not exacerbate vascular

  13. The mouse retina in 3D: quantification of vascular growth and remodeling.

    PubMed

    Milde, Florian; Lauw, Stephanie; Koumoutsakos, Petros; Iruela-Arispe, M Luisa

    2013-12-01

    The mouse retina has become a prominent model for studying angiogenesis. The easy access and well-known developmental progression have significantly propelled our ability to examine and manipulate blood vessels in vivo. Nonetheless, most studies have restricted their evaluations to the superficial plexus (an upper vascular layer in contact with the vitreous). Here we present experimental data and quantification for the developmental progression of the full retina including the intermediate and deeper plexus that sprouts from the superficial layer. We analyze the origin and advancement of vertical sprouting and present the progression of vascular perfusion within the tissue. Furthermore, we introduce the use of Minkowsky functionals to quantify remodeling in the superficial and deeper plexus. The work expands information on the retina towards a 3D structure. This is of particular interest, as recent data have demonstrated differential effects of gene deletion on the upper and deeper plexus, highlighting the concept of distinct operational pathways during sprouting angiogenesis.

  14. Possible role of lysophosphatidic acid in rat model of hypoxic pulmonary vascular remodeling

    PubMed Central

    2014-01-01

    Abstract Pulmonary hypertension is characterized by cellular and structural changes in the vascular wall of pulmonary arteries. We hypothesized that lysophosphatidic acid (LPA), a bioactive lipid, is implicated in this vascular remodeling in a rat model of hypoxic pulmonary hypertension. Exposure of Wistar rats to 10% O2 for 3 weeks induced an increase in the mean serum levels of LPA, to 40.9 (log-detransformed standard deviations: 23.4–71.7) μM versus 21.6 (11.0–42.3) μM in a matched control animal group (P = 0.037). We also observed perivascular LPA immunohistochemical staining in lungs of hypoxic rats colocalized with the secreted lysophospholipase D autotaxin (ATX). Moreover, ATX colocalized with mast cell tryptase, suggesting implication of these cells in perivascular LPA production. Hypoxic rat lungs expressed more ATX transcripts (2.4-fold) and more transcripts of proteins implicated in cell migration: β2 integrin (1.74-fold), intracellular adhesion molecule 1 (ICAM-1; 1.84-fold), and αM integrin (2.70-fold). Serum from the hypoxic group of animals had significantly higher chemoattractant properties toward rat primary lung fibroblasts, and this increase in cell migration could be prevented by the LPA receptor 1 and 3 antagonists. LPA also increased adhesive properties of human pulmonary artery endothelial cells as well as those of human peripheral blood mononuclear cells, via the activation of LPA receptor 1 or 3 followed by the stimulation of gene expression of ICAM-1, β-1, E-selectin, and vascular cell adhesion molecule integrins. In conclusion, chronic hypoxia increases circulating and tissue levels of LPA, which might induce fibroblast migration and recruitment of mononuclear cells in pulmonary vasculature, both of which contribute to pulmonary vascular remodeling. PMID:25621161

  15. Granulocytes and Vascularization Regulate Uterine Bleeding and Tissue Remodeling in a Mouse Menstruation Model

    PubMed Central

    Menning, Astrid; Walter, Alexander; Rudolph, Marion; Gashaw, Isabella; Fritzemeier, Karl-Heinrich; Roese, Lars

    2012-01-01

    Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery. PMID:22879894

  16. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling

    PubMed Central

    Ma, Liping; Ambalavanan, Namasivayam; Liu, Hui; Sun, Yong; Jhala, Nirag; Bradley, Wayne E.; Dell’Italia, Louis J.; Michalek, Sue; Wu, Hui; Steele, Chad; Benza, Raymond L; Chen, Yabing

    2016-01-01

    Pulmonary arterial hypertension (PAH) contributes to morbidity and mortality of patients with lung and heart diseases. We demonstrated that hypoxia induced PAH and increased pulmonary arterial wall thickness in wild-type mice. Mice deficient in toll-like receptor 4 (TLR4−/−) spontaneously developed PAH, which was not further enhanced by hypoxia. Echocardiography determined right ventricular hypertrophy and decreased pulmonary arterial acceleration time were associated with the development of PAH in TLR4−/− mice. In pulmonary arterial smooth muscle cells (PASMC), hypoxia decreased TLR4 expression and induced reactive oxygen species (ROS) and Nox1/Nox4. Inhibition of NADPH oxidase decreased hypoxia-induced proliferation of wild-type PASMC. PASMC derived from TLR4−/− mice exhibited increased ROS and Nox4/Nox1 expression. Our studies demonstrate an important role of TLR4 in maintaining normal pulmonary vasculature and in hypoxia-induced PAH. Inhibition of TLR4, by genetic ablation or hypoxia, increases the expression of Nox1/Nox4 and induces PASMC proliferation and vascular remodeling. These results support a novel function of TLR4 in regulating the development of PAH and reveal a new regulatory axis contributing to TLR4 deficiency-induced vascular hypertrophy and remodeling. PMID:26709781

  17. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling.

    PubMed

    Ma, Liping; Ambalavanan, Namasivayam; Liu, Hui; Sun, Yong; Jhala, Nirag; Bradley, Wayne E; Dell'Italia, Louis J; Michalek, Sue; Wu, Hui; Steele, Chad; Benza, Raymond L; Chen, Yabing

    2016-01-01

    Pulmonary arterial hypertension (PAH) contributes to morbidity and mortality of patients with lung and heart diseases. We demonstrated that hypoxia induced PAH and increased pulmonary arterial wall thickness in wild-type mice. Mice deficient in toll-like receptor 4 (TLR4-/-) spontaneously developed PAH, which was not further enhanced by hypoxia. Echocardiography determined right ventricular hypertrophy and decreased pulmonary arterial acceleration time were associated with the development of PAH in TLR4(-/-) mice. In pulmonary arterial smooth muscle cells (PASMC), hypoxia decreased TLR4 expression and induced reactive oxygen species (ROS) and Nox1/Nox4. Inhibition of NADPH oxidase decreased hypoxia-induced proliferation of wild-type PASMC. PASMC derived from TLR4(-/-) mice exhibited increased ROS and Nox4/Nox1 expression. Our studies demonstrate an important role of TLR4 in maintaining normal pulmonary vasculature and in hypoxia-induced PAH. Inhibition of TLR4, by genetic ablation or hypoxia, increases the expression of Nox1/Nox4 and induces PASMC proliferation and vascular remodeling. These results support a novel function of TLR4 in regulating the development of PAH and reveal a new regulatory axis contributing to TLR4 deficiency-induced vascular hypertrophy and remodeling.

  18. Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension.

    PubMed

    Behringer, Arnica; Trappiel, Manuela; Berghausen, Eva Maria; Ten Freyhaus, Henrik; Wellnhofer, Ernst; Odenthal, Margarete; Blaschke, Florian; Er, Fikret; Gassanov, Natig; Rosenkranz, Stephan; Baldus, Stephan; Kappert, Kai; Caglayan, Evren

    2016-04-01

    Pulmonary arterial hypertension (PAH) is a fatal disease with limited therapeutic options. Pathophysiological changes comprise obliterative vascular remodelling of small pulmonary arteries, elevated mean pulmonary arterial systolic pressure (PASP) due to elevated resistance of pulmonary vasculature, adverse right ventricular remodelling, and heart failure. Recent findings also indicate a role of increased inflammation and insulin resistance underlying the development of PAH. We hypothesized that treatment of this condition with the peroxisome proliferator-activated receptor-γ (PPARγ) activator pioglitazone, known to regulate the expression of different genes addressing insulin resistance, inflammatory changes, and vascular remodelling, could be a beneficial approach. PAH was induced in adult rats by a single subcutaneous injection of monocrotaline (MCT). Pioglitazone was administered for 2 weeks starting 3 weeks after MCT-injection. At day 35, hemodynamics, organ weights, and -indices were measured. We performed morphological and molecular characterization of the pulmonary vasculature, including analysis of the degree of muscularization, proliferation rates, and medial wall thickness of the small pulmonary arteries. Furthermore, markers of cardiac injury, collagen content, and cardiomyocyte size were analyzed. Survival rates were monitored throughout the experimental period. Pioglitazone treatment improved survival, reduced PASP, muscularization of small pulmonary arteries, and medial wall thickness. Further, MCT-induced right ventricular hypertrophy and fibrosis were attenuated. This was accompanied with reduced cardiac expression of brain natriuretic peptide, as well as decreased cardiomyocyte size. Finally, pulmonary macrophage content and osteopontin gene expression were attenuated. Based on the beneficial impact of pioglitazone, activation of PPARγ might be a promising treatment option in PAH.

  19. Hemodynamic evidence of vascular remodeling in combined post- and precapillary pulmonary hypertension

    PubMed Central

    Brittain, Evan L.; Wells, Quinn S.; Farber-Eger, Eric H.; Halliday, Stephen J.; Doss, Laura N.; Xu, Meng; Wang, Li; Harrell, Frank E.; Yu, Chang; Robbins, Ivan M.; Newman, John H.; Hemnes, Anna R.

    2016-01-01

    Abstract Although commonly encountered, patients with combined postcapillary and precapillary pulmonary hypertension (Cpc-PH) have poorly understood pulmonary vascular properties. The product of pulmonary vascular resistance and compliance, resistance-compliance (RC) time, is a measure of pulmonary vascular physiology. While RC time is lower in postcapillary PH than in precapillary PH, the RC time in Cpc-PH and the effect of pulmonary wedge pressure (PWP) on RC time are unknown. We tested the hypothesis that Cpc-PH has an RC time that resembles that in pulmonary arterial hypertension (PAH) more than that in isolated postcapillary PH (Ipc-PH). We analyzed the hemodynamics of 282 consecutive patients with PH referred for right heart catheterization (RHC) with a fluid challenge from 2004 to 2013 (cohort A) and 4,382 patients who underwent RHC between 1998 and 2014 for validation (cohort B). Baseline RC time in Cpc-PH was higher than that in Ipc-PH and lower than that in PAH in both cohorts (P < 0.001). In cohort A, RC time decreased after fluid challenge in patients with Ipc-PH but not in those with PAH or Cpc-PH (P < 0.001). In cohort B, the inverse relationship of pulmonary vascular compliance and resistance, as well as that of RC time and PWP, in Cpc-PH was similar to that in PAH and distinct from that in Ipc-PH. Our findings demonstrate that patients with Cpc-PH have pulmonary vascular physiology that resembles that of patients with PAH more than that of Ipc-PH patients. Further study is warranted to identify determinants of vascular remodeling and assess therapeutic response in this subset of PH. PMID:27683608

  20. Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects.

    PubMed

    Sakurada, Takumi; Ishizawa, Keisuke; Imanishi, Masaki; Izawa-Ishizawa, Yuki; Fujii, Shoko; Tominaga, Erika; Tsuneishi, Teppei; Horinouchi, Yuya; Kihira, Yoshitaka; Ikeda, Yasumasa; Tomita, Shuhei; Aihara, Ken-ichi; Minakuchi, Kazuo; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2013-01-01

    Nifedipine is unstable under light and decomposes to a stable nitroso analog, nitrosonifedipine (NO-NIF). The ability of NO-NIF to block calcium channels is quite weak compared with that of nifedipine. Recently, we have demonstrated that NO-NIF reacts with unsaturated fatty acid leading to generate NO-NIF radical, which acquires radical scavenging activity. However, the effects of NO-NIF on the pathogenesis related with oxidative stress, such as atherosclerosis and hypertension, are unclear. In this study, we investigated the effects of NO-NIF on angiotensin II (Ang II)-induced vascular remodeling. Ang II-induced thickening and fibrosis of aorta were inhibited by NO-NIF in mice. NO-NIF decreased reactive oxygen species (ROS) in the aorta and urinary 8-hydroxy-20-deoxyguanosine. Ang II-stimulated mRNA expressions of p22(phox), CD68, F4/80, monocyte chemoattractant protein-1, and collagen I in the aorta were inhibited by NO-NIF. Moreover, NO-NIF inhibited Ang II-induced cell migration and proliferation of vascular smooth muscle cells (VSMCs). NO-NIF reduced Ang II-induced ROS to the control level detected by dihydroethidium staining and lucigenin chemiluminescence assay in VSMCs. NO-NIF suppressed phosphorylations of Akt and epidermal growth factor receptor induced by Ang II. However, NO-NIF had no effects on intracellular Ca(2+) increase and protein kinase C-δ phosphorylation induced by Ang II in VSMCs. The electron paramagnetic resonance spectra indicated the continuous generation of NO-NIF radical of reaction with cultured VSMCs. These findings suggest that NO-NIF improves Ang II-induced vascular remodeling via the attenuation of oxidative stress.

  1. Alteration of proteoglycan sulfation affects bone growth and remodeling.

    PubMed

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-05-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis.

  2. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  3. Coupled Simulation of Hemodynamics and Vascular Growth and Remodeling in a Subject-Specific Geometry.

    PubMed

    Wu, Jiacheng; Shadden, Shawn C

    2015-07-01

    A computational framework to couple vascular growth and remodeling (G&R) with blood flow simulation in a 3D patient-specific geometry is presented. Hyperelastic and anisotropic properties are considered for the vessel wall material and a constrained mixture model is used to represent multiple constituents in the vessel wall, which was modeled as a membrane. The coupled simulation is divided into two time scales-a longer time scale for G&R and a shorter time scale for fluid dynamics simulation. G&R is simulated to evolve the boundary of the fluid domain, and fluid simulation is in turn used to generate wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, the fluid dynamics are only simulated when G&R causes significant vascular geometric change. For demonstration, this coupled model was used to study the influence of stress-mediated growth parameters, and blood flow mechanics, on the behavior of the vascular tissue growth in a model of the infrarenal aorta derived from medical image data.

  4. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling

    PubMed Central

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington’s epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington’s theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality. PMID:25973327

  5. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling.

    PubMed

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington's epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington's theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality.

  6. Calcium antagonist verapamil prevented pulmonary arterial hypertension in broilers with ascites by arresting pulmonary vascular remodeling.

    PubMed

    Yang, Ying; Qiao, Jian; Wang, Huiyu; Gao, Mingyu; Ou, Deyuan; Zhang, Jianjun; Sun, Maohong; Yang, Xin; Zhang, Xiaobo; Guo, Yuming

    2007-04-30

    Calcium signaling has been reported to be involved in the pathogenesis of hypertension. Verapamil, one of the calcium antagonists, is used to characterize the role of calcium signaling in the development of pulmonary arterial hypertension syndrome in broilers. The suppression effect of verapamil on pulmonary arterial hypertension and pulmonary vascular remodeling was examined in broilers, from the age of 16 days to 43 days. Our results showed that oral administration of lower dose of verapamil (5 mg/kg body weight every 12 h) prevented the mean pulmonary arterial pressure, the ascites heart index and the erythrocyte packed cell volume of birds at low temperature from increasing, the heart rate from decreasing, and pulmonary arteriole median from thickening, and no pulmonary arteriole remodeling in broilers treated with the two doses of verapamil at low temperature was observed. Our results indicated that calcium signaling was involved in the development of broilers' pulmonary arterial hypertension, which leads to the development of ascites, and we suggest that verapamil may be used as a preventive agent to reduce the occurrence and development of pulmonary arterial hypertension in broilers.

  7. DYSREGULATED SELECTIN EXPRESSION AND MONOCYTE RECRUITMENT DURING ISCHEMIA-RELATED VASCULAR REMODELING IN DIABETES MELLITUS

    PubMed Central

    Carr, Chad L.; Qi, Yue; Davidson, Brian; Chadderdon, Scott; Jayaweera, Ananda R.; Belcik, J. Todd; Benner, Cameron; Xie, Aris; Lindner, Jonathan R.

    2011-01-01

    Objective Diabetes mellitus (DM) is associated with impaired ischemia-related vascular remodeling and also dysregulation of the inflammatory response. We sought to determine whether impaired selectin-mediated monocyte recruitment in ischemic tissues contributes to blunted ischemia-mediated angiogenesis in DM. Methods and Results Contrast-enhanced ultrasound (CEU) perfusion imaging and molecular imaging of endothelial P-selectin expression in the proximal hindlimb were performed at 1,3, and 21 days after arterial ligation in wild-type and db/db mice. Ligation reduced muscle blood flow to ≈0.05 ml/min/g in both strains. Significant recovery of flow occurred only in wild-type mice (60–65% of baseline flow). On molecular imaging in db/db mice, baseline P-selectin signal was 4-fold higher in db/db compared to wild-type mice (p<0.01) but increased minimally in at day one after ischemia whereas signal increased approximately 10-fold in wild-type mice (p<0.01). Immunohistology of the hindlimb demonstrated severely reduced monocyte recruitment in db/db mice compared to wild-type mice. Local treatment with monocyte chemotactic protein-1 (MCP-1) corrected the deficits in post-ischemic P-selectin expression and monocyte recruitment in db/d mice, and led to greater recovery in blood flow. Conclusions In DM, there is dysregulation of the selectin response to limb ischemia which leads to impaired monocyte recruitment, which may be mechanistically related to reduced vascular remodeling in limb ischemia. PMID:21885854

  8. The mast cell - B-cell axis in lung vascular remodeling and pulmonary hypertension.

    PubMed

    Breitling, Siegfried; Hui, Zhang; Zabini, Diana; Hu, Yijie; Hoffmann, Julia; Goldenberg, Neil M; Tabuchi, Arata; Buelow, Roland; Dos Santos, Claudia; Kuebler, Wolfgang Michael

    2017-02-24

    Over the past years, a critical role for the immune system and in particular, for mast cells, in the pathogenesis of pulmonary hypertension (PH) has emerged. However, the way in which mast cells promote PH is still poorly understood. Here, we investigated the mechanisms by which mast cells may contribute to PH, specifically focusing on the interaction between the innate and adaptive immune response and the role of B-cells and autoimmunity. Experiments were performed in Sprague Dawley rats and B-cell deficient JH-KO rats in the monocrotaline, sugen-hypoxia and the aortic banding model of PH. Hemodynamics, cell infiltration, IL-6 expression, and vascular remodeling were analyzed. Gene array analyses revealed constituents of immunoglobulins as most prominently regulated mast cell dependent genes in the lung in experimental PH. IL-6 was shown to link mast cells to B-cells, as a) IL-6 was upregulated and colocalized with mast cells and was reduced by mast cell stabilizers, and b) IL-6 or mast cell blockade reduced B-cells in lungs of monocrotaline-treated rats. A functional role for B-cells in PH was demonstrated, in that either blocking B-cells by an anti-CD20 antibody or B-cell deficiency in JH-KO rats attenuated right ventricular systolic pressure and vascular remodeling in experimental PH. We here identify a mast cell - B-cell axis driven by IL-6 as critical immune pathway in the pathophysiology of PH. Our results provide novel insights into the role of the immune system in PH, which may be therapeutically exploited by targeted immunotherapy.

  9. Peroxisome proliferator activated receptor-γ-Rho-kinase interactions contribute to vascular remodeling after chronic intrauterine pulmonary hypertension

    PubMed Central

    Tseng, Nancy; Seedorf, Gregory; Roe, Gates; Abman, Steven H.

    2013-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) and Rho-kinase (ROCK) regulate smooth muscle cell (SMC) proliferation and contribute to vascular remodeling in adult pulmonary hypertension. Whether these pathways interact to contribute to the development of vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN) remains unknown. We hypothesized that ROCK-PPARγ interactions increase SMC proliferation resulting in vascular remodeling in experimental PPHN. Pulmonary artery SMCs (PASMCs) were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. Cell counts were performed daily for 5 days with or without PPARγ agonists and ROCK inhibition. PPARγ and ROCK protein expression/activity were measured by Western blot in normal and PPHN PASMCs. We assessed PPARγ-ROCK interactions by studying the effect of ROCK activation on PPARγ activity and PPARγ inhibition (siRNA) on ROCK activity and PASMC proliferation. At baseline, PPHN PASMC cell number was increased by 38% above controls on day 5. ROCK protein expression/activity were increased by 25 and 34% and PPARγ protein/activity decreased by 40 and 50% in PPHN PASMC. ROCK inhibition and PPARγ activation restored PPHN PASMC growth to normal values. ROCK inhibition increased PPARγ activity by 50% in PPHN PASMC, restoring PPARγ activity to normal. In normal PASMCs, ROCK activation decreased PPARγ activity and PPARγ inhibition increased ROCK activity and cell proliferation, resulting in a PPHN hyperproliferative PASMC phenotype. PPARγ-ROCK interactions regulate SMC proliferation and contribute to increased PPHN PASMC proliferation and vascular remodeling in PPHN. Restoring normal PPARγ-ROCK signaling may prevent vascular remodeling and improve outcomes in PPHN. PMID:24375792

  10. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  11. Vascular remodeling and its role in the pathogenesis of ascites in fast growing commercial broilers.

    PubMed

    Nain, S; Wojnarowicz, C; Laarveld, B; Olkowski, A A

    2009-06-01

    This study examined the putative role of blood vessel pathology in the development of ascites in broilers. Major blood vessels (aorta, brachiocephalic arteries, pulmonary arteries, and vena cava) from normal commercial male broiler chickens, and broilers that developed congestive heart failure (CHF) with or without ascites were subjected to gross and microscopic examination. On cross-section, grossly, the arteries from normal broilers and those showing dilated cardiomyopathy without ascites appeared circular, with firm wall tone characteristic of the normal artery. In contrast, the arteries from ascitic broilers appeared flaccid and lacked elasticity, which was evidenced by collapsing, ellipsoid cross-sectional arterial lumen owing to the structural weakness of the arterial walls. Microscopically, ascitic broilers showed thinning or occasionally total loss of elastic elements in the arterial wall, and reduced network density of the structural matrix of the vascular wall, as well as increased thickness of fibers in vena cava. The structural changes seen in the major arteries from ascitic broilers are maladaptive, and as such would definitively impose an increased hemodynamic burden on the already failing heart pump. The changes in veins are indicative of pathological remodeling conducive to increased permeability of the vascular wall, particularly in the situation when a poorly distensible structure is further subjected to wall stress associated with increased pressure and volume overload. Taken together, increased hemodynamic burden and reduced structural density of the venous wall constitute conditions conducive for seepage and accumulation of ascitic fluid.

  12. Chronic Hyperhomocysteinemia Causes Vascular Remodeling by Instigating Vein Phenotype in Artery†

    PubMed Central

    Basu, Poulami; Qipshidze, Natia; Sen, Utpal; Givvimani, Srikanth; Munjal, Charu; Mishra, Paras K.; Tyagi, Suresh C.

    2011-01-01

    In the present study we tested the hypothesis whether hyperhomocysteinemia, an elevated homocysteine level, induces venous phenotype in artery. To test our hypothesis, we employed wild type (WT) and cystathionine β-synthase+/− (CBS+/−) mice treatment with or without folic acid (FA). Aortic blood flow and velocity were significantly lower in CBS+/− mice compared to WT. Aortic lumen diameter was significantly decreased in CBS+/− mice, whereas FA treatment normalized it. Medial thickness and collagen were significantly increased in CBS+/− aorta, whereas elastin / collagen ratio was significantly decreased. Superoxide and gelatinase activity was significantly high in CBS +/− aorta vs WT. Western blot showed significant increase in MMP-2, -9,-12, TIMP-2 and decrease in TIMP-4 in aorta. RT-PCR revealed significant increase of vena cava marker EphB4, MMP-13 and TIMP-3 in aorta. We summarize that chronic HHcy causes vascular remodeling that transduces changes in vascular wall in a way that artery expresses vein phenotype. PMID:21838575

  13. Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension.

    PubMed

    Garcia, Victor; Joseph, Gregory; Shkolnik, Brian; Ding, Yan; Zhang, Frank Fan; Gotlinger, Katherine; Falck, John R; Dakarapu, Rambabu; Capdevila, Jorge H; Bernstein, Kenneth E; Schwartzman, Michal Laniado

    2015-07-01

    Increased vascular 20-HETE is associated with hypertension and activation of the renin-angiotensin system (RAS) through induction of vascular angiotensin-converting enzyme (ACE) expression. Cyp4a12tg mice, whose Cyp4a12-20-HETE synthase expression is under the control of a tetracycline (doxycycline, DOX) promoter, were used to assess the contribution of ACE/RAS to microvascular remodeling in 20-HETE-dependent hypertension. Treatment of Cyp4a12tg mice with DOX increased systolic blood pressure (SBP; 136 ± 2 vs. 102 ± 1 mmHg; P < 0.05), and this increase was prevented by administration of 20-HEDGE, lisinopril, or losartan. DOX-induced hypertension was associated with microvascular dysfunction and remodeling of preglomerular microvessels, which was prevented by 20-HEDGE, a 20-HETE antagonist, yet only lessened, but not prevented, by lisinopril or losartan. In ACE 3/3 mice, which lack vascular endothelial ACE, administration of 5α-dihydrotestosterone (DHT), a known inducer of 20-HETE production, increased SBP; however, the increase was about 50% of that in wild-type (WT) mice (151 ± 1 vs. 126 ± 1 mmHg). Losartan and 20-HEDGE prevented the DHT-induced increase in SBP in WT and ACE 3/3 mice. DHT treatment increased 20-HETE production and microvascular remodeling in WT and ACE 3/3 mice; however, remodeling was attenuated in the ACE 3/3 mice as opposed to WT mice (15.83 ± 1.11 vs. 22.17 ± 0.92 μm; P < 0.05). 20-HEDGE prevented microvascular remodeling in WT and ACE 3/3 mice, while losartan had no effect on microvascular remodeling in ACE 3/3. Taken together, these results suggest that RAS contributes to 20-HETE-mediated microvascular remodeling in hypertension and that 20-HETE-driven microvascular remodeling independent of blood pressure elevation does not fully rely on ACE activity in the vascular endothelium.

  14. Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling.

    PubMed

    Wilson, Christopher W; Ye, Weilan

    2014-01-01

    The ability of blood vessels to sense and respond to stimuli such as fluid flow, shear stress, and trafficking of immune cells is critical to the proper function of the vascular system. Endothelial cells constantly remodel their cell-cell junctions and the underlying cytoskeletal network in response to these exogenous signals. This remodeling, which depends on regulation of the linkage between actin and integral junction proteins, is controlled by a complex signaling network consisting of small G proteins and their various downstream effectors. In this commentary, we summarize recent developments in understanding the small G protein RAP1 and its effector RASIP1 as critical mediators of endothelial junction stabilization, and the relationship between RAP1 effectors and modulation of different subsets of endothelial junctions.   The vasculature is a dynamic organ that is constantly exposed to a variety of signaling stimuli and mechanical stresses. In embryogenesis, nascent blood vessels form via a process termed vasculogenesis, wherein mesodermally derived endothelial precursor cells aggregate into cords, which subsequently form a lumen that permits trafficking of plasma and erythrocytes. (1)(,) (2) Angiogenesis occurs after establishment of this primitive vascular network, where new vessels sprout from existing vessels, migrate into newly expanded tissues, and anastomose to form a functional and complex circulatory network. (1)(,) (2) In the mouse, this process occurs through the second half of embryogenesis and into postnatal development in some tissues, such as the developing retinal vasculature. (3) Further, angiogenesis occurs in a variety of pathological conditions, such as diabetic retinopathy, age-related macular degeneration, inflammatory diseases such as rheumatoid arthritis, wound healing, and tumor growth. (1)(,) (2)(,) (4) Both vasculogenesis and angiogenesis are driven through signaling by vascular endothelial growth factor (VEGF), and therapeutic

  15. PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats.

    PubMed

    Zhang, Hongrong; Jiang, Li; Guo, Zongduo; Zhong, Jianjun; Wu, Jingchuan; He, Junchi; Liu, Han; He, Zhaohui; Wu, Haitao; Cheng, Chongjie; Sun, Xiaochuan

    2017-03-22

    Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia.

  16. PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats

    PubMed Central

    Zhang, Hongrong; Jiang, Li; Guo, Zongduo; Zhong, Jianjun; Wu, Jingchuan; He, Junchi; Liu, Han; He, Zhaohui; Wu, Haitao; Cheng, Chongjie; Sun, Xiaochuan

    2017-01-01

    Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia. PMID:28327554

  17. Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling

    PubMed Central

    Xie, Xue-Jiao; Tao, Yong-Kang; He, Xiaochen; Roman, Richard J.; Aschner, Judy L.; Chen, Jian-Xiong

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a leading cause of heart failure. Although pulmonary endothelial dysfunction plays a crucial role in the progression of the PAH, the underlying mechanisms are poorly understood. The HIF-α hydroxylase system is a key player in the regulation of vascular remodeling. Knockout of HIF-2α has been reported to cause pulmonary hypertension. The present study examined the role of endothelial cell specific prolyl hydroxylase-2 (PHD2) in the development of PAH and pulmonary vascular remodeling. The PHD2f/f mouse was crossbred with VE-Cadherin-Cre promoter mouse to generate an endothelial specific PHD2 knockout (Cdh5-Cre-PHD2ECKO) mouse. Pulmonary arterial pressure and the size of the right ventricle was significantly elevated in the PHD2ECKO mice relative to the PHD2f/f controls. Knockout of PHD2 in EC was associated with vascular remodeling, as evidenced by an increase in pulmonary arterial media to lumen ratio and number of muscularized arterioles. The pericyte coverage and vascular smooth muscle cells were also significantly increased in the PA. The increase in vascular pericytes was associated with elevated expression of fibroblast specific protein-1 (FSP-1). Moreover, perivascular interstitial fibrosis of pulmonary arteries was significantly increased in the PHD2ECKO mice. Mechanistically, knockout of PHD2 in EC increased the expression of Notch3 and transforming growth factor (TGF-β) in the lung tissue. We conclude that the expression of PHD2 in endothelial cells plays a critical role in preventing pulmonary arterial remodeling in mice. Increased Notch3/TGF-β signaling and excessive pericyte coverage may be contributing to the development of PAH following deletion of endothelial PHD2. PMID:27613846

  18. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    PubMed

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  19. Uterine distension differentially affects remodelling and distensibility of the uterine vasculature in non-pregnant rats.

    PubMed

    Osol, George; Barron, Carolyn; Mandalà, Maurizio

    2012-01-01

    During pregnancy the mammalian uterine circulation undergoes significant expansive remodelling necessary for normal pregnancy outcome. The underlying mechanisms are poorly defined. The goal of this study was to test the hypothesis that myometrial stretch actively stimulates uterine vascular remodelling by developing a new surgical approach to induce unilateral uterine distension in non-pregnant rats. Three weeks after surgery, which consisted of an infusion of medical-grade silicone into the uterine lumen, main and mesometrial uterine artery and vein length, diameter and distensibility were recorded. Radial artery diameter, distensibility and vascular smooth muscle mitotic rate (Ki67 staining) were also measured. Unilateral uterine distension resulted in significant increases in the length of main uterine artery and vein and mesometrial segments but had no effect on vessel diameter or distensibility. In contrast, there were significant increases in the diameter of the radial arteries associated with the distended uterus. These changes were accompanied by reduced arterial distensibility and increased vascular muscle hyperplasia. In summary, this is the first report to show that myometrial stretch is a sufficient stimulus to induce significant remodelling of uterine vessels in non-pregnant rats. Moreover, the results indicate differential regulation of these growth processes as a function of vessel size and type.

  20. Hindlimb unweighting affects rat vascular capacitance function

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Tamhidi, L.; Berkowitz, D. E.; Shoukas, A. A.

    2001-01-01

    Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by 20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.

  1. Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization.

    PubMed

    Poulton, Ingrid J; McGregor, Narelle E; Pompolo, Sueli; Walker, Emma C; Sims, Natalie A

    2012-03-01

    We describe here distinct functions of leukemia inhibitory factor (LIF) in bone development/growth and adult skeletal homeostasis. In the growth plate and developing neonate bones, LIF deficiency enhanced vascular endothelial growth factor (VEGF) levels, enlarged blood vessel formation, and increased the formation of "giant" osteoclasts/chondroclasts that rapidly destroyed the mineralized regions of the growth plate and developing neonatal bone. Below this region, osteoblasts formed large quantities of woven bone. In contrast, in adult bone undergoing remodeling osteoclast formation was unaffected by LIF deficiency, whereas osteoblast formation and function were both significantly impaired, resulting in osteopenia. Consistent with LIF promoting osteoblast commitment, enhanced marrow adipocyte formation was also observed in adult LIF null mice, and adipocytic differentiation of murine stromal cells was delayed by LIF treatment. LIF, therefore, controls vascular size and osteoclast differentiation during the transition of cartilage to bone, whereas an anatomically separate LIF-dependent pathway regulates osteoblast and adipocyte commitment in bone remodeling.

  2. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars

    PubMed Central

    Maumus, Marie; Toupet, Karine; Frouin, Eric; Rigau, Valérie; Vozenin, Marie-Catherine; Magalon, Guy; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFβ3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring. PMID:27227960

  3. Inhibition of kinin B1 receptors attenuates pulmonary hypertension and vascular remodeling.

    PubMed

    Murugesan, Priya; Hildebrandt, Tobias; Bernlöhr, Christian; Lee, Dongwon; Khang, Gilson; Doods, Henri; Wu, Dongmei

    2015-10-01

    This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.

  4. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD

    PubMed Central

    Soltani, Amir; Walters, Eugene Haydn; Reid, David W; Shukla, Shakti Dhar; Nowrin, Kaosia; Ward, Chris; Muller, H Konrad; Sohal, Sukhwinder Singh

    2016-01-01

    Background This study assessed the effects of inhaled corticosteroid (ICS) on airway vascular remodeling in chronic obstructive pulmonary disease (COPD). Methods Thirty-four subjects with mild-to-moderate COPD were randomly allocated 2:1 to ICS or placebo treatment in a double-blinded clinical trial over 6 months. Available tissue was compared before and after treatment for vessel density, and expression of VEGF, TGF-β1, and TGF-β1-related phosphorylated transcription factors p-SMAD 2/3. This clinical trial has been registered and allocated with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 17/10/2012 with reference number ACTRN12612001111864. Results There were no significant baseline differences between treatment groups. With ICS, vessels and angiogenic factors did not change in hypervascular reticular basement membrane, but in the hypovascular lamina propria (LP), vessels increased and this had a proportionate effect on lung air trapping. There was modest evidence for a reduction in LP vessels staining for VEGF with ICS treatment, but a marked and significant reduction in p-SMAD 2/3 expression. Conclusion Six-month high-dose ICS treatment had little effect on hypervascularity or angiogenic growth factors in the reticular basement membrane in COPD, but normalized hypovascularity in the LP, and this was physiologically relevant, though accompanied by a paradoxical reduction in growth factor expression. PMID:27703346

  5. Elevated expression of placental growth factor is associated with airway-wall vascular remodelling and thickening in smokers with asthma

    PubMed Central

    Wu, Dong; Lai, Tianwen; Yuan, Yalian; Chen, Min; Xia, Jun; Li, Wen; Pan, Guihai; Yuan, Binfan; Lv, Quanchao; Li, Yanyu; Li, Dongmin; Wu, Bin

    2017-01-01

    The increased expression of placental growth factor (PlGF) in chronic obstructive pulmonary disease and allergy-related asthma suggests its role in the pathogenesis of these diseases. In asthmatic smokers, airway remodelling is accompanied by an accelerated decline in lung function. However, whether PlGF contributes to the persistent airflow obstruction and vascular remodelling typically seen in asthmatic smokers is unknown. In this study we measured lung function, airway-wall thickening, and PlGF levels in serum and induced sputum in 74 asthmatic and 42 healthy smokers and never-smokers. Using human lung microvascular endothelial cells (HLMECs), we evaluated the in vitro effects of PlGF on each step of vascular remodelling, including proliferation, migration, stress-fibre expression, and tubule formation. Our data showed significantly higher serum and sputum PlGF levels in asthma patients, especially asthmatic smokers, than in healthy controls. Serum and sputum PlGF levels correlated negatively with post-bronchodilator forced expiratory volume in 1 s (FEV1) and the FEV1/forced vital capacity, but positively with airway-wall thickening. Stimulation of HLMECs with rhPlGF promoted all of the steps of airway-microvascular remodelling. These findings provide insights into the influence of cigarette smoking on the structural changes in the airways of asthmatics and the important pathogenic role played by PlGF. PMID:28220848

  6. Cathepsin K Deficiency Prevents the Aggravated Vascular Remodeling Response to Flow Cessation in ApoE-/- Mice

    PubMed Central

    Lutgens, Suzanne P. M.; Wijnands, Erwin; Johnson, Jason; Schurgers, Leon J.; Liu, Cong-Lin; Daemen, Mat J. A. P.; Cleutjens, Kitty B. J. M.; Shi, Guo-Ping; Biessen, Erik A. L.; Heeneman, Sylvia

    2016-01-01

    Cathepsin K (catK) is a potent lysosomal cysteine protease involved in extracellular matrix (ECM) degradation and inflammatory remodeling responses. Here we have investigated the contribution of catK deficiency on carotid arterial remodeling in response to flow cessation in apoE-/- and wild type (wt) background. Ligation-induced hyperplasia is considerably aggravated in apoE-/- versus wt mice. CatK protein expression was significantly increased in neointimal lesions of apoE-/- compared with wt mice, suggesting a role for catK in intimal hyperplasia under hyperlipidemic conditions. Surprisingly, CatK deficiency completely blunted the augmented hyperplastic response to flow cessation in apoE-/-, whereas vascular remodeling in wt mice was unaffected. As catK deficiency did neither alter lesion collagen content and elastic laminae fragmentation in vivo, we focused on effects of catK on (systemic) inflammatory responses. CatK deficiency significantly reduced circulating CD3 T-cell numbers, but increased the regulatory T cell subset in apoE-/- but not wt mice. Moreover, catK deficiency changed CD11b+Ly6G-Ly6C high monocyte distribution in apoE-/- but not wt mice and tended to favour macrophage M2a polarization. In conclusion, catK deficiency almost completely blunted the increased vascular remodeling response of apoE-/- mice to flow cessation, possibly by correcting hyperlipidemia-associated pro-inflammatory effects on the peripheral immune response. PMID:27636705

  7. Hypertension-Induced Vascular Remodeling Contributes to Reduced Cerebral Perfusion and the Development of Spontaneous Stroke in Aged SHRSP Rats

    DTIC Science & Technology

    2010-01-01

    induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats Erica C Henning1...spontaneously-hypertensive, stroke-prone (SHRSP) rats is of particular interest because the pathogenesis is believed to be similar to that in the...cerebral infarction and the specific role of cerebral perfusion in disease development. Twelve female SHRSP rats (age: - 1 year) were Imaged within 1

  8. The interaction of transient receptor potential melastatin 7 with macrophages promotes vascular adventitial remodeling in transverse aortic constriction rats.

    PubMed

    Li, Yan; Jiang, Hui; Ruan, Chengchao; Zhong, Jiuchang; Gao, Pingjin; Zhu, Dingliang; Niu, Wenquan; Guo, Shujie

    2014-01-01

    Transient receptor potential melastatin 7 (TRPM7), a novel channel kinase, has been recently identified in the vasculature. However, its regulation and function in vascular diseases remain poorly understood. To address this lack of knowledge, we sought to examine whether TRPM7 can mediate the vascular remodeling process induced by pressure overload in the right common carotid artery proximal to the band (RCCA-B) in male Sprague-Dawley rats with transverse aortic constriction (TAC). The contribution of TRPM7 to amplified vascular remodeling after TAC was tested using morphometric and western blot analyses. Pressure overload-induced vascular wall thickening, especially in the adventitia, was readily detected in RCCA-B. The TRPM7 level was increased with a simultaneous accumulation of macrophages in the adventitia of RCCA-B, whereas the anti-inflammatory molecule annexin-1, a TRPM7 downstream target, was decreased. After the addition of the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB), significant reductions in macrophage accumulation as well as the expression of monocyte chemotactic protein-1, SM-22-α and collagen I were observed, whereas annexin-1 was rescued. Finally, in cultured vascular adventitial fibroblasts treated with macrophage-conditioned medium, there were marked increases in the expression of TRPM7 and SM-22-α with a concurrent reduction in annexin-1 expression; these effects were largely prevented by treatment with 2-APB and specific anti-TRPM7 small interfering RNA. Our findings provide the first demonstration of the potential regulatory roles of TRPM7 in the vascular inflammation, pressure overload-mediated vascular adventitial collagen accumulation and cell phenotypic transformation in TAC rats. The targeting of TRPM7 has potential therapeutic importance for vascular diseases.

  9. Cystathionine beta synthase gene dose dependent vascular remodeling in murine model of hyperhomocysteinemia.

    PubMed

    Tyagi, Neetu; Qipshidze, Natia; Sen, Utpal; Rodriguez, Walter; Ovechkin, Alexander; Tyagi, Suresh C

    2011-09-30

    Although children born with severe homocystinurea (i.e. cystathionine beta synthase homozygote knockout, CBS-/-) develop deleterious vascular complications with structural malformation and do not live past teenage, the heterozygote (CBS-/+) lives with apparently normal phenotype. Interestingly, this differential role of CBS expression in vascular remodeling is unclear. Peroxisome proliferator activated receptor gamma (PPARγ) is nuclear transcription factor that mitigates vascular complications. The hypothesis was that homocysteine (Hcy) decreased thioredoxin (Trx), peroxiredoxin (Prx), increased NADPH oxidase (NOX1), mitochondrial nitric oxide synthase (mtNOS) activity and reactive oxygen species (ROS) in mitochondria in a CBS gene dose-dependent manner. ROS transduced matrix metalloproteinase (MMP) activation causing thickening (fibrosis) of the basement membrane, rendering ineffective endothelial nitric oxide synthase (eNOS) and promoted endothelial-smooth muscle disconnection/uncoupling by antagonizing PPARγ. Wild type (WT-CBS+/+), CBS-/+ and CBS -/- mice were treated with or without ciglitazone (CZ, a PPARγ agonist) in food at birth. Aortic nuclear PPARγ expression was measured by EMSA. Aortic mtNOS activity and ROS production was measured using NO- and H(2)O(2)-electrodes, respectively. Aorta was analyzed for Trx, Prx, by Western blot, and PCR. MMP activity was by in situ zymography. Aortic function was measured in tissue myobath. The results suggested 90% morbidity in CBS-/- allele at 12 wks. However, treatment with the PPARγ agonist, CZ significantly reduced the morbidity to 20%. In addition, CZ restored the PPARγ activity in CBS-/+ and -/- mice to normal levels. The oxidative stress was alleviated by CZ treatment. In situ labeling with mito-tracker suggests co-localization of ROS with mitochondrial mitophagy. The mtNOS activity was increased in HHcy compared to WT. The data support the notion that Hcy decreases redoxins, increases mtNOS activity and

  10. Gene silencing of TACE enhances plaque stability and improves vascular remodeling in a rabbit model of atherosclerosis

    PubMed Central

    Zhao, Xueqiang; Kong, Jing; Zhao, Yuxia; Wang, Xuping; Bu, Peili; Zhang, Cheng; Zhang, Yun

    2015-01-01

    We aimed to test the hypothesis that gene silencing of tumor necrosis factor alpha converting enzyme (TACE) may attenuate lesion inflammation and positive vascular remodeling and enhance plaque stability in a rabbit model of atherosclerosis. Lentivirus-mediated TACE shRNA was injected into the abdominal aortic plaques of rabbits which effectively down-regulated TACE expression and activities from week 8 to week 16. TACE gene silencing reduced remodeling index and plaque burden, and diminished the content of macrophages and lipids while increased that of smooth muscle cells and collagen in the aortic plaques. In addition, TACE gene silencing attenuated the local expression of P65, iNOS, ICAM-1, VEGF and Flt-1 and activities of MMP9 and MMP2 while increased the local expression of TGF-β1 together with reduced number of neovessels in the aorta. TACE shRNA treatment resulted in down-regulated expression of TACE in macrophages and blunted ERK-P38 phosphorylation and tube formation of co-cultured mouse vascular smooth muscle cells or human umbilical vein endothelial cells. In conclusion, gene silencing of TACE enhanced plaque stability and improved vascular positive remodeling. The mechanisms may involve attenuated local inflammation, neovascularization and MMP activation, as well as enhanced collagen production probably via down-regulated ERK-NF-κB and up-regulated TGF-β1 signaling pathways. PMID:26655882

  11. Identification of transcription factors and gene clusters in rabbit smooth muscle cells during high flow-induced vascular remodeling via microarray.

    PubMed

    Zhang, Zhaolong; Yang, Pengfei; Yao, Pengfei; Dai, Dongwei; Yu, Ying; Zhou, Yu; Huang, Qinghai; Liu, Jianmin

    2016-01-10

    Sustained blood flow, especially high blood flow causes the remodeling of arteries. The molecular mechanism of vascular remodeling has been mainly investigated in cultured cells. However, the in vivo molecular mechanism is poorly understood. In this study, we performed microarray analysis to explore the gene expression profile of smooth muscle cells (SMCs) during vascular remodeling. Transcriptional profiles indicated that 947 genes were differentially expressed in SMCs responding to high flow compared with the sham control, of which 617 genes were up-regulated and 330 genes were down-regulated. Gene ontology analysis revealed the special participation of extracellular matrix related genes during high flow-induced vascular remodeling. KEGG pathway analysis showed the enrichment of metabolism and immune function associated genes in SMCs exposed to high flow. Besides, we also identified 25 differentially expressed transcription factors potentially impacted by hemodynamic insult. Finally, we revealed FOXN4 as a novel transcription factor that could modulate MMP2 and MMP9 transcriptional activity. Collectively, our results revealed major gene clusters and transcription factors in SMCs during vascular remodeling which may provide an insight into the molecular mechanism of vascular remodeling and facilitate the screening of candidate genes for vascular diseases.

  12. Acetyl-11-Keto-β-Boswellic Acid Attenuates Prooxidant and Profibrotic Mechanisms Involving Transforming Growth Factor-β1, and Improves Vascular Remodeling in Spontaneously Hypertensive Rats

    PubMed Central

    Shang, Peijin; Liu, Wenxing; Liu, Tianlong; Zhang, Yikai; Mu, Fei; Zhu, Zhihui; Liang, Lingfei; Zhai, Xiaohu; Ding, Yi; Li, Yuwen; Wen, Aidong

    2016-01-01

    Vascular remodeling is an important complication of hypertension with oxidative stress-related profibrotic pathways involved. The transforming growth factor β1 (TGF-β1) has been shown to be a potential target of vasoprotection, and has multiple roles in vascular remodeling. Acetyl-11-Keto-β-Boswellic Acid (AKBA) is one of the active principles of Boswellic acids, and shows antioxidant activity in many diseases. The study is to determine effects of AKBA on systemic oxidative stress of hypertension and vascular remodeling. In the experiments, spontaneously hypertensive rats (SHR) were used. And in vitro, fibroblast was pretreated with AKBA before Ang II stimuli. In the results, treatment of AKBA markedly reduced oxidative stress, and decreased vascular remodeling by restoring vascular wall parameters and improving vascular reactivity. AKBA dramatically reduced TGF-β1 and Smad3 expression, as shown in immunofluorescence and immunohistochemistry. In cultured fibroblast, AKBA decreased intracellular ROS levels. Cell viability and proliferation, as well as migration were inhibited by AKBA. Additionally, treatment of AKBA significantly decreased TGF-β1 secretion in culture supernatant. Expression of TGF-β1, Smad3, P-Smad3 and Smad7 were also decreased by AKBA in fibroblast. In conclusion, AKBA is able to attenuate oxidative stress and profibrotic mechanisms, and improve vascular remodeling in hypertension through TGF-β1/Smad3 pathway. PMID:28009003

  13. Vascularization in tissue remodeling after rat hepatic necrosis induced by dimethylnitrosamine.

    PubMed

    Jin, Yu-Lan; Enzan, Hideaki; Kuroda, Naoto; Hayashi, Yoshihiro; Toi, Makoto; Miyazaki, Eriko; Hamauzu, Tadashi; Hiroi, Makoto; Guo, Li-Mei; Shen, Zhe-Shi; Saibara, Toshiji

    2006-03-01

    We observed postnecrotic tissue remodeling to examine vascularization in adult rat livers. Livers, bone marrow, and peripheral blood from rats at 24 h to 14 days after an injection of dimethylnitrosamine (DMN) were examined by light microscopic, immunohistochemical, and ultrastructural methods. Numerous ED-1 (a marker for rat monocytes/macrophages)-positive round mononuclear cells infiltrated in the necrotic areas at 36 h after DMN treatment. On day 5, when necrotic tissues were removed, some of the cells were transformed from round to spindle in shape. On day 7, these cells were contacted with residual reticulin fibers and became positive for SE-1, a marker of hepatic sinusoidal endothelial cells and Tie-1, an endothelial cell-specific surface receptor, associated with frequent occurrence of ED-1/SE-1 and ED-1/Tie-1 double-positive spindle cells. Ultrastructurally, the spindle cells simultaneously showed phagocytosis and endothelial cell-like morphology. With time necrotic areas diminished, and on day 14, the necrotic tissues were almost replaced by regenerated liver tissues and thin bundles of central-to-central bridging fibrosis. Bone marrow from 12 h to day 2 showed an increase of BrdU-positive mononuclear cells. Some of them were positive for ED-1. The BrdU-labeled and ED-1-positive cells appeared as early as 12 h after DMN injection and reached a peak in number at 36 h. They were similar in structure to ED-1-positive cells in necrotic liver tissues. These findings suggest that round mononuclear ED-1-positive cells proliferate first in bone marrow after DMN treatment, reach necrotic areas of the liver through the circulation, and differentiate to sinusoidal endothelial cells. Namely, hepatic sinusoids in DMN-induced necrotic areas may partly be reorganized possibly by vasculogenesis.

  14. miR-126 Is Involved in Vascular Remodeling under Laminar Shear Stress

    PubMed Central

    Mondadori dos Santos, Ana; Metzinger, Laurent; Haddad, Oualid; M'baya-Moutoula, Eléonore; Taïbi, Fatiha; Charnaux, Nathalie; Massy, Ziad A.; Hlawaty, Hanna; Metzinger-Le Meuth, Valérie

    2015-01-01

    Morphology and changes in gene expression of vascular endothelium are mainly due to shear stress and inflammation. Cell phenotype modulation has been clearly demonstrated to be controlled by small noncoding micro-RNAs (miRNAs). This study focused on the effect of laminar shear stress (LSS) on human endothelial cells (HUVECs), with an emphasis on the role of miRNA-126 (miR-126). Exposure of HUVECs in vitro to LSS modified the shape of HUVECs and concomitantly regulated the expression of miR-126, vascular cell adhesion molecule 1 (VCAM-1), and syndecan-4 (SDC-4). A significant upregulation of miR-126 during long-term exposure to flow was shown. Interestingly, LSS enhanced SDC-4 expression on the HUVEC membranes. Overexpression of miR-126 in HUVECs decreased the levels of targets stromal cell-derived factor-1 SDF-1/CXCL12 and VCAM-1 but increased the expression of RGS16, CXCR4, and SDC-4. No significant difference in terms of cell proliferation and apoptosis was observed between scramble, anti-miR-126, and pre-miR-126 transfected HUVECs. In Apo-E KO/CKD mice aortas expressing a high level of miR-126, SDC-4 was concomitantly increased. In conclusion, our results suggest that miR-126 (i) is overexpressed by long-term LSS, (ii) has a role in up- and downregulation of genes involved in atherosclerosis, and (iii) affects SDC-4 expression. PMID:26221595

  15. Kinetics of cardiac and vascular remodeling by spontaneously hypertensive rats after discontinuation of long-term captopril treatment.

    PubMed

    Rocha, W A; Lunz, W; Baldo, M P; Pimentel, E B; Dantas, E M; Rodrigues, S L; Mill, J G

    2010-04-01

    Angiotensin-converting enzyme inhibitors reduce blood pressure and attenuate cardiac and vascular remodeling in hypertension. However, the kinetics of remodeling after discontinuation of the long-term use of these drugs are unknown. Our objective was to investigate the temporal changes occurring in blood pressure and vascular structure of spontaneously hypertensive rats (SHR). Captopril treatment was started in the pre-hypertensive state. Rats (4 weeks) were assigned to three groups: SHR-Cap (N = 51) treated with captopril (1 g/L) in drinking water from the 4th to the 14th week; SHR-C (N = 48) untreated SHR; Wistar (N = 47) control rats. Subgroups of animals were studied at 2, 4, and 8 weeks after discontinuation of captopril. Direct blood pressure was recorded in freely moving animals after femoral artery catheterism. The animals were then killed to determine left ventricular hypertrophy (LVH) and the aorta fixed at the same pressure measured in vivo. Captopril prevented hypertension (105 + or - 3 vs 136 + or - 5 mmHg), LVH (2.17 + or - 0.05 vs 2.97 + or - 0.14 mg/g body weight) and the increase in cross-sectional area to luminal area ratio of the aorta (0.21 + or - 0.01 vs 0.26 + or - 0.02 microm(2)) (SHR-Cap vs SHR-C). However, these parameters increased progressively after discontinuation of captopril (22nd week: 141 + or - 2 mmHg, 2.50 + or - 0.06 mg/g, 0.27 + or - 0.02 microm(2)). Prevention of the development of hypertension in SHR by using captopril during the prehypertensive period prevents the development of cardiac and vascular remodeling. Recovery of these processes follows the kinetic of hypertension development after discontinuation of captopril.

  16. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction

    PubMed Central

    Labrousse-Arias, David; Castillo-González, Raquel; Rogers, Natasha M.; Torres-Capelli, Mar; Barreira, Bianca; Aragonés, Julián; Cogolludo, Ángel; Isenberg, Jeffrey S.; Calzada, María J.

    2016-01-01

    Aims Hypoxic conditions stimulate pulmonary vasoconstriction and vascular remodelling, both pathognomonic changes in pulmonary arterial hypertension (PAH). The secreted protein thrombospondin-1 (TSP1) is involved in the maintenance of lung homeostasis. New work identified a role for TSP1 in promoting PAH. Nonetheless, it is largely unknown how hypoxia regulates TSP1 in the lung and whether this contributes to pathological events during PAH. Methods and results In cell and animal experiments, we found that hypoxia induces TSP1 in lungs, pulmonary artery smooth muscle cells and endothelial cells, and pulmonary fibroblasts. Using a murine model of constitutive hypoxia, gene silencing, and luciferase reporter experiments, we found that hypoxia-mediated induction of pulmonary TSP1 is a hypoxia-inducible factor (HIF)-2α-dependent process. Additionally, hypoxic tsp1−/− pulmonary fibroblasts and pulmonary artery smooth muscle cell displayed decreased migration compared with wild-type (WT) cells. Furthermore, hypoxia-mediated induction of TSP1 destabilized endothelial cell–cell interactions. This provides genetic evidence that TSP1 contributes to vascular remodelling during PAH. Expanding cell data to whole tissues, we found that, under hypoxia, pulmonary arteries (PAs) from WT mice had significantly decreased sensitivity to acetylcholine (Ach)-stimulated endothelial-dependent vasodilation. In contrast, hypoxic tsp1−/− PAs retained sensitivity to Ach, mediated in part by TSP1 regulation of pulmonary Kv channels. Translating these preclinical studies, we find in the lungs from individuals with end-stage PAH, both TSP1 and HIF-2α protein expression increased in the pulmonary vasculature compared with non-PAH controls. Conclusions These findings demonstrate that HIF-2α is clearly implicated in the TSP1 pulmonary regulation and provide new insights on its contribution to PAH-driven vascular remodelling and vasoconstriction. PMID:26503986

  17. Impact of hypertension on vascular remodeling in patients with psoriatic arthritis.

    PubMed

    Puato, M; Ramonda, R; Doria, A; Rattazzi, M; Faggin, E; Balbi, G; Zanon, M; Zanardo, M; Tirrito, C; Lorenzin, M; Modesti, V; Plebani, M; Zaninotto, M; Punzi, L; Pauletto, P

    2014-02-01

    We studied the impact of hypertension along with traditional and new cardiovascular risk factors on the structural and functional properties of arteries in psoriatic arthritis (PsA) patients. We examined 42 PsA subjects (aged 51±9 years) stratified according to hypertensive status (19 normotensive, PsA-NT and 23 hypertensives, PsA-HT). Thirty-eight normotensive subjects (C-NT) and 23 hypertensives (C-HT) comparable by age and sex served as controls. Mean carotid intima-media thickness (mean-IMT) and mean of the maximum IMT (M-Max) were evaluated by ultrasound in carotid artery segment bilaterally. Post-occlusion flow-mediated dilation (FMD) of the brachial artery was evaluated by ultrasonography. These parameters were correlated with risk factors, markers of inflammation and disease activity. Values of mean-IMT were higher in both groups of PsA patients compared with C-NT (0.68 mm in PsA-NT and 0.75 mm in PsA-HT versus 0.61 mm in C-NT). PsA-HT displayed higher M-Max (0.95 mm) versus both C-HT (0.71 mm) and PsA-NT (0.79 mm). FMD was impaired in PsA subjects compared with C-NT (5.7% in PsA-NT and 6.0% PsA-HT versus 9.3% in C-NT), whereas there was no difference among PsA-HT, PsA-NT, and C-HT groups. Values of carotid IMT were directly related to tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), blood pressure and lipid profile levels. FMD showed an inverse relationship with TNF-α and blood pressure, but no correlation with lipids. In conclusion, PsA per se implies a pro-atherogenic remodeling, which is enhanced by the hypertensive status. TNF-α and OPG may have an independent role in the development of such vascular damage.

  18. Efficacy of losartan for improving insulin resistance and vascular remodeling in hemodialysis patients.

    PubMed

    Sun, Fang; Song, Yan; Liu, Jing; Ma, Li-Jie; Shen, Yang; Huang, Jing; Zhou, Yi-Lun

    2016-01-01

    Insulin resistance and vascular remodeling are prevalent and predict cardiovascular mortality in hemodialysis patients. Angiotensin II (Ang II) may be involved in both pathogenesis. In the present study, we investigated the effects of the Ang II receptor blocker losartan on insulin resistance, arterial stiffness, and carotid artery structure in hemodialysis patients. Seventy-two hemodialysis patients were randomly assigned to receive either losartan 50 mg qd (n = 36) or β-blocker bisoprolol 5 mg qd (n = 36). At the start and at month 12, ambulatory blood pressure (BP) monitoring, aortic pulse wave velocity (PWV) measurements, and carotid artery ultrasound were performed, and homeostasis model assessment index of insulin resistance (HOMA-IR) was determined. During the study period, bioimpedance method was used to evaluate volume status every 3 months. Home-monitored BPs were measured at least monthly. Ambulatory BP decreased significantly and similarly by either losartan or bisoprolol. Decreases in PWVs in losartan group at the end of month 12 were significantly greater than changes in PWV in bisoprolol group (0.9 ± 0.3 vs. 0.4 ± 0.5 m/s, P = 0.021). Common carotid artery intima-media cross-sectional area decreased significantly only in patients treated with losartan (20.3 ± 4.9 vs. 19.1 ± 5.1 mm(2) , P = 0.001), and HOMA-IR was also reduced in losartan group only (1.9 ± 1.0 vs. 1.7 ± 0.8, P = 0.003). Multiple regression analysis showed significant correlations between changes in PWV and changes in HOMA-IR. With comparable BP-lowering efficacy, losartan achieved better improvement in insulin sensitivity, arterial stiffness, and carotid artery hypertrophy in hemodialysis patients. The regression of arterial stiffness may be in part through attenuation in insulin resistance.

  19. Vascular remodeling alters adhesion protein and cytoskeleton reactions to inflammatory stimuli resulting in enhanced permeability increases in rat venules.

    PubMed

    Yuan, Dong; He, Pingnian

    2012-10-01

    Vascular remodeling has been implicated in many inflammation-involved diseases. This study aims to investigate the microvascular remodeling-associated alterations in cell-cell adhesion and cytoskeleton reactions to inflammatory stimuli and their impact on microvessel permeability. Experiments were conducted in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial intracellular calcium concentration, [Ca(2+)](i), was measured in fura-2-perfused vessels. Alterations in VE-cadherin and F-actin arrangement were examined by confocal imaging. Vascular wall cellular composition and structural changes were evaluated by electron microscopy. Vessels exposed to platelet activating factor (PAF) on day 1 were reevaluated 3 days later in rats that had undergone survival surgery. Initial PAF exposure and surgical disturbance increased microvascular wall thickness along with perivascular cell proliferation and altered F-actin arrangement. Although basal permeability was not changed, upon reexposure to PAF, peak endothelial [Ca(2+)](i) was augmented and the peak Lp was 9.3 ± 1.7 times higher than that of day 1. In contrast to patterns of PAF-induced stress fiber formation and VE-cadherin redistribution observed in day 1 vessels, the day 4 vessels at the potentiated Lp peak exhibited wide separations of VE-cadherin between endothelial cells and striking stress fibers throughout the vascular walls. Confocal images and ultrastructural micrographs also revealed that the largely separated VE-cadherin and endothelial gaps were completely covered by F-actin bundles in extended pericyte processes at the PAF-induced Lp peak. These results indicate that inflammation-induced vascular remodeling increased endothelial susceptibility to inflammatory stimuli with augmented Ca(2+) response resulting in upregulated contractility and potentiated permeability increase. Weakened adhesions between the endothelial

  20. Small-Nucleic-Acid-Based Therapeutic Strategy Targeting the Transcription Factors Regulating the Vascular Inflammation, Remodeling and Fibrosis in Atherosclerosis

    PubMed Central

    Youn, Sung Won; Park, Kwan-Kyu

    2015-01-01

    Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis. PMID:26006249

  1. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium.

    PubMed

    Sobajima, Mitsuo; Nozawa, Takashi; Shida, Takuya; Ohori, Takashi; Suzuki, Takayuki; Matsuki, Akira; Inoue, Hiroshi

    2011-08-01

    Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P < 0.01) and end-systolic (8.6 ± 0.5 vs. 9.6 ± 0.6 mm, P < 0.01) dimensions and attenuated MI-induced increases in LV end-diastolic pressure. Cross-sectional areas of cardiomyocytes were smaller in ST rats and associated with a significant reduction in myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.

  2. A Theoretical Model for F-actin Remodeling in Vascular Smooth Muscle Cells Subjected to Cyclic Stretch

    PubMed Central

    Na, S.; Meininger, G.A.; Humphrey, J.D.

    2007-01-01

    A constrained mixture theory model was developed and used to estimate remodeling of F-actin in vascular smooth muscle cells that were subjected to 10% equibiaxial stretching for up to 30 minutes. The model was based on a synthesis of data on time-dependent changes in atomic force microscopy measured cell stiffness and immunofluorescence measured focal adhesion associated vinculin as well as data on stress fiber stiffness and pre-stretch. Results suggest that an observed acute (after 2 minutes of stretching) increase in cell stiffness is consistent with an increased stretch of the originally present F-actin plus an assembly of new F-actin having nearly homeostatic values of stretch. Moreover, the subsequent (after 30 minutes of stretching) decrease in cell stiffness back towards the baseline value is consistent with a replacement of the overstretched original filaments with the new (reassembled), less stretched filaments. That is, overall cell response is consistent with a recently proposed concept of “tensional homeostasis” whereby cells seek to maintain constant certain mechanical factors via a remodeling of intracellular and transmembrane proteins. Although there is a need to refine the model based on more comprehensive data sets, using multiple experimental approaches, the present results suggest that a constrained mixture theory can capture salient features of the dynamics of F-actin remodeling and that it offers some advantages over many past methods of modeling, particularly those based on classical linearized viscoelasticity. PMID:17240401

  3. A novel computational remodelling algorithm for the probabilistic evolution of collagen fibre dispersion in biaxially strained vascular tissue.

    PubMed

    Çoban, Gürsan; Çelebi, M Serdar

    2016-09-10

    In this work, we constructed a novel collagen fibre remodelling algorithm that incorporates the complex nature of random evolution acting on single fibres causing macroscopic fibre dispersion. The proposed framework is different from the existing remodelling algorithms, in that the microscopic random force on cellular scales causing a rotational-type Brownian motion alone is considered as an aspect of vascular tissue remodelling. A continuum mechanical framework for the evolution of local dispersion and how it could be used for modeling the evolution of internal radius of biaxially strained artery structures under constant internal blood pressure are presented. A linear evolution form for the statistical fibre dispersion is employed in the model. The random force component of the evolution, which depends on the mechanical stress stimuli, is described by a single parameter. Although the mathematical form of the proposed model is simple, there is a strong link between the microscopic evolution of collagen dispersion on the cellular level and its effects on the macroscopic visible world through mechanical variables. We believe that the proposed algorithm utilizes a better understanding of the relationship between the evolution rates of mean fibre direction and fibre dispersion. The predictive capability of the algorithm is presented using experimental data. The model has been simulated by solving a single-layered axisymmetric artery (adventitia) deformation problem. The algorithm performed well for estimating the quantitative features of experimental anisotropy, the mean fibre direction vector and the dispersion ([Formula: see text]) measurements under strain-dependent evolution assumptions.

  4. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.

  5. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

    PubMed Central

    Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  6. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.

    PubMed

    Li, Qian; Mao, Min; Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.

  7. Effect of combined VEGF165/ SDF-1 gene therapy on vascular remodeling and blood perfusion in cerebral ischemia.

    PubMed

    Hu, Guo-Jie; Feng, Yu-Gong; Lu, Wen-Peng; Li, Huan-Ting; Xie, Hong-Wei; Li, Shi-Fang

    2016-12-16

    OBJECTIVE Therapeutic neovascularization is a promising strategy for treating patients after an ischemic stroke; however, single-factor therapy has limitations. Stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) proteins synergistically promote angiogenesis. In this study, the authors assessed the effect of combined gene therapy with VEGF165 and SDF-1 in a rat model of cerebral infarction. METHODS An adenoviral vector expressing VEGF165 and SDF-1 connected via an internal ribosome entry site was constructed (Ad- VEGF165-SDF-1). A rat model of middle cerebral artery occlusion (MCAO) was established; either Ad- VEGF165-SDF-1 or control adenovirus Ad- LacZ was stereotactically microinjected into the lateral ventricle of 80 rats 24 hours after MCAO. Coexpression and distribution of VEGF165 and SDF-1 were examined by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence. The neurological severity score of each rat was measured on Days 3, 7, 14, 21, and 28 after MCAO. Angiogenesis and vascular remodeling were evaluated via bromodeoxyuridine and CD34 immunofluorescence labeling. Relative cerebral infarction volumes were determined by T2-weighted MRI and triphenyltetrazolium chloride staining. Cerebral blood flow, relative cerebral blood volume, and relative mean transmit time were assessed using perfusion-weighted MRI. RESULTS The Ad- VEGF165-SDF-1 vector mediated coexpression of VEGF165 and SDF-1 in multiple sites around the ischemic core, including the cortex, corpus striatum, and hippocampal granular layer. Coexpression of VEGF165 and SDF-1 improved neural function, reduced cerebral infarction volume, increased microvascular density and promoted angiogenesis in the ischemic penumbra, and improved cerebral blood flow and perfusion. CONCLUSIONS Combined VEGF165 and SDF-1 gene therapy represents a potential strategy for improving vascular remodeling and recovery of neural function after cerebral

  8. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling.

    PubMed

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-02-04

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  9. Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia

    PubMed Central

    Morancho, Anna; Ma, Feifei; Barceló, Verónica; Giralt, Dolors; Montaner, Joan; Rosell, Anna

    2015-01-01

    Endothelial progenitor cells (EPCs) are being investigated for advanced therapies, and matrix metalloproteinase 9 (MMP9) has an important role in stroke recovery. Our aim was to determine whether tissue MMP9 influences the EPC-induced angiogenesis after ischemia. Wild-type (WT) and MMP9-deficient mice (MMP9/KO) were subjected to cerebral ischemia and treated with vehicle or outgrowth EPCs. After 3 weeks, we observed an increase in the peri-infarct vessel density in WT animals but not in MMP9/KO mice; no differences were found in the vehicle-treated groups. Our data suggest that tissue MMP9 has a crucial role in EPC-induced vascular remodeling after stroke. PMID:26219597

  10. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells.

    PubMed

    Huang, Yaqian; Shen, Zhizhou; Chen, Qinghua; Huang, Pan; Zhang, Heng; Du, Shuxu; Geng, Bin; Zhang, Chunyu; Li, Kun; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-14

    The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.

  11. Possible role of NFκB in the embryonic vascular remodeling and the endothelial mesenchymal transition process

    PubMed Central

    Carrillo, Luz M; De Sanctis, Juan B; Candelle, Daniel

    2008-01-01

    The NFκB family of transcription factors, particularly the activated p50/p65 heterodimer, is expressed in vascular cells during intimal thickening formation when hemodynamic conditions are altered. Here, we report that p50, p65, IκBα and IKKα display different spatial and temporal patterns of expression and distribution during both chicken embryo aortic wall remodeling and intimal thickening development. Additionally, we show that both p50 and p65 were located in the nucleus of some mesenchymal cells expressing α-smooth muscle actin which are present in the spontaneous intimal thickening observed at embryonic days 12–14 of development. We also demonstrated that both NFκB subunits are present in monolayers of primary embryonic aortic endothelial cells attached to fibronectin and stimulated with complete medium. This study demonstrates for the first time the presence of activated NFκB during the remodeling of the embryonic aortic wall and the formation of intimal thickening, providing evidence that suggest a possible role for this transcription factor in the EndoMT process. PMID:19262121

  12. Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis

    NASA Astrophysics Data System (ADS)

    Gambaruto, A. M.; Doorly, D. J.; Yamaguchi, T.

    2010-08-01

    Fluid dynamic properties of blood flow are implicated in cardiovascular diseases. The interaction between the blood flow and the wall occurs through the direct transmission of forces, and through the dominating influence of the flow on convective transport processes. Controlled, in vitro testing in simple geometric configurations has provided much data on the cellular-level responses of the vascular walls to flow, but a complete, mechanistic explanation of the pathogenic process is lacking. In the interim, mapping the association between local haemodynamics and the vascular response is important to improve understanding of the disease process and may be of use for prognosis. Moreover, establishing the haemodynamic environment in the regions of disease provides data on flow conditions to guide investigations of cellular-level responses. This work describes techniques to facilitate comparison between the temporal alteration in the geometry of the vascular conduit, as determined by in vivo imaging, with local flow parameters. Procedures to reconstruct virtual models from images by means of a partition-of-unity implicit function formulation, and to align virtual models of follow-up scans to a common coordinate system, are outlined. A simple Taylor series expansion of the Lagrangian dynamics of the near-wall flow is shown to provide both a physical meaning to the directional components of the flow, as well as demonstrating the relation between near-wall convection in the wall normal direction and spatial gradients of the wall shear stress. A series of post-operative follow-up MRI scans of two patient cases with bypass grafts in the peripheral vasculature are presented. These are used to assess how local haemodynamic parameters relate to vascular remodelling at the location of the distal end-to-side anastomosis, i.e. where the graft rejoins the host artery. Results indicate that regions of both low wall shear stress and convective transport towards the wall tend to be

  13. Hypoxia Does neither Stimulate Pulmonary Artery Endothelial Cell Proliferation in Mice and Rats with Pulmonary Hypertension and Vascular Remodeling nor in Human Pulmonary Artery Endothelial Cells

    PubMed Central

    Yu, Lunyin; Hales, Charles A.

    2011-01-01

    Background Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. Methods We investigated PAEC proliferation in mice and rats with hypoxia-induced pulmonary hypertension and vascular remodeling as well as in human PAECs under hypoxia. Results and Conclusion We did not find significant PAEC proliferation in chronically hypoxic rats or mice. There was a slight decrease in proliferation in mice and rats with pulmonary hypertension and vascular remodeling. We also did not find significant human PAEC proliferation and cell cycle progression under different levels of oxygen (1, 2, 3, 5 and 10%) for one day, although the same conditions of hypoxia induced significant proliferation and cell cycle progression in pulmonary artery smooth muscle cells and pulmonary artery fibroblasts. Exposure to hypoxia for 7 days also did not increase PAEC proliferation. These results demonstrated that hypoxia alone is not a stimulus to PAEC proliferation in vivo and in vitro. The present study provides a novel role for PAECs in hypoxia-induced pulmonary hypertension and vascular remodeling. PMID:21691120

  14. Low levels of natural IgM antibodies against phosphorylcholine are independently associated with vascular remodeling in patients with coronary artery disease.

    PubMed

    Gleissner, Christian A; Erbel, Christian; Haeussler, Julia; Akhavanpoor, Mohammadreza; Domschke, Gabriele; Linden, Fabian; Doesch, Andreas O; Conradson, Göran; Buss, Sebastian J; Hofmann, Nina P; Gitsioudis, Gitsios; Katus, Hugo A; Korosoglou, Grigorios

    2015-01-01

    Low anti-phosphorylcholine (PC) IgM plasma levels have been associated with increased incidence of adverse events in coronary artery disease (CAD). The underlying mechanisms are unclear. We hypothesized that atheroprotection mediated by anti-PC IgM antibodies is associated with reduced vascular remodeling and therefore tested whether anti-PC IgM plasma levels independently predict vascular remodeling. In a prospective cross-sectional study, anti-PC IgM plasma levels were measured in 175 consecutive patients with suspected CAD undergoing cardiac computed tomography angiography. Plaque morphology was thoroughly analyzed. Vascular remodeling was defined by a change in the vessel diameter at the plaque site in comparison to the reference segment proximal to the lesion (reference diameter) of ≥10%. Mean age of the patients was 64.8 ± 10.7 years, 48.6% were female. In 98 patients CAD was diagnosed, 57 (58.2%) of which displayed non-obstructive CAD (stenosis <50%), whereas 41 (41.8%) exhibited obstructive CAD (stenosis ≥50%). In 34 of 98 (34.7%) CAD patients vascular remodeling was present. Mean anti-PC IgM levels did not differ between patients with and without CAD (70.8 ± 52.7 vs. 69.1 ± 55.1 U/mL). However, anti-PC IgM levels were significantly lower in CAD patients compared to those without vascular remodeling (46.6 ± 31.6 vs. 73.3 ± 58.5 U/mL, P = 0.024). Using multivariate logistic regression, anti-PC IgM plasma levels independently predicted coronary vascular remodeling (HR 0.322, 95% confidence interval 0.121-0.856, P = 0.023). In conclusion, low anti-PC IgM levels are independently associated with coronary vascular remodeling. These findings may represent the link between in vitro studies demonstrating atheroprotective effects of anti-PC IgM and clinical data demonstrating that low anti-PC IgM levels are associated with adverse outcome in CAD patients.

  15. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling

    PubMed Central

    Heise, Rebecca L.; Link, Patrick A.; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  16. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats.

    PubMed

    Pires, Paulo W; Rogers, Curt T; McClain, Jonathon L; Garver, Hannah S; Fink, Gregory D; Dorrance, Anne M

    2011-07-01

    Matrix metalloproteases (MMPs) are a family of zinc peptidases involved in extracellular matrix turnover. There is evidence that increased MMP activity is involved in remodeling of resistance vessels in chronic hypertension. Thus we hypothesized that inhibition of MMP activity with doxycycline (DOX) would attenuate vascular remodeling. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with DOX (50 mg·kg(-1)·day(-1) in the drinking water) for 6 wk. Untreated SHRSP were controls. Blood pressure was measured by telemetry during the last week. Middle cerebral artery (MCA) and mesenteric resistance artery (MRA) passive structures were assessed by pressure myography. MMP-2 expression in aortas was measured by Western blot. All results are means ± SE. DOX caused a small increase in mean arterial pressure (SHRSP, 154 ± 1; SHRSP + DOX, 159 ± 3 mmHg; P < 0.001). Active MMP-2 expression was reduced in aorta from SHRSP + DOX (0.21 ± 0.06 vs. 0.49 ± 0.13 arbitrary units; P < 0.05). In the MCA, at 80 mmHg, DOX treatment increased the lumen (273.2 ± 4.7 vs. 238.3 ± 6.3 μm; P < 0.05) and the outer diameter (321 ± 5.3 vs. 290 ± 7.6 μm; P < 0.05) and reduced the wall-to-lumen ratio (0.09 ± 0.002 vs. 0.11 ± 0.003; P < 0.05). Damage after transient cerebral ischemia (transient MCA occlusion) was reduced in SHRSP + DOX (20.7 ± 4 vs. 45.5 ± 5% of hemisphere infarcted; P < 0.05). In the MRA, at 90 mmHg DOX, reduced wall thickness (29 ± 1 vs. 22 ± 1 μm; P < 0.001) and wall-to-lumen ratio (0.08 ± 0.004 vs. 0.11 ± 0.008; P < 0.05) without changing lumen diameter. These results suggest that MMPs are involved in hypertensive vascular remodeling in both the peripheral and cerebral vasculature and that DOX reduced brain damage after cerebral ischemia.

  17. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension

    PubMed Central

    Hernanz, R; Martínez-Revelles, S; Palacios, R; Martín, A; Cachofeiro, V; Aguado, A; García-Redondo, L; Barrús, M T; de Batista, P R; Briones, A M; Salaices, M; Alonso, M J

    2015-01-01

    Background and Purpose Toll-like receptor 4 (TLR4) signalling contributes to inflammatory cardiovascular diseases, but its role in hypertension and the associated vascular damage is not known. We investigated whether TLR4 activation contributed to angiotensin II (AngII)-induced hypertension and the associated vascular structural, mechanical and functional alterations. Experimental Approach AngII was infused (1.44 mg·kg−1·day−1, s.c.) for 2 weeks in C57BL6 mice, treated with a neutralizing anti-TLR4 antibody or IgG (1 μg·day−1); systolic BP (SBP) and aortic cytokine levels were measured. Structural, mechanical and contractile properties of aortic and mesenteric arterial segments were measured with myography and histology. RT-PCR and Western blotting were used to analyse these tissues and cultured vascular smooth muscle cells (VSMC) from hypertensive rats (SHR). Key Results Aortic TLR4 mRNA levels were raised by AngII infusion. Anti-TLR4 antibody treatment of AngII-treated mice normalised: (i) increased SBP and TNF-α, IL-6 and CCL2 levels; (ii) vascular structural and mechanical changes; (iii) altered aortic phenylephrine- and ACh-induced responses; (iv) increased NOX-1 mRNA levels, superoxide anion production and NAD(P)H oxidase activity and effects of catalase, apocynin, ML-171 and Mito-TEMPO on vascular responses; and (v) reduced NO release and effects of L-NAME on phenylephrine-induced contraction. In VSMC, the MyD88 inhibitor ST-2825 reduced AngII-induced NAD(P)H oxidase activity. The TLR4 inhibitor CLI-095 reduced AngII-induced increased phospho-JNK1/2 and p65 NF-κB subunit nuclear protein expression. Conclusions and Implications TLR4 up-regulation by AngII contributed to the inflammation, endothelial dysfunction, vascular remodelling and stiffness associated with hypertension by mechanisms involving oxidative stress. MyD88-dependent activation and JNK/NF-κB signalling pathways participated in these alterations. PMID:25712370

  18. Mechanism of IFN-γ in regulating OPN/Th17 pathway during vascular collagen remodeling of hypertension induced by ANG II.

    PubMed

    Jiang, Lei; He, Pengcheng; Liu, Yong; Chen, Jiyan; Wei, Xuebiao; Tan, Ning

    2015-01-01

    More and more researches show that hypertensive vascular remodeling is closely related to the imbalance of immune system in recent years. IFN-γ is natural protein with the function of immune regulation and has resistance effect on vascular remodeling. However, the mechanism of IFN-γ is to be defined. This paper is to explore the mechanism of IFN-γ in regulating OPN/Th17 pathway. In this research, animal models of vascular collagen remodeling were established by inducing hypertensive mice with ANG II. There was no statistical significance when the systolic blood pressures and the percentages of wall thickness/lumen diameter in both groups of WT + AngII + IFN-γ and WT + PBS were compared (P=0.219>0.05, P=0.118>0.05). The concentration of serum precollagen-type I and III and their ratio in WT + AngII + IFN-γ group were decreased after the IFN-γ being given (P<0.01). Expression of OPN within tissue in WT + Ang II group was relatively high, but lowered after treated by IFN-γ. Th17 cell ratio was decreased in WT + AngII + IFN-γ group (P<0.01). Expressions of RORα and RORγt mRNA within Th17 cell were decreased (P<0.01). The content of IL-23 in WT + AngII + IFN-γ group was increased, while IL-10 and TGF-β decreased. It has proved that IFN-γ can regulate the hypertensive vascular collagen remodeling induced by ANG II, lower the systolic pressure and reduce the pathological damage of vascular collagen remodeling and the collagen synthesis. The mechanism may that the differentiation of Th17 is inhibited by suppressing the OPN expression and regulating the secretion of inflammatory cytokines.

  19. C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling

    PubMed Central

    Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis

    2015-01-01

    Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013

  20. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  1. Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1

    NASA Astrophysics Data System (ADS)

    Sarkar, Kakali; Semenza, Gregg L.

    Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.

  2. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  3. Effects of renal denervation on vascular remodelling in patients with heart failure and preserved ejection fraction: A randomised control trial

    PubMed Central

    Hayward, Carl; Keegan, Jennifer; Gatehouse, Peter D; Rajani, Ronak; Khattar, Rajdeep S; Mohiaddin, Raad H; Rosen, Stuart D; Lyon, Alexander R; di Mario, Carlo

    2017-01-01

    Objective To assess the effect of renal denervation (RDT) on micro- and macro-vascular function in patients with heart failure with preserved ejection fraction (HFpEF). Design A prospective, randomised, open-controlled trial with blinded end-point analysis. Setting A single-centre London teaching hospital. Participants Twenty-five patients with HFpEF who were recruited into the RDT-PEF trial. Main outcome measures Macro-vascular: 24-h ambulatory pulse pressure, aorta distensibilty (from cardiac magnetic resonance imaging (CMR), aorta pulse wave velocity (CMR), augmentation index (peripheral tonometry) and renal artery blood flow indices (renal MR). Micro-vascular: endothelial function (peripheral tonometry) and urine microalbuminuria. Results At baseline, 15 patients were normotensive, 9 were hypertensive and 1 was hypotensive. RDT did not lower any of the blood pressure indices. Though there was evidence of abnormal vascular function at rest, RDT did not affect these at 3 or 12 months follow-up. Conclusions RDT did not improve markers of macro- and micro-vascular function. PMID:28228942

  4. Herpes Virus Infection Is Associated with Vascular Remodeling and Pulmonary Hypertension in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Calabrese, Fiorella; Kipar, Anja; Lunardi, Francesca; Balestro, Elisabetta; Perissinotto, Egle; Rossi, Emanuela; Nannini, Nazarena; Marulli, Giuseppe; Stewart, James P.; Rea, Federico

    2013-01-01

    Background Pulmonary hypertension (PH) represents an important complication of idiopathic pulmonary fibrosis (IPF) with a negative impact on patient survival. Herpes viruses are thought to play an etiological role in the development and/or progression of IPF. The influence of viruses on PH associated with IPF is unknown. We aimed to investigate the influence of viruses in IPF patients focusing on aspects related to PH. A laboratory mouse model of gamma-herpesvirus (MHV-68) induced pulmonary fibrosis was also assessed. Methods Lung tissue samples from 55 IPF patients and 41 controls were studied by molecular analysis to detect various viral genomes. Viral molecular data obtained were correlated with mean pulmonary arterial pressure (mPAP) and arterial remodelling. Different clinical and morphological variables were studied by univariate and multivariate analyses at time of transplant and in the early post-transplant period. The same lung tissue analyses were performed in MHV-68 infected mice. Results A higher frequency of virus positive cases was found in IPF patients than in controls (p = 0.0003) and only herpes virus genomes were detected. Viral cases showed higher mPAP (p = 0.01), poorer performance in the six minute walking test (6MWT; p = 0.002) and higher frequency of primary graft (PGD) dysfunction after lung transplant (p = 0.02). Increased arterial thickening, particularly of the intimal layer (p = 0.002 and p = 0.004) and higher TGF-β expression (p = 0.002) were demonstrated in viral cases. The remodelled vessels showed increased vessel cell proliferation (Ki-67 positive cells) in the proximity to metaplastic epithelial cells and macrophages. Viral infection was associated with higher mPAP (p = 0.03), poorer performance in the 6MWT (p = 0.008) and PGD (p = 0.02) after adjusting for other covariates/intermediate factors. In MHV-68 infected mice, morphological features were similar to those of patients. Conclusion

  5. Expression and localization of inhibitor of differentiation (ID) proteins during tissue and vascular remodelling in the human corpus luteum.

    PubMed

    Nio-Kobayashi, Junko; Narayanan, Rachna; Giakoumelou, Sevasti; Boswell, Lyndsey; Hogg, Kirsten; Duncan, W Colin

    2013-02-01

    Members of the transforming growth factor-β (TGF-β) superfamily are likely to have major roles in the regulation of tissue and vascular remodelling in the corpus luteum (CL). There are four inhibitor-of-differentiation (ID1-4) genes that are regulated by members of the TGF-β superfamily and are involved in the transcriptional regulation of cell growth and differentiation. We studied their expression, localization and regulation in dated human corpora lutea from across the luteal phase (n = 22) and after human chorionic gonadotrophin (hCG) administration in vivo (n = 5), and in luteinized granulosa cells (LGCs), using immunohistochemistry and quantitative RT-PCR. ID1-4 can be localized to multiple cell types in the CL across the luteal phase. Endothelial cell ID3 (P < 0.05) and ID4 (P < 0.05) immunostaining intensities peak at the time of angiogenesis but overall ID1 (P < 0.05) and ID3 (P < 0.05) expression peaks at the time of luteolysis, and luteal ID3 expression is inhibited by hCG in vivo (P < 0.01). In LGC cultures in vitro, hCG had no effect on ID1, down-regulated ID3 (P < 0.001), and up-regulated ID2 (P < 0.001) and ID4 (P < 0.01). Bone morphogenic proteins (BMPs) had no effect on ID4 expression but up-regulated ID1 (P < 0.01 to P < 0.005). BMP up-regulation of ID2 (P < 0.05) was additive to the hCG up-regulation of ID2 expression (P < 0.001), while BMP cancelled out the down regulative effect of hCG on ID3 regulation. As well as documenting regulation patterns specific for ID1, ID2, ID3 and ID4, we have shown that IDs are located and differentially regulated in the human CL, suggesting a role in the transcriptional regulation of luteal cells during tissue and vascular remodelling.

  6. In Vivo Remodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats

    PubMed Central

    Tondreau, Maxime Y.; Laterreur, Véronique; Vallières, Karine; Gauvin, Robert; Bourget, Jean-Michel; Tremblay, Catherine; Lacroix, Dan; Germain, Lucie; Ruel, Jean

    2016-01-01

    There is a clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS) that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies. PMID:27999795

  7. In Vitro Model of Physiological and Pathological Blood Flow with Application to Investigations of Vascular Cell Remodeling.

    PubMed

    Elliott, Winston; Scott-Drechsel, Devon; Tan, Wei

    2015-11-03

    Vascular disease is a common cause of death within the United States. Herein, we present a method to examine the contribution of flow dynamics towards vascular disease pathologies. Unhealthy arteries often present with wall stiffening, scarring, or partial stenosis which may all affect fluid flow rates, and the magnitude of pulsatile flow, or pulsatility index. Replication of various flow conditions is the result of tuning a flow pressure damping chamber downstream of a blood pump. Introduction of air within a closed flow system allows for a compressible medium to absorb pulsatile pressure from the pump, and therefore vary the pulsatility index. The method described herein is simply reproduced, with highly controllable input, and easily measurable results. Some limitations are recreation of the complex physiological pulse waveform, which is only approximated by the system. Endothelial cells, smooth muscle cells, and fibroblasts are affected by the blood flow through the artery. The dynamic component of blood flow is determined by the cardiac output and arterial wall compliance. Vascular cell mechano-transduction of flow dynamics may trigger cytokine release and cross-talk between cell types within the artery. Co-culture of vascular cells is a more accurate picture reflecting cell-cell interaction on the blood vessel wall and vascular response to mechanical signaling. Contribution of flow dynamics, including the cell response to the dynamic and mean (or steady) components of flow, is therefore an important metric in determining disease pathology and treatment efficacy. Through introducing an in vitro co-culture model and pressure damping downstream of blood pump which produces simulated cardiac output, various arterial disease pathologies may be investigated.

  8. Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling

    PubMed Central

    Hu, Zu-Quan; Xue, Hui; Long, Jin-Hua; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Wen, Zong-Yao; Yao, Wei-Juan; Zeng, Zhu

    2016-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in the initiation, regulation, and maintenance of the immune responses. Vascular endothelial growth factor (VEGF) is one of the important cytokines in the tumor microenvironment (TME) and can inhibit the differentiation and functional maturation of DCs. To elucidate the potential mechanisms of DC dysfunction induced by VEGF, the effects of VEGF on the biophysical characteristics and motility of human mature DCs (mDCs) were investigated. The results showed that VEGF had a negative influence on the biophysical properties, including electrophoretic mobility, osmotic fragility, viscoelasticity, and transmigration. Further cytoskeleton structure analysis by confocal microscope and gene expression profile analyses by gene microarray and real-time PCR indicated that the abnormal remodeling of F-actin cytoskeleton may be the main reason for the deterioration of biophysical properties, motility, and stimulatory capability of VEGF-treated mDCs. This is significant for understanding the biological behavior of DCs and the immune escape mechanism of tumors. Simultaneously, the therapeutic efficacies may be improved by blocking the signaling pathway of VEGF in an appropriate manner before the deployment of DC-based vaccinations against tumors. PMID:27809226

  9. Involvement of Inflammation and Adverse Vascular Remodelling in the Blood Pressure Raising Effect of Repeatedly Heated Palm Oil in Rats

    PubMed Central

    Ng, Chun-Yi; Kamisah, Yusof; Faizah, Othman; Jubri, Zakiah; Qodriyah, Hj Mohd Saad; Jaarin, Kamsiah

    2012-01-01

    Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated palm oil (10HPO). Feeding duration was six months. Blood pressure was measured at baseline and monthly using tail-cuff method. After six months, the rats were sacrificed and the aortic arches were dissected for morphometric and immunohistochemical analyses. FPO group showed significantly lower blood pressure than all other groups. Blood pressure was increased significantly in 5HPO and 10HPO groups. The aortae of 5HPO and 10HPO groups showed significantly increased thickness and area of intima-media, circumferential wall tension, and VCAM-1 than other groups. Elastic lamellae were disorganised and fragmented in 5HPO- and 10HPO-treated rats. VCAM-1 expression showed a significant positive correlation with blood pressure. In conclusion, prolonged consumption of repeatedly heated palm oil causes blood pressure elevation, adverse remodelling, and increased VCAM-1, which suggests a possible involvement of inflammation. PMID:22778962

  10. Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway

    PubMed Central

    Nour-Eldine, Wared; Ghantous, Crystal M.; Zibara, Kazem; Dib, Leila; Issaa, Hawraa; Itani, Hana A.; El-Zein, Nabil; Zeidan, Asad

    2016-01-01

    Introduction: Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. Methods and Results: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. Conclusion: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation. PMID:27092079

  11. Remodeling of rat stromal-vascular cells to brite/beige adipocytes by prolyl-hydroxyproline

    PubMed Central

    MINAGUCHI, Jun A.; OGATA, Sakino; TAKAHASHI, Naoki; HIROSE, Takuya; UEDA, Hiromi; TAKEHANA, Kazushige

    2017-01-01

    The aim of this study was to determine the effects of prolyl-hydroxyproline (Pro-Hyp) on the proliferation and differentiation of rat stromal-vascular cells (SVCs) being cultured in a medium with (Pro-Hyp group) or without Pro-Hyp (control group). The results showed that there was no significant difference in proliferation rate of SVCs, lipid droplet (LD) diameter or intracellular concentration of triglycerides between two groups. However, the diameter range of LDs in the Pro-Hyp group tended to be smaller than that in the control group. Transmission electron microscopy showed a tendency for increase in the area of mitochondria and decrease in the number of mitochondria in the Pro-Hyp-treated SVCs. The mRNA expression levels of white adipose tissue differentiation markers (Cbp, Fabp and Serpina3k) were significantly lower, but those of the brown adipose tissue differentiation markers (Dio2, Ucp1 and Ucp3) were significantly higher in the Pro-Hyp group than in the control group. Our results suggested that Pro-Hyp can facilitate SVCs to differentiate into “brite/beige” adipocytes. PMID:28123139

  12. Adipokines: A Possible Contribution to Vascular and Bone Remodeling in Idiopathic Pulmonary Arterial Hypertension.

    PubMed

    Kochetkova, Evgenia A; Ugai, Ludmila G; Maistrovskaia, Yuliya V; Nevzorova, Vera A

    2017-04-01

    Osteoporosis is a major comorbidity of cardio-respiratory diseases, but the mechanistic links between pulmonary arterial hypertension and bone remain elusive. The purpose of the stud was to evaluate serum adipokines and endothelin-1 (ET-1) levels in the patients with idiopathic pulmonary arterial hypertension (IPAH) NYHA class III-IV and to determine its associations with bone mineral density (BMD). Pulmonary and hemodynamic parameters, BMD Z-scores at the lumbar spine (LS) and femoral neck (FN), serum leptin, adiponectin, visfatin and endothelin-1 (ET-1), were evaluated in 32 patients with IPAH NYHA class III-IV and 30 healthy volunteers. Leptin, adiponectin and ET-1 were higher in the patients with IPAH than in healthy subjects. Visfatin level showed a tendency to increase compared to that of healthy subjects (p = 0.076). The univariate analysis revealed a positive correlation between BMD Z-scores at both sites and 6-min walk test, and inverse relation with pulmonary vascular resistance (PVR) and mean pulmonary arterial pressure (mPAP). Adiponectin and visfatin showed positive correlations with PVR (p = 0.009 and p = 0.006). Serum adiponectin, visfatin and leptin were inversely associated with Z-scores. After adjusting for BMI and FMI, such associations persisted between visfatin and adiponectin levels and Z-scores at both sites. ET-1 related to mPAP, cardiac index and PVR. Negative correlation was observed between ET-1 and FN BMD (p = 0.01). Positive correlations have revealed between ET-1 and adiponectin (p = 0.02), visfatin (p = 0.004) in IPAH patients. These results provide further evidence that adipokine and endothelial dysregulation may cause not only a decrease in BMD, but also an increase in hemodynamic disorders of IPAH.

  13. Effects of puerarin on pulmonary vascular remodeling and protein kinase C-alpha in chronic cigarette smoke exposure smoke-exposed rats.

    PubMed

    Zhu, Zhaoxia; Xu, Yongjian; Zou, Hui; Zhang, Zhenxiang; Ni, Wang; Chen, Shixin

    2008-02-01

    In order to investigate the effects of puerarin on pulmonary vascular remodeling and protein kinase C-alpha (PKC-alpha) in chronic exposure smoke rats, 54 male Wistar rats were randomly divided into 7 groups: control group (C group), smoke exposure groups (S4w group, S8w group), puerarin groups (P4w group, P8w group), propylene glycol control groups (PC4w group, PC8w group). Rats were exposed to cigarette smoke or air for 4 to 8 weeks. Rats in puerarin groups also received puerarin. To evaluate vascular remodeling, alpha-smooth muscle actin (alpha-SM-actin) staining was used to count the percentage of completely muscularised vessels to intraacinar pulmonary arteries (CMA/IAPA) which was determined by morphometric analysis of histological sections. Pulmonary artery smooth muscle cell (PASMC) apoptosis was detected by in situ end labeling technique (TUNEL), and proliferation by proliferating cell nuclear antigen (PCNA) staining. Reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and Western blot analysis were done to detect the PKC-alpha mRNA and protein expression in pulmonary arteries. The results showed that in cigarette smoke-exposed rats the percentage of CMA/IAPA and alpha-SM-actin expression were increased greatly, PASMC apoptosis was increased and proliferation was markedly increased; Apoptosis indices (AI) and proliferation indices (PI) were higher than in C group; AI and PI were correlated with vascular remodeling indices; The expression of PKC-alpha mRNA and protein in pulmonary arteries was significantly higher than in C group. In rats treated with puerarin, the percentage of CMA/IAPA and cell proliferation was reduced, whereas PASMC apoptosis was increased; The expression levels of PKC-alpha mRNA and protein were lower than in smoke exposure rats. There was no difference among all these data between S groups and PC groups. These findings suggested that cigarette smoke-induced pulmonary vascular remodeling was most

  14. Targeted SPECT/CT Imaging of Matrix Metalloproteinase Activity in the Evaluation of Remodeling Tissue-Engineered Vascular Grafts Implanted in a Growing Lamb Model

    PubMed Central

    Stacy, Mitchel R.; Naito, Yuji; Maxfield, Mark W.; Kurobe, Hirotsugu; Tara, Shuhei; Chan, Chung; Rocco, Kevin A.; Shinoka, Toshiharu; Sinusas, Albert J.; Breuer, Christopher K.

    2014-01-01

    Objective(s) The clinical translation of tissue-engineered vascular grafts has been demonstrated in children. The remodeling of biodegradable, cell-seeded scaffolds to functional neovessels is partially attributed to matrix metalloproteinases. Noninvasive assessment of matrix metalloproteinase activity may indicate graft remodeling and elucidate the progression of neovessel formation. Therefore, matrix metalloproteinase activity was evaluated in grafts implanted in lambs using in vivo and ex vivo hybrid imaging. Graft growth and remodeling was quantified using in vivo X-ray computed tomography angiography. Methods Cell-seeded and unseeded scaffolds were implanted in lambs (n=5) as inferior vena cava interposition grafts. At 2 and 6 months post-implantation, in vivo angiography assessed graft morphology. In vivo and ex vivo single photon emission tomography/X-ray computed tomography imaging was performed with a radiolabeled compound targeting matrix metalloproteinase activity at 6 months. Neotissue was examined at 6 months using qualitative histologic and immunohistochemical staining and quantitative biochemical analysis. Results Seeded grafts demonstrated significant luminal and longitudinal growth from 2 to 6 months. In vivo imaging revealed subjectively higher matrix metalloproteinase activity in grafts vs. native tissue. Ex vivo imaging confirmed a quantitative increase in matrix metalloproteinase activity and demonstrated higher activity in unseeded vs. seeded grafts. Glycosaminoglycan content was increased in seeded grafts vs. unseeded grafts, without significant differences in collagen content. Conclusions Matrix metalloproteinase activity remains elevated in tissue-engineered grafts 6 months post-implantation and may indicate remodeling. Optimization of in vivo imaging to noninvasively evaluate matrix metalloproteinase activity may assist in serial assessment of vascular graft remodeling. PMID:24952823

  15. Dimethylsulfoxide-soluble smoking particles and nicotine affect vascular contractibility.

    PubMed

    Zhang, Jin-Yan; Cao, Lei; Zheng, Xiao-Hui; Xu, Cang-Bao; Cao, Yong-Xiao

    2009-10-01

    The aim is to study the effect of dimethylsulfoxide-soluble smoking particles (DSP) and nicotine on the contractility of rat mesenteric artery. The superior mesenteric artery segments were cultured with DSP or nicotine for 24 h. The vascular contractibility was recorded with myograph system. DSP 0.4 mL/L and nicotine 0.48 and 0.96 mg/L shifted the concentration-contractile curves induced by sarafotoxin 6c, a selective agonist for ET(B) receptor toward the left with increased E(max). DSP 0.4 mL/L and nicotine 0.96 mg/L shifted ET(A) receptor-mediated the concentration-contractile curves toward the left with increased E(max). However, nicotine 0.06 mg/L which is the equivalent concentration of nicotine in DSP 0.4 mL/L did not affect the curves and the E(max) mediated with ET(A) receptor and ET(B) receptor. DSP 0.2 and 0.4 mL/L shifted the concentration-contractile curves induced by noradrenaline toward the right with decreased E(max). Neither did nicotine 0.06 and 0.96 mg/L. Both DSP and nicotine shifted the concentration-contractile curves induced by 5-hydroxytryptamine (5-HT) toward the right parallely. DSP changed the phenotypes towards an increased efficacy of ET(A) receptor and ET(B) receptor, and a reduced efficacy of 5-HT receptor and alpha-adrenocceptor. The effects of DSP on ET(B) receptor, ET(A) receptor and alpha-adrenocceptor were independent of nicotine. The effect on 5-HT receptor was responsible to nicotine.

  16. Factors affecting left ventricular remodeling after valve replacement for aortic stenosis. An overview

    PubMed Central

    Villa, Emmanuel; Troise, Giovanni; Cirillo, Marco; Brunelli, Federico; Tomba, Margherita Dalla; Mhagna, Zen; Tasca, Giordano; Quaini, Eugenio

    2006-01-01

    Although a small percentage of patients with critical aortic stenosis do not develop left ventricle hypertrophy, increased ventricular mass is widely observed in conditions of increased afterload. There is growing epidemiological evidence that hypertrophy is associated with excess cardiac mortality and morbidity not only in patients with arterial hypertension, but also in those undergoing aortic valve replacement. Valve replacement surgery relieves the aortic obstruction and prolongs the life of many patients, but favorable or adverse left ventricular remodeling is affected by a large number of factors whose specific roles are still a subject of debate. Age, gender, hemodynamic factors, prosthetic valve types, myocyte alterations, interstitial structures, blood pressure control and ethnicity can all influence the process of left ventricle mass regression, and myocardial metabolism and coronary artery circulation are also involved in the changes occurring after aortic valve replacement. The aim of this overview is to analyze these factors in the light of our experience, elucidate the important question of prosthesis-patient mismatch by considering the method of effective orifice area, and discuss surgical timings and techniques that can improve the management of patients with aortic valve stenosis and maximize the probability of mass regression. PMID:16803632

  17. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling

    PubMed Central

    Zhu, Pengcheng; Huang, Lei; Ge, Xiaona; Yan, Fei; Wu, Renliang; Ao, Qilin

    2006-01-01

    Myocardin gene has been identified as a master regulator of smooth muscle cell differentiation. Smooth muscle cells play a critical role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodelling (PVR). The purpose of this study was to investigate the change of myocardin gene expression in the pulmonary vessels of hypoxia-induced PH affected by Sildenafil treatment and the involvement of endothelial cells transdifferentiation into smooth muscle cells in the process of hypoxia-induced PH and PVR. Myocardin and relative markers were investigated in animal models and cultured endothelial cells. Mean pulmonary artery pressure (mPAP) was measured. Immunohistochemistry and immunofluorescence were used to show the expression of smooth muscle α-actin (SMA), in situ hybridization (ISH) and reverse transcription polymerase chain reaction (RT-PCR) were performed respectively to detect the myocardin and SMA expression at mRNA levels. Small interfering RNA (siRNA) induced suppression of myocardin in cultured cells. We confirmed that hypoxia induced the PH and PVR in rats. Sildenafil could attenuate the hypoxia-induced PH. We found that myocardin mRNA expression is upregulated significantly in the hypoxic pulmonary vessels and cultured cells but downregulated in PH with Sildenafil treatment. The porcine pulmonary artery endothelial cells (PAECs) transdifferentiate into smooth muscle-like cells in hypoxic culture while the transdifferentiation did not occur when SiRNA of myocardin was applied. Our results suggest that myocardin gene, as a marker of smooth muscle cell differentiation, was expressed in the pulmonary vessels in hypoxia-induced PH rats, which could be downregulated by Sildenafil treatment, as well as in hypoxic cultured endothelial cells. Hypoxia induced the transdifferentiation of endothelial cells of vessels into smooth muscle-like cells which was regulated by myocardin. PMID:17222214

  18. Melatonin differentially affects vascular blood flow in humans.

    PubMed

    Cook, Jonathan S; Sauder, Charity L; Ray, Chester A

    2011-02-01

    Melatonin is synthesized and released into the circulation by the pineal gland in a circadian rhythm. Melatonin has been demonstrated to differentially alter blood flow to assorted vascular beds by the activation of different melatonin receptors in animal models. The purpose of the present study was to determine the effect of melatonin on blood flow to various vascular beds in humans. Renal (Doppler ultrasound), forearm (venous occlusion plethysmography), and cerebral blood flow (transcranial Doppler), arterial blood pressure, and heart rate were measured in 10 healthy subjects (29±1 yr; 5 men and 5 women) in the supine position for 3 min. The protocol began 45 min after the ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the other substance. Melatonin did not alter heart rate and mean arterial pressure. Renal blood flow velocity (RBFV) and renal vascular conductance (RVC) were lower during the melatonin trial compared with placebo (RBFV, 40.5±2.9 vs. 45.4±1.5 cm/s; and RVC, 0.47±0.02 vs. 0.54±0.01 cm·s(-1)·mmHg(-1), respectively). In contrast, forearm blood flow (FBF) and forearm vascular conductance (FVC) were greater with melatonin compared with placebo (FBF, 2.4±0.2 vs. 1.9±0.1 ml·100 ml(-1)·min(-1); and FVC, 0.029±0.003 vs. 0.023±0.002 arbitrary units, respectively). Melatonin did not alter cerebral blood flow measurements compared with placebo. Additionally, phentolamine (5-mg bolus) after melatonin reversed the decrease in RVC, suggesting that melatonin increases sympathetic outflow to the kidney to mediate renal vasoconstriction. In summary, exogenous melatonin differentially alters vascular blood flow in humans. These data suggest the complex nature of melatonin on the vasculature in humans.

  19. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension

    PubMed Central

    Guimarães, Danielle A.; Rizzi, Elen; Ceron, Carla S.; Martins-Oliveira, Alisson; Gerlach, Raquel F.; Shiva, Sruti; Tanus-Santos, Jose E.

    2015-01-01

    Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. PMID:26343345

  20. The Role of Vascular Endothelial Growth Factor in Small-airway Remodelling in a Rat Model of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Wang, Lu; Xu, Zhibo; Chen, Bin; He, Wei; Hu, Jingxian; Zhang, Liting; Liu, Xianzhong; Chen, Fang

    2017-01-01

    Small-airway remodelling is one of the most remarkable pathological features of chronic obstructive pulmonary disease (COPD), in which angiogenesis plays a critical role that contributes to disease progression. The endothelial cell-specific mitogen vascular endothelial growth factor (VEGF), as well as its receptors, VEGFR1, VEGFR2, are thought to be the major mediators of pathological angiogenesis, and sunitinib exhibits anti-angiogenesis property through VEGF blockage and has been widely used to treat various cancers. In our study, Sprague-Dawley rats were subjected to lipopolysaccharide (LPS) injection and cigarette smoke (CS) inhalation to induce COPD, following sunitinib administration was conducted. Haematoxylin-eosin, Masson staining and immunostaining analysis were used to evaluate the pathological changes; quantitative real-time PCR and enzyme-linked immunosorbent assay were performed to provide more compelling data on the function of VEGF, VEGFR1, VEGFR2 in angiogenesis. Sunitinib treatment was associated with less angiogenesis in small-airway remodelling with a slightly disordered lung architecture, and lower expression level of VEGF, VEGFR1, VEGFR2. Overall, our results indicate that VEGF is a vital important factor that contributes to the small-airway remodelling in a rat model of COPD through promoting angiogenesis, which mainly depend on the specific binding between VEGF and VEGFR1 and can be effectively attenuated by sunitinib. PMID:28117425

  1. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli.

    PubMed

    Shigapova, Natalia; Török, Zsolt; Balogh, Gábor; Goloubinoff, Pierre; Vígh, László; Horváth, Ibolya

    2005-03-25

    Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.

  2. Hindlimb Suspension as a Model to Study Ophthalmic Complications in Microgravity Status Report: Optimization of Rat Retina Flat Mounts Staining to Study Vascular Remodeling

    NASA Technical Reports Server (NTRS)

    Theriot, Corey A.; Zanello, Susana B.

    2014-01-01

    Preliminary data from a prior tissue-sharing experiment has suggested that early growth response protein-1 (Egr1), a transcription factor involved in various stress responses in the vasculature, is induced in the rat retina after 14 days of hindlimb suspension (HS) and may be evidence that mechanical stress is occurring secondary to the cephalad fluid shift. This mechanical stress could cause changes in oxygenation of the retina, and the subsequent ischemia- or inflammation-driven hypoxia may lead to microvascular remodeling. This microvascular remodeling process can be studied using image analysis of retinal vessels and can be then be quantified by the VESsel GENeration Analysis (VESGEN) software, a computational tool that quantifies remodeling patterns of branching vascular trees and capillary or vasculogenic networks. Our project investigates whether rodent HS is a valid model to study the effects of simulated-weightlessness on ocular structures and their relationship with intracranial pressure (ICP). One of the hypotheses to be tested is that HS-induced cephalad fluid shift is accompanied by vascular engorgement that produces changes in retinal oxygenation, leading to oxidative stress, hypoxia, microvascular remodeling, and cellular degeneration. We have optimized the procedure to obtain flat mounts of rat retina, staining of the endothelial lining in vasculature and acquisition of high quality images suitable for VESGEN analysis. Briefly, eyes were fixed in 4% paraformaldehyde for 24 hours and retinas were detached and then mounted flat on microscope slides. The microvascular staining was done with endothelial cell-specific isolectin binding, coupled to Alexa-488 fluorophore. Image acquisition at low magnification and high resolution was performed using a new Leica SP8 confocal microscope in a tile pattern across the X,Y plane and multiple sections along the Z-axis. This new confocal microscope has the added capability of dye separation using the Linear

  3. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  4. Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke.

    PubMed

    Kassis, Haifa; Shehadah, Amjad; Li, Chao; Zhang, Yi; Cui, Yisheng; Roberts, Cynthia; Sadry, Neema; Liu, Xianshuang; Chopp, Michael; Zhang, Zheng Gang

    2016-06-01

    We have previously demonstrated that stroke induces nuclear shuttling of class IIa histone deacetylase 4 (HDAC4). Stroke-induced nuclear shuttling of HDAC4 is positively and significantly correlated with improved indices of neuronal remodeling in the peri-infarct cortex. In this study, using a rat model for middle cerebral artery occlusion (MCAO), we tested the effects of selective inhibition of class IIa HDACs on functional recovery and neuronal remodeling when administered 24hr after stroke. Adult male Wistar rats (n = 15-17/group) were subjected to 2 h MCAO and orally gavaged with MC1568 (a selective class IIa HDAC inhibitor), SAHA (a non-selective HDAC inhibitor), or vehicle-control for 7 days starting 24 h after MCAO. A battery of behavioral tests was performed. Lesion volume measurement and immunohistochemistry were performed 28 days after MCAO. We found that stroke increased total HDAC activity in the ipsilateral hemisphere compared to the contralateral hemisphere. Stroke-increased HDAC activity was significantly decreased by the administration of SAHA as well as by MC1568. However, SAHA significantly improved functional outcome compared to vehicle control, whereas selective class IIa inhibition with MC1568 increased mortality and lesion volume and did not improve functional outcome. In addition, MC1568 decreased microtubule associated protein 2 (MAP2, dendrites), phosphorylated neurofilament heavy chain (pNFH, axons) and myelin basic protein (MBP, myelination) immunoreactivity in the peri-infarct cortex. Quantitative RT-PCR of cortical neurons isolated by laser capture microdissection revealed that MC1568, but not SAHA, downregulated CREB and c-fos expression. Additionally, MC1568 decreased the expression of phosphorylated CREB (active) in neurons. Taken together, these findings demonstrate that selective inhibition of class IIa HDACs impairs neuronal remodeling and neurological outcome. Inactivation of CREB and c-fos by MC1568 likely contributes to

  5. Sequential activation of different pathway networks in ischemia-affected and non-affected myocardium, inducing intrinsic remote conditioning to prevent left ventricular remodeling

    PubMed Central

    Pavo, Noemi; Lukovic, Dominika; Zlabinger, Katrin; Zimba, Abelina; Lorant, David; Goliasch, Georg; Winkler, Johannes; Pils, Dietmar; Auer, Katharina; Jan Ankersmit, Hendrik; Giricz, Zoltán; Baranyai, Tamas; Sárközy, Márta; Jakab, András; Garamvölgyi, Rita; Emmert, Maximilian Y.; Hoerstrup, Simon P.; Hausenloy, Derek J.; Ferdinandy, Péter; Maurer, Gerald; Gyöngyösi, Mariann

    2017-01-01

    We have analyzed the pathway networks of ischemia-affected and remote myocardial areas after repetitive ischemia/reperfusion (r-I/R) injury without ensuing myocardial infarction (MI) to elaborate a spatial- and chronologic model of cardioprotective gene networks to prevent left ventricular (LV) adverse remodeling. Domestic pigs underwent three cycles of 10/10 min r-I/R by percutaneous intracoronary balloon inflation/deflation in the mid left anterior descending artery, without consecutive MI. Sham interventions (n = 8) served as controls. Hearts were explanted at 5 h (n = 6) and 24 h (n = 6), and transcriptomic profiling of the distal (ischemia-affected) and proximal (non-affected) anterior myocardial regions were analyzed by next generation sequencing (NGS) and post-processing with signaling pathway impact and pathway network analyses. In ischemic region, r-I/R induced early activation of Ca-, adipocytokine and insulin signaling pathways with key regulator STAT3, which was also upregulated in the remote areas together with clusterin (CLU) and TNF-alpha. During the late phase of cardioprotection, antigen immunomodulatory pathways were activated with upregulation of STAT1 and CASP3 and downregulation of neprilysin in both zones, suggesting r-I/R induced intrinsic remote conditioning. The temporo-spatially differently activated pathways revealed a global myocardial response, and neprilysin and the STAT family as key regulators of intrinsic remote conditioning for prevention of adverse remodeling. PMID:28266659

  6. Atrial natriuretic peptide affects cardiac remodeling, function, heart failure, and survival in a mouse model of dilated cardiomyopathy.

    PubMed

    Wang, Dong; Gladysheva, Inna P; Fan, Tai-Hwang M; Sullivan, Ryan; Houng, Aiilyan K; Reed, Guy L

    2014-03-01

    Dilated cardiomyopathy is a frequent cause of heart failure and death. Atrial natriuretic peptide (ANP) is a biomarker of dilated cardiomyopathy, but there is controversy whether ANP modulates the development of heart failure. Therefore, we examined whether ANP affects heart failure, cardiac remodeling, function, and survival in a well-characterized, transgenic model of dilated cardiomyopathy. Mice with dilated cardiomyopathy with normal ANP levels survived longer than mice with partial ANP (P<0.01) or full ANP deficiency (P<0.001). In dilated cardiomyopathy mice, ANP protected against the development of heart failure as indicated by reduced lung water, alveolar congestion, pleural effusions, etc. ANP improved systolic function and reduced cardiomegaly. Pathological cardiac remodeling was diminished in mice with normal ANP as indicated by decreased ventricular interstitial and perivascular fibrosis. Mice with dilated cardiomyopathy and normal ANP levels had better systolic function (P<0.001) than mice with dilated cardiomyopathy and ANP deficiency. Dilated cardiomyopathy was associated with diminished cardiac transcripts for NP receptors A and B in mice with normal ANP and ANP deficiency, but transcripts for NP receptor C and C-type natriuretic peptide were selectively altered in mice with dilated cardiomyopathy and ANP deficiency. Taken together, these data indicate that ANP has potent effects in experimental dilated cardiomyopathy that reduce the development of heart failure, prevent pathological remodeling, preserve systolic function, and reduce mortality. Despite the apparent overlap in physiological function between the NPs, these data suggest that the role of ANP in dilated cardiomyopathy and heart failure is not compensated physiologically by other NPs.

  7. Complex treatment of trophic affections with vascular patients using monochromatic red light and hyperbaric oxygenation

    NASA Astrophysics Data System (ADS)

    Babkina, Zinaida M.; Vasilyev, Mikhail V.; Zakharov, Vyacheslav P.; Nikolayev, Viktor V.; Babkin, Vasily I.; Samoday, Valery G.; Zon, Boris A.; Pakhomov, Gennady V.; Naskidashvili, Vasily I.; Kumin, Anatoly A.

    1996-11-01

    Monochromatic red light irradiation therapy of trophic skin affections with vascular patients permits to receive positive results with small wounds. A combination of monochromatic red light and hyperbaric oxygenation is most perspective when conducting a complex therapy of trophic wounds not more than 40 mm2 and allows to diminish time of treatment almost two times.

  8. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  9. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model.

    PubMed

    Gstalder, Cécile; Ader, Isabelle; Cuvillier, Olivier

    2016-10-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by intratumoral hypoxia and chemoresistance. The hypoxia-inducible factors HIF1α and HIF2α play a crucial role in ccRCC initiation and progression. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF1α and HIF2α under hypoxia in various cancer cell models. Here, we report that FTY720, an inhibitor of the S1P signaling pathway, inhibits both HIF1α and HIF2α accumulation in several human cancer cell lines. In a ccRCC heterotopic xenograft model, we show that FTY720 transiently decreases HIF1α and HIF2α intratumoral level and modifies tumor vessel architecture within 5 days of treatment, suggesting a vascular normalization. In mice bearing subcutaneous ccRCC tumor, FTY720 and a gemcitabine-based chemotherapy alone display a limited effect, whereas, in combination, there is a significant effect on tumor size without toxicity. Noteworthy, administration of FTY720 for 5 days before chemotherapy is not associated with a more effective tumor control, suggesting a mode of action mainly independent of the vascular remodeling. In conclusion, these findings demonstrate that FTY720 could successfully sensitize ccRCC to chemotherapy and establish this molecule as a potent therapeutic agent for ccRCC treatment, independently of drug scheduling. Mol Cancer Ther; 15(10); 2465-74. ©2016 AACR.

  10. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH.

  11. Murine pregnancy-specific glycoprotein 23 induces the proangiogenic factors transforming-growth factor beta 1 and vascular endothelial growth factor a in cell types involved in vascular remodeling in pregnancy.

    PubMed

    Wu, Julie A; Johnson, Briana L; Chen, Yongqing; Ha, Cam T; Dveksler, Gabriela S

    2008-12-01

    Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into the bloodstream. PSG23 is one of 17 members of the murine PSG family (designated PSG16 to PSG32). Previous studies determined that PSGs have immunoregulatory functions due to their ability to modulate macrophage cytokine secretion. Here we show that recombinant PSG23 induces transforming growth factor (TGF) beta1, TGFB1, and vascular endothelial growth factor A (VEGFA) in primary murine macrophages and the macrophage cell line RAW 264.7 cells. In addition, we identified new cell types that responded to PSG23 treatment. Dendritic cells, endothelial cells, and trophoblasts, which are involved in maternal vasculature remodeling during pregnancy, secreted TGFB1 and VEGFA in response to PSG23. PSG23 showed cross-reactivity with human cells, including human monocytes and the trophoblast cell line, HTR-8/SVneo cells. We analyzed the binding of PSG23 to the tetraspanin CD9, the receptor for PSG17, and found that CD9 is not essential for PSG23 binding and activity in macrophages. Overall these studies show that PSGs can modulate the secretion of important proangiogenic factors, TGFB1 and VEGFA, by different cell types involved in the development of the placenta.

  12. Vessel remodelling, pregnancy hormones and extravillous trophoblast function.

    PubMed

    Chen, Jessie Z-J; Sheehan, Penelope M; Brennecke, Shaun P; Keogh, Rosemary J

    2012-02-26

    During early human pregnancy, extravillous trophoblast (EVT) cells from the placenta invade the uterine decidual spiral arterioles and mediate the remodelling of these vessels such that a low pressure, high blood flow can be supplied to the placenta. This is essential to facilitate normal growth and development of the foetus. Defects in remodelling can manifest as the serious pregnancy complication pre-eclampsia. During the period of vessel remodelling three key pregnancy-associated hormones, human chorionic gonadotrophin (hCG), progesterone (P(4)) and oestradiol (E(2)), are found in high concentrations at the maternal-foetal interface. Potentially these hormones may control EVT movement and thus act as regulators of vessel remodelling. This review will discuss what is known about how these hormones affect EVT proliferation, migration and invasion during vascular remodelling and the potential relationship between hCG, P(4), E(2) and the development of pre-eclampsia.

  13. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  14. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature.

    PubMed

    Pan, J Q; Tan, X; Li, J C; Sun, W D; Wang, X L

    2005-06-01

    Two experiments were conducted to evaluate the effects of early feed restriction on lipid peroxidation, pulmonary vascular remodelling and ascites incidence in broilers under normal and low ambient temperature. In experiment 1, the restricted birds were fed 8h per day either from 7 to 14 d or from 7 to 21 d, while the controlled birds were fed ad libitum. In experiment 2, the restricted birds were fed 80 or 60% of the previous 24-h feed consumption of full-fed controls for 7 d from 7 to 14 d. On d 14, half of the birds in each treatment both in experiment 1 and experiment 2 were exposed to low ambient temperature to induce ascites. Body weight and feed conversion ratio were measured weekly. The incidences of ascites and other disease were recorded to determine ascites morbidity and total mortality. Blood samples were taken on d 14, 21, 28, 35 and 42 to measure the plasma malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). On d 42, samples were taken to determine the right/total ventricular weight ratio (RV/TV), vessel wall area/vessel total area ratio (WA/TA) and mean media thickness in pulmonary arterioles (mMTPA). Low-temperature treatment increased plasma MDA concentration. When broilers were exposed to a cool environment for 3 weeks, plasma SOD and GSH-Px activity were decreased compared with normal-temperature chicks. RV/TV, WA/TA and mMTPA on d 42 were increased in birds exposed to cold, consistent with the increased pulmonary hypertension and ascites morbidity. Early feed restriction markedly decreased plasma MDA concentration. The plasma SOD and GSH-Px activity of feed-restricted birds were markedly higher than those fed ad libitum on d 35 and d 42. All early feed restriction treatments reduced ascites morbidity and total mortality. On d 42, the RV/TV, WA/TA and mMTPA of feed-restricted broilers were lower than that of the ad libitum-fed broilers. The results suggested that early feed restriction alleviated the lipid

  15. TLR Accessory Molecule RP105 (CD180) Is Involved in Post-Interventional Vascular Remodeling and Soluble RP105 Modulates Neointima Formation

    PubMed Central

    Karper, Jacco C.; Ewing, Mark M.; de Vries, Margreet R.; de Jager, Saskia C. A.; Peters, Erna A. B.; de Boer, Hetty C.; van Zonneveld, Anton-Jan; Kuiper, Johan; Huizinga, Eric G.; Brondijk, T. Harma C.; Jukema, J. Wouter; Quax, Paul H. A.

    2013-01-01

    Background RP105 (CD180) is TLR4 homologue lacking the intracellular TLR4 signaling domain and acts a TLR accessory molecule and physiological inhibitor of TLR4-signaling. The role of RP105 in vascular remodeling, in particular post-interventional remodeling is unknown. Methods and Results TLR4 and RP105 are expressed on vascular smooth muscle cells (VSMC) as well as in the media of murine femoral artery segments as detected by qPCR and immunohistochemistry. Furthermore, the response to the TLR4 ligand LPS was stronger in VSMC from RP105−/− mice resulting in a higher proliferation rate. In RP105−/− mice femoral artery cuff placement resulted in an increase in neointima formation as compared to WT mice (4982±974 µm2 vs.1947±278 µm2,p = 0.0014). Local LPS application augmented neointima formation in both groups, but in RP105−/− mice this effect was more pronounced (10316±1243 µm2 vs.4208±555 µm2,p = 0.0002), suggesting a functional role for RP105. For additional functional studies, the extracellular domain of murine RP105 was expressed with or without its adaptor protein MD1 and purified. SEC-MALSanalysis showed a functional 2∶2 homodimer formation of the RP105-MD1 complex. This protein complex was able to block the TLR4 response in whole blood ex-vivo. In vivo gene transfer of plasmid vectors encoding the extracellular part of RP105 and its adaptor protein MD1 were performed to initiate a stable endogenous soluble protein production. Expression of soluble RP105-MD1 resulted in a significant reduction in neointima formation in hypercholesterolemic mice (2500±573 vs.6581±1894 µm2,p<0.05), whereas expression of the single factors RP105 or MD1 had no effect. Conclusion RP105 is a potent inhibitor of post-interventional neointima formation. PMID:23844130

  16. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-12-01

    We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.

  17. Moderate-Intensity Rotating Magnetic Fields Do Not Affect Bone Quality and Bone Remodeling in Hindlimb Suspended Rats

    PubMed Central

    Shen, Guanghao; Zhai, Mingming; Tong, Shichao; Xu, Qiaoling; Xie, Kangning; Wu, Xiaoming; Tang, Chi; Xu, Xinmin; Liu, Juan; Guo, Wei; Jiang, Maogang; Luo, Erping

    2014-01-01

    Abundant evidence has substantiated the positive effects of pulsed electromagnetic fields (PEMF) and static magnetic fields (SMF) on inhibiting osteopenia and promoting fracture healing. However, the osteogenic potential of rotating magnetic fields (RMF), another common electromagnetic application modality, remains poorly characterized thus far, although numerous commercial RMF treatment devices have been available on the market. Herein the impacts of RMF on osteoporotic bone microarchitecture, bone strength and bone metabolism were systematically investigated in hindlimb-unloaded (HU) rats. Thirty two 3-month-old male Sprague-Dawley rats were randomly assigned to the Control (n = 10), HU (n = 10) and HU with RMF exposure (HU+RMF, n = 12) groups. Rats in the HU+RMF group were subjected to daily 2-hour exposure to moderate-intensity RMF (ranging from 0.60 T to 0.38 T) at 7 Hz for 4 weeks. HU caused significant decreases in body mass and soleus muscle mass of rats, which were not obviously altered by RMF. Three-point bending test showed that the mechanical properties of femurs in HU rats, including maximum load, stiffness, energy absorption and elastic modulus were not markedly affected by RMF. µCT analysis demonstrated that 4-week RMF did not significantly prevent HU-induced deterioration of femoral trabecular and cortical bone microarchitecture. Serum biochemical analysis showed that RMF did not significantly change HU-induced decrease in serum bone formation markers and increase in bone resorption markers. Bone histomorphometric analysis further confirmed that RMF showed no impacts on bone remodeling in HU rats, as evidenced by unchanged mineral apposition rate, bone formation rate, osteoblast numbers and osteoclast numbers in cancellous bone. Together, our findings reveal that RMF do not significantly affect bone microstructure, bone mechanical strength and bone remodeling in HU-induced disuse osteoporotic rats. Our study indicates potentially

  18. The KEEPS-Cognitive and Affective Study: Baseline Associations between Vascular Risk Factors and Cognition

    PubMed Central

    Wharton, Whitney; Gleason, Carey E.; Dowling, N. Maritza; Carlsson, Cynthia M.; Brinton, Eliot A.; Santoro, M. Nanette; Neal-Perry, Genevieve; Taylor, Hugh; Naftolin, Frederick; Lobo, Rogerio; Merriam, George; Manson, JoAnn E.; Cedars, Marcelle; Miller, Virginia M.; Black, Dennis M.; Budoff, Matthew; Hodis, Howard N.; Harman, Mitchell; Asthana, Sanjay

    2015-01-01

    Background Midlife vascular risk factors influence later cognitive decline and Alzheimer’s disease (AD). The decrease in serum estradiol levels during menopause has been associated with cognitive impairment and increased vascular risk, such as high blood pressure (BP), which independently contribute to cognitive dysfunction and AD. Methods We describe the extent to which vascular risk factors relate to cognition in healthy, middle–aged, recently postmenopausal women enrolled in the Kronos Early Estrogen Prevention Cognitive and Affective Study (KEEPS-Cog) at baseline. KEEPS-Cog is a double-blind, randomized, placebo-controlled, parallel group design, clinical trial, investigating the efficacy of low-dose, transdermal 17β-estradiol and oral conjugated equine estrogen on cognition. Results The KEEPS-Cog cohort (N=662) is healthy and free of cognitive dysfunction. Higher systolic BP was related to poorer performance in auditory working memory and attention (unadjusted p=0.004; adjusted p=0.10). This relationship was not associated with endogenous hormone levels. Conclusions Lower BP early in menopause may positively affect cognitive domains known to be associated with AD. PMID:24430001

  19. Flosequinan does not affect systemic and regional vascular responses to simulated orthostatic stress in healthy volunteers.

    PubMed Central

    Duranteau, J; Pussard, E; Edouard, A; Samii, K; Berdeaux, A; Giudicelli, J F

    1992-01-01

    1. The effects of a single oral dose (100 mg) of flosequinan on systemic and regional (forearm, splanchnic and renal) vascular responses to simulated orthostatic stress (lower body negative pressure, LBNP) were investigated in nine healthy male volunteers, in a double-blind, placebo-controlled crossover study. 2. Forty-five minutes after its administration and before LBNP, flosequinan induced a significant decrease in total peripheral and in forearm vascular resistances without any concomitant change in arterial pressure, in heart rate and in the investigated biological parameters (plasma catecholamines, arginine vasopressin and renin activity). 3. After flosequinan and placebo, LBNP induced similar decreases in central venous pressure at all levels of LBNP (-10, -20 and -40 mm Hg) and in pulse pressure at LBNP -40 mm Hg. LBNP-induced increase in forearm vascular resistance was significantly more marked after flosequinan than after placebo at all levels of LBNP, and this was also true for splanchnic vascular resistance but at LBNP -40 mm Hg only. However, inasmuch as the basal values of these two parameters before LBNP were lower after flosequinan than after placebo, their final values after LBNP -40 mm Hg were similar. Finally, LBNP-induced changes in renal vascular resistance, glomerular filtration rate and filtration fraction as well as in plasma catecholamines, arginine vasopressin and renin activity were similar after flosequinan and placebo at all levels of LBNP. 4. Flosequinan affected neither reflex control of heart rate (phenylephrine test) nor non-specific vasoconstrictor responses (cold pressor test). (ABSTRACT TRUNCATED AT 250 WORDS) PMID:1389945

  20. Exposure to Concentrated Ambient Particles Does Not Affect Vascular Function in Patients with Coronary Heart Disease

    PubMed Central

    Mills, Nicholas L.; Robinson, Simon D.; Fokkens, Paul H. B.; Leseman, Daan L. A. C.; Miller, Mark R.; Anderson, David; Freney, Evelyn J.; Heal, Mathew R.; Donovan, Robert J.; Blomberg, Anders; Sandström, Thomas; MacNee, William; Boon, Nicholas A.; Donaldson, Ken; Newby, David E.; Cassee, Flemming R.

    2008-01-01

    Background Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans. Objectives We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction. Methods Twelve male patients with stable coronary heart disease and 12 age-matched volunteers were exposed to concentrated ambient fine and ultrafine particles (CAPs) or filtered air for 2 hr using a randomized, double-blind cross-over study design. We measured peripheral vascular vasomotor and fibrinolytic function, and inflammatory variables—including circulating leukocytes, serum C-reactive protein, and exhaled breath 8-isoprostane and nitrotyrosine—6–8 hr after both exposures. Results Particulate concentrations (mean ± SE) in the exposure chamber (190 ± 37 μg/m3) were higher than ambient levels (31 ± 8 μg/m3) and levels in filtered air (0.5 ± 0.4 μg/m3; p < 0.001). Chemical analysis of CAPs identified low levels of elemental carbon. Exhaled breath 8-isoprostane concentrations increased after exposure to CAPs (16.9 ± 8.5 vs. 4.9 ± 1.2 pg/mL, p < 0.05), but markers of systemic inflammation were largely unchanged. Although there was a dose-dependent increase in blood flow and plasma tissue plasminogen activator release (p < 0.001 for all), CAPs exposure had no effect on vascular function in either group. Conclusions Despite achieving marked increases in particulate matter, exposure to CAPs—low in combustion-derived particles—did not affect vasomotor or fibrinolytic function in either middle-aged healthy volunteers or patients with coronary heart disease. These findings contrast with previous exposures to dilute diesel exhaust and highlight the importance of particle composition in determining the vascular effects of particulate matter in humans. PMID:18560524

  1. Effects of estradiol on uterine perfusion in anesthetized cyclic mares affected with uterine vascular elastosis.

    PubMed

    Esteller-Vico, A; Liu, I K M; Vaughan, B; Steffey, E P; Brosnan, R J

    2016-01-01

    Uterine vascular elastosis in mares is characterized by degeneration of uterine vasculature through thickening of the elastin layers. Factors commonly associated with this degeneration include age, parity, and chronic uterine endometritis. Affected mares have also been shown to exhibit decreases in uterine blood flow and perfusion of the uterus. Due to the increased thickness of the elastin layers, we hypothesize that vasodilatation of the uterine vasculature is also impaired. To test the functionality of these vessels, we evaluated the vasodilatory effects of estradiol on the uterine vascular bed in mares with normal vasculature and mares with severe elastosis. Both groups were tested in estrus and diestrus. Fluorescent microspheres were used to determine basal blood perfusion, followed by the intravenous administration of 1.0 μg/kg of 17β-estradiol. After 90 min, perfusion was measured once again to determine the vascular response to estradiol. Control mares in estrus displayed a significant increase in total uterine blood flow after the administration of estradiol when compared to baseline levels. No other group had a significant increase in total blood flow and perfusion after estradiol administration. The administration of estradiol in control mares induced regional increases in perfusion in the uterine horns and uterine body during estrus and only in the uterine horns during diestrus. Mares affected by elastosis exhibited no regional differences in perfusion levels post-estradiol administration. The difference in the vasodilatory response induced by estradiol between reproductively healthy mares and mares affected with elastosis indicates that the functionality of the affected vessels is compromised.

  2. Fibrinolysis inhibitors adversely affect remodeling of tissues sealed with fibrin glue.

    PubMed

    Krishnan, Lissy K; Vijayan Lal, Arthur; Uma Shankar, P R; Mohanty, Mira

    2003-01-01

    Experiments have been carried out to determine if aprotinin and epsilon -amino caproic acid increases the quality of Fibrin glue. A rat model was used for tissues such as liver and skin while rabbits were used for application of glue in dura mater. Apposition of all the tissues, glued with fibrin was found to be good and remnants of the polymerized fibrin were seen even on the seventh day of application, though inhibitors were not incorporated with the glue. In skin, excessive amounts of fibrin remained as a result of addition of aprotinin and epsilon -amino caproic acid, as compared to the glue applied without any inhibitor. After dural sealing, the wound repair and new bone formation at craniotomy site progressed well in the fibrin glue applied area as compared to the commercially available glue that contained aprotinin. The adhesive strength of the glue without or with fibrinolysis inhibitors was found to be similar, after 1h grafts on rat back. The observations from this study suggests that the use of aprotinin with fibrin glue may not be required because, even liver tissue that is known to have high fibrinolytic activity was sealed and repaired well in the absence of plasminogen inhibitors. On the other hand, it was found that if inhibitors were added, nondegraded matrix remained in the tissue even after 15 days and affected migration of repair cells. Thus, the inhibition of fibrinolysis after fibrin glue application is found detrimental to wound healing.

  3. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  4. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.

    PubMed

    Einzmann, Helena J R; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2014-11-11

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests.

  5. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits.

    PubMed

    Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2015-01-01

    Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis.

  6. Severe vascular complications in patients affected by systemic sclerosis cyclically treated with iloprost.

    PubMed

    Caramaschi, Paola; Dalla Gassa, Alessandra; Prati, Daniele; Barausse, Giovanni; Tinazzi, Ilaria; Ravagnani, Viviana; Confente, Silvia; Biasi, Domenico

    2012-07-01

    The objective of this study was to evaluate the incidence of the most severe vascular complications, such as pulmonary arterial hypertension, scleroderma renal crisis, and digital necrosis requiring amputation, in a monocentric group of systemic sclerosis (SSc) patients cyclically treated with intravenous iloprost. We reviewed the record-charts of 115 patients affected by SSc (18 men and 97 women, mean age 58.9.1 ± 14.2 years) regularly receiving iloprost for at least 3 years; the mean duration of the treatment was 98.8 ± 37.5 months (a total of 946.8 years of therapy). Demographic and clinical features were recorded. None of the patients died of SSc-associated vascular complications. After iloprost administration digital gangrene requiring amputation developed in 2 patients who had concomitant peripheral arterial disease (a total of 3 episodes; annual incidence of 0.31 for 100 years of iloprost therapy). Four patients were diagnosed with pulmonary arterial hypertension during iloprost treatment (annual incidence of 0.42 for 100 years of drug therapy); in none of the cases did the complication show a progressive course. No cases of scleroderma renal crisis were observed. With the limits of an observational study and in the absence of a control group, our experience suggests that prolonged cyclic iloprost therapy may limit the incidence/progression of severe digital and visceral SSc-vasculopathy.

  7. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits

    PubMed Central

    Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2015-01-01

    Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis. PMID:26175757

  8. Pioglitazone does not affect vascular or inflammatory responses after endotoxemia in humans.

    PubMed

    Schaller, G; Kolodjaschna, J; Pleiner, J; Mittermayer, F; Kapiotis, S; Schmetterer, L; Wolzt, M

    2008-08-01

    PPARgamma agonists have been proposed to exert more than metabolic benefits, particularly by anti-inflammatory mechanisms. We hypothesized that pioglitazone might modulate inflammatory and vascular responses to lipopolysaccharide (LPS). In a placebo-controlled parallel-group study in 18 healthy male subjects, the E. coli endotoxin model of inflammation (20 IU/kg i. v.) was employed to test the effect of 60 mg pioglitazone over nine days on inflammatory cytokines. Macrovascular function and microvascular blood flow were assessed by brachial artery ultrasound and retinal blood flow parameters, respectively. Pioglitazone increased brachial artery diameter by 5.6% but had no effect on other outcome parameters under resting conditions. LPS increased cytokine levels to peak concentrations of 91.3+/-22.5 ng/ml (IL-6), 261.4+/-60.0 ng/ml (TNFalpha), and 524.5+/-15.3 ng/ml (VCAM-1). The endotoxin caused microvascular vasodilation and increased retinal white blood cell flux, while baseline brachial artery diameter remained unchanged. Pioglitazone had no effect on inflammatory cytokine or adhesion molecule release but mitigated LPS-induced hypotension (p<0.05). Neither brachial artery function nor microvascular blood flow was altered by pioglitazone. In conclusion, acute immune reactions to LPS are not affected by pioglitazone, which exerts subtle vascular effects alone and during endotoxemia. The anti-inflammatory properties of short-term pioglitazone to endotoxins in healthy subjects are therefore limited.

  9. Aldosterone and the vascular system.

    PubMed

    Cachofeiro, Victoria; Miana, Maria; de Las Heras, Natalia; Martín-Fernández, Beatriz; Ballesteros, Sandra; Fernández-Tresguerres, Jesús; Lahera, Vicente

    2008-04-01

    Aldosterone can act in different tissues exerting physiological and pathological effects. At the vascular level, aldosterone affects endothelial function since administration of aldosterone impaired endothelium-dependent relaxations. In addition, the administration of mineralocorticoid receptor antagonists ameliorate relaxation to acetylcholine in models of both hypertension and atherosclerosis and in patients with heart failure. A reduction in nitric oxide levels seems to be the main mechanism underlying this effect due to a reduction in its production as well as an increase in its degradation by reactive oxygen species. Aldosterone is a pro-inflammatory factor that can participate in the vascular inflammatory process associated with different pathologies including hypertension through activation of the NFkappaB system, which mediates the vascular production of different cytokines. This mineralocorticoid also participates in the vascular remodeling observed in hypertensive rats since the administration of eplerenone improved the media-to-lumen ratio in these animals. This effect seems to be due to an increase in extracellular matrix. In summary, aldosterone through mineralocorticoid receptors can participate in the vascular damage associated with different pathologies including hypertension through its prooxidant, pro-inflammatory and profibrotic effects that triggered endothelial dysfunction, an inflammatory process and vascular remodeling.

  10. Non-patient related variables affecting levels of vascular endothelial growth factor in urine biospecimens.

    PubMed

    Kirk, M J; Hayward, R M; Sproull, M; Scott, T; Smith, S; Cooley-Zgela, T; Crouse, N S; Citrin, D E; Camphausen, K

    2008-08-01

    Vascular endothelial growth factor (VEGF) is an angiogenic protein proposed to be an important biomarker for the prediction of tumour growth and disease progression. Recent studies suggest that VEGF measurements in biospecimens, including urine, may have predictive value across a range of cancers. However, the reproducibility and reliability of urinary VEGF measurements have not been determined. We collected urine samples from patients receiving radiation treatment for glioblastoma multiforme (GBM) and examined the effects of five variables on measured VEGF levels using an ELISA assay. To quantify the factors affecting the precision of the assay, two variables were examined: the variation between ELISA kits with different lot numbers and the variation between different technicians. Three variables were tested for their effects on measured VEGF concentration: the time the specimen spent at room temperature prior to assay, the addition of protease inhibitors prior to specimen storage and the alteration of urinary pH. This study found that VEGF levels were consistent across three different ELISA kit lot numbers. However, significant variation was observed between results obtained by different technicians. VEGF concentrations were dependent on time at room temperature before measurement, with higher values observed 3-7 hrs after removal from the freezer. No significant difference was observed in VEGF levels with the addition of protease inhibitors, and alteration of urinary pH did not significantly affect VEGF measurements. In conclusion, this determination of the conditions necessary to reliably measure urinary VEGF levels will be useful for future studies related to protein biomarkers and disease progression.

  11. Altered Matrix Metalloproteinase-2 and -9 Expression/Activity Links Placental Ischemia and Anti-angiogenic sFlt-1 to Uteroplacental and Vascular Remodeling and Collagen Deposition in Hypertensive Pregnancy

    PubMed Central

    Li, Wei; Mata, Karina M.; Mazzuca, Marc Q.; Khalil, Raouf A.

    2014-01-01

    Preeclampsia is a complication of pregnancy manifested as maternal hypertension and often fetal growth restriction. Placental ischemia could be an initiating event, but the linking mechanisms leading to hypertension and growth restriction are unclear. We have shown an upregulation of matrix metalloproteinases (MMPs) during normal pregnancy (Norm-Preg). To test the role of MMPs in hypertensive-pregnancy (HTN-Preg), maternal and fetal parameters, MMPs expression, activity and distribution, and collagen and elastin content were measured in uterus, placenta and aorta of Norm-Preg rats and in rat model of reduced uteroplacental perfusion pressure (RUPP). Maternal blood pressure was higher, and uterine, placental and aortic weight, and the litter size and pup weight were less in RUPP than Norm-Preg rats. Western blots and gelatin zymography revealed decreases in amount and gelatinase activity of MMP-2 and MMP-9 in uterus, placenta and aorta of RUPP compared with Norm-Preg rats. Immunohistochemistry confirmed reduced MMPs in uterus, placenta and aortic media of RUPP rats. Collagen, but not elastin, was more abundant in uterus, placenta and aorta of RUPP than Norm-Preg rats. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1) decreased MMPs in uterus, placenta and aorta of Norm-Preg rats, and vascular endothelial growth factor (VEGF) reversed the decreases in MMPs in tissues of RUPP rats. Thus placental ischemia and anti-angiogenic sFlt-1 decrease uterine, placental and vascular MMP-2 and MMP-9, leading to increased uteroplacental and vascular collagen, and growth-restrictive remodeling in HTN-Preg. Angiogenic factors and MMP activators may reverse the decrease in MMPs and enhance growth-permissive remodeling in preeclampsia. PMID:24704473

  12. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.

    PubMed

    Husarek, Kathryn E; Katz, Paige S; Trask, Aaron J; Galantowicz, Maarten L; Cismowski, Mary J; Lucchesi, Pamela A

    2016-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.

  13. Plasma inflammatory and vascular homeostasis biomarkers increase during human pregnancy but are not affected by oily fish intake.

    PubMed

    García-Rodríguez, Cruz E; Olza, Josune; Aguilera, Concepción M; Mesa, María D; Miles, Elizabeth A; Noakes, Paul S; Vlachava, Maria; Kremmyda, Lefkothea-Stella; Diaper, Norma D; Godfrey, Keith M; Calder, Philip C; Gil, Angel

    2012-07-01

    The Salmon in Pregnancy Study investigated whether the increased consumption of (n-3) long-chain PUFA (LC-PUFA) from farmed Atlantic salmon affects immune function during pregnancy and atopic disease in neonates compared with a habitual diet low in oily fish. In this context, because the ingestion of (n-3) LC-PUFA may lower the concentrations of inflammatory biomarkers, we investigated whether the consumption of oily fish affects the levels of inflammatory cytokines and vascular adhesion factors during pregnancy. Pregnant women (n = 123) were randomly assigned to continue their habitual diet (control group, n = 61), which was low in oily fish, or to consume two 150-g salmon portions/wk (salmon group, n = 62; providing 3.45 g EPA plus DHA) from 20 wk of gestation until delivery. Plasma inflammatory cytokines and vascular adhesion factors were measured in maternal plasma samples. Inflammatory biomarkers, including IL-8, hepatocyte growth factor, and monocyte chemotactic protein, increased over the course of pregnancy (P < 0.001), whereas plasma matrix metalloproteinase 9, IL-6, TNFα, and nerve growth factor concentrations were not affected. Vascular homeostasis biomarkers soluble E-selectin, soluble vascular adhesion molecule-1, soluble intercellular adhesion molecule (sICAM)-1, and total plasminogen activator inhibitor-1 increased as pregnancy progressed (P < 0.001). The plasma sICAM-1 concentration was greater in the control group than in the salmon group at wk 20 (baseline) and 38 (P = 0.007) but there was no group x time interaction, and when baseline concentration was used as a covariate, the groups did not differ (P = 0.69). The remaining biomarkers analyzed were similar in both groups. Therefore, although some inflammatory and vascular homeostasis biomarkers change during pregnancy, they are not affected by the increased intake of farmed salmon.

  14. Fibroblast growth factor signaling affects vascular outgrowth and is required for the maintenance of blood vessel integrity.

    PubMed

    De Smet, Frederik; Tembuyser, Bieke; Lenard, Anna; Claes, Filip; Zhang, Jie; Michielsen, Christof; Van Schepdael, Ann; Herbert, Jean-Marc; Bono, Françoise; Affolter, Markus; Dewerchin, Mieke; Carmeliet, Peter

    2014-10-23

    Angiogenesis contributes to the development of numerous disorders. Even though fibroblast growth factors (FGFs) were discovered as mediators of angiogenesis more than 30 years ago, their role in developmental angiogenesis still remains elusive. We use a recently described chemical probe, SSR128129E (SSR), that selectively inhibits the action of multiple FGF receptors (FGFRs), in combination with the zebrafish model to examine the role of FGF signaling in vascular development. We observe that while FGFR signaling is less important for vessel guidance, it affects vascular outgrowth and is especially required for the maintenance of blood vessel integrity by ensuring proper cell-cell junctions between endothelial cells. In conclusion, our work illustrates the power of a small molecule probe to reveal insights into blood vessel formation and stabilization and thus of broad interest to the vascular biology community.

  15. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time.

    PubMed

    Nalivaiko, Eugene; Davis, Simon L; Blackmore, Karen L; Vakulin, Andrew; Nesbitt, Keith V

    2015-11-01

    Evidence from studies of provocative motion indicates that motion sickness is tightly linked to the disturbances of thermoregulation. The major aim of the current study was to determine whether provocative visual stimuli (immersion into the virtual reality simulating rides on a rollercoaster) affect skin temperature that reflects thermoregulatory cutaneous responses, and to test whether such stimuli alter cognitive functions. In 26 healthy young volunteers wearing head-mounted display (Oculus Rift), simulated rides consistently provoked vection and nausea, with a significant difference between the two versions of simulation software (Parrot Coaster and Helix). Basal finger temperature had bimodal distribution, with low-temperature group (n=8) having values of 23-29 °C, and high-temperature group (n=18) having values of 32-36 °C. Effects of cybersickness on finger temperature depended on the basal level of this variable: in subjects from former group it raised by 3-4 °C, while in most subjects from the latter group it either did not change or transiently reduced by 1.5-2 °C. There was no correlation between the magnitude of changes in the finger temperature and nausea score at the end of simulated ride. Provocative visual stimulation caused prolongation of simple reaction time by 20-50 ms; this increase closely correlated with the subjective rating of nausea. Lastly, in subjects who experienced pronounced nausea, heart rate was elevated. We conclude that cybersickness is associated with changes in cutaneous thermoregulatory vascular tone; this further supports the idea of a tight link between motion sickness and thermoregulation. Cybersickness-induced prolongation of reaction time raises obvious concerns regarding the safety of this technology.

  16. Inhibition of angiopoietin-1 (ANGPT1) affects vascular integrity in ovarian hyperstimulation syndrome (OHSS).

    PubMed

    Scotti, Leopoldina; Abramovich, Dalhia; Pascuali, Natalia; Durand, Luis Haro; Irusta, Griselda; de Zúñiga, Ignacio; Tesone, Marta; Parborell, Fernanda

    2016-04-01

    Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with gonadotrophins following human chorionic gonadotrophin (hCG) administration. The relationship between hCG and OHSS is partly mediated via the production of angiogenic factors, such as vascular endothelial growth factor A (VEGFA) and angiopoietins (ANGPTs). Here, we investigated the effect of ANGPT1 inhibition on ovarian angiogenesis in follicular fluid (FF) from women at risk of OHSS, using the chorioallantoic membrane (CAM) of quail embryos as an experimental model. We also analysed cytoskeletal changes and endothelial junction protein expression induced by this FF in the presence or absence of an ANGPT1-neutralising antibody in endothelial cell cultures. The presence of this antibody restored the number of vascular branch points and integrin αvβ3 levels in the CAMs to control values. ANGPT1 inhibition in FF from OHSS patients also restored the levels of claudin-5, vascular endothelial cadherin and phosphorylated β-catenin and partially reversed actin redistribution in endothelial cells. Our findings suggest that ANGPT1 increases pathophysiological angiogenesis in patients at risk of OHSS by acting on tight and adherens junction proteins. Elucidating the mechanisms by which ANGPT1 regulates vascular development and cell-cell junctions in OHSS will contribute to identifying new therapeutic targets for the treatment of human diseases with aberrant vascular leakage.

  17. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model.

    PubMed

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.

  18. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model

    PubMed Central

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to “hot–wet” (40°C, 80% relative humidity [RH]) or “cold–dry” (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot–wet and cold–dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold–dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment. PMID:28243135

  19. Luminal epithelium in endometrial fragments affects their vascularization, growth and morphological development into endometriosis-like lesions in mice.

    PubMed

    Feng, Dilu; Menger, Michael D; Wang, Hongbo; Laschke, Matthias W

    2014-02-01

    In endometriosis research, endometriosis-like lesions are usually induced in rodents by transplantation of isolated endometrial tissue fragments to ectopic sites. In the present study, we investigated whether this approach is affected by the cellular composition of the grafts. For this purpose, endometrial tissue fragments covered with luminal epithelium (LE(+)) and without luminal epithelium (LE(-)) were transplanted from transgenic green-fluorescent-protein-positive (GFP(+)) donor mice into the dorsal skinfold chamber of GFP(-) wild-type recipient animals to analyze their vascularization, growth and morphology by means of repetitive intravital fluorescence microscopy, histology and immunohistochemistry during a 14-day observation period. LE(-) fragments developed into typical endometriosis-like lesions with cyst-like dilated endometrial glands and a well-vascularized endometrial stroma. In contrast, LE(+) fragments exhibited a polypoid morphology and a significantly reduced blood perfusion after engraftment, because the luminal epithelium prevented the vascular interconnection with the microvasculature of the surrounding host tissue. This was associated with a markedly decreased growth rate of LE(+) lesions compared with LE(-) lesions. In addition, we found that many GFP(+) microvessels grew outside the LE(-) lesions and developed interconnections to the host microvasculature, indicating that inosculation is an important mechanism in the vascularization process of endometriosis-like lesions. Our findings demonstrate that the luminal epithelium crucially affects the vascularization, growth and morphology of endometriosis-like lesions. Therefore, it is of major importance to standardize the cellular composition of endometrial grafts in order to increase the validity and reliability of pre-clinical rodent studies in endometriosis research.

  20. MicroRNA-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1)

    PubMed Central

    Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-01-01

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension. PMID:27322082

  1. Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1).

    PubMed

    Wang, Ran; Ding, Xing; Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-11-08

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension.

  2. Endothelial cell migration during murine yolk sac vascular remodeling occurs by means of a Rac1 and FAK activation pathway in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanism(s) controlling cell migration during vascular morphogenesis in vivo remain largely undefined. To address this within a physiological context, we used retinaldehyde dehydrogenase-2 (Raldh2) null mouse embryos and demonstrate that retinoic acid (RA) deficiency results in abnorm...

  3. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  4. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?

    PubMed

    Dumas, Sébastien J; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.

  5. Niflumic Acid Attenuated Pulmonary Artery Tone and Vascular Structural Remodeling of Pulmonary Arterial Hypertension Induced by High Pulmonary Blood Flow In Vivo.

    PubMed

    Wang, Kai; Ma, Jianfa; Pang, Yusheng; Lao, Jinquan; Pan, Xuanren; Tang, Qiaoyun; Zhang, Feng; Su, Danyan; Qin, Suyuan; Shrestha, Arnav Prasad

    2015-10-01

    Calcium-activated chloride channels (CaCCs) play a vital role in regulating pulmonary artery tone during pulmonary arterial hypertension (PAH) induced by high blood flow. The role of CaCCs inhibitor niflumic acid (NFA) in vivo during this process requires further investigation. We established the PAH model by abdominal shunt surgery and treated with NFA in vivo. Fifty rats were randomly divided into normal, sham, shunt, NFA group 1 (0.2 mg/kg), and NFA group 2 (0.4 mg/kg). Pathological changes, right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter were analyzed. Then contraction reactions of pulmonary arteries were measured. Finally, the electrophysiological characteristics of pulmonary arterial smooth muscle cells were investigated using patch-clamp technology. After 11 weeks of shunting, PAH developed, accompanied with increased right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter. In the NFA treatment groups, the pressure and pathological changes were alleviated. The pulmonary artery tone in the shunt group increased, whereas it decreased after NFA treatment. The current density of CaCC was higher in the shunt group, and it was decreased in the NFA treatment groups. In conclusion, NFA attenuated pulmonary artery tone and structural remodeling in PAH induced by high pulmonary blood flow in vivo. CaCCs were involved and the augmented current density was alleviated by NFA treatment.

  6. Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling

    PubMed Central

    Kurakula, Kondababu; Goumans, Marie-Jose; ten Dijke, Peter

    2015-01-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Over the last few years, microRNAs (miRNAs) have emerged as master regulators of gene expression in cardiovascular biology and disease. miRNAs are small endogenous non-coding RNAs that usually bind to 3′ untranslated region (UTR) of their target mRNAs and inhibit mRNA stability or translation of their target genes. miRNAs play a dynamic role in the pathophysiology of many CVDs through their effects on target mRNAs in vascular cells. Recently, numerous miRNAs have been implicated in the regulation of the transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling pathway which plays crucial roles in diverse biological processes, and is involved in pathogenesis of many diseases including CVD. This review gives an overview of current literature on the role of miRNAs targeting TGF-β/BMP signalling in vascular cells, including endothelial cells and smooth muscle cells. We also provide insight into how this miRNA-mediated regulation of TGF-β/BMP signalling might be used to harness CVD. PMID:26862319

  7. Novel Vascular Malformation in an Affected Newborn with Deletion Del(4)(q31.3)

    PubMed Central

    de León Ojeda, Norma Elena; Soriano-Torres, Michel; Cabrera, Mercedes J.; Benítez Ramos, Dunia Bárbara

    2012-01-01

    We report on a newborn male patient with a terminal deletion in the long arm of the chromosome 4 with a congenital heart defect unreported before in association with this syndrome. The patient had multiple congenital anomalies including a pointed duplicated fingernail, low set posteriorly rotated ears, large anterior fontanel, micrognathia, glabellar capillary vascular malformation, and Interrupted Aortic Arch type C. The patient died due to multiple congenital malformations; a peripheral chromosome analysis showed 46, XY, del(4)(q31.3) de novo. The only reported case with the same deletion was a male newborn that exhibited the pattern of minor anomalies of deletion 4q31 syndrome. The parents were cytogenetically normal. We compare clinical signs to other cases with a deletion in long arm of chromosome 4. PMID:23320208

  8. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice

    PubMed Central

    Seilkop, Steven K.; Campen, Matthew J.; Lund, Amie K.; McDonald, Jacob D.; Mauderly, Joe L.

    2012-01-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical–chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation. PMID:22486345

  9. Notch signal integration in the vasculature during remodeling

    PubMed Central

    Rostama, Bahman; Peterson, Sarah M.; Vary, Calvin P. H.; Liaw, Lucy

    2014-01-01

    Notch signaling plays many important roles in homeostasis and remodeling in the vessel wall, and serves a critical role in the communication between endothelial cells and smooth muscle cells. Within blood vessels, Notch signaling integrates with multiple pathways by mechanisms including direct protein-protein interaction, cooperative or synergistic regulation of signal cascades, and co-regulation of transcriptional targets. After establishment of the mature blood vessel, the spectrum and intensity of Notch signaling changes during phases of active remodeling or disease progression. These changes can be mediated by regulation via microRNAs and protein stability or signaling, and corresponding changes in complementary signaling pathways. Notch also affects endothelial cells on a systems level by regulating key metabolic components. This review will outline the most recent findings of Notch activity in blood vessels, with a focus on how Notch signals integrate with other molecular signaling pathways controlling vascular phenotype. PMID:25464152

  10. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in concert with

  11. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  12. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth.

    PubMed

    Madeja, Zofia; Yadi, Hakim; Apps, Richard; Boulenouar, Selma; Roper, Stephen J; Gardner, Lucy; Moffett, Ashley; Colucci, Francesco; Hemberger, Myriam

    2011-03-08

    The mammalian fetus represents a semiallograft within the maternal uterus yet is not rejected. This situation is particularly pronounced in species with a hemochorial type of placentation, such as humans and rodents, where maternal tissues and blood are in direct contact with fetal trophoblast and thus potentially with paternal antigens. The main polymorphic antigens responsible for graft rejection are MHC antigens. In humans the trophoblast cells invading into the decidua have a unique pattern of MHC class I expression characterized by both classical (HLA-C) and nonclassical (HLA-G and HLA-E) molecules. Whether such an unusual MHC repertoire on the surface of trophoblast is a conserved feature between species with hemochorial placentation has not been resolved. Here we demonstrate, using a range of methods, that C57BL/6 mouse trophoblast predominantly expresses only one MHC class I antigen, H2-K, at the cell surface of giant cells but lacks expression of nonclassical MHC molecules. Antigenic disparity between parental MHCs affects trophoblast-induced transformation of the uterine vasculature and, consequently, placental and fetal gowth. Maternal uterine blood vessels were more dilated, allowing for increased blood supply, in certain combinations of maternal and paternal MHC haplotypes, and these allogeneic fetuses and placentas were heavier at term compared with syngeneic controls. Thus, maternal-fetal immune interactions are instrumental to optimize reproductive success. This cross-talk has important implications for human disorders of pregnancy, such as preeclampsia and fetal growth restriction.

  13. Right ventricular remodeling in pulmonary hypertension.

    PubMed

    Franco, Veronica

    2012-07-01

    The right ventricle (RV) is in charge of pumping blood to the lungs for oxygenation. Pulmonary arterial hypertension (PAH) is characterized by high pulmonary vascular resistance and vascular remodeling, which results in a striking increase in RV afterload and subsequent failure. There is still unexploited potential for therapies that directly target the RV with the aim of supporting and protecting the right side of the heart, striving to prolong survival in patients with PAH.

  14. Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis.

    PubMed

    Yurdakul, Pinar; Dalton, Jane; Beattie, Lynette; Brown, Najmeeyah; Erguven, Sibel; Maroof, Asher; Kaye, Paul M

    2011-07-01

    Progressive splenomegaly is a hallmark of visceral leishmaniasis in humans, canids, and rodents. In experimental murine visceral leishmaniasis, splenomegaly is accompanied by pronounced changes in microarchitecture, including expansion of the red pulp vascular system, neovascularization of the white pulp, and remodeling of the stromal cell populations that define the B-cell and T-cell compartments. Here, we show that Ly6C/G(+) (Gr-1(+)) cells, including neutrophils and inflammatory monocytes, accumulate in the splenic red pulp during infection. Cell depletion using monoclonal antibody against either Ly6C/G(+) (Gr-1; RB6) or Ly6G(+) (1A8) cells increased parasite burden. In contrast, depletion of Ly6C/G(+) cells, but not Ly6G(+) cells, halted the progressive remodeling of Meca-32(+) and CD31(+) red pulp vasculature. Strikingly, neither treatment affected white pulp neovascularization or the remodeling of the fibroblastic reticular cell and follicular dendritic cell networks. These findings demonstrate a previously unrecognized compartment-dependent selectivity to the process of splenic vascular remodeling during experimental murine visceral leishmaniasis, attributable to Ly6C(+) inflammatory monocytes.

  15. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  16. Small artery remodelling in diabetes

    PubMed Central

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-01-01

    Abstract The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin–angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin–angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure. PMID:20646125

  17. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  18. Low 17beta-estradiol levels in CNR1 knock-out mice affect spermatid chromatin remodeling by interfering with chromatin reorganization.

    PubMed

    Cacciola, Giovanna; Chioccarelli, Teresa; Altucci, Lucia; Ledent, Catherine; Mason, J Ian; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2013-06-01

    The type 1-cannabinoid receptor, CNR1, regulates differentiation of spermatids. Indeed, we have recently reported that the genetic inactivation of Cnr1 in mice influenced chromatin remodeling of spermatids, by reducing histone displacement and then sperm chromatin quality indices (chromatin condensation and DNA integrity). Herein, we have studied, at both central and testicular levels, the molecular signals potentially involved in histone displacement. In particular, investigation of the neuroendocrine axis involved in estrogen production demonstrated down-regulation of the axis supporting FSH/estrogen secretion in Cnr1-knockout male mice. Conversely, Cnr1-knockout male mice treated with 17beta-estradiol showed a weak increase of pituitary Fsh-beta subunit mRNA levels and a rescue of sperm chromatin quality indices demonstrating that estrogens, possibly in combination with FSH secretion, play an important role in regulating chromatin remodeling of spermatids.

  19. Role of Arginase in Vessel Wall Remodeling

    PubMed Central

    Durante, William

    2013-01-01

    Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease. PMID:23717309

  20. Primary vascular access.

    PubMed

    Gibbons, C P

    2006-05-01

    Primary vascular access is usually achievable by a distal autogenous arterio-venous fistula (AVF). This article describes the approach to vascular access planning, the usual surgical options and the factors affecting patency.

  1. Immune modulation of resistance artery remodelling.

    PubMed

    Schiffrin, Ernesto L

    2012-01-01

    Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.

  2. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  3. Halofuginone Stimulates Adaptive Remodeling and Preserves Re-Endothelialization in Balloon-Injured Rat Carotid Arteries

    PubMed Central

    Guo, Lian-Wang; Wang, Bowen; Goel, Shakti A.; Little, Christopher; Takayama, Toshio; Shi, Xu Dong; Roenneburg, Drew; DiRenzo, Daniel; Kent, K. Craig

    2014-01-01

    Background Three major processes, constrictive vessel remodeling, intimal hyperplasia and retarded re-endothelialization, contribute to restenosis after vascular reconstructions. Clinically used drugs inhibit intimal hyperplasia but delay re-endothelialization and also cause constrictive remodeling. Here we have examined halofuginone (HF), a herbal derivative, for its beneficial effects on vessel remodeling and differential inhibition of intimal hyperplasia versus re-endothelialization. Methods and Results Two weeks after perivascular application to balloon-injured rat common carotid arteries, HF versus vehicle (n=6 animals) enlarged luminal area 2.14 fold by increasing vessel size (adaptive remodeling, 123%), reducing intimal hyperplasia (74.3%) without inhibiting re-endothelialization. Consistent with its positive effect on vessel expansion, HF reduced collagen type-1 (but not type-3) production in injured arteries as well as that from adventitial fibroblasts in vitro. In support of its differential effects on intimal hyperplasia versus re-endothelialization, HF produced greater inhibition of vascular smooth muscle cell versus endothelial cell proliferation at concentrations around 50 nM. Furthermore, HF at 50 nM effectively blocked Smad3 phosphorylation in smooth muscle cells which is known to promote smooth muscle cell proliferation, migration, and intimal hyperplasia, but HF had no effect on phospho-Smad3 in endothelial cells. Conclusions Periadventitial delivery of HF dramatically increased lumen patency via adaptive remodeling and selective inhibition of intimal hyperplasia without affecting endothelium recovery. HF is the first reported small molecule that has favorable effects on all three major processes involved in restenosis. PMID:25074254

  4. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  5. Effect of Lysyl Oxidase Inhibition on Angiotensin II-Induced Arterial Hypertension, Remodeling, and Stiffness

    PubMed Central

    Eberson, Lance S.; Sanchez, Pablo A.; Majeed, Beenish A.; Tawinwung, Supannikar; Secomb, Timothy W.; Larson, Douglas F.

    2015-01-01

    It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN. PMID:25875748

  6. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  7. Vascular Cures

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  8. Pulmonary arterial strain- and remodeling-induced stiffening are differentiated in a chronic model of pulmonary hypertension.

    PubMed

    Golob, Mark J; Tabima, Diana M; Wolf, Gregory D; Johnston, James L; Forouzan, Omid; Mulchrone, Ashley M; Kellihan, Heidi B; Bates, Melissa L; Chesler, Naomi C

    2017-04-11

    Pulmonary hypertension (PH) is a debilitating vascular disease that leads to pulmonary artery (PA) stiffening, which is a predictor of patient mortality. During PH development, PA stiffening adversely affects right ventricular function. PA stiffening has been investigated through the arterial nonlinear elastic response during mechanical testing using a canine PH model. However, only circumferential properties were reported and in the absence of chronic PH-induced PA remodeling. Remodeling can alter arterial nonlinear elastic properties via chronic changes in extracellular matrix (ECM) content and geometry. Here, we used an established constitutive model to demonstrate and differentiate between strain-stiffening, which is due to nonlinear elasticity, and remodeling-induced stiffening, which is due to ECM and geometric changes, in a canine model of chronic thromboembolic PH (CTEPH). To do this, circumferential and axial tissue strips of large extralobar PAs from control and CTEPH tissues were tested in uniaxial tension, and data were fit to a phenomenological constitutive model. Strain-induced stiffening was evident from mechanical testing as nonlinear elasticity in both directions and computationally by a high correlation coefficient between the mechanical data and model (R(2)=0.89). Remodeling-induced stiffening was evident from a significant increase in the constitutive model stress parameter, which correlated with increased PA collagen content and decreased PA elastin content as measured histologically. The ability to differentiate between strain- and remodeling-induced stiffening in vivo may lead to tailored clinical treatments for PA stiffening in PH patients.

  9. CADASIL mutations and shRNA silencing of NOTCH3 affect actin organization in cultured vascular smooth muscle cells.

    PubMed

    Tikka, Saara; Ng, Yan Peng; Di Maio, Giuseppe; Mykkänen, Kati; Siitonen, Maija; Lepikhova, Tatiana; Pöyhönen, Minna; Viitanen, Matti; Virtanen, Ismo; Kalimo, Hannu; Baumann, Marc

    2012-12-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia caused by mutations in NOTCH3 gene. Pathology is manifested in small- and middle-sized arteries throughout the body, though primarily in cerebral white matter. Hemodynamics is altered in CADASIL and NOTCH3 is suggested to regulate actin filament polymerization and thereby vascular tone. We analyzed NOTCH3 expression and morphology of actin cytoskeleton in genetically genuine cultured human CADASIL vascular smooth muscle cells (VSMCs) (including a cell line homozygous for p.Arg133Cys mutation) derived from different organs, and in control VSMCs with short hairpin RNA (shRNA)-silenced NOTCH3. NOTCH3 protein level was higher in VSMCs derived from adult than newborn arteries in both CADASIL and control VSMCs. CADASIL VSMCs showed altered actin cytoskeleton including increased branching and node formation, and more numerous and smaller adhesion sites than control VSMCs. Alterations in actin cytoskeleton in shRNA-silenced VSMCs were similar as in CADASIL VSMCs. Severity of the alterations in actin filaments corresponded to NOTCH3 expression level being most severe in VSMCs derived from adult cerebral arteries. These observations suggest that hypomorphic NOTCH3 activity causes alterations in actin organization in CADASIL. Furthermore, arteries from different organs have specific characteristics, which modify the effects of the NOTCH3 mutation and which is one explanation for the exceptional susceptibility of cerebral white matter arteries.

  10. Vascular permeability, vascular hyperpermeability and angiogenesis

    PubMed Central

    Nagy, Janice A.; Benjamin, Laura; Zeng, Huiyan; Dvorak, Ann M.

    2008-01-01

    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability. PMID:18293091

  11. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    NASA Astrophysics Data System (ADS)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  12. Immune mechanisms in hypertension and vascular injury.

    PubMed

    Schiffrin, Ernesto L

    2014-02-01

    Over the last 20 years it has become recognized that low-grade inflammation plays a role in cardiovascular disease. More recently, participation of the innate and the adaptive immune response in mechanisms that contribute to inflammation in cardiovascular disease has been reported in atherosclerosis and hypertension. Different subsets of lymphocytes and their cytokines are involved in vascular remodelling in hypertension, chronic kidney disease and heart disease. Effector T-cells include Th1 (interferon-γ-producing) and Th2 (interleukin-4 producing) lymphocytes, as well as Th17 (which produce interleukin-17) and T-suppressor lymphocytes such as T(reg)-cells (regulatory T-cells), which express the transcription factor Foxp3 (forkhead box P3) and participate respectively as pro- and anti-inflammatory cells. Pro-inflammatory T-lymphocytes participate in mechanisms of cardiovascular disease in part by mediating the effects of angiotensin II and mineralocorticoids. Involvement of immune mechanisms in cardiac, vascular and renal changes in hypertension has been demonstrated in many experimental models, an example being the Dahl-salt sensitive rat and the spontaneously hypertensive rat. How activation of immunity is triggered remains unknown, but neo-antigens could be generated by elevated blood pressure through damage-associated molecular pattern receptors or other mechanisms. Once activated, Th1 cells may contribute to blood pressure elevation by affecting the kidney, vascular remodelling of blood vessels directly via the effects of the cytokines produced or through their effects on perivascular fat. T(reg)-cells protect from blood pressure elevation by acting upon similar targets. Recent data suggests that participation of these mechanisms that have been demonstrated already in murine models also occurs in humans. These novel findings may open the way for new therapeutic approaches to improve outcomes in hypertension and cardiovascular disease in humans.

  13. Vascular imaging in the elderly.

    PubMed

    Kalva, Sanjeeva P; Mueller, Peter R

    2008-07-01

    Though a myriad of vascular conditions affect the elderly, atherosclerosis remains the most common vascular disorder, followed by venous thromboembolism and varicose veins. In this article, the authors discuss the imaging of atherosclerosis affecting various vascular territories and pay special attention to the elderly population. The authors also discuss imaging findings of segmental arterial mediolysis, giant cell arteritis, and venous thromboembolism.

  14. Admixture mapping scans identify a locus affecting retinal vascular caliber in hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) study.

    PubMed

    Cheng, Ching-Yu; Reich, David; Wong, Tien Y; Klein, Ronald; Klein, Barbara E K; Patterson, Nick; Tandon, Arti; Li, Man; Boerwinkle, Eric; Sharrett, A Richey; Kao, W H Linda

    2010-04-15

    Retinal vascular caliber provides information about the structure and health of the microvascular system and is associated with cardiovascular and cerebrovascular diseases. Compared to European Americans, African Americans tend to have wider retinal arteriolar and venular caliber, even after controlling for cardiovascular risk factors. This has suggested the hypothesis that differences in genetic background may contribute to racial/ethnic differences in retinal vascular caliber. Using 1,365 ancestry-informative SNPs, we estimated the percentage of African ancestry (PAA) and conducted genome-wide admixture mapping scans in 1,737 African Americans from the Atherosclerosis Risk in Communities (ARIC) study. Central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) representing summary measures of retinal arteriolar and venular caliber, respectively, were measured from retinal photographs. PAA was significantly correlated with CRVE (rho = 0.071, P = 0.003), but not CRAE (rho = 0.032, P = 0.182). Using admixture mapping, we did not detect significant admixture association with either CRAE (genome-wide score = -0.73) or CRVE (genome-wide score = -0.69). An a priori subgroup analysis among hypertensive individuals detected a genome-wide significant association of CRVE with greater African ancestry at chromosome 6p21.1 (genome-wide score = 2.31, locus-specific LOD = 5.47). Each additional copy of an African ancestral allele at the 6p21.1 peak was associated with an average increase in CRVE of 6.14 microm in the hypertensives, but had no significant effects in the non-hypertensives (P for heterogeneity <0.001). Further mapping in the 6p21.1 region may uncover novel genetic variants affecting retinal vascular caliber and further insights into the interaction between genetic effects of the microvascular system and hypertension.

  15. Prevention and treatment of peritoneal adhesions in patients affected by vascular diseases following surgery: a review of the literature

    PubMed Central

    Aprea, Giovanni; Surfaro, Giuseppe; Amato, Maurizio; Giuliani, Antonio; Paccone, Marianna; Salzano, Andrea; Russo, Anna; Tafuri, Domenico; Amato, Bruno

    2016-01-01

    Abstract Intra-abdominal adhesions are the most frequently occurring postoperative complication following abdomino-pelvic surgery. Abdominal and pelvic surgery can lead to peritoneal adhesion formation causing infertility, chronic pelvic pain, and intestinal obstruction. Laparoscopy today is considered the gold standard of care in the treatment of several abdominal pathologies as well as in a wide range of vascular diseases. Laparoscopy has several advantages in comparison to open surgery. These include rapid recovery times, shorter hospitalisation, reduced postoperative pain, as well as cosmetic benefits. The technological improvements in this particular surgical field along with the development of modern techniques and the acquisition of specific laparoscopic skills have allowed for its wider utilization in operations with fully intracorporeal anastomoses. Postoperative adhesions are caused by aberrant peritoneal healing and are the leading cause of postoperative bowel obstruction. The use of anti-adherence barriers is currently being advocated for their prevention. The outcome of the investigation showed adhesion formation inhibition without direct detrimental effects on anastomotic healing. Poor anasto-motic healing can provoke adhesions even in the presence of anti-adhesion barriers. This review gives a short overview on the current evidence on the pathophysiology and prevention of peritoneal adhesions. PMID:28352777

  16. Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

    PubMed Central

    Kim, Hae Jin

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high K+ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-NG-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling. PMID:27847441

  17. Administration of thyroxine affects the morphometric parameters and VEGF expression in the uterus and placenta and the uterine vascularization but does not affect reproductive parameters in gilts during early gestation.

    PubMed

    Souza, C A; Ocarino, N M; Silva, J F; Boeloni, J N; Nascimento, E F; Silva, I J; Castro, R D; Moreira, L P; Almeida, F R C L; Chiarini-Garcia, H; Serakides, R

    2011-02-01

    The aim of this study was to evaluate the effects of thyroxine administration on morphometric parameters, expression of vascular endothelial growth factor (VEGF) and vascularization in the uterus and placenta and reproductive parameters in gilts at 70 days of gestation. At 150 days of age, i.e., before first heat, 20 gilts were randomly divided into two experimental groups: treated (n=10) and control (n=10). The treated group received a daily dose of 400 μg of L-thyroxine (T(4)) in their diet until slaughter and the control group received only typical meals. Before artificial insemination, blood was collected to determine plasma total T(4). The gilts were inseminated in the second oestrus and slaughtered at 70 days of gestation. The foetal thyroid follicular epithelium height, number, size and weight of foetuses; foetal myogenesis, corpora lutea number, embryonic mortality rate, uterine weight, placental weight and placental fluid volume were measured. Histomorphometric and immunohistochemical analysis of uterus and placenta were determined. The averages of all variables were compared by the Student's t-test. The gilts treated with thyroxine showed significant increase of plasma total T(4). At 70 days of gestation, the heights of the trophoblastic epithelium, endometrial epithelium and endometrial gland epithelium were significantly higher in the group treated with T(4). The expression of cytoplasmatic and nuclear VEGF in trophoblastic cells and the number of blood vessels per field in endometrial stroma were significantly higher in the gilts treated with T(4). No other significant differences between groups were obtained with respect to other parameters (p>0.05). We conclude that oral administration of T(4) up to 70 days of pregnancy in gilts affects the morphometric parameters, the expression of placental VEGF and the uterine vascularization but does not affect reproductive parameters in gilts during early gestation.

  18. Remodeling A School Shop?

    ERIC Educational Resources Information Center

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  19. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis

    PubMed Central

    2014-01-01

    Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and

  20. Does the type and size of Amplatzer vascular plug affect the occlusion time of pulmonary arteriovenous malformations?

    PubMed Central

    Abdel-Aal, Ahmed Kamel; Massoud, Moustafa Omar; Elantably, Dina Mahmoud

    2017-01-01

    PURPOSE Occlusion time (OT) is an important factor in the treatment of pulmonary arteriovenous malformations (PAVMs) since it can lead to serious complications. The purpose of our study is to calculate the OT of Amplatzer vascular plug (AVP, St Jude Medical), and correlate it to the type of the device used (AVP or AVP 2) and the percent of device oversizing. Technical success rates and complications were also recorded. METHODS We retrospectively studied a total of 19 patients with 47 PAVMs who received percutaneous transcatheter embolization therapy using either AVP or AVP 2. We recorded the location, type, feeding artery diameter, AVP device used, and OT of each PAVM. We correlated the percent of device oversizing and the type of AVP with the OT. We also studied the rate of persistence of PAVM for both devices. RESULTS Forty-six (98%) of the PAVMs were simple. Device diameters ranged from 4.0–16.0 mm with device oversizing ranging between 14% and 120%. There was a statistically significant difference in the OT of AVP and AVP 2 (3 min 54 s vs. 5 min 30 s, P = 0.030). There was a weak positive correlation between OT and device oversizing for AVP (r=0.246, P = 0.324) and AVP 2 (r=0.261, P = 0.240). No major complications were identified. Immediate technical success rate was 100%. CONCLUSION The use of AVP 2, and increase in device oversizing were not associated with reduction in the OT of PAVMs. There was no reported difference in safety between the two devices, and no major complications were noted. PMID:27856403

  1. Bromovirus movement protein conditions for the host specificity of virus movement through the vascular system and affects pathogenicity in cowpea.

    PubMed

    Fujita, Y; Fujita, M; Mise, K; Kobori, T; Osaki, T; Furusawa, I

    2000-11-01

    Previously, we reported that CCMV(B3a), a hybrid of bromovirus Cowpea chlorotic mottle virus (CCMV) with the 3a cell-to-cell movement protein (MP) gene replaced by that of cowpea-nonadapted bromovirus Brome mosaic virus (BMV), can form small infection foci in inoculated cowpea leaves, but that expansion of the foci stops between 1 and 2 days postinoculation. To determine whether the lack of systemic movement of CCMV(B3a) is due to restriction of local spread at specific leaf tissue interfaces, we conducted more detailed analyses of infection in inoculated leaves. Tissue-printing and leaf press-blotting analyses revealed that CCMV(B3a) was confined to the inoculated cowpea leaves and exhibited constrained movement into leaf veins. Immunocytochemical analyses to examine the infected cell types in inoculated leaves indicated that CCMV(B3a) was able to reach the bundle sheath cells through the mesophyll cells and successfully infected the phloem cells of 50% of the examined veins. Thus, these data demonstrate that the lack of long-distance movement of CCMV(B3a) is not due to an inability to reach the vasculature, but results from failure of the virus to move through the vascular system of cowpea plants. Further, a previously identified 3a coding change (A776C), which is required for CCMV(B3a) systemic infection of cowpea plants, suppressed formation of reddish spots, mediated faster spread of infection, and enabled the virus to move into the veins of inoculated cowpea leaves. From these data, and the fact that CCMV(B3a) directs systemic infection in Nicotiana benthamiana, a permissive systemic host for both BMV and CCMV, we conclude that the bromovirus 3a MP engages in multiple activities that contribute substantially to host-specific long-distance movement through the phloem.

  2. Changes in vascular and transpiration flows affect the seasonal and daily growth of kiwifruit (Actinidia deliciosa) berry

    PubMed Central

    Morandi, Brunella; Manfrini, Luigi; Losciale, Pasquale; Zibordi, Marco; Corelli Grappadelli, Luca

    2010-01-01

    Background and Aims The kiwifruit berry is characterized by an early stage of rapid growth, followed by a relatively long stage of slow increase in size. Vascular and transpiration flows are the main processes through which water and carbon enter/exit the fruit, determining the daily and seasonal changes in fruit size. This work investigates the biophysical mechanisms underpinning the change in fruit growth rate during the season. Methods The daily patterns of phloem, xylem and transpiration in/outflows have been determined at several stages of kiwifruit development, during two seasons. The different flows were quantified by comparing the diurnal patterns of diameter change of fruit, which were then girdled and subsequently detached while measurements continued. The diurnal courses of leaf and stem water potential and of fruit pressure potential were also monitored at different times during the season. Key Results Xylem and transpiration flows were high during the first period of rapid volume growth and sharply decreased with fruit development. Specific phloem import was lower and gradually decreased during the season, whereas it remained constant at whole-fruit level, in accordance with fruit dry matter gain. On a daily basis, transpiration always responded to vapour pressure deficit and contributed to the daily reduction of fruit hydrostatic pressure. Xylem flow was positively related to stem-to-fruit pressure potential gradient during the first but not the last part of the season, when xylem conductivity appeared to be reduced. Conclusions The fruit growth model adopted by this species changes during the season due to anatomical modifications in the fruit features. PMID:20382641

  3. Hyperthermia Severely Affects the Vascular Effects of MDMA and Metabolites in the Human Internal Mammary Artery In Vitro.

    PubMed

    Fonseca, D A; Guerra, A F; Carvalho, F; Fernandes, E; Ferreira, L M; Branco, P S; Antunes, P E; Antunes, M J; Cotrim, M D

    2017-01-13

    3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a recreational drug used worldwide for its distinctive psychotropic effects. Although important cardiovascular effects, such as increased blood pressure and heart rate, have also been described, the vascular effects of MDMA and metabolites and their correlation with hyperthermia (major side effect of MDMA) are not yet fully understood and have not been previously reported. This study aimed at evaluating the effects of MDMA and its main catechol metabolites, alpha-methyldopamine (α-MeDA), N-methyl-alpha-methyldopamine (N-Me-α-MeDA), 5-(glutathion-S-yl)-alpha-methyldopamine [5-(GSH)-α-MeDA] and 5-(glutathion-S-yl)-N-methyl-alpha-methyldopamine [5-(GSH)-N-Me-α-MeDA], on the 5-HT-dependent vasoactivity in normothermia (37 °C) and hyperthermia (40 °C) of the human internal mammary artery (IMA) in vitro. The results showed the ability of MDMA, α-MeDA and N-Me-α-MeDA to exert vasoconstriction of the IMA which was considerably higher in hyperthermic conditions (about fourfold for MDMA and α-MeDA and twofold for N-Me-α-MeDA). The results also showed that all the compounds may influence the 5-HT-mediated concentration-dependent response of IMA, as MDMA, α-MeDA and N-Me-α-MeDA behaved as partial agonists and 5-(GSH)-α-MeDA and 5-(GSH)-N-Me-α-MeDA as antagonists. In conclusion, MDMA abuse may imply a higher cardiovascular risk associated both to MDMA and its metabolites that might be relevant in patients with underlying cardiovascular diseases, particularly in hyperthermia.

  4. Vascular narrowing in pulmonary arterial hypertension is heterogeneous: rethinking resistance.

    PubMed

    Rol, Nina; Timmer, Esther M; Faes, Theo J C; Noordegraaf, Anton Vonk; Grünberg, Katrien; Bogaard, Harm-Jan; Westerhof, Nico

    2017-03-01

    In idiopathic pulmonary arterial hypertension (PAH), increased pulmonary vascular resistance is associated with structural narrowing of small (resistance) vessels and increased vascular tone. Current information on pulmonary vascular remodeling is mostly limited to averaged increases in wall thickness, but information on number of vessels affected and internal diameter decreases for vessels of different sizes is limited. Our aim was to quantify numbers of affected vessels and their internal diameter decrease for differently sized vessels in PAH in comparison with non-PAH patients. Internal and external diameters of transversally cut vessels were measured in five control subjects and six PAH patients. Resistance vessels were classified in Strahler orders, internal diameters 13 μm (order 1) to 500 μm (order 8). The number fraction, that is, percentage of affected vessels, and the internal diameter fraction, that is, percentage diameter of normal diameter, were calculated. In PAH, not all resistance vessels are affected. The number fraction is about 30%, that is, 70% of vessels have diameters not different from vessels of control subjects. Within each order, the decrease in diameter of affected vessels is variable with an averaged diameter fraction of 50-70%. Narrowing of resistance vessels is heterogeneous: not all vessels are narrowed, and the decrease in internal diameters, even within a single order, vary largely. This heterogeneous narrowing alone cannot explain the large resistance increase in PAH We suggest that rarefaction could be an important contributor to the hemodynamic changes.

  5. Free Fatty Acids Induce Autophagy and LOX-1 Upregulation in Cultured Aortic Vascular Smooth Muscle Cells.

    PubMed

    Cheng, Cheng-I; Lee, Yueh-Hong; Chen, Po-Han; Lin, Yu-Chun; Chou, Ming-Huei; Kao, Ying-Hsien

    2016-11-05

    Elevation of free fatty acids (FFAs) is known to affect microvascular function and contribute to obesity-associated insulin resistance, hypertension, and microangiopathy. Proliferative and synthetic vascular smooth muscle cells (VSMCs) increase intimal thickness and destabilize atheromatous plaques. This study aimed to investigate whether saturated palmitic acid (PA) and monounsaturated oleic acid (OA) modulate autophagy activity, cell proliferation, and vascular tissue remodeling in an aortic VSMC cell line. Exposure to PA and OA suppressed growth of VSMCs without apoptotic induction, but enhanced autophagy flux with elevation of Beclin-1, Atg5, and LC3I/II. Cotreatment with autophagy inhibitors potentiated the FFA-suppressed VSMC growth and showed differential actions of PA and OA in autophagy flux retardation. Both FFAs upregulated lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) but only OA increased LDL uptake by VSMCs. Mechanistically, FFAs induced hyperphosphorylation of Akt, ERK1/2, JNK1/2, and p38 MAPK. All pathways, except OA-activated PI3K/Akt cascade, were involved in the LOX-1 upregulation, whereas blockade of PI3K/Akt and MEK/ERK cascades ameliorated the FFA-induced growth suppression on VSMCs. Moreover, both FFAs exhibited tissue remodeling effect through increasing MMP-2 and MMP-9 expression and their gelatinolytic activities, whereas high-dose OA significantly suppressed collagen type I expression. Conversely, siRNA-mediated LOX-1 knockdown significantly attenuated the OA-induced tissue remodeling effects in VSMCs. In conclusion, OA and PA enhance autophagy flux, suppress aortic VSMC proliferation, and exhibit vascular remodeling effect, thereby leading to the loss of VSMCs and interstitial ECM in vascular walls and eventually the instability of atheromatous plaques. J. Cell. Biochem. 9999: 1-13, 2016. © 2016 Wiley Periodicals, Inc.

  6. Pathophysiology and clinical relevance of pulmonary remodelling in pulmonary hypertension due to left heart diseases.

    PubMed

    Dupuis, Jocelyn; Guazzi, Marco

    2015-04-01

    Pulmonary hypertension (PH) in left heart disease, classified as group II, is the most common form of PH that occurs in approximately 60% of cases of reduced and preserved left ventricular ejection fraction. Although relatively much is known about hemodynamic stages (passive or reactive) and their consequences on the right ventricle (RV) there is no consensus on the best hemodynamic definition of group II PH. In addition, the main pathways that lead to lung capillary injury and impaired biology of small artery remodelling processes are largely unknown. Typical lung manifestations of an increased pulmonary pressure and progressive RV-pulmonary circulation uncoupling are an abnormal alveolar capillary gas diffusion, impaired lung mechanics (restriction), and exercise ventilation inefficiency. Of several classes of pulmonary vasodilators currently clinically available, oral phosphodiesterase 5 inhibition, because of its strong selectivity for targeting the cyclic guanosine monophosphate pathway in the pulmonary circulation, is increasingly emerging as an attractive opportunity to reach hemodynamic benefits, reverse capillary injury, and RV remodelling, and improve functional capacity. Guanylate cyclase stimulators offer an additional intriguing opportunity but the lack of selectivity and systemic effects might preclude some of the anticipated benefits on the pulmonary circulation. Future trials will determine whether new routes of pharmacologic strategy aimed at targeting lung structural and vascular remodelling might affect morbidity and mortality in left heart disease populations. We believe that this therapeutic goal rather than a pure hemodynamic effect might ultimately emerge as an important challenge for the clinician.

  7. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction

    PubMed Central

    Yoshizumi, Tomo; Zhu, Yang; Jiang, Hongbin; D’Amore, Antonio; Sakaguchi, Hirokazu; Tchao, Jason; Tobita, Kimimasa; Wagner, William R.

    2016-01-01

    Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes. PMID:26774561

  8. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction.

    PubMed

    Yoshizumi, Tomo; Zhu, Yang; Jiang, Hongbin; D'Amore, Antonio; Sakaguchi, Hirokazu; Tchao, Jason; Tobita, Kimimasa; Wagner, William R

    2016-03-01

    Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes.

  9. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension.

    PubMed

    Schiffrin, Ernesto L

    2015-12-04

    This review summarizes my lecture for the 2015 Distinguished Scientist Award from the Canadian Society of Clinical Investigation, and is based mainly on studies in my laboratory on the mechanisms of remodelling of small arteries in experimental animal and human hypertension and on treatments that lower blood pressure and improve structure and function of resistance vessels. Small resistance arteries undergo either inward eutrophic or hypertrophic remodelling, which raises blood pressure and impairs tissue perfusion. These vascular changes are corrected by some antihypertensive drugs, which may lead to improved outcomes. Vasoconstriction, growth, oxidative stress and inflammation are some of the mechanisms, within the vascular wall, that can be beneficially affected by antihypertensive agents. These antihypertensive-sensitive mechanisms are reviewed in this review, together with the inflammatory and immune mechanisms that may participate in hypertension and associated cardiovascular injury. Molecular studies, based on this research, will hopefully identify novel diagnostic and therapeutic targets, which will improve our ability to prevent and treat hypertension and cardiovascular disease.

  10. TGF-beta and TNF-a affect cell surface proteoglycan and sialic acid expression on vascular endothelial cells.

    PubMed

    Doiron, Amber L; Kirkpatrick, Allison P; Rinker, Kristina D

    2004-01-01

    Atherosclerosis is the formation of plaques in the arterial wall brought about by numerous events including the accumulation of oxidized low density lipoprotein (LDL), stimulation of inflammatory responses, the release of cytokines, and the attachment of monocytes to the arterial wall. Proteoglycans are implicated in many aspects of atherosclerosis including the metabolism of lipoproteins, regulation of cytokine activity, cell adhesion, and modification of the extracellular matrix. Due to their complex role in molecular recognition and cellular adhesion, the glycosaminoglycan (GAG) chains attached to the proteoglycan core and sialic acids on the terminal ends of the glycan chains are of interest. This study investigated the effects of exposure to transforming growth factor-beta 1 (TGF-beta 1) and tumor necrosis factor-a (TNF-a) on the expression of cell surface GAGs and sialic acids on human umbilical vein endothelial cells (HUVECs). Initial results show that TGF-beta 1 affected GAG expression compared to a control condition. Results also show that the combination of TGF-beta 1 and TNF-a affected GAG expression differently than does TGF-beta 1 alone. Additionally, TNF-a decreased the number of sialic acid residues per cell and TGF-beta 1 slightly upregulated sialic acid expression as compared to the control. The combination of the two cytokines showed a larger upward trend in this value. These data indicate that TNF-a and TGF-beta 1 play a role in the expression of GAG chains and sialic acids on the cell surface. Further study may clarify the implications of these findings for atherosclerosis.

  11. Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development.

    PubMed

    Luan, Yunxia; Wang, Baosheng; Zhao, Qian; Ao, Guangming; Yu, Jingjuan

    2010-12-01

    Plant architecture determines grain production in rice (Oryza sativa) and is affected by important agronomic traits such as tillering, plant height, and panicle morphology. Many key genes involved in controlling the initiation and outgrowth of axillary buds, the elongation of stems, and the architecture of inflorescences have been isolated and analyzed. Previous studies have shown that SiPf40, which was identified from a foxtail millet (Setaria italica) immature seed cDNA library, causes extra branches and tillers in SiPf40-transgenic tobacco and foxtail millet, respectively. To reconfirm its function, we generated transgenic rice plants overexpressing SiPf40 under the control of the ubiquitin promoter. SiPf40-overexpressing transgenic plants have a greater tillering number and a wider tiller angle than wild-type plants. Their root architecture is modified by the promotion of lateral root development, and the distribution of xylem and phloem in the vascular bundle is affected. Analysis of hormone levels showed that the ratios of indole-3-acetic acid/zeatin (IAA/ZR) and IAA/gibberellic acid (IAA/GA) decreased in SiPf40-transgenic plants compared with wild-type plants. These findings strongly suggest that SiPf40 plays an important role in plant architecture.

  12. Critical role of nucleotide-binding oligomerization domain-like receptor 3 in vascular repair

    SciTech Connect

    Schlaweck, Sebastian; Zimmer, Sebastian; Struck, Rafael; Werner, Nikos; Latz, Eicke; Nickenig, Georg; Ghanem, Alexander

    2011-08-05

    Highlights: {yields} NLRP3 is not required for systemic cardiovascular function in healthy mice. {yields} NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and that it does not alter peripheral differential blood counts. {yields} NLRP3 is critical in neointima formation following vascular injury. -- Abstract: Vascular remodeling characterized by hyperproliferative neointima formation is an unfavorable repair process that is triggered by vascular damage. This process is characterized by an increased local inflammatory and proliferative response that critically involves the pro-inflammatory cytokine interleukin-1{beta} (IL-1{beta}). IL-1{beta} is expressed and cytosolically retained as a procytokine that requires additional processing prior to exerting its pro-inflammatory function. Maturation and release of pro IL-1{beta} is governed by a cytosolic protein scaffold that is known as the inflammasome. Here we show that NLRP3 (NOD-like receptor family, pryin domain containing 3), an important activating component of the inflammasome, is involved in neointima formation after vascular injury. NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and does not alter peripheral differential blood counts. However, neointima development following wire injury of the carotid artery was significantly decreased in NLRP3-deficient mice as compared to wild-type controls. In all, NLRP3 plays a non-redundant role in vascular damage mediated neointima formation. Our data establish NLRP3 as a key player in the response to vascular damage, which could open new avenues to therapeutic intervention.

  13. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    PubMed

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-01-10

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  14. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

    PubMed

    Kusch, Angelika; Tkachuk, Sergey; Lutter, Steffen; Haller, Hermann; Dietz, Rainer; Lipp, Martin; Dumler, Inna

    2002-01-01

    Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.

  15. Remodeling the Media Center.

    ERIC Educational Resources Information Center

    Baule, Steven M.

    1998-01-01

    Discusses items that need to be considered when remodeling a school media center. Highlights include space and location for various functions, including projections of print versus electronic media; electrical and data wiring needs; lighting; security and supervision; and reuse of existing furniture and equipment. (LRW)

  16. Vascular Cognitive Impairment.

    PubMed

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts.

  17. Relation between baseline plaque features and subsequent coronary artery remodeling determined by optical coherence tomography and intravascular ultrasound.

    PubMed

    Xie, Zulong; Dong, Nana; Sun, Rong; Liu, Xinxin; Gu, Xia; Sun, Yong; Du, Hongwei; Dai, Jiannan; Liu, Youbin; Hou, Jingbo; Tian, Jinwei; Yu, Bo

    2017-01-17

    Atherosclerosis often leads to myocardial infarction and stroke. We examined the influence of baseline plaque characteristics on subsequent vascular remodeling in response to changes in plaque size. Using optical coherence tomography (OCT) and intravascular ultrasound (IVUS), we examined 213 plaques from 138 patients with acute coronary syndrome at baseline and repeated IVUS at the 12-month follow-up. The change in external elastic membrane (EEM) area for each 1 mm2 change in plaque area (i.e., the slope of the regression line) was calculated as a measure of vascular remodeling capacity. In plaques with static positive remodeling, the slope was smaller than in plaques without static positive remodeling. In addition, the slope of the regression line for lesions with a large plaque burden was much smaller than that for lesions with a small plaque burden. Multivariate linear regression analysis showed that diabetes, calcification and static positive remodeling were inversely and independently associated with the level of change in EEM area/change in plaque area. Lesions with a large plaque burden, calcifications or static positive remodeling had less remodeling capacity, and calcification and static positive remodeling were independent predictors of reduced subsequent remodeling. Therefore, calcifications and static positive remodeling could be used as morphological biomarkers to predict decreased subsequent arterial remodeling.

  18. Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis

    PubMed Central

    2014-01-01

    Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both coronary and systemic arteries. Further evidence suggests that continuous low grade inflammation and ongoing active remodeling of coronary arterial lesions occur late after acute illness and may play a role in structural and functional alterations of the arteries. Potential importance of genetic modulation on vascular health late after KD is implicated by associations between mannose binding lectin and inflammatory gene polymorphisms with severity of peripheral arterial stiffening and carotid intima-media thickening. The changes in cholesterol and lipoproteins levels late after KD further appear similar to those proposed to be atherogenic. While data on adverse vascular health are less controversial in patients with persistent or regressed coronary arterial aneurysms, data appear conflicting in individuals with no coronary arterial involvements or only transient coronary ectasia. Notwithstanding, concerns have been raised with regard to predisposition of KD in childhood to accelerated atherosclerosis in adulthood. Until further evidence-based data are available, however, it remains important to assess and monitor cardiovascular risk factors and to promote cardiovascular health in children with a history of KD in the long term. PMID:25550701

  19. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  20. Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    NASA Astrophysics Data System (ADS)

    Karau, Kelly L.; Molthen, Robert C.; Johnson, Roger H.; Dhyani, Anita H.; Haworth, Steven T.; Dawson, Christopher A.

    2001-05-01

    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This 'self-consistency' property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns.

  1. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    PubMed

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[(14)C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia.

  2. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  3. Nogo-A regulates vascular network architecture in the postnatal brain.

    PubMed

    Wälchli, Thomas; Ulmann-Schuler, Alexandra; Hintermüller, Christoph; Meyer, Eric; Stampanoni, Marco; Carmeliet, Peter; Emmert, Maximilian Y; Bozinov, Oliver; Regli, Luca; Schwab, Martin E; Vogel, Johannes; Hoerstrup, Simon P

    2017-02-01

    Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.

  4. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  5. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats

    PubMed Central

    Eros, Krisztian; Magyar, Klara; Deres, Laszlo; Skazel, Arpad; Riba, Adam; Vamos, Zoltan; Kalai, Tamas; Gallyas, Ferenc; Sumegi, Balazs; Toth, Kalman

    2017-01-01

    Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative

  6. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  7. Vascular quality of care pilot study: how admission to a vascular surgery service affects evidence-based pharmacologic risk factor modification in patients with lower extremity peripheral arterial disease

    PubMed Central

    Steenhof, Naomi; Le Piane, Francesca; Leblanc, Kori; Eisenberg, Naomi R; Kwan, Yvonne; Malmberg, Christine; Papadopoulos, Alexandra; Roche-Nagle, Graham

    2014-01-01

    Background Peripheral arterial disease (PAD) guidelines recommend aggressive risk factor modification to improve cardiovascular outcomes. Recommended pharmacologic therapies include antiplatelets, angiotensin converting enzyme (ACE) inhibitors, and HMG-CoA-reductase inhibitors (statins). Purpose We studied the degree to which patient admission to a vascular surgery service increased the use of these therapies. Patients and methods The authors conducted a retrospective chart review of 150 patients with PAD admitted to the vascular surgery service at a large Canadian tertiary care hospital. The use of recommended pharmacologic therapies at the time of admission and discharge were compared. A multidisciplinary clinical team established criteria by which patients were deemed ineligible to receive any of the recommended therapies. Angiotensin receptor blockers (ARBs) were considered an alternative to ACE inhibitors. Results Prior to hospital admission, 64% of patients were on antiplatelet therapy, 67% were on an ACE inhibitor or ARB, and 71% were on a statin. At the time of discharge, 91% of patients were on an antiplatelet (or not, with an acceptable reason), 77% were on an ACE inhibitor or an ARB (or not, with an acceptable reason), and 85% were on a statin (or not, with an acceptable reason). While new prescriptions were largely responsible for improved guideline adherence with antiplatelets and statins, most of the apparent improvement in ACE inhibitor and ARB use was the result of identifying an acceptable reason for not having them prescribed. Conclusion This hypothesis generating pilot study supports the findings of others that there is suboptimal prescription of pharmacologic risk reduction therapies in the PAD population. Admission to a vascular service increases these rates. Nevertheless, some patients are still not receiving evidence-based treatment at discharge even after consideration of acceptable reasons. Strategies are needed to improve PAD guideline

  8. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    NASA Astrophysics Data System (ADS)

    Erlbacher, K. M. T.; Minnich, B.

    2015-10-01

    The present study focuses on the effects of Δ9-tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ9-THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ9-tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ9-THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry.

  9. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.

    PubMed

    Brea, Roberto J; Rudd, Andrew K; Devaraj, Neal K

    2016-08-02

    Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.

  10. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling

    PubMed Central

    Shi, Mingjun; Cho, Han Jun; Adams-Huet, Beverley; Paek, Jean; Hill, Kathy; Shelton, John; Amaral, Ansel P.; Faul, Christian; Taniguchi, Masatomo; Wolf, Myles; Brand, Markus; Takahashi, Masaya; Kuro-o, Makoto; Hill, Joseph A.

    2015-01-01

    Cardiac dysfunction in CKD is characterized by aberrant cardiac remodeling with hypertrophy and fibrosis. CKD is a state of severe systemic Klotho deficiency, and restoration of Klotho attenuates vascular calcification associated with CKD. We examined the role of Klotho in cardiac remodeling in models of Klotho deficiency—genetic Klotho hypomorphism, high dietary phosphate intake, aging, and CKD. Klotho-deficient mice exhibited cardiac dysfunction and hypertrophy before 12 weeks of age followed by fibrosis. In wild-type mice, the induction of CKD led to severe cardiovascular changes not observed in control mice. Notably, non-CKD mice fed a high-phosphate diet had lower Klotho levels and greatly accelerated cardiac remodeling associated with normal aging compared with those on a normal diet. Chronic elevation of circulating Klotho because of global overexpression alleviated the cardiac remodeling induced by either high-phosphate diet or CKD. Regardless of the cause of Klotho deficiency, the extent of cardiac hypertrophy and fibrosis correlated tightly with plasma phosphate concentration and inversely with plasma Klotho concentration, even when adjusted for all other covariables. High-fibroblast growth factor–23 concentration positively correlated with cardiac remodeling in a Klotho-deficient state but not a Klotho-replete state. In vitro, Klotho inhibited TGF-β1–, angiotensin II–, or high phosphate–induced fibrosis and abolished TGF-β1– or angiotensin II–induced hypertrophy of cardiomyocytes. In conclusion, Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor–23 may contribute to cardiac remodeling in concert with Klotho deficiency in CKD, phosphotoxicity, and aging. PMID:25326585

  11. The Effect of Hemodynamic Remodeling on the Survival of Arterialized Venous Flaps

    PubMed Central

    Yan, Hede; Kolkin, Jon; Zhao, Bin; Li, Zhefeng; Jiang, Shichao; Wang, Wei; Xia, Zhen; Fan, Cunyi

    2013-01-01

    Objective To evaluate the effect of hemodynamic remodeling on the survival status of the arterialized venous flaps (AVFs) and investigate the mechanism of this procedure. Materials and Methods Two 7 x 9 cm skin flaps in each rabbit (n=36) were designed symmetrically in the abdomen. The thoracoepigastric pedicle and one femoral artery were used as vascular sources. Four groups were included: Composite skin grafts group and arterial perfusion group were designed in one rabbit; AVF group and hemodynamic remodeling group by ligation of the thoracoepigastric vein in the middle were outlined in another rabbit. Flap viability, status of vascular perfusion and microvasculature, levels of epidermal metabolite and water content in each group were assessed. Results Highly congested veins and simple trunk veins were found using angiography in the AVF group; while a fairly uniform staining and plenty of small vessels were observed in the hemodynamic remodeling group. The metabolite levels of the remodeling group are comparable with those in the arterial perfusion group. There was no statistically significant difference in the percentage of flap survival between the arterial perfusion group and hemodynamic remodeling group; however, significant difference was seen between the AVF group and the hemodynamic remodeling group. Conclusions Under the integrated perfusion mode, the AVFs are in an over-perfusion and non-physiological hemodynamic state, resulting in unreliability and unpredictability in flap survival; under the separated perfusion mode produced by remodeling, a physiological-like circulation will be created and therefore, better flap survival can be expected. PMID:24265782

  12. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  13. Uteroplacental circulation and fetal vascular function and development.

    PubMed

    Thornburg, Kent L; Louey, Samantha

    2013-09-01

    Although blood flow in the placental vasculature is governed by the same physiological forces of shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de novo during embryonic development but blood does not flow through the placenta until late in the first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation over the course of pregnancy, and is affected differently by mechanical and chemical regulators of vascular tone compared to other organs. The processes that match placental vascular growth and fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The subtle changes that cause the failure of the normally regulated vascular processes during pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic strategies to reverse detrimental placental perfusion patterns have yet to be investigated.

  14. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy.

    PubMed

    Kim, Soo Young; Porter, Brenda E; Friedman, Alon; Kaufer, Daniela

    2016-09-01

    Head trauma and vascular injuries are known risk factors for acquired epilepsy. The sequence of events that lead from the initial injury to the development of epilepsy involves complex plastic changes and circuit rewiring. In-depth, comprehensive understanding of the epileptogenic process is critical for the identification of disease-modifying targets. Here we review the complex interactions of cellular and extracellular components that may promote epileptogenesis, with an emphasis on the role of astrocytes. Emerging evidence demonstrates that astrocytes promptly respond to brain damage and play a critical role in the development of postinjury epilepsy. Astrocytes have been shown to regulate extracellular matrix (ECM) remodeling, which can affect plasticity and stability of synapses and, in turn, contribute to the epileptogenic process. From these separate lines of evidence, we present a hypothesis suggesting a possible role for astrocyte-regulated remodeling of ECM and perineuronal nets, a specialized ECM structure around fast-spiking inhibitory interneurons, in the development and progression of posttraumatic epilepsies. © 2016 Wiley Periodicals, Inc.

  15. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    PubMed

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC.

  16. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  17. Consequences of postnatal vascular smooth muscle EGFR deletion on acute angiotensin II action.

    PubMed

    Schreier, Barbara; Hünerberg, Mirja; Rabe, Sindy; Mildenberger, Sigrid; Bethmann, Daniel; Heise, Christian; Sibilia, Maria; Offermanns, Stefan; Gekle, Michael

    2016-01-01

    Epi dermal growth factor (EGF) receptor (EGFR) is activated by its canonical ligands and transactivated by various vasoactive substances, e.g. angiotensin II (Ang II). Vascular EGFR has been proposed to be involved in vascular tissue homoeostasis and remodelling. Thus, most studies have focused on its role during long-term vascular changes whereas the relevance for acute regulation of vascular function in vivo and ex vivo is insufficiently understood. To investigate the postnatal role of VSMCs (vascular smooth muscle cells) EGFR in vivo and ex vivo, we generated a mouse model with cell-specific and inducible deletion of VSMC EGFR and studied the effect on basal blood pressure, acute pressure response to, among others, Ang II in vivo as well as ex vivo, cardiovascular tissue homoeostasis and vessel morphometry in male mice. In knockout (KO) animals, systolic, diastolic and mean blood pressures were reduced compared with wild-type (WT). Furthermore, Ang II-induced pressure load was lower in KO animals, as was Ang II-induced force development and extracellular-signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in aortic rings from KO animals. By contrast, we observed no difference in force development during application of serotonin, KCl, endothelin-1 or endothelin-1-induced pressure load in KO animals. In addition, nitric oxide (NO)-mediated vasodilation was not affected. Heart weight (HW) increase and up-regulation of aortic and cardiac expression of Ccl2 (chemoattractant protein-2) and serpinE1 (plasminogen activator inhibitor 1) during the transition from 4- to 10-months of age were prevented by VSMC EGFR KO. We conclude that VSMC EGFR is involved in basal blood pressure homoeostasis and acute pressure response to Ang II, and thereby contributes to maturation-related remodelling.

  18. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  19. Vascular compression syndromes.

    PubMed

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.

  20. Vascular development and hemodynamic force in the mouse yolk sac

    PubMed Central

    Garcia, Monica D.; Larina, Irina V.

    2014-01-01

    Vascular remodeling of the mouse embryonic yolk sac is a highly dynamic process dependent on multiple genetic signaling pathways as well as biomechanical factors regulating proliferation, differentiation, migration, cell-cell, and cell-matrix interactions. During this early developmental window, the initial primitive vascular network of the yolk sac undergoes a dynamic remodeling process concurrent with the onset of blood flow, in which endothelial cells establish a branched, hierarchical structure of large vessels and smaller capillary beds. In this review, we will describe the molecular and biomechanical regulators which guide vascular remodeling in the mouse embryonic yolk sac, as well as live imaging methods for characterizing endothelial cell and hemodynamic function in cultured embryos. PMID:25191274

  1. Ultrasound -- Vascular

    MedlinePlus

    ... plan for their effective treatment. detect blood clots (deep venous thrombosis (DVT) in the major veins of ... What are the limitations of Vascular Ultrasound? Vessels deep in the body are harder to see than ...

  2. Vascular Dementia

    MedlinePlus

    ... attack) may increase your risk of developing dementia. Atherosclerosis. This condition occurs when deposits of cholesterol and ... in your arteries and narrow your blood vessels. Atherosclerosis can increase your risk of vascular dementia — and ...

  3. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  4. Retinal remodeling triggered by photoreceptor degenerations.

    PubMed

    Jones, Bryan W; Watt, Carl B; Frederick, Jeanne M; Baehr, Wolfgang; Chen, Ching-Kang; Levine, Edward M; Milam, Ann H; Lavail, Matthew M; Marc, Robert E

    2003-09-08

    Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed.

  5. Mechanisms of epigenetic remodelling during preimplantation development.

    PubMed

    Ross, Pablo Juan; Canovas, Sebastian

    2016-01-01

    Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in

  6. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  7. Building and Remodeling Synapses

    PubMed Central

    Benson, Deanna L.; Huntley, George W.

    2011-01-01

    Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity. PMID:20882551

  8. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus)

    PubMed Central

    Cañas, Daniel; Herrera, Emilio A.; García-Herrera, Claudio; Celentano, Diego; Krause, Bernardo J.

    2017-01-01

    Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic diseases in adulthood which could involve remodeling processes of the vascular walls that could start in the fetal period. However, there is no consensus whether this remodeling affects in a similar way the whole vascular system. We aimed to determine the effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic vessels in fetal guinea pigs. Methods: FGR was induced by implanting ameroid occluders at mid-gestation in uterine arteries of pregnant guinea pigs, whilst the control group was exposed to simulated surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and umbilical vessels were isolated to determine ex vivo contractile and biomechanical responses (stretch-stress until rupture) on a wire myograph, as well as opening angle and residual stresses. Histological characteristics in tissue samples were measured by van Gieson staining. Results: Aorta and femoral arteries from FGR showed an increased in biomechanical markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with controls. There were no differences in the biomechanical properties of carotid and umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased contractile response to KCl (p < 0.05) along with a reduced relative media thickness (p < 0.05). Conclusion: Altogether, these changes in functional, mechanical and morphological properties suggest that FGR is associated with a heterogeneous pro-constrictive vascular remodeling affecting mainly the lower body fetal arteries. These effects would be set during a pathologic pregnancy in order to sustain the fetal blood redistribution in the FGR and may persist up to adulthood increasing the risk of a cardiovascular disease. PMID:28344561

  9. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus).

    PubMed

    Cañas, Daniel; Herrera, Emilio A; García-Herrera, Claudio; Celentano, Diego; Krause, Bernardo J

    2017-01-01

    Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic diseases in adulthood which could involve remodeling processes of the vascular walls that could start in the fetal period. However, there is no consensus whether this remodeling affects in a similar way the whole vascular system. We aimed to determine the effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic vessels in fetal guinea pigs. Methods: FGR was induced by implanting ameroid occluders at mid-gestation in uterine arteries of pregnant guinea pigs, whilst the control group was exposed to simulated surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and umbilical vessels were isolated to determine ex vivo contractile and biomechanical responses (stretch-stress until rupture) on a wire myograph, as well as opening angle and residual stresses. Histological characteristics in tissue samples were measured by van Gieson staining. Results: Aorta and femoral arteries from FGR showed an increased in biomechanical markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with controls. There were no differences in the biomechanical properties of carotid and umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased contractile response to KCl (p < 0.05) along with a reduced relative media thickness (p < 0.05). Conclusion: Altogether, these changes in functional, mechanical and morphological properties suggest that FGR is associated with a heterogeneous pro-constrictive vascular remodeling affecting mainly the lower body fetal arteries. These effects would be set during a pathologic pregnancy in order to sustain the fetal blood redistribution in the FGR and may persist up to adulthood increasing the risk of a cardiovascular disease.

  10. AMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis

    PubMed Central

    Abdel Malik, Randa; Zippel, Nina; Frömel, Timo; Heidler, Juliana; Zukunft, Sven; Walzog, Barbara; Ansari, Nariman; Pampaloni, Francesco; Wingert, Susanne; Rieger, Michael A.; Wittig, Ilka; Fisslthaler, Beate

    2017-01-01

    Rationale: The AMP-activated protein kinase (AMPK) is stimulated by hypoxia, and although the AMPKα1 catalytic subunit has been implicated in angiogenesis, little is known about the role played by the AMPKα2 subunit in vascular repair. Objective: To determine the role of the AMPKα2 subunit in vascular repair. Methods and Results: Recovery of blood flow after femoral artery ligation was impaired (>80%) in AMPKα2−/− versus wild-type mice, a phenotype reproduced in mice lacking AMPKα2 in myeloid cells (AMPKα2ΔMC). Three days after ligation, neutrophil infiltration into ischemic limbs of AMPKα2ΔMC mice was lower than that in wild-type mice despite being higher after 24 hours. Neutrophil survival in ischemic tissue is required to attract monocytes that contribute to the angiogenic response. Indeed, apoptosis was increased in hypoxic neutrophils from AMPKα2ΔMC mice, fewer monocytes were recruited, and gene array analysis revealed attenuated expression of proangiogenic proteins in ischemic AMPKα2ΔMC hindlimbs. Many angiogenic growth factors are regulated by hypoxia-inducible factor, and hypoxia-inducible factor-1α induction was attenuated in AMPKα2-deficient cells and accompanied by its enhanced hydroxylation. Also, fewer proteins were regulated by hypoxia in neutrophils from AMPKα2ΔMC mice. Mechanistically, isocitrate dehydrogenase expression and the production of α-ketoglutarate, which negatively regulate hypoxia-inducible factor-1α stability, were attenuated in neutrophils from wild-type mice but remained elevated in cells from AMPKα2ΔMC mice. Conclusions: AMPKα2 regulates α-ketoglutarate generation, hypoxia-inducible factor-1α stability, and neutrophil survival, which in turn determine further myeloid cell recruitment and repair potential. The activation of AMPKα2 in neutrophils is a decisive event in the initiation of vascular repair after ischemia. PMID:27777247

  11. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  12. TRAINING-INDUCED VASCULAR ADAPTATIONS TO ISCHEMIC MUSCLE

    PubMed Central

    YANG, H.T.; PRIOR, B.M.; LLOYD, P.G.; TAYLOR, J.C.; LI, Z.; LAUGHLIN, M.H.; TERJUNG, R.L.

    2009-01-01

    Peripheral arterial insufficiency is a progressive degenerative disease associated with an increased morbidity and mortality. It decreases exercise tolerance and often presents with symptoms of intermittent claudication. Enhanced physical activity is one of the most effective means of improving the life of affected patients. While this occurs for a variety of reasons, vascular remodeling can be an important means for improved oxygen exchange and blood flow delivery. Relevant exercise-induced signals stimulate angiogenesis, within the active muscle (e.g. hypoxia), and arteriogenesis (enlargement of pre-existing vessels via increased shear stress) to increase oxygen exchange and blood flow capacity, respectively. Evidence from pre-clinical studies shows that the increase in collateral blood flow observed with exercise progresses over time of training, is accompanied by significant enlargement of isolated collateral vessels, and enhances the responses observed with angiogenic growth factors (e.g. VEGF, FGF-2). Thus, enhanced physical activity can be an effective means of enlarging the structure and function of the collateral circuit. Interestingly, disrupting normal NO production (via L-NAME) eliminates this increase in collateral blood flow induced by training, but does not disturb the increase in muscle capillarity within the active muscle. Similarly, inhibiting VEGF receptor kinase activity eliminates the increase in collateral-dependent blood flow, and lessens, but does not eliminate, angiogenesis within the calf muscle. These findings illustrate distinctions between the processes influencing angiogenesis and arteriogenesis. Further, sympathetic modulation of the collateral circuit does not eliminate the increase in collateral circuit conductance induced by exercise training. These findings indicate that structural enlargement of the collateral vessels is essential to realize the increase in collateral-dependent blood flow capacity caused by exercise training

  13. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.

  14. Vascular targeting of nanoparticles for molecular imaging of diseased endothelium.

    PubMed

    Atukorale, Prabhani U; Covarrubias, Gil; Bauer, Lisa; Karathanasis, Efstathios

    2016-09-15

    This review seeks to highlight the enormous potential of targeted nanoparticles for molecular imaging applications. Being the closest point-of-contact, circulating nanoparticles can gain direct access to targetable molecular markers of disease that appear on the endothelium. Further, nanoparticles are ideally suitable to vascular targeting due to geometrically enhanced multivalent attachment on the vascular target. This natural synergy between nanoparticles, vascular targeting and molecular imaging can provide new avenues for diagnosis and prognosis of disease with quantitative precision. In addition to the obvious applications of targeting molecular signatures of vascular diseases (e.g., atherosclerosis), deep-tissue diseases often manifest themselves by continuously altering and remodeling their neighboring blood vessels (e.g., cancer). Thus, the remodeled endothelium provides a wide range of targets for nanoparticles and molecular imaging. To demonstrate the potential of molecular imaging, we present a variety of nanoparticles designed for molecular imaging of cancer or atherosclerosis using different imaging modalities.

  15. What Is Vascular Disease?

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  16. Vascular Disease Foundation

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  17. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice.

    PubMed

    Yu, Ying; Cai, Zhaohua; Cui, Mingli; Nie, Peng; Sun, Zhe; Sun, Shiqun; Chu, Shichun; Wang, Xiaolei; Hu, Liuhua; Yi, Jing; Shen, Linghong; He, Ben

    2015-12-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partial ligation of the left common carotid artery (LCCA) to define the exact role of Nur77 in vascular remodeling induced by low shear stress. Following vascular remodeling, Nur77 was highly expressed in neointimal vascular smooth muscle cells (VSMCs) in the ligated carotid arteries. The reactive oxygen species (ROS) levels were elevated in the remodeled arteries in vivo and in primary rat VSMCs in vitro following stimulation with platelet-derived growth factor (PDGF). Further in vitro experiments revealed that Nur77 expression was rapidly increased in the VSMCs following stimulation with PDGF and H2O2, whereas treatment with N-acetyl cysteine (NAC, a ROS scavenger) reversed the increase in the protein level of Nur77 induced by H2O2. Moreover, Nur77 overexpression markedly inhibited the proliferation and migration of VSMCs, induced by PDGF. Finally, to determine the in vivo role of Nur77 in low shear stress-induced vascular remodeling, wild-type (WT) and Nur77-deficient mice were subjected to partial ligation of the LCCA. Four weeks following surgery, in the LCCAs of the Nur77‑deficient mice, a significant increase in the intima-media area and carotid intima-media thickness was noted, as well as more severe elastin disruption and collagen deposition compared to the WT mice. Immunofluorescence staining revealed an increase in VSMC proliferation [determined by the expression of proliferating cell nuclear antigen (PCNA)] and matrix metalloproteinase 9 (MMP-9) production in the Nur77

  18. Integrated remodeling-to-fracture finite element model of human proximal femur behavior.

    PubMed

    Hambli, Ridha; Lespessailles, Eric; Benhamou, Claude-Laurent

    2013-01-01

    The purpose of this work was to develop an integrated remodeling-to-fracture finite element model allowing for the combined simulation of (i) simulation of a human proximal femur remodeling under a given boundary conditions, (ii) followed by the simulation of its fracture behavior (force-displacement curve and fracture pattern) under quasi-static load. The combination of remodeling and fracture simulation into one unified model consists in considering that the femur properties resulting from the remodeling simulation correspond to the initial state for the fracture prediction. The remodeling model is based on phenomenological one based on a coupled strain and fatigue damage stimulus. The fracture model is based on continuum damage mechanics in order to predict the progressive fracturing process which allows to predict the fracture pattern and the complete force-displacement curve under quasi-static load. To prevent mesh-dependence that generally affects the damage propagation rate, regularization technique was applied in the current work. To investigate the potential of the proposed unified remodeling-to-fracture model, we performed remodeling simulations on a 3D proximal femur model for a duration of 365 days under five different daily loading conditions followed by a side fall fracture simulation reproducing previously published experimental tests (de Bakker et al. (2009), case C, male, 72 years old). We show here that the implementation of an integrated remodeling-to-fracture model provides more realistic prediction strategy to assess the bone remodeling effects on the fracture risk of bone.

  19. Exercise training as vascular medicine: direct impacts on the vasculature in humans.

    PubMed

    Green, Daniel J

    2009-10-01

    Exercise training decreases cardiovascular risk, but effects on traditional risk factors do not fully account for this benefit. Exercise directly impacts upon arterial shear stress, a stimulus to antiatherogenic adaptation in vascular function and remodeling. This review considers the impact of exercise training on vascular adaptation in large and small arteries in humans.

  20. Passive ventricular remodeling in cardiac disease: focus on heterogeneity

    PubMed Central

    Kessler, Elise L.; Boulaksil, Mohamed; van Rijen, Harold V. M.; Vos, Marc A.; van Veen, Toon A. B.

    2014-01-01

    Passive ventricular remodeling is defined by the process of molecular ventricular adaptation to different forms of cardiac pathophysiology. It includes changes in tissue architecture, such as hypertrophy, fiber disarray, alterations in cell size and fibrosis. Besides that, it also includes molecular remodeling of gap junctions, especially those composed by Connexin43 proteins (Cx43) in the ventricles that affect cell-to-cell propagation of the electrical impulse, and changes in the sodium channels that modify excitability. All those alterations appear mainly in a heterogeneous manner, creating irregular and inhomogeneous electrical and mechanical coupling throughout the heart. This can predispose to reentry arrhythmias and adds to a further deterioration into heart failure. In this review, passive ventricular remodeling is described in Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Ischemic Cardiomyopathy (ICM), and Arrhythmogenic Cardiomyopathy (ACM), with a main focus on the heterogeneity of those alterations mentioned above. PMID:25566084

  1. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  2. [Early left ventricular remodelling following acute coronary accident].

    PubMed

    Gaertner, Roger; Logeart, Damien; Michel, Jean-Baptiste; Mercadier, Jean-Jacques

    2004-01-01

    Ventricular remodelling following acute coronary syndromes is both complex and multiform. It is due to the response of the myocardium to the different agressions associated with these syndromes, in particular the ischemia and necrosis downstream of the occluded artery. We must not however neglect the role of the remodelling of the lesions resulting from spontaneous reperfusion or provoked by the cells and tissues associated with coronary microcirculation embolisms and the no-reflow phenomenon. Acute post-infarct remodelling is dominated by early ventricular dilatation which largely affects late prognosis, necrosis elimination and its replacement by a fibrotic scar in parallel with a compensatory hypertrophy of the non-infarcted myocardium. The diverse cellular and molecular components of this remodelling are increasingly well-known, allowing us to better explain the beneficial effects of the currently available medications and providing us with new potential therapeutic targets. A grading of this knowledge associated with the identification of new risk factors and early therapeutic interventions should help us to further limit the deleterious aspects of this remodelling in the goal of preventing, or at least delaying, the devolution towards heart failure.

  3. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease.

    PubMed

    Zizioli, Daniela; Tiso, Natascia; Guglielmi, Adele; Saraceno, Claudia; Busolin, Giorgia; Giuliani, Roberta; Khatri, Deepak; Monti, Eugenio; Borsani, Giuseppe; Argenton, Francesco; Finazzi, Dario

    2016-01-01

    Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pathogenesis. The zebrafish orthologue of hPANK2 lies on chromosome 13, is a maternal gene expressed in all development stages and, in adult animals, is highly abundant in CNS, dorsal aorta and caudal vein. The injection of a splice-inhibiting morpholino induced a clear phenotype with perturbed brain morphology and hydrocephalus; edema was present in the heart region and caudal plexus, where hemorrhages with reduction of blood circulation velocity were detected. We characterized the CNS phenotype by studying the expression pattern of wnt1 and neurog1 neural markers and by use of the Tg(neurod:EGFP/sox10:dsRed) transgenic line. The results evidenced that downregulation of pank2 severely impairs neuronal development, particularly in the anterior part of CNS (telencephalon). Whole-mount in situ hybridization analysis of the endothelial markers cadherin-5 and fli1a, and use of Tg(fli1a:EGFP/gata1a:dsRed) transgenic line, confirmed the essential role of pank2 in the formation of the vascular system. The specificity of the morpholino-induced phenotype was proved by the restoration of a normal development in a high percentage of embryos co-injected with pank2 mRNA. Also, addition of pantethine or CoA, but not of vitamin B5, to pank2 morpholino-injected embryos rescued the phenotype with high efficiency. The zebrafish model indicates the relevance of pank2 activity and CoA homeostasis for normal neuronal development and functioning and provides evidence of an unsuspected role for this

  4. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease

    PubMed Central

    Zizioli, Daniela; Tiso, Natascia; Guglielmi, Adele; Saraceno, Claudia; Busolin, Giorgia; Giuliani, Roberta; Khatri, Deepak; Monti, Eugenio; Borsani, Giuseppe; Argenton, Francesco; Finazzi, Dario

    2016-01-01

    Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pathogenesis. The zebrafish orthologue of hPANK2 lies on chromosome 13, is a maternal gene expressed in all development stages and, in adult animals, is highly abundant in CNS, dorsal aorta and caudal vein. The injection of a splice-inhibiting morpholino induced a clear phenotype with perturbed brain morphology and hydrocephalus; edema was present in the heart region and caudal plexus, where hemorrhages with reduction of blood circulation velocity were detected. We characterized the CNS phenotype by studying the expression pattern of wnt1 and neurog1 neural markers and by use of the Tg(neurod:EGFP/sox10:dsRed) transgenic line. The results evidenced that downregulation of pank2 severely impairs neuronal development, particularly in the anterior part of CNS (telencephalon). Whole-mount in situ hybridization analysis of the endothelial markers cadherin-5 and fli1a, and use of Tg(fli1a:EGFP/gata1a:dsRed) transgenic line, confirmed the essential role of pank2 in the formation of the vascular system. The specificity of the morpholino-induced phenotype was proved by the restoration of a normal development in a high percentage of embryos co-injected with pank2 mRNA. Also, addition of pantethine or CoA, but not of vitamin B5, to pank2 morpholino-injected embryos rescued the phenotype with high efficiency. The zebrafish model indicates the relevance of pank2 activity and CoA homeostasis for normal neuronal development and functioning and provides evidence of an unsuspected role for this

  5. Splanchnic Hemodynamics and Intestinal Vascularity in Crohn's Disease: An In Vivo Evaluation Using Doppler and Contrast-Enhanced Ultrasound and Biochemical Parameters.

    PubMed

    Maconi, Giovanni; Asthana, Anil K; Bolzacchini, Elena; Dell'Era, Alessandra; Furfaro, Federica; Bezzio, Cristina; Salvatore, Veronica; Maier, Jeanette A M

    2016-01-01

    Crohn's disease (CD) is characterized by inflammation and angiogenesis of affected bowel. We evaluated the correlation among vascularity of intestinal wall in CD, splanchnic hemodynamics, clinical activity and biochemical parameters of inflammation and angiogenesis. Sixteen patients with ileal CD and 10 healthy controls were investigated by means of Doppler ultrasound of the superior mesenteric artery and color Doppler and contrast-enhanced ultrasound of the ileal wall. In parallel, serum levels of vascular endothelial growth factor, tumor necrosis factor-α (TNF-α) and nitric oxide, before and 30 min after a standard meal, were evaluated. In CD patients, there was a significant post-prandial reduction in the resistance index and pulsatility index of the superior mesenteric artery, associated with increased levels of nitric oxide and decreased amounts of TNF-α. A correlation was observed between vascular endothelial growth factor and contrast-enhanced ultrasound parameters of intestinal wall vascularity (r = 0.63-0.71, p < 0.05) and between these parameters and superior mesenteric artery blood flow after fasting (resistance and pulsatility indexes: r = -0.64 and -0.72, p < 0.05). Our results revealed a post-prandial increase in nitric oxide and decrease in TNF-α in CD patients in vivo. They also confirm the role of vascular endothelial growth factor in angiogenesis and in pathologic vascular remodeling of CD and its effect on splanchnic blood flow.

  6. Vascular biology of ageing-Implications in hypertension.

    PubMed

    Harvey, Adam; Montezano, Augusto C; Touyz, Rhian M

    2015-06-01

    Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing.

  7. Vascular biology of ageing—Implications in hypertension

    PubMed Central

    Harvey, Adam; Montezano, Augusto C.; Touyz, Rhian M.

    2015-01-01

    Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing. PMID:25896391

  8. Toll-like Receptors in the Vascular System: Sensing the Dangers Within

    PubMed Central

    McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702

  9. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses.

    PubMed

    Rubinski, Anna; Ziv, Noam E

    2015-11-01

    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics.

  10. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses

    PubMed Central

    Rubinski, Anna; Ziv, Noam E.

    2015-01-01

    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size “configurations”. Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics. PMID:26599330

  11. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model

    PubMed Central

    Woolf, Eric C.; Curley, Kara L.; Liu, Qingwei; Turner, Gregory H.; Charlton, Julie A.; Preul, Mark C.; Scheck, Adrienne C.

    2015-01-01

    Background The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood. Methods To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma. Results Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4. Conclusions The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas. PMID:26083629

  12. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome.

    PubMed

    Marchesi, Chiara; Ebrahimian, Talin; Angulo, Orlando; Paradis, Pierre; Schiffrin, Ernesto L

    2009-12-01

    The metabolic syndrome represents a constellation of cardiovascular risk factors that promote the development of cardiovascular disease. Oxidative stress is a mediator of endothelial dysfunction and vascular remodeling. We investigated vascular dysfunction in the metabolic syndrome and the oxidant mechanisms involved. New Zealand obese (NZO) mice with metabolic syndrome and New Zealand black control mice were studied. NZO mice showed insulin resistance and increased visceral fat and blood pressure compared with New Zealand black mice. Mesenteric resistance arteries from NZO mice exhibited increased media:lumen ratio and media cross-sectional area, demonstrating hypertrophic vascular remodeling. Endothelium-dependent relaxation to acetylcholine, assessed by pressurized myography, was impaired in NZO mice, not affected by N(G)-nitro-l-arginine methyl ester, inhibitor of endothelial NO synthase, and improved by the antioxidant Tempol, suggesting reduced NO bioavailability and increased oxidative stress. Dimer:monomer ratio of endothelial NO synthase was decreased in NZO mice compared with New Zealand black mice, suggesting endothelial NO synthase uncoupling. Furthermore, vascular superoxide and peroxynitrite production was increased, as well as adhesion molecule expression. Perivascular adipose tissue of NZO mice showed increased superoxide production and NADPH oxidase activity, as well as adipocyte hypertrophy, associated with inflammatory Mac-3-positive cell infiltration. Vasoconstriction to norepinephrine decreased in the presence of perivascular adipose tissue in New Zealand black mice but was unaffected by perivascular adipose tissue in NZO mice, suggesting loss of perivascular adipose tissue anticontractile properties. Our data suggest that this rodent model of metabolic syndrome is associated with perivascular adipose inflammation and oxidative stress, hypertrophic resistance artery remodeling, and endothelial dysfunction, the latter a result of decreased NO

  13. Mechanotransduction in Embryonic Vascular Development

    PubMed Central

    Roman, Beth L.; Pekkan, Kerem

    2015-01-01

    A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities. PMID:22744845

  14. Vascular effects of maternal alcohol consumption

    PubMed Central

    Magness, Ronald R.

    2012-01-01

    Maternal alcohol consumption during pregnancy is a significant field of scientific exploration primarily because of its negative effects on the developing fetus, which is specifically defined as fetal alcohol spectrum disorders. Though the effects on the mother are less explored compared with those on the fetus, alcohol produces multiple effects on the maternal vascular system. Alcohol has major effects on systemic hemodynamic variables, endocrine axes, and paracrine factors regulating vascular resistance, as well as vascular reactivity. Alcohol is also reported to have significant effects on the reproductive vasculature including alterations in blood flow, vessel remodeling, and angiogenesis. Data presented in this review will illustrate the importance of the maternal vasculature in the pathogenesis of fetal alcohol spectrum disorders and that more studies are warranted in this field. PMID:22730388

  15. Busulphan-Cyclophosphamide Cause Endothelial Injury, Remodeling of Resistance Arteries and Enhanced Expression of Endothelial Nitric Oxide Synthase

    PubMed Central

    Al-Hashmi, Sulaiman; Boels, Piet J. M.; Zadjali, Fahad; Sadeghi, Behnam; Sällström, Johan; Hultenby, Kjell; Hassan, Zuzana; Arner, Anders; Hassan, Moustapha

    2012-01-01

    Stem cell transplantation (SCT) is a curative treatment for malignant and non malignant diseases. However, transplantation-related complications including cardiovascular disease deteriorate the clinical outcome and quality of life. We have investigated the acute effects of conditioning regimen on the pharmacology, physiology and structure of large elastic arteries and small resistance-sized arteries in a SCT mouse model. Mesenteric resistance arteries and aorta were dissected from Balb/c mice conditioned with busulphan (Bu) and cyclophosphamide (Cy). In vitro isometric force development and pharmacology, in combination with RT-PCR, Western blotting and electron microscopy were used to study vascular properties. Compared with controls, mesenteric resistance arteries from the Bu-Cy group had larger internal circumference, showed enhanced endothelium mediated relaxation and increased expression of endothelial nitric oxide synthase (eNOS). Bu-Cy treated animals had lower mean blood pressure and signs of endothelial injury. Aortas of treated animals had a higher reactivity to noradrenaline. We conclude that short-term consequences of Bu-Cy treatment divergently affect large and small arteries of the cardiovascular system. The increased noradrenaline reactivity of large elastic arteries was not associated with increased blood pressure at rest. Instead, Bu-Cy treatment lowered blood pressure via augmented microvascular endothelial dependent relaxation, increased expression of vascular eNOS and remodeling toward a larger lumen. The changes in the properties of resistance arteries can be associated with direct effects of the compounds on vascular wall or possibly indirectly induced via altered translational activity associated with the reduced hematocrit and shear stress. This study contributes to understanding the mechanisms that underlie the early effects of conditioning regimen on resistance arteries and may help in designing further investigations to understand the late

  16. Endothelial α5 and αv integrins cooperate in remodeling of the vasculature during development

    PubMed Central

    van der Flier, Arjan; Badu-Nkansah, Kwabena; Whittaker, Charles A.; Crowley, Denise; Bronson, Roderick T.; Lacy-Hulbert, Adam; Hynes, Richard O.

    2010-01-01

    Integrin cell adhesion receptors and fibronectin, one of their extracellular matrix ligands, have been demonstrated to be important for angiogenesis using functional perturbation studies and complete knockout mouse models. Here, we report on the roles of the α5 and αv integrins, which are the major endothelial fibronectin receptors, in developmental angiogenesis. We generated an integrin α5-floxed mouse line and ablated α5 integrin in endothelial cells. Unexpectedly, endothelial-specific knockout of integrin α5 has no obvious effect on developmental angiogenesis. We provide evidence for genetic interaction between mutations in integrin α5 and αv and for overlapping functions and compensation between these integrins and perhaps others. Nonetheless, in embryos lacking both α5 and αv integrins in their endothelial cells, initial vasculogenesis and angiogenesis proceed normally, at least up to E11.5, including the formation of apparently normal embryonic vasculature and development of the branchial arches. However, in the absence of endothelial α5 and αv integrins, but not of either alone, there are extensive defects in remodeling of the great vessels and heart resulting in death at ~E14.5. We also found that fibronectin assembly is somewhat affected in integrin α5 knockout endothelial cells and markedly reduced in integrin α5/αv double-knockout endothelial cell lines. Therefore, neither α5 nor αv integrins are required in endothelial cells for initial vasculogenesis and angiogenesis, although they are required for remodeling of the heart and great vessels. These integrins on other cells, and/or other integrins on endothelial cells, might contribute to fibronectin assembly and vascular development. PMID:20570943

  17. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

    PubMed

    Langdahl, Bente; Ferrari, Serge; Dempster, David W

    2016-12-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that

  18. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis

    PubMed Central

    Langdahl, Bente; Ferrari, Serge; Dempster, David W.

    2016-01-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20–30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that

  19. Mechanisms of ATP Dependent Chromatin Remodeling

    PubMed Central

    Gangaraju, Vamsi K.; Bartholomew, Blaine

    2007-01-01

    The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed. PMID:17306844

  20. Regulation of Vascular Growth in the Chorioallantoic Membrane of Japanese Quail Eggs

    NASA Technical Reports Server (NTRS)

    Montague, Idoreyin P.

    2004-01-01

    The Microgravity Research Program is part of NASA's Office of Biological and Physical Research (OBPR). The mission of the Microgravity Fluid Physics research program is to facilitate and conduct the best possible fluid physics research using the space environment and make this knowledge available to the scientific community and the public at large. During the summer of 2004, I worked in this division with Dr. Patricia Parsons-Wingerter. Dr. Parsons was working on several projects that used the chorioallantoic membrane (CAM) of Japanese quail eggs. The CAM develops in the eggs of birds and reptiles and is a very vascular fetal membrane composed of the fused chorion and adjacent wall of the allantois. The CAM is formed on day 4 of incubation and its primary job is to mediate gas exchanges with the extra embryonic environment. The CAM of our Japanese quail eggs is easily identifiable to us because it is transparent and it sits on top of the yolk with the embryo in the center. The CAM is of interest because of its many applications in the field of medicine as it relates to vascular remodeling and angiogenesis. Angiogenesis is simply the growth or formation of new blood vessels and anti-angiogenesis is the inhibition of said vessels. Angiogenesis occurs naturally in a healthy body for healing wounds and for restoring blood flow to tissues after injury and in females during the monthly reproductive cycle. In many serious diseases, like several types of cancer and those that affect the heart and cardiovascular system, the body loses control over angiogenesis. These diseases, which are dependent on angiogenesis, result when new blood vessels either grow excessively or insufficiently. The chorioallantoic membrane of our Japanese quail eggs gives a good model of angiogenesis. We used angiogenic regulators to inhibit or stimulate vascular growth in the CAM in a healthy manner and they induced distinct vascular patterns in vivo. Certain dominant regulators can be recognized by

  1. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

    PubMed Central

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A.V.; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L.

    2015-01-01

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  2. Vascular dementia

    PubMed Central

    Korczyn, Amos D; Vakhapova, Veronika; Grinberg, Lea T

    2012-01-01

    The epidemic grow of dementia causes great concern for the society. It is customary to consider Alzheimer’s disease (AD) as the most common cause of dementia, followed by vascular dementia (VaD). This dichotomous view of a neurodegenerative disease as opposed to brain damage caused by extrinsic factors led to separate lines of research in these two entities. Indeed, accumulated data suggest that the two disorders have additive effects and probably interact; however it is still unknown to what degree. Furthermore, epidemiological studies have shown “vascular” risk factors to be associated with AD. Therefore, a clear distinction between AD and VaD cannot be made in most cases, and is furthermore unhelpful. In the absence of efficacious treatment for the neurodegenerative process, special attention must be given to vascular component, even in patients with presumed mixed pathology. Symptomatic treatment of VaD and AD are similar, although the former is less effective. For prevention of dementia it is important to treat aggressively all factors, even in stroke survivors who do not show evidence of cognitive decline,. In this review, we will give a clinical and pathological picture of the processes leading to VaD and discuss it interaction with AD. PMID:22575403

  3. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  4. Molecular mechanisms of synaptic remodeling in alcoholism.

    PubMed

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.

  5. Induction of Thoracic Aortic Remodeling by Endothelial-Specific Deletion of MicroRNA-21 in Mice

    PubMed Central

    Zhang, Xing-Yi; Shen, Bao-Rong; Zhang, Yu-Cheng; Wan, Xue-Jiao; Yao, Qing-Ping; Wu, Guang-Liang; Wang, Ji-Yao; Chen, Si-Guo; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2013-01-01

    MicroRNAs (miRs) are known to have an important role in modulating vascular biology. MiR21 was found to be involved in the pathogenesis of proliferative vascular disease. The role of miR21 in endothelial cells (ECs) has well studied in vitro, but the study in vivo remains to be elucidated. In this study, miR21 endothelial-specific knockout mice were generated by Cre/LoxP system. Compared with wild-type mice, the miR21 deletion in ECs resulted in structural and functional remodeling of aorta significantly, such as diastolic pressure dropping, maximal tension depression, endothelium-dependent relaxation impairment, an increase of opening angles and wall-thickness/inner diameter ratio, and compliance decrease, in the miR21 endothelial-specific knockout mice. Furthermore, the miR21 deletion in ECs induced down-regulation of collagen I, collagen III and elastin mRNA and proteins, as well as up-regulation of Smad7 and down-regulation of Smad2/5 in the aorta of miR21 endothelial-specific knockout mice. CTGF and downstream MMP/TIMP changes were also identified to mediate vascular remodeling. The results showed that miR21 is identified as a critical molecule to modulate vascular remodeling, which will help to understand the role of miR21 in vascular biology and the pathogenesis of vascular diseases. PMID:23527070

  6. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  7. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  8. Aspirin for vascular dementia

    PubMed Central

    Rands, Gianetta; Orrell, Martin

    2014-01-01

    Background Aspirin is widely prescribed for patients with a diagnosis of vascular dementia. In a survey of UK geriatricians and psychiatrists 80% of patients with clinical diagnoses of vascular dementia were prescribed aspirin. However, a number of queries remain unanswered. Is there convincing evidence that aspirin benefits patients with vascular dementia? Does aspirin affect cognition and behaviour, or improve prognosis? Does the risk of cerebral or gastric haemorrhage outweigh any benefit? Objectives To assess the randomised trial evidence for efficacy and safety of aspirin in the treatment of vascular dementia. Search methods We searched ALOIS: the Cochrane Dementia and Cognitive Improvement Group’s Specialized Register on 12 March 2012 using the terms: aspirin OR “acetylsalicylic acid”. ALOIS contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources. In addition, relevant websites were searched and some journals were handsearched. Specialists in the field were approached for unpublished material and any publications found were searched for additional references. Selection criteria Randomised controlled trials investigating the effect of aspirin for vascular dementia were eligible for inclusion. Data collection and analysis Retrieved studies were analysed independently by both review authors. Methodology and results were critically appraised and outcomes scanned included cognition, behavioural change, mortality and institutionalisation. Main results No trials were eligible for inclusion in this review. Authors’ conclusions The most recent search for references to relevant research was carried out in March 2012. No trials were found for inclusion in this systematic review. Low-dose aspirin is frequently used as ‘treatment as normal’ in control groups and as a baseline treatment in pharmacological trials. There is still no good evidence that

  9. Overexpression of EgROP1, a Eucalyptus vascular-expressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana.

    PubMed

    Foucart, Camille; Jauneau, Alain; Gion, Jean-Marc; Amelot, Nicolas; Martinez, Yves; Panegos, Patricia; Grima-Pettenati, Jacqueline; Sivadon, Pierre

    2009-01-01

    To better understand the genetic control of secondary xylem formation in trees we analysed genes expressed during Eucalyptus xylem development. Using eucalyptus xylem cDNA libraries, we identified EgROP1, a member of the plant ROP family of Rho-like GTPases. These signalling proteins are central regulators of many important processes in plants, but information on their role in xylogenesis is scarce. Quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) confirmed that EgROP1 was preferentially expressed in the cambial zone and differentiating xylem in eucalyptus. Genetic mapping performed in a eucalyptus breeding population established a link between EgROP1 sequence polymorphisms and quantitative trait loci (QTLs) related to lignin profiles and fibre morphology. Overexpression of various forms of EgROP1 in Arabidopsis thaliana altered anisotropic cell growth in transgenic leaves, but most importantly affected vessel element and fibre growth in secondary xylem. Patches of fibre-like cells in the secondary xylem of transgenic plants showed changes in secondary cell wall thickness, lignin and xylan composition. These results suggest a role for EgROP1 in fibre cell morphology and secondary cell wall formation making it a good candidate gene for marker-based selection of eucalyptus trees.

  10. Emerging translational approaches to target STAT3 signalling and its impact on vascular disease

    PubMed Central

    Dutzmann, Jochen; Daniel, Jan-Marcus; Bauersachs, Johann; Hilfiker-Kleiner, Denise; Sedding, Daniel G.

    2015-01-01

    Acute and chronic inflammation responses characterize the vascular remodelling processes in atherosclerosis, restenosis, pulmonary arterial hypertension, and angiogenesis. The functional and phenotypic changes in diverse vascular cell types are mediated by complex signalling cascades that initiate and control genetic reprogramming. The signalling molecule's signal transducer and activator of transcription 3 (STAT3) plays a key role in the initiation and continuation of these pathophysiological changes. This review highlights the pivotal involvement of STAT3 in pathological vascular remodelling processes and discusses potential translational therapies, which target STAT3 signalling, to prevent and treat cardiovascular diseases. Moreover, current clinical trials using highly effective and selective inhibitors of STAT3 signalling for distinct diseases, such as myelofibrosis and rheumatoid arthritis, are discussed with regard to their vascular (side-) effects and their potential to pave the way for a direct use of these molecules for the prevention or treatment of vascular diseases. PMID:25784694

  11. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    PubMed Central

    Liu, Yonggang; Goodson, Jamie M.; Zhang, Bo; Chin, Michael T.

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation. PMID:26042051

  12. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  13. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation.

    PubMed

    Opacic, Dragan; van Bragt, Kelly A; Nasrallah, Hussein M; Schotten, Ulrich; Verheule, Sander

    2016-04-01

    Atrial fibrillation (AF) is the most common tachyarrhythmia in clinical practice. Over decades of research, a vast amount of knowledge has been gathered about the causes and consequences of AF related to cellular electrophysiology and features of the tissue structure that influence the propagation of fibrillation waves. Far less is known about the role of myocyte metabolism and tissue perfusion in the pathogenesis of AF. However, the rapid rates of electrical activity and contraction during AF must present an enormous challenge to the energy balance of atrial myocytes. This challenge can be met by scaling back energy demand and by increasing energy supply, and there are several indications that both phenomena occur as a result of AF. Still, there is ample evidence that these adaptations fall short of redressing this imbalance, which may represent a driving force for atrial electrical as well as structural remodelling. In addition, several 'metabolic diseases' such as diabetes, obesity, and abnormal thyroid function precipitate some well-known 'culprits' of the AF substrate such as myocyte hypertrophy and fibrosis, while some other AF risk factors, such as heart failure, affect atrial metabolism. This review provides an overview of metabolic and vascular alterations in AF and their involvement in its pathogenesis.

  14. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.

    PubMed

    Hénique, Carole; Mansouri, Abdelhak; Vavrova, Eliska; Lenoir, Véronique; Ferry, Arnaud; Esnous, Catherine; Ramond, Elodie; Girard, Jean; Bouillaud, Frédéric; Prip-Buus, Carina; Cohen, Isabelle

    2015-06-01

    Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.

  15. Vascular potential of human pluripotent stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an ess...

  16. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling.

    PubMed

    Kundumani-Sridharan, Venkatesh; Singh, Nikhlesh K; Kumar, Sanjay; Gadepalli, Ravisekhar; Rao, Gadiparthi N

    2013-07-26

    Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting

  17. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.

    PubMed

    Pries, Axel R; Reglin, Bettina; Secomb, Timothy W

    2005-10-01

    Vascular functions, including tissue perfusion and peripheral resistance, reflect continuous structural adaptation (remodeling) of blood vessels in response to several stimuli. Here, a theoretical model is presented that relates the structural and functional properties of microvascular networks to the adaptive responses of individual segments to hemodynamic and metabolic stimuli. All vessels are assumed to respond, according to a common set of adaptation rules, to changes in wall shear stress, circumferential wall stress, and tissue metabolic status (indicated by partial pressure of oxygen). An increase in vessel diameter with increasing wall shear stress and an increase in wall mass with increased circumferential stress are needed to ensure stable vascular adaptation. The model allows quantitative predictions of the effects of changes in systemic hemodynamic conditions or local adaptation characteristics on vessel structure and on peripheral resistance. Predicted effects of driving pressure on the ratio of wall thickness to vessel diameter are consistent with experimental observations. In addition, peripheral resistance increases by approximately 65% for an increase in driving pressure from 50 to 150 mm Hg. Peripheral resistance is predicted to be markedly increased in response to a decrease in vascular sensitivity to wall shear stress, and to be decreased in response to increased tissue metabolic demand. This theoretical approach provides a framework for integrating available information on structural remodeling in the vascular system and predicting responses to changing conditions or altered vascular reactivity, as may occur in hypertension.

  18. Remodeling of alveolar septa after murine pneumonectomy

    PubMed Central

    Ysasi, Alexandra B.; Wagner, Willi L.; Bennett, Robert D.; Ackermann, Maximilian; Valenzuela, Cristian D.; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A.

    2015-01-01

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends (“E”). Septal retraction, observed in 20–30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  19. Remodeling of left circumflex coronary arterial tree in pacing-induced heart failure

    PubMed Central

    Huo, Yunlong

    2015-01-01

    Congestive heart failure (CHF) is a very serious heart disease that manifests an imbalance between left ventricle supply and demand. Although the mechanical demand of the failing heart has been well characterized, the systematic remodeling of the entire coronary arterial tree that constitutes the supply of the myocardium is lacking. We hypothesize that the well-known increase in ventricle wall stress during CHF causes coronary vascular rarefaction to increase the vascular flow resistance, which in turn compromises the perfusion of the heart. Morphometric (diameters, length, and numbers) data of the swine left circumflex (LCx) arterial tree were measured in both CHF (n = 6) and control (n = 6) groups, from which a computer reconstruction of the entire LCx tree was implemented down to the capillary level to enable a hemodynamic analysis of coronary circulation. The vascular flow resistance was increased by ∼75% due to a significant decrease of vessel numbers (∼45%) and diameters in the first capillary segments (∼10%) of the LCx arterial tree after 3-4 wk of pacing. The structural remodeling significantly changed the wall shear stress in vessel segments of the entire LCx arterial tree of CHF animals. This study enhances our knowledge of coronary arterial tree remodeling in heart failure, which provides a deeper understanding of the deterioration of supply-demand relation in left ventricle. PMID:26159756

  20. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.

  1. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  2. Bone remodeling after renal transplantation.

    PubMed

    Bellorin-Font, Ezequiel; Rojas, Eudocia; Carlini, Raul G; Suniaga, Orlando; Weisinger, José R

    2003-06-01

    Several studies have indicated that bone alterations after transplantation are heterogeneous. Short-term studies after transplantation have shown that many patients exhibit a pattern consistent with adynamic bone disease. In contrast, patients with long-term renal transplantation show a more heterogeneous picture. Thus, while adynamic bone disease has also been described in these patients, most studies show decreased bone formation and prolonged mineralization lag-time faced with persisting bone resorption, and even clear evidence of generalized or focal osteomalacia in many patients. Thus, the main alterations in bone remodeling are a decrease in bone formation and mineralization up against persistent bone resorption, suggesting defective osteoblast function, decreased osteoblastogenesis, or increased osteoblast death rates. Indeed, recent studies from our laboratory have demonstrated that there is an early decrease in osteoblast number and surfaces, as well as in reduced bone formation rate and delayed mineralization after transplantation. These alterations are associated with an early increase in osteoblast apoptosis that correlates with low levels of serum phosphorus. These changes were more frequently observed in patients with low turnover bone disease. In contrast, PTH seemed to preserve osteoblast survival. The mechanisms of hypophosphatemia in these patients appear to be independent of PTH, suggesting that other phosphaturic factors may play a role. However, further studies are needed to determine the nature of a phosphaturic factor and its relationship to the alterations of bone remodeling after transplantation.

  3. Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region.

    PubMed

    Datta, Kaberi; Basak, Trayambak; Varshney, Swati; Sengupta, Shantanu; Sarkar, Sagartirtha

    2017-01-30

    Myocardial infarction is one of the leading causes of cardiac dysfunction, failure and sudden death. Post infarction cardiac remodeling presents a poor prognosis, with 30%-45% of patients developing heart failure, in a period of 5-25years. Oxidative stress has been labelled as the primary causative factor for cardiac damage during infarction, however, the impact it may have during the process of post infarction remodeling has not been well probed. In this study, we have implemented iTRAQ proteomics to catalogue proteins and functional processes, participating both temporally (early and late phases) and spatially (infarct and remote zones), during post myocardial infarction remodeling of the heart as functions of the differential oxidative stress manifest during the remodeling process. Cardiac metabolism was the dominant network to be affected during infarction and the remodeling time points considered in this study. A distinctive expression pattern of cytoskeletal proteins was also observed with increased remodeling time points. Further, it was found that the cytoskeletal protein Desmin, aggregated in the infarct zone during the remodeling process, mediated by the protease Calpain1. Taken together, all of these data in conjunction may lay the foundation to understand the effects of oxidative stress on the remodeling process and elaborate the mechanism behind the compromised cardiac function observed during post myocardial infarction remodeling.

  4. Polycystic ovary syndrome and obesity do not affect vascular parameters related to early atherosclerosis in young women without glucose metabolism disturbances, arterial hypertension and severe abnormalities of lipid profile.

    PubMed

    Barcellos, Cristiano Roberto Grimaldi; Lage, Silvia Helena Gelás; Rocha, Michelle Patrocínio; Hayashida, Sylvia Asaka Yamashita; Baracat, Edmund Chade; Romano, Angela; Brito, Vinicius Nahime; Marcondes, José Antonio Miguel

    2013-04-01

    The aim of this study was to evaluate the influence of polycystic ovary syndrome (PCOS) and obesity on vascular parameters related to early atherosclerosis (VP-EA) [brachial flow-mediated dilation (FMD), carotid intima-media thickness (CIMT) and carotid arterial compliance (CAC)] in women with minor cardiovascular risk factors (CVRFs). Twenty-five young women with PCOS and 23 eumenorrheic women matched for body mass index (BMI) were studied. The women were subdivided according to BMI and PCOS status, and comparisons were done between PCOS and Control group, regardless of BMI, and between Obese and Lean group, regardless of the presence of PCOS. Insulin resistance was higher in PCOS-group than in control-group and in obese-group than in lean-group. The median of all VP-EA evaluated were similar between PCOS-group and Control-group [FMD: 6.6 versus 8.4% (p = NS); CIMT: 48.0 versus 47.0 mm.10-2 (p = NS); CAC: 6.2 versus 5.6N-1.m4.10-10 (p = NS)] and between obese-group and lean-group [FMD: 7.8 versus 6.6% (p = NS); CIMT: 48.0 versus 47.0 mm.10-2 (p = NS); CAC: 5.7 versus 6.3N-1.m4.10-10 (p = NS)]. These results suggest that PCOS and obesity do not affect VP-EA in women with minor CVRFs.

  5. Monocyte prostaglandins inhibit procollagen secretion by human vascular smooth muscle cells: implications for plaque stability.

    PubMed

    Fitzsimmons, C; Proudfoot, D; Bowyer, D E

    1999-02-01

    Extracellular matrix remodelling occurs during atherosclerosis dictating the structure of the plaque and thus the resistance to rupture. Monocytes and macrophages are believed to play a role in this remodelling. In the present study, filter-separated co-culture has been used to study the effect of monocytes on procollagen turnover by human vascular smooth muscle cells (VSMC). In this system, freshly isolated human peripheral blood monocytes inhibited procollagen secretion from VSMC without affecting either degradation of procollagen, or DNA synthesis by the VSMC. Insertion of a 12 kDa dialysis membrane between the two cell types and treatment with indomethacin showed that the inhibitory factor was of low molecular weight and was cyclooxygenase-dependent. Pre-incubation of each cell type with indomethacin demonstrated that monocyte, but not VSMC cyclooxygenase was required. Thus, the inhibitory effect on procollagen secretion was due, most likely, to monocyte prostaglandins. Neither inhibition of thromboxane synthetase, nor blocking IL-1 activity, reduced the inhibitory activity. Addition of prostaglandins PGE1, PGE2 and PGF2alpha to VSMC cultures caused a reduction in procollagen secretion which was equivalent to, but was not additive with, the maximal effect achieved by monocytes. Monocytes and macrophages are a major source of prostaglandins and these molecules are likely to play an important role in collagen turnover within lesions.

  6. Remodeling, Renovation, & Conversion of Educational Facilities.

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    Based on a series of workshops, this collection of papers provides a framework for thought--emphasizing planning within time, flexibility, and maintenance constraints--as well as a practical guide for actual engineering of remodeling/renovation/conversion projects. Is remodeling always less expensive than new construction? Should high initial…

  7. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  8. Lung parenchyma remodeling in acute respiratory distress syndrome.

    PubMed

    Rocco, P R M; Dos Santos, C; Pelosi, P

    2009-12-01

    Acute respiratory distress syndrome (ARDS), the most severe manifestation of acute lung injury (ALI), is described as a stereotyped response to lung injury with a transition from alveolar capillary damage to a fibroproliferative phase. Most ARDS patients survive the acute initial phase of lung injury and progress to either reparation of the lesion or evolution of the syndrome. Despite advances in the management of ARDS, mortality remains high (40%) and autopsies show extended pulmonary fibrosis in 55% of patients, suggesting the importance of deregulated repair in the morbidity and mortality of these patients. Factors influencing progression to fibroproliferative ARDS versus resolution and reconstitution of the normal pulmonary parenchymal architecture are poorly understood. Abnormal repair and remodeling may be profoundly affected by both environmental and genetic factors. In this line, mechanical ventilation may affect the macromolecules that constitute the extracellular matrix (collagen, elastin, fibronectin, laminin, proteoglycan and glycosaminoglycans), suffer changes and impact the biomechanical behavior of lung parenchyma. Furthermore, evidence suggests that acute inflammation and fibrosis may be partially independent and/or interacting processes that are autonomously regulated, and thus amenable to individual and specific therapies. In this review, we explore recent advances in the field of fibroproliferative ARDS/ALI, with special emphasis on 1) the physiological properties of the extracellular matrix, 2) the mechanisms of remodeling, 3) the impact of mechanical ventilation on lung fibrotic response, and (4) therapeutic interventions in the remodeling process.

  9. Genetic Causation of Neointimal Hyperplasia in Hemodialysis Vascular Access Dysfunction

    PubMed Central

    Lee, Timmy; Wadehra, Davinder

    2014-01-01

    The major cause of hemodialysis vascular access failure is venous stenosis resulting from neointimal hyperplasia. Genetic factors have been shown to be associated with cardiovascular disease (CVD) and peripheral vascular disease (PVD) in the general population. Genetic factors may also play an important role in vascular access stenosis and development of neointimal hyperplasia by affecting pathways that lead to inflammation, endothelial function, oxidative stress, and vascular smooth muscle proliferation. This review will discuss the role of genetics in understanding neointimal hyperplasia development in hemodialysis vascular access dysfunction and other disease processes with similar neointimal hyperplasia development such coronary artery disease and peripheral vascular disease. PMID:21917012

  10. A Review of Vascular Anomalies: Genetics and Common Syndromes

    PubMed Central

    Killion, Elizabeth; Mohan, Kriti; Lee, Edward I.

    2014-01-01

    Vascular tumors and malformations are unique in that affected cells exhibit disrupted angiogenesis. The current treatment options often yield suboptimal results. New insight into the genetics and molecular basis of vascular anomalies may pave the way for potential development of targeted therapy. The authors review the genetic and molecular basis of vascular anomalies and common associated syndromes. PMID:25045331

  11. Plant Vascular Biology 2013: vascular trafficking.

    PubMed

    Ursache, Robertas; Heo, Jung-Ok; Helariutta, Ykä

    2014-04-01

    About 200 researchers from around the world attended the Third International Conference on Plant Vascular Biology (PVB 2013) held in July 2013 at the Rantapuisto Conference Center, in Helsinki, Finland (http://www.pvb2013.org). The plant vascular system, which connects every organ in the mature plant, continues to attract the interest of researchers representing a wide range of disciplines, including development, physiology, systems biology, and computational biology. At the meeting, participants discussed the latest research advances in vascular development, long- and short-distance vascular transport and long-distance signalling in plant defence, in addition to providing a context for how these studies intersect with each other. The meeting provided an opportunity for researchers working across a broad range of fields to share ideas and to discuss future directions in the expanding field of vascular biology. In this report, the latest advances in understanding the mechanism of vascular trafficking presented at the meeting have been summarized.

  12. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    SciTech Connect

    Ostrup, Olga; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  13. Probabilistic Study of Bone Remodeling Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Werner, C.; Gorla, R. S. R.

    2013-08-01

    The dynamic bone remodeling process is a computationally challenging research area that struggles to understand the actual mechanisms. It has been observed that a mechanical stimulus in the bone greatly affects the remodeling process. A 3D finite element model of a femur is created and a probabilistic analysis is performed on the model. The probabilistic analysis measures the sensitivities of various parameters related to the material properties, geometric properties, and the three load cases defined as Single Leg Stance, Abduction, and Adduction. The sensitivity of each parameter is based on the calculated maximum mechanical stimulus and analyzed at various values of probabilities ranging from 0.001 to 0.999. The analysis showed that the parameters associated with the Single Leg Stance load case had the highest sensitivity with a probability of 0.99 and the angle of the force applied to the joint of the proximal femur had the overall highest sensitivity

  14. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  15. Role of thyroid hormones in ventricular remodeling.

    PubMed

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  16. The role of stem cells in vein graft remodelling.

    PubMed

    Xu, Q

    2007-11-01

    The vessel wall is a dynamic tissue that undergoes positive remodelling in response to altered mechanical stress. A typical example is vein graft remodelling, because veins do not develop arteriosclerosis until a vein segment is grafted on to arteries. In this process, it was observed that vascular endothelial and smooth muscle cells of vein grafts die due to suddenly elevated blood pressure. This cell death is followed by endothelial regeneration. Central to this theme is the essential role played by EPCs (endothelial progenitor cells) in regenerating the lost endothelium. The mechanisms by which EPCs attach to the vessel wall and differentiate into mature endothelial cells involve increased chemokine production and laminar shear flow stimulation on the vessel wall. It seems that neo-endothelial cells derived from EPCs lack mature cell functions and express high levels of adhesion molecules resulting in LDL (low-density lipoprotein) penetration and mononuclear cell infiltration into the sub-endothelial space. Among infiltrated mononuclear cells, there are smooth muscle progenitors that proliferate and differentiate into smooth muscle cells. Meanwhile, stem cells present in the media and adventitia may also migrate into arteriosclerotic lesions via the vasa vasorum that are abundant in the diseased vessels. However, the molecular events leading to the homing, differentiation and maturation of stem/progenitor cells still needs elucidation. The present review attempts to update the progress in stem cell research related to the pathogenesis of vein graft arteriosclerosis or remodelling, focusing on the mechanisms by which stem/progenitor cells participate in the development of lesions, and to discuss the controversial issues and the future perspectives surrounding this research area.

  17. VEGF inhibition as possible therapy in spondyloarthritis patients: Targeting bone remodelling.

    PubMed

    Lacout, Alexis; Carlier, Robert Yves; El Hajjam, Mostafa; Marcy, Pierre Yves

    2017-04-01

    Spondyloarthritis refers to a group of chronic inflammatory rheumatic diseases that predominantly affects the axial skeleton, causing pain and stiffness. Human bone is highly dynamic organ that interacts with a wide array cells and tissues. Process of bone remodelling relies on a delicate balance between bone formation and bone resorption, orchestrated by osteoblasts and osteoclasts. Disruption of this homeostatic balance of bone removal and replacement can manifest as inappropriate new bone formation found in spondylarthritis. We hypothesize that VEGF may promote bone remodelling, stimulate angiogenesis, and both osteoclastic and osteoblastic activity. Anti VEGF may be tested as a dedicated therapy to prevent bone remodelling in spondyloarthritis patients, namely in cases of aggressive disease. Bone remodelling could be monitored by using [18F]Fluoride PET scan.

  18. Tissue Inhibitor of Metalloproteinase 1 Influences Vascular Adaptations to Chronic Alterations in Blood Flow.

    PubMed

    Mandel, Erin R; Uchida, Cassandra; Nwadozi, Emmanuel; Makki, Armin; Haas, Tara L

    2017-04-01

    Remodeling of the skeletal muscle microvasculature involves the coordinated actions of matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitor of metalloproteinases (TIMPs). We hypothesized that the loss of TIMP1 would enhance both ischemia and flow-induced vascular remodeling by increasing MMP activity. TIMP1 deficient (Timp1(-/-) ) and wild-type (WT) C57BL/6 mice underwent unilateral femoral artery (FA) ligation or were treated with prazosin, an alpha-1 adrenergic receptor antagonist, in order to investigate vascular remodeling to altered flow. Under basal conditions, Timp1(-/-) mice had reduced microvascular content as compared to WT mice. Furthermore, vascular remodeling was impaired in Timp1(-/-) mice. Timp1(-/-) mice displayed reduced blood flow recovery in response to FA ligation and no arteriogenic response to prazosin treatment. Timp1(-/-) mice failed to undergo angiogenesis in response to ischemia or prazosin, despite maintaining the capacity to increase VEGF-A and eNOS mRNA. Vascular permeability was increased in muscles of Timp1(-/-) mice in response to both prazosin treatment and FA ligation, but this was not accompanied by greater MMP activity. This study highlights a previously undescribed integral role for TIMP1 in both vascular network maturation and adaptations to ischemia or alterations in flow. J. Cell. Physiol. 232: 831-841, 2017. © 2016 Wiley Periodicals, Inc.

  19. Nuclear reprogramming and its role in vascular smooth muscle cells.

    PubMed

    Zaina, Silvio; del Pilar Valencia-Morales, Maria; Tristán-Flores, Fabiola E; Lund, Gertrud

    2013-09-01

    In general terms, "nuclear reprogramming" refers to a change in gene expression profile that results in a significant switch in cellular phenotype. Nuclear reprogramming was first addressed by pioneering studies of cell differentiation during embryonic development. In recent years, nuclear reprogramming has been studied in great detail in the context of experimentally controlled dedifferentiation and transdifferentiation of mammalian cells for therapeutic purposes. In this review, we present a perspective on nuclear reprogramming in the context of spontaneous, pathophysiological phenotypic switch of vascular cells occurring in the atherosclerotic lesion. In particular, we focus on the current knowledge of epigenetic mechanisms participating in the extraordinary flexibility of the gene expression profile of vascular smooth muscle cells and other cell types participating in atherogenesis. Understanding how epigenetic changes participate in vascular cell plasticity may lead to effective therapies based on the remodelling of the vascular architecture.

  20. Endothelial fluid shear stress sensing in vascular health and disease

    PubMed Central

    Baeyens, Nicolas; Bandyopadhyay, Chirosree; Coon, Brian G.; Yun, Sanguk; Schwartz, Martin A.

    2016-01-01

    Endothelial cells transduce the frictional force from blood flow (fluid shear stress) into biochemical signals that regulate gene expression and cell behavior via specialized mechanisms and pathways. These pathways shape the vascular system during development and during postnatal and adult life to optimize flow to tissues. The same pathways also contribute to atherosclerosis and vascular malformations. This Review covers recent advances in basic mechanisms of flow signaling and the involvement of these mechanisms in vascular physiology, remodeling, and these diseases. We propose that flow sensing pathways that govern normal morphogenesis can contribute to disease under pathological conditions or can be altered to induce disease. Viewing atherosclerosis and vascular malformations as instances of pathological morphogenesis provides a unifying perspective that may aid in developing new therapies. PMID:26928035

  1. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  2. Exercise-induced cardiac remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes.

  3. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  4. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  5. Matrix Metalloproteinase Inhibitors as Investigative Tools in the Pathogenesis and Management of Vascular Disease

    PubMed Central

    Benjamin, Mina M.; Khalil, Raouf A.

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates, and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolyic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only on MMP inhibitor, i.e. doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors

  6. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function.

    PubMed

    Serini, Guido; Valdembri, Donatella; Zanivan, Sara; Morterra, Giulia; Burkhardt, Constanze; Caccavari, Francesca; Zammataro, Luca; Primo, Luca; Tamagnone, Luca; Logan, Malcolm; Tessier-Lavigne, Marc; Taniguchi, Masahiko; Püschel, Andreas W; Bussolino, Federico

    2003-07-24

    The motility and morphogenesis of endothelial cells is controlled by spatio-temporally regulated activation of integrin adhesion receptors, and integrin activation is stimulated by major determinants of vascular remodelling. In order for endothelial cells to be responsive to changes in activator gradients, the adhesiveness of these cells to the extracellular matrix must be dynamic, and negative regulators of integrins could be required. Here we show that during vascular development and experimental angiogenesis, endothelial cells generate autocrine chemorepulsive signals of class 3 semaphorins (SEMA3 proteins) that localize at nascent adhesive sites in spreading endothelial cells. Disrupting endogenous SEMA3 function in endothelial cells stimulates integrin-mediated adhesion and migration to extracellular matrices, whereas exogenous SEMA3 proteins antagonize integrin activation. Misexpression of dominant negative SEMA3 receptors in chick embryo endothelial cells locks integrins in an active conformation, and severely impairs vascular remodelling. Sema3a null mice show vascular defects as well. Thus during angiogenesis endothelial SEMA3 proteins endow the vascular system with the plasticity required for its reshaping by controlling integrin function.

  7. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  8. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD.

  9. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  10. Vascular and Cellular Calcium in Normal and Hypertensive Pregnancy

    PubMed Central

    Adamova, Zuzana; Ozkan, Sifa; Khalil, Raouf A.

    2010-01-01

    Normal pregnancy is associated with significant hemodynamic changes in the cardiovascular system in order to meet the metabolic demands of mother and fetus. These changes include increased cardiac output, decreased vascular resistance, and vascular remodeling in the uterine and systemic circulation. Preeclampsia (PE) is a major complication of pregnancy characterized by proteinuria and hypertension. Several risk factors have been implicated in the pathogenesis of PE including genetic and dietary factors. Ca2+ is an essential dietary element and an important regulator of many cellular processes including vascular function. The importance of adequate dietary Ca2+ intake during pregnancy is supported by many studies. Pregnancy-associated changes in Ca2+ metabolism and plasma Ca2+ have been observed. During pregnancy, changes in intracellular free Ca2+ concentration ([Ca2+]i) have been described in red blood cells, platelets and immune cells. Also, during pregnancy, an increase in [Ca2+]i in endothelial cells (EC) stimulates the production of vasodilator substances such as nitric oxide and prostacyclin. Normal pregnancy is also associated with decreased vascular smooth muscle (VSM) [Ca2+]i and possibly the Ca2+-sensitization pathways of VSM contraction including protein kinase C, Rho-kinase, and mitogen-activated protein kinase. Ca2+-dependent matrix metalloproteinases could also promote extracellular matrix degradation and vascular remodeling during pregnancy. Disruption in the balance between dietary, plasma and vascular cell Ca2+ may be responsible for some of the manifestation of PE including procoagulation, decreased vasodilation, and increased vasoconstriction and vascular resistance. The potential benefits of Ca2+ supplements during pregnancy, and the use of modulators of vascular Ca2+ to reduce the manifestations of PE in susceptible women remain an important area for experimental and clinical research. PMID:19500073

  11. Impact of pulmonary vascular stiffness and vasodilator treatment in pediatric pulmonary hypertension: 21 patient-specific fluid-structure interaction studies

    PubMed Central

    Su, Zhenbi; Hunter, Kendall S.; Shandas, Robin

    2011-01-01

    Recent clinical studies of pulmonary arterial hypertension (PAH) have found correlations between increased pulmonary vascular stiffness (PVS) and poorer disease outcomes. However, mechanistic questions remain about the relationships amongst PVS, RV power, and vascular hemodynamics in the setting of progressive PAH that are difficult or impossible to answer using direct measurements. Clinically-validated patient-specific computational modeling may allow exploration of these issues through perturbation-based predictive testing. Here we use a simple patient-specific model to answer four questions: how do hemodynamics change as PAH worsens? How does increasing PVS impact hemodynamics and RV power? For a patient with moderate PAH, what are the consequences if the pressures increase modestly yet sufficiently to engage collagen in those vessels? What impact does pressure-reducing vasodilator treatment have on hemodynamics? Twenty-one sets of model-predicted impedance and mean PA pressure (mPAP) show good agreement with clinical measurements, thereby validating the model. Worsening was modeled using data from three PAH outcomes groups; these show not only the expected increase in mPAP, but also an increase in pressure pulsatility. Interestingly, chronically increasing mPAP decreased WSS, suggesting that increased PA cross-sectional area affected WSS greater than increased PVS. For a patient with moderately high PVR (12.7 WU) with elastin-based upstream vascular remodeling, moving from elastin-dominant vessel behavior to collagen-dominant behavior caused substantial increases in mPAP, pressure and WSS pulsatility. For the same patient, reducing PVR through a simulated vasodilator to a value equivalent to mild PAH did not decrease pressure pulsatility and dramatically increased WSS pulsatility. Overall, these results suggest a close association between PVS and hemodynamics and that hemodynamics may play an important role in progressing PAH. These support the hypothesis that

  12. Contribution of Vascular Cells to Neointimal Formation

    PubMed Central

    Yuan, Falei; Wang, Dong; Xu, Kang; Wang, Jixian; Zhang, Zhijun; Yang, Li; Yang, Guo-Yuan; Li, Song

    2017-01-01

    The de-differentiation and proliferation of smooth muscle cells (SMCs) are widely accepted as the major contributor to vascular remodeling. However, recent studies indicate that vascular stem cells (VSCs) also play an important role, but their relative contribution remains to be elucidated. In this study, we used genetic lineage tracing approach to further investigate the contribution of SMCs and VSCs to neointimal thickening in response to endothelium denudation injury or artery ligation. In vitro and in vivo analysis of MYH11-cre/Rosa-loxP-RFP mouse artery showed that SMCs proliferated at a much slower rate than non-SMCs. Upon denudation or ligation injury, two distinct types of neointima were identified: Type-I neointimal cells mainly involved SMCs, while Type II mainly involved non-SMCs. Using Sox10-cre/Rosa-loxP-LacZ mice, we found that Sox10+ cells were one of the cell sources in neointima. In addition, lineage tracing using Tie2-cre/Rosa-LoxP-RFP showed that endothelial cells also contributed to the neointimal formation, but rarely transdifferentiated into mesenchymal lineages. These results provide a novel insight into the contribution of vascular cells to neointima formation, and have significant impact on the development of more effective therapies that target specific vascular cell types. PMID:28060852

  13. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction

    PubMed Central

    Pu, Xiangyuan; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T.; Caulfield, Mark J.; Ye, Shu

    2016-01-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  14. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  15. Fractal Branching in Vascular Trees and Networks by VESsel GENeration Analysis (VESGEN)

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2016-01-01

    Vascular patterning offers an informative multi-scale, fractal readout of regulatory signaling by complex molecular pathways. Understanding such molecular crosstalk is important for physiological, pathological and therapeutic research in Space Biology and Astronaut countermeasures. When mapped out and quantified by NASA's innovative VESsel GENeration Analysis (VESGEN) software, remodeling vascular patterns become useful biomarkers that advance out understanding of the response of biology and human health to challenges such as microgravity and radiation in space environments.

  16. Society for Vascular Medicine

    MedlinePlus

    ... Certification with this new online course from the Society for Vascular Medicine. Learn more. Looking for a ... jobs are listed right now. Copyright © 2016 The Society for Vascular Medicine. All Rights Reserved.

  17. Society for Vascular Medicine

    MedlinePlus

    ... Journal Scientific Sessions Website FAQ Copyright © 2017 The Society for Vascular Medicine. All Rights Reserved. Phone: +1- ... page Videos Training Programs Journal Access the Journal Society Communications Patient Information Pages Vascular Medicine Journal CME ...

  18. [Physiopathology of left ventricular remodeling after myocardial infarction].

    PubMed

    Bassand, J P; Anguenot, T

    1991-12-01

    The geometry of both the infarcted and non-infarcted zone of the left ventricle changes after myocardial infarction. Two mechanisms are involved: expansion of the infarcted zone and secondary dilatation of the non-infarcted zone. The necrosed area undergoes an inflammatory reaction followed by fibrosis which end up as a sca within a period of a few days to a few weeks. During this period if fibrous scarring the infarcted, thinned myocardium undergoes progressive expansion which starts in the first hours of the myocardial infarction. The loss of left ventricular systolic function related to the infarct and volumic overload created by expansion of the infarct influence the secondary development of dilatation of the non-infarcted zones. This dilatation results in restoration of left ventricular stroke volume but at the price of increased wall stress, which itself induces compensatory wall hypertrophy. These phenomena are more pronounced when the initial infarction is extensive and if they are sustained, they result in definitive myocardial failure. Several factors influence remodeling: the size of the infarct, arterial patency, wall stress and the quality of the scarring process itself. Therapeutic interventions of each of these factors can influence the remodeling. Limitation of infarct size by thrombolytic therapy, arterial revascularisation, even when performed late, seem capable of limiting expansion of the necrosed zone. Pharmacodynamic intervention of left ventricular afterload also affects ventricular remodeling. Nitrate derivatives, vasodilator therapy in general and converting enzyme inhibitors have been shown to be effective.

  19. Mechanisms underlying heterologous skin scaffold-mediated tissue remodeling

    PubMed Central

    Mimura, Kallyne K. O.; Moraes, Andréia R.; Miranda, Aline C.; Greco, Rebecca; Ansari, Tahera; Sibbons, Paul; Greco, Karin V.; Oliani, Sonia M.

    2016-01-01

    Biocompatibility of two newly developed porcine skin scaffolds was assessed after 3, 14, 21 and 90 days of implantation in rats. Both scaffolds showed absence of cells, preservation of ECM and mechanical properties comparable to non-decellularised skin before implantation. Host cell infiltration was much prominent on both scaffolds when compared to Permacol (surgical control). At day 3, the grafts were surrounded by polymorphonuclear cells, which were replaced by a notable number of IL-6-positive cells at day 14. Simultaneously, the number of pro-inflammatory M1-macrophage was enhanced. Interestingly, a predominant pro-remodeling M2 response, with newly formed vessels, myofibroblasts activation and a shift on the type of collagen expression was sequentially delayed (around 21 days). The gene expression of some trophic factors involved in tissue remodeling was congruent with the cellular events. Our findings suggested that the responsiveness of macrophages after non-crosslinked skin scaffolds implantation seemed to intimately affect various cell responses and molecular events; and this range of mutually reinforcing actions was predictive of a positive tissue remodeling that was essential for the long-standing success of the implants. Furthermore, our study indicates that non-crosslinked biologic scaffold implantation is biocompatible to the host tissue and somehow underlying molecular events involved in tissue repair. PMID:27725772

  20. Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis.

    PubMed

    Gilad, Assaf A; Israely, Tomer; Dafni, Hagit; Meir, Gila; Cohen, Batya; Neeman, Michal

    2005-11-01

    Maintaining homogeneous perfusion in tissues undergoing remodeling and vascular expansion requires tight orchestration of the signals leading to endothelial sprouting and subsequent recruitment of perivascular contractile cells and vascular maturation. This regulation, however, is frequently disrupted in tumors. We previously demonstrated the role of tumor-associated myofibroblasts in vascularization and exit from dormancy of human ovarian carcinoma xenografts in nude mice. The aim of this work was to determine the contribution of stroma- and tumor cell-derived angiogenic growth factors to the heterogeneity of vascular permeability and maturation in MLS human ovarian carcinoma tumors. We show by RT-PCR and by in situ hybridization that VEGF was expressed by the tumor cells, while angiopoietin-1 and -2 were expressed only by the infiltrating host stroma cells. Vascular maturation was detected in vivo by vasoreactivity to hypercapnia, measured by BOLD contrast MRI and validated by immunostaining of histologic sections to alpha-smooth muscle actin. Vascular permeability was measured in vivo by dynamic contrast-enhanced MRI using albumin-based contrast material and validated in histologic sections by fluorescent staining of the biotinylated contrast material. MRI as well as histologic correlation maps between vascular maturation and vascular permeability revealed a wide range of vascular phenotypes, in which the distribution of vascular maturation and vasoreactivity did not overlap spatially with reduced permeability. The large heterogeneity in the degree of vascular maturation and permeability is consistent with the differential expression pattern of VEGF and angiopoietins during tumor angiogenesis.

  1. Allergen-induced airway remodeling is impaired in galectin-3 deficient mice1

    PubMed Central

    Ge, Xiao Na; Bahaie, Nooshin S.; Kang, Bit Na; Hosseinkhani, Reza M.; Ha, Sung Gil; Frenzel, Elizabeth M.; Liu, Fu-Tong; Rao, Savita P.; Sriramarao, P.

    2010-01-01

    The role played by the β-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knock-out (KO) mice were subjected to repetitive allergen challenge with ovalbumin (OVA) up to 12 weeks and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, sub-epithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared to WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, FIZZ1 and TGF-β were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared to WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines, pro-fibrogenic and angiogenic mediators. PMID:20543100

  2. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension.

    PubMed

    Zhang, Ming-Jie; Liu, Yun; Hu, Zi-Cheng; Zhou, Yi; Pi, Yan; Guo, Lu; Wang, Xu; Chen, Xue; Li, Jing-Cheng; Zhang, Li-Li

    2017-04-01

    The phenotypic modulation of contractile vascular smooth muscle cell (VSMC) is widely accepted as the pivotal process in the arterial remodeling induced by hypertension. This study aimed to investigate the potential role of transient receptor potential vanilloid type 1 (TRPV1) on regulating VSMC plasticity and intracranial arteriole remodeling in hypertension. Spontaneously hypertensive rats (SHR), Wistar-Kyoto (WKY) rats and TRPV1(-/-) mice on a C57BL/6J background were used. By microscopic observation of the histopathological sections of vessels from hypertensive SHR and age-matched normotensive WKY control rats, we found that hypertension induced arterial remodeling. Decreased α-smooth muscle actin (α-SMA) and SM22α while increased osteopontin (OPN) were observed in aorta and VSMCs derived from SHR compared with those in WKY, and VSMCs derived from SHR upregulated inflammatory factors. TRPV1 activation by capsaicin significantly increased expression of α-SMA and SM22α, reduced expression of OPN, retarded proliferative and migratory capacities and inhibited inflammatory status in VSMCs from SHR, which was counteracted by TRPV1 antagonist 5'-iodoresiniferatoxin (iRTX) combined with capsaicin. TRPV1 activation by capsaicin ameliorated intracranial arteriole remodeling in SHR and deoxycorticosterone acetate (DOCA)-salt hypertensive mice. However, the attenuation of arteriole remodeling by capsaicin was not observed in TRPV1(-/-) mice. Furthermore, TRPV1 activation significantly decreased the activity of PI3K and phosphorylation level of Akt in SHR-derived VSMCs. Taken together, we provide evidence that TRPV1 activation by capsaicin attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation during hypertension, which may be at least partly attributed to the suppression PI3K/Akt signaling pathway. These findings highlight the prospect of TRPV1 in prevention and treatment of hypertension.

  3. Simulations of trabecular remodeling and fatigue: is remodeling helpful or harmful?

    PubMed

    van Oers, René F M; van Rietbergen, Bert; Ito, Keita; Huiskes, Rik; Hilbers, Peter A J

    2011-05-01

    Microdamage-targeted resorption is paradoxal, because it entails the removal of bone from a region that was already overloaded. Under continued intense loading, resorption spaces could potentially cause more damage than they remove. To investigate this problem, we incorporated damage algorithms in a computer-simulation model for trabecular remodeling. We simulated damage accumulation and bone remodeling in a trabecular architecture, for two fatigue regimens, a 'moderate' regimen, and an 'intense' regimen with a higher number of loading cycles per day. Both simulations were also performed without bone remodeling to investigate if remodeling removed or exacerbated the damage. We found that remodeling tends to remove damage under the 'moderate' fatigue regimen, but it exacerbates damage under the 'intense' regimen. This harmful effect of remodeling may play a role in the development of stress fractures.

  4. [In-vivo and ex-vivo studies on region-specific remodeling of large elastic arteries due to simulated weightlessness and its prevention by gravity-based countermeasure].

    PubMed

    Gao, Fang; Cheng, Jiu-Hua; Xue, Jun-Hui; Bai, Yun-Gang; Chen, Ming-Sheng; Huang, Wei-Quan; Huang, Jing; Wu, Sheng-Xi; Han, Hai-Chao; Zhang, Li-Fan

    2012-02-25

    The present study was designed to test the hypothesis that a medium-term simulated microgravity can induce region-specific remodeling in large elastic arteries with their innermost smooth muscle (SM) layers being most profoundly affected. The second purpose was to examine whether these changes can be prevented by a simulated intermittent artificial gravity (IAG). The third purpose was to elucidate whether vascular local renin-angiotensin system (L-RAS) plays an important role in the regional vascular remodeling and its prevention by the gravity-based countermeasure. This study consisted of two interconnected series of in-vivo and ex-vivo experiments. In the in-vivo experiments, the tail-suspended, hindlimb unloaded rat model was used to simulate microgravity-induced cardiovascular deconditioning for 28 days (SUS group); and during the simulation period, another group was subjected to daily 1-hour dorso-ventral (-G(x)) gravitation provided by restoring to normal standing posture (S + D group). The activity of vascular L-RAS was evaluated by examining the gene and protein expression of angiotensinogen (Ao) and angiotensin II receptor type 1 (AT1R) in the arterial wall tissue. The results showed that SUS induced an increase in the media thickness of the common carotid artery due to hypertrophy of the four SM layers and a decrease in the total cross-sectional area of the nine SM layers of the abdominal aorta without significant change in its media thickness. And for both arteries, the most prominent changes were in the innermost SM layers. Immunohistochemistry and in situ hybridization revealed that SUS induced an up- and down-regulation of Ao and AT1R expression in the vessel wall of common carotid artery and abdominal aorta, respectively, which was further confirmed by Western blot analysis and real time PCR analysis. Daily 1-hour restoring to normal standing posture over 28 days fully prevented these remodeling and L-RAS changes in the large elastic arteries that

  5. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  6. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  7. B.B. Contracting & Remodeling Information Sheet

    EPA Pesticide Factsheets

    B.B. Contracting & Remodeling (the Company) is located in St. Louis, Missouri. The settlement involves renovation activities conducted at property constructed prior to 1978, located in St. Louis, Missouri.

  8. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    PubMed Central

    Zanetti, Michela; Grillo, Andrea; Losurdo, Pasquale; Panizon, Emiliano; Mearelli, Filippo; Cattin, Luigi; Barazzoni, Rocco; Carretta, Renzo

    2015-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction. PMID:26301252

  9. Matrix metalloproteinase 9 (MMP-9) and biodegradable polymers in the engineering of a vascular construct

    NASA Astrophysics Data System (ADS)

    Sung, Hak-Joon

    The role of matrix metalloproteinase (MMP)-9 and processing conditions of biodegradable polymer scaffolds has been investigated to optimize engineering vascular constructs. For a small diameter vascular construct, uniform 10 mum thickness of highly porous scaffolds were developed using a computer-controlled knife coater and exploiting phase transition properties of salts. The comparative study of fast vs. slow degrading three-dimensional scaffolds using a fast degrading poly D, L-lactic-glycolic acid copolymer (PLGA) and a slow degrading poly e-caprolactone (PCL) indicated that fast degradation negatively affects cell viability and migration into the scaffold in vitro and in vivo, which is likely due to the fast polymer degradation mediated acidification of the local environment. MMP-9 was crucial for collagen remodeling process by smooth muscle cells (SMC). MMP-9 deficiency dramatically decreased inflammatory cell invasion as well as capillary formation within the scaffolds implanted in vivo. This study reports that the angiogenic response developed within the scaffolds in vivo was related to the presence of inflammatory response. Combinatorial polymer libraries fabricated from blended PLGA and PCL and processed at gradient annealing temperatures were utilized to investigate polymeric interactions with SMC. Surface roughness was also found to correlate with SMC adhesion. SMC aggregation, proliferation, and protein production, were highest in regions that exhibited increased surface roughness, reduced hardness, and decreased crystallinity of the PCL-rich phases. This study revealed a previously unknown processing temperature and blending compositions for two well-known polymers, which optimized SMC interactions.

  10. Vascular restoration therapy and bioresorbable vascular scaffold

    PubMed Central

    Wang, Yunbing; Zhang, Xingdong

    2014-01-01

    This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article. PMID:26816624

  11. Ventricular remodeling in global ischemia.

    PubMed

    Anversa, P; Zhang, X; Li, P; Olivetti, G; Cheng, W; Reiss, K; Sonnenblick, E H; Kajstura, J

    1995-06-01

    To determine the effects of chronic constriction of the left coronary artery on the function and structure of the heart, coronary artery narrowing was surgically induced in rats and ventricular pump performance, extent and distribution of myocardial damage, and the hypertrophic and hyperplastic response of myocytes were examined. Alterations in cardiac hemodynamics were found in all rats, but the characteristics of the physiological properties of the heart allowed a separation of the animals into two groups which exhibited left ventricular dysfunction and failure, respectively. Left ventricular hypertrophy occurred in both groups and was characterized by ventricular dilatation and wall thinning which were more severe in the failing animals. Multiple foci of myocardial damage across the wall were seen in all animals but tissue injury was more prominent in the endomyocardium and in failing rats. The anatomical and hemodynamic changes resulted in a significant increase in diastolic wall stress which paralleled the depression in ventricular performance. Myocyte cell loss and myocyte cellular hypertrophy were more severe with ventricular failure than with dysfunction. Finally, diastolic overload appeared to be coupled with activation of the DNA synthetic machinery of myocytes and nuclear mitotic division. In conclusion, a fixed lesion of the left coronary artery leads to abnormalities in cardiac dynamics with marked increases in diastolic wall stress and extensive ventricular remodeling in spite of compensatory myocyte cellular hypertrophy and hyperplasia in the remaining viable tissue.

  12. Multifocal vascular lesions.

    PubMed

    Levin, Laura E; Lauren, Christine T

    2016-09-01

    Multifocal vascular lesions are important to recognize and appropriately diagnose. Generally first noticed on the skin, multifocal vascular lesions may have systemic involvement. Distinguishing among the different types of multifocal vascular lesions is often based on clinical features; however, radiological imaging and/or biopsy are frequently needed to identify distinct features and guide treatment. Knowledge of the systemic associations that can occur with different vascular anomalies may reduce life-threatening complications, such as coagulopathy, bleeding, cardiac compromise, and neurologic sequelae. This review provides a synopsis of the epidemiology, pathogenesis, presentation, workup, and treatment of several well-recognized multifocal vascular tumors and malformations.

  13. Initiation of vascular development.

    PubMed

    Ohashi-Ito, Kyoko; Fukuda, Hiroo

    2014-06-01

    The initiation of vascular development occurs during embryogenesis and the development of lateral organs, such as lateral roots and leaves. Understanding the mechanism underlying the initiation of vascular development has been an important goal of plant biologists. Auxin flow is a crucial factor involved in the initiation of vascular development. In addition, recent studies have identified key factors that regulate the establishment of vascular initial cells in embryos and roots. In this review, we summarize the recent findings in this field and discuss the initiation of vascular development.

  14. Vascular Aging in Women: is Estrogen the Fountain of Youth?

    PubMed Central

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Medina, Pascual; Hermenegildo, Carlos

    2012-01-01

    Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A2 release. The thromboxane A2 pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The “Timing Hypothesis,” which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages. PMID:22685434

  15. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  16. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  17. Radiotherapy-induced right ventricular remodelling: The missing piece of the puzzle.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare; Hering, Dagmara; Venneri, Lucia; Grozdic-Milojevic, Isidora

    2017-02-01

    The number of studies demonstrating that right ventricular structure, function and mechanics are valuable predictors of cardiovascular and total morbidity and mortality in patients with a wide range of cardiovascular conditions is constantly increasing. Most studies that evaluated the influence of radiotherapy on the heart focused on left ventricular remodelling, which is why current guidelines only recommend detailed assessment of the left ventricle. Data regarding right ventricular changes in cancer patients treated with radiotherapy are scarce. Given that radiotherapy more often induces late cardiac impairment - unlike chemotherapy-induced cardiotoxicity, which is usually acute - it is quite reasonable to follow these patients echocardiographically for a long time (even for 20years after initiation of radiotherapy). Investigations that have followed cancer survivors for at least 10years after radiotherapy agree that right ventricular structure, systolic/diastolic function and mechanics are significantly impaired. The mechanisms of radiation-induced right ventricular remodelling are still unclear, but it is thought that fibrosis is the dominant factor in myocardial remodelling and vascular changes. Many factors may contribute to right ventricular impairment during and after radiotherapy: cumulative radiation dose; dose per treatment; delivery technique; radiation target (chest and mediastinum); and co-morbidities. In this review, we aim to provide a comprehensive overview of the potential mechanisms of radiation-induced right ventricular remodelling, and to summarize clinical studies involving radiotherapy-treated cancer patients.

  18. Bone remodeling as a spatial evolutionary game.

    PubMed

    Ryser, Marc D; Murgas, Kevin A

    2017-04-07

    Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.

  19. Cerebral vascular hamartoma in a geriatric cat

    PubMed Central

    Martin-Vaquero, Paula; Moore, Sarah A; Wolk, Kendra E; Oglesbee, Michael J

    2014-01-01

    An 11-year-old castrated male domestic medium hair cat was presented with neurological signs consistent with a right thalamocortical lesion. Computed tomography (CT) images revealed a heterogeneously, hyperattenuating, poorly contrast enhancing intra-axial mass within the right lateral ventricle. The histological diagnosis at post-mortem examination was vascular hamartoma with hemorrhage and necrosis. This is the first report of a vascular hamartoma affecting the thalamocortex in a geriatric cat. Also, this is the first time that CT images of a feline cerebral vascular hamartoma have been reported. PMID:21277244

  20. Vascular aging: Chronic oxidative stress and impairment of redox signaling—consequences for vascular homeostasis and disease

    PubMed Central

    Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd

    2013-01-01

    Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696

  1. [DIAGNOSIS OF VASCULAR INVASION BY PANCREATIC TUMORS].

    PubMed

    Dronov, O I; Zemskov, S V; Bakunets, P P

    2016-02-01

    Basing on analysis of own material (84 patients) and data of literature there was established, that vascular invasion by pancreatic tumors constitutes the main obstacle for conduction of the patients' radical treatment. Early diagnosis permits radical resectability of the patients, what constitutes the only one effective method of treatment. In vascular invasion by tumor a surgeon experience and professional preparation determines possibility of the extended operation performance with intervention on affected main vessel, enhancing the treatment radicalism.

  2. Genetic causation of neointimal hyperplasia in hemodialysis vascular access dysfunction.

    PubMed

    Lee, Timmy; Wadehra, Davinder

    2012-01-01

    The major cause of hemodialysis vascular access failure is venous stenosis resulting from neointimal hyperplasia. Genetic factors have been shown to be associated with cardiovascular disease and peripheral vascular disease (PVD) in the general population. Genetic factors may also play an important role in vascular access stenosis and development of neointimal hyperplasia by affecting pathways that lead to inflammation, endothelial function, oxidative stress, and vascular smooth muscle proliferation. This review will discuss the role of genetics in understanding neointimal hyperplasia development in hemodialysis vascular access dysfunction and other disease processes with similar neointimal hyperplasia development such as coronary artery disease and PVD.

  3. Cardiac remodelling and RAS inhibition

    PubMed Central

    Ferrario, Carlos M.

    2016-01-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin–angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  4. Periprosthetic Bone Remodelling in Total Knee Arthroplasty

    PubMed Central

    GEORGEANU, Vlad; ATASIEI, Tudor; GRUIONU, Lucian

    2014-01-01

    Introduction: The clinical studies have shown that the displacement of the prosthesis components, especially of the tibial one is higher during the first year, after which it reaches an equilibrum position compatible with a good long term functioning. This displacement takes place due to bone remodelling close to the implant secondary to different loading concentrations over different areas of bone. Material and Method: Our study implies a simulation on a computational model using the finite element analysis. The simulation started taking into account arbitrary points because of non-linear conditions of bone-prosthesis interface and it was iterative.. A hundred consecutive situations corresponding to intermediate bone remodelling phases have been calculated according to given loadings. Bone remodelling was appreciated as a function of time and bone density for each constitutive element of the computational model created by finite element method. For each constitutive element a medium value of stress during the walking cycle was applied. Results: Analyse of proximal epiphysis-prosthesis complex slices showed that bone density increase is maintained all over the stem in the immediately post-operative period. At 10 months, the moment considered to be the end of bone remodelling, areas with increased bone density are fewer and smaller. Meanwhile, their distribution with a concentration toward the internal compartment in the distal metaphysis is preserved. Conclusions: After the total knee arthroplasty the tibial bone suffered a process of remodelling adapted to the new stress conditions. This bone remodelling can influence, sometimes negatively, especially in the cases with tibial component varus malposition, the fixation, respectively the survival of the prosthesis. This process has been demonstrated both by clinical trials and by simulation, using the finite elements method of periprosthetic bone remodelling. PMID:25553127

  5. Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats

    PubMed Central

    Ren, Xing-Sheng; Ling, Li; Zhou, Bing; Han, Ying; Zhou, Ye-Bo; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2017-01-01

    Salusin-β is a bioactive peptide involved in vascular smooth muscle cell proliferation, vascular fibrosis and hypertension. The present study was designed to determine the effects of silencing salusin-β on hypertension and cardiovascular remodeling in spontaneously hypertensive rats (SHR). Thirteen-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were subjected to intravenous injection of PBS, adenoviral vectors encoding salusin-β shRNA (Ad-Sal-shRNA) or a scramble shRNA. Salusin-β levels in plasma, myocardium and mesenteric artery were increased in SHR. Silencing salusin-β had no significant effect on blood pressure in WKY, but reduced blood pressure in SHR. It reduced the ratio of left ventricle weight to body weight, cross-sectional areas of cardiocytes and perivascular fibrosis, and decreased the media thickness and the media/lumen ratio of arteries in SHR. Silencing salusin-β almost normalized plasma norepinephrine and angiotensin II levels in SHR. It prevented the upregulation of angiotensin II and AT1 receptors, and reduced the NAD(P)H oxidase activity and superoxide anion levels in myocardium and mesenteric artery of SHR. Knockdown of salusin-β attenuated cell proliferation and fibrosis in vascular smooth muscle cells from SHR. These results indicate that silencing salusin-β attenuates hypertension and cardiovascular remodeling in SHR. PMID:28230187

  6. [Frequency and causes of vascular complications requiring surgery in patients without primary vascular disease].

    PubMed

    Pongratz, J; Reeps, C; Eckstein, H-H

    2011-10-01

    Arterial and venous vascular injuries are known but rare complications of severe multiple traumatised patients but are meanwhile more frequently induced iatrogenically. However there are only few reports about incidence, causes, surgical techniques and prognosis of these vascular emergencies. We have therefore analysed the causes, type of therapy, localisation of injury, primary dis-ease, morbidity and mortality of all vascular emergencies in patients without preexisting vascular disease. 2.9 % of all vascular repairs in our unit had to be performed for cases of iatrogenic (87 %) and non-iatrogenic (13 %) vascular complications. The overall mortality and major complication rate of these intrahospital iatrogenically aquired lesions were 4.8 % and 5 %, respectively, which are clearly below those of extrahospital vascular injuries. Thereby the observed increase of iatrogenic vascular injuries seems to be due to the increase in complex and even catheter-based techniques in modern therapy. The iliacofemoral region was affected in 45 % of the cases, in 50 % complex reconstructions and specific surgical skills were needed for the repair. This article on the incidence of and reasons for vascular iatrogenic lesions shows the importance of a planned management for the prognosis of these injuries.

  7. Continuous lactation effects on mammary remodeling during late gestation and lactation in dairy goats.

    PubMed

    Safayi, S; Theil, P K; Hou, L; Engbaek, M; Nørgaard, J V; Sejrsen, K; Nielsen, M O

    2010-01-01

    The present study aimed to 1) elucidate whether continuous milking during late gestation in dairy goats negatively affects mammary remodeling and hence milk production in the subsequent lactation, and 2) identify the regulatory factors responsible for changes in cell turnover and angiogenesis in the continuously lactating mammary gland. Nine multiparous dairy goats were used. One udder half was dried off approximately 9 wk prepartum (normal lactation; NL), and the other udder half of the same goat was milked continuously (continuous lactation; CL) until parturition or until the half-udder milk yields had dropped to below 50 g/d. Mammary biopsies were obtained from each udder half just before the NL gland was dried off (before dry period), within the first 2 wk after drying-off (early dry period, samples available only for NL glands), in the mid dry period, within the last 2 wk before parturition (late dry period), and at d 1 (the day of parturition), 3, 10, 60, and 180 of lactation. Mammary morphology was characterized in biopsies by quantitative histology, and cell turnover was determined by immunohistochemistry (terminal deoxynucleotidyl transferase dUTP nick end labeling and Ki-67). Transcription of genes encoding factors involved in mammary epithelial cell (MEC) turnover and vascular function was quantified by quantitative reverse transcription PCR. Results demonstrated that omitting the dry period was possible in goats but was not as easy as claimed before. Renewal of MEC was suppressed in CL glands, which resulted in a smaller MEC population in the subsequent lactation. At the time of parturition (and throughout lactation), the mammary glands subjected to CL had smaller alveoli, more fully differentiated MEC, and a substantially larger capillary fraction compared with NL glands. The continuously lactating gland thus resembled a normally lactating gland in an advanced stage of lactation. None of the studied genomic factors could account for these treatment

  8. Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension

    PubMed Central

    Landskroner, Kyle; Bauer, Yasmina; Vercauteren, Magali; Rey, Markus; Renault, Berengère; Studer, Rolf; Vezzali, Enrico; Freti, Diego; Hadana, Hakim; Schläpfer, Manuela; Cattaneo, Christophe; Bortolamiol, Céline; Weber, Edgar; Whitby, Brian R.; Delahaye, Stéphane; Wanner, Daniel; Steiner, Pauline; Nayler, Oliver; Hess, Patrick; Clozel, Martine

    2015-01-01

    Aims: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. Methods and Results: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg−1·d−1), but not bosentan (300 mg·kg−1·d−1), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. Conclusions: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan. PMID:26230396

  9. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    PubMed

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  10. A Multiscale Computational Framework to Understand Vascular Adaptation

    PubMed Central

    Garbey, Marc; Rahman, Mahbubur; Berceli, Scott A.

    2015-01-01

    The failure rate for vascular interventions (vein bypass grafting, arterial angioplasty/stenting) remains unacceptably high. Over the past two decades, researchers have applied a wide variety of approaches to investigate the primary failure mechanisms, neointimal hyperplasia and aberrant remodeling of the wall, in an effort to identify novel therapeutic strategies. Despite incremental progress, specific cause/effect linkages among the primary drivers of the pathology, (hemodynamic factors, inflammatory biochemical mediators, cellular effectors) and vascular occlusive phenotype remain lacking. We propose a multiscale computational framework of vascular adaptation to develop a bridge between theory and experimental observation and to provide a method for the systematic testing of relevant clinical hypotheses. Cornerstone to our model is a feedback mechanism between environmental conditions and dynamic tissue plasticity described at the cellular level with an agent based model. Our implementation (i) is modular, (ii) starts from basic mechano-biology principle at the cell level and (iii) facilitates the agile development of the model. PMID:25977733

  11. Vascular alterations in the rabbit patellar tendon after surgical incision

    PubMed Central

    DOSCHAK, M. R.; MATYAS, J. R.; HART, D. A.; BRAY, R. C.

    2001-01-01

    Open incision of the patellar tendon (PT) is thought to promote acute vascular responses which ultimately result in an enhanced degree of tendon repair. Such a clinical procedure is commonly applied to patients with refractory tendinitis. The objective of this study was to quantify the vascular adaptations (both anatomical and physiological) to longitudinal incision of the PT, and the resultant effects on tendon organisation. Fifty-four New Zealand White rabbits were separated into 3 experimental groups and 2 control groups. Experimental groups underwent surgical incision of the right PT, and were assessed 3 d, 10 d and 42 d following injury; normal unoperated controls were evaluated at time zero, and sham-operated controls were evaluated at 3 d to control for the effects of incising the overlying skin. Quantitative measures of PT blood supply (blood flow, microvascular volume) and geometric properties of PT substance were obtained for each PT. Histomorphology was assessed to evaluate vascular remodelling and matrix organisation in the healing PT. Longitudinal open incision surgery of the PT led to rapid increases in both blood flow and vascular volume. The incision of overlying tissues alone (sham-operated) contributed to this measurable increase, and accounted for 36% and 42% of the elevated blood flow and vascular volume respectively at the 3 d interval. In the incised PT, blood flow significantly increased by 3 d compared with both time zero and sham-operated controls, and remained significantly elevated at the 10 d interval. Similarly, vascular volume of the incised PT increased at 3 d compared both with time zero and sham-operated controls. At the 10 d interval, the increase in vascular volume was greatest in the central PT substance. By 42 d both blood flow and vascular volume of the incised tendon had diminished, with only blood flow remaining significantly different from controls. In the contralateral limb, a significant neurogenically mediated

  12. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    PubMed Central

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  13. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  14. Retinal remodeling in inherited photoreceptor degenerations.

    PubMed

    Marc, Robert E; Jones, Bryan W

    2003-10-01

    Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

  15. Temperature-induced cardiac remodelling in fish

    PubMed Central

    Keen, Adam N.; Klaiman, Jordan M.; Shiels, Holly A.

    2017-01-01

    ABSTRACT Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle – specifically diastolic filling, isovolumic pressure generation and ejection – so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable. PMID:27852752

  16. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  17. Left ventricular remodeling after experimental myocardial cryoinjury in rats.

    PubMed

    Ciulla, Michele M; Paliotti, Roberta; Ferrero, Stefano; Braidotti, Paola; Esposito, Arturo; Gianelli, Umberto; Busca, Giuseppe; Cioffi, Ugo; Bulfamante, Gaetano; Magrini, Fabio

    2004-01-01

    The standard coronary ligation, the most studied model of experimental myocardial infarction in rats, is limited by high mortality and produces unpredictable areas of necrosis. To standardize the location and size of the infarct and to elucidate the mechanisms of myocardial remodeling and its progression to heart failure, we studied the functional, structural, and ultrastructural changes of myocardial infarction produced by experimental myocardial cryoinjury. The cryoinjury was successful in 24 (80%) of 30 male adult CD rats. A subepicardial infarct was documented on echocardiograms, with an average size of about 21%. Macroscopic examination reflected closely the stamp of the instrument used, without transition zones to viable myocardium. Histological examination, during the acute setting, revealed an extensive area of coagulation necrosis and hemorrhage in the subepicardium. An inflammatory infiltrate was evident since the 7th hour, whereas the reparative phase started within the first week, with proliferation of fibroblasts, endothelial cells, and myocytes. From the 7th day, deposition of collagen fibers was reported with a reparative scar completed at the 30th day. Ultrastructural study revealed vascular capillary damage and irreversible alterations of the myocytes in the acute setting and confirmed the histological findings of the later phases. The damage was associated with a progressive left ventricular (LV) remodeling, including thinning of the infarcted area, hypertrophy of the noninfarcted myocardium, and significant LV dilation. This process started from the 60th day and progressed over the subsequent 120 days period; at 180 days, a significant increase in LV filling pressure, indicative of heart failure, was found. In conclusion, myocardial cryodamage, although different in respect to ischemic damage, causes a standardized injury reproducing the cellular patterns of coagulation necrosis, early microvascular reperfusion, hemorrhage, inflammation

  18. Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, prevents hypertensive vascular hypertrophy and fibrosis.

    PubMed

    Gelosa, Paolo; Sevin, Gulnur; Pignieri, Alice; Budelli, Silvia; Castiglioni, Laura; Blanc-Guillemaud, Vanessa; Lerond, Laurence; Tremoli, Elena; Sironi, Luigi

    2011-03-01

    Thromboxane A(2) and other eicosanoids such as isoprostanes contribute to vascular proliferation and atherosclerosis by binding to the thromboxane/prostaglandin endoperoxide receptors. The effects of terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, on aorta remodeling were evaluated in spontaneously hypertensive stroke-prone rats (SHRSPs), a model of severe hypertension, endothelial dysfunction, vascular inflammation, and cerebrovascular diseases. Male SHRSPs were allocated to three groups receiving a standard diet (n = 5) or a high-sodium permissive diet plus vehicle (n = 6) or plus terutroban (30 mg · kg(-1) · day(-1); n = 6). After 6 wk of dietary treatment, all of the animals were injected with bromodeoxyuridine and simultaneously euthanized for aorta collection. The aortic media thickness-to-lumen ratio significantly (P < 0.0001) increased in the salt-loaded rats compared with the rats fed a standard diet, whereas terutroban treatment completely prevented media thickening (P < 0.001). When compared with vehicle, terutroban was also effective in preventing cell proliferation in the media, as indicated by the reduced number of bromodeoxyuridine-positive (P < 0.0001) and proliferating cell nuclear antigen-positive cells (P < 0.0001). Severe fibrosis characterized by a significant accumulation of collagen and fibronectin in the vascular wall was observed in the vehicle-treated rats (P < 0.01) but was completely prevented by terutroban (P < 0.001). The latter also inhibited heat shock protein-47 (P < 0.01) and TGF-1β expression (P < 0.001), which were significantly increased by the high-salt diet. In conclusion, terutroban prevents the development of aorta hyperplasia and has beneficial effects on fibrotic processes by affecting TGF-β and heat shock protein-47 expression in SHRSPs. These findings provide mechanistic data supporting the beneficial effects of terutroban in preventing or retarding atherogenesis.

  19. Molecular Aspects of Exercise-induced Cardiac Remodeling.

    PubMed

    Bernardo, Bianca C; McMullen, Julie R

    2016-11-01

    Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.

  20. Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model

    PubMed Central

    Ishikawa, Kiyotake; Hadri, Lahouaria; Santos-Gallego, Carlos; Fish, Kenneth; Hammoudi, Nadjib; Chaanine, Antoine; Torquato, Samantha; Naim, Charbel; Ibanez, Borja; Pereda, Daniel; García-Alvarez, Ana; Fuster, Valentin; Sengupta, Partho P.; Leopold, Jane A.; Hajjar, Roger J.

    2014-01-01

    In pulmonary hypertension (PH), right ventricular (RV) dysfunction and failure is the main determinant of a poor prognosis. We aimed to characterize RV structural and functional differences during adaptive RV remodeling and progression to RV failure in a large animal model of chronic PH. Postcapillary PH was created surgically in swine (n = 21). After an 8- to 14-wk follow-up, two groups were identified based on the development of overt heart failure (HF): PH-NF (nonfailing, n = 12) and PH-HF (n = 8). In both groups, invasive hemodynamics, pressure-volume relationships, and echocardiography confirmed a significant increase in pulmonary pressures and vascular resistance consistent with PH. Histological analysis also demonstrated distal pulmonary arterial (PA) remodeling in both groups. Diastolic dysfunction, defined by a steeper RV end-diastolic pressure-volume relationship and longitudinal strain, was found in the absence of HF as an early marker of RV remodeling. RV contractility was increased in both groups, and RV-PA coupling was preserved in PH-NF animals but impaired in the PH-HF group. RV hypertrophy was present in PH-HF, although there was evidence of increased RV fibrosis in both PH groups. In the PH-HF group, RV sarcoplasmic reticulum Ca2+-ATPase2a expression was decreased, and endoplasmic reticulum stress was increased. Aldosterone levels were also elevated in PH-HF. Thus, in the swine pulmonary vein banding model of chronic postcapillary PH, RV remodeling occurs at the structural, histological, and molecular level. Diastolic dysfunction and fibrosis are present in adaptive RV remodeling, whereas the onset of RV failure is associated with RV-PA uncoupling, defective calcium handling, and hyperaldosteronism. PMID:25158063

  1. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.

    PubMed

    Jang, In Gwun; Kim, Il Yong; Kwak, Byung Ban

    2009-01-01

    In bone-remodeling studies, it is believed that the morphology of bone is affected by its internal mechanical loads. From the 1970s, high computing power enabled quantitative studies in the simulation of bone remodeling or bone adaptation. Among them, Huiskes et al. (1987, "Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis," J. Biomech. Eng., 20, pp. 1135-1150) proposed a strain energy density based approach to bone remodeling and used the apparent density for the characterization of internal bone morphology. The fundamental idea was that bone density would increase when strain (or strain energy density) is higher than a certain value and bone resorption would occur when the strain (or strain energy density) quantities are lower than the threshold. Several advanced algorithms were developed based on these studies in an attempt to more accurately simulate physiological bone-remodeling processes. As another approach, topology optimization originally devised in structural optimization has been also used in the computational simulation of the bone-remodeling process. The topology optimization method systematically and iteratively distributes material in a design domain, determining an optimal structure that minimizes an objective function. In this paper, we compared two seemingly different approaches in different fields-the strain energy density based bone-remodeling algorithm (biomechanical approach) and the compliance based structural topology optimization method (mechanical approach)-in terms of mathematical formulations, numerical difficulties, and behavior of their numerical solutions. Two numerical case studies were conducted to demonstrate their similarity and difference, and then the solution convergences were discussed quantitatively.

  2. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation.

    PubMed

    Kapustin, A N; Shanahan, C M

    2016-06-01

    Vascular smooth muscle cell (VSMC) phenotypic conversion from a contractile to 'synthetic' state contributes to vascular pathologies including restenosis, atherosclerosis and vascular calcification. We have recently found that the secretion of exosomes is a feature of 'synthetic' VSMCs and that exosomes are novel players in vascular repair processes as well as pathological vascular thrombosis and calcification. Pro-inflammatory cytokines and growth factors as well as mineral imbalance stimulate exosome secretion by VSMCs, most likely by the activation of sphingomyelin phosphodiesterase 3 (SMPD3) and cytoskeletal remodelling. Calcium stress induces dramatic changes in VSMC exosome composition and accumulation of phosphatidylserine (PS), annexin A6 and matrix metalloproteinase-2, which converts exosomes into a nidus for calcification. In addition, by presenting PS, VSMC exosomes can also provide the catalytic surface for the activation of coagulation factors. Recent data showing that VSMC exosomes are loaded with proteins and miRNA regulating cell adhesion and migration highlight VSMC exosomes as potentially important communication messengers in vascular repair. Thus, the identification of signalling pathways regulating VSMC exosome secretion, including activation of SMPD3 and cytoskeletal rearrangements, opens up novel avenues for a deeper understanding of vascular remodelling processes.

  3. Vascular Dysfunction in Pneumocystis-Associated Pulmonary Hypertension Is Related to Endothelin Response and Adrenomedullin Concentration.

    PubMed

    Siemsen, Dan W; Dobrinen, Erin; Han, Soo; Chiocchi, Kari; Meissner, Nicole; Swain, Steve D

    2016-02-01

    Pulmonary hypertension subsequent to an infectious disease can be due to vascular structural remodeling or to functional alterations within various vascular cell types. In our previous mouse model of Pneumocystis-associated pulmonary hypertension, we found that vascular remodeling was not responsible for observed increases in right ventricular pressures. Here, we report that the vascular dysfunction we observed could be explained by an enhanced response to endothelin-1 (20% greater reduction in lumen diameter, P ≤ 0.05), corresponding to an up-regulation of similar magnitude (P ≤ 0.05) of the endothelin A receptor in the lung tissue. This effect was potentially augmented by a decrease in production of the pulmonary vasodilator adrenomedullin of almost 70% (P ≤ 0.05). These changes did not occur in interferon-γ knockout mice similarly treated, which do not develop pulmonary hypertension under these circumstances. Surprisingly, we did not observe any relevant changes in the vascular endothelial nitric oxide synthase vasodilatory response, which is a common potential site of inflammatory alterations to pulmonary vascular function. Our results indicate the diverse mechanisms by which inflammatory responses to prior infections can cause functionally relevant changes in vascular responses in the lung, promoting the development of pulmonary hypertension.

  4. Characterization of human cervical remodeling throughout pregnancy using in vivo Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Vargis, Elizabeth; Slaughter, Chris; Rudin, Amy P.; Herington, Jennifer L.; Bennett, Kelly A.; Reese, Jeff; Mahadevan-Jansen, Anita

    2015-02-01

    Globally, fifteen million babies are born preterm each year, affecting 1 in 8 pregnancies in the US alone. Cervical remodeling includes a biochemical cascade of changes that ultimately result in the thinning and dilation of the cervix for passage of a fetus. This process is poorly understood and is the focus of this study. Our group is utilizing Raman spectroscopy to evaluate biochemical changes occurring in the human cervix throughout pregnancy. This technique has high molecular specificity and can be performed in vivo, with the potential to unveil new molecular dynamics essential for cervical remodeling.

  5. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    SciTech Connect

    Sevostyanova, V. V. Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  6. Atorvastatin therapy associated with improvement in left ventricular remodeling in a case of idiopathic dilated cardiomyopathy.

    PubMed

    Yamada, Takahisa; Node, Koichi; Mine, Takanao; Morita, Takashi; Kioka, Hidetaka; Tamaki, Shunsuke; Tsukamoto, Yasumasa; Masuda, Masaharu; Okuda, Keiji; Fukunami, Masatake

    2006-12-01

    Statins have pleiotropic effects such as anti-inflammatory and vascular protective effects that would be beneficial for patients with chronic heart failure. This report describes a patient with idiopathic dilated cardiomyopathy and a long-standing history of heart failure that was treated with atorvastatin in addition to conventional therapy that included beta-blockers. Atorvastatin therapy for 12 months was associated with an improvement in cardiac function and improved left ventricular remodeling and peak oxygen consumption. This result suggests that statin therapy may be a potential novel treatment strategy for patients with chronic heart failure.

  7. The Chd Family of Chromatin Remodelers

    PubMed Central

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes. Numerous Chd proteins are also implicated in human disease. PMID:17350655

  8. New concepts in vascular nitric oxide signaling.

    PubMed

    Oeckler, R A; Wolin, M S

    2000-09-01

    Low levels of nitric oxide (NO) control the activities of guanylate cyclase and mitochondrial respiration. Increasing NO levels interact with multiple signaling systems through the formation of peroxynitrite and other oxidation products. Signaling mechanisms linked to NO participate in the prevention of acute responses such as vasoconstriction, thrombosis and the recruitment of inflammatory cells. In contrast, processes related to vascular remodeling, and responses to injury that are associated with the progression and adaptation to disease processes, are not as well understood. Many of the opposing processes involved in these adaptations may originate from the diverse signaling mechanisms that NO and its oxidized products can regulate in a cell-specific manner in the vessel wall.

  9. [Sex steroids and vascular risk].

    PubMed

    Rozenbaum, H

    1983-01-01

    The chemical diversity of estrogen and progestogen components of oral contraceptive (OC) products, their use alone or in combination, and the diversity of treatment regimens and doses account for the majority of contradictions in the immense literature on vascular and metabolic side effects of these hormones. OCs are exclusively composed of synthetic hormones. All OCs impose metabolic modifications on the organism and especially on the hepatic parenchyma due to delayed hepatic degradation. Certain factors increase the risk of vascular accidents associated with OC use: metabolic changes affecting coagulation, lipids, glucides, and arterial hypertension, immunologic phenomena, smoking, and obesity. As a whole, OCs affect coagulation by elevating factors 7 and 10, decreasing antithrombin iii (in high doses), and decreasing plasma fibrinolytic activity. synthetic estrogens cause an elevation of HDL cholesterol, a slight elevation of phospholipids, and a dose-dependent elevation of triglycerides and their VLDL fraction. As a group, progestogens tend to decrease the HDL fraction of cholesterol. Norethindrone is incapable of opposing the hypertriglyceridemic action of synthtic estrogens, while norgestrel partially opposes it. Lipid modifications provoked by combined OCs are a function of the nature and dosage of the components. Among hemodynamic modifications, synthetic estrogens cause elevations in renin substrate, plasma renin activity, angiotensin 2 and aldosterone. Synthetic progestogens may have various effects depending on type and dose, but they do not appear sufficient to cause hypertension unless other factors linked to individual predispositions are present. Microdoses of progestogens alone do not affect the renin-angiotensin-aldosterone system. Studies have also been conducted on the effect of OCs on cardiac function and on the vascular walls. Prospective studies suggest a relative risk of 3 for venous thromboembolic accidents among OC users, while

  10. The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage

    PubMed Central

    Varanita, Tatiana; Soriano, Maria Eugenia; Romanello, Vanina; Zaglia, Tania; Quintana-Cabrera, Rubén; Semenzato, Martina; Menabò, Roberta; Costa, Veronica; Civiletto, Gabriele; Pesce, Paola; Viscomi, Carlo; Zeviani, Massimo; Di Lisa, Fabio; Mongillo, Marco; Sandri, Marco; Scorrano, Luca

    2015-01-01

    Summary Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo. PMID:26039448

  11. Scar remodeling after strabismus surgery.