Science.gov

Sample records for affect vegetation dynamics

  1. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia.

    PubMed

    Karofeld, Edgar; Müür, Mari; Vellak, Kai

    2016-07-01

    Increasing human activity continues to threaten peatlands, and as the area of natural mires declines, our obligation is to restore their ecosystem functions. Several restoration strategies have been developed for restoration of extracted peatlands, including "The moss layer transfer method", which was initiated on the Tässi extracted peatland in central Estonia in May 2012. Three-year study shows that despite the fluctuating water table, rainfall events can compensate for the insufficient moisture for mosses. Total plant cover on the restoration area attained 70 %, of which ~60 % is comprised of target species-Sphagnum mosses. From restoration treatments, spreading of plant fragments had a significant positive effect on the cover of bryophyte and vascular plants. Higher water table combined with higher plant fragments spreading density and stripping of oxidised peat layer affected positively the cover of targeted Sphagnum species. The species composition in the restoration area became similar to that in the donor site in a natural bog. Based on results, it was concluded that the method approved for restoration in North America gives good results also in the restoration of extracted peatland towards re-establishment of bog vegetation under northern European conditions.

  2. Temperature trends in desert cities: how vegetation and urbanization affect the urban heat island dynamics in hyper-arid climates

    NASA Astrophysics Data System (ADS)

    Marpu, P. R.; Lazzarini, M.; Molini, A.; Ghedira, H.

    2013-12-01

    Urban areas represent a unique micro-climatic system, mainly characterized by scarcity of vegetation and ground moisture, an albedo strictly dependent on building materials and urban forms, high heat capacity, elevated pollutants emissions, anthropogenic heat production, and a characteristic boundary layer dynamics. For obvious historical reasons, the first to be addressed in the literature were the effects of urbanization on the local microclimate of temperate regions, where most of the urban development took place in the last centuries. Here micro-climatic characteristics all contribute to the warming of urban areas, also known as 'urban heat island' effect, and are expected to crucially impact future energy and water consumption, air quality, and human health. However, rapidly increasing urbanization rates in arid and hyper-arid developing countries could soon require more attention towards studying the effects of urban development on arid climates, which remained mainly unexplored till now. In this talk we investigate the climatology of urban heat islands in seven highly urbanized desert cities based on day and night temporal trends of land surface temperature (LST) and normalized difference vegetation index (NDVI) acquired using MODIS satellite during 2000-2012. Urban and rural areas are distinguished by analyzing the high-resolution temporal variability and averaged monthly values of LST, NDVI and Surface Urban Heat Island (SUHI) for all the seven cities and adjacent sub-urban areas. Different thermal behaviors were observed at the selected sites, also including temperature mitigation and inverse urban heat island, and are here discussed together with detailed analysis of the corresponding trends.

  3. Riparian vegetation controls on braided stream dynamics

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Paola, Chris

    2001-12-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.

  4. Vegetation dynamics amplifies precessional forcing

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Fohlmeister, Jens; Ganopolski, Andrey; Brovkin, Victor

    2006-05-01

    The astronomical theory of climate variations predicts that the climatic precession which changes the seasonal distance between Earth and Sun does not affect the annual mean irradiation at any given latitude. However, previous modeling studies suggest that during interglacials, the interaction between atmosphere, vegetation and ocean can transform the seasonal forcing by precession into an annual mean global signal. Here, we show that this result can be generalized. A distinct precessional signal emerges in a climate system model over many precessional cycles. While neither the atmosphere-ocean nor the atmosphere-vegetation model are able to produce a large amplitude of global temperature in the precessional band, only the mutual amplification of biogeophysical feedback and sea ice- albedo feedback allows a strong amplification of the precessional signal.

  5. Interactive visualization of vegetation dynamics

    USGS Publications Warehouse

    Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, J.

    2001-01-01

    Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.

  6. Simulation of wetlands forest vegetation dynamics

    USGS Publications Warehouse

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  7. Can landscape memory affect vegetation recovery in drylands?

    NASA Astrophysics Data System (ADS)

    Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max

    2016-04-01

    Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).

  8. Dynamics of self-organized vegetation patterns

    NASA Astrophysics Data System (ADS)

    Foti, R.; Ramirez, J. A.

    2011-12-01

    Vegetation patterns are a common and well-defined characteristic of many arid and semi-arid landscapes. In this study we explore some of the physical mechanisms responsible for the establishment of self-organized, non-random vegetation patterns that arise at the hillslope scale in many areas of the world, especially in arid and semi-arid regions. In doing so we use a water and energy balance model and provide a fundamental mechanistic understanding of the dynamics of vegetation pattern formation and development. Within the modeling, reciprocal effects of vegetation on the hillslope energy balance, runoff production and run-on infiltration, root density, surface albedo and soil moisture content are analyzed. In particular, we: 1) present a physically based mechanistic description of the processes leading to vegetation pattern formation; 2) Compare simulated vegetation coverage at the hillslope scale with observations; 3) quantify the relative impact of pattern-inducing dynamics on pattern formation; and 4) describe the relationships between vegetation patterns and the climatic, hydraulic and topographic characteristic of the system. The model is validated by comparing hillslope-scale simulations with available observations for the areas of Niger near Niamey and Somalia near Garoowe, where respectively tiger bushes and banded vegetation patterns are present. The model validation includes comparison of simulated and observed vegetation coverage as well as simulated and measured water fluxes, showing both qualitative and quantitative agreement between simulations and observations. The analysis of the system suggests that the main driver of pattern establishment is climate, in terms of average annual precipitation and incoming solar radiation. In particular, decreasing precipitation or, conversely, increasing incoming radiation are responsible for the system departure from fully vegetated with indistinguishable vegetation structures to sparsely vegetated with (self

  9. Global vegetation dynamics - Satellite observations over Asia

    NASA Technical Reports Server (NTRS)

    Malingreau, J.-P.

    1986-01-01

    The weekly global vegetation index (GVI) derived from the NOAA AVHRR instrument has been analyzed for the 1982-1985 period over a wide range of vegetation formations of Asia. Temporal development curves of the index are presented for environments ranging from the desert of central Asia to the tropical forest of Borneo. The paper shows that, despite the coarse resolution of the GVI product, a large set of useful information on ecosystem dynamics and cropping practices can be consistently derived from time series of such data. In addition, it is shown that the impact of the 1982-1983 El Nino Southern Oscillation-related drought can be detected in the GVI data through an analysis of anomalies in the development of selected vegetation formations. The relevance of such analysis for global vegetation monitoring and change detection is then underlined.

  10. Emergence of river dynamics through changing vegetation patterns

    NASA Astrophysics Data System (ADS)

    van Oorschot, Mijke; Kleinhans, Maarten; Middelkoop, Hans; Geerling, Gertjan

    2016-04-01

    Riparian vegetation interacts with morphodynamic processes in rivers to create distinct habitat mosaics supporting a large biodiversity. The aim of our work is to quantitatively investigate the emergent patterns in vegetation and river morphology at the river reach scale by dynamically modelling the processes and their interactions. Here, we coupled an advanced morphodynamic model to a novel dynamic riparian vegetation model to study the interaction between vegetation and morphodynamics. Vegetation colonizes bare substrate within the seed dispersal window, passes several growth stages with different properties and can die through flooding, desiccation, uprooting, scour or burial. We have compared river morphology and vegetation patterns of scenarios without vegetation, with static vegetation that does not grow or die and several dynamic vegetation scenarios with a range of vegetation strategies and eco-engineering properties. Results show that dynamic vegetation has a decreased lateral migration of meander bends and maintains its active meandering behavior as opposed to the scenarios without vegetation and with static vegetation. Also the patterns in vegetation and fluvial morphology and the vegetation age distribution mostly resemble the natural situation when compared to aerial photos of the study area. We find that river dynamics, specifically sinuosity and sediment transport, are very sensitive to vegetation properties that determine vegetation density, settlement location and survival. Future work will include the effects of invasive species, addition of silt and the effect of various river management strategies.

  11. Dynamical effects of vegetation on the 2003 summer heat waves

    NASA Astrophysics Data System (ADS)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  12. Development of the IAP Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaodong; Li, Fang; Song, Xiang

    2014-05-01

    The IAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.

  13. Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7

    USGS Publications Warehouse

    Hupp, Cliff R.

    2013-01-01

    Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.

  14. Post-fire vegetation dynamics in Portugal

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2009-04-01

    The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Díaz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then

  15. Feedbacks and landscape-level vegetation dynamics.

    PubMed

    Bowman, David M J S; Perry, George L W; Marston, J B

    2015-05-01

    Alternative stable-state theory (ASS) is widely accepted as explaining landscape-level vegetation dynamics, such as switches between forest and grassland. This theory argues that webs of feedbacks stabilise vegetation composition and structure, and that abrupt state shifts can occur if stabilising feedbacks are weakened. However, it is difficult to identify stabilising feedback loops and the disturbance thresholds beyond which state changes occur. Here, we argue that doing this requires a synthetic approach blending observation, experimentation, simulation, conceptual models, and narratives. Using forest boundaries and large mammal extinctions, we illustrate how a multifaceted research program can advance understanding of feedback-driven ecosystem change. Our integrative approach has applicability to other complex macroecological systems controlled by numerous feedbacks where controlled experimentation is impossible.

  16. Effects of Shoreline Dynamics on Saltmarsh Vegetation.

    PubMed

    Sharma, Shailesh; Goff, Joshua; Moody, Ryan M; McDonald, Ashley; Byron, Dorothy; Heck, Kenneth L; Powers, Sean P; Ferraro, Carl; Cebrian, Just

    2016-01-01

    We evaluated the impact of shoreline dynamics on fringing vegetation density at mid- and low-marsh elevations at a high-energy site in the northern Gulf of Mexico. Particularly, we selected eight unprotected shoreline stretches (75 m each) at a historically eroding site and measured their inter-annual lateral movement rate using the DSAS method for three consecutive years. We observed high inter-annual variability of shoreline movement within the selected stretches. Specifically, shorelines retrograded (eroded) in year 1 and year 3, whereas, in year 2, shorelines advanced seaward. Despite shoreline advancement in year 2, an overall net erosion was recorded during the survey period. Additionally, vegetation density generally declined at both elevations during the survey period; however, probably due to their immediate proximity with lateral erosion agents (e.g., waves, currents), marsh grasses at low-elevation exhibited abrupt reduction in density, more so than grasses at mid elevation. Finally, contrary to our hypothesis, despite shoreline advancement, vegetation density did not increase correspondingly in year 2 probably due to a lag in response from biota. More studies in other coastal systems may advance our knowledge of marsh edge systems; however, we consider our results could be beneficial to resource managers in preparing protection plans for coastal wetlands against chronic stressors such as lateral erosion.

  17. Effects of Shoreline Dynamics on Saltmarsh Vegetation

    PubMed Central

    Sharma, Shailesh; Goff, Joshua; Moody, Ryan M.; McDonald, Ashley; Byron, Dorothy; Heck, Kenneth L.; Powers, Sean P.; Ferraro, Carl; Cebrian, Just

    2016-01-01

    We evaluated the impact of shoreline dynamics on fringing vegetation density at mid- and low-marsh elevations at a high-energy site in the northern Gulf of Mexico. Particularly, we selected eight unprotected shoreline stretches (75 m each) at a historically eroding site and measured their inter-annual lateral movement rate using the DSAS method for three consecutive years. We observed high inter-annual variability of shoreline movement within the selected stretches. Specifically, shorelines retrograded (eroded) in year 1 and year 3, whereas, in year 2, shorelines advanced seaward. Despite shoreline advancement in year 2, an overall net erosion was recorded during the survey period. Additionally, vegetation density generally declined at both elevations during the survey period; however, probably due to their immediate proximity with lateral erosion agents (e.g., waves, currents), marsh grasses at low-elevation exhibited abrupt reduction in density, more so than grasses at mid elevation. Finally, contrary to our hypothesis, despite shoreline advancement, vegetation density did not increase correspondingly in year 2 probably due to a lag in response from biota. More studies in other coastal systems may advance our knowledge of marsh edge systems; however, we consider our results could be beneficial to resource managers in preparing protection plans for coastal wetlands against chronic stressors such as lateral erosion. PMID:27442515

  18. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  19. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting

  20. River flow regimes and vegetation dynamics along a river transect

    NASA Astrophysics Data System (ADS)

    Doulatyari, Behnam; Basso, Stefano; Schirmer, Mario; Botter, Gianluca

    2014-11-01

    Ecohydrological processes occurring within fluvial landscapes are strongly affected by natural streamflow variability. In this work the patterns of vegetation biomass in two rivers characterized by contrasting flow regimes were investigated by means of a comprehensive stochastic model which explicitly couples catchment-scale hydroclimatic processes, morphologic attributes of the river transect and in-stream bio-ecological features. The hydrologic forcing is characterized by the probability distribution (pdf) of streamflows and stages resulting from stochastic precipitation dynamics, rainfall-runoff transformation and reach scale morphologic attributes. The model proved able to reproduce the observed pdf of river flows and stages, as well as the pattern of exposure/inundation along the river transect in both regimes. Our results suggest that in persistent regimes characterized by reduced streamflow variability, mean vegetation biomass is chiefly controlled by the pattern of groundwater availability along the transect, leading to a marked transition between aquatic and terrestrial environments. Conversely, erratic regimes ensure wider aquatic-terrestrial zones in which optimal elevation ranges for species with different sensitivity to flooding and access to groundwater are separated. Patterns of mean biomass in erratic regimes were found to be more sensitive to changes in the underlying hydroclimatic conditions, notwithstanding the reduced responsiveness of the corresponding flow regimes. The framework developed highlights the important role played by streamflow regimes in shaping riverine environments, and may eventually contribute to identifying the influence of landscape, climate and morphologic features on in-stream ecological dynamics.

  1. Stochastic Evaluation of Riparian Vegetation Dynamics in River Channels

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Kimura, R.; Toshimori, N.

    2013-12-01

    Vegetation overgrowth in sand bars and floodplains has been a serious problem for river management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to accurately predict the vegetation dynamics for a long period of time. In this study, we have developed a stochastic model for predicting the dynamics of trees in floodplains with emphasis on the interaction with flood impacts. The model consists of the following four processes in coupling ecohydrology with biogeomorphology: (i) stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with vegetation, (iii) variation of riverbed topography and (iv) vegetation dynamics on the floodplain. In the model, the flood discharge is stochastically simulated using a Poisson process, one of the conventional approaches in hydrological time-series generation. The model for vegetation dynamics includes the effects of tree growth, mortality by flood impacts, and infant tree invasion. To determine the model parameters, vegetation conditions have been observed mainly before and after flood impacts since 2008 at a field site located between 23.2-24.0 km from the river mouth in Kako River, Japan. This site is one of the vegetation overgrowth locations in Kako River floodplains, where the predominant tree species are willows and bamboos. In this presentation, sensitivity of the vegetation overgrowth tendency is investigated in Kako River channels. Through the Monte Carlo simulation for several cross sections in Kako River, responses of the vegetated channels are stochastically evaluated in terms of the changes of discharge magnitude and channel geomorphology. The expectation and standard deviation of vegetation areal ratio are compared in the different channel cross sections for different river discharges and relative floodplain heights. The result shows that the vegetation status changes sensitively in the channels with larger discharge and insensitive in the lower floodplain

  2. Investigating dynamical trends in burned and unburned vegetation covers using SPOT-VGT NDVI data

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Lanorte, Antonio; Lasaponara, Rosa

    2007-06-01

    Fires induce dynamical trends in vegetation covers. In order to investigate the effects of fires in dynamical patterns of vegetation cover, normalized difference vegetation index data from the SPOT-VEGETATION sensor over the times series 1998-2003 were analysed for burned and unburned test sites located in the Italian Peninsula. The statistical analysis was carried out by means of three different methods: (i) power spectral density (PSD), which reveals scaling as well as periodic trends; (ii) the multiple segmenting method (MSM), which is well suited to analysing scaling behaviour for short time series; and (iii) detrended fluctuation analysis (DFA), a method that allows persistence in non-stationary signal fluctuations to be captured. Results from the statistical analyses showed that the scaling exponents α of the pixel time series for fire-affected sites range around mean values of ~1.38 (PSD), ~1.19 (MSM) and ~1.22 (DFA), while those for fire-unaffected sites vary around mean values of ~0.86 (PSD), ~0.63 (MSM) and ~0.65 (DFA). The two classes of vegetation (fire affected and fire unaffected) are significantly discriminated from each other (with the t-Student test, p < 0.0001) for all three methods adopted. The scaling exponents of both fire-affected and fire-unaffected sites show the persistent character of the vegetation dynamics though the fire-affected sites show larger exponents. Such a result shows that fires contribute by increasing the persistence of the time dynamics of vegetation and, therefore, drive unstable behavioural trends in vegetation dynamics of burned areas.

  3. Dynamic vegetation modeling of tropical biomes during Heinrich events

    NASA Astrophysics Data System (ADS)

    Handiani, Dian Noor; Paul, André; Dupont, Lydie M.

    2010-05-01

    Heinrich events are thought to be associated with a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), which in turn would lead to a cooling of the North Atlantic Ocean and a warming of the South Atlantic Ocean (the "bipolar seesaw" hypothesis). The accompanying abrupt climate changes occurred not only in the ocean but also on the continents. Changes were strongest in the Northern Hemisphere but were registered in the tropics as well. Pollen data from Angola and Brazil showed that climate changes during Heinrich events affected vegetation patterns very differently in eastern South America and western Africa. To understand the differential response in the terrestrial tropics, we studied the vegetation changes during Heinrich events by using a dynamic global vegetation model (TRIFFID) as part of the University of Victoria (UVic) Earth System-Climate Model (ESCM). The model results show a bipolar seesaw pattern in temperature and precipitation during a near-collapse of the AMOC. The succession in plant-functional types (PFTs) showed changes from forest to shrubs to desert, including spreading desert in northwest Africa, retreating broadleaf trees in West Africa and northern South America, but advancing broadleaf trees in Brazil. The pattern is explained by a southward shift of the tropical rainbelt resulting in a strong decrease in precipitation over northwest and West Africa as well as in northern South America, but an increase in precipitation in eastern Brazil. To facilitate the comparison between modeled vegetation results with pollen data, we diagnosed the distribution of biomes from the PFT coverage and the simulated model climate. The biome distribution was computed for Heinrich event 1 and the Last Glacial Maximum as well as for pre-industrial conditions. We used a classification of biomes in terms of "mega-biomes", which were defined following a scheme originally proposed by BIOME 6000 (v 4.2). The biome distribution of the Sahel region

  4. Dynamic floodplain vegetation model development for the Kootenai River, USA.

    PubMed

    Benjankar, Rohan; Egger, Gregory; Jorde, Klaus; Goodwin, Peter; Glenn, Nancy F

    2011-12-01

    The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river

  5. Forest vegetation dynamics and its response to climate changes

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2016-10-01

    Forest areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Satellite remote sensing provides a useful tool to capture the temporal dynamics of forest vegetation change in response to climate shifts, at spatial resolutions fine enough to capture the spatial heterogeneity. Frequent satellite data products, for example, can provide the basis for studying time-series of biophysical parameters related to vegetation dynamics. Vegetation index time series provide a useful way to monitor forest vegetation phenological variations. In this study, we used MODIS Terra/Aqua time-series data, along with yearly and monthly net radiation, air temperature, and precipitation data to examine the feedback mechanisms between climate and forest vegetation. Have been quantitatively described Normalized Difference Vegetation Index(NDVI) /Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Evapotranspiration (ET) and Gross Primary Production (GPP) temporal changes for Cernica- Branesti forest area, a periurban zone of Bucharest city in Romania, from the perspective of vegetation phenology and its relation with climate changes and extreme climate events (summer heat waves). A time series from 2000 to 2016 of the MODIS Terra was analyzed to extract forest biophysical parameters anomalies. Forest vegetation phenology analyses were developed for diverse forest land-covers providing a useful way to analyze and understand the phenology associated to those landcovers. Correlations between NDVI/EVI , LAI, ET and GPP time series and climatic variables have been computed.

  6. [Contribution of syntaxonomy to the study of vegetation dynamics].

    PubMed

    Mirkin, B M; Iamalov, S M; Naumova, L G; Baianov, A V; Saĭfullina, N M

    2012-01-01

    Of late decades, numerous studies on vegetation dynamics have been carried out and the spectrum of studied objects extended. However, syntaxonomy, while is capable to reveal patterns in vegetation changes, is virtually not used in analysis of succession. Prospects of syntaxonomy application to the study of vegetation dynamics are demonstrated by the example of succession analyses of pasture digression, vegetation changes under influence of recreation, progressive succession at the place of deserted settlements. The special role played by the analysis of syntaxonomic spectre of serial plant communities is discussed. The analysis makes it possible to estimate the serial status of communities by the ratio in their floral composition of species from cenofloras of classes that represent different serial stages of vegetation.

  7. Fire disturbance and vegetation dynamics : analysis and models

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten

    2003-04-01

    Studies of the role of disturbance in vegetation or ecosystems showed that disturbances are an essential and intrinsic element of ecosystems that contribute substantially to ecosystem health, to structural diversity of ecosystems and to nutrient cycling at the local as well as global level. Fire as a grassland, bush or forest fire is a special disturbance agent, since it is caused by biotic as well abiotic environmental factors. Fire affects biogeochemical cycles and plays an important role in atmospheric chemistry by releasing climate-sensitive trace gases and aerosols, and thus in the global carbon cycle by releasing approximately 3.9 Gt C p.a. through biomass burning. A combined model to describe effects and feedbacks between fire and vegetation became relevant as changes in fire regimes due to land use and land management were observed and the global dimension of biomass burnt as an important carbon flux to the atmosphere, its influence on atmospheric chemistry and climate as well as vegetation dynamics were emphasized. The existing modelling approaches would not allow these investigations. As a consequence, an optimal set of variables that best describes fire occurrence, fire spread and its effects in ecosystems had to be defined, which can simulate observed fire regimes and help to analyse interactions between fire and vegetation dynamics as well as to allude to the reasons behind changing fire regimes. Especially, dynamic links between vegetation, climate and fire processes are required to analyse dynamic feedbacks and effects of changes of single environmental factors. This led us to the point, where new fire models had to be developed that would allow the investigations, mentioned above, and could help to improve our understanding of the role of fire in global ecology. In conclusion of the thesis, one can state that moisture conditions, its persistence over time and fuel load are the important components that describe global fire pattern. If time series of

  8. Advances in remote sensing for vegetation dynamics and agricultural management

    NASA Astrophysics Data System (ADS)

    Tucker, C. J.; Puma, M. J.

    2015-12-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  9. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  10. Vegetation Dynamics of NW Mexico using MODIS time series data

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Bonifaz, R.; Pelaez, G.; Leyva Contreras, A.

    2010-12-01

    Northwestern Mexico is an area subjected to a combination of marine and continental climatic influences which produce a highly variable vegetation dynamics throughout time. Using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices data (NDVI and EVI) from 2001 to 2008, mean and standard deviation image values of the time series were calculated. Using this data, annual vegetation dynamics was characterized based on the different values for the different vegetation types. Annual mean values were compared and inter annual variations or anomalies were analyzed calculating departures of de mean. An anomaly was considered if the value was over or under two standard deviations. Using this procedure it was possible determine spatio-temporal patterns over the study area and relate them to climatic conditions.

  11. IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Technical Reports Server (NTRS)

    Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua

    2016-01-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  12. Effects of temperature seasonality on tundra vegetation productivity using a daily vegetation dynamics model

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Erler, A.; Frazier, J.; Bhatt, U. S.

    2011-12-01

    Changes in the seasonality of air temperature will elicit interacting effects on the dynamics of snow cover, nutrient availability, vegetation growth, and other ecosystem properties and processes in arctic tundra. Simulation models often do not have the fine temporal resolution necessary to develop theory and propose hypotheses for the effects of daily and weekly timescale changes on ecosystem dynamics. We therefore developed a daily version of an arctic tundra vegetation dynamics model (ArcVeg) to simulate how changes in the seasonality of air temperatures influences the dynamics of vegetation growth and carbon sequestration across regions of arctic tundra. High temporal-resolution air and soil temperature data collected from field sites across the five arctic tundra bioclimate subzones were used to develop a daily weather generator operable for sites throughout the arctic tundra. Empirical relationships between temperature and soil nitrogen were used to generate daily dynamics of soil nitrogen availability, which drive the daily uptake of nitrogen and growth among twelve tundra plant functional types. Seasonal dynamics of the remotely sensed normalized difference vegetation index (NDVI) and remotely sensed land surface temperature from the Advanced Very High Resolution Radiometer (AVHRR) GIMMS 3g dataset were used to investigate constraints on the start of the growing season, although there was no indication of any spatially consistent temperature or day-length controls on greening onset. Because of the exponential nature of the relationship between soil temperature and nitrogen mineralization, temperature changes during the peak of the growing season had greater effects on vegetation productivity than changes earlier in the growing season. However, early season changes in temperature had a greater effect on the relative productivities of different plant functional types, with potential influences on species composition.

  13. Late-quaternary vegetational dynamics and community stability reconsidered

    NASA Astrophysics Data System (ADS)

    Delcourt, Paul A.; Delcourt, Hazel R.

    1983-03-01

    Defining the spatial and temporal limits of vegetational processes such as migration and invasion of established communities is a prerequisite to evaluating the degree of stability in plant communities through the late Quaternary. The interpretation of changes in boundaries of major vegetation types over the past 20,000 yr offers a complementary view to that provided by migration maps for particular plant taxa. North of approximately 43°N in eastern North America, continual vegetational disequilibrium has resulted from climatic change, soil development, and species migrations during postglacial times. Between 33° and 39°N, stable full-glacial vegetation was replaced by a relatively unstable vegetation during late-glacial climatic amelioration; stable interglacial vegetation developed there after about 9000 yr B.P. Late-Quaternary vegetation has been in dynamic equilibrium, with a relatively constant flora, south of 33°N on upland interfluves along the northern Gulf Coastal Plain, peninsular Florida, and west-central Mexico.

  14. Next generation dynamic global vegetation models: learning from community ecology

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Higgins, Steven; Langan, Liam

    2013-04-01

    Dynamic global vegetation models are a powerful tool to project the past, current and future distribution of vegetation and associated water and carbon fluxes. However, most models are limited by how they define vegetation and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve vegetation models. We further present a new trait- and individual-based dynamic vegetation model (the aDGVM2) that allows each individual plant to adopt a unique combination of trait values. These traits define how each individual plant grows and competes with other plants under given environmental conditions. The performance of individual plants in turn drives the assembly of a plant community. A genetic optimisation algorithm is used to simulate the inheritance of traits and different levels of reproductive isolation between individuals. Together these model properties allow the assembly of plant communities that are well adapted to a site's biotic and abiotic conditions. Simulated communities can be classified into different plant functional types or biome types by using trait data bases. We illustrate that the aDGVM2 can simulate (1) how environmental conditions and changes in these conditions influence the trait spectra of assembled plant communities, (2) that fire selects for traits that enhance fire protection and reduces trait diversity, and (3) the emergence of communities dominated by life history strategies that are suggestive of colonisation-competition trade-offs. The aDGVM2 deals with functional diversity and competition fundamentally differently from current dynamic vegetation models. We argue that this approach will yield novel insights as to how vegetation may respond to climate change and we believe that it could foster fruitful collaborations between research communities that focus on plant functional traits, plant competition, plant physiology, systems ecology and earth system

  15. Dynamical vegetation-atmosphere modelling of the boreal zone

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Stordal, Frode; Berntsen, Terje K.; Bryn, Anders

    2016-04-01

    Vegetation interacts with climate on seasonal to inter-annual time scales through albedo, roughness, evapotranspiration, CO2 sequestration and by influencing snow accumulation and ablation. The Scandinavian mountains and high latitudes is a hot spot for land-atmosphere feedback, as the future's increased winter minimum temperature supports a boreal tree line advance, lowering the surface albedo. The northern ecosystem is dominated by mires, boreal forests and alpine heaths, in addition to agricultural land. Model studies have shown that vegetation-climate feedbacks are strong enough to lead to regime shifts in vegetation and local climate in boreal regions. Biogeophysical factors, such as albedo, the Bowen ratio, and surface roughness, are all involved in these feedbacks, and they are also altered by land use change such as reforestation. For calculations of the dynamical coupling between the atmosphere and the vegetation we have used the Earth System Model NorESM, which includes several advanced features in its land surface model (CLM4.5), such as the inclusion of the radiative forcing due to black carbon and dust deposit onto snow, improved representation of fire, permafrost and its hydrological impact, a new snow cover fraction parameterization reflecting the hysteresis in fractional snow cover for a given snow depth between accumulation and melt phases, as well as dynamic vegetation coupled with carbon-nitrogen cycles. These new features improve the representation of surface albedo feedback in Arctic. We have performed experiments with coupled as well fixed ocean for the current as a quadrupled atmospheric CO2 situation. This model configuration is used to study changes in vegetation in a high end radiative forcing case. It is contrasted with an experiment where vegetation dynamics is neglected. Changes in the features of the vegetation along with surface fluxes, albedo and atmospheric temperatures are analysed, with main emphasis on the boreal zone. In

  16. Aminopyralid soil residues affect rotational vegetable crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the sensitivity of bell pepper, eggplant, tomato, muskmelon, and watermelon to aminopyralid soil residues. Aminopyralid was applied at six rates ranging from 0.0014 kg ae ha 1 to 0.0448 kg ae ha 1, and vegetable crops were planted in the treated areas. ...

  17. Incorporating geometrically complex vegetation in a computational fluid dynamic framework

    NASA Astrophysics Data System (ADS)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Rosser, Nick

    2015-04-01

    Vegetation is known to have a significant influence on the hydraulic, geomorphological, and ecological functioning of river systems. Vegetation acts as a blockage to flow, thereby causing additional flow resistance and influencing flow dynamics, in particular flow conveyance. These processes need to be incorporated into flood models to improve predictions used in river management. However, the current practice in representing vegetation in hydraulic models is either through roughness parameterisation or process understanding derived experimentally from flow through highly simplified configurations of fixed, rigid cylinders. It is suggested that such simplifications inadequately describe the geometric complexity that characterises vegetation, and therefore the modelled flow dynamics may be oversimplified. This paper addresses this issue by using an approach combining field and numerical modelling techniques. Terrestrial Laser Scanning (TLS) with waveform processing has been applied to collect a sub-mm, 3-dimensional representation of Prunus laurocerasus, an invasive species to the UK that has been increasingly recorded in riparian zones. Multiple scan perspectives produce a highly detailed point cloud (>5,000,000 individual data points) which is reduced in post processing using an octree-based voxelisation technique. The method retains the geometric complexity of the vegetation by subdividing the point cloud into 0.01 m3 cubic voxels. The voxelised representation is subsequently read into a computational fluid dynamic (CFD) model using a Mass Flux Scaling Algorithm, allowing the vegetation to be directly represented in the modelling framework. Results demonstrate the development of a complex flow field around the vegetation. The downstream velocity profile is characterised by two distinct inflection points. A high velocity zone in the near-bed (plant-stem) region is apparent due to the lack of significant near-bed foliage. Above this, a zone of reduced velocity is

  18. Cellular Automaton Simulation of Vegetated Dune Field Dynamics

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Baas, A. C.

    2007-12-01

    Vegetated aeolian dune fields develop through non-linear interactions between physical geomorphic processes and ecological vegetation growth and response into complex ecogeomorphic systems that are sensitive to both climatic and environmental variations. We present a Discrete Ecogeomorphic Aeolian Landscape (DECAL) cellular automaton model that replicates the self-organisation of vegetated dune systems and enables the investigation of conditions necessary for long-walled (hairpin) parabolic dune and nebkha formation in coastal and semi-arid environments over various temporal and spatial scales. The algorithm utilises simple transport rules and mutual feedback between geomorphic and ecological components to investigate vegetation pattern formation and how and why this influences dune dynamics. We examine ecogeomorphic interactions both by exploring system mechanics via dune mobility and by more descriptive numerical state variables, facilitating the investigation of trajectories and potential attractors as a function of environmental parameters and system perturbations and leading to the identification of possible system sensitivities and thresholds. The model simulations elucidate possible dune field responses to anthropogenic impacts and palaeo and future climate variations and highlight the ability of vegetation to impart a characteristic length-scale on a landscape. This simple vegetated dune model illustrates the power and versatility of a cellular automaton approach for exploring ecological and geomorphic interactions in complex earth surface systems.

  19. Importance of vegetation dynamics for future terrestrial carbon cycling

    NASA Astrophysics Data System (ADS)

    Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin

    2015-05-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  20. The Role of Vegetation Dynamics on the Groundwater Recharge in a Water-Limited Ecosystem

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Mancini, M.; Albertson, J. D.; Katul, G.

    2003-04-01

    The structure and function of the vegetation regulates the exchange of mass, energy and momentum across the biosphere-atmosphere interface. Root systems affect soil properties, and vegetation density dominates the functioning of hydrological processes through modification of interception, infiltration, evapotranspiration, surface runoff, and groundwater recharge. Influencing the partitioning of incoming solar energy into sensible and latent heat fluxes, the changes in vegetation densities will result in long-term changes in both local and global climates (e.g., precipitation and temperature), and in turn will affect the vegetation growth as a feedback. In semi-arid regions, this may result in persistent drought and desertification, with substantial impacts on the human populations of these regions through reduction in agricultural productivity and reduction in quantity and quality of water supply. In these regions the water becomes a controlling factor, and the groundwater becomes an important water resource. We investigate the role of vegetation dynamics in the soil-vegetation-atmosphere system, and, in particular, on the groundwater recharge in a water-limited ecosystem. The questions addressed are: 1) how does groundwater recharge under grass differ from that under a tree canopy? 2) how does the recharge difference depend on the time scale over which precipitation variability or change occurs? 3) and, to what extent does “temporal change in leaf area” (i.e. denser vegetation in wetter periods) control the answers to the above questions? To reach the objectives, a coupled land surface model (LSM) and vegetation dynamics model is employed. The simple dynamic vegetation model simulates the plant growth, and provides the Leaf Area Index (LAI) evolution through time, which is then used by the LSM in the computation of the energy partitioning between soil and vegetation as well in the parameterization of turbulent transport and evapotranspiration. This updates the

  1. Factors affecting radionuclide availability to vegetables grown at Los Alamos

    SciTech Connect

    White, G.C.; Hakonson, T.E.; Ahlquist, A.J.

    1981-07-01

    A field study was conducted in 1977 on /sup 238/ /sup 239/Pu and /sup 137/Cs availability to zucchini squash (Curcurbita melopepo, hybrid seneca) and green bush beans (Phaseolus vulgaris, Landreths stringless) grown under home-garden conditions in an area at Los Alamos National Laboratory used for treated radioactive liquid waste disposal. Radionuclide concentrations were measured as a function of tissue type, height above the soil, fertilization regime, and for the squash, food-cleansing procedures. Analysis of variance procedures was used to analyze the data. Ratios of the concentration of a radionuclide in oven-dried vegetation to dry soil ranged from 0.0004 to 0.116 for the Pu isotopes, and from 0.051 to 0.255 for /sup 137/Cs. Fertilization with cattle manure reduced the Pu concentration ratios by 30% and /sup 137/Cs by 50%. Vegetative parts sampled within 20 cm of the ground surface were contaminated about four times as much as those parts growing further from the ground surface. About 65% of the contamination was removed by washing, indicating the presence of surficial contamination. The 50-year radiation dose commitment to humans consuming vegetables from the garden plot would be less than 0.05 mrem and would be due almost entirely to /sup 137/Cs.

  2. Carbon Dynamics in Vegetation and Soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim

    2005-01-01

    The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.

  3. A regional dynamic vegetation-climate model for Central America

    NASA Astrophysics Data System (ADS)

    Snell, R. S.; Cowling, S. A.; Smith, B.

    2009-12-01

    Global vegetation models simulate the distribution of vegetation as a function of climate. Dynamic global vegetation models (DGVMs) are also able to simulate the vegetation shifts in response to climate change, which makes them particularly useful for addressing questions about past and future climate scenarios. However, DGVMs have been criticized for using generic plant functional types (PFTs) and running the models at a coarse grid cell resolution. Regional dynamic vegetation models are able to simulate important landscape variation, since they use a finer resolution and specific PFTs for their region. Regional studies have typically focused on boreal or temperate ecosystems in North America and Europe. We will be presenting the results of applying a dynamic regional vegetation-climate model (LPJ-GUESS) for Central America. Initially, the model was run with the described global PFTs. However, several biomes were very poorly represented. Two PFTs were added: a Tropical Needleleaf Evergreen Tree to improve the simulation of the Mixed Pine-Oak biome, and a Desert Shrub to capture the Xeric Shrublands. The overall distribution of biomes was visually similar, however the Kappa statistic indicated a poor agreement with the potential biome map (overall Kappa = 0.301). The Kappa statistic did improve as we aggregated cell sizes and simplified the biomes (overall Kappa = 0.728). Compared to remote sensing data, the model showed a strong correlation with total LAI (r = 0.75). The poor Kappa statistic is likely due to a combination of factors. The way in which biomes are defined by the author can have a large influence on the level of agreement between simulated and potential vegetation. The Kappa statistic is also limited to comparing individual grid cells and thus, cannot detect overall patterns. Examining those areas which are poorly represented will help to identify future work and improve the representation of vegetation in these ecological models. In particular, the

  4. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  5. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  6. Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, G. James

    2015-02-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  7. Investigation of North American Vegetation Variability under Recent Climate: A Study Using the SSiB4/TRIFFID Biophysical/Dynamic Vegetation Model

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.

    2015-01-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  8. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  9. An ecohydrological approach to predicting hillslope-scale vegetation patterns and dynamics in dryland ecosystems

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; King, Elizabeth

    2015-04-01

    Drylands are an important ecosystem, as they cover over 40% of the Earth's land surface and are know to exhibit threshold behavior in response to climatic change and anthropogenic disturbance. Where dryland vegetation supports pastoralist livestock production, catastrophic ecological shifts present a grave concern because of the direct coupling between the livestock forage available and human livelihoods. In this research we investigate the spatiotemporal organization of grazing resources on hillslopes by developing a relatively simple spatially explicit daily stochastic ecohydrological 1-layer bucket model with dynamic vegetation and grazing components. The model, MVUA MINGI (Mosaic Vegetation Using Agent-based Modeling Incorporating Non-linear Grazing Impacts), was constructed using a 2-year observational study in central Kenya combining in-situ sensors with near surface hydrogeophysical surveys. The data were used to derive an empirical patch water balance of three representative patch types, bare soil, grass, and tree. Visual and hydrogeophysical observations indicated the system is dominated by Hortonian runoff, overland flow, and vertical infiltration of water into vegetation patches. The patch-based water balances were next incorporated into a Cellular Automata model allowing us to simulate a range of surface flowpath convergence states across the hillslope during a rain event. The model also allows the root to canopy radius of the tree patches to vary affecting the length scale of water competition. By changing the length scales of facilitation and competition, we find the model demonstrates a range of most efficient static vegetation patterns from random to highly organized. In order simulate the vegetation dynamics we incorporated continuous transition probabilities for each patch type based on the frequency and duration of drought and grazing intensity. The modeled vegetation dynamics indicate various stable states and the timescales between the state

  10. The Role of Vegetation Dynamics on the Soil Water Balance in Water-Limited Ecosystems

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Rondena, R.; Albertson, J. D.; Mancini, M.

    2003-12-01

    The structure and function of the vegetation regulates the exchange of mass, energy and momentum across the biosphere-atmosphere interface. Vegetation dynamics are usually neglected, other than seasonal phenology, in land surface models (LSMs). However, changes in vegetation densities, influencing the partitioning of incoming solar energy into sensible and latent heat fluxes, can result in long-term changes in both local and global climates (e.g., precipitation and temperature), which in turn will feedback to affect the vegetation growth. In semi-arid regions, this may result in persistent drought and desertification, with substantial impacts on the human populations of these regions through reduction in agricultural productivity and reduction in quantity and quality of water supply. With an objective of finding a simple vegetation model able to accurately simulate the leaf area index (LAI) dynamics, vegetation models of different level of complexity (e.g., including or not the modeling of the root biomass or the modeling of the dead biomass) are developed and compared. The vegetation dynamics models are coupled to a LSM, with the vegetation models providing the green biomass and the LAI evolution through time, and the LSM using this information in the computation of the land surface fluxes and updating the soil water content in the root-zone. We explore the models on a case study of a water limited grass field in California. Results show that a simple vegetation model that simulates the living aboveground green biomass (i.e., with low parameterization and computational efforts) is able to accurately simulate the LAI. Results also highlight the importance of including the plant growth model in the LSM when studying the climate-soil-vegetation interactions and the impact of watershed management practices on the scarce water resources over moderate to long time scales. The inclusion of the vegetation model in the LSM is demonstrated to be essential for assessing the

  11. Stochastic models of cover class dynamics. [remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Barringer, T. H.; Robinson, V. B.

    1981-01-01

    Investigations related to satellite remote sensing of vegetation have been concerned with questions of signature identification and extension, cover inventory accuracy, and change detection and monitoring. Attention is given to models of ecological succession, present directions in successional modeling and analysis, nondynamic spatial models, issues in the analysis of spatial data, and aspects of spatial modeling. Issues in time-series analysis are considered along with dynamic spatial models, and problems of model specification and identification.

  12. [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review].

    PubMed

    Zhao, Feng-Jun; Wang, Li-Zhong; Shu, Li-Fu; Chen, Peng-Yu; Chen, Li-guang

    2013-03-01

    Cold temperate wetland plays an important role in maintaining regional ecological balance. Fire is an important disturbance factor in wetland ecosystem. Severe burning can induce the marked degradation of the ecological functions of wetland ecosystem. The vegetation restoration, especially the early vegetation restoration, after fires, is the premise and basis for the recovery of the ecological functions of the ecosystem. This paper reviewed the research progress on the factors affecting the vegetation restoration after fires in wetlands. The vegetation restoration after fires in cold temperate wetlands was controlled by the fire intensity, fire size, vegetation types before fires, regeneration characteristics of plant species, and site conditions. It was considered that the long-term monitoring on the post-fire vegetation restoration in cold temperate wetland, the key factors affecting the vegetation restoration, the roles of frozen soil layer on the post-fire vegetation restoration, and the theories and technologies on the vegetation restoration would be the main research directions in the future.

  13. Vegetation dynamics and climate variability-associated biophysical process in West Africa

    NASA Astrophysics Data System (ADS)

    Song, G.; Xue, Y.; Cox, P. M.

    2012-12-01

    West Africa is a bioclimatic zone of predominantly annual grasses with shrubs and trees with a steep gradient in climate, soils, vegetation, fauna, land use and human utilization. West Africa ecosystem region suffered from the most severe and longest drought in the world during the Twentieth Century since the later 1960s. This study systematically investigates how climate variability and anomalies in West Africa affect the regional terrestrial ecosystem, including plant functional types' (PFT) spatial distribution and temporal variations and vegetation characteristics, through biophysical and photosynthesis processes at different scales. We use the offline Simplified Simple Biosphere Version 4/ Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), which is a fully coupled biophysical-dynamic vegetation (DVM) model to adequately incorporate the complex non-linear coupling dynamics between ecosystem and climate variability. The biophysical parameters in SSiB4 are adjusted with TRIFFID-produced vegetation parameter values, which ensure adequate biophysical process coupling. A 59-year simulation from 1948 was conducted using the meteorological forcing, which consists of substantial seasonal, interannual, and interdecal variability and long term dry trend. The results show that the simulated PFT's and leaf area index (LAI) correspond well to climate variability and are consistent with satellite derived vegetation conditions. The simulated inter-decadal variability in vegetation conditions is consistent with the Sahel drought in the 1970s and the 1980s and partial recovery in the 1990s and the 2000s (fig1). To further understand the biophysical mechanism of interactions of water, carbon, radiation, and vegetation dynamics, analyses are conducted to find relationships between vegetation variability and environmental conditions. It is found that the vegetation characteristics simulated by SSiB4/TRIFFID responds primarily to five

  14. Satellite remote sensing assessment of climate impact on forest vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and

  15. Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and

  16. Vegetation, land surface brightness, and temperature dynamics after aspen forest die-off

    NASA Astrophysics Data System (ADS)

    Huang, Cho-ying; Anderegg, William R. L.

    2014-07-01

    Forest dynamics following drought-induced tree mortality can affect regional climate through biophysical surface properties. These dynamics have not been well quantified, particularly at the regional scale, and are a large uncertainty in ecosystem-climate feedback. We investigated regional biophysical characteristics through time (1995-2011) in drought-impacted (2001-2003), trembling aspen (Populus tremuloides Michx.) forests by utilizing Landsat time series green and brown vegetation cover, surface brightness (total shortwave albedo), and daytime land surface temperature. We quantified the temporal dynamics and postdrought recovery of these characteristics for aspen forests experiencing severe drought-induced mortality in the San Juan National Forest in southwestern Colorado, USA. We partitioned forests into three categories from healthy to severe mortality (Healthy, Intermediate, and Die-off) by referring to field observations of aspen canopy mortality and live aboveground biomass losses. The vegetation cover of die-off areas in 2011 (26.9% of the aspen forest) was significantly different compared to predrought conditions (decrease of 7.4% of the green vegetation cover and increase of 12.1% of the brown vegetation cover compared to 1999). The surface brightness of the study region 9 years after drought however was comparable to predrought estimates (12.7-13.7%). Postdrought brightness was potentially influenced by understory shrubs, since they became the top layer green canopies in disturbed sites from a satellite's point of view. Satellite evidence also showed that the differences of land surface temperature among the three groups increased substantially (≥45%) after drought, possibly due to the reduction of plant evapotranspiration in the Intermediate and Die-off sites. Our results suggest that the mortality-affected systems have not recovered in terms of the surface biophysical properties. We also find that the temporal dynamics of vegetation cover holds

  17. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  18. Dynamics of Affective States during Complex Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Graesser, Art

    2012-01-01

    We propose a model to explain the dynamics of affective states that emerge during deep learning activities. The model predicts that learners in a state of engagement/flow will experience cognitive disequilibrium and confusion when they face contradictions, incongruities, anomalies, obstacles to goals, and other impasses. Learners revert into the…

  19. Vegetation dynamics and rainfall sensitivity of the Amazon

    PubMed Central

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km2) and across 80% of the subtropical grasslands (3.3 million km2). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km2 compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics. PMID:25349419

  20. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  1. Monitoring the dynamics of coastal vegetation in southwestern Taiwan.

    PubMed

    Lee, Tsai-Ming

    2005-12-01

    This study analyzes the results of the first 5 years of long-term environmental monitoring of the dynamics of coastal vegetation communities in southwestern Taiwan. Seven permanent plots were established in major vegetation communities, including grassland, windbreak forest, and secondary succession forest. Results showed that species richness decreased yearly in grasslands but fluctuated moderately in the forest plots. A Jaccard similarity coefficient was used to evaluate the similarities of species composition between different monitoring years. Species composition changed rapidly in grassland sites, with the similarity coefficient dropping from 82 to 29% in 5 years. The similarity coefficient of vegetation in the composite hardwood forest dropped from 80 to 50%, indicating that at least half the species were the same as those in the beginning and that the composition of forest communities was more stable than that of grassland communities. Dominant species in the forest community changed gradually during the monitoring period. The original planting of Casuarina equisetifolia in windbreak forests decreased year by year in most of the plots, while Cerbera manghas and Ficus microcarpa became the dominant species. The trend of replacement of dominant species indicates that most of the vegetation communities are still in successional stages.

  2. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  3. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  4. Vegetation ecotone dynamics in Southwest Alaska during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Brubaker, Linda B.; Anderson, Patricia M.; Hu, Feng Sheng

    2001-01-01

    To examine Late Quaternary vegetation change across the modern vegetation gradient from continuous boreal forest (central Alaska) to Betula shrub tundra (Bristol Bay region), pollen records from Idavain and Snipe Lakes are described and compared to those of four other sites in southwest Alaska. Major features of the vegetation history at Idavain Lake include herb-dominated tundra (ca 14-12 ka BP), mixed herb/ Betula shrub tundra (ca 12-8 ka BP), and Alnus/Betula shrub tundra (8 ka BP to present). The Snipe Lake record reveals a brief period of herb tundra (>12 ka BP), Betula shrub tundra (ca 12-8.5 ka BP), and Picea forest mixed with Alnus/Betula shrub tundra (ca 8 ka BP to present). Comparisons with other pollen records indicate that southwest Alaska has been the location of major vegetation ecotones throughout the last 12 ka years. Northern areas have consistently been dominated by larger growth forms (shrubs or trees) than have southern areas. During the Betula period (12-8 ka BP), a dense Betula shrubland occupied central Alaska, changing to a mixed low- Betula shrub and herb tundra in the south. In the Alnus/Picea period (8 ka BP to present), Picea and Betula trees were more common to the north; Alnus and Betula shrubs more abundant to the south. Vegetation dynamics have been complex at individual sites and across the region. Each site shows both long- and short-term shifts in major taxa, but the magnitude of these changes varies across the transect. In addition, some pollen changes appear to be synchronous among sites (within the constraints of existing chronologies), whereas others are strikingly time transgressive across the region. Similar vegetation dynamics at all sites are: (1) long-term decreases in herb taxa during the Betula period, (2) short-term oscillations between Betula shrubs and herbs during the Betula period, and (3) major increase in Alnus shrubs ca 8 ka BP. Significant differences among sites include: (1) major expansion of Populus trees in

  5. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types

    SciTech Connect

    Gu, Lianhong; Post, Wilfred M; Baldocchi, Dennis; Black, Andy; Suyker, A.E.,; Verma, Shashi; Vesala, Timo; Wofsy, Steve

    2009-01-01

    The seasonal cycle of plant community photosynthesis is one of the most important biotic oscillations to mankind. This study built upon previous efforts to develop a comprehensive framework to studying this cycle systematically with eddy covariance flux measurements. We proposed a new function to represent the cycle and generalized a set of phenological indices to quantify its dynamic characteristics. We suggest that the seasonal variation of plant community photosynthesis generally consists of five distinctive phases in sequence each of which results from the interaction between the inherent biological and ecological processes and the progression of climatic conditions and reflects the unique functioning of plant community at different stages of the growing season. We applied the improved methodology to seven vegetation sites ranging from evergreen and deciduous forests to crop to grasslands and covering both cool-season (vegetation active during cool months, e.g. Mediterranean climate grasslands) and warm-season (vegetation active during warm months, e.g. temperate and boreal forests) vegetation types. Our application revealed interesting phenomena that had not been reported before and pointed to new research directions. We found that for the warm-season vegetation type, the recovery of plant community photosynthesis at the beginning of the growing season was faster than the senescence at the end of the growing season while for the coolseason vegetation type, the opposite was true. Furthermore, for the warm-season vegetation type, the recovery was closely correlated with the senescence such that a faster photosynthetic recovery implied a speedier photosynthetic senescence and vice versa. There was evidence that a similar close correlation could also exist for the cool-season vegetation type, and furthermore, the recovery-senescence relationship may be invariant between the warm-season and cool-season vegetation types up to an offset in the intercept. We also

  6. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  7. Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation.

    PubMed

    Baird, Kathryn J; Stromberg, Juliet C; Maddock, Thomas

    2005-10-01

    , these can be used to predict vegetation response to water allocation decisions. The different evapotranspiration outcomes produced by traditional and RIP-ET approaches affect resulting interpretations of hydro-vegetation dynamics, including the effects of groundwater pumping stress on existing habitats, and thus affect subsequent policy decisions.

  8. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    PubMed

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and

  9. Using a Dynamic Global Vegetation Model to Simulate the Response of Vegetation to Warming at the Paleocene-Eocene Boundary

    NASA Astrophysics Data System (ADS)

    Shellito, C. J.; Sloan, L. C.

    2004-12-01

    A major turnover in benthic marine and terrestrial fauna marks the Initial Eocene Thermal Maximum (IETM) (~55Ma), a period of ~150 ky in which there was a rapid rise in deep sea and high latitude sea surface temperatures by 5-8C. Curiously, no major responses to this warming in the terrestrial floral record have been detected to date. Here, we present results from experiments examining the response of the global distribution of vegetation to changes in climate at the IETM using the NCAR Land Surface Model (LSM1.2) integrated with a dynamic global vegetation model (DGVM). DGVMs allow vegetation to respond to and interact with climate, and thus, provide a unique new method for addressing questions regarding feedbacks between the ecosystem and climate in Earth's past. However, there are a number of drawbacks to using these models that can affect interpretation of results. More specifically, these drawbacks involve uncertainties in the application of modern plant functional types to paleo-flora simulations, inaccuracies in the model climatology used to drive the DGVM, and lack of available detail regarding paleo-geography and paleo-soil type for use in model boundary conditions. For a better understanding of these drawbacks, we present results from a series of tests in the NCAR LSM-DGVM which examine (1) the effect of removing C4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO2 used in the photosynthetic rate equations. We consider our DGVM results for the IETM in light of output from these sensitivity experiments.

  10. Impact of Multiple Environmental Stresses on Wetland Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, C. P.; Tamea, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2009-12-01

    This research quantifies the impacts of climate change on the dynamics of wetland vegetation under the effect of multiple stresses, such as drought, water-logging, shade and nutrients. The effects of these stresses are investigated through a mechanistic model that captures the co-evolving nature between marsh emergent plant species and their resources (water, nitrogen, light, and oxygen). The model explicitly considers the feedback mechanisms between vegetation, light and nitrogen dynamics as well as the specific dynamics of plant leaves, rhizomes, and roots. Each plant species is characterized by three independent traits, namely leaf nitrogen (N) content, specific leaf area, and allometric carbon (C) allocation to rhizome storage, which govern the ability to gain and maintain resources as well as to survive in a particular multi-stressed environment. The modeling of plant growth incorporates C and N into the construction of leaves and roots, whose amount of new biomass is determined by the dynamic plant allocation scheme. Nitrogen is internally recycled between pools of plants, litter, humus, microbes, and mineral N. The N dynamics are modeled using a parallel scheme, with the major modifications being the calculation of the aerobic and anoxic periods and the incorporation of the anaerobic processes. A simple hydrologic model with stochastic rainfall is used to describe the water level dynamics and the soil moisture profile. Soil water balance is evaluated at the daily time scale and includes rainfall, evapotranspiration and lateral flow to/from an external water body, with evapotranspiration loss equal to the potential value, governed by the daily average condition of atmospheric water demand. The resulting feedback dynamics arising from the coupled system of plant-soil-microbe are studied in details and species’ fitnesses in the 3-D trait space are compared across various rainfall patterns with different mean and fluctuations. The model results are then

  11. Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2016-04-01

    Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343

  12. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  13. Applicability of VI in arid vegetation delineation using shadow-affected SPOT imagery.

    PubMed

    Gunasekara, N K; Al-Wardy, M M; Al-Rawas, G A; Charabi, Y

    2015-07-01

    GDVI(3), GDVI(2), NDVI, MSAVI and SAVI were evaluated for their dynamic ranges, the class accuracy of the Vegetation Index (VI) classifications, the effects of shadow delineation on the other land use classes and their applicability in vegetation delineation in Al-Qara Mountains, Oman. Supervised classifications of a SPOT scene by Support Vector Machines (SVM) algorithm were employed. GDVI(3) showed the widest dynamic range in all land use types, while GDVI(2) also exhibited evidently wider dynamic ranges for arid to semi-arid Al-Qara than NDVI, MSAVI and SAVI. GDVI(3) reported the highest accuracies in delineating natural vegetation (dense - 74.80%, medium-dense- 43.19%), except for low-dense vegetation (40.51%). It also performs the best in delineating bare soil and dry grass with over 80% and 60% accuracies. The attenuated reflectance created by the shadows results in VI signals in the range of dry grass to bare soil, enabling us to neglect the shadow effect on natural vegetation delineation due to below 9.50% omissions from the shadows class. GDVI(3) also limits shadow delineation better than the other indices, which will enable us to analyze spectral information recovery by the VI with the help of ground truth information under the shadows. For applications such as land degradation assessments, GDVI(3) has better prospects over the other indices explored. Saturation at high-vigor vegetation is an issue in GDVI(3), GDVI(2) and NDVI. Our study also points to a dependency of a VI's capability to weaken shadows on the number of training data pixels to be utilized in a supervised classification.

  14. Dynamics of directional reflectance factor distributions for vegetation canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1983-01-01

    Directional reflectance factors that span the entire exitance hemisphere are collected on the ground for a variety of homogeneous vegetation canopies and bare soils. NOAA 6/7 AVHRR bands 1 (0.58-0.68 micron) and 2 (0.73-1.1 microns) are used. When possible, geometric measurements of leaf orientation distributions are taken simultaneously with each spectral measurement. Other supporting structural and optical measurements are made. These data sets are taken at various times of the day for each cover type. These unique sets, together with pertinent data in the literature, are used to investigate the dynamics of the directional reflectance factor distribution as a function of the geometric structure of the scene, solar zenith angle, and optical properties of the scene components (leaves and soil). For complete homogeneous vegetation canopies, the principal trend observed at all sun angles and spectral bands is a minimum reflectance near nadir and increasing reflectance with increasing off-nadir view angle for all azimuth directions.

  15. Management intensity and vegetation complexity affect web-building spiders and their prey.

    PubMed

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  16. Variables affecting the yields of fatty esters from transesterified vegetable oils

    SciTech Connect

    Freedman, B.; Pryde, E.H.; Mounts, T.L.

    1984-10-01

    Transesterification reaction variables that affect yield and purity of the product esters from cottonseed, peanut, soybean and sunflower oils include molar ratio of alcohol to vegetable oil, type of catalyst (alkaline vs acidic), temperature and degree of refinement of the vegetable oil. With alkaline catalysts (either sodium hydroxide or methoxide), temperatures of 60 degrees C or higher, molar ratios of at least 6 to 1 and with fully refined oils, conversion to methyl, ethyl and butyl esters was essentially complete in 1 hr. At moderate temperatures (32 degrees C), vegetable oils were 99% transesterified in ca. 4 hr with an alkaline catalyst. Transesterification by acid catalysis was much slower than by alkali catalysis. Although the crude oils could be transesterified, ester yields were reduced because of gums and extraneous material present in the crude oils. 30 references.

  17. Regional impacts of Atlantic Forest deforestation on climate and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Chambers, J. Q.

    2012-12-01

    effects, regional surface air temperature (C°), precipitation (mm day-1), and emitted longwave radiation (W m-2) were highly affected in the location of the removed forest, and throughout surrounding areas of South America. For example climate patterns of increased temperature and decreased precipitation were affected as far as the Amazon Forest region. The use of fully coupled global climate and terrestrial models to study the effects of large-scale forest removal have been rarely applied. This study successfully showed the valuation of an important tropical forest, and the consequences of large deforestation through the reporting of complex earth-atmosphere interactions between vegetation dynamics and climate.

  18. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment.

    PubMed

    Liu, Peilong; Hao, Lu; Pan, Cen; Zhou, Decheng; Liu, Yongqiang; Sun, Ge

    2017-07-01

    Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystem structure that determines the ecosystem functions and services such as clean water supply and carbon sequestration in a watershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of studies have rarely been done at a watershed scale due to data availability. The present study examined the spatial and temporal variations of LAI for five ecosystem types within a watershed with a complex topography in the Upper Heihe River Basin, a major inland river in the arid and semi-arid western China. We integrated remote sensing-based GLASS (Global Land Surface Satellite) LAI products, interpolated climate data, watershed characteristics, and land management records for the period of 2001-2012. We determined the relationships among LAI, topography, air temperature and precipitation, and grazing history by five ecosystem types using several advanced statistical methods. We show that long-term mean LAI distribution had an obvious vertical pattern as controlled by precipitation and temperature in a hilly watershed. Overall, watershed-wide mean LAI had an increasing trend overtime for all ecosystem types during 2001-2012, presumably as a result of global warming and a wetting climate. However, the fluctuations of observed LAI at a pixel scale (1km) varied greatly across the watershed. We classified the vegetation changes within the watershed as 'Improved', 'Stabilized', and 'Degraded' according their respective LAI changes. We found that climate was not the only driver for temporal vegetation changes for all land cover types. Grazing partially contributed to the decline of LAI in some areas and masked the positive climate warming effects in other areas. Extreme weathers such as cold spells and droughts could substantially affect inter-annual variability of LAI dynamics. We concluded that

  19. Dynamics of skimming flow in the wake of a vegetation patch

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome R.; Wiggs, Giles F. S.; Bailey, Richard M.

    2016-09-01

    Dryland vegetation is often spatially patchy, and so affects wind flow in complex ways. Theoretical models and wind tunnel testing have shown that skimming flow develops above vegetation patches at high plant densities, resulting in little or no wind erosion in these zones. Understanding the dynamics of skimming flow is therefore important for predicting sediment transport and bedform development in dryland areas. However, no field-based data are available describing turbulent airflow dynamics in the wake of vegetation patches. In this study, turbulent wind flow was examined using high-frequency (10 Hz) sonic anemometry at four measurement heights (0.30 m, 0.55 m, 1.10 m and 1.65 m) along a transect in the lee of an extensive patch of shrubs (z = 1.10 m height) in Namibia. Spatial variations in mean wind velocity, horizontal Reynolds stresses and coherent turbulent structures were analysed. We found that wind velocity in the wake of the patch effectively recovered over ∼12 patch heights (h) downwind, which is 2-5 h longer than previously reported recovery lengths for individual vegetation elements and two-dimensional wind fences. This longer recovery can be attributed to a lack of flow moving around the obstacle in the patch case. The step-change in roughness between the patch canopy and the bare surface in its wake resulted in an initial peak in resultant horizontal shear stress (τr) followed by significant decrease downwind. In contrast to τr , horizontal normal Reynolds stress (u‧2 ‾) progressively increased along the patch wake. A separation of the upper shear layer at the leeside edge of the patch was observed, and a convergence of τr curves implies the formation of a constant stress layer by ∼20 h downwind. The use of τr at multiple heights is found to be a useful tool for identifying flow equilibration in complex aerodynamic regimes. Quadrant analysis revealed elevated frequencies of Q2 (ejection) and Q4 (sweep) events in the immediate lee of the

  20. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy; Cai, Michael; McDowell, Nathan

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions

  1. Coupled Simulation of Wetland Hydrology, Nutrient and Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Yang, L.; Campbell, K. L.; Graham, W. D.; Kiker, G. A.

    2004-12-01

    Ecohydrological variations such as altered hydrologic regime, invasion of exotic flora, and nutrient enrichment in the Kissimmee-Okeechobee-Everglades aquatic ecosystem in south Florida have been observed. It is important to study the dynamics of wetland hydrology, nutrient and vegetation communities and their interactions over multiple spatial and temporal scales so that wetland restoration, ecological protection, and best management policy decision-making can be effectively accomplished. Hydrologic models are important tools in these decision-making processes. Hydrological components capable of multi-directional overland flow and lateral groundwater flow simulation within the Java-based, object-oriented framework of the ACRU2000 model were developed to make the existing hydrologic model in ACRU2000 more applicable in the Lake Okeechobee Basin where flat topography, high-water-table and sandy soils define the very unique hydrology. In addition nutrient components capable of multi-directional transport and transformation of nitrogen and phosphorus were modified to make the current nutrient model in ACRU2000 more applicable in the Lake Okeechobee Basin. Observed data in the Lake Okeechobee Basin were used to validate the coupled hydrologic and nutrient cycling model's predictions of the spatial and temporal distribution of flow and nutrient concentrations. The simulated results indicate that the coupled model is capable of simulating nutrient, overland, and lateral groundwater flows over a watershed that incorporates wetlands. Future work will focus on the development of a new wetland vegetation model to be integrated into this coupled hydrological and nutrient model. The new model will then be applied in the Lake Okeechobee Basin to simulate the ecohydrological variations due to the implementation of alternative water and land management practices. (More information regarding ACRU2000 and its modification for use in the Southeastern Coastal Plain can be found at

  2. Uncertainties of Nitrogen Fixation in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Steinkamp, Joerg; Werner, Christian; Weber, Bettina; Hickler, Thomas

    2015-04-01

    Nitrogen is an essential nutrient for life on earth. However, most of it is in the form of dinitrogen (N2) unutilizable to life and only few organisms are able to break the triple bond, fix the nitrogen and thus make it available for cycling in the biosphere through "fixation". In most state-of-the-art dynamic global vegetation models (DGVMs) including a nitrogen cycle, N fixation is simulated by the Cleveland et al. (1999) algorithm (O-CN, LPJ-GUESS, CLM), that correlates annual N fixation to evapotranspiration rates or net primary production. Nevertheless, this algorithm has two major uncertainties, which are investigated by us: 1. The algorithm is based on annual fixation rates that are then applied uniformly throughout the year. However, in nature nitrogen fixation is an expensive process, which occurs only under favorable conditions. Here we compare the annual fixation values evenly distributed over the year with daily-derived fixation values based on a modified version of the Cleveland algorithm. We postulate that in higher latitudinal regions with seasonal climate as well as in regions with a distinct dry/wet season, modeled growth is enhanced by daily derived values compared to evenly distributed values, whereas in tropical regions hardly any difference will be visible. 2. One distinguishes between symbiotic and unsymbiotic nitrogen fixation, where the first one is associated with higher plants as symbionts supplying the fixers with carbohydrates, whereas the second, unsymbiotic is performed by so-called cryptogamic covers (CC). We found that the fixation by CC is underrepresented by the Cleveland algorithm, and a correction thus leads to enhanced growth in forested regions of higher latitudes that feature substantial CC fractions. Overall, the improvements of the algorithm proposed by us are expected to better reflect the reality of nitrogen fixation and cause an increased growth of vegetation, especially in higher northern latitudes.

  3. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties

    NASA Astrophysics Data System (ADS)

    Wittenberg, L.; Malkinson, D.

    2009-04-01

    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  4. A decadal observation of vegetation dynamics using multi-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chiang, Yang-Sheng; Chen, Kun-Shan; Chu, Chang-Jen

    2012-10-01

    Vegetation cover not just affects the habitability of the earth, but also provides potential terrestrial mechanism for mitigation of greenhouse gases. This study aims at quantifying such green resources by incorporating multi-resolution satellite images from different platforms, including Formosat-2(RSI), SPOT(HRV/HRG), and Terra(MODIS), to investigate vegetation fractional cover (VFC) and its inter-/intra-annual variation in Taiwan. Given different sensor capabilities in terms of their spatial coverage and resolution, infusion of NDVIs at different scales was used to determine fraction of vegetation cover based on NDVI. Field campaign has been constantly conducted on a monthly basis for 6 years to calibrate the critical NDVI threshold for the presence of vegetation cover, with test sites covering IPCC-defined land cover types of Taiwan. Based on the proposed method, we analyzed spatio- temporal changes of VFC for the entire Taiwan Island. A bimodal sequence of VFC was observed for intra-annual variation based on MODIS data, with level around 5% and two peaks in spring and autumn marking the principal dual-cropping agriculture pattern in southwestern Taiwan. Compared to anthropogenic-prone variation, the inter-annual VFC (Aug.-Oct.) derived from HRV/HRG/RSI reveals that the moderate variations (3%) and the oscillations were strongly linked with regional climate pattern and major disturbances resulting from extreme weather events. Two distinct cycles (2002-2005 and 2005-2009) were identified in the decadal observations, with VFC peaks at 87.60% and 88.12% in 2003 and 2006, respectively. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.

  5. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh.

    PubMed

    Negrin, Vanesa L; Spetter, Carla V; Asteasuain, Raúl O; Perillo, Gerardo M E; Marcovecchio, Jorge E

    2011-01-01

    Four sites were selected in a salt marsh in the Bahia Blanca Estuary (Argentina): (1) low marsh (flooded by the tide twice daily) vegetated by S. alterniflora; (2) non-vegetated low marsh; (3) high marsh (flooded only in spring tides) vegetated by S. alterniflora; (4) non-vegetated high marsh. The pH and Eh were measured in sediments, while dissolved nutrients (ammonium, nitrate, nitrite and phosphate) and particulate organic matter (POM) were determined in pore water. pH (6.2-8.7) was only affected by vegetation in low areas. Eh (from -300 to 250 mV) was lower at low sites than at high ones; in the latter, the values were higher in the non-vegetated sediments. The POM concentration was greater in the high marsh than in the low marsh, with no effect of vegetation. Ammonium was the most abundant nitrogen nutrient species in pore water, except in the non-vegetated high marsh where nitrate concentration was higher. All nitrogen nutrients were affected by both flooding and vegetation. Phosphate was always present in pore water at all sites throughout the year and its concentration varied within narrow limits, with no effect of flooding and greater values always at non-vegetated sites. Our results showed that the variability of the pore water composition within the marsh is greater than the temporal variation, meaning that both tidal flooding and vegetation are important in the dynamics of nutrients and organic matter in the sediment pore water.

  6. Factors affecting vegetable growers' exposure to fungal bioaerosols and airborne dust.

    PubMed

    Hansen, Vinni M; Meyling, Nicolai Vitt; Winding, Anne; Eilenberg, Jørgen; Madsen, Anne Mette

    2012-03-01

    We have quantified vegetable growers' exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers' exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers' exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m(-3)) compared to exposures reported from other occupational environments. In conclusion, vegetable growers' exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop.

  7. [Remote sensing based monitoring of vegetation dynamics and ecological restoration in Beijing mountainous area].

    PubMed

    Hu, Yong; Liu, Liang-yun; Jia, Jian-hua

    2010-11-01

    By using the Landsat images in 1979, 1988, 1999, 2005, and 2009, and the linear unmixed model at pixel scale, this paper analyzed the spatiotemporal variation of vegetation coverage in Beijing mountainous area. After detecting the areas of vegetation degradation or restoration, the impacts of elevation, slope, and soil type on vegetation restoration were studied. From 1979 to 1988, the vegetation coverage in the study area had no obvious change, but in the following 12 years, the vegetation coverage was seriously destroyed due to the fast development of social economy. Fortunately, many protective measures were taken since 2000, which improved the vegetation coverage to 72% in 2009, with an increment of 13% compared to the vegetation coverage in 1999. A significant correlation was observed between the variations of vegetation coverage and territorial features. The areas with poor soil or large slope were more easily suffered from degradation than other places, and the flat regions with low elevation were more affected by human activities.

  8. Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath

    PubMed Central

    Eckstein, R. Lutz; Pereira,, Eva; Milbau, Ann; Graae, Bente Jessen

    2011-01-01

    Background and Aims A meta-analysis of global change experiments in arctic tundra sites suggests that plant productivity and the cover of shrubs, grasses and dead plant material (i.e. litter) will increase and the cover of bryophytes will decrease in response to higher air temperatures. However, little is known about which effects these changes in vegetation structure will have on seedling recruitment of species and invasibility of arctic ecosystems. Methods A field experiment was done in a bryophyte-dominated, species-rich subarctic heath by manipulating the cover of bryophytes and litter in a factorial design. Three phases of seedling recruitment (seedling emergence, summer seedling survival, first-year recruitment) of the grass Anthoxanthum alpinum and the shrub Betula nana were analysed after they were sown into the experimental plots. Key Results Bryophyte and litter removal significantly increased seedling emergence of both species but the effects of manipulations of vegetation structure varied strongly for the later phases of recruitment. Summer survival and first-year recruitment were significantly higher in Anthoxanthum. Although bryophyte removal generally increased summer survival and recruitment, seedlings of Betula showed high mortality in early August on plots where bryophytes had been removed. Conclusions Large species-specific variation and significant effects of experimental manipulations on seedling recruitment suggest that changes in vegetation structure as a consequence of global warming will affect the abundance of grasses and shrubs, the species composition and the susceptibility to invasion of subarctic heath vegetation. PMID:21624960

  9. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Eamus, Derek; Cleverly, James; Boulain, Nicolas; Cook, Peter; Zhang, Lu; Cheng, Lei; Yu, Qiang

    2014-11-01

    For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601 mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48 mm compared to that (58-672 mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions.

  10. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64.

  11. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    NASA Astrophysics Data System (ADS)

    Sakaguchi, K.; Zeng, X.; Leung, LR; Shao, P.

    2016-12-01

    Land carbon sensitivity to atmospheric CO2 concentration (βL) and climate warming (γL) is a crucial part of carbon-climate feedbacks that affect the magnitude of future warming. Although these sensitivities can be estimated by earth system models, their dependence on model representation of land carbon dynamics and the inherent model assumptions has rarely been investigated. Using the widely used Community Land Model version 4 as an example, we examine how βL and γL vary with prescribed versus dynamic vegetation covers. Both sensitivities are found to be larger with dynamic compared to prescribed vegetation on decadal timescale in the late twentieth century, with a more robust difference in γL. The latter is a result of dynamic vegetation model deficiencies in representing the competitions between deciduous versus evergreen trees and tree versus grass over the tropics and subtropics. The biased vegetation cover changes the regional characteristics of carbon-nitrogen cycles such that plant productivity responds less strongly to the enhancement of nitrogen mineralization with warming, so more carbon is lost to the atmosphere with rising temperature. The result calls for systematic evaluations of land carbon sensitivities with varying assumptions for land cover representations to help prioritize development effort and constrain uncertainties in carbon-climate feedbacks.

  12. Noise-driven cooperative dynamics between vegetation and topography in riparian zones

    NASA Astrophysics Data System (ADS)

    Vesipa, R.; Camporeale, C.; Ridolfi, L.

    2015-10-01

    Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation-topography feedback. We demonstrate how the vegetation-induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment.

  13. Vegetation Dynamics and Soil Water Balance Interactions in a Water-limited Mediterranean Ecosystem on Sardinia Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Albertson, J. D.

    2009-12-01

    estimated. An ecohydrologic model is successfully tested to the case study. It couples a vegetation dynamic model (VDM), which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM). Hydrometeorological change scenarios are then generated using a stochastic weather generator. It simulates hydrometeorological variables from historical time series (available from 1922 for this basin) altered by IPCC meteorological change predictions. The calibrated VDM-LSM predicts soil water balance and vegetation dynamics for the generated hydrometeorological scenarios. Results demonstrate that vegetation dynamics are strongly influenced by the variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance, and the runoff. Water resources predictions are worrying, with further decrease of runoff.

  14. Soil Water Balance and Vegetation Dynamics in a Water-limited Mediterranean Ecosystem on Sardinia under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Montaldo, Nicola; Cortis, Clorinda; Albertson, John D.

    2010-05-01

    periodically leaf area index (LAI) PFTs are estimated. An ecohydrologic model is successfully tested to the case study. It couples a vegetation dynamic model (VDM), which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM). Hydrometeorological change scenarios are then generated using a stochastic weather generator. It simulates hydrometeorological variables from historical time series (available from 1922 for this basin) altered by IPCC meteorological change predictions. The calibrated VDM-LSM predicts soil water balance and vegetation dynamics for the generated hydrometeorological scenarios. Results demonstrate that vegetation dynamics are strongly influenced by the variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance, and the runoff. Water resources predictions are worrying, with further decrease of runoff.

  15. Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996

    USGS Publications Warehouse

    Gallant, A.L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.

    2003-01-01

    How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.

  16. Analysis of Postfire Vegetation Dynamics of Mediterranean Shrub Species Based on Terrestrial and NDVI Data

    NASA Astrophysics Data System (ADS)

    Hernández-Clemente, Rocío; Navarro Cerrillo, R. M.; Hernández-Bermejo, J. E.; Escuin Royo, S.; Kasimis, N. A.

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  17. Analysis of postfire vegetation dynamics of Mediterranean shrub species based on terrestrial and NDVI data.

    PubMed

    Hernández-Clemente, Rocío; Cerrillo, R M Navarro; Hernández-Bermejo, J E; Royo, S Escuin; Kasimis, N A

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  18. How much does weather-driven vegetation dynamics matter in land surface modelling?

    NASA Astrophysics Data System (ADS)

    Ingwersen, Joachim; Streck, Thilo

    2016-04-01

    Land surface models (LSM) are an essential part of weather and climate models as they provide the lower boundary condition for the atmospheric models. In state-of-the-art LSMs the seasonal vegetation dynamics is "frozen". The seasonal variation of vegetation state variables, such as leaf area index or green vegetation fraction, are prescribed in lookup tables. Hence, a year-by-year variation in the development of vegetation due to changing weather conditions cannot be considered. For climate simulations, this is obviously a severe drawback. The objective of the present study was to quantify the potential error in the simulation of land surface exchange processes resulting from "frozen" vegetation dynamics. For this purpose we simulated energy and water fluxes from a winter wheat stand and a maize stand in Southwest Germany. In a first set of simulations, six years (2010 to 2015) were simulated considering weather-driven vegetation dynamics. For this purpose, we coupled the generic crop growth model GECROS with the NOAH-MP model (NOAHMP-GECROS). In a second set of simulations all vegetation-related state variables of the 2010 simulation were written to an external file and were used to overwrite the vegetation-related state variables of the simulations of the years 2011-2015. The difference between both sets was taken as a measure for the potential error introduced to the LSM due to the assumption of a "frozen" vegetation dynamics. We will present first results and discuss the impact of "frozen" vegetation dynamics on climate change simulations.

  19. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  20. Remote sensing of biomass dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ data

    NASA Astrophysics Data System (ADS)

    Tian, F.; Brandt, M.; Liu, Y.; Fensholt, R.

    2015-12-01

    Monitoring long-term biomass dynamics in global drylands is of great importance for global carbon cycle modeling and has been done extensively based on the normalized difference vegetation index (NDVI) derived from AVHRR (Advanced Very High Resolution Radiometer) observations. However, there are limitations from both the characteristics of NDVI (e.g. atmosphere and cloud contamination, saturation in densely vegetated areas, and affected by varying vegetation species compositions) and sensor related artifacts (e.g. orbital drifts, sensor changes). Being sensitive to the vegetation water content and not affected by clouds, the Vegetation Optical Depth (VOD) derived from satellite passive microwave observations can be an alternative to NDVI for monitoring biomass dynamics in drylands, yet further evaluations based on ground measurements are needed. In this study, we assess the capability of a long-term VOD dataset (1992-2011) to capture the temporal and spatial variability of in situ measured biomass data (herbaceous and woody foliage mass) in the semi-arid Senegalese Sahel. The GIMMS3g (Global Inventory Modeling and Mapping Studies, 3rd generation) NDVI dataset is included for comparison purpose. Both VOD and NDVI reflect the temporal and spatial pattern of the ground data very well, however, the phenological metrics leading to the best correlations differ between VOD and NDVI. While the annual sum and maximum perform best for VOD, the growing integrals have the highest correlations for NDVI. Furthermore, VOD proves to be robust against typical NDVI drawbacks (species compositions, and saturation effects). Overall, in spite of the coarse resolution, the study shows that satellite passive microwave observation based VOD is an efficient proxy for estimating biomass production of the entire vegetation layer in the Sahel and potentially in other dryland areas.

  1. Holocene dynamics of vegetation change in southern and southeastern Brazil is consistent with climate forcing

    NASA Astrophysics Data System (ADS)

    Rodrigues, Jackson Martins; Behling, Hermann; Giesecke, Thomas

    2016-08-01

    At mid to high northern latitudes postglacial vegetation change has often occurred synchronously over large regions triggered mainly by abrupt climate change. Based on 19 pollen diagrams from southern and southeastern Brazil we explore if similar synchronicities in vegetation change were also characteristic for the vegetation dynamics in low latitudes. We used sequence splitting to detect past vegetation change in the pollen diagrams and computed principal curves and rates of change to visually evaluate the changes in composition and dynamics. The results show that vegetation change occurred mostly during the second half of the Holocene with distinct episodes of change. The character of vegetation change is generally consistent with shifts to wetter conditions and agrees with inferred shifts of the South American Monsoon. Speleothems as well as the titanium record from the Cariaco Basin indicate several episodes of rapid shifts in the precipitation regime, which are within the dating uncertainty of the here detected periods of vegetation change (8900, 5900, 2800, 1200 and 550 cal yrs BP). Our results indicate that low latitude vegetation composition follows precession forcing of the hydrology, while change is often triggered and synchronized by rapid climate change much like in high and mid latitudes. Pollen diagrams document changes in the abundance of individual taxa and changes in the amount of woodland cover, while small compositional changes indicate a regional stability of vegetation types during the Holocene.

  2. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest

    PubMed Central

    Orwig, David A.; Barker Plotkin, Audrey A.; Davidson, Eric A.; Lux, Heidi; Savage, Kathleen E.

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50–100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%–70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3–4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes

  3. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest.

    PubMed

    Orwig, David A; Barker Plotkin, Audrey A; Davidson, Eric A; Lux, Heidi; Savage, Kathleen E; Ellison, Aaron M

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50-100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%-70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3-4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes underlying

  4. Beyond Potential Vegetation II: Using Repeat Lidar Data on Changes in Vegetation Height to Test Model Predictions of Ecosystem Dynamics

    NASA Astrophysics Data System (ADS)

    Hurtt, G.; Thomas, R. Q.; Dubayah, R.

    2007-12-01

    Carbon estimates from terrestrial ecosystem models are limited by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes and can be difficult to detect or assess. Previous studies have illustrated how data on the vertical structure of vegetation from lidar can help to provide needed information on successional status for model initialization and constrain estimates of both carbon stock and fluxes. Here, we illustrate how repeat lidar data on vegetation structure can be used to test model predictions of ecosystem dynamics at a tropical forest site at La Selva, Costa Rica (108259 N, 848009 W). Airborne lidar remote sensing was used to measure spatial heterogeneity in the vertical structure of vegetation in 1998 and 2005. The ecosystem demography model (ED) was used to estimate corresponding patterns of carbon stocks, fluxes, and ecosystem dynamics during the interval. Lidar-initialized ED estimates of changes in maximum canopy height) were comparable to but significantly lower than observed (0.85 +/- 0.9 m observed vs. 0.53 +/- 0.4 m modeled) over the whole domain. Most of the model-data difference was due to growth of primary forest trees that exceeded model estimates (0.44 +/-0.9 m observed vs. 0.04 +/-0.1 m modeled), while the model-data comparison was significantly better over secondary forest areas (1.84 +/- 0.18 m observed vs. 1.71 +/-0.9 m modeled). The results of this study provide a promising illustration of the power of using repeat lidar data on changes in vegetation height to test estimates of ecosystem dynamics from height-structured ecosystem models. Extending these capabilities to regional and global scales will require repeat lidar data sets from space, and the continued development of height-structured ecosystem models.

  5. Role of dynamic vegetation in regional climate predictions over western Africa

    NASA Astrophysics Data System (ADS)

    Alo, Clement Aga; Wang, Guiling

    2010-10-01

    This study examines the role of vegetation dynamics in regional predictions of future climate change in western Africa using a dynamic vegetation model asynchronously coupled to a regional climate model. Two experiments, one for present day and one for future, are conducted with the linked regional climate-vegetation model, and the third with the regional climate model standing alone that predicts future climate based on present-day vegetation. These simulations are so designed in order to tease out the impact of structural vegetation feedback on simulated climate and hydrological processes. According to future predictions by the regional climate-vegetation model, increase in LAI is widespread, with significant shift in vegetation type. Over the Guinean Coast in 2084-2093, evergreen tree coverage decreases by 49% compared to 1984-1993, while drought deciduous tree coverage increases by 56%. Over the Sahel region in the same period, grass cover increases by 31%. Such vegetation changes are accompanied by a decrease of JJA rainfall by 2% over the Guinean Coast and an increase by 23% over the Sahel. This rather small decrease or large increase of precipitation is largely attributable to the role of vegetation feedback. Without the feedback effect from vegetation, the regional climate model would have predicted a 5% decrease of JJA rainfall in both the Guinean Coast and the Sahel as a result of the radiative and physiological effects of higher atmospheric CO2 concentration. These results demonstrate that climate- and CO2-induced changes in vegetation structure modify hydrological processes and climate at magnitudes comparable to or even higher than the radiative and physiological effects, thus evincing the importance of including vegetation feedback in future climate predictions.

  6. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model

    PubMed Central

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-01-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45oN and polewards) for the period 1900–2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of

  7. Analysis of the dynamics of African vegetation using the normalized difference vegetation index

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1986-01-01

    Images at a resolution of 8 km are currently being generated for the whole of Africa, displaying the normalized difference vegetation index (NDVI). These images have undergone a process of temporal compositing to reduce the effects of cloud cover and atmospheric variation. When the NDVI is plotted against time, different cover types are shown to have characteristic profiles corresponding closely with their phenology. The resultant pattern of NDVI values displayed on the images is analyzed in terms of the cover types present and local variations in rainfall. Comparison between images for 1983 and 1984 overall showed considerable similarities, but significant differences were observed in the northward extent of the greening wave in the Sahel, the greening up of the Kalahari Desert and East African communities. It is concluded that vegetation monitoring using NDVI images needs to be associated with scene stratification according to cover type.

  8. Dynamic metropolitan landscapes: Residential development and vegetation change in the U.S

    NASA Astrophysics Data System (ADS)

    Jantz, Patrick Arthur

    Residential development is now a major contributor to land surface change in the U.S. From 1990 - 2000, over thirteen million housing units were added to the nation's housing stock which stood at 102.3 million in 1990. Another 15.8 million housing units were added from 2000 - 2010. Of particular concern is the ongoing increase in low-density residential development because of its large resource footprint and biodiversity impacts. In this dissertation I pose three broad questions 1) What were the trends in residential development in the U.S. from 1990 - 2000? 2) What were the trends in rural conversion to low-density residential use from 1990 - 2000 in the Mid-Atlantic and the Pacific Northwest and what social and environmental factors help explain these trends? 3) What were the effects of rural conversion to residential use on vegetation productivity in the Mid-Atlantic and the Pacific Northwest from 2000 - 2010? To answer these questions I created a database derived from U.S. Census blocks that allows for interdecadal comparison of recent housing density change in support of spatial demographic research. In a series of GIS based analyses I used the database to map changes in metropolitan housing density distributions in the Mid-Atlantic and western Washington regions and used a satellite derived index of vegetation productivity to assess the impacts of housing growth on vegetation carbon uptake. Results indicate that residential housing growth is more dynamic than previously thought and established approaches for mapping housing density tend to underestimate the local intensity of residential change. In the Mid-Atlantic and western Washington, low-density residential development is affecting large fractions of rural landscapes in metropolitan areas. The strongest correlates of low-density conversion of rural landscapes were population growth and extent of protected lands, suggesting future directions for modeling the drivers of rural conversion. Residential

  9. Modeling Pacific Northwest carbon and water cycling using CARAIB Dynamic Vegetation Model

    NASA Astrophysics Data System (ADS)

    Dury, M.; Kim, J. B.; Still, C. J.; Francois, L. M.; Jiang, Y.

    2015-12-01

    While uncertainties remain regarding projected temperature and precipitation changes, climate warming is already affecting ecosystems in the Pacific Northwest (PNW). Decrease in ecosystem productivity as well as increase in mortality of some plant species induced by drought and disturbance have been reported. Here, we applied the process-based dynamic vegetation model CARAIB to PNW to simulate the response of water and carbon cycling to current and future climate change projections. The vegetation model has already been successfully applied to Europe to simulate plant physiological response to climate change. We calibrated CARAIB to PNW using global Plant Functional Types. For calibration, the model is driven with the gridded surface meteorological dataset UIdaho MACA METDATA with 1/24-degree (~4-km) resolution at a daily time step for the period 1979-2014. The model ability to reproduce the current spatial and temporal variations of carbon stocks and fluxes was evaluated using a variety of available datasets, including eddy covariance and satellite observations. We focused particularly on past severe drought and fire episodes. Then, we simulated future conditions using the UIdaho MACAv2-METDATA dataset, which includes downscaled CMIP5 projections from 28 GCMs for RCP4.5 and RCP8.5. We evaluated the future ecosystem carbon balance resulting from changes in drought frequency as well as in fire risk. We also simulated future productivity and drought-induced mortality of several key PNW tree species.

  10. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  11. Studying interactions between climate variability and vegetation dynamic using a phenology based approach

    NASA Astrophysics Data System (ADS)

    Horion, S.; Cornet, Y.; Erpicum, M.; Tychon, B.

    2013-02-01

    In this paper we investigated if and how a signature of climate control on vegetation growth can be individualized at regional scale using time series of SPOT-VEGETATION NDVI and ECMWF meteorological data. Twelve regions characterized by dominant and stable cropland or grassland covers were selected in Europe and Africa. Our results show that the relationship between NDVI and meteorological parameters is highly complex and significantly vary trough the phenological cycle of the plants. Hence, interactions between vegetation dynamics and climate variability must be studied at a smaller time scale in order to identify properly the limiting factors to vegetation growth. Using NDVI metrics, vegetative phases (from green-up to maximum NDVI) and reproductive phases (from maximum NDVI to maturity) were identified for each region. Cross-correlation analysis revealed that, in most of the cases, the best scores of Pearson's r are obtained when we considered the vegetative phase (from green-up to maximum of NDVI) and the reproductive phase (from maximum of NDVI to maturity) separately. We also showed that climatic constraints identified using yearly proxies of climate and vegetation do not depict correctly or completely the climate control on vegetation development. In that sense the complexity of the climate-vegetation relationship, which is spatially and temporally variable, is well underlined in this study.

  12. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  13. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  14. Modelling vegetation dynamics at global scale due to climate changes: Comparison of two approaches

    SciTech Connect

    Belotelov, N.V.; Bogatyrev, B.G.; Lobanov, A.I.

    1996-12-31

    Climate changes will influence vegetation dynamics. One of the ways of forecasting these changes is the creation of mathematical models describing vegetation dynamics. Computer experiments can then be conducted under climate change scenarios. Two main approaches are used to create such models. The first approach is based on a bioclimatic dynamic approach. The second approach is based on modelling the main eco-physiological processes. The bioclimatic dynamic approach consists of hypotheses about vegetation types or biomes, and their interrelationships with climate. In the eco-physiological approach, a detailed description of the processes, such as production, mortality, plants migration and their competition is presented. A number of computer experiments has been conducted for several climatic scenario for Russia and the whole world. A qualitative comparison of the results with the results of an earlier bioclimatic model has been done.

  15. Dynamic modeling of vegetation change in arid lands

    NASA Technical Reports Server (NTRS)

    Robinson, V. B.; Coiner, J. C.; Barringer, T. H.

    1982-01-01

    A general framework for a digital desertification monitoring system (DDMS) for assessing the worldwide desertification growth rate is presented. The system relies on the development of Landsat derived indicators to identify local processes signalling the growth of arid regions. A study area consisting of the eastern edge of the Niger River delta in Mali was used to characterize three indicators in terms of the covariance of the multispectral scanner (MSS) bands 2 and 4, the correlation of the two bands, and the percent variance expressed by the first eigenvalue. The scenes are imaged multitemporallly in a 400 x 400 pixel array to detect vegetation cover changes. Criteria were defined which characterized the decrease or increase of vegetation. It was determined that the correlation coefficients are the best indicators, and are easily computed.

  16. Transition of vegetation states positively affects harvester ants in the Great Basin, United States

    USGS Publications Warehouse

    Holbrook, Joseph D.; Pilliod, David; Arkle, Robert; Rachlow, Janet L.; Vierling, Kerri T.; Wiest, Michelle M.

    2016-01-01

    Invasions by non-native plants can alter ecosystems such that new ecological states are reached, but less is known about how these transitions influence animal populations. Sagebrush (Artemisia tridentata) ecosystems are experiencing state changes because of fire and invasion by exotic annual grasses. Our goal was to study the effects of these state changes on the Owyhee and western harvester ants (Pogonomyrmex salinusOlsen and P. occidentalis Cresson, respectively). We sampled 358 1-ha plots across the northern Great Basin, which captured unburned and burned conditions across 1 −≥31 years postfire. Our results indicated an immediate and consistent change in vegetation states from shrubland to grassland between 1 and 31 years postfire. Harvester ant occupancy was unrelated to time since fire, whereas we observed a positive effect of fire on nest density. Similarly, we discovered that fire and invasion by exotic annuals were weak predictors of harvester ant occupancy but strong predictors of nest density. Occupancy of harvester ants was more likely in areas with finer-textured soils, low precipitation, abundant native forbs, and low shrub cover. Nest density was higher in arid locations that recently burned and exhibited abundant exotic annual and perennial (exotic and native) grasses. Finally, we discovered that burned areas that received postfire restoration had minimal influence on harvester ant occupancy or nest density compared with burned and untreated areas. These results suggest that fire-induced state changes from native shrublands to grasslands dominated by non-native grasses have a positive effect on density of harvester ants (but not occupancy), and that postfire restoration does not appear to positively or negatively affect harvester ants. Although wildfire and invasion by exotic annual grasses may negatively affect other species, harvester ants may indeed be one of the few winners among a myriad of losers linked to vegetation state changes within

  17. Erosion-vegetation dynamics in the Lucciolabella biancane badland cultural landscape (Southern Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Maccherini, Simona; Vergari, Francesca; Santi, Elisa; Marignani, Michela; Della Seta, Marta; Rossi, Mauro; Torri, Dino; Del Monte, Maurizio

    2014-05-01

    In this work we present the results of multidisciplinary and long-lasting investigations on the complex cause-effect relationship among water erosion processes and vegetation cover on the Lucciolabella Natural Reserve, located in Upper Orcia Valley (Southern Tuscany). The area is a Site of Community Importance, where the cultural landscape of biancane badlands - water erosion landforms generated on Plio-Pleistocene marine clay outcrops - is preserved. We explored the direction and rate of change in land use and natural habitats of the biancana badland landscapes over the last 50 years, evaluating the erosion-vegetation dynamics and examining the processes involved in the biancana badland area. Historical information, such as early cadastral documents and diachronically analyzed aerial photographs, has been used to construct a database of the natural trends of modifications relative to habitat and plant species distribution, with the analysis of the consequent variations on the frequency of instability events. Old and recent land use maps were compared by using the TWINSPAN classification. Soil erodibility evaluation on the eroded biancana surfaces, regosols and well-developed vertisols, was carried out together with a decadal erosion monitoring program and the investigation of the physico-chemical properties of parent material. We also considered the effects of a few roots on saturated soil shear strength to introduce direct links between plants and soil processes. Moreover we run the LANDPLANER model in order to deepen the effect of the fragmentation of the vegetation cover on water erosion processes affecting biancana badlands. Long-lasting geomorphological survey and field erosion monitoring highlighted that biancana stations experience a very strong surface lowering rate due to water erosion, attaining an average rate of 2.4 - 2.6 cm/a. Moreover, biancanas in a more juvenile development phase, such as the ones of Lucciolabella Natural Reserve, show the maximum

  18. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    NASA Astrophysics Data System (ADS)

    Andela, N.; Liu, Y. Y.; van Dijk, A. I. J. M.; de Jeu, R. A. M.; McVicar, T. R.

    2013-10-01

    Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988-2008) vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI) and the recently developed passive-microwave-based Vegetation Optical Depth (VOD). The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  19. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: combining a new passive microwave vegetation density record with reflective greenness data

    NASA Astrophysics Data System (ADS)

    Andela, N.; Liu, Y. Y.; van Dijk, A. I. J. M.; de Jeu, R. A. M.; McVicar, T. R.

    2013-05-01

    Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite observed vegetation products were used to study the long-term (1988-2008) vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI) and the recently developed passive-microwave-based Vegetation Optical Depth (VOD). The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily use shallow soil water whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment seems to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information, bringing new insights on vegetation dynamics.

  20. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.

    PubMed

    Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo

    2014-01-01

    Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture

  1. Integrated Stochastic Evaluation of Flood and Vegetation Dynamics in Riverine Landscapes

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Kimura, R.

    2014-12-01

    Areal expansion of trees on gravel beds and sand bars has been a serious problem for river management in Japan. From the viewpoints of ecological restoration and flood control, it would be necessary to accurately predict the vegetation dynamics for a long period of time. This presentation tries to evaluate both vegetation overgrowth tendency and flood protection safety in an integrated manner for several vegetated channels in Kako River, Japan. The predominant tree species in Kako River are willows and bamboos. The evaluation employs a stochastic process model, which has been developed for statistically evaluating flow and vegetation status in a river course through the Monte Carlo simulation. The model for vegetation dynamics includes the effects of tree growth, mortality by flood impacts, and infant tree invasion. Through the Monte Carlo simulation for several cross sections in Kako River, responses of the vegetated channels are stochastically evaluated in terms of the changes of discharge magnitude and channel geomorphology. The result shows that the river channels with high flood protection priority are extracted from the several channel sections with the corresponding vegetation status. The present investigation suggests that the stochastic analysis could be one of the powerful diagnostic methods for river management.

  2. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  3. Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems

    NASA Astrophysics Data System (ADS)

    Montaldo, Nicola; Rondena, Roberta; Albertson, John D.; Mancini, Marco

    2005-10-01

    The structure and function of vegetation regulate fluxes across the biosphere-atmosphere interface with large effects in water-limited ecosystems. Vegetation dynamics are often neglected in hydrological modeling except for simple prescriptions of seasonal phenology. However, changes in vegetation densities, influencing the partitioning of incoming solar energy into sensible and latent heat fluxes, can result in long-term changes in both local and global climates with resulting feedbacks on vegetation growth. This paper seeks a simple vegetation dynamics model (VDM) for simulation of the leaf area index (LAI) dynamics in hydrologic models. Five variants of a VDM are employed, with a range of model complexities. The VDMs are coupled to a land surface model (LSM), with the VDM providing the LAI evolution through time and the LSM using this to compute the land surface fluxes and update the soil water contents. We explore the models through case studies of water-limited grass fields in California (United States) and North Carolina (United States). Results show that a simple VDM, simulating only the living aboveground green biomass (i.e., with low parameterization), is able to accurately simulate the LAI. Results also highlight the importance of including the VDM in the LSM when studying the climate-soil-vegetation interactions over moderate to long timescales. The inclusion of the VDM in the LSM is demonstrated to be essential for assessing the impact of interannual rainfall variability on the water budget of a water limited region.

  4. Study on the dynamics of grass microgametophytes from urban vegetation.

    PubMed

    Ratajová, Alena

    2014-05-01

    Urban sprawl and increasing economical pressure on agricultural production raises new unprecedented environmental questions. The presented study proved that higher level of fertilization of the urban vegetation significantly increases the concentration of male microgametophytes in the air during the flowering season. The levels of fertilization had no significant effect on the pollen grain size, nor on the profile and content of the phenolic compounds, however, the content of tryptophan (protein with a key role in allergies) was significantly influenced. The metabolism of tryptophan and its role in human imunilogy is not yet completely understood, however, it is recommended to avoid unnecessary fertilization in urbanized areas.

  5. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  6. Relationships between different burn, vegetation and soil ratios with Landsat spectral reflectance values in fire affected areas

    NASA Astrophysics Data System (ADS)

    Krina, Anastasia; Koutsias, Nikos

    2016-04-01

    The proportion of unburned vegetation within a fire affected area can be regarded as a proxy measure of fire severity that can be estimated by means of remote sensing techniques. Yet, in order to obtain sound results, it is essential to improve our current knowledge regarding the spectral discrimination of areas that have been completely burnt from adjacent areas within a fire perimeter that still have patches of vegetation, or unburned proportion of vegetation on them. The aim of our research is to reveal the role of the vegetation or the small vegetation gaps in spectral characteristics of pixels with mixed land cover synthesis (burned, vegetation and soil) to achieve a better assessment of fire mapping and the impact of fire in the burned area. Three land cover types were identified, namely vegetation, bare land and burned area by applying pixel based classification using the maximum likelihood algorithm in high-resolution aerial photographs (1m). Moreover, multispectral satellite Landsat data that were acquired close to capture date of the aerial photos and were converted to TOC reflectance from USGS, were used to measure the association between land cover portions and satellite-derived VIs and spectral signatures. A grid of 30x30m was created to extract the ratio of the land cover categories corresponding to each selected pixel of the satellite image LANDSAT TM. Samples of different land cover ratios and of different types of substrate (e.g. rocks, light- or dark-colored soil) were delineated and their reflectance values at each spectral channel were extracted and used to calculate statistics in order to characterize the spectral properties. Finally, various vegetation indices were computed to investigate the role of the proportion of land cover and substrate in the variation of VIs. The results of our study reveal the spectral characteristics of burnt area at the pixel level and suggest the efficiency of certain spectral channels for the estimation of the

  7. [Changes of climate and fire dynamic in China vegetation zone during 1961-2010].

    PubMed

    Tian, Xiao-Rui; Zhao, Feng-Jun; Shu, Li-Fu; Miao, Qing-Lin; Wang, Ming-Yu

    2014-11-01

    Climate, vegetation and human activities have influences on regional fire regimes. To understand the fire regimes for ecological zones on national scale is the base for carrying on the forest fire management. Daily observed temperature and precipitation data in 1961-2010 were interpolated into grids for China mainland with spatial resolution of 0.250 x 0.250, which was used to analyze their changes in fire season for eight ecological zones. Mann-Kendall test method was used for trend analysis of climate and fire dynamics. The results indicated that the average temperature for the areas with forests showed a significant linear upward trend in 1961-2010, but the precipitation didn't have the tendency. The average temperature in fire season for all the ecological zones increased significantly in the study period, and the most increment occurred in temperate semi-arid/arid steppe regions. There was no significant change in precipitation in fire season for most regions. Forest fire numbers for the mainland showed obvious fluctuations, but the affected forest areas decreased significantly. The curves of fire numbers and affected forest areas showed a bimodal shape for all ecological zones, except those showed a significant increase in the coniferous forest region in the temperate arid areas.

  8. Braided River Flow and Invasive Vegetation Dynamics in the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Caruso, Brian S.; Edmondson, Laura; Pithie, Callum

    2013-07-01

    In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m3/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation

  9. Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.

    PubMed

    Caruso, Brian S; Edmondson, Laura; Pithie, Callum

    2013-07-01

    In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive

  10. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  11. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    NASA Astrophysics Data System (ADS)

    Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena

    2015-04-01

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.

  12. The role of feedbacks between geomorphic and vegetation dynamics for lateral moraine slope configuration and development

    NASA Astrophysics Data System (ADS)

    Eichel, Jana; Corenblit, Dov; Dikau, Richard

    2015-04-01

    In proglacial areas, lateral moraines represent one of the most important sediment storages and dynamic areas. Glacier retreat since the Little Ice Age is accelerated by climate change and believed to control simultaneous paraglacial adjustment and vegetation succession on lateral moraine slopes. Biogeomorphic research suggests strong feedbacks between geomorphic processes, landforms, vegetation and vegetation dynamics in these environments. However, for lateral moraine slopes, these feedbacks are only partly understood. In our study, we use and develop biogeomorphic concepts in a scale-based approach to understand the role of feedbacks between geomorphic and vegetation dynamics for lateral moraine slope configuration and development. We illustrate our concepts with empirical evidences from on-going research in the Turtmann glacier forefield (Switzerland) and give first answers to the following questions: (i) Which plant species can influence geomorphic dynamics on lateral moraine slopes, and how? (ii) Under which conditions can feedbacks between geomorphic and vegetation dynamics occur? (iii) Which are the main factors influencing lateral moraine slope configuration and development? On a small scale (i), we identify dwarf shrubs (e.g., Dryas octopetala L.) as an engineer species, which can influence geomorphic processes through their specifically adapted plant functional traits, e.g., the trapping of fine sediments in their high-cover mats. On a meso scale (ii), feedbacks between geomorphic and vegetation dynamics can occur in a 'biogeomorphic feedback window' with moderate magnitude and frequency processes, e.g., debris slides, interrill erosion, or between lower frequency processes, e.g., debris flows and snow avalanches. Under these conditions, engineer species with high resistance can establish and change the dominant geomorphic processes from flow and sliding to bound solifluction. Our empirical data shows that on a large scale (iii), vegetation and

  13. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 2. Energy-water controls of vegetation spatiotemporal dynamics and topographic niches of favorability

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.

    2008-03-01

    Ecosystems of dry climates are a particularly interesting subject for ecohydrological studies, as water is generally considered to be the key limiting resource. This work focuses on vegetation-water-energy dynamics occurring on the complex terrain of a semiarid area characteristic of central New Mexico. The study employs a mechanistic model of coupled interactions to construct a set of numerical experiments carried out for two small-scale synthetic domains that exhibit particular hillslope curvatures. The linkages between terrain attributes and patterns of C4 grass productivity and water balance components are examined for three generic soil types. It is argued that in conditions of negligible moisture exchange, aspect and slope are the key determinants of both the hydrologic behavior and the degree of site "favorability" to vegetation. Certain topographic locations are more favorable to vegetation, as compared to a flat horizontal surface not influenced by lateral effects. These locations are associated with sites of northerly aspect with surface slopes within a narrow range of magnitudes. Contributions from both rainfall and radiation forcings are discussed to explain the existence of these topographic niches. The sensitivity of results is investigated by modifying the dominant mechanism of lateral water transfer. Two additional controlling topographic features are explored, corresponding to the contiguous and global terrain convergence levels. It is argued that their effects on vegetation-hydrology dynamics at a given location are characteristically superimposed with the impact of site-specific terrain attributes. Furthermore, the results lead to a conceptual relationship linking vegetation-hydrology quantities at different landscape locations.

  14. Study on the vegetation dynamic change using long time series of remote sensing data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Zhang, Xiaoyu

    2010-10-01

    The vegetation covering land surface is main component of biosphere which is one of five significant spheres on the earth. The vegetation plays a very important role on the natural environment conservation and improvement to keep human being's living environment evergreen while the vegetation supplies many natural resources to human living and development continuously. Under the background of global warming, vegetation is changing as climate changes. It is not doubt that human activities have great effects on the vegetation dynamic. In general, there are two aspects of the interaction between vegetation and climate, the climatic adaptation of vegetation and the vegetation feedback on climate. On the base of the research on the long term vegetation growth dynamics, it can be found out the vegetation adaptation to climate change. The dynamic change of vegetation is the direct indicator of the ecological environment changes. Therefore, study on the dynamic change of vegetation will be very interest and useful. In this paper, the vegetation change in special region of China will be described in detail. In addition to the methods of the long term in-situ observation of vegetation, remote sensing technologies can also be used to study the long time series vegetation dynamic. The widely used NDVI was often employed to monitor the status of vegetation growth. Actually, NDVI can indicate the vigor and the fractional cover of vegetation effectively. So the long time series of NDVI datasets are a very valuable data source supporting the study on the long term vegetation dynamics. Since 1980, a series of NOAA satellites have been launched successfully, which have already supplied more than 20 years NOAA/AVHRR satellites data. In this paper, we selected Ningxia Hui autonomic region of China as the case study area and used 20 years pathfinder AVHRR NDVI data to carry out the case study on the vegetation dynamics in order to further understand the phenomena of 20 years vegetation

  15. Regional assessment of trends in vegetation change dynamics using principal component analysis

    NASA Astrophysics Data System (ADS)

    Osunmadewa, B. A.; Csaplovics, E.; R. A., Majdaldin; Adeofun, C. O.; Aralova, D.

    2016-10-01

    Vegetation forms the basis for the existence of animal and human. Due to changes in climate and human perturbation, most of the natural vegetation of the world has undergone some form of transformation both in composition and structure. Increased anthropogenic activities over the last decades had pose serious threat on the natural vegetation in Nigeria, many vegetated areas are either transformed to other land use such as deforestation for agricultural purpose or completely lost due to indiscriminate removal of trees for charcoal, fuelwood and timber production. This study therefore aims at examining the rate of change in vegetation cover, the degree of change and the application of Principal Component Analysis (PCA) in the dry sub-humid region of Nigeria using Normalized Difference Vegetation Index (NDVI) data spanning from 1983-2011. The method used for the analysis is the T-mode orientation approach also known as standardized PCA, while trends are examined using ordinary least square, median trend (Theil-Sen) and monotonic trend. The result of the trend analysis shows both positive and negative trend in vegetation change dynamics over the 29 years period examined. Five components were used for the Principal Component Analysis. The results of the first component explains about 98 % of the total variance of the vegetation (NDVI) while components 2-5 have lower variance percentage (< 1%). Two ancillary land use land cover data of 2000 and 2009 from European Space Agency (ESA) were used to further explain changes observed in the Normalized Difference Vegetation Index. The result of the land use data shows changes in land use pattern which can be attributed to anthropogenic activities such as cutting of trees for charcoal production, fuelwood and agricultural practices. The result of this study shows the ability of remote sensing data for monitoring vegetation change in the dry-sub humid region of Nigeria.

  16. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics

    NASA Astrophysics Data System (ADS)

    Martínez-Vilalta, Jordi; Lloret, Francisco

    2016-09-01

    Ongoing climate change is modifying climatic conditions worldwide, with a trend towards drier conditions in most regions. Vegetation will respond to these changes, eventually adjusting to the new climate. It is unclear, however, how close different ecosystems are to climate-related tipping points and, thus, how dramatic these vegetation changes will be in the short- to mid-term, given the existence of strong stabilizing processes. Here, we review the published evidence for recent drought-induced vegetation shifts worldwide, addressing the following questions: (i) what are the necessary conditions for vegetation shifts to occur? (ii) How much evidence of drought-induced vegetation shifts do we have at present and where are they occurring? (iii) What are the main processes that favor/oppose the occurrence of shifts at different ecological scales? (iv) What are the complications in detecting and attributing drought-induced vegetation shifts? (v) What ecological factors can interact with drought to promote shifts or stability? We propose a demographic framework to classify the likely outcome of instances of drought-induced mortality, based upon the survival of adults of potential replacement species and the regeneration of both formerly dominant affected species and potential replacement species. Out of 35 selected case studies only eight were clearly consistent with the occurrence of a vegetation shift (species or biome shift), whereas three corresponded to self-replacements in which the affected, formerly dominant species was able to regenerate after suffering drought-induced mortality. The other 24 cases were classified as uncertain, either due to lack of information or, more commonly, because the initially affected and potential replacement species all showed similar levels of regeneration after the mortality event. Overall, potential vegetation transitions were consistent with more drought-resistant species replacing less resistant ones. However, almost half (44

  17. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  18. Vegetation dynamics and plant CO2 responses as positive feedbacks in a greenhouse world

    NASA Astrophysics Data System (ADS)

    O'ishi, Ryouta; Abe-Ouchi, Ayako; Prentice, I. Colin; Sitch, Stephen

    2009-06-01

    An atmosphere-ocean-vegetation coupled model is used to quantify the biogeophysical feedback that emerges as vegetation adjusts dynamically to a quadrupling of atmospheric CO2. This feedback amplifies global warming by 13%. About half of it is due to climatically induced expansion of boreal forest into tundra, reinforced by reductions in snow and sea ice cover. The other half represents a global climatic effect of increased vegetative cover (an indirect consequence of plant physiological responses to CO2) in the semi-arid subtropics. Enhanced absorption of shortwave radiation in these regions produces a net surface warming, which the atmosphere communicates poleward. The greatest vegetation-induced warming is co-located with large, vulnerable carbon stores in the north. These lose carbon, so that in the long term, the biospheric response to CO2 and climate change becomes dominated by positive feedbacks that overwhelm the effect of CO2 fertilization on terrestrial carbon stocks.

  19. Modelling Vegetation Cover Dynamics of the Niger Floodplain in Mali, Westafrica, Using Multitemporal MERIS Full Resolution and TERRA -ASTER Data

    NASA Astrophysics Data System (ADS)

    Seiler, Ralf

    well as seasonal distribution of the annual rainfall in the catchment areas and the resulting water supply contributed by the river system. Due to the relatively good availability of (surface) water, the Niger Inland Ecosystem serves as stop-over for many migrating birds and other wildlife species as well as an eonomic base for farmers and pastoral people. As a consequence, the entire Niger Inland Delta has been declared as protected RAMSAR site in 2004. Interaction among pre-flood, flood and post-flood conditions strongly affect the patterns of landcover in and around the delta as vegetation cover is strongly correlated with the availability of surface water. The Inland Delta is dominantly covered by (irrigated) fields or grasslands during flood and post-flood periods (October to January), while most of the photosynthetically active vegetation withers during the rest of the year. This yields in highly vibrant vegetation cover, although the vegetation cover density remains low even during flood period for most of the Inland Delta. This study analyses the intra-annual dynamics as well as changes in vegetation cover between individual years by interpreting 17 MERIS full resolution data over the period from Aug. 2002 to June 2005. MERIS sensor provides measurements from 15 spectral bands within the VIS and NIR part of the EMS with 300 m spatial resolution. Thus allowing for analyses at a regional scale level with high sensitivity for the amount of green vegetation. Short time dynamics of vegetation are related to changes in vegetation cover density. These changes were modelled with Vegetation Indices (VI) as parameter. To overcome well known problems related with NDVIs dependence of illumination and viewing angle, background signal (soil brightness) and changes in humidity, the MGVI was used as indix to derive more sophisticated biophysical information in addition to the classical NDVI. Soil types influence the remotely sensed signal significantly due to the overall

  20. Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland

    NASA Astrophysics Data System (ADS)

    Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.

    2015-12-01

    Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.

  1. Next generation dynamic global vegetation models: learning from community ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Scheiter, S.; Higgins, S.; Langan, L.

    2013-12-01

    Dynamic global vegetation models are a powerful tool to project past, current and future vegetation patterns and the associated biogeochemical cycles. However, most models are limited by their representation of vegetation by using static and pre-defined plant functional types and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve dynamic vegetation models. We present a trait- and individual-based dynamic vegetation model, the aDGVM2, that allows individual plants to adopt a unique combination of trait values. These traits define how individual plants grow, compete and reproduce under the given biotic and abiotic conditions. A genetic optimization algorithm is used to simulate trait inheritance and reproductive isolation between individuals. These model properties allow the assembly of plant communities that are adapted to biotic and abiotic conditions. We show (1) that the aDGVM2 can simulate coarse vegetation patterns in Africa, (2) that changes in the environmental conditions and disturbances strongly influence trait diversity and the assembled plant communities by influencing traits such as leaf phenology and carbon allocation patterns of individual plants and (3) that communities do not necessarily return to the initial state when environmental conditions return to the initial state. The aDGVM2 deals with functional diversity and competition fundamentally differently from current models and allows novel insights as to how vegetation may respond to climate change. We believe that the aDGVM2 approach could foster collaborations between research communities that focus on functional plant ecology, plant competition, plant physiology and Earth system science.

  2. Multimodel ensemble simulations of present and future climates over West Africa: Impacts of vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Erfanian, Amir; Wang, Guiling; Yu, Miao; Anyah, Richard

    2016-09-01

    In this study, we take an ensemble modeling approach using the regional climate model RegCM4.3.4-CLM-CN-DV (RCM) to study the impact of including vegetation dynamics on model performance in simulating present-day climate and on future climate projections over West Africa. The ensemble consists of four global climate models (GCMs) as lateral boundary conditions for the RCM, and simulations with both static and dynamic vegetation are conducted. The results demonstrate substantial sensitivity of the simulated precipitation, evapotranspiration, and soil moisture to vegetation representation. Although including dynamic vegetation in the model eliminates potential inconsistencies between surface climate and the bioclimatic requirements of the prescribed vegetation, it enhances model biases causing climate drift. For present-day climate, the ensemble average generally outperforms individual members due to cancelation of model biases. For future changes, although the original GCMs project contradicting future rainfall trends over West Africa, the RCMs-produced trends are generally consistent. The multimodel ensemble projects significant decreases of rainfall over a major portion of West Africa and significant increases over eastern Sahel and East Africa. Projected future changes of evapotranspiration and soil moisture are consistent with those of precipitation, with significant decreases (increases) for western (eastern) Sahel. Accounting for vegetation-climate interactions has localized but significant impacts on projected future changes of precipitation, with a wet signal over a belt of projected increase of woody vegetation cover; the impact on the projected future changes of evapotranspiration and soil moisture over west and central Africa is much more profound.

  3. Derivation of soil moisture retrieval uncertainties associated to the simplification of the dynamic vegetation signal.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Dorigo, Wouter; de Jeu, Richard; Hahn, Sebastian; Salinas, Jose Luis; Wagner, Wolfgang

    2014-05-01

    inter-annually dynamic vegetation correction. The VOD is like the slope and curvature an indicator of vegetation water content. This new soil moisture product based on VOD is then also compared to modeled soil moisture from ERA-Interim. Results show that in areas of high inter-annual variability, like the Sahel, the TU-Wien vegetation correction is suboptimal and decreases the quality of the TU-Wien soil moisture product when compared to ERA-Interim. Spearman R with ERA-Interim soil moisture can decrease with as much as 0.4 after applying the vegetation correction. Using the VOD in these regions increases the quality of the TU-Wien soil moisture product. This study demonstrates that a fixed seasonal vegetation correction is not able to account for high inter-annual vegetation variability and leads to an inaccurate soil moisture signal, emphasizing the need for a dynamic vegetation correction.

  4. Interactions between bar dynamics and herbaceous vegetation in gravel bed rivers: numerical simulations using BASEMENT

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Tettamanti, Stefano; Bertoldi, Walter; Toffolon, Marco; Vetsch, David; Francalanci, Simona

    2014-05-01

    A new 2D morphodynamic model for gravel bed rivers have been used to investigate the interaction between alternate bar dynamics and herbaceous vegetation. In particular, bed topography evolution has been coupled with the growth of vegetation, included as a function of the access to ground water. Numerical simulations were performed using the code BASEMENT (Vetsch et al., 2013), with the addition of a new submodel, dealing with the numerical description of the vegetation. The vegetation was allowed to grow during the dry season on exposed areas, and the vertical distribution of peak biomass was modeled as a function of the bed elevation, using a simple analytical formulation, following Marani et al. (2013). Flow resistance was divided into a component exerted by the bed and a component exerted by vegetation (Crosato and Saleh, 2010; Li and Millar, 2011); in this way we reproduced both the decrease in bed shear stress, reducing the sediment transport capacity of the flow within the plants, and the increase in hydraulic resistance, reducing flow velocity. The model was applied to a hypothetical case study, with grain size, longitudinal slope, and hydrological regime similar to that of the Magra River (Italy). A straight river reach, 125 m wide and 20 km long was simulated. Starting from an initially flat configuration, the river developed its own bar morphology, under steady formative conditions. After reaching a dynamic equilibrium, we allowed the vegetation to grow and interact with the morphodynamic evolution, reproducing a sequence of floods and growing seasons at low flow. We assumed that vegetation can be uprooted only if the bed shear stress exceeds a fixed threshold. Different scenarios were examined, varying the effect of vegetation in terms of increased resistance and threshold for uprooting (i.e. added sediment cohesion). Preliminary results confirmed that the herbaceous vegetation has a stabilizing effect on river morphology. As the density and strength of

  5. Vegetation Cover in a Warmer World Simulated using a Dynamic Global Vegetation Model for the mid Pliocene

    NASA Astrophysics Data System (ADS)

    Haywood, A. M.; Valdes, P. J.; Sellwood, B. W.

    2005-12-01

    In this study we employ the TRIFFID Dynamic Global Vegetation Model (DGVM) and the HadAM3 GCM to investigate vegetation distributions and climate-vegetation feedbacks during the mid Pliocene, and examine the implications of these results for the origins of hominid bipedalism. The TRIFFID model outputs broadly support extant palaeoenvironmental reconstructions for the mid Pliocene provided by the PRISM Group (Pliocene Research Interpretations and Synoptic Mapping). TRIFFID simulates a significant increase in forest cover, composed of Needle leaf trees in the higher latitudes of the Northern Hemisphere and Broad leaf trees in other regions. Needle leaf trees extend from the Arctic Coast into the northern mid latitudes. The fractional coverage of bare soil declines in North Africa, the Arabian Peninsula, Australia and southern South America which is consistent with PRISM's assertion of a reduced geographical coverage of arid deserts. A significant increase in the fractional coverage of both Broad leaf trees in Africa and South America is not indicative of a major expansion in the tropical rainforests. Rather, it represents an expansion of general forest and woodland type habitats in these regions. The principal impact of using a DGVM on the GCM predicted climatology is to reduce minimum and maximum temperature extremes, thus reducing the seasonality of temperature over wide regions. The expansion in Broad leaf trees in Africa is not compatible with the `savannah hypothesis' for the evolution of hominid bipedalism. Rather the results lend credence to an alternative hypothesis which suggests that bipedalism evolved in wooded to forested ecosystems and was, for several million years, linked to arborealism.

  6. Hydrocarbon and fatty acid composition of cheese as affected by the pasture vegetation type.

    PubMed

    Povolo, Milena; Pelizzola, Valeria; Lombardi, Giampiero; Tava, Aldo; Contarini, Giovanna

    2012-01-11

    The determination of the geographical origin of dairy products is an ongoing issue. In this paper the effects of botanical diversity of two pastures on the hydrocarbon and fatty acid composition of cheese fat were studied, over 2 years of experimentation. Two areas in the Italian southwestern Alpine region, dominated by Trifolium alpinum (T) and Festuca nigrescens (F) vegetation, respectively, were chosen, and milk obtained from cows grazing on these pastures was used to produce a semihard traditional cheese. Cheese samples showed a significantly different composition of most linear hydrocarbons, odd-chain (C15, C17, and C17:1) and unsaturated (trans-11,cis-15-C18:2, C18:3, C20:4n-6, C20:4n-3, and 20:5n-3) fatty acids, according to pasture type. The ratio between C(29) and C(27) linear hydrocarbons, unlike the absolute content of the single molecules, showed a good discriminating ability between the two pastures and was little affected by the natural variability due to the climatic and environmental factors.

  7. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  8. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  9. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  10. Deltas as Ecomorphodynamic Systems: Effects of Vegetation Gradients on Sediment Trapping and Channel Dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Goggin, H.

    2014-12-01

    Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important

  11. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  12. Assessing environmental drivers of vegetation greenness by integrating multiple earth observation data in the LPJmL dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Carvalhais, Nuno; Schaphoff, Sibyll; von Bloh, Werner; Thurner, Martin; Thonicke, Kirsten

    2014-05-01

    Recently produced satellite datasets of vegetation greenness demonstrate a widespread greening of the earth in the last three decades. These positive trends in vegetation greenness are related to changes in leaf area, vegetation cover and photosynthetic activity. Climatic changes, CO2 fertilization, disturbances and other land cover changes are potential drivers of these greening trends. Nevertheless, different satellite datasets show different magnitudes and trends in vegetation greenness. This fact raises the question about the reliability of these datasets. On the other hand, global vegetation models can be potentially used to assess the effects of environmental drivers on vegetation greenness and thus to explore the environmental reliability of these datasets. Unfortunately, current vegetation models have several weaknesses in reproducing observed temporal dynamics in vegetation greenness. Our aim is to integrate multiple earth observation data sets in a dynamic global vegetation model in order to 1) improve the model's capability to reproduce observed dynamics and spatial patterns of vegetation greenness and 2) to assess the spatial and temporal importance of environmental drivers for the seasonal to decadal variability of vegetation greenness. For this purpose, we developed a data integration system for the LPJmL dynamic global vegetation model (LPJmL-DIS). We implemented a new phenology scheme in LPJmL to better represent observed temporal dynamics of FAPAR (fraction of absorbed photosynthetic active radiation). Model parameters were globally optimized using a genetic optimization algorithm. The model optimization was performed globally against 30 year FAPAR time series (GIMMS3g dataset), against 10 year albedo time series (MODIS) and global patterns of gross primary production as up-scaled from FLUXNET eddy covariance measurements. Additionally, we directly prescribed satellite observations of land and tree cover in LPJmL to better represent global

  13. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  14. Influence of vegetation dynamic modeling on the allocation of green and blue waters

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, Guiomar; Francés, Félix

    2015-04-01

    The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a

  15. Brief Report: Impaired Differentiation of Vegetative/Affective and Intentional Nonverbal Vocalizations in a Subject with Asperger Syndrome (AS)

    ERIC Educational Resources Information Center

    Dietrich, Susanne; Hertrich, Ingo; Riedel, Andreas; Ackermann, Hermann

    2012-01-01

    The Asperger syndrome (AS) includes impaired recognition of other people's mental states. Since language-based diagnostic procedures may be confounded by cognitive-linguistic compensation strategies, nonverbal test materials were created, including human affective and vegetative sounds. Depending on video context, each sound could be interpreted…

  16. A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS

    EPA Science Inventory

    We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...

  17. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  18. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  19. Abrupt or not abrupt - biodiversity affects climate-vegetation interaction at the end of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Bathiany, Sebastian; Brovkin, Victor; Kleinen, Thomas

    2014-05-01

    Palaeo-climate and ecosystem data derived from the sediment record from Lake Yoa (Ounianga Kebir, North-East Tchad) have been interpreted as support for a weak interaction between climate and vegetation without abrupt changes in precipitation climate and vegetation coverage over the last 6000 years. However, interpretation of these data has neglected potential effects of plant diversity on the stability of the climate - vegetation system. Here, we use a conceptual model that represents plant diversity in terms of moisture requirement; some plant types are sensitive to changes in precipitation thereby leading to an unstable system with the possibility of abrupt changes, while other plant types are more resilient with gradual system changes. We demonstrate that plant diversity tends to attenuate the instability of the interaction between climate and sensitive plant types, while it reduces the stability of the interaction between climate and less sensitive plant types. Hence, despite large sensitivities of individual plant types to precipitation, a gradual decline in precipitation and mean vegetation cover can occur. The present study offers a new interpretation for reconstructed shifts in vegetation and climate in northern Africa at the end of the African Humid Period. It focusses on the ecosystems in semi-arid climate, but the principle that plant diversity can affect the stability of climate-vegetation interaction may generally apply.

  20. Implications of introducing realistic fire response traits in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Kelley, D.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    Bark thickness is a key trait protecting woody plants against fire damage, while the ability to resprout is a trait that confers competitive advantage over non-resprouting individuals in fire-prone landscapes. Neither trait is well represented in fire-enabled dynamic global vegetation models (DGVMs). Here we describe a version of the Land Processes and eXchanges (LPX-Mv1) DGVM that incorporates both of these traits in a realistic way. From a synthesis of a large number of field studies, we show there is considerable innate variability in bark thickness between species within a plant-functional type (PFT). Furthermore, bark thickness is an adaptive trait at ecosystem level, increasing with fire frequency. We use the data to specify the range of bark thicknesses characteristic of each model PFT. We allow this distribution to change dynamically: thinner-barked trees are killed preferentially by fire, shifting the distribution of bark thicknesses represented in a model grid cell. We use the PFT-specific bark-thickness probability range for saplings during re-establishment. Since it is rare to destroy all trees in a grid cell, this treatment results in average bark thickness increasing with fire frequency and intensity. Resprouting is a prominent adaptation of temperate and tropical trees in fire-prone areas. The ability to resprout from above-ground tissue (apical or epicormic resprouting) results in the fastest recovery of total biomass after disturbance; resprouting from basal or below-ground meristems results in slower recovery, while non-resprouting species must regenerate from seed and therefore take the longest time to recover. Our analyses show that resprouting species have thicker bark than non-resprouting species. Investment in resprouting is accompanied by reduced efficacy of regeneration from seed. We introduce resprouting PFTs in LPX-Mv1 by specifying an appropriate range of bark thickness, allowing resprouters to survive fire and regenerate vegetatively in

  1. Assessment of Climate Driven Dynamics of Active Layer, Hydrological and Vegetation Status at the Qinghai-Tibet Plateau Using Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2014-12-01

    Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.

  2. Studying the NDVI dynamics features for vegetation monitoring method development in the south of Central Siberia

    NASA Astrophysics Data System (ADS)

    Pugacheva, Irina

    Monitoring of vegetation state can be based on studying their dynamics features. Effective methods of satellite data interpretation using spectral feature distinctions should be applied for this purpose. Studying the time series of Normalized Difference Vegetation Index (NDVI) during growth period is one of such approaches. The analysis of NDVI temporal profile shape allows to identify vegetation objects on satellite image. The NDVI curve transformation regularities during growth period are studied in the process of study carried out. Growth rate in specific phenological phases (growth of vegetative organs; maturation and fruiting) and extreme NDVI values during total growth period are detected. Growth rate is calculated as a NDVI curve slope. The NDVI dynamics of different vegetation types (agricultural crops - wheat, oats, buckwheat; abandoned fields of different age, meadow steppe, stony steppe, feather-grass steppe, flood meadow etc.), located in the south of Central Siberia (Krasnoyarsk krai, Khakasia), has been derived and analyzed. Results of this study are as the basis for developed software, which produces the automatic identification of canopy using Terra Modis satellite measurement data.

  3. Alpine Vegetation Ecotone Dynamics in Gangotri Catchment Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Panigrahy, S.; Parihar, J. S.

    2011-09-01

    Analysis of the satellite imagery reveals two different perspectives of the vegetation ecotone dynamics in Gangotri catchment. On one hand, there is evidence of upward shift in the alpine tree and vegetation ecotone over three decades. On the other hand, there has been densification happening at the past treeline. The time series fAPAR data of two decades from NOAA-AVHRR confirms the greening trend in the area. The density of trees in Chirbasa has gone up whereas in Bhojbasa there is no significant change in NDVI but the number of groves has increased. Near Gaumukh the vegetal activity has not shown any significant change. We found that the treeline extracted from satellite imagery has moved up about 327±80m and other vegetation line has moved up about 401±77m in three decades. The vertical rate of treeline shift is found to be 11m/yr with reference to 1976 treeline; however, this can be 5m/yr if past toposheet records (1924 - 45) are considered as reliable reference. However, the future IPCC scenario based bioclimatic fundamental niche modelling of the Betula utilis (a surrogate to alpine treeline) suggests that treeline could be moving upward with an average rate of 3m/yr. This study not only confirms that there is an upward shift of vegetation in the alpine zone of Himalayas, but also indicate that old vegetation ecotones have grown denser

  4. Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.

    PubMed

    Tran, Long Duc; Hino, Hiromu; Quach, Helen; Lim, Shimin; Shindo, Asako; Mimori-Kiyosue, Yuko; Mione, Marina; Ueno, Naoto; Winkler, Christoph; Hibi, Masahiko; Sampath, Karuna

    2012-10-01

    In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and parallel arrays, which are directionally oriented and detected exclusively at the vegetal cortex before the first cell division. Perpendicular bundles emanate from the vegetal cortex, extend towards the blastoderm, and orient along the animal-vegetal axis. Parallel arrays become asymmetric on the vegetal cortex, and orient towards dorsal. We show that the orientation of microtubules at 20 minutes post-fertilization can predict where the embryonic dorsal structures in zebrafish will form. Furthermore, we find that parallel microtubule arrays colocalize with wnt8a RNA, the candidate maternal dorsal factor. Vegetal cytoplasmic granules are displaced with parallel arrays by ~20°, providing in vivo evidence of a cortical rotation-like process in zebrafish. Cortical displacement requires parallel microtubule arrays, and probably contributes to asymmetric transport of maternal determinants. Formation of parallel arrays depends on Ca(2+) signaling. Thus, microtubule polarity and organization predicts the zebrafish embryonic axis. In addition, our results suggest that cortical rotation-like processes might be more common in early development than previously thought.

  5. Effect of climate fluctuations on long-term vegetation dynamics in Carolina bay wetlands

    USGS Publications Warehouse

    Stroh, C.L.; De Steven, D.; Guntenspergen, G.R.

    2008-01-01

    Carolina bays and similar depression wetlands of the U.S. Southeastern Coastal Plain have hydrologic regimes that are driven primarily by rainfall. Therefore, climate fluctuations such as drought cycles have the potential to shape long-term vegetation dynamics. Models suggest two potential long-term responses to hydrologic fluctuations, either cyclic change maintaining open emergent vegetation, or directional succession toward forest vegetation. In seven Carolina bay wetlands on the Savannah River Site, South Carolina, we assessed hydrologic variation and vegetation response over a 15-year period spanning two drought and reinundation cycles. Changes in pond stage (water depth) were monitored bi-weekly to monthly each year from 1989?2003. Vegetation composition was sampled in three years (1989, 1993, and 2003) and analyzed in relation to changes in hydrologic conditions. Multi-year droughts occurred prior to the 1989 and 2003 sampling years, whereas 1993 coincided with a wet period. Wetland plant species generally maintained dominance after both wet and dry conditions, but the abundances of different plant growth forms and species indicator categories shifted over the 15-year period. Decreased hydroperiods and water depths during droughts led to increased cover of grass, upland, and woody species, particularly at the shallower wetland margins. Conversely, reinundation and longer hydroperiods resulted in expansion of aquatic and emergent species and reduced the cover of flood-intolerant woody and upland species. These semi-permanent Upper Coastal Plain bays generally exhibited cyclic vegetation dynamics in response to climate fluctuation, with wet periods favoring dominance by herbaceous species. Large basin morphology and deep ponding, paired with surrounding upland forest dominated by flood-intolerant pines, were features contributing to persistence of herbaceous vegetation. Drought cycles may promote directional succession to forest in bays that are smaller

  6. Modeling Vegetation Dynamics in Response to Hydrological Changes in a Small Urban Tropical Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Chui, T. M.; Palanisamy, B.; Mohanadas, H.

    2011-12-01

    Wetlands worldwide face drastic degradation from human-induced changes. A small freshwater wetland located within the dense urbanized island state of Singapore---the Nee Soon Wetland---is no exception. It is the only significant locality in Singapore of peat swamp forest and is home to a wide range of rare and endangered floral and faunal species. Unfortunately, changes in downstream land use and surrounding reservoirs' operations may pose threats to the coupled hydrological and vegetation systems. This study develops and applies coupled hydrological-vegetation models to understand the dynamic relationships between hydrology and vegetation systems, and simulates vegetation responses to hydrological changes in Nee Soon. The models combine a hydrological component with a vegetation component. The hydrological component accounts for both saturated and unsaturated flows, and incorporates evapotranspiration, rainfall infiltration and recharge from streams and reservoirs. The vegetation component is described by Lokta-Volterra equations that are tailored for plant growth, to simulate the vegetation dynamics of up to three species that thrive in different flooding conditions. Important findings include: (1) groundwater levels within Nee Soon are not highly sensitive to the operating levels of the surrounding reservoirs. However, (2) downstream drainage results in a localized zone of influence with significant adverse impacts, especially on the less flood-tolerant species. In addition, (3) the severely impacted less flood-tolerant species is unable to recover even when previous hydrological conditions are restored, unless the downstream drainage duration is reduced, or the plant characteristics such as maximum assimilation rates or competitiveness are increased. Finally, (4) hydrological conditions and species competitiveness supersede any other plant growth characteristics in determining the stable coexistence of different species. The developed models and modeling

  7. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  8. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed Central

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  9. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues1[OPEN

    PubMed Central

    Yang, Yang; Munz, Jacob; Cass, Cynthia; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Sedbrook, John; Benning, Christoph

    2015-01-01

    Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species. PMID:26419778

  10. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues.

    PubMed

    Yang, Yang; Munz, Jacob; Cass, Cynthia; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Sedbrook, John; Benning, Christoph

    2015-11-01

    Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species.

  11. 30-year Dynamics of Terrestrial Vegetation Activity and the Relationship with Climatologies

    NASA Astrophysics Data System (ADS)

    de Jong, R.; Schaepman, M. E.; Furrer, R.; de Bruin, S.; Verburg, P. H.

    2013-12-01

    The climate governs the seasonal activity of terrestrial vegetation while humankind influences it. The relative role of these drivers in changing vegetation activity is crucial information for accurate modeling of vegetation and climate dynamics and for adaptation and mitigation strategies. Disentangling the two, however, is an ongoing scientific challenge, because of limited data availability, mainly regarding non-climatic drivers, and complex biosphere-atmosphere feedback mechanisms. Here, we contribute to this quest by modeling the spatial relationship between climatologies and changes in global vegetation activity (de Jong et al., 2013a). Vegetation activity is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature, including the detection of shifts (de Jong et al., 2013b), which may be related to climate (e.g. Zhao & Running, 2010). However, little remains known about the exact processes underlying vegetation change at large spatial scales. Depending on eco-region, three climatologies potentially constrain plant growth (Churkina and Running, 1998). In the humid mid-latitudes, for example, temperature is the largest influencing factor; in (semi) arid regions it is the availability of water and in the tropics incident solar radiation. Based on this logic, we developed a mixed-effect model to relate changes in these climatologies to changes in vegetation activity and to quantify the spatial process underlying the other drivers, including human land use. Little over 50% of the spatial variation in vegetation change could be attributed to changes in climatologies; conspicuously, many of the global ';greening' trends and the ';browning' hotspots in Argentina and Australia. Browning hotspots in the non-climatic component were especially located in subequatorial Africa (e.g. parts of Zimbabwe and Tanzania), where human drivers may be

  12. Network Diversity and Affect Dynamics: The Role of Personality Traits

    PubMed Central

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals’ subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states–e.g. an increase in the positive affect state or a decrease in the negative affect state–for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being. PMID:27035904

  13. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  14. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  15. Analysis of regional-scale vegetation dynamics of Mexico using stratified AVHRR NDVI data. [Normalized Difference Vegetaion Index

    NASA Technical Reports Server (NTRS)

    Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh

    1989-01-01

    Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.

  16. Land use and disturbance interactions in dynamic arid systems: Multiscale remote sensing approaches for monitoring and analyzing riparian vegetation change

    NASA Astrophysics Data System (ADS)

    Villarreal, Miguel L.

    Riparian systems are comprised of interacting aquatic and terrestrial elements that contribute distinctively to the natural capital of arid landscapes. Riparian vegetation is a major component of riparian systems, providing the ecosystem services required to support watershed health. The spatial and temporal distributions of riparian vegetation are influenced by hydrologic and disturbance processes operating at scales from local to regional. I believe both these processes are well suited to monitoring using synoptic and multitemporal approaches. The research in this dissertation is presented as 3 related studies. The first study focused on historical riparian dynamics related to natural disturbance and land use. Using current and historical riparian vegetation maps, we examined vegetation change within catchments of varying land use intensity. Results suggest that land use activities and wastewater subsidy affect the rate of development and diversity of riparian community types. The second study used moderate resolution satellite imagery to monitor changes in riparian structure and pattern within a land cover change framework. We classified Landsat Thematic Mapper satellite imagery of the Upper Santa Cruz River watershed using Classification and Regression Tree (CART) models. We tested the ability of our models to capture change at landscape, floodplain, and catchment scales, centering our change detection efforts on a riparian tree die-off episode and found they can be used to describe both general landscape dynamics and disturbance-related riparian change. The third study examined historical and environmental factors contributing to spatial patterns of vegetation following two riparian tree die-offs. We used high resolution aerial imagery to map locations of individual live and dead trees and collected a suite of environmental variables and historical variables related directly and indirectly to land use and disturbance history. We tested for differences between

  17. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    PubMed

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  18. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Rezende, L. F. C.; Arenque, B. C.; Aidar, S. T.; Moura, M. S. B.; Von Randow, C.; Tourigny, E.; Menezes, R. S. C.; Ometto, J. P. H. B.

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  19. Dynamic microwave-assisted extraction combined with continuous-flow microextraction for determination of pesticides in vegetables.

    PubMed

    Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2016-02-01

    A simple, rapid, solventless and cost-effective dynamic microwave-assisted extraction (DMAE) combined with continuous-flow microextraction (CFME) system was firstly assembled and validated for extraction of eight organophosphorus pesticides in vegetables. The method combines the advantages of DMAE and CFME, and extends the application of the single drop microextraction to complex solid samples. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, analytes were first extracted from the vegetables using 3% NaCl solution as extraction solvent, then concentrated into microextraction solvent. After extraction, the microextraction solvent containing the enriched analyte was directly analyzed by GC-MS without any filtration or clean-up process. Several parameters affecting the extraction efficiency were investigated and optimized. Real vegetable samples were analyzed, satisfactory recoveries were obtained in the range of 80.7-106.7%, and relative standard deviations were lower than 8.7%.

  20. Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach.

    PubMed

    Notaro, Michael; Mauss, Adrien; Williams, John W

    2012-06-01

    This study focuses on potential impacts of 21st century climate change on vegetation in the Southwest United States, based on debiased and interpolated climate projections from 17 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Among these models a warming trend is universal, but projected changes in precipitation vary in sign and magnitude. Two independent methods are applied: a dynamic global vegetation model to assess changes in plant functional types and bioclimatic envelope modeling to assess changes in individual tree and shrub species and biodiversity. The former approach investigates broad responses of plant functional types to climate change, while considering competition, disturbances, and carbon fertilization, while the latter approach focuses on the response of individual plant species, and net biodiversity, to climate change. The dynamic model simulates a region-wide reduction in vegetation cover during the 21st century, with a partial replacement of evergreen trees with grasses in the mountains of Colorado and Utah, except at the highest elevations, where tree cover increases. Across southern Arizona, central New Mexico, and eastern Colorado, grass cover declines, in some cases abruptly. Due to the prevalent warming trend among all 17 climate models, vegetation cover declines in the 21st century, with the greatest vegetation losses associated with models that project a drying trend. The inclusion of the carbon fertilization effect largely ameliorates the projected vegetation loss. Based on bioclimatic envelope modeling for the 21st century, the number of tree and shrub species that are expected to experience robust declines in range likely outweighs the number of species that are expected to expand in range. Dramatic shifts in plant species richness are projected, with declines in the high-elevation evergreen forests, increases in the eastern New Mexico prairies, and a northward shift of the

  1. On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Caylor, Kelly; Okin, Gregory S.; Scanlon, Todd M.

    2007-12-01

    Soil moisture is the environmental variable synthesizing the effect of climate, soil, and vegetation on the dynamics of water-limited ecosystems. Unlike abiotic factors (e.g., soil texture and rainfall regime), the control exerted by vegetation composition and structure on soil moisture variability remains poorly understood. A number of field studies in dryland landscapes have found higher soil water contents in vegetated soil patches than in adjacent bare soil, providing a convincing explanation for the observed preferential establishment of grasses and seedlings beneath tree canopies. Thus, because water is the limiting factor for vegetation in arid and semiarid ecosystems, a positive feedback could exist between soil moisture and woody vegetation dynamics. It is still unclear how the strength of such a feedback would change under different long-term rainfall regimes. To this end, we report some field observations from savanna ecosystems located along the south-north rainfall gradient in the Kalahari, where the presence of relatively uniform sandy soils limits the effects of covarying factors. The data available from our field study suggest that the contrast between the soil moisture in the canopy and intercanopy space increases (with wetter soils under the canopy) with increasing levels of aridity. We hypothesize that this contrast may lead to a positive feedback and explore the implications of such a feedback in a minimalistic model. We found that when the feedback is relatively strong, the system may exhibit two stable states corresponding to conditions with and without tree canopy cover. In this case, even small changes in environmental variables may lead to rapid and largely irreversible shifts to a state with no tree canopy cover. Our data suggest that the tendency of the system to exhibit two (alternative) stable states becomes stronger in the more arid regions. Thus, at the desert margins, vegetation is more likely to be prone to discontinuous and abrupt

  2. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the

  3. Vegetation and soil dynamics under climatic to anthropogenic forcing through the Holocene in Eastern France

    NASA Astrophysics Data System (ADS)

    Doyen, Elise; Vannière, Boris; Gauthier, Emilie; Bichet, Vincent; Berger, Jean-François; Arnaud, Fabien

    2010-05-01

    Small lakes with little catchment areas, and high resolution Holocene sediment infilling, offer the interest to record mainly local perturbation and to study the switch from climatic to anthropogenic forcing. Two cores were extracted from Lake Antre in the Jura Mountains (Eastern France, 798 m a.s.l) and Lake Moras located on a low-elevated plateau from the upper Rhone valley (Eastern France, 304 m a.s.l). Cores taken from the deep zone of the lakes present continuous sedimentary series from the Late-glacial (15 000 cal. BP) for Lake Moras and from the Atlantic chronozone (6000 cal. BP) for Lake Antre. Several archaeological excavations and investigations around Lakes Antre and Moras give evidence of major human occupation during Gallo-roman period, while former settlements are indicating by Pre- and Protohistoric archaeological artifacts. Multi-proxy reconstructions with high temporal resolution were undertaken: vegetation dynamics by pollen analysis, fire history by the quantification of microscopic charcoal and soil erosion by magnetic susceptibility measurements. Before the anthropogenic forcing, during the mid-Holocene environment of both lakes are constituted mainly by a dense mixed oak forest. The first palaeoecological signs of anthropogenic impact on the two sites appear to have been discontinuous and limited. They appear at the early Neolithic (ca 6000 cal .BP) for Lake Moras and during the Bronze Age (4000 to 3000 cal .BP) for Lake Antre. For the both sites, all the proxies indicate an acceleration of human impact around 3000 to 2700 cal. BP i.e. at the transition between the Bronze Age and the beginning of the Iron Age. The dense forest and the Alnus dominated vegetation on borders of lakes are affected by several clearances. The influx of micro-charcoal increases due to the use of the fire for clearing and manage settlements. The development of Poaceae and Anthropogenic Pollen Indicators (API) suggest an expansion of pastures, whereas the farming

  4. [Analysis of vegetation dynamics over Liaoning province based on remote sensing data].

    PubMed

    Wang, Li-wen; Wei, Ya-xing; Niu, Zheng

    2008-12-01

    In the present paper, the authors used normalized difference vegetation index (NDVI) data derived from NOAA AVHRR sensor to analyze spatial heterogeneity and temporal dynamics of Liaoning province during the past two decades. A set of 2 292 spatially distributed NDVI values were analyzed to investigate obvious deviations by the mean-monthly values from 1982 to 2001. Various statistical analyses including minimum, mean and maximum values, coefficient of variation (CV), standardized anomalies (Z-scores), and 36-month running mean were used for monthly NDVI values to research spatial and temporal variations in vegetation. In Liaoning province, the authors found the strong seasonal oscillations during plants growing period, the maximum value of NDVI appeared in July-August, and seasonal variation ranged from 6% to 14% of CV value. Vegetation greenness kept upward trend from 1984 to 1990, but showed downward trend from 1991 to 1998. Vegetation greenness followed an interannual oscillation period of 7-8 years. The authors also found that the variation of NDVI peak along latitude direction was 20%-25% greater in 1991-1999 than in 1982-1990 in dry season across Liaoning province. The conclusions of this paper suggest that the patterns of vegetation variability in Liaoning province were caused by enhanced aridity occurring over the last decade of the 20th century.

  5. Analysis of Decadal Vegetation Dynamics Using Multi-Scale Satellite Images

    NASA Astrophysics Data System (ADS)

    Chiang, Y.; Chen, K.

    2013-12-01

    This study aims at quantifying vegetation fractional cover (VFC) by incorporating multi-resolution satellite images, including Formosat-2(RSI), SPOT(HRV/HRG), Landsat (MSS/TM) and Terra/Aqua(MODIS), to investigate long-term and seasonal vegetation dynamics in Taiwan. We used 40-year NDVI records for derivation of VFC, with field campaigns routinely conducted to calibrate the critical NDVI threshold. Given different sensor capabilities in terms of their spatial and spectral properties, translation and infusion of NDVIs was used to assure NDVI coherence and to determine the fraction of vegetation cover at different spatio-temporal scales. Based on the proposed method, a bimodal sequence of intra-annual VFC which corresponds to the dual-cropping agriculture pattern was observed. Compared to seasonal VFC variation (78~90%), decadal VFC reveals moderate oscillations (81~86%), which were strongly linked with landuse changes and several major disturbances. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.

  6. Modelling the risk of ecosystem disruption in Europe with a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Dury, M.; Hambuckers, A.; Warnant, P.; Jacquemin, I.; Thuiller, W.; François, L.

    2012-04-01

    What will be the European ecosystem responses to future climate? With unprecedented speed and extent, the projected climate change might lead to a disruption of terrestrial plants functioning in many regions. In the framework of the EcoChange project, transient projections over the 1901-2100 period have been performed with a process-based dynamic vegetation model, CARAIB DVM (Dury et al., 2011, iForest 4: 82, 99). The vegetation model was driven by the outputs of four climate models under the SRES A1B scenario: the ARPEGE/Climate model and three regional climate models (KNMI-RACMO2, DMI-HIRHAM5 and HC-HadRM3Q0 RCMs) from the European Union project ENSEMBLES. DVMs are appropriate tools to apprehend potential climate change impacts on ecosystems and identify threatened regions over Europe. CARAIB outputs (soil moisture, runoff, net primary productivity, fire, etc.) were used to characterise the ecosystem evolution. To assess consequences on biodiversity, the evolution of 100 natural common European species (47 herbs, 12 shrubs and 41 trees) has been studied year-to-year over the 1901-2100 period. Under the combined effects of projected changes particularly in temperature and precipitations, CARAIB simulates important reductions in the annual soil water content. The species productivities vary strongly from year to year reaching during the driest years values much lower than present-day average productivities. According to CARAIB, a lot of species might go beyond their water tolerance very frequently, particularly after 2050, due to more intense summer droughts. In the northern part of Europe and in the Alps, with reduced temperature variability and positive soil water anomalies, NPP variability tends to decrease. Regions with more severe droughts might also be affected by an increase of the frequency and intensity of wildfires. With this background, the species distributions might be strongly modified at the end of the century. 15% of tree species and 30% of herb and

  7. Factors affecting the dynamic response of the seated subject.

    PubMed

    Pope, M H; Broman, H; Hansson, T

    1990-06-01

    An impact method, combined with pins placed into the spinous process at L3, has been used to establish the dynamic response of the spine of the seated subject. The resonant frequency is at 4-5 Hz, due primarily to a vertical response of the buttocks-pelvis system. A maximum attenuation at 8 Hz occurs because of a second resonance due to pelvic rotation. The attenuation is also affected by additional load and by the addition of a helmet. Neck braces have no dynamic effect.

  8. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  9. Spatio-temporal dynamics of global precipitation and terrestrial vegetation inferred from satellite and climate records

    NASA Astrophysics Data System (ADS)

    Lotsch, Alexander

    A key challenge to climate change research is understanding how different components in the Earth system influence one another. For example, it is well known that the Earth's climate system exhibits variability at a wide range of time scales. However, the effect of such variability on terrestrial ecosystems is less well understood. In this dissertation, satellite observations of vegetation activity are used in conjunction with climate records to investigate seasonal-scale interactions between the Earth's terrestrial biosphere, atmosphere, and oceans. The results from this research show that interannual variation in the ocean-atmosphere system result in significant and geographically extensive ecosystem responses. To characterize spatio-temporal patterns of biospheric activity, multi-decadal (1981--2003) global satellite observations of plant growth were used. Non-linear variance decomposition methods were employed to remove artifacts unrelated to vegetation dynamics and to identify climate-related signatures in the data. Vegetation growth in arid and semi-arid regions exhibits strong correlation with interannual fluctuations in precipitation, and responds most strongly to time-integrated precipitation anomalies. The climate mechanisms that give rise to observed patterns of precipitation-vegetation covariability are associated with perturbations in ocean-atmosphere circulations. Generally, these perturbations are caused by low frequency fluctuations in global sea surface temperatures, which are propagated to remote locations via changes in atmospheric circulation. The analysis shows that distinct patterns of coupled climate-vegetation activity are linked to well-defined circulation features and illustrates the global extent and sensitivity of ecosystems susceptible to perturbations in precipitation regimes. Observations of ecosystem dynamics derived from recent satellite data reveal unprecedented reductions in vegetation growth for large areas of the Northern

  10. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  11. Mosaic-pattern vegetation formation and dynamics driven by the water-wind crisscross erosion

    NASA Astrophysics Data System (ADS)

    Wu, Gao-Lin; Wang, Dong; Liu, Yu; Hao, Hong-Min; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-07-01

    Theoretical explanations for vegetation pattern dynamic emphasized on banded pattern-forming systems on the dynamics of the spot pattern. In this context, we explore the patch pattern forming and development in the desertification land. We hypothesized that spatial heterogeneity of microtopography and soil properties with different patch sizes would determine vegetation pattern dynamics theory. The spatial heterogeneity of microtopography and soil properties with different patch sizes were studied. Differences between the inside and outside of the canopy of soil carbon content and soil total nitrogen content were significantly increasing with patches sizes. Sampling location across vegetation patch was the main factor controlling soil properties. Soil nutrient content and saturated hydraulic conductivity were the largest, while bulk density and the coarse sand content were the lowest at the sampling location of half-way between taproot and downslope edge of the canopy. The height of the mound relative to the adjacent soil interspace between shrubs increased as patches diameter increased at the upslope of the taproot. Hydrological and aeolian processes resulted in spatial distributions of soil moisture, nutrition properties, which lead to patch migrated to downslope rather than upslope. A conceptual model was integrated hydrological and nutrient facilitation and competition effects among the plant-soil in mosaic-pattern patch formation and succession process.

  12. Monitoring dynamical vegetation processes with solar-induced chlorophyll fluorescence measurements from space (Invited)

    NASA Astrophysics Data System (ADS)

    Moreno, J. F.; Guanter, L.; Alonso, L.; Gomez-Chova, L.; Drusch, M.; Kraft, S.; Carnicero, B.; Bezy, J.

    2009-12-01

    Fluorescence is a powerful non-invasive tool to track the status, resilience, and recovery of photochemical processes and moreover provides important information on overall vegetation photosynthetic performance with implications for related carbon sequestration, allowing to measure planetary photosynthesis by means of a global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. The FLuorescence EXperiment (FLEX) is designed to observe the photosynthetic activity of the vegetation layer, by using a completely novel technique measuring the chlorophyll fluorescence signal that originates from the core of the photosynthetic machinery, i.e. the ‘breathing’ of the vegetation layer of the living planet. Conceived as a technology demonstration mission, it proposes a set of instruments for the measurement of the interrelated features of fluorescence, spectral reflectance, and canopy temperature, by using a dedicated small satellite flying in tandem with GMES Sentinel-3. This will provide a completely new possibility to quantify the photosynthetic efficiency of terrestrial ecosystems at the global scale, to improve the predictability of dynamical vegetation models on scales comprising canopies and biomes, and to provide an improved estimate of GPP for a better understanding of the global carbon cycle. It will also improve understanding of the role of vegetation in the coupled global carbon / water cycles, the global assessment of the vegetation health conditions and vegetation stress and the support the development of future crop production strategies in a changing climate. The measurement represent a challenge: the weak fluorescence signal is masked by the reflected background radiance, and accurate compensation of all perturbing effects becomes essential. Recent developments have demonstrated the feasibility of the measurements of canopy fluorescence from space. Recent model developments and data processing tools have made possible to

  13. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers

    NASA Astrophysics Data System (ADS)

    Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-09-01

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.

  14. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers

    PubMed Central

    Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-01-01

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162

  15. Environmental factors affecting efficacy of bifenthrin-treated vegetation for mosquito control.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of pesticide-treated vegetation as a barrier for control of nuisance and disease-bearing mosquitoes has become an option for mosquito management for home owners, public health and mosquito control professionals. Potted wax myrtle and azalea plants were treated with bifenthrin (0.79% AI) at ...

  16. Offer versus Serve or Serve Only: Does Service Method Affect Elementary Children's Fruit and Vegetable Consumption?

    ERIC Educational Resources Information Center

    Goggans, Margaret Harbison; Lambert, Laurel; Chang, Yunhee

    2011-01-01

    Purpose/Objectives: The purpose of this study was to determine if the use of the Offer versus Serve (OVS) provision in the National School Lunch Program would result in a significant difference in fruit and vegetable consumption by fourth and fifth grade elementary students, and in plate waste cost. Methods: Weighed and visual plate waste data…

  17. Evaluation of bulk density and vegetation as affected by military vehicle traffic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need for greater understanding of the relationship of dust emission levels to disturbances of soil and vegetation indices that occur during military vehicle activities in Department of Defense training areas. A replicated field experiment was conducted in the fall of 2010 on two soils tha...

  18. Evaluation of bulk density and vegetation as affected by military vehicle traffic at Fort Riley, Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted using military vehicles to determine the influence of repeated traffic on soil compaction and vegetative losses. These data will eventually be incorporated into models such as the Wind Erosion Prediction System (WEPS). A replicated field experiment was conducted in the fall o...

  19. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers.

    PubMed

    Blarquez, Olivier; Ali, Adam A; Girardin, Martin P; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-09-02

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.

  20. Field application of glyphosate induces molecular changes affecting vegetative growth processes in leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommended rates of glyphosate for non-cultivated areas destroy the aboveground shoots of the perennial plant leafy spurge. However, such applications cause little or no damage to underground adventitious buds (UABs), and thus the plant readily regenerates vegetatively. High concentrations of glyph...

  1. Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands

    PubMed Central

    Mograbi, Penelope J.; Knapp, David E.; Martin, Roberta E.; Main, Russell

    2015-01-01

    Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10–14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be

  2. Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands.

    PubMed

    Mograbi, Penelope J; Erasmus, Barend F N; Witkowski, E T F; Asner, Gregory P; Wessels, Konrad J; Mathieu, Renaud; Knapp, David E; Martin, Roberta E; Main, Russell

    2015-01-01

    Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha(-1) on gabbro geology sites to 27 Mg ha(-1) on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10-14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3 m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be

  3. Erosion and vegetation restoration impacts on ecosystem carbon dynamics in South China

    USGS Publications Warehouse

    Tang, X.; Liu, S.; Zhou, G.

    2010-01-01

    To quantify the consequences of erosion and vegetation restoration on ecosystem C dynamics (a key element in understanding the terrestrial C cycle), field measurements were collected since 1959 at two experimental sites set up on highly disturbed barren land in South China. One site had received vegetation restoration (the restored site) while the other received no planting and remained barren (the barren site). The Erosion-Deposition Carbon Model (EDCM) was used to simulate the ecosystem C dynamics at both sites. The on-site observations in 2007 showed that soil organic C (SOC) storage in the top 80-cm soil layer at the barren site was 50.3 ± 3.5 Mg C ha−1, half that of the restored site. The SOC and surface soil loss by erosion at the restored site from 1959 to 2007 was 3.7 Mg C ha−1 and 2.2 cm, respectively—one-third and one-eighth that of the barren site. The on-site C sequestration in SOC and vegetation at the restored site was 0.67 and 2.5 Mg C ha−1 yr−1, respectively, from 1959 to 2007, driven largely by tree growth and high atmospheric N deposition in the study area. Simulated findings suggested that higher N deposition resulted in higher on-site SOC storage in the soil profile (with SOC in the top 20-cm layer increasing more significantly), and higher on-site ecosystem C sequestration as long as N saturation was not reached. Lacking human-induced vegetation recovery, the barren site remained as barren land from 1959 to 2007 and the on-site C decrease was 0.28 Mg C ha−1 yr−1 Our study clearly indicated that vegetation restoration and burial by soil erosion provide a large potential C sink in terrestrial ecosystems.

  4. Shifts in vegetation affect organic carbon quality in a coastal marsh along the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Zhang, A. H.; Corbett, J. E.; Tfaily, M. M.; Martin, I.; Ho, L.; Sun, E.; Sevilla, L.; Vincent, S.; Newton, R.; Peteet, D. M.

    2015-12-01

    To better understand carbon storage in coastal salt marshes, samples were collected from Piermont Marsh, NY (40 ̊00' N, 73 ̊55'W) located within the Hudson River Estuary. Porewater from three different vegetation sites was analyzed to compare the quality of the dissolved organic carbon. Sites contained either native or invasive vegetation with variations in live plant root depth. Porewater was taken from 0-3m in 50cm intervals, and sites were dominated either by invasive Phragmites australis, native Eleocharis , or native mixed vegetation (Spartina patens, Scirpus, and Typha angustifolia). Sites dominated by invasive Phragmites australis were found to have lower dissolved organic carbon (DOC) concentrations, lower cDOM absorption values, and more labile organic carbon compounds. The molecular composition of the DOC was determined with Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS). Labile DOC components were defined as proteins, carbohydrates, and amino sugars while recalcitrant DOC components were defined as lipids, unsaturated hydrocarbons, lignins, tannins, and condensed hydrocarbons. For the Phragmites, Eleocharis, and mixed vegetation sites, average DOC concentrations with depth were found to be 1.71 ± 1.06, 4.64 ± 1.73, and 4.62 ± 3.5 (mM), respectively and cDOM absorption values with depth were found to be 13.22 ± 4.81, 49.42 ± 10.8, and 35.74 ± 17.49 (m-1). Additionally, DOC concentrations increased with depth in the mixed vegetation and Eleocharis sites, but remained relatively constant in the Phragmites site. The percent of labile compounds in the surface samples were found to be 19.02, 14.64, and 14.07% for the Phragmites, Eleocharis, and mixed vegetation sites, respectively. These findings suggest that sites dominated by Phragmites may have more reactive DOC substrates than sites dominated by native vegetation. These results indicate that the carbon storage in marshes invaded by Phragmites would be expected to decrease over time.

  5. Untangling the role of elevation, aspect, and vegetation type on ecohydrological dynamics along a climate gradient in the Alps

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Ivanov, V. Y.; Rimkus, S.; Caporali, E.; Burlando, P.

    2012-04-01

    Vegetation dynamics and performance are strongly influenced by environmental conditions. Specifically, light, precipitation, and air temperature exert a predominant role. These climatic variables covariate with elevation and aspect in areas of complex terrain. Quantification of specific elevation and aspect effects on vegetation productivity and mass and energy fluxes can lead to a better understating of environment-driven distribution of vegetation and parsimonious up-scaling parameterizations useful in hydrological applications. A detailed characterization of climatic differences with elevation is however a daunting task. In this study, two synthetic climate gradients, constructed using hourly meteorological data and a stochastic weather generator, AWE-GEN, are used to force a mechanistic ecohydrological model, Tethys-Chloris, and quantify energy, carbon, and water fluxes for three generic Plant Functional Types (PFTs). One gradient is representative of a dry, sheltered alpine valley (Valais), whereas the other one characterizes a wet, exposed mountain side (Bernese Oberland). Thirty year long time series of cross-correlated precipitation, air temperature, relative humidity, wind speed, solar radiation, and atmospheric pressure for elevation bands from 500 up to 3500 m a.s.l. are generated to represent the climatic differences. The incoming radiation is successively recalculated for different combinations of aspect and slope. Under these specific climatic forcing conditions, the response of deciduous and evergreen trees, and grass typical of the Alpine system is investigated. The parameterization of the ecohydrological model was tested to reproduce vegetation productivity and energy fluxes for several locations in an Alpine climate or similar conditions (Fluxnet dataset) and to correctly simulate snowpack dynamics for forested and open sites worldwide (Snowmip-2 dataset). The three PFTs evolve at different elevations and aspects for dry and wet conditions

  6. Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui

    2014-01-01

    Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.

  7. Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview.

    PubMed

    De Vries, W; Wamelink, G W W; Van Dobben, H; Kros, J; Reinds, G J; Mol-Dijkstra, J P; Smart, S M; Evans, C D; Rowe, E C; Belyazid, S; Sverdrup, H U; Van Hinsberg, A; Posch, M; Hettelingh, J-P; Spranger, T; Bobbink, R

    2010-01-01

    Field observations and experimental data of effects of nitrogen (N) deposition on plant species diversity have been used to derive empirical critical N loads for various ecosystems. The great advantage of such an approach is the inclusion of field evidence, but there are also restrictions, such as the absence of explicit criteria regarding significant effects on the vegetation, and the impossibility to predict future impacts when N deposition changes. Model approaches can account for this. In this paper, we review the possibilities of static and dynamic multispecies models in combination with dynamic soil-vegetation models to (1) predict plant species composition as a function of atmospheric N deposition and (2) calculate critical N loads in relation to a prescribed protection level of the species composition. The similarities between the models are presented, but also several important differences, including the use of different indicators for N and acidity and the prediction of individual plant species vs. plant communities. A summary of the strengths and weaknesses of the various models, including their validation status, is given. Furthermore, examples are given of critical load calculations with the model chains and their comparison with empirical critical N loads. We show that linked biogeochemistry-biodiversity models for N have potential for applications to support European policy to reduce N input, but the definition of damage thresholds for terrestrial biodiversity represents a major challenge. There is also a clear need for further testing and validation of the models against long-term monitoring or long-term experimental data sets and against large-scale survey data. This requires a focused data collection in Europe, combing vegetation descriptions with variables affecting the species diversity, such as soil acidity, nutrient status and water availability. Finally, there is a need for adaptation and upscaling of the models beyond the regions for which

  8. MODIS NDVI and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-08-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation (February-May) and increasing temperature during the growing period because of the global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  9. Co-evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines

    NASA Astrophysics Data System (ADS)

    Gran, K. B.; Michal, T.

    2014-12-01

    Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011

  10. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    NASA Astrophysics Data System (ADS)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have

  11. Does background nitrogen deposition affect the response of boreal vegetation to fertilization?

    PubMed

    Hedwall, P O; Nordin, A; Strengbom, J; Brunet, J; Olsson, B

    2013-10-01

    Forest floor vegetation is an important component of forest biodiversity, and numerous studies have shown that N input alters the vegetation. In some cases, however, the effects of experimental N addition have been small or absent. Two alternative hypotheses have been suggested: (a) competition from the tree layer confounds the response to N, or (b) N response in areas with high background deposition is limited by N saturation. Neither of these hypotheses has so far been explicitly tested. Here, we compile data on forest floor vegetation from N addition experiments, in which the forest had been clear-cut, along an N deposition gradient ranging from 4 to 16 kg ha(-1) year(-1) in Sweden. We analyzed the effects of N addition and its interaction with N deposition on common species and thereby tested the second hypothesis in an environment without the confounding effects of the tree layer. The results show that the effects of the experimental N addition are significantly influenced by background N deposition: the N addition effects are smaller in areas with high N deposition than in areas with low N deposition, despite the fact that the highest N deposition in this study can be considered moderate from an international perspective. The results are important when assessing the reliability of results from N addition experiments on forest floor vegetation in areas with moderate to high background N deposition. We conclude that the interacting effects of N addition and N deposition need to be included when assessing long-term N sensitivity of plant communities.

  12. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    PubMed

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0), high-frequency limiting static permittivity (ε ∞), average relaxation time (τ 0), and thermodynamic parameters such as free energy (∆F τ), enthalpy (∆H τ), and entropy of activation (∆S τ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  13. Carbon Cycle and Vegetation Dynamics in the GFDL-Princeton University Coupled Atmosphere-Biosphere Model

    NASA Astrophysics Data System (ADS)

    Shevliakova, E.; Pacala, S. W.; Malyshev, S.; Hurtt, G. C.; Caspersen, J. P.

    2003-12-01

    Modeling global interactions between the atmosphere, hydrosphere and biosphere continues to pose a significant challenge, because of the tight and complex coupling of flows of water, energy, greenhouse gases, and ecosystem dynamics. We developed a comprehensive dynamic land surface model (LM3) able to simulate carbon and vegetation dynamics on time scales from minutes to centuries, as well as the exchange of water and energy among the land, LM3 predicts carbon dynamics in vegetation and soil in response to environmental conditions (weather, climate and soil type), ambient concentration of CO2, natural disturbances (e.g. fire), and anthropogenic land use changes (e.g. deforestation, agricultural cropland abandonment and forest management). A suite of the historical 300 years land cover change scenarios (developed at University of New Hampshire) is used to represent direct anthropogenic forcing on the terrestrial carbon system. Here we analyze the behavior of LM3 forced with observed atmospheric data and coupled with GFDL atmospheric circulation model AM2. The series of experiments indicates that our model adequately simulates climatic gradients of net primary productivity (NPP), leaf area index (LAI), biomass accumulation, evapotranspiration, and runoff. Additionally, analysis of the simulations suggests that anthropogenic land use has been a major forcing on the terrestrial carbon cycle, with large sources of CO2 caused primarily by deforestation and timber harvesting in the current tropics and past north temperate zone, and large current north temperate sinks caused primarily by secondary forest growth.

  14. Alendronate affects calcium dynamics in cardiomyocytes in vitro.

    PubMed

    Kemeny-Suss, Naomi; Kasneci, Amanda; Rivas, Daniel; Afilalo, Jonathan; Komarova, Svetlana V; Chalifour, Lorraine E; Duque, Gustavo

    2009-01-01

    Therapy with bisphosphonates, including alendronate (ALN), is considered a safe and effective treatment for osteoporosis. However, recent studies have reported an unexpected increase in serious atrial fibrillation (AF) in patients treated with bisphosphonates. The mechanism that explains this side effect remains unknown. Since AF is associated with an altered sarcoendoplasmic reticulum calcium load, we studied how ALN affects cardiomyocyte calcium homeostasis and protein isoprenylation in vitro. Acute and long-term (48h) treatment of atrial and ventricular cardiomyocytes with ALN (10(-8)-10(-6)M) was performed. Changes in calcium dynamics were determined by both fluorescence measurement of cytosolic free Ca(2+) concentration and western blot analysis of calcium-regulating proteins. Finally, effect of ALN on protein farnesylation was also identified. In both atrial and ventricular cardiomyocytes, ALN treatment delayed and diminished calcium responses to caffeine. Only in atrial cells, long-term exposure to ALN-induced transitory calcium oscillations and led to the development of oscillatory component in calcium responses to caffeine. Changes in calcium dynamics were accompanied by changes in expression of proteins controlling sarcoendoplasmic reticulum calcium. In contrast, ALN minimally affected protein isoprenylation in these cells. In summary, treatment of atrial cardiomyocytes with ALN-induced abnormalities in calcium dynamics consistent with induction of a self-stimulatory, pacemaker-like behavior, which may contribute to the development of cardiac side effects associated with these drugs.

  15. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  16. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux

    PubMed Central

    Hurtt, G. C.; Thomas, R. Q.; Fisk, J. P.; Dubayah, R. O.; Sheldon, S. L.

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. “repeat lidar data”, we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions. PMID:27093157

  17. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux.

    PubMed

    Hurtt, G C; Thomas, R Q; Fisk, J P; Dubayah, R O; Sheldon, S L

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. "repeat lidar data", we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions.

  18. [Influence of land use change on vegetation cover dynamics in Dapeng Peninsula of Shenzhen, Guangdong Province of South China].

    PubMed

    Liang, Yao-Qin; Zeng, Hui; Li, Jing

    2012-01-01

    To study the vegetation cover dynamics under urbanization is of significance to direct regional ecological conservation. Based on the 1995-2007 remote sensing data and the investigation data of 1996 and 2007 land use change in Shenzhen, and by using NDVI index tracking and algebraic overlay calculation, this paper analyzed the vegetation types and their spatial differentiation, land use change pattern, and the relationships between land use change and vegetation cover dynamics in Dapeng Peninsula of Shenzhen. In 1995-2007, the vegetation cover in 65% of the study area changed significantly, with an overall increasing trend. Land use change was mainly caused by the development of urbanization and commercial agriculture, with 31% of the land surface changed in land use function. The land use change was one of the main causes of vegetation cover dynamics, and about 35% of the region where vegetation cover significantly degraded was related to land use change. 55% of the region where land use function changed due to mechanical disturbance caused the degradation of vegetation cover, but by the end of the study period, the vegetation cover in most of the degraded region had being improved significantly.

  19. Vegetation dynamics and disturbance regimes in northern Patagonia, Argentina: The roles of humans and climate variation

    SciTech Connect

    Veblen, T.T.; Kitzberger, T.; Villalba, R. )

    1993-06-01

    In northern Patagonia (c. 40[degrees] S.), we examined the roles of human activities and climate variation in the modification of disturbance regimes and vegetation dynamics along a gradient from Andean rainforest to the Patagonian steppe. Human-set fires and introduced herbivores (livestock and deer) have had dramatic impacts on the vegetation, the nature of which varies according to position along the macro-scale gradient. For example, European settlement resulted in increased fire frequency in the wet forest district whereas near the steppe fire frequency declined. Climate variability also has had important influences through the alteration of fire regimes and by directly influencing tree mortality and regeneration. The nature and consequences of the influences of climate variation are also distinct for different portions of the macro-scale environmental gradient.

  20. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  1. Seasonal Biophysical Dynamics of the Amazon from Space Using MODIS Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Didan, K.; Ratana, P.; Ferreira, L.

    2002-12-01

    We utilized the Terra- Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index (VI) products to analyze the seasonal and spatial patterns of photosynthetic vegetation activity over the Amazon Basin and surrounding regions of Brazil. The seasonal patterns of vegetation activity were studied along two, eco-climatic transects extending from (1) the cerrado region (Brasilia National Park) to the seasonal tropical forest (Tapajos National Forest) and (2) the caatinga biome to the seasonal and per-humid tropical forests. In addition to the climatic transects, we also investigated the seasonal dynamics of altered, land conversion areas associated with pastures and clearcutting land use activities. Both the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) at 250-m, 500-m, and 1-km were used to extract seasonal profile curves. The quality assurance (QA) information of the output products was used in noise removal and data filtering prior to the generation of the seasonal profiles. Histogram analyses were also performed at coarse (biome) scale and fine, site intensive (flux towers) scale. The seasonal patterns of the cerrado and caatinga were very pronounced with distinct dry and wet seasonal trends. We observed decreasing dry-wet seasonal patterns in the transitional areas near Araguaia National Park. In contrast, the seasonal behavior of the tropical forests were much harder to assess, but indicated slight seasonal trends that ran counter to rainfall activity. This may be attributed to new leaf growth in the dry season. We further found MODIS VI seasonal patterns to vary significantly in land converted and land degraded areas.

  2. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing.

  3. Impact of climate change on vegetation dynamics in a West African river basin

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2012-12-01

    Future changes in terrestrial biomass distribution under climate change will have a tremendous impact on water availability and land productivity in arid and semi-arid regions. Assessment of future change of biomass distribution in the regional or the river basin scale is strongly needed. An eco-hydrological model that fully couples a dynamic vegetation model (DVM) with a distributed biosphere hydrological model is applied to multi-model assessment of climate change impact on vegetation dynamics in a West African river basin. In addition, a distributed and auto optimization system of parameters in DVM is developed to make it possible to model a diversity of phonologies of plants by using different parameters in the different model grids. The simple carbon cycle modeling in a distributed hydrological model shows reliable accuracy in simulating the seasonal cycle of vegetation on the river basin scale. Model outputs indicate that generally, an extension of dry season duration and surface air temperature rising caused by climate change may cause a dieback of vegetation in West Africa. However, we get different seasonal and spatial changes of leaf area index and different mechanisms of the degradation when we used different general circulation models' outputs as meteorological forcing of the eco-hydrological model. Therefore, multi-model analysis like this study is important to deliver meaningful information to the society because we can discuss the uncertainties of our prediction by this methodology. This study makes it possible to discuss the impact of future change of terrestrial biomass on climate and water resources in the regional or the river basin scale although we need further sophistications of the system. Performance of the eco-hydrological model (WEB-DHM+DVM) in Volta River Basin, with basin-averaged leaf area index from model (blue solid line) and AVHRR satellite-derived product (red rectangles).

  4. Equilibrium Response and Transient Dynamics Datasets from VEMAP: Vegetation/Ecosystem Modeling and Analysis Project

    DOE Data Explorer

    The Vegetation-Ecosystem Modeling and Analysis Project (VEMAP) was a large, collaborative, multi-agency program to simulate and understand ecosystem dynamics for the continental U.S. The project involved the development of common data sets for model input including a high-resolution topographically-adjusted climate history of the U.S. from 1895-1993 on a 0.5? grid, with soils and vegetation cover. The vegetation cover data set includes a detailed agricultural data base based on USDA statistics and remote sensing, as well as natural vegetation (also derived from satellite imagery). Two principal model experiments were run. First, a series of ecosystem models were run from 1895 to 1993 to simulate current ecosystem biogeochemistry. Second, these same models were integrated forward using the output from two climate system models (CCC (Canadian Climate Centre) and Hadley Centre models) using climate results translated into the VEMAP grid and re-adjusted for high-resolution topography for the simulated period 1994-2100.[Quoted from http://www.cgd.ucar.edu/vemap/findings.html] The VEMAP Data Portal is a central collection of files maintained and serviced by the NCAR Data Group. These files (the VEMAP Community Datasets) represent a complete and current collection of VEMAP data files. All data files available through the Data Portal have undergone extensive quality assurance.[Taken from http://www.cgd.ucar.edu/vemap/datasets.html] Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.

  5. Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset.

    PubMed

    Qiu, Bingwen; Zeng, Canying; Tang, Zhenghong; Chen, Chongcheng

    2013-11-01

    This paper evaluated the spatiotemporal non-stationarity in the vegetation dynamic based on 1-km resolution 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) datasets in China during 2001-2011 through a wavelet transform method. First, it revealed from selected pixels that agricultural crops, natural forests, and meadows were characterized by their distinct intra-annual temporal variation patterns in different climate regions. The amplitude of intra-annual variability generally increased with latitude. Second, parameters calculated using a per-pixel strategy indicated that the natural forests had the strongest variation pattern from seasonal to semiannual scales, and the multiple-cropping croplands typically showed almost equal variances distributed at monthly, seasonal, and semiannual scales. Third, spatiotemporal non-stationarity induced from cloud cover was also evaluated. It revealed that the EVI temporal profiles were significantly distorted with regular summer cloud cover in tropical and subtropical regions. Nevertheless, no significant differences were observed from those statistical parameters related to the interannual and interannual components between the de-clouded and the original MODIS EVI datasets across the whole country. Finally, 12 vegetation zones were proposed based on spatiotemporal variability, as indicated by the magnitude of interannual and intra-annual dynamic components, normalized wavelet variances of detailed components from monthly to semiannual scale, and proportion of cloud cover in summer. This paper provides insightful solutions for addressing spatiotemporal non-stationarity by evaluating the magnitude and frequency of vegetation variability using monthly, seasonal, semiannual to interannual scales across the whole study area.

  6. Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds.

    PubMed

    Napoli, Chiara; Mello, Antonietta; Borra, Ambrogio; Vizzini, Alfredo; Sourzat, Pierre; Bonfante, Paola

    2010-01-01

    The fruiting bodies of the ectomycorrhizal (ECM) fungus Tuber melanosporum are usually collected in an area devoid of vegetation which is defined as a 'burnt area' (brulé in French). Here, the soil fungal populations of inside and outside brulé were compared in order to understand whether the scanty plant cover was related to a change in fungal biodiversity. Both denaturing gradient gel electrophoresis (DGGE) and molecular cloning of the internal transcribed spacer (ITS) marker were employed on soil DNA to obtain profiles from nine truffle grounds and fungal sequences from one selected truffle ground sampled in two years. Denaturant gradient gel electrophoresis profiles from the two areas formed two distinct clusters while molecular cloning allowed 417 fungal sequences to be identified. T. melanosporum was the dominant fungus within the brulé. There were nine new haplotypes, which had never been detected in fruiting bodies. The Basidiomycota ECM fungi decreased within the brulé, indicating a competitive effect of T. melanosporum on the other ECM fungi. Among other factors, the dynamics of fungal populations seems to be correlated to brulé formation.

  7. Comparison of Amazon and Central Africa tropical vegetation dynamics using SEVIRI data from 2009 to 2011

    NASA Astrophysics Data System (ADS)

    Tian, Yuhong; Zhou, Liming; Romanov, Peter; Yu, Bob; Ek, Michael

    2013-04-01

    Tropical forests play a crucial role in determining global exchanges of energy, momentum, water, CO2 and other greenhouse gases between the land surface and the atmosphere. Quantifying the areal extent, spatial distribution and vegetation status of tropical forests and their dynamics are essential for studies of climate, carbon cycle and biodiversity. Satellite remote sensing has been an indispensable tool to monitor tropical forests. However, frequent and extensive cloud presence makes mapping and monitoring tropical evergreen forests a challenging task. MODIS and AVHRR vegetation products are spatially and temporally discontinuous and inconsistent or very noisy over many pixels in tropical rainforests. The famous debate about the Amazon forest "green-up" during 2005 dry season drought is an excellent example attributed at least partly to the satellite data quality. Observations from the Spinning Enhanced Visible and Infra-red Imager (SEVIRI), onboard the European Meteosat Second Generation (MSG) satellite, are used in this study to monitor tropical vegetation dynamics. The SEVIRI data used contain observations of land surface at 30-minute time intervals for the year 2009 to 2011. We used top of atmosphere (TOA) reflectance values from the spectral bands of red (0.635um), near-infrared (NIR, 0.81um) and shortwave infrared (SWIR, 1.64 um) and other satellite geometry information to calculate normalized difference vegetation index (NDVI) and land surface water index (LSWI). We generated daily, weekly and monthly NDVI and LSWI based on maximum NDVIs. We examined the pattern of cloud occurrence, precipitation and the seasonality of green vegetation (evergreen forests and savannas) in Amazon and Central Africa. During wet season, Amazon has much less chance to get clear-sky observations than Central Africa. However, during dry season, Amazon and Central Africa have as many as clear-sky observations as other regions. Among different vegetation types, the seasonal cycle

  8. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  9. [Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China].

    PubMed

    Zhang, Wei; Wang, Ke-Lin; Liu, Su-Juan; Ye, Ying-Ying; Pan, Fu-Jing; He, Xu-Yang

    2013-07-01

    Taking the typical karst peak-cluster depressions in Huanjiang County of northwest Guangxi as the objects, and by using the method of replacing time with space, an analysis was made on the dynamic changes of top soil (0-15 cm) nutrients and their dominant controlling factors during the process of vegetation succession. With the positive succession of vegetation (herb-shrub-secondary forest-primary forest), the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents increased significantly, with the soil SOC, TN, and TP increased from 29.1 g x kg(-1), 2.48 g x kg(-1), and 0.72 g x kg(-1) in herb community to 73.9 g x kg(-1), 8.10 g x kg(-1), and 1.6 g x kg(-1) in primary forest, respectively, which indicated that the positive succession of vegetation was helpful to the soil nutrient accumulation. The soil cation exchange capacity (CEC) had close relationships with the soil SOC and TN, being the primary controlling factor for the accumulation of the soil C and N. The litter P content, C/P ratio, and N/P ratio were the major factors controlling the P accumulation in the topsoil. The litters higher P content and N/P ratio and smaller C/P ratio were helpful for the P accumulation. Topographic indices (slope, aspect, and rock exposure ratio) had little effects on the soil nutrients.

  10. Sensitivity analysis of modelled responses of vegetation dynamics on the Tibetan Plateau to doubled CO2 and associated climate change

    NASA Astrophysics Data System (ADS)

    Qiu, Linjing; Liu, Xiaodong

    2016-04-01

    Increases in the atmospheric CO2 concentration affect both the global climate and plant metabolism, particularly for high-altitude ecosystems. Because of the limitations of field experiments, it is difficult to evaluate the responses of vegetation to CO2 increases and separate the effects of CO2 and associated climate change using direct observations at a regional scale. Here, we used the Community Earth System Model (CESM, version 1.0.4) to examine these effects. Initiated from bare ground, we simulated the vegetation composition and productivity under two CO2 concentrations (367 and 734 ppm) and associated climate conditions to separate the comparative contributions of doubled CO2 and CO2-induced climate change to the vegetation dynamics on the Tibetan Plateau (TP). The results revealed whether the individual effect of doubled CO2 and its induced climate change or their combined effects caused a decrease in the foliage projective cover (FPC) of C3 arctic grass on the TP. Both doubled CO2 and climate change had a positive effect on the FPC of the temperate and tropical tree plant functional types (PFTs) on the TP, but doubled CO2 led to FPC decreases of C4 grass and broadleaf deciduous shrubs, whereas the climate change resulted in FPC decrease in C3 non-arctic grass and boreal needleleaf evergreen trees. Although the combination of the doubled CO2 and associated climate change increased the area-averaged leaf area index (LAI), the effect of doubled CO2 on the LAI increase (95 %) was larger than the effect of CO2-induced climate change (5 %). Similarly, the simulated gross primary productivity (GPP) and net primary productivity (NPP) were primarily sensitive to the doubled CO2, compared with the CO2-induced climate change, which alone increased the regional GPP and NPP by 251.22 and 87.79 g C m-2 year-1, respectively. Regionally, the vegetation response was most noticeable in the south-eastern TP. Although both doubled CO2 and associated climate change had a

  11. The influence of vegetation covers on soil moisture dynamics at high temporal resolution in scattered tree woodlands of Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lozano-Parra, Javier; Schnabel, Susanne; Ceballos-Barbancho, Antonio

    2015-04-01

    Soil water is a key factor that controls the organization and functioning of dryland ecosystems. However, in spite of its great importance in ecohydrological processes, most of the studies focus on daily or longer timescales, while its dynamics at shorter timescales are very little known. The main objective of this work was to determine the role of vegetation covers (grassland and tree canopy) in the soil hydrological response using measurements with high temporal resolution in evergreen oak woodland with Mediterranean climate. For this, soil water content was monitored continuously with a temporal resolution of 30 minutes and by means of capacitance sensors, mainly for the hydrological years 2010-2011 and 2011-2012. They were installed at 5, 10 and 15 cm, and 5 cm above the bedrock and depending on soil profile. This distribution along the soil profile is justified because soils are generally very shallow and most of the roots are concentrated in the upper layer. The sensors were gathered in 8 soil moisture stations in two contrasting situations characterized by different vegetation covers: under tree canopy and in open spaces or grasslands. Soil moisture variations were calculated at rainfall event scale at top soil layer and deepest depth by the difference between the final and initial soil moisture registered by a sensor at the finish and the beginning of the rainfall event, respectively. Besides, as soil moisture changes are strongly influenced by antecedent conditions, different antecedent soil moisture conditions or states, from driest to wettest, were also defined. The works were carried out in 3 experimental farms of the Spanish region of Extremadura. Results obtained revealed that rainwater amount bypassing vegetation covers and reaching the soil may temporarily be modified by covers according to precipitation properties and antecedent environmental conditions (from dry to wet) before the rain episode. Rainfall amounts triggering a positive soil

  12. Regional-Scale Vegetation Dynamics in Patterned-Ground Ecosystems of Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Kelley, A. M.; Walker, D. A.; Jia, G. J.; Raynolds, M. K.

    2006-12-01

    Regional-scale patterns of vegetation have been analyzed along a number of climate gradients throughout the world; these spatial dynamics provide important insights into the controlling factors of vegetation and the potential plant responses to environmental change. Only a few studies to date have collectively examined the vegetation biomass and production of arctic tundra ecosystems and their relationships to broadly ranging climate variables. No prior study has taken a systematic and consistent approach to examining vegetation biomass patterns along the full temperature gradient of the arctic biome. An additional complicating factor for studying vegetation of arctic tundra is the high spatial variability associated with small patterned-ground features (e.g. non-sorted circles and small non-sorted polygons), resulting from intense freeze-thaw processes. In this study, we sampled and analyzed the aboveground plant biomass components of patterned-ground ecosystems in the Arctic of northern Alaska and Canada along an 1800-km north-south gradient that spans approximately 11 degrees C of mean July temperatures. At each of ten locations along the regional temperature gradient, we ran several 50-m transects and harvested the aboveground biomass of three 20 x 50 cm plots for each transect. Vegetation biomass was dried, sorted by plant functional groups and tissue types, weighed, and analyzed as functions of the summer warmth index (SWI sum of mean monthly temperatures > 0). The absolute biomass (g/m2) of shrubs and graminoids increased exponentially with SWI, whereas forb and lichen biomass showed no change along the gradient. Moss biomass increased linearly with SWI, but with greater variabiliy than the other types. Relative aboveground biomass (% of total) of shrubs and graminoids increased with SWI, whereas percent lichen biomass decreased, and forbs again exhibited no significant change. Percentage of moss biomass was a parabolic function of SWI, with high relative

  13. The Hydrological Regimes Brought by the Three Gorges Project Affected Riparian Vegetation Distribution and Diversity in 2009 and 2010

    NASA Astrophysics Data System (ADS)

    Miao, Ling-Feng; Liu, Wei-Wei; Yang, Fan

    2017-01-01

    Post-dam riparian vegetations affected by the new hydrological regimes in the Three Gorges Reservoir (TGR) were investigated in 2009 and 2010, respectively. The investigation in 2009 showed that about 231 vascular plant species belonging to 169 genera of 61 families were distributed in the water-level-fluctuation zone (WLFZ) of the (TGR). Three vegetation types, including Chuanjiang, Gorge, and other vegetation types, were classified efficiently via cluster analysis. Alpha diversity analysis indicated that species richness gradually decreased with decreasing elevation. Beta diversity analysis indicated that high environment heterogeneity was existed between the lower section and the other two sections, and environment homogeneity was also existed between middle section and upper section. Using the analysis of the field growth in the 2009 and 2010 field surveys as bases, we proposed a list of perennial herb species and woody species that may potentially occurred in the WLFZ of the TGR. In addition, we predicted plant community structural changes in the different altitude sections of WLFZ in the future.

  14. Nucleosomal arrangement affects single-molecule transcription dynamics

    PubMed Central

    Fitz, Veronika; Shin, Jaeoh; Ehrlich, Christoph; Farnung, Lucas; Cramer, Patrick; Zaburdaev, Vasily; Grill, Stephan W.

    2016-01-01

    In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics. PMID:27791062

  15. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    NASA Astrophysics Data System (ADS)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    The Iberian Peninsula is recurrently affected by drought episodes and therefore by the adverse effects associated that range from severe water shortages to economic losses and related social impacts. During the hydrological years of 2004/2005 and 2011/2012, Iberia was hit by two of the worst drought episodes ever recording in this semi-arid region (Garcia-Herrera at al., 2007; Trigo et al., 2013). These two drought episodes were extreme in both its magnitude and spatial extent. A tendency towards a drier Mediterranean for the period 1970-2010 in comparison with 1901-70 has been identified (Hoerling et al., 2012), reinforcing the need for a continuous monitoring of vegetation stress and reliable estimates of the drought impacts. The strong effect of water scarcity on vegetation dynamics is well documented in Mediterranean and other semi-arid regions. Despite the usual link established between the decrease of vegetation greenness and the lack of precipitation during a considerably long period, the impact on vegetation activity may be amplified by other climatic anomalies, such as high temperature, high wind, and low relative humidity. The recent availability of consistent satellite imagery covering large regions over long periods of time has progressively reinforced the role of remote sensing in environmental studies, in particular in those related to drought episodes (e.g. Gouveia et al., 2009). The aim of the present work is to assess and monitor the cumulative impact over time of drought conditions on vegetation over Iberian Peninsula. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2013. The entire 15-yr long period was analysed, but particular attention was devoted to the two extreme drought episodes of 2004-2005 and 2011-2012. During the hydrological years of 2004-2005 and 2011-2012 drought episodes negative anomalies of NDVI were observed over

  16. Sediment and vegetation spatial dynamics facing sea-level rise in microtidal salt marshes: Insights from an ecogeomorphic model

    NASA Astrophysics Data System (ADS)

    Belliard, J.-P.; Di Marco, N.; Carniello, L.; Toffolon, M.

    2016-07-01

    Modeling efforts have considerably improved our understanding on the chief processes that govern the evolution of salt marshes under climate change. Yet the spatial dynamic response of salt marshes to sea-level rise that results from the interactions between the tidal landforms of interest and the presence of bio-geomorphic features has not been addressed explicitly. Accordingly, we use a modeling framework that integrates the co-evolution of the marsh platform and the embedded tidal networks to study sea-level rise effects on spatial sediment and vegetation dynamics in microtidal salt marshes considering different ecological scenarios. The analysis unveils mechanisms that drive spatial variations in sedimentation rates in ways that increase marsh resilience to rising sea-levels. In particular, marsh survival is related to the effectiveness of transport of sediments toward the interior marshland. This study hints at additional dynamics related to the modulation of channel cross-sections affecting sediment advection in the channels and subsequent delivery in the inner marsh, which should be definitely considered in the study of marsh adaptability to sea-level rise and posterior management.

  17. Late Pleistocene and Holocene Beringia vegetation dynamic reconstructions based on a yedoma exposure, Itkillik (Alaska)

    NASA Astrophysics Data System (ADS)

    Lapointe Elmrabti, L.; Fortier, D.; Shur, Y.; Kanevskiy, M. Z.; Talbot, J.

    2013-12-01

    The Itkillik river area in Alaska (69°34‧ N, 150°52‧W), is part of the loosely defined region of Beringia, which was largely unglaciated during the last ice age. Beringia is known to have acted as a refugium for boreal trees and shrubs during the Pleistocene, but questions remain about the environmental history of North-Eastern Beringia, especially the extent and dynamics of the now extinct tundra-steppe biome. The 33-m-high Itkillik river exposure formed over the late Pleistocene / early Holocene (48,000 to 5,000 14C yr BP) and the exposed eolian sediments are largely undisturbed, offering a unique opportunity to examine a long term vegetation sequence in high latitude environment and link the vegetation reconstructions with the sedimentology and cryostratigraphy of the region. Because of the very low concentration of pollen in the sediments, we utilized an extraction method based on heavy-liquid (Sodium Polytungstate (SPT)) separation. Our results show a tundra-steppe vegetation type, characterized by the abundance of cyperacea and graminea taxa. Overall the pollen record of the Itkillik exposure will provide an important point of comparison to other sites localised in the circumpolar circle, especially in Siberia, as yedoma remains one of the most noticeable structures of the cold and dry periglacial environment of the Arctic and subarctic east Siberia. Implications of our findings for local climate reconstructions using pollen-climate transfer functions are discussed.

  18. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.

    PubMed

    Sun, Jian; Qin, Xiaojing; Yang, Jun

    2016-01-01

    The spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) of three vegetation types (alpine steppe, alpine meadow, and alpine desert steppe) across the Tibetan Plateau was analyzed from 1982 to 2013. In addition, the annual mean temperature (MAT) and annual mean precipitation (MAP) trends were quantified to define the spatiotemporal climate patterns. Meanwhile, the relationships between climate factors and NDVI were analyzed in order to understand the impact of climate change on vegetation dynamics. The results indicate that the maximum of NDVI increased by 0.3 and 0.2 % per 10 years in the entire regions of alpine steppe and alpine meadow, respectively. However, no significant change in the NDVI of the alpine desert steppe has been observed since 1982. A negative relationship between NDVI and MAT was found in all these alpine grassland types, while MAP positively impacted the vegetation dynamics of all grasslands. Also, the effects of temperature and precipitation on different vegetation types differed, and the correlation coefficient for MAP and NDVI in alpine meadow is larger than that for other vegetation types. We also explored the percentages of precipitation and temperature influence on NDVI variation, using redundancy analysis at the observation point scale. The results show that precipitation is a primary limiting factor for alpine vegetation dynamic, rather than temperature. Most importantly, the results can serve as a tool for grassland ecosystem management.

  19. Assessing Vegetation Structure and Dynamics in a Chihuahuan Grassland-Shrubland Ecotone Using the Relationship Between Remote-Sensed Vegetation Phenology and Precipitation

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2014-12-01

    Land degradation usually involves largely irreversible vegetation changes in drylands. A typical case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black and blue grama) have transitioned to shrublands dominated by woody species (mainly creosotebush and mesquite), accompanied by accelerated water and wind erosion. An array of mechanisms are involved in this process, including external triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. We analyze the structure and dynamics of vegetation at an 18-km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan desert (McKenzie Flats, Sevilleta National Wildlife Refuge, New Mexico) by investigating the relationship between decade-scale (2000-13) records of medium-resolution remote sensing of vegetation phenology (MODIS NDVI) and precipitation. Our analysis indicates that spatial variations in the NDVI-rainfall relationship reflect functional differences in leaf phenology and water use for herbaceous and shrub vegetation. Herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) determine the broad-scale spatial distribution of dominant vegetation types, and to (b) decompose the NDVI signal into partial net primary production (NPP) components for herbaceous vegetation and shrubs across the study site. We further analyze the influence of inter-annual variations in seasonal precipitation on remotely sensed NPP. Plant growth for herbaceous vegetation is particularly synchronized with monsoonal summer rainfall. For shrubs, annual NPP is better explained by winter plus summer precipitation

  20. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  1. Late Quaternary vegetation development and disturbance dynamics from a peatland on Mount Gorongosa, central Mozambique

    NASA Astrophysics Data System (ADS)

    McWethy, David B.; Neumann, Frank H.; Steinbruch, Franziska; Ryan, Casey M.; Valsecchi, Verushka

    2016-04-01

    Few long-term climate and environmental records are available for southeast Africa where millennial scale shifts in the north-south position of the Intertropical Convergence Zone (ITCZ) and changes in Indian Ocean sea surface temperatures interact with local controls (e.g., fire, hydrology) to influence vegetation and ecosystem dynamics. Reconstruction of late-Pleistocene - Holocene environmental change from peat sediments obtained from Mount Gorongosa, central Mozambique, provides insight into vegetation, climate and disturbance interactions over the past c. 27 kyr. During the late Pleistocene, cool and wet climatic conditions supported Podocarpus forest and Ericaceae-heathland until drier conditions led to grassland expansion and a hiatus in peat deposition between c. 22.5 and 7.2 cal kBP. Increased temperatures and fire activity since c. 7.2 cal kBP led to further expansion of grasslands. Continued warming helped maintain grasslands and fostered a diverse mix of Podocarpus forest with a large number of subtropical trees and miombo woodland taxa (especially Brachystegia spp.) until regional land-use associated with the rise of Iron Age activity promoted an increase of disturbance related taxa over the last 1-2 millennia. Recent migration of people onto the Mount Gorongosa massif in the last fifty years are linked to an increase in fire activity that is unprecedented in the 27 kyr record, resulting in shifts in vegetation composition and structure. This long-term record of environmental change from central Mozambique highlights complex interaction between overlapping climatic influences and documents important vegetation transitions linked to millennial scale climatic controls, disturbance processes and more recent land-use change from a region where few records exist.

  2. Spatio-Temporal Dynamics of Vegetation and Their Relationships with Climate in Southeast Asia Based on Three Satellite NDVI Products

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zeng, Z.; Piao, S.

    2014-12-01

    Tropical vegetation plays an essential role for global biogeochemical cycles. An abundant literature focused on the vegetation dynamics in Amazon. It is shown that the Amazonian rainforest is strongly controlled by radiation, even during dry season. However, only few researches deal with tropical rainforest in Southeast Asia; the vegetation dynamics in Southeast Asia remain poorly understood. In this study, we investigated the spatio-temporal dynamics of vegetation in Southeast Asia with three independent satellite derived Normalized Difference Vegetation Index (NDVI) products (GIMMS AVHRR NDVI3g, SPOT, and MODIS) as well as the recently developed Sun Induced chlorophyll Fluorescence (SIF). We furthermore examined how climate drivers (precipitation, temperature and radiation) exert influences on the vegetation dynamics. We find that the three NDVI datasets are generally consistent with each other. At seasonal scale, NDVI decreases from the beginning to the end of the dry season; at interannual scale, dry season NDVI is positively correlated to precipitation but negatively correlated to radiation, while wet season NDVI is positively correlated to radiation. Compared to evergreen forests, deciduous forests have a larger NDVI decrease rate and more extended area with positive relationships between NDVI and precipitation during the dry season. SIF is lower during dry season than during wet season. Our results indicate that most forests in Southeast Asia, unlike in the Amazonian basin, are water-limited in the dry season but radiation-limited in the wet season. These results imply that droughts may have a stronger impact on forests in Southeast Asia than in Amazon.

  3. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  4. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  5. Analysing land and vegetation cover dynamics during last three decades in Katerniaghat wildlife sanctuary, India

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Behera, M. D.

    2014-10-01

    The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975-2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.

  6. Tropical Forests, Savannas and Grasslands: Bridging the Knowledge Gap Between Ecology and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Baudena, M.; Dekker, S. C.; van Bodegom, P. M.; Cuesta, B.; Higgins, S. I.; Lehsten, V.; Reick, C. H.; Rietkerk, M.; Scheiter, S.; Yin, Z.; Zavala, M. A.; Brovkin, V.

    2014-12-01

    Due to global climate change, tropical forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future. Dynamic Global Vegetation Models (DGVMs) are largely used to understand vegetation dynamics under present climate, and to predict its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we present the results of a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their different representations of the ecological mechanisms and feedbacks that determine the forest, savanna and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modelling. We compared model outcomes to observed tree cover along a mean annual precipitation gradient in Africa. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need an improved representation in the DGVMs. The first mechanism encompasses water limitation to tree growth, and tree-grass competition for water, which are key factors in determining savanna occurrence in arid and semi-arid areas. The second is a grass-fire feedback, which maintains both forest and savannas in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant savanna trees, and fire-resistant and shade-intolerant forest trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and especially

  7. Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Baudena, M.; Dekker, S. C.; van Bodegom, P. M.; Cuesta, B.; Higgins, S. I.; Lehsten, V.; Reick, C. H.; Rietkerk, M.; Scheiter, S.; Yin, Z.; Zavala, M. A.; Brovkin, V.

    2015-03-01

    The forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future due to global climate change. Dynamic global vegetation models (DGVMs) are very useful for understanding vegetation dynamics under the present climate, and for predicting its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we perform a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their representation of the ecological mechanisms and feedbacks that determine the forest, savanna, and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modeling. The outcomes of the models, which include different mechanisms, are compared to observed tree cover along a mean annual precipitation gradient in Africa. By drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need improved representation in the examined DGVMs. The first mechanism includes water limitation to tree growth, and tree-grass competition for water, which are key factors in determining savanna presence in arid and semi-arid areas. The second is a grass-fire feedback, which maintains both forest and savanna presence in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant forest trees, and fire-resistant and shade-intolerant savanna trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and

  8. Insights into geomorphic and vegetation spatial patterns within dynamic river floodplains using soft classification approaches

    NASA Astrophysics Data System (ADS)

    Guneralp, I.; Filippi, A. M.; Guneralp, B.; You, M.

    2014-12-01

    Lowland rivers in broad alluvial floodplains create one of the most dynamic landscapes, governed by multiple, and commonly nonlinear, interactions among geomorphic, hydrologic, and ecologic processes. Fluvial landforms and land-cover patches composing the floodplains of lowland rivers vary in their shapes and sizes because of variations in vegetation biomass, topography, and soil composition (e.g., of abandoned meanders versus accreting bars) across space. Such floodplain heterogeneity, in turn, influences future river-channel evolution by creating variability in channel-migration rates. In this study, using Landsat 5 Thematic Mapper data and alternative image-classification approaches, we investigate geomorphic and vegetation spatial patterns in a dynamic large tropical river. Specifically, we examine the spatial relations between river-channel planform and fluvial-landform and land-cover patterns across the floodplain. We classify the images using both hard and soft classification algorithms. We characterize the structure of geomorphic landform and vegetation components of the floodplain by computing a range of class-level landscape metrics based on the classified images. Results indicate that comparable classification accuracies are accrued for the inherently hard and (hardened) soft classification images, ranging from 89.8% to 91.8% overall accuracy. However, soft classification images provide unique information regarding spatially-varying similarities and differences in water-column properties of oxbow lakes and the main river channel. Proximity analyses, where buffer zones along the river with distances corresponding to 5, 10, and 20 river-channel widths are constructed, reveal that the average size of forest patches first increase away from the river banks but they become sparse after a distance of 10 channel widths away from the river.

  9. From Dynamic Global Vegetation Modelling to Real-World regional and local Application

    NASA Astrophysics Data System (ADS)

    Steinkamp, J.; Forrest, M.; Kamm, K.; Leiblein-Wild, M.; Pachzelt, A.; Werner, C.; Hickler, T.

    2015-12-01

    Dynamic (global) vegetation models (DGVM) can be applied to any spatial resolution on the local, national, continental and global scale given suitable climatic and geographic input forcing data. LPJ-GUESS, the main DGVM applied in our research group, uses the plant functional type (PFT) concept in the global setup with typically about 10-20 tree PFTs (subdivided into tropical, temperate and boreal) and two herbaceous PFTs by default. When modelling smaller spatial extents, such as continental (e.g. Europe/North America) national domains, or individual sites (e.g. Frankfurt, Germany), i.e. the scale of decision making, it becomes necessary to refine the PFT representation, the model initialization and validation and, in some case, to include additional processes. I will present examples of LPJ-GUESS applications at the continental to local scale performed by our working group including i.) a European simulation representing the main tree species and Mediterranean shrubs, ii.) a climate impact study for Turkey, iii.) coupled dynamic large grazer-vegetation modelling across Africa and, iv.) modelling an allergenic and in Europe invasive shrub (Ambrosia artemisiifolia), iv.) simulating water usage by an oak-pine forest stand near Frankfurt, and v.) stand specific differences in modelling at the FACE sites. Finally, I will present some thoughts on how to advance the models in terms of more detailed and realistic PFT or species parameterizations accounting for adaptive functional trait responses also within species.

  10. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Tabacchi, Eric; Steiger, Johannes; Gurnell, Angela M.

    2007-09-01

    Until recently, one-way relationships between flow dynamics, geomorphology and plant ecology were considered dominantly when studying the functioning of river systems, whereby fluvial landforms and hydrogeomorphic processes drive the evolution of riparian plant communities. However, biological communities may significantly control geomorphic processes and have strong impacts on landform dynamics. In order to fully identify the processes linked to river dynamics (changes in time and space of fluvial landforms and associated plant communities), conceptual multidisciplinary progress is clearly needed. To understand the mutual interactions and feedbacks between fluvial landforms and vegetation community dynamics, this paper presents a detailed literature review of fluvial geomorphology, riparian plant ecology and hydraulic engineering knowledge. The historical and recent development of ecological plant succession theory toward the integration of hydrogeomorphic disturbances is discussed as well as the integration of vegetation within geomorphology as a significant landform control factor, incorporating both hydrogeomorphic controls on riparian vegetation dynamics and mechanical impacts of vegetation structures on flow properties and sediment dynamics. Recent progress in ecology, hydraulic engineering and fluvial geomorphology emphasises interdependence between biological and physical forms and processes. Based on this literature review, a 'fluvial biogeomorphic succession' concept is proposed to link fluvial landform and riparian vegetation community evolution within a bi-directional model. The succession of fluvial landforms and associated vegetation communities is composed of four main critical phases that represent a shift in the relative dominance of hydrogeomorphic and ecological processes as a response to biostabilisation and passive bioconstruction processes. The positive feedbacks associated with this shift lead to the development of characteristic

  11. Multi-proxy records of Eocene vegetation and climatic dynamics from North America

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.; Stromberg, C. A.; Hyland, E.; Miller, L. A.

    2010-12-01

    The Eocene is characterized by a “thermal maximum” in the early part, and a shift to “icehouse” conditions by the end of the epoch. Consequently, this is an interesting time to look at vegetation dynamics and understanding plant responses to environmental change, especially as refinement of global climate models is needed if we are to understand future climate change impacts. Paleobotanical evidence, such as phytoliths (plant silica bodies), and paleoenvironmental indicators, such as paleosols, offer an opportunity to study vegetation composition and dynamics in the absence of macrofossils on a variety of spatial and temporal scales. To examine the interaction between paleoclimatic/paleoenvironmental changes and paleovegetation changes, we will compare and contrast two well-dated, high-resolution, multi-proxy records from North America. The margins of the Green River Basin system during the Early Eocene Climatic Optimum (53-50 Ma) are an extremely important location for understanding ecological composition and potential climatic drivers of North American floral diversification, because this area is widely considered the point of origin for many modern grass clades. We examined paleosols preserved in the fluvial, basin-margin Wasatch Formation preserved near South Pass, Wyoming. Field identification of the paleosols indicated a suite that includes Entisols, Inceptisols, and Alfisols. To reconstruct paleovegetation, pedogenic carbonates were analyzed isotopically, and samples were collected and extracted for phytoliths . By combining these paleobotanical proxies with quantitative climatic proxies on whole rock geochemistry, we will present an integrated vegetation-climate history of the EECO at the margins of the Green River Basin. Second, we will present high-resolution record of vegetation patterns based on phytoliths from a section of the Renova Formation, Timberhills region, Montana dated to 39.2 ± 3 Ma. The section is composed of Alfisols, Entisols

  12. Big plants — Do they affect neighbourhood species richness and composition in herbaceous vegetation?

    NASA Astrophysics Data System (ADS)

    Aarssen, Lonnie W.; Schamp, Brandon S.; Wight, Stephanie

    2014-02-01

    According to traditional theory, success in competition between plant species generally involves a 'size-advantage'. We predicted therefore that plants with larger body size should impose greater limits on the number of species — especially relatively small ones — that can reside within their immediate neighbourhoods. Species composition was compared within local neighbourhoods surrounding target plants of different sizes belonging to one of the largest herbaceous species found within old-field vegetation in eastern Ontario Canada — Centaurea jacea. Resident species density was generally greater within immediate 'inner' target neighbourhoods than within adjacent circular 'outer' neighbourhoods, and mean body size of resident neighbour species was unrelated to increases in target plant size. As target plant size increased, the proportion of resident neighbour species that were reproductive increased. Relatively big plants of C. jacea do not limit the number or the proportion of reproductive species that can coexist within their immediate neighbourhoods, nor do they cause local exclusion of relatively small species from these neighbourhoods. These results fail to support the 'size-advantage' hypothesis and are more consistent with the 'reproductive economy advantage' hypothesis: success under intense competition is promoted by capacity to recruit offspring that — despite severe suppression — are able to reach their minimum body size needed for reproduction, and hence produce grand-offspring for the next generation. The latter is facilitated by a relatively small minimum reproductive threshold size, which is generally negatively correlated with a relatively large maximum potential body size.

  13. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  14. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  15. Relationships between vegetation indices and different burn and vegetation ratios: a multi-scale approach applied in a fire affected area

    NASA Astrophysics Data System (ADS)

    Pleniou, M.; Koutsias, N.

    2013-08-01

    Vegetation indices have been widely used in remote sensing literature for burned land mapping and monitoring. In the present study we used satellite data (IKONOS, LANDSAT, ASTER, MODIS) of multiple spectral (visible, near, shortwave infrared) and spatial (1-500 meters) resolutions, acquired shortly after a very destructive fire occurred in the mountain of Parnitha in Attica, Greece the summer of 2007. The aim of our study is to examine and evaluate the performance of some vegetation indices for burned land mapping and also to characterize the relationships between vegetation indices and the percent of fire-scorched (burned) and non fire-scorched (vegetated) areas. The available satellite images were processed geometrically, radiometrically and atmospherically. The very high resolution IKONOS imagery was served as a base to estimate the percent of cover of burned areas, bare soil and vegetation by applying the maximum likelihood classification algorithm. The percent of cover for each type was then correlated to vegetation indices for all the satellite images, and regression models were fit to characterize those relationships. In total 57 versions of some classical vegetation indices were computed using LANDSAT, ASTER and MODIS data. Most of them were modified by replacing Red with SWIR channel, as the latter has been proved sensitive to burned area discrimination. IPVI and NDVI showed a better performance among the indices tested to estimate the percent of vegetation, while most of the modified versions of the indices showed highest performance to estimate the percent of burned areas.

  16. Infrared warming affects intrarow soil carbon dioxide efflux during early vegetative growth of spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming will likely affect carbon cycles in agricultural soils. Our objective was to deploy infrared (IR) warming to characterize the effect of global warming on soil temperature (Ts), volumetric soil-water content ('s), and intrarow soil CO2 efflux (Fs) of an open-field spring wheat (Triticu...

  17. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    PubMed

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels.

  18. Dynamics of alpha oscillations elucidate facial affect recognition in schizophrenia.

    PubMed

    Popov, Tzvetan G; Rockstroh, Brigitte S; Popova, Petia; Carolus, Almut M; Miller, Gregory A

    2014-03-01

    Impaired facial affect recognition is characteristic of schizophrenia and has been related to impaired social function, but the relevant neural mechanisms have not been fully identified. The present study sought to identify the role of oscillatory alpha activity in that deficit during the process of facial emotion recognition. Neuromagnetic brain activity was monitored while 44 schizophrenia patients and 44 healthy controls viewed 5-s videos showing human faces gradually changing from neutral to fearful or happy expressions or from the neutral face of one poser to the neutral face of another. Recognition performance was determined separately by self-report. Relative to prestimulus baseline, controls exhibited a 10- to 15-Hz power increase prior to full recognition and a 10- to 15-Hz power decrease during the postrecognition phase. These results support recent proposals about the function of alpha-band oscillations in normal stimulus evaluation. The patients failed to show this sequence of alpha power increase and decrease and also showed low 10- to 15-Hz power and high 10- to 15-Hz connectivity during the prestimulus baseline. In light of the proposal that a combination of alpha power increase and functional disconnection facilitates information intake and processing, the finding of an abnormal association of low baseline alpha power and high connectivity in schizophrenia suggests a state of impaired readiness that fosters abnormal dynamics during facial affect recognition.

  19. Patterns and drivers of Early Holocene vegetation dynamics in Central Europe

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin

    2015-04-01

    The rapid warming of the Holocene induced the rearrangement of vegetation across Europe, including the widely synchronous and rapid expansion of hazel (Corylus avellana) at around 10.6 ka BP (Giesecke et al., 2011). The simultaneity of the hazel expansion across large parts of Europe suggests that a climate shift has triggered that expansion. However, it remains poorly understood, which climate parameter has been effective (Huntley, 1993) because hazel expanded simultaneously in areas that today clearly differ in climate. To better understand the causes we studied Early Holocene vegetation dynamics in NE Germany in high temporal and spatial resolution. Analysis combines pollen data from 60 sites, including high resolution data sets, with present-day site patterns of soil and relief using the extended downscaling approach. Using forward modeling of pollen deposition in each sample site the method seeks that vegetation composition on each site type that produces modeled pollen deposition most similar to empiric pollen deposition. The results (Theuerkauf et al., 2014) indicate that first populations of hazel established soon after the Holocene warming at 11.2 ka. These populations were still small and possibly restricted to warm loving slopes, indicating that low summer warmth was the limiting factor. The widespread expansion of hazel started only after 10.8 ka, possibly following a shift to greater summer warmth. Hazel primarily expanded on sites that are today covered by gleyic soils, from which it largely expelled tree birch. Hazel thus obviously could only expand on sites that received additional wetness from ground- and stagnant water. Giesecke T., Bennett K.D., Birks H.J.B., Bjune A.E., Bozilova E., Feurdean A., Finsinger W., Froyd C., Pokorný P., Rösch M., Seppä H., Tonkov S., Valsecchi V., & Wolters S. (2011) The pace of Holocene vegetation change - testing for synchronous developments. Quaternary Science Reviews, 30, 2805-2814. Huntley B. (1993) Rapid

  20. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X. D.; Levis, S.

    2012-07-01

    A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM) in an Earth System Model (ESM). Burned area in a grid cell is estimated by the product of fire counts and average burned area of a fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability are calculated in order to capture the observed high burned area fraction in areas of high fire frequency and realize parameter calibration based on MODIS fire counts product. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and some mathematical derivations are applied to improve the equation and assumptions of an existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs. Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM). Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3) for 1997-2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, regional totals and spreads of burned area, global annual burned area fractions for various vegetation types, and interannual variability of burned area are reasonable, and closer to GFED3 than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, average error of simulated trace gas and aerosol emissions due to biomass burning

  1. Testing a dynamic global vegetation model for pre-industrial and Last Glacial Maximum boundary conditions

    NASA Astrophysics Data System (ADS)

    Handiani, Dian N.; Rachmayani, Rima; Paul, André; Dupont, Lydie M.

    2010-05-01

    Achieving better comparison between dynamic global vegetation models (DGVM) with pollen or plant data is important for the climate-vegetation modeling community. Our study tried to find a scheme that can be applied consistently to compare DGVMs with pollen data sets. We tested two models, the Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM), which we both ran for pre-industrial boundary conditions. In addition, we ran the TRIFFID model using boundary conditions for the Last Glacial Maximum (LGM, ~19,000- 23,000 years before present). For comparisons, we used the modern vegetation of the BIOME4 model and the reconstruction for the year 18000 after pollen data from the BIOME6000 (Version 4.2) project. Differences in the number of PFTs in each DGVMs lead to different results of the biome distribution even if models and data qualitatively agree. In the CLM-DGVM pre-industrial run, northern South America is covered by savanna or desert biome, which is associated with more growing degree days and lower rates of precipitation. Meanwhile, the TRIFFID model simulated a tropical forest in northern South America and a desert biome in Australia, probably because of higher values of growing degree days and different precipitation rates, which is lower in South America and higher in Australia. The climate parameters from both models show a similar pattern as in the BIOME4 model, but the values are higher in the DGVMs. Biome distributions of the pre-industrial simulation show similarities and differences between dynamic vegetation modeling and data reconstructions. Both models reveal a fair agreement simulating savanna and desert biomes around the Sahel, tropical forest in western Africa, boreal forest in eastern North America and in Siberia, and tundra in northern Canada. Some discrepancies appear in South America and Africa, where pollen data indicate a combination of

  2. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation

  3. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  4. Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model.

    PubMed

    Ota, Masakazu; Nagai, Haruyasu

    2011-09-01

    A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO(2). The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two.

  5. Sweet potato [Ipomoea batatas (L.) Lam.] cultivated as tuber or leafy vegetable supplier as affected by elevated tropospheric ozone.

    PubMed

    Keutgen, Norbert; Keutgen, Anna J; Janssens, Marc J J

    2008-08-13

    Sweet potato cultivars respond differently to elevated tropospheric ozone concentrations of ca. 130 mug m (-3), 8 h a day for 4 weeks, which affects their selection for cultivation. In the first cultivar presented here, an adequate leafy vegetable supplier, the ozone load resulted in a shift of biomass to maintain the canopy at the expense of tuber development. Starch content of leaves was reduced, indicating an impairment of quality, but carotenoid content remained stable. The second cultivar may be grown for tuber production. Although the ratio tuber/plant remained stable under ozone, tuber yield and its starch content were significantly reduced. The lower starch content indicated a worse quality for certain industrial processing, but it is desirable for chip production. Elevated tropospheric ozone concentrations also influenced free amino acids and macronutrient contents of tubers, but these modifications were of minor significance for tuber quality in the second cultivar.

  6. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey

    PubMed Central

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-01-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes. PMID:27873814

  7. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.

    PubMed

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-09-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.

  8. Integration of Insect Infestations into Dynamic Global Vegetation Models Using Insect Functional Types

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Smith, E.

    2011-12-01

    Many have explored the impact of climate change on insects and explored predictions under future scenarios. But the converse has been limited: no DGVM simulates insect infestation. We are assessing the potential impact of simulating insect infestation processes on DGVMs, and creating a framework for development of insect functional types (IFTs) for integration with DGVMs. Some work have been done devising IFTs for conservation and resource management, but results are limited to qualitative groupings of insect taxa based on resource usage and response to environment. The integration of IFTs into DGVMs would enable exploration of interaction between climate change and vegetation dynamics at the global scale. IFTs have the potential to significantly impact global carbon balance and vegetation distributions, and interaction with other disturbance regimes already modeled in DGVMs (e.g., fire, drought, herbivory). We identify relevant features of existing DGVMs, including spatial and temporal scales, extents, and focuses; how other disturbances are modeled; and model areas where IFTs would link to DGVMs. We identify relevant features of insect models, including hazard and risk models; spatial and temporal resolutions and extents; spatial processes; and commonly used variables. We outline the key considerations, including tradeoffs between accuracy of representation and the breadth of applicability; morphology, physiology, biochemistry, reproductive and demographic characteristics; functional effects vs. functional responses; major axes of specialization that are consistent across environments, biogeographic regions, and major insect taxa; and whether IFTs can be empirically evaluated. We propose major axes to define IFTs, and present a sample IFT, the westwide pine beetle.

  9. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.

    PubMed

    Galbraith, David; Levy, Peter E; Sitch, Stephen; Huntingford, Chris; Cox, Peter; Williams, Mathew; Meir, Patrick

    2010-08-01

    *The large-scale loss of Amazonian rainforest under some future climate scenarios has generally been considered to be driven by increased drying over Amazonia predicted by some general circulation models (GCMs). However, the importance of rainfall relative to other drivers has never been formally examined. *Here, we conducted factorial simulations to ascertain the contributions of four environmental drivers (precipitation, temperature, humidity and CO(2)) to simulated changes in Amazonian vegetation carbon (C(veg)), in three dynamic global vegetation models (DGVMs) forced with climate data based on HadCM3 for four SRES scenarios. *Increased temperature was found to be more important than precipitation reduction in causing losses of Amazonian C(veg) in two DGVMs (Hyland and TRIFFID), and as important as precipitation reduction in a third DGVM (LPJ). Increases in plant respiration, direct declines in photosynthesis and increases in vapour pressure deficit (VPD) all contributed to reduce C(veg) under high temperature, but the contribution of each mechanism varied greatly across models. Rising CO(2) mitigated much of the climate-driven biomass losses in the models. *Additional work is required to constrain model behaviour with experimental data under conditions of high temperature and drought. Current models may be overly sensitive to long-term elevated temperatures as they do not account for physiological acclimation.

  10. Assessment of a fiber-optic distributed-temperature-sensing system to monitor the thermal dynamics of vegetated roof

    NASA Astrophysics Data System (ADS)

    Cousiño, J. A.; Hausner, M. B.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.; Suarez, F. I.

    2014-12-01

    Vegetated (green) roofs include a growing media and vegetation layer, and offer a range of benefits such as the reduction of: the heat island effect, rooftop runoff peak flows, roof surface temperatures, energy used for cooling or heating buildings, and noise levels inside infrastructures. Vegetated roofs also offer aesthetic benefits and increase the biodiversity of the urban environment, and are increasingly used in sustainable urban development. Understanding the thermal dynamics of vegetated roofs will make it possible to improve their design and to better assess their impacts on energy efficiency. Here, we evaluate the first vertical high-resolution distributed-temperature-sensing (DTS) system installed in a vegetated roof. This system allows a continuous measurement of the thermal profile within a vegetated roof - going from the interior, upward through the drainage layers and soil substrate of the vegetated roof and ending in the air above the vegetation. Temperatures can be observed as frequently as every 30 s at a spatial resolution on the order of centimeters. This DTS system was installed in the "Laboratory of Vegetal Infrastructure of Buildings" (LIVE - its acronym in Spanish), located in the San Joaquín Campus of the Pontifical Catholic University, Santiago, Chile. The laboratory features 18 experimental modules to investigate different configurations of the vegetated roof layers. The LIVE was designed with the installation of the optical fibers in mind, and the DTS system allows simultaneous monitoring of three or four modules of the LIVE. In this work, we describe the design of this DTS deployment, the calibration metrics obtained using the software provided by the manufacturers, and other calibration algorithms previously developed. We compare the results obtained using single- and double-ended measurements, highlighting strengths and weaknesses of DTS methods. Finally, we present the observations obtained from this biophysical environment

  11. Linkages between controlled floods, eddy sandbar dynamics, and riparian vegetation along the Colorado River in Marble Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Grams, P. E.; Hazel, J. E., Jr.; Schmeeckle, M. W.

    2015-12-01

    Controlled floods are released from Glen Canyon Dam to build and maintain eddy sandbars along the Colorado River in Grand Canyon National Park. Long-term monitoring shows that the topographic response to controlled floods varies considerably between eddies, likely reflecting different geometric configurations and flow hydraulics. Differences in eddy sandbar response also reflect the degree of vegetation establishment since the 1980s when reservoir spills more than double the magnitude of controlled floods cleared most sandbars of vegetation. Here we explore the geomorphology of sandbar responses in the context of controlled floods, debris fan-eddy geometry, and riparian vegetation establishment. In Marble Canyon, the proportion of eddy area stabilized by vegetation is negatively correlated with water surface slope and the rate of stage change with discharge. Less vegetated sites are more dynamic; they tend to build open sandbars during controlled floods and show greater topographic variability in the eddy compared to the main channel. In contrast, deposition of open sandbars is limited where vegetation establishment has decreased channel width, altering the pattern of eddy recirculation and sediment redistribution. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of vegetated bar surfaces increases with successive floods. Changes in sand storage in the main channel are greater than storage change in the eddy at these lower gradient sites, and controlled floods tend to evacuate sand that has accumulated on the bed. The degree to which vegetation has stabilized sandbar surfaces may thus provide a proxy for different hydraulic conditions and a better canyon-wide assessment of controlled flood response. Our results apply primarily to large eddies in Marble Canyon, and ongoing flow modeling and vegetation composition mapping will allow further assessment of eddy sandbar-riparian vegetation interactions

  12. Obtaining a Pragmatic Representation of Fire Disturbance in Dynamic Vegetation Models by Assimilating Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Kantzas, Euripides; Quegan, Shaun

    2015-04-01

    Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.

  13. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance.

    PubMed

    Means, Mary M; Ahn, Changwoo; Noe, Gregory B

    2017-02-01

    The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1-4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.

  14. [Spatiotemporal dynamics of vegetation cover based on trajectory change detection: a case study in Dapeng Peninsula of Shenzhen].

    PubMed

    Liang, Yao-qin; Xie, Fang-yi; Li, Jing; Li, Gui-cai; Zeng, Hui

    2010-05-01

    By using the second-time developed ArcEngine component at pixel level, this paper studied the spatiotemporal dynamics of vegetation cover in the Dapeng Peninsula of Shenzhen, China in 1986-2007, and analyzed the characters and causes of the dynamics. To quantify this dynamics, the NDVI changes in 1986-2007 were extracted from 10 time-series TM/ETM+ remote sensing images, and the results showed that from 1986 to 2007, there were four trajectories of vegetation cover change in the Peninsula, including stable (a), stable-rising-stable (aba), stable-descending-stable (aca), and stable-descending-stable-rising-stable (acaba). The area with these four types occupied 71.54% of the total. Among the four types, type "a" was most common, occupying 1/3 of the study area, mainly in the mountains; and type "acaba" was the typical one, which was closely related to the deforestation and reforestation after the human disturbances of original vegetation. The areas at higher elevation or steeper slopes exhibited smaller vegetation change, mainly because of the constrained human disturbances. Timing of the vegetation cover change showed a relative stability in the mid-90s of 20th century, but a dramatic change after 2003, coinciding with the growth of Shenzhen City.

  15. Infrequent composted biosolids applications affect semi-arid grassland soils and vegetation.

    PubMed

    Ippolito, J A; Barbarick, K A; Paschke, M W; Brobst, R B

    2010-05-01

    Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13-14 years) and short-term (2-3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha(-1)) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0-8 cm depth pH, EC, NO(3)-N, NH(4)-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO(3)-N and NH(4)-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem.

  16. Dynamics of runoff and sediment trapping performance of vegetative filter strips: Run-on experiments and modeling.

    PubMed

    Pan, Daili; Gao, Xiaodong; Dyck, Miles; Song, Yaqian; Wu, Pute; Zhao, Xining

    2017-03-22

    Vegetative filter strips (VFSs) are a labor-saving and cost-effective agricultural best management practice to trap water runoff and sediment from the source areas. They also provide forage and/or fuel and are therefore potentially profitable for land owners. VFSs are however a dynamic system: the runoff delivery ratio (RDR) and sediment delivery ratio (SDR) vary with growth stage and vegetation types. The impacts of vegetation characteristics as well as soil physical properties modified by vegetation growth, on the RDR and SDR of VFS were evaluated by a flume experiment. Two plant species (cocksfoot (Dactylis glomerata L.) and white clover (Trifolium repens L.)) were tested at three stages in the growing season of 2016 (May, July, and August). The measured RDR and SDR were compared with the simulated results from Vegetative Filter Strip Modeling System (VFSMOD). In the early stages of the growing season, the cocksfoot formed a dense network of stems with high strip Manning's roughness faster than white clover. The runoff and sediment trapping effects of the white clover VFS were greater than that of cocksfoot VFS in all the three stages (lower RDR and SDR). This is likely attributed to strongly tillering, creeping stem posture and high infiltration capacity of the white clover VFS. VFSMOD simulated the RDR and SDR reliably except under low vegetation coverage conditions (white clover in May). The results suggested that (1) both soil physical properties and vegetation characteristics should be considered for the species-specific, temporally variable performance of VFS; and (2) when using VFSMOD inform the VFS design, modelers should take the dynamics of vegetation, mainly through vertical saturated hydraulic conductivity, stem spacing and strip Manning's roughness into account, and select parameters that reflect the actual field conditions.

  17. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands.

    PubMed

    Hernandez, Maria E; Mitsch, William J

    2007-01-01

    Denitrification potential (DP) and organic matter (OM) in soils were compared in three different vegetation communities-emergent macrophyte, open water, and forested edge-in two 10-yr-old created riverine wetlands. Organic matter, cold water-extractable organic matter (CWEOM), anaerobic mineralizable carbon (AnMC), and DP varied significantly (P<0.05) among vegetation communities. The surface (0 to 9 cm) soils in the emergent macrophyte community (EMC) showed highest DP (0.07+/-0.01 mg N h-1 kg-1), OM (84.90+/-5.60 g kg-1), CWEOM (1.12+/-0.20 g kg-1), and AnMC (1.50+/-0.10 mg C h-1 kg-1). In the deeper layer (9 to 18 cm), DP and CWEOM (0.04+/-0.01 mg N h-1 kg-1 and 1.13+/-0.20 g kg-1, respectively) were significantly higher in the open water community (OWC) than in the emergent macrophyte and forested edge communities. Plant introduction did not affect DP or OM content and characteristics. After 10 yr of wetland development, mean DP increased 25-fold in the surface layer (from 0.002 to 0.053 mg N h-1 kg-1); OM content more than doubled to 90.80+/-19.22 g kg-1, and CWEOM and HWEOM increased 2.5 and 2.7 times respectively from 1993 (prewetland conditions) to 2004. Humic acids were the most abundant form of OM in 2004 and 1993 samples. Significant (P<0.05) positive relationships between DP and OM, CWEOM, and AnMC were found in the surface layer; in the 9- to 18-cm layer, significant positive relationships were found between DP and CWEOM and AnMC.

  18. MODELING DYNAMIC VEGETATION RESPONSE TO RAPID CLIMATE CHANGE USING BIOCLIMATIC CLASSIFICATION

    EPA Science Inventory

    Modeling potential global redistribution of terrestrial vegetation frequently is based on bioclimatic classifications which relate static regional vegetation zones (biomes) to a set of static climate parameters. The equilibrium character of the relationships limits our confidence...

  19. Assessment of the sensitivity of radar backscatter to seasonal snow and vegetation thaw dynamics in a boreal ecosystem

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Qualls, B.; Hardy, J.

    2002-01-01

    We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.

  20. Remote Sensing of Soil Moisture based on Dynamic Vegetation Scattering Properties for AMSR sensors

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Jones, L. A.

    2015-12-01

    Accurate mapping of soil moisture and its spatial-temporal variations are of great significance to scientific studies on global water, energy and carbon cycles as well as operational applications including flood and drought monitoring, water resources management and crop yield forecasts. An approach for deriving volumetric soil moisture using satellite passive microwave radiometry from the Advanced Microwave Scanning Radiometers AMSR-E and AMSR2 was developed in this study. The algorithm adopts a weighted averaging strategy for soil moisture estimation based on a dynamic selection of empirically determined vegetation single-scatter albedo values. The resulting soil moisture retrievals demonstrate more realistic global patterns and seasonal dynamics relative to the baseline University of Montana (UMT) soil moisture product. Quantitative analysis of the new approach against in situ soil moisture measurements over four global study regions also indicates significant improvement over the baseline algorithm, with coefficients of determination (R2) between the retrievals and in-situ measurements increasing by approximately 16.9% and 41.5% respectively; and bias-corrected RMSEs decreasing by about 25.0% and 38.2% for respective ascending and descending orbital data records. Initial comparisons between soil moisture retrievals from AMSR2 and SMAP indicate coherent global and seasonal patterns.

  1. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    NASA Astrophysics Data System (ADS)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-01-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation

  2. Relationship between vegetation dynamics and dune mobility in an arid transgressive coastal system, Maspalomas, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández-Cordero, Antonio I.; Hernández-Calvento, Luis; Espino, Emma Pérez-Chacón

    2015-06-01

    This paper explores the relationship between vegetation dynamics and dune mobility in an arid transgressive coastal dune system, specifically the dune field of Maspalomas (Gran Canaria, Canary Islands). The aim is to understand the strategies of colonization and survival that plant communities have developed in slacks that face dune advance. The relationship between plant colonization and dune migration was performed by following Tamarix canariensis and Traganum moquinii plants for several years. Morphological data about each individual as well as the distance of each plant to the dune were measured. A study of the colonization patterns developed by T. moquinii, T. canariensis, Cyperus laevigatus and Launaea arborescens communities was performed by analyzing the evolution of consolidated plant patches and adult plants in relation to the dune advance. This was achieved using digital orthophotos and spatial analysis from geographic information systems. Initiation of plant colonization over transgressive dunes occurs on both wet and dry slacks. The results show that both plant colonization and development of adult plants are largely related to dune mobility. Thus, survival of T. moquinii and T. canariensis plants under dune migration conditions is related to both distance to the dune front and plant height at the moment of burial. Distance from the dune front and plant height increases chance of survival. The dynamics of adult plants is also related to dune displacement rates. Thus, each community has different thresholds of resistance to mobility rates. The T. canariensis community withstands average rates higher than 3 m/year. Its arboreal structure allows this species to grow high enough to resist the advance of the dunes and burial. For the T. moquinii community, the population decreases gradually to eventually disappear when dune mobility rates exceed 4 m/year. The C. laevigatus community develops at dune mobility rates lower than 3 m/year, decreasing its surface

  3. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    ERIC Educational Resources Information Center

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  4. Dynamics of Affective Experience and Behavior in Depressed Adolescents

    ERIC Educational Resources Information Center

    Sheeber, Lisa B.; Allen, Nicholas B.; Leve, Craig; Davis, Betsy; Shortt, Joann Wu; Katz, Lynn Fainsilber

    2009-01-01

    Background: Depression is often characterized as a disorder of affect regulation. However, research focused on delineating the key dimensions of affective experience (other than valence) that are abnormal in depressive disorder has been scarce, especially in child and adolescent samples. As definitions of affect regulation center around processes…

  5. Research of the diurnal soil respiration dynamic in two typical vegetation communities in Tianjin estuarine wetland

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Meng, W. Q.; Li, H. Y.

    2016-08-01

    Understanding the differences and diurnal variations of soil respiration in different vegetation communities in coastal wetland is to provide basic reliable scientific evidence for the carbon "source" function of wetland ecosystems in Tianjin.Measured soil respiration rate which changed during a day between two typical vegetation communities (Phragmites australis, Suaeda salsa) in coastal wetland in October, 2015. Soil temperature and moisture were measured at the same time. Each of the diurnal curves of soil temperature in two communities had a single peak value, and the diurnal variations of soil moisture showed a "two peak-one valley" trend. The diurnal dynamic of soil respiration under the two communities had obvious volatility which showed a single peak form with its maximum between 12:00-14:00 and minimum during 18:00. The diurnal average of soil respiration rate in Phragmites australis communities was 3.37 times of that in Suaeda salsa communities. Significant relationships were found by regression analysis among soil temperature, soil moisture and soil respiration rate in Suaeda salsa communities. There could be well described by exponential models which was y = -0.245e0.105t between soil respiration rate and soil temperature, by quadratic models which was y = -0.276×2 + 15.277× - 209.566 between soil respiration rate and soil moisture. But the results of this study showed that there were no significant correlations between soil respiration and soil temperature and soil moisture in Phragmites australis communities (P > 0.05). Therefore, under the specific wetland environment conditions in Tianjin, soil temperature and moisture were not main factors influencing the diurnal variations of soil respiration rate in Phragmites australis communities.

  6. Vegetation composition, dynamics, and management of a bracken-grassland and northern-dry forest ecosystem.

    PubMed

    Nielsen, Scott E; Haney, Alan

    2003-06-01

    We investigated differences in vegetation composition and dynamics for two globally rare ecosystems, bracken-grasslands and northern-dry forests of northern Wisconsin. These ecosystems commonly have been viewed as degraded pine barrens. Bracken-grasslands contained a high dominance of exotic species, low native richness, and no obvious prairie species, suggesting logging-era anthropogenic origins. Differences in cover for common plants among ecosystems were examined using Mann-Whitney U tests of equivalence. Cover of all 8 graminoid species, 4 of 5 Ericaceae and Myricaceae species, and 10 of 17 species of forbs were significantly different between ecosystems. Vegetation changes over a 4-year period were examined through detrended correspondence analysis (DCA) and analysis of variance (ANOVA) repeated measures. DCA analyses of community composition failed to detect significant temporal trends within individual management units, although differences were apparent between ecosystems, regardless of sample year. In addition, no apparent patterns could be detected between years when comparing dominant individual species to management history (prescribed fire). This is contrary to what would be expected for a degraded pine barrens and questions the efficacy of using repeated prescribed fire as a management tool in bracken-grasslands. Methods for conservation and restoration of xeric ecosystems of northern Wisconsin have historically relied heavily on single species (e.g., sharp-tailed grouse) wildlife models, without full consideration of other factors. We suggest that stakeholders involved in these restoration projects examine historic processes and reference conditions prior to formulating management goals. Greater attention to the differentiation and individual management needs of pine barrens, northern-dry forests, and bracken-grasslands is needed.

  7. Is a substantial global bioenergy system feasible? A spatial analysis using a dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Erbrecht, T.; Lucht, W.; Lotze-Campem, H.

    2007-12-01

    Avoiding dangerous climate change requires drastic reductions in greenhouse gas emissions. However, the global demand for energy is projected to grow by more than 50 % until 2030 (IEA, 2006) and therefore actions are urgently required to decarbonize the global economy. Second generation bioenergy systems are promoted as a way forward to displace large amounts of fossil fuels with renewable materials, thereby increasing energy security and stabilizing atmospheric greenhouse gas concentrations. At the same time, concerns are being raised regarding the sustainability of large-scale dedicated biomass plantations with regard to extensive mono- cultures, irrigation and fertilization requirements. We use a dynamic global vegetation model (DGVM) including current agriculture to simulate the effects of rising competition for land when an additional spatially extensive production system for a new commodity, bioenergy, is added to the global land use mix under continued increase in global population size as well as per capita energy consumption. How much land is needed for a significant bioenergy generation if sufficient food production is warranted and what are the consequences for the terrestrial biosphere? To assess the potential impacts of a significant global bioenergy sector, we produced a selection of scenarios based on prior assumptions of total bioenergy demand, progress in conversion technologies and the availability of cultivable land limited by food requirements and biodiversity protection. We present the corresponding land use patterns as well as their impacts on the terrestrial carbon balance, evapotranspiration fluxes and irrigation demand. We find that an area of up to 50 % the size of current agricultural land is needed for the cultivation of ligno-cellulosic crops to satisfy high bioenergy demands. Carbon fluxes into the atmosphere caused by the removal of natural vegetation can equal those of 8 years of fossil fuel combustion.

  8. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  9. Spatial Self-Organization of Vegetation Subject to Climatic Stress-Insights from a System Dynamics-Individual-Based Hybrid Model.

    PubMed

    Vincenot, Christian E; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)-Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total

  10. Using Linear and Non-Linear Methods to Study Precipitation-Vegetation Dynamics at Global Scales

    NASA Astrophysics Data System (ADS)

    Lotsch, A.; Friedl, M. A.

    2002-12-01

    Large areas of the Earth's land surface experience significant spatio-temporal variability in precipitation regimes. This variability can result in important perturbations to ecosystem processes. In recent years remote sensing observations have been used to examine large-scale dynamics in ecosystem response to climate. However, because of the complexity of both the processes and data sets involved, analysis of coupled spatio-temporal variability in remote sensing and other earth science data poses a challenging problem. In this paper, linear and non-linear statistical learning techniques are used to perform automated feature extraction and unsupervised data analysis of precipitation and remotely sensed vegetation index data sets at global and inter-annual scales. To examine the joint variability of precipitation and vegetation, canonical correlation analysis (CCA) and maximum covariance analysis (MCA) are used. These techniques are designed to isolate coupled modes of different variables in both space and time. Unfortunately, MCA and CCA require fairly strict assumptions concerning the statistical distribution of the input variables. When such assumptions are not met, non-linear techniques can provide additional information that cannot be retrieved using linear techniques. In particular, independent component analysis (ICA) has recently emerged as a novel technique to isolate non-Gaussian signals from multivariate data. While many linear techniques rely on the variance/covariance information contained in a dataset, ICA uses higher order statistical moments to isolate patterns. ICA is particularly powerful for identifying spatial and temporal artifacts that are commonly contained in Earth science data sets and for isolating anomalous events that arise from perturbations in the atmosphere-biosphere system such as droughts and floods associated with El-Niño (and other) events. In this paper, ICA is used to extract information related to the spatial and temporal

  11. Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients.

    PubMed

    Blake, Stephen; Yackulic, Charles B; Cabrera, Fredy; Tapia, Washington; Gibbs, James P; Kümmeth, Franz; Wikelski, Martin

    2013-03-01

    Seasonal migration has evolved in many taxa as a response to predictable spatial and temporal variation in the environment. Individual traits, physiology and social state interact with environmental factors to increase the complexity of migratory systems. Despite a huge body of research, the ultimate causes of migration remain unclear. A relatively simple, tractable system - giant tortoises on Santa Cruz Island, Galapagos, was studied to elucidate the roles of environmental variation and individual traits in a partial migratory system. Specifically, we asked: (i) do Galapagos tortoises undergo long-distance seasonal migrations? (ii) is tortoise migration ultimately driven by gradients in forage quality or temperature; and (iii) how do sex and body size influence migration patterns? We recorded the daily locations of 17 GPS-tagged tortoises and walked a monthly survey along the altitudinal gradient to characterize the movements and distribution of tortoises of different sizes and sexes. Monthly temperature and rainfall data were obtained from weather stations deployed at various altitudes, and the Normalized Difference Vegetation Index was used as a proxy for forage quality. Analyses using net displacement or daily movement characteristics did not agree on assigning individuals as either migratory or non-migratory; however, both methods suggested that some individuals were migratory. Adult tortoises of both sexes move up and down an altitudinal gradient in response to changes in vegetation dynamics, not temperature. The largest tagged individuals all moved, whereas only some mid-sized individuals moved, and the smallest individuals never left lowland areas. The timing of movements varied with body size: large individuals moved upward (as lowland forage quality declined) earlier in the year than did mid-sized individuals, while the timing of downward movements was unrelated to body size and occurred as lowland vegetation productivity peaked. Giant tortoises are

  12. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow

  13. Analysis of NDVI-rainfall relationships reveals vegetation structure and ANPP dynamics in a Chihuahuan grassland-shrubland ecotone

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Diaz-Sierra, Ruben; Turnbull, Laura; Wainwright, John

    2015-04-01

    Shrub encroachment is perceived as a symptom of land degradation in the American Southwest, where large areas of grasslands dominated by black and blue grama have transitioned over the last 150 years to shrublands dominated by woody species (mainly creosotebush and mesquite), accompanied by accelerated water and wind erosion. In this study, simulations of plant biomass dynamics indicate that herbaceous and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18-km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (Sevilleta National Wildlife Refuge, New Mexico, USA) by investigating the relationship between 2000-13 records of remotely sensed MODIS NDVI and precipitation. Spatial analysis of NDVI-rainfall relationships at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation, and (b) decompose the NDVI signal into partial primary production components for herbaceous vegetation and shrubs across the study site. We further apply remote-sensed annual net primary production (ANPP) estimations and landscape-type classification to explore the influence of inter-annual variations in seasonal precipitation on the production of herbaceous and shrub vegetation. Our results suggest that changes in the amount and temporal pattern of precipitation comprising reductions in monsoonal summer rainfall and/or increases in winter precipitation may enhance the shrub-encroachment process in the

  14. Vegetation dynamics during different abandoned year spans in the land of the Loess Plateau of China.

    PubMed

    Hou, Jian; Fu, Bojie

    2014-02-01

    In this semi-arid area, many studies focused on the two-phase vegetation pattern were carried out to explore a changing vegetation trajectory on degraded land. However, this study conducted an analysis of a two-phase vegetation pattern and explored the successional vegetation trajectories in a positive succession without disturbance. In this work, 60 randomly distributed plots (1 × 1 m) were invested on four abandoned land areas (4-, 12-, 22-, and 50-year abandoned land) to determine attributes of vegetation, and soil physical and nutritional properties. It was found that vegetation distribution development went from homogeneous on 4-year abandoned land to heterogeneous on 50-year abandoned land, with a positive succession. Meanwhile, there was a significant difference in soil physical and nutritional properties for the inside and outside of vegetation patches. Vegetation patches can supply better soil physical and nutritional properties for vegetation than bare patches along the abandoned time. Vegetation diversity changes without a regular trend which may be due to the effect of environment and interspecies competition. This work picked up the slack for vegetation patterns succession research and provided a quantitative analysis approach.

  15. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    NASA Astrophysics Data System (ADS)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-05-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. In the Chihuahuan Desert, large areas of grasslands dominated by perennial grass species have transitioned over the last 150 years to shrublands dominated by woody species, accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including precipitation variations, land-use change, and soil erosion-vegetation feedbacks. In this study, using a simple ecohydrological modelling framework, we show that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant-growth and water-use patterns. Therefore, shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyse the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of remotely sensed vegetation greenness (MODIS NDVI) and antecedent rainfall. NDVI-rainfall relationships show a high sensitivity to spatial variations on dominant vegetation types across the grassland-shrubland ecotone, and provide biophysical criteria to (a) classify landscape types as a function of the spatial distribution of dominant vegetation and to (b) decompose the NDVI signal into partial components of annual net primary production (ANPP) for herbaceous vegetation and shrubs. Analysis of remotely sensed ANPP dynamics across the study site indicates that plant growth for herbaceous vegetation is particularly synchronized with monsoonal summer rainfall. For shrubs, ANPP is better explained by winter plus summer precipitation, overlapping the monsoonal period (June-September) of rain concentration. Our results suggest that shrub

  16. Temporal variations of low molecular mass organic acids during vegetation period in temperate forest soil affected by acidification

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Drabek, O.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    The Low Molecular Mass Organic Acids (LMMOA) are essential in processes affecting the soils and represent reactive fraction of dissolved organic carbon (DOC). LMMOA influence soil-chemistry behaviour, participate in transport of mineral nutrition and reduce potential toxicity of selected elements like Al. The aim of this research was to assess behaviour, amount and composition of LMMOA in forest soil under different vegetation cover. The researched area is located in the naturally acid Jizera Mountains (Czech Republic), which was further affected by acid deposition and improper forest management. Soil samples from organic F and H horizons, organo-mineral A horizon and spodic or cambic mineral B horizons were taken under beech and spruce stands monthly (from April to October). Both stands were located immediately next to each other. The collected soil samples were analyzed immediately in a "fresh" state. Contents of LMMOA in deionised water extract were determined by means of ion-exchange chromatography (ICS-1600, Dionex, USA) with suppressed conductivity and gradient elution of KOH mobile phase. The contents of LMMOAS were also determined in precipitation samples. In addition, other selected elements (Al, Fe, Ca, Na, Mg and K), Al speciation and main inorganic anions were determined in water extract and precipitation samples. The highest amounts of LMMOA (mainly lactic, acetic, formic, malic and oxalic acid) were observed in organic F and H horizons and measured amounts decreased with increasing soil profile depth. Higher contents were determined in soil under spruce forest than under beech forest. External inputs of LMMOA in a form of precipitation were assessed as less significant in comparison with the soil processes (e.g. soil biological activity, soil organic matter decomposition processes). LMMOA amounts were higher in spring and summer (from April to August), caused by increased biological activity, while lower amounts were observed during the autumn period

  17. FMRI activation with an "affective speech" paradigm in vegetative and minimally conscious States: applicability and prognostic value.

    PubMed

    Piperno, R; Battistini, A; Cevolani, D; Maffei, M; Leonardi, M; Agati, R

    2012-07-01

    Vegetative state (VS) and minimally conscious state (MCS) are considered different clinical entities but their differential diagnosis remains challenging. Some VS patients can show an MCS-like activation in functional magnetic resonance imaging (fMRI) studies that seems to predict recovery from VS. We studied fMRI activation with an affective speech paradigm in a cohort of non-communicative brain-injured individuals consecutively admitted to a post-acute neurorehabilitation facility in five years. Among 93 eligible subjects, 65 met the clinical criteria for VS and 28 for MCS. Because of exclusion criteria, activation studies were performed in only 30 cases out of 93 and analysed in only 24 (about ¼ of the eligible cases): 19 VS and five MCS patients. The passive acoustic stimulus consisted in a familiar voice narrating a significant episode in the patient's life, administered by nonmagnetic earphones. All the MCS patients showed an activation spread to secondary associative cortices but also 52.7% of the VS patients displayed an "atypical" large-scale activation pattern. Regarding the clinical outcome, 80% of the patients with large-scale network activation (LSNA) had some recovery of consciousness. Our results confirm that the VS patients with LSNA at fMRI study have potential for further recovery of consciousness, whereas no patient without activation or only typical activation improved. fMRI study with an affective speech paradigm, when applicable, seems to have a valuable prognostic value in VS patients, even if there are major limitations in terms of applicability.

  18. Bipolar disorder dynamics: affective instabilities, relaxation oscillations and noise

    PubMed Central

    Geddes, John R.; Goodwin, Guy M.; Holmes, Emily A.

    2015-01-01

    Bipolar disorder is a chronic, recurrent mental illness characterized by extreme episodes of depressed and manic mood, interspersed with less severe but highly variable mood fluctuations. Here, we develop a novel mathematical approach for exploring the dynamics of bipolar disorder. We investigate how the dynamics of subjective experience of mood in bipolar disorder can be understood using a relaxation oscillator (RO) framework and test the model against mood time-series fluctuations from a set of individuals with bipolar disorder. We show that variable mood fluctuations in individuals diagnosed with bipolar disorder can be driven by the coupled effects of deterministic dynamics (captured by ROs) and noise. Using a statistical likelihood-based approach, we show that, in general, mood dynamics are described by two independent ROs with differing levels of endogenous variability among individuals. We suggest that this sort of nonlinear approach to bipolar disorder has neurobiological, cognitive and clinical implications for understanding this mental illness through a mechacognitive framework. PMID:26577592

  19. A System Dynamics Analysis of the Factors Affecting Combat Readiness

    DTIC Science & Technology

    1980-06-01

    experimental model approach to improving systems is the third foundation of system dynamics. The last foundation is the use of the digital computer to conduct...completion rate is a third order delay of the rated supplement requalification rate (RSRR). This delay represents the time period which is required...the relationships which exist in the combat readiness system, the third objective could be accomplished. The construction of a dynamic systems and

  20. Active Distributed Temperature Sensing to Characterise Soil Moisture and Heat Dynamics of a Vegetated Hillslope.

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Krause, S.; Chalari, A.; Hannah, D. M.; Mondanos, M.

    2015-12-01

    Complex correlated water and heat dynamics characterise the land surface and shallow subsurface, as consequence of the concurrent action of multiple transport processes. Point sensors and/or remote techniques show limitations in providing precise measurements of key indicators of soil heat and water transport such as soil temperature and moisture, at both high spatiotemporal resolution and large areal coverage. Fibre optics Distributed Temperature Sensors (DTS) allow for precise temperature measurement along optical cables of up to several kilometres, sampling at resolutions of up to few centimetres in space and seconds in time. The optical cable is the sensor and can be buried in the soil with minimum disturbance, to construct soil temperature profiles, over large surveying areas. Soil moisture can be obtained from the analysis of both heating and cooling rates measured by the DTS, when copper conductors embedded in the optical cable are electrically heated (technique known as Active DTS). In July 2015, three loops of optical cable of 500m each have been buried in the soil at different depths (0.05m, 0.25m and 0.40m), along an inclined recently vegetated field in the Birmingham area, UK. Active DTS tests have been set with the aim to characterize the soil temperature and moisture regimes of the field at high spatial resolution, in response to both sporadic events such as showers or scheduled irrigation, and diurnal fluctuations induced by atmospheric forcing. Spatiotemporal variations of the aforementioned regimes will be used to trace vertical and horizontal soil heat and water movements. Finally, assumptions on the possibility to correlate soil heat and water dynamics to a specific process such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the Marie Curie Initial Training Network (ITN) INTERFACES project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with

  1. Simulating oxygen isotope ratios in tree ring cellulose using a dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Keel, Sonja G.; Joos, Fortunat; Spahni, Renato; Saurer, Matthias; Weigt, Rosemarie B.; Klesse, Stefan

    2016-07-01

    Records of stable oxygen isotope ratios in tree rings are valuable tools to reconstruct past climatic conditions and investigate the response of trees to those conditions. So far the use of stable oxygen isotope signatures of tree rings has not been systematically evaluated in dynamic global vegetation models (DGVMs). DGVMs integrate many hydrological and physiological processes and their application could improve proxy-model comparisons and the interpretation of oxygen isotope records. Here we present an approach to simulate leaf water and stem cellulose δ18O of trees using the LPX-Bern DGVM (LPX-Bern). Our results lie within a few per mil of measured tree ring δ18O of 31 different forest stands mainly located in Europe. Temporal means over the last 5 decades as well as interannual variations for a subset of sites in Switzerland are captured. A sensitivity analysis reveals that relative humidity, temperature, and the water isotope boundary conditions have the largest influence on simulated stem cellulose δ18O, followed by all climatic factors combined, whereas increasing atmospheric CO2 and nitrogen deposition exert no impact. We conclude that simulations with LPX-Bern are useful for investigating large-scale oxygen isotope patterns of tree ring cellulose to elucidate the importance of different environmental factors on isotope variations and therefore help to reduce uncertainties in the interpretation of δ18O of tree rings.

  2. Simulation of emissions from wildfires in Heilongjiang province, Northern China using dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Venevsky, Sergey

    2016-04-01

    The new global fire model SEVER-FIRE is a mechanistic model which calculates number of human-induced and lightning fires as well as area burnt and carbon and particle emissions for both cases. The model operates at a daily time step and uses climate data (daily minimum/maximum temperature, daily precipitation/convective precipitation and daily short-wave radiation) as an input. The model works in interactive mode with a dynamic global vegetation model (DGVM), which provides fuel content and moisture and receives back amount of biomass burnt. SEVER-FIRE applies at a variable spatial resolution and for regional and global scale. This model was applied for simulation of Russian wildfires in 2010. We calculated burnt area for a case study of Heilongjiang province, Northern China and compared it with GFED satellite data products and field statistics of forest authorities in the province for 1980-2010. It was found that carbon dioxide emissions from this fire prone area are slightly decreased in three decades.

  3. Regional adaptation of a dynamic global vegetation model using a remote sensing data derived land cover map of Russia

    NASA Astrophysics Data System (ADS)

    Khvostikov, S.; Venevsky, S.; Bartalev, S.

    2015-12-01

    The dynamic global vegetation model (DGVM) SEVER has been regionally adapted using a remote sensing data-derived land cover map in order to improve the reconstruction conformity of the distribution of vegetation functional types over Russia. The SEVER model was modified to address noticeable divergences between modelling results and the land cover map. The model modification included a light competition method elaboration and the introduction of a tundra class into the model. The rigorous optimisation of key model parameters was performed using a two-step procedure. First, an approximate global optimum was found using the efficient global optimisation (EGO) algorithm, and afterwards a local search in the vicinity of the approximate optimum was performed using the quasi-Newton algorithm BFGS. The regionally adapted model shows a significant improvement of the vegetation distribution reconstruction over Russia with better matching with the satellite-derived land cover map, which was confirmed by both a visual comparison and a formal conformity criterion.

  4. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  5. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China.

    PubMed

    Zhou, Jihua; Cai, Wentao; Qin, Yue; Lai, Liming; Guan, Tianyu; Zhang, Xiaolong; Jiang, Lianhe; Du, Hui; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-12-01

    Vegetation phenology is a sensitive indicator of ecosystem response to climate change, and plays an important role in the terrestrial biosphere. Improving our understanding of alpine vegetation phenology dynamics and the correlation with climate and grazing is crucial for high mountains in arid areas subject to climatic warming. Using a time series of SPOT Normalized Difference Vegetation Index (NDVI) data from 1998 to 2013, the start of the growing season (SOS), end of the growing season (EOS), growing season length (GSL), and maximum NDVI (MNDVI) were extracted using a threshold-based method for six vegetation groups in the Heihe River headwaters. Spatial and temporal patterns of SOS, EOS, GSL, MNDVI, and correlations with climatic factors and livestock production were analyzed. The MNDVI increased significantly in 58% of the study region, whereas SOS, EOS, and GSL changed significantly in <5% of the region. The MNDVI in five vegetation groups increased significantly by a range from 0.045 to 0.075. No significant correlation between SOS and EOS was observed in any vegetation group. The SOS and GSL were highly correlated with temperature in May and April-May, whereas MNDVI was correlated with temperature in August and July-August. The EOS of different vegetation groups was correlated with different climatic variables. Maximum and minimum temperature, accumulated temperature, and effective accumulated temperature showed stronger correlations with phenological metrics compared with those of mean temperature, and should receive greater attention in phenology modeling in the future. Meat and milk production were significantly correlated with the MNDVI of scrub, steppe, and meadow. Although the MNDVI increased in recent years, ongoing monitoring for rangeland degradation is recommended.

  6. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    PubMed

    Zhang, Jien; Wang, Tianming; Ge, Jianping

    2015-01-01

    In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI) to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p < 0.05). The spring EVI had largest increase in space. The conversions of croplands on steep slopes to forests resulting from national policies led to significant increases in EVI. The increase in EVI was not driven by annual average temperature and annual precipitation. By referencing ecological restoration statistical data and field observations, we showed that ecological restoration programs significantly improved vegetation cover in southern China. Increase in the area of farmland-converted forestlands has reduced soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  7. Prediction of Peromyscus maniculatus (deer mouse) population dynamics in Montana, USA, using satellite-driven vegetation productivity and weather data.

    PubMed

    Loehman, Rachel A; Elias, Joran; Douglass, Richard J; Kuenzi, Amy J; Mills, James N; Wagoner, Kent

    2012-04-01

    Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for development of early-warning systems for disease risk. Relationships among weather variables, satellite-derived vegetation productivity, and deer mouse populations were examined for a grassland site east of the Continental Divide and a sage-steppe site west of the Continental Divide in Montana, USA. We acquired monthly deer mouse population data for mid-1994 through 2007 from long-term study sites maintained for monitoring changes in hantavirus reservoir populations, and we compared these with monthly bioclimatology data from the same period and gross primary productivity data from the Moderate Resolution Imaging Spectroradiometer sensor for 2000-06. We used the Random Forests statistical learning technique to fit a series of predictive models based on temperature, precipitation, and vegetation productivity variables. Although we attempted several iterations of models, including incorporating lag effects and classifying rodent density by seasonal thresholds, our results showed no ability to predict rodent populations using vegetation productivity or weather data. We concluded that trophic cascade connections to rodent population levels may be weaker than originally supposed, may be specific to only certain climatic regions, or may not be detectable using remotely sensed vegetation productivity measures, although weather patterns and vegetation dynamics were positively correlated.

  8. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China

    PubMed Central

    Zhang, Jien; Wang, Tianming; Ge, Jianping

    2015-01-01

    In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI) to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p < 0.05). The spring EVI had largest increase in space. The conversions of croplands on steep slopes to forests resulting from national policies led to significant increases in EVI. The increase in EVI was not driven by annual average temperature and annual precipitation. By referencing ecological restoration statistical data and field observations, we showed that ecological restoration programs significantly improved vegetation cover in southern China. Increase in the area of farmland-converted forestlands has reduced soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China’s afforestation program. PMID:26115116

  9. [A novel vegetation index (MPRI) of corn canopy by vehicle-borne dynamic prediction].

    PubMed

    Li, Shu-qiang; Li, Min-zan; Sun, Hong

    2014-06-01

    Ground-based remote sensing system is a significant way to understand the growth of corn and provide accurate and scientific data for precision agriculture. The vehicle-borne system is one of the most important tools for corn canopy monitoring. However, the vehicle-borne growth monitoring system cannot maintain steady operations due to the row spacing of corn. The reflectance of corn canopy, which was used to construct the model for the chlorophyll content, was disturbed by the reflectance of soil background. The background interference with the reflectance could not be removed effectively, which would result in a deviation in the growth monitoring. In order to overcome this problem, a novel vegetation index named MPRI was developed in the present paper. The tests were carried out by the vehicle-borne system on the cornfield. The sensors which configured the vehicle-borne system had 4 bands, being respectively 550, 650, 766 and 850 nm. It would obtain the spectral data while the vehicle moved along the row direction. The sampling rate was about 1 point per second. The GPS receiver obtained the location information at the same rate. MPRI was made up by the reflectance ratio of 660 and 550 nm. It was very effective to analyze the information about the reflectance of the canopy. The results of experiments showed that the MPRI of soil was the positive value and the MPRI of canopy was the negative value. So it is easier to distinguish the spectral information about soil and corn canopy by MPRI. The results indicated that: it had satisfactory forecasting accuracy for the chlorophyll content by using the MPRI on the moving monitoring. The R2 of the prediction model was about 0.72. The R2 Of the model of NDVI, which was used to represent the chlorophyll content, was only 0.24. It indicates that MPRI had good measurement results for the dynamic measurement process. It provided the novel measurement way to get the canopy reflectance spectra and the better vegetation index to

  10. [Natural vegetation restoration and soil nutrient dynamics of abandoned farmlands in forest-steppe zone on Loess Plateau].

    PubMed

    Wen, Zhongming; Jiao, Feng; Liu, Baoyuan; Bu, Yaojun; Jiao, Juying

    2005-11-01

    To understand the relationship between plant community succession and soil nutrient dynamics is crucial in intervening vegetation succession. This paper reported the results from a study carried out in a forest-steppe zone on the Loess Plateau, with emphasis on the vegetation characteristics and soil nutrient dynamics duringvegetation restoration on abandoned farmlands of this area. The results showed that under zonal habitat conditions, natural vegetation succession would turn toward the original vegetation communities, but the expected shrub or trees communities didn't occur after 40 approximately 50 years, and Stipa bungeana, Artemisia sacrorum, Bothriochloa ischaemun, Stipa grandis and Lespedeza davurica communities were still the widely distributed communities. Vegetation restoration had a significant effect on soil nutrient dynamics. In general, soil nutrient contents increased with restoration time, and extremely significant changes occurred in soil organic matter, total N, available N, and available K (P< 0.001),while only significant changes in available P (0.05 < P < 0.01) and no significant change in total P (P > 0.05). Moreover, the changes were also found in soil profile. Statistical analysis showed that from surface layer (0 approximately 20 cm) to deeper layer (to 60 cm), extremely significant changes occurred in soil organic matter, total N, available N, available K and available P (P < 0.001), and significant change in total P (P< 0.05). Soil nutrients intended to accumulate in surface layer. Further linear correlation analysis showed that soil organic matter, total N, available N and available K were significantly correlated each other ( P< 0.001), but didn't show correlation with soil total P and available P.

  11. Determining Stochasticity and Causality of Vegetation Dynamics in the Southwestern Amazon: Non-linear Time Series Analysis and Dynamic Factor Analysis of EVI2 Data

    NASA Astrophysics Data System (ADS)

    Klarenberg, G.

    2015-12-01

    Infrastructure projects such as road paving have proven to bring a variety of (mainly) socio-economic advantages to countries and populations. However, many studies have also highlighted the negative socio-economic and biophysical effects that these developments have at local, regional and even larger scales. The "MAP" area (Madre de Dios in Peru, Acre in Brazil, and Pando in Bolivia) is a biodiversity hotspot in the southwestern Amazon where sections of South America's Inter-Oceanic Highway were paved between 2006 and 2010. We are interested in vegetation dynamics in the area since it plays an important role in ecosystem functions and ecosystem services in socio-ecological systems: it provides information on productivity and structure of the forest. In preparation of more complex and mechanistic simulation of vegetation, non-linear time series analysis and Dynamic Factor Analysis (DFA) was conducted on Enhanced Vegetation Index (EVI) time series - which is a remote sensing product and provides information on vegetation dynamics as it detects chlorophyll (productivity) and structural change. Time series of 30 years for EVI2 (from MODIS and AVHRR) were obtained for 100 communities in the area. Through specific time series cluster analysis of the vegetation data, communities were clustered to facilitate data analysis and pattern recognition. The clustering is spatially consistent, and appears to be driven by median road paving progress - which is different for each cluster. Non-linear time series analysis (multivariate singular spectrum analysis, MSSA) separates common signals (or low-dimensional attractors) across clusters. Despite the presence of this deterministic structure though, time series behavior is mostly stochastic. Granger causality analysis between EVI2 and possible response variables indicates which variables (and with what lags) are to be included in DFA, resulting in unique Dynamic Factor Models for each cluster.

  12. Decomposing the uncertainty in climate impact projections of Dynamic Vegetation Models: a test with the forest models LANDCLIM and FORCLIM

    NASA Astrophysics Data System (ADS)

    Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald

    2015-04-01

    Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but

  13. A hierarchical state space approach to affective dynamics

    PubMed Central

    Lodewyckx, Tom; Tuerlinckx, Francis; Kuppens, Peter; Allen, Nicholas; Sheeber, Lisa

    2010-01-01

    Linear dynamical system theory is a broad theoretical framework that has been applied in various research areas such as engineering, econometrics and recently in psychology. It quantifies the relations between observed inputs and outputs that are connected through a set of latent state variables. State space models are used to investigate the dynamical properties of these latent quantities. These models are especially of interest in the study of emotion dynamics, with the system representing the evolving emotion components of an individual. However, for simultaneous modeling of individual and population differences, a hierarchical extension of the basic state space model is necessary. Therefore, we introduce a Bayesian hierarchical model with random effects for the system parameters. Further, we apply our model to data that were collected using the Oregon adolescent interaction task: 66 normal and 67 depressed adolescents engaged in a conflict interaction with their parents and second-to-second physiological and behavioral measures were obtained. System parameters in normal and depressed adolescents were compared, which led to interesting discussions in the light of findings in recent literature on the links between cardiovascular processes, emotion dynamics and depression. We illustrate that our approach is flexible and general: The model can be applied to any time series for multiple systems (where a system can represent any entity) and moreover, one is free to focus on whatever component of the versatile model. PMID:21516216

  14. Space charges can significantly affect the dynamics of accelerator maps

    NASA Astrophysics Data System (ADS)

    Bountis, Tassos; Skokos, Charalampos

    2006-10-01

    Space charge effects can be very important for the dynamics of intense particle beams, as they repeatedly pass through nonlinear focusing elements, aiming to maximize the beam's luminosity properties in the storage rings of a high energy accelerator. In the case of hadron beams, whose charge distribution can be considered as “frozen” within a cylindrical core of small radius compared to the beam's dynamical aperture, analytical formulas have been recently derived [C. Benedetti, G. Turchetti, Phys. Lett. A 340 (2005) 461] for the contribution of space charges within first order Hamiltonian perturbation theory. These formulas involve distribution functions which, in general, do not lead to expressions that can be evaluated in closed form. In this Letter, we apply this theory to an example of a charge distribution, whose effect on the dynamics can be derived explicitly and in closed form, both in the case of 2-dimensional as well as 4-dimensional mapping models of hadron beams. We find that, even for very small values of the “perveance” (strength of the space charge effect) the long term stability of the dynamics changes considerably. In the flat beam case, the outer invariant “tori” surrounding the origin disappear, decreasing the size of the beam's dynamical aperture, while beyond a certain threshold the beam is almost entirely lost. Analogous results in mapping models of beams with 2-dimensional cross section demonstrate that in that case also, even for weak tune depressions, orbital diffusion is enhanced and many particles whose motion was bounded now escape to infinity, indicating that space charges can impose significant limitations on the beam's luminosity.

  15. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    USGS Publications Warehouse

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  16. How Does the Electron Dynamics Affect the Global Reconnection Rate

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  17. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  18. Late Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades

    USGS Publications Warehouse

    Jones, Miriam C.; Bernhardt, Christopher E.; Willard, Debra A.

    2014-01-01

    Tropical and subtropical peatlands are considered a significant carbon sink. The Florida Everglades includes 6000-km2 of peat-accumulating wetland; however, detailed carbon dynamics from different environments within the Everglades have not been extensively studied or compared. Here we present carbon accumulation rates from 13 cores and 4 different environments, including sawgrass ridges and sloughs, tree islands, and marl prairies, whose hydroperiods and vegetation communities differ. We find that the lowest rates of C accumulation occur in sloughs in the southern Everglades. The highest rates are found where hydroperiods are generally shorter, including near-tails of tree islands and drier ridges. Long-term average rates of 100 to >200 g C m−2 yr−1 are as high, and in some cases, higher than rates recorded from the tropics and 10–20 times higher than boreal averages. C accumulation rates were impacted by both the Medieval Climate Anomaly and the Little Ice Age, but the largest impacts to C accumulation rates over the Holocene record have been the anthropogenic changes associated with expansion of agriculture and construction of canals and levees to control movement of surface water. Water management practices in the 20th century have altered the natural hydroperiods and fire regimes of the Everglades. The Florida Everglades as a whole has acted as a significant carbon sink over the mid- to late-Holocene, but reduction of the spatial extent of the original wetland area, as well as the alteration of natural hydrology in the late 19th and 20th centuries, have significantly reduced the carbon sink capacity of this subtropical wetland.

  19. High-resolution vegetation dynamics reconstitution in the Zaire/Congo watershed since MIS 6

    NASA Astrophysics Data System (ADS)

    Dalibard, Mathieu; Popescu, Speranta-Maria; Maley, Jean; Pittet, Bernard; Marsset, Tania; Baudin, François; Dennielou, Bernard; Sionneau, Thomas; Escarguel, Gilles; Droz, Laurence

    2010-05-01

    The present-day latitudinal migrations of the Intertropical Convergence Zone (ITCZ) are controlled by ocean/atmosphere dynamics impact seasonality of monsoon influence on the intertropical eastern Atlantic and western Africa. The geographical position of the Zaire/Congo drainage basin spanning the Northern and Southern hemispheres makes it a key area to study variation of the climatic parameters (temperature and monsoon activity) through time. To identify the ITCZ variability during the last 180 ka, a multiproxy analysis (pollen grains, elemental ratio derived from XRF analysis, organic matter content, clay mineralogy) was performed on the core KZAI-02, drilled offshore Angola at 3418 m water depth. Pollen record indicates a very high plant diversity (327 taxa representative of 106 families). They have been grouped as follow with respect to their ecological requirements: (1) mangrove, (2) rain forest, (3) warm-temperate forest, (4) pioneer forest, (5) afromontane forest, (6) savannah, (7) marshes. The relative fluctuation of these ecological groups during the last 180 ka allows us to reconstruct the dynamics of vegetation and its response to global climate forcing. Generally the glacial periods are characterized by the development of the afromontane forest (mainly Podocarpus) on reliefs while in lower altitudes the savannah (Fabaceae Papilionoidae, Poaceae, Zygophyllum, etc.) spreads in response to the relative precipitation decrease. During interglacials our records indicate a progressive development of forest environments, the pioneer forest (Alchornea, Bridelia, Cnestis, etc.) being progressively replaced by the tropical rain forest (Acanthaceae, Fabaceae Caesalpinoideae, Sapotaceae, etc.). This evolution indicates an increase in temperature and humidity. At the stadial/interglacial transitions the development of the mangrove (Rhizophoraceae, Avicenia, Sonneratia, etc.) seems to respond principally to sea level rise. The maximum extension of Cyperaceae marshes

  20. Microbial Dynamics During a Temporal Sequence of Bioreduction Stimulated by Emulsified Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Schadt, C. W.; Gihring, T. M.; Yang, Z.; Wu, W.; Green, S.; Overholt, W.; Zhang, G.; Brandt, C. C.; Campbell, J. H.; Carroll, S. C.; Criddle, C.; Jardine, P. M.; Lowe, K.; Mehlhorn, T.; Kostka, J. E.; Watson, D. B.; Brooks, S. C.

    2011-12-01

    Amendments of slow-release substrates (e.g. emulsified vegetable oil; EVO) are potentially pragmatic alternatives to short-lived labile substrates for sustained uranium bioimmobilization within groundwater systems. The spatial and temporal dynamics of geochemical and microbial community changes during EVO amendment are likely to differ significantly from populations stimulated by readily utilizable soluble substrates (e.g. ethanol or acetate). We tracked dynamic changes in geochemistry and microbial communities for 270 days following a one-time EVO injection at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site that resulted in decreased groundwater U concentrations for ~4 months. Pyrosequencing and quantitative PCR of 16S rRNA and dissimilatory sulfite reductase (dsrA) genes from monitoring well samples revealed a rapid decline in bacterial community richness and evenness after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group consisting of 10-15 dominant OTUs, rather than a broad community stimulation. By association of the known physiology of close relatives identified in the pyrosequencing analysis, it is possible to infer a hypothesized sequence of microbial functions leading the major changes in electron donors and acceptors in the system. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition and utilized the glycerol associated with the oils. Sulfate-reducing bacteria from the genus Desulforegula, known for LCFA oxidation to acetate, also dominated shortly after EVO amendment and are thought to catalyze this process. Acetate and H2 production during LCFA degradation appeared to stimulate NO3-, Fe(III), U(VI), and SO42- reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late in the experiment and in some samples constituted over 25 % of the total

  1. Modeling Amazon forest vegetation dynamics and community response to increased wind disturbance

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Negron Juarez, R. I.; Chambers, J. Q.; Marra, D.; Rifai, S. W.; Knox, R. G.; Riley, W. J.; Koven, C. D.; McGroddy, M. E.; Urquiza-Muñoz, J. D.; Tello-Espinoza, R.; Ribeiro, G. H. P. M.; Higuchi, N.

    2015-12-01

    Determining the drivers of tree mortality in Amazonia is a complex task, yet essential to reliable prediction of carbon storage in a warmer climate. Past studies have shown an east-west gradient of forest disturbance and rainfall amount across Amazonia. This study uses remote sensing and dynamic vegetation modeling to take a deeper look at drivers of tree mortality and community composition shifts associated with varying mortality rates. Our analysis, using 20 years of Landsat 5 images, showed that ever-wet Amazonia (located in north-west Amazonia, i.e. NWA) was more susceptible to windthrows than the Central Amazon (i.e. CA), which has a a well-defined dry season. The higher frequency of windthrows in NWA forest correlates with higher frequency and intensity of deep convection events in this region, observed using Tropical Rainfall Measuring Mission (TRMM) data. While a combination of factors including: soil characteristics (and by proxy rooting depth) and community composition exacerbate the regional gradient of disturbance, wind was the mechanistic agent of disturbance. Using an individual-based gap model for tropical forests populated with the most representative NWA tree species and increased mortality rates, we found a decrease of biomass in this region and a slight increase in NPP compared to a control simulation, a pattern that is similar to observations. The model predicted which species had the largest response in basal area change due to elevated disturbance, but there was a non-significant shift in community composition in the NWA forests. However, analysis found strong differences in community composition between the modeled NWA and CA regions, consistent with observed results. When CA forests were subject to higher mortality rate similar to the current NWA region, dissimilarity in community composition continued to persist. In addition the model identified species-specific maximum tree height and maximum diameter as the most influential predictors of

  2. Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.

    2014-12-01

    In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary

  3. Fire in a Changing Climate: Stochastic versus Threshold-constrained Ignitions in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Sheehan, T.; Bachelet, D. M.; Ferschweiler, K.

    2015-12-01

    The MC2 dynamic global vegetation model fire module simulates fire occurrence, area burned, and fire impacts including mortality, biomass burned, and nitrogen volatilization. Fire occurrence is based on fuel load levels and vegetation-specific thresholds for three calculated fire weather indices: fine fuel moisture code (FFMC) for the moisture content of fine fuels; build-up index (BUI) for the total amount of fuel available for combustion; and energy release component (ERC) for the total energy available to fire. Ignitions are assumed (i.e. the probability of an ignition source is 1). The model is run with gridded inputs and the fraction of each grid cell burned is limited by a vegetation-specific fire return period (FRP) and the number of years since the last fire occurred in the grid cell. One consequence of assumed ignitions FRP constraint is that similar fire behavior can take place over large areas with identical vegetation type. In regions where thresholds are often exceeded, fires occur frequently (annually in some instances) with a very low fraction of a cell burned. In areas where fire is infrequent, a single hot, dry climate event can result in intense fire over a large region. Both cases can potentially result in large areas with uniform vegetation type and age. To better reflect realistic fire occurrence, we have developed a stochastic fire occurrence model that: a) uses a map of relative ignition probability and a multiplier to alter overall ignition occurrence; b) adjusts the original fixed fire thresholds with ignition success probabilities based on fire weather indices; and c) calculates spread by using a probability based on slope and wind direction. A Monte Carlo method is used with all three algorithms to determine occurrence. The new stochastic ignition approach yields more variety in fire intensity, a smaller annual total of cells burned, and patchier vegetation.

  4. Affective Dynamics of Leadership: An Experimental Test of Affect Control Theory

    ERIC Educational Resources Information Center

    Schroder, Tobias; Scholl, Wolfgang

    2009-01-01

    Affect Control Theory (ACT; Heise 1979, 2007) states that people control social interactions by striving to maintain culturally shared feelings about the situation. The theory is based on mathematical models of language-based impression formation. In a laboratory experiment, we tested the predictive power of a new German-language ACT model with…

  5. Dynamically Tracking Anxious Individuals' Affective Response to Valenced Information.

    PubMed

    Fua, Karl C; Teachman, Bethany A

    2017-03-30

    Past research has shown that an individual's feelings at any given moment reflect currently experienced stimuli as well as internal representations of similar past experiences. However, anxious individuals' affective reactions to streams of interrelated valenced information (vs. reactions to static stimuli that are arguably less ecologically valid) are rarely tracked. The present study provided a first examination of the newly developed Tracking Affect Ratings Over Time (TAROT) task to continuously assess anxious individuals' affective reactions to streams of information that systematically change valence. Undergraduate participants (N = 141) completed the TAROT task in which they listened to narratives containing positive, negative, and neutral physically- or socially-relevant events, and indicated how positive or negative they felt about the information they heard as each narrative unfolded. The present study provided preliminary evidence for the validity and reliability of the task. Within scenarios, participants higher (vs. lower) in anxiety showed many expected negative biases, reporting more negative mean ratings and overall summary ratings, changing their pattern of responding more quickly to negative events, and responding more negatively to neutral events. Furthermore, individuals higher (vs. lower) in anxiety tended to report more negative minimums during and after positive events, and less positive maximums after negative events. Together, findings indicate that positive events were less impactful for anxious individuals, whereas negative experiences had a particularly lasting impact on future affective responses. The TAROT task is able to efficiently capture a number of different cognitive biases, and may help clarify the mechanisms that underlie anxious individuals' biased negative processing. (PsycINFO Database Record

  6. Factors related to fruit, vegetable and traditional food consumption which may affect health among Alaska Native People in Western Alaska

    PubMed Central

    Johnson, Jennifer S.; Nobmann, Elizabeth D.; Asay, Elvin

    2012-01-01

    Objectives Determine intake of fruits, vegetables and traditional foods (TF), availability of foods, and attitudes towards increasing their consumption. Study design Establish community baseline through a cross-sectional sample of residents who were weighed, measured and interviewed. Village stores were surveyed for food availability, price and quality. Methods Eighty-eight respondents self-identified as the household member primarily responsible for food shopping and cooking were surveyed in 3 Western Alaska Native villages using a food frequency questionnaire, and village stores were evaluated using food environment surveys. Results Overweight (BMI[kg/m2] >25) was present in 68% of participants. Fruit and vegetable intake (3.3 median servings/day) was low in comparison to recommended intakes of 5–9 servings/d. Seventy-two per cent were eating less than 5 servings/d of fruits and vegetables combined. Thirty-four per cent of respondents were trying to eat more vegetables; 41% were trying to eat more fruits. The median number of servings of TF was 3.2/d (mean 4.3/d). Seventy-seven per cent of respondents reported that they ate enough TF. Conclusion Recommendations to continue use of TF and increase intake of fruits and vegetables are consistent with local attitudes. Our findings indicate that increasing the availability of fruits and vegetables would be well received. Information from this study provides a basis for nutrition education and food supplement programs that is responsive to the needs and perceptions of the residents. Continued TF intake and increased fruit and vegetable intake have the potential to benefit the health of rural residents. PMID:22456043

  7. Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation.

    PubMed

    Biastoch, A; Böning, C W; Lutjeharms, J R E

    2008-11-27

    Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC). Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic (RAPID, at latitude 26.5 degrees N, and MOVE, at latitude 16 degrees N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of +/-1.5-3 Sv (1 Sv = 10(6) m(3) s(-1)) on decadal timescales in the subtropics. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.

  8. Conceptualizing the dynamics of a drought affected agricultural community

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Carr, Gemma; Viglione, Alberto; Bloeschl, Guenter

    2015-04-01

    Climate and especially water availability and variability play an important role in the development of our societies. This can be seen through the vast investments that are made in reaching water security and the economic impact regions experience when the rains fail. However, the limit of available fresh water is increasingly felt as our population increases and the demand for water continues to rise. But how do we as society respond? Are periods of drought making us more resilient? The answer to this question is sought through the development of a stylized model that is built within the spirit of the Easter Island model by Brander and Taylor and aimed at capturing the essence of the dynamics of water supply and demand. By explicitly incorporating feedbacks, but keeping the framework simple, the model seeks to understand qualitative behavior of our socio-hydrological system as opposed to predicting exact pathways. The model shows that carrying capacity dynamics are a determining factor for continued growth. Future work will explore the underlying relationships further, among others, through examination of case studies.

  9. The role of biodiversity for the carbon cycle: Implementation of functional diversity in a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Sakschewski, Boris; Boit, Alice; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten

    2013-04-01

    Most dynamic global vegetation models (DGVMs) condense natural plant diversity to plant functional types (PFTs). A single PFT usually represents a whole biome, e.g. the PFT "tropical broadleaved evergreen tree" and its constant set of functional trait parameters covers entire regions in the model. This approach minimizes functional diversity and neglects the effects of functional diversity on the modeled vegetation and carbon dynamics. Our work aims to overcome this limitation and extend functional diversity in the vegetation model LPJmL to explore the role of biodiversity in climate change mitigation. Our approach improves the representation of biodiversity in the model by incorporating the natural ranges and eco-physiological interrelations of relevant plant traits. Empirical data on plant traits is provided by the TRY data base (www.try-db.org) and the ROBIN project (www.robinproject.info). A first sensitivity analysis revealed that simulated carbon stocks are very stable under a large range of trait combinations. However, several model output variables appeared highly sensitive to small changes of plant trait parameters and thus the introduction of trait ranges requires several improvements of the PFT concept of LPJmL. One possible way of improvement is to implement missing plant-trait tradeoffs, which will be used to simulate the growth of individual plants with flexible parameter combinations at the landscape scale. Our improved model will enable for the simulation of local competition and complementarity of individual plants which, according to their trait values and ranges, can then be categorized into a much broader variety of PFTs. This modeling approach will allow for investigating the role of bio- and functional diversity in the global carbon cycle as well as in regional vegetation dynamics.

  10. Soil C, N, P and Its Stratification Ratio Affected by Artificial Vegetation in Subsoil, Loess Plateau China

    PubMed Central

    Deng, Jian; Sun, Pingsheng; Zhao, Fazhu; Han, Xinhui; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin

    2016-01-01

    Artificial vegetation restoration can induce variations in accumulation and distribution of soil carbon (C), nitrogen (N) and phosphorus (P). However, little is known about variations in soil C, N and P nutrient fraction stratification following artificial vegetation in Loess Plateau China. Based on the hypothesis that re-vegetated can improve soil quality and stratification ratios (SR) can be used as an indicator to evaluate soil quality. This study measured contents and storages of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and their SRs in topsoil (0–20 cm) and subsoil (20–60 cm) in three 30-year re-vegetated lands that had been converted from arable land (Robinia pseudoacacia L., Caragana Korshinskii Kom. and abandoned cropland with low interferences and few management measures) and one slope cropland (SC) as a control for three soil profiles(0–20 cm, 20–40 cm and 40–60 cm) from June 2009 to June 2013. The results showed that the contents and storages of SOC, TN and TP in re-vegetated land were significantly higher than those in the SC in both topsoil and subsoil. The storages of SOC, TN and TP in the topsoil (0–20 cm) of the re-vegetated lands increased by 16.2%-26.4%, 12.7%-28.4% and 16.5%-20.9%, respectively, and increased by smaller but significant amounts in subsoil from 2009 to 2013. The SRs for SOC, TN and TP in the re-vegetated lands were mostly >2 (either for 0–20:20–40 cm or 0–20:40–60 cm) and greater than that in the SC. The SRs showed an increasing trend with increasing restoration age. The results also showed that the land use type and soil depth were the most influential factors for the SRs and storages, and the SRs of SOC and TN had significantly positive correlations with their storages. The SRs were concluded to be a good indicator for evaluating the soil quality, which can be significantly enhanced through vegetation restoration. Moreover, vegetation restoration can significantly enhance SOC, TN

  11. Metabolic and Dynamic Profiling for Risk Assessment of Fluopyram, a Typical Phenylamide Fungicide Widely Applied in Vegetable Ecosystem

    PubMed Central

    Wei, Peng; Liu, Yanan; Li, Wenzhuo; Qian, Yuan; Nie, Yanxia; Kim, Dongyeop; Wang, Mengcen

    2016-01-01

    Fluopyram, a typical phenylamide fungicide, was widely applied to protect fruit vegetables from fungal pathogens-responsible yield loss. Highly linked to the ecological and dietary risks, its residual and metabolic profiles in the fruit vegetable ecosystem still remained obscure. Here, an approach using modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction combined with GC-MS/MS analysis was developed to investigate fluopyram fate in the typical fruit vegetables including tomato, cucumber, pepper under the greenhouse environment. Fluopyram dissipated in accordance with the first-order rate dynamics equation with the maximum half-life of 5.7 d. Cleveage of fluopyram into 2-trifluoromethyl benzamide and subsequent formation of 3-chloro-5-(trifluoromethyl) pyridine-2-acetic acid and 3-chloro-5-(trifluoromethyl) picolinic acid was elucidated to be its ubiquitous metabolic pathway. Moreover, the incurrence of fluopyram at the pre-harvest interval (PHI) of 7–21 d was between 0.0108 and 0.1603 mg/kg, and the Hazard Quotients (HQs) were calculated to be less than 1, indicating temporary safety on consumption of the fruit vegetables incurred with fluopyram, irrespective of the uncertain toxicity of the metabolites. Taken together, our findings reveal the residual essential of fluopyram in the typical agricultural ecosystem, and would advance the further insight into ecological risk posed by this fungicide associated with its metabolites. PMID:27654708

  12. Metabolic and Dynamic Profiling for Risk Assessment of Fluopyram, a Typical Phenylamide Fungicide Widely Applied in Vegetable Ecosystem

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Liu, Yanan; Li, Wenzhuo; Qian, Yuan; Nie, Yanxia; Kim, Dongyeop; Wang, Mengcen

    2016-09-01

    Fluopyram, a typical phenylamide fungicide, was widely applied to protect fruit vegetables from fungal pathogens-responsible yield loss. Highly linked to the ecological and dietary risks, its residual and metabolic profiles in the fruit vegetable ecosystem still remained obscure. Here, an approach using modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction combined with GC-MS/MS analysis was developed to investigate fluopyram fate in the typical fruit vegetables including tomato, cucumber, pepper under the greenhouse environment. Fluopyram dissipated in accordance with the first-order rate dynamics equation with the maximum half-life of 5.7 d. Cleveage of fluopyram into 2-trifluoromethyl benzamide and subsequent formation of 3-chloro-5-(trifluoromethyl) pyridine-2-acetic acid and 3-chloro-5-(trifluoromethyl) picolinic acid was elucidated to be its ubiquitous metabolic pathway. Moreover, the incurrence of fluopyram at the pre-harvest interval (PHI) of 7–21 d was between 0.0108 and 0.1603 mg/kg, and the Hazard Quotients (HQs) were calculated to be less than 1, indicating temporary safety on consumption of the fruit vegetables incurred with fluopyram, irrespective of the uncertain toxicity of the metabolites. Taken together, our findings reveal the residual essential of fluopyram in the typical agricultural ecosystem, and would advance the further insight into ecological risk posed by this fungicide associated with its metabolites.

  13. The hydrological effects of varying vegetation characteristics in a temperate water-limited basin: Development of the dynamic Budyko-Choudhury-Porporato (dBCP) model

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; McVicar, Tim R.; Yang, Zhifeng; Donohue, Randall J.; Liang, Liqiao; Yang, Yuting

    2016-12-01

    Vegetation patterns are affected by water availability, which, in turn, influences the hydrological partitioning and regional water balance, especially in water-limited regions. Considering the important role of vegetation in partitioning the catchment water yield, the recently developed Budyko-Choudhury-Porporato (or BCP) model incorporated Porporato's model of key ecohydrological processes into Choudury's form of the Budyko hydroclimatic framework. Here we extend the steady state BCP model by incorporating dynamic ecohydrological processes into it and combining it with a typical bucket soil water balance model (resulting in the dynamic BCP, or dBCP, model). The dBCP model is used here to assess the impacts of vegetation on the water balance in a temperate water-limited basin (i.e., the Yellow River Basin (YRB) in north China), where growing season phenology is primarily constrained by low temperatures. The results show that: (i) the incorporation of dynamic growing season (fs) and dynamic effective rooting depth (Ze) conditions into the dBCP model improves results when compared to the original BCP model; (ii) dBCP model's results vary depending on time-step used (i.e., we tested mean-annual to monthly), which reflected the influence of catchment variables, e.g., catchment area, catchment-average air temperature, dryness index and Ze; and (iii) actual evapotranspiration (E) is more sensitive to changes in mean storm depth (α), followed by P, Ze, and Ep. When taking into account observed variability of each of four ecohydrological variables, changes in Ze cause the greatest variability in E, generally followed by variability in P and α, and then Ep. The dBCP results indicate that incorporating dynamic ecohydrological processes into the Budyko framework can improve the estimation of inter-annual variability of the regional water balance. This can help to understand the water requirement and to establish suitable water management strategies to adapt to climate

  14. Lubricated wrinkles: Imposed constraints affect the dynamics of wrinkle coarsening

    NASA Astrophysics Data System (ADS)

    Kodio, Ousmane; Griffiths, Ian M.; Vella, Dominic

    2017-01-01

    We study the dynamic coarsening of wrinkles in an elastic sheet that is compressed while lying on a thin layer of viscous liquid. When the ends of the sheet are instantaneously brought together by a small distance, viscous resistance initially prevents the sheet from adopting a globally buckled shape. Instead, the sheet accommodates the compression by wrinkling. Previous scaling arguments suggested that a balance between the sheet's bending stiffness and viscous effects lead to a wrinkle wavelength λ that increases with time t according to λ ∝t1 /6 . We show that taking proper account of the compression constraint leads to a logarithmic correction of this result, λ ∝(t/logt ) 1 /6 . This correction is significant over experimentally observable time spans and leads us to reassess previously published experimental data.

  15. Fire in Fennoscandia: A palaeo-perspective of spatial and temporal variability in fire frequency and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Clear, Jennifer; Bradshaw, Richard; Seppä, Heikki

    2014-05-01

    Active fire suppression in Fennoscandia has created a boreal forest ecosystem that is almost free of fire. Absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce), though the character and structure of spruce forests operates as a positive feedback retarding fire frequency. This lack of fire and dominance by Picea abies may have assisted declines in deciduous tree species, with a concomitant loss of floristic diversity. Forest fires are driven by a complex interplay between natural (climate, vegetation and topography) and anthropogenic disturbance and through palaeoecology we are able to explore spatio-temporal variability in the drivers of fire, changing fire dynamics and the subsequent consequences for forest succession, development and floristic diversity over long timescales. High resolution analysis of palaeoenvironmental proxies (pollen and macroscopic charcoal) allows Holocene vegetation and fire dynamics to be reconstructed at the local forest-stand scale. Comparisons of fire histories with pollen-derived quantitative reconstruction of vegetation at local- and regional-scales identify large-scale ecosystem responses and local-scale disturbance. Spatio-temporal heterogeneity and variability in biomass burning is explored to identify the drivers of fire and palaeovegetation reconstructions are compared to process-based, climate-driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Fire was not always so infrequent in the northern European forest with early-Holocene fire regimes driven by natural climate variations and fuel availability. The establishment and spread of Picea abies was probably driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. Picea expansion led to a step-wise reduction in regional biomass burning and here we show the now

  16. Planning horizon affects prophylactic decision-making and epidemic dynamics

    PubMed Central

    Ridenhour, Benjamin J.; Krone, Stephen M.

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon—the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals’ payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual’s perceived risk of infection. PMID:27843714

  17. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g{sup 2}σ{sup 2}Φ{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g∼>10{sup −3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  18. Social decisions affect neural activity to perceived dynamic gaze

    PubMed Central

    Latinus, Marianne; Love, Scott A.; Rossi, Alejandra; Parada, Francisco J.; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin

    2015-01-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a ‘default mode’ that may focus on spatial information; a ‘socially aware mode’ that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified. PMID:25925272

  19. Social decisions affect neural activity to perceived dynamic gaze.

    PubMed

    Latinus, Marianne; Love, Scott A; Rossi, Alejandra; Parada, Francisco J; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin; Puce, Aina

    2015-11-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a 'default mode' that may focus on spatial information; a 'socially aware mode' that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified.

  20. Facets of dynamic positive affect: differentiating joy, interest, and activation in the positive and negative affect schedule (PANAS).

    PubMed

    Egloff, Boris; Schmukle, Stefan C; Burns, Lawrence R; Kohlmann, Carl-Walter; Hock, Michael

    2003-09-01

    This article proposes the differentiation of Joy, Interest, and Activation in the Positive Affect (PA) scale of the Positive and Negative Affect Schedule (PANAS; D. Watson, L. A. Clark, & A. Tellegen, 1988). Study 1 analyzed the dynamic course of PA before, during, and after an exam and established the differentiation of the three facets. Study 2 used a multistate-multitrait analysis to confirm this structure. Studies 3-5 used success-failure experiences, speaking tasks, and feedback of exam results to further examine PA facets in affect-arousing settings. All studies provide convincing evidence for the benefit of differentiating three facets of PA in the PANAS: Joy, Interest, and Activation do have distinct and sometimes even opposite courses that make their separation meaningful and rewarding.

  1. Improving Variational Estimation of Surface Turbulent Fluxes Through Characterizing the Effect of Vegetation Dynamics on the Bulk Heat Transfer

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.; Bateni, S. M.

    2015-12-01

    Estimation of turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into a variational data assimilation (VDA) framework has been the subject of numerous studies. The VDA approaches are focused on the estimation of two key parameters that regulate the partitioning of available energy between sensible and latent heat fluxes. These two unknown parameters are neutral bulk heat transfer coefficient (CHN) (that scales the sum of the turbulent heat fluxes) and evaporative fraction (EF) (that scales partitioning between the turbulent heat fluxes). CHN mainly depends on the roughness of the surface and varies on the time scales of changing vegetation phenology. The existing VDA methods assumed that the variations in vegetation phenology over the period of one month are negligible and took CHN as a monthly constant parameter. However, during the growing season, bare soil may turn into a fully vegetated surface within a few weeks. Thus, assuming a constant CHN value may result in a significant amount of error in the estimation of surface fluxes, especially in regions with a high temporal variation in vegetation cover. In this study, we advance the VDA approach by taking CHN as a function of leaf area index (LAI), which allows us to characterize the dynamic effect of vegetation phenology on CHN. The performance of the new VDA model is tested over four field sites, namely Brookings, Audubon, and Bondville in the US and Daman in China. The results show that the new model outperforms the previous one and decreases the root-mean-square-error (RMSE) in sensible and latent heat flux estimates across the four sites on average by 31% and 19% respectively.

  2. Improving Variational Estimation of Surface Turbulent Fluxes Through Characterizing the Effect of Vegetation Dynamics on the Bulk Heat Transfer

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.; Bateni, S. M.

    2014-12-01

    Estimation of turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into a variational data assimilation (VDA) framework has been the subject of numerous studies. The VDA approaches are focused on the estimation of two key parameters that regulate the partitioning of available energy between sensible and latent heat fluxes. These two unknown parameters are neutral bulk heat transfer coefficient (CHN) (that scales the sum of the turbulent heat fluxes) and evaporative fraction (EF) (that scales partitioning between the turbulent heat fluxes). CHN mainly depends on the roughness of the surface and varies on the time scales of changing vegetation phenology. The existing VDA methods assumed that the variations in vegetation phenology over the period of one month are negligible and took CHN as a monthly constant parameter. However, during the growing season, bare soil may turn into a fully vegetated surface within a few weeks. Thus, assuming a constant CHN value may result in a significant amount of error in the estimation of surface fluxes, especially in regions with a high temporal variation in vegetation cover. In this study, we advance the VDA approach by taking CHN as a function of leaf area index (LAI), which allows us to characterize the dynamic effect of vegetation phenology on CHN. The performance of the new VDA model is tested over four field sites, namely Brookings, Audubon, and Bondville in the US and Daman in China. The results show that the new model outperforms the previous one and decreases the root-mean-square-error (RMSE) in sensible and latent heat flux estimates across the four sites on average by 31% and 19% respectively.

  3. Role of vegetation and landcover dynamics on the recycling of water in two endorheic watersheds of NW China (Gansu Province)

    NASA Astrophysics Data System (ADS)

    Matin, M. A.; Bourque, C. P.-A.

    2015-01-01

    In this study, we analysed the role of vegetation in the recycling of water in two endorheic watersheds in northwest China, namely within the Shiyang and Hei River watersheds (Gansu Province), along a gradient of elevation zones and within-zone landcover types. Each watershed was subdivided into four elevation zones representative of (i) oasis plains and foothills, and (ii) low-, (iii) mid-, and (iv) high-mountain elevations. By means of monthly summaries of enhanced vegetation index (EVI), DEM-height values, terrain orientation, and a decision-tree classifier, landcover in the study area (consisting of oases, deserts, and adjoining Qilian Mountains) was classified into 11 unique landcover types. Comparison of monthly vegetation phenology with precipitation and snowmelt dynamics within the same watersheds over a ten-year period (2000-2009) suggested that the onset of the precipitation season in the mountains (in May) was triggered by the greening of vegetation and increased production of water vapour at the base of the mountains. Seasonal evolution of in-mountain precipitation correlated fairy well with the temporal variation in oasis-vegetation coverage and phenology (of crops and grasses) characterised by monthly EVI, giving r2 values of 0.65 and 0.85 for the Shiyang and Hei River watersheds, respectively. Generally, comparisons between same-zone monthly precipitation volumes and EVI provided weaker correlations. Start of the growing season in the oases was shown to coincide with the discharge of meltwater from the low- to mid-elevations of the Qilian Mountains in mid-to-late March. Comparison of water volumes associated with in-mountain production of rainfall and snowmelt with that associated with actual evapotranspiration revealed that about 90% of the water flowing downslope to the oases was eventually returned to the Qilian Mountains as water vapour generated in the lowlands.

  4. Spatial and Temporal Dynamics of Vegetation and Hydrological Properties at Shale Hills Critical Zone Observatory in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Naithani, K. J.; Gaines, K.; Baldwin, D.; Lin, H.; Eissenstat, D.

    2010-12-01

    Understanding the interaction of vegetation and hydrology and determining the changes in this relationship across spatial and temporal domains is critical for modeling landscape hydrology. Trees release water into the atmosphere via stomatal pores in exchange for carbon dioxide and play an important role in landscape hydrology. Our objective was to investigate the coupled spatial and temporal dynamics of vegetation and hydrological properties in a forested catchment covering 7900 m2 in central Pennsylvania at the Shale Hills Critical Zone Observatory. During 2010, We measured leaf area index (LAI) and canopy closure to characterize vegetation properties and soil water content, soil water potential and water table depth to characterize hydrological properties at a spatial grid of 70 sampling points across an entire watershed at 15-day intervals. We used geostatistical techniques to quantify spatial structure (semi-variograms) and visualize spatial patterns (Kriging) of vegetation and hydrological properties and their relationship to each other (cross-variograms). Our results show an exponential increase (90 - 600 m) in the range of spatial autocorrelation and decrease in noise-to-signal ratio of LAI from April to August, which also coincides with exponential increase in LAI (1 - 5 m2m-2) and exponential decline in soil water content (0.3 - 0.1 m3 m-3) at a 10 cm soil depth. Results from this study suggest increasing spatial dependence from leaf onset till maturity and that the landscape canopy area and soil water become more homogenized and coupled from spring to summer. Our results provide insight into tight coupling between vegetation and hydrology across space and time; incorporating these spatial and temporal feedbacks in hydropedological models will improve current and future landscape modeling of temperate forests.

  5. Long-Term Effects of Xerophytic Shrub Haloxylon ammodendron Plantations on Soil Properties and Vegetation Dynamics in Northwest China

    PubMed Central

    Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming

    2016-01-01

    The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458

  6. Soil Fungal Distribution and Functionality as Affected by Grazing and Vegetation Components of Integrated Crop-Livestock Agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated crop and livestock (ICL) agroecosystems are characterized by a mixture of perennial or annual vegetation grazed by livestock and annual harvested crops. Compared to annual crops, ICLs hold the potential to enhance soil organic matter (OM) inputs, carbon sequestration, nutrient cycling, an...

  7. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children

    PubMed Central

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Study background Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Methods Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale [‘like extremely’ (1) to ‘dislike extremely’ (10)] and children through a five-point facial scale [‘dislike very much’ (1) to ‘like very much’ (5)]. Results After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). Conclusions A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly. PMID:25317121

  8. How Fear of Future Outcomes Affects Social Dynamics

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Jusup, Marko; Wang, Zhen; Stanley, H. Eugene

    2016-11-01

    Mutualistic relationships among the different species are ubiquitous in nature. To prevent mutualism from slipping into antagonism, a host often invokes a "carrot and stick" approach towards symbionts with a stabilizing effect on their symbiosis. In open human societies, a mutualistic relationship arises when a native insider population attracts outsiders with benevolent incentives in hope that the additional labor will improve the standard of all. A lingering question, however, is the extent to which insiders are willing to tolerate outsiders before mutualism slips into antagonism. To test the assertion by Karl Popper that unlimited tolerance leads to the demise of tolerance, we model a society under a growing incursion from the outside. Guided by their traditions of maintaining the social fabric and prizing tolerance, the insiders reduce their benevolence toward the growing subpopulation of outsiders but do not invoke punishment. This reduction of benevolence intensifies as less tolerant insiders (e.g., "radicals") openly renounce benevolence. Although more tolerant insiders maintain some level of benevolence, they may also tacitly support radicals out of fear for the future. If radicals and their tacit supporters achieve a critical majority, herd behavior ensues and the relation between the insider and outsider subpopulations turns antagonistic. To control the risk of unwanted social dynamics, we map the parameter space within which the tolerance of insiders is in balance with the assimilation of outsiders, the tolerant insiders maintain a sustainable majority, and any reduction in benevolence occurs smoothly. We also identify the circumstances that cause the relations between insiders and outsiders to collapse or that lead to the dominance of the outsiders.

  9. [Dynamic distribution characters of herbaceous vegetation root systems in abandoned grasslands of Loess Plateau].

    PubMed

    Li, Peng; Li, Zhanbin; Tantai, Zhan

    2005-05-01

    The investigation on the vertical distribution characters of herbaceous vegetation root systems in abandoned and natural grasslands of Loess Plateau by the method of soil auger showed that there were no significant differences in root system distribution patterns between different sampling points, and the related root indexes could be used to indicate the vertical distribution characters of vegetation roots. The main root indexes including root biomass and root length were decreased with increasing soil depth, but increased with increasing abandoned years. After abandoned for more than 20 years, the root distribution characters of abandoned grassland were approached to that of natural grassland. The root extinction coefficient decreased with increasing abandoned years, indicating that more and more roots were concentrated in surface soil layer with the increase of abandoned time, which was helpful to the improvement of soil physical and chemical properties, and beneficial to the new species intrusion and vegetation succession.

  10. Nitrogen deposition alters plant-fungal relationships: linking belowground dynamics to aboveground vegetation change.

    PubMed

    Dean, Sarah L; Farrer, Emily C; Taylor, D Lee; Porras-Alfaro, Andrea; Suding, Katharine N; Sinsabaugh, Robert L

    2014-03-01

    Nitrogen (N) deposition rates are increasing globally due to anthropogenic activities. Plant community responses to N are often attributed to altered competitive interactions between plants, but may also be a result of microbial responses to N, particularly root-associated fungi (RAF), which are known to affect plant fitness. In response to N, Deschampsia cespitosa, a codominant plant in the alpine tundra at Niwot Ridge (CO), increases in abundance, while Geum rossii, its principal competitor, declines. Importantly, G. rossii declines with N even in the absence of its competitor. We examined whether contrasting host responses to N are associated with altered plant-fungal symbioses, and whether the effects of N are distinct from effects of altered plant competition on RAF, using 454 pyrosequencing. Host RAF communities were distinct (only 9.4% of OTUs overlapped). N increased RAF diversity in G. rossii, but decreased it in D. cespitosa. D. cespitosa RAF communities were more responsive to N than G. rossii RAF communities, perhaps indicating a flexible microbial community aids host adaptation to nutrient enrichment. Effects of removing D. cespitosa were distinct from effects of N on G. rossii RAF, and D. cespitosa presence reversed RAF diversity response to N. The most dominant G. rossii RAF order, Helotiales, was the most affected by N, declining from 83% to 60% of sequences, perhaps indicating a loss of mutualists under N enrichment. These results highlight the potential importance of belowground microbial dynamics in plant responses to N deposition.

  11. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  12. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models.

  13. The dynamic role of personality states in mediating the relationship between extraversion and positive affect.

    PubMed

    Wilt, Joshua; Noftle, Erik E; Fleeson, William; Spain, Jana S

    2012-10-01

    One of the most noteworthy and robust findings in personality psychology is the relationship between extraversion and positive affect. Existing theories have debated the origins and nature of this relationship, offering both structural/fixed and environmental/dynamic explanations. We tested the novel and straightforward dynamic hypothesis that part of the reason trait extraversion predicts trait positive affect is through an increased propensity to enact extraverted states, which in turn leads to experiencing more positive affect states. We report 5 experience sampling studies (and a meta-analysis of primary studies) conducted in natural environments and laboratory settings in which undergraduate participants (N = 241) provided ratings of trait extraversion, trait positive affect, extraversion states, and positive affect states. Results of primary studies and the meta-analysis showed that relationships between trait extraversion and trait positive affect were partially mediated by aggregated extraversion states and aggregated positive affect states. The results supported our dynamic hypothesis and suggested that dynamic explanations of the relationship between trait extraversion and trait positive affect are compatible with structural explanations. An important implication of these findings is that individuals might be able to increase their happiness by self-regulating their extraverted states.

  14. The Dynamic Role of Personality States in Mediating the Relationship between Extraversion and Positive Affect

    PubMed Central

    Wilt, Joshua; Noftle, Erik E.; Fleeson, William; Spain, Jana S.

    2012-01-01

    Objective One of the most noteworthy and robust findings in personality psychology is the relationship between extraversion and positive affect. Existing theories have debated the origins and nature of this relationship, offering both structural/fixed and environmental/dynamic explanations. We tested the novel and straightforward dynamic hypothesis that part of the reason trait extraversion predicts trait positive affect is through an increased propensity to enact extraverted states, which in turn leads to experiencing more positive affect states. Method We report five experience sampling studies (and a meta-analysis of primary studies) conducted in natural environments and laboratory settings in which undergraduate participants (N = 241) provided ratings of trait extraversion, trait positive affect, extraversion states, and positive affect states. Results Results of primary studies and the meta analysis showed that relationships between trait extraversion and trait positive affect were partially mediated by aggregated extraversion states and aggregated positive affect states. Conclusions The results supported our dynamic hypothesis and suggested that dynamic explanations of the relationship between trait extraversion and trait positive affect are compatible with structural explanations. An important implication of these findings is that individuals might be able to increase their happiness by self-regulating their extraverted states. PMID:22092066

  15. Cropping history trumps fallow duration in long-term soil and vegetation dynamics of shifting cultivation systems.

    PubMed

    Wood, Sylvia L R; Rhemtulla, Jeanine M; Coomes, Oliver T

    2017-03-01

    In the study of shifting cultivation systems, fallow duration is seen as the key determinant of vegetation and soil dynamics: long fallows renew soil fertility, biomass, and biodiversity. However, long fallow systems are increasingly replaced around the world with short-medium fallow systems, and awareness is growing of the need to look across multiple (not just single) crop-fallow cycles to accurately understand observed soil and vegetation patterns. In a study from Peru that builds on 50+ years of field-level land-use histories, we found that, over multiple crop-fallow cycles, farmers' cropping practices mattered more than fallow duration for biodiversity and soil fertility. After initial clearing of primary forest, a precipitous decline occurred in tree species richness of fallows (>50%) with gradual but continued loss thereafter (~0.5 species/yr), which resulted in shifts in species composition over time. For soils, the decline in fertility was more gradual with each additional cycle of cropping resulting in lowered soil organic matter, available phosphorus, and exchangeable sodium levels, even in fields with long fallow durations. In the most intensively used sites, soils experienced a 16% decline of soil organic matter over 4+ cycles. In contrast to previous studies, biomass accumulation and carbon stocks were not related to cropping history or to the number and duration of cycles observed. This suggests that biodiversity-soils-biomass dynamics may not necessarily "move together" in these systems. These results point to the importance of the number of crop-fallow cycles over fallow duration in driving soil fertility and vegetation dynamics under shifting cultivation in the Peruvian Amazon. Overtime shifting cultivation may erode soil fertility and biodiversity levels even if long fallows persist. As the decline in soils appears slow, it may be possible to address this effect with the use of amendments, however biodiversity declines and species compositional

  16. Hydrological niche separation explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests

    NASA Astrophysics Data System (ADS)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.; Guan, K.

    2015-12-01

    Despite ample water supply, vegetation dynamics are subject to seasonal water stress in large fraction of tropical forests. These seasonally dry tropical forests (SDTFs) account for over 40% of tropical forests, harbor high biodiversity, have large potential carbon sink due to forest recovery from human disturbance and also play a critical role in global carbon budget and inter-annual variations. Plants in this biome display notably diverse responses to seasonal and inter-annual variations of water availability, especially inter-specific variations in canopy seasonality and biomass growth. Current process-based dynamic vegetation models cannot represent these diversities and are shown to perform poorly on simulating drought responses of tropical forests, calling into question of their ability to accurately simulate future changes in SDTFs. Accumulated field observations, suggest that hydrological niche separation driven by coordinated plant functional traits is associated with plants' performance under drought. Yet, it remains not clear whether the physiology-level hydrological niche separation can explain the ecosystem-level diversity observed in SDTFs. Here, we test the theory with a model-data fusion approach. We implemented a new plant hydrodynamic module that is able to track leaf water potential at sub-daily scale in ED2 model. We further incorporated a hydrological niche separation scheme based on a meta-data analysis of key functional traits in SDTFs. Simulated ecological patterns with and without hydrological niche separation were then compared with remote-sensing and long-term field observations from an SDTF site in Palo Verde, Costa Rica. Using several numerical experiments, we specifically examine the following questions: (i) Whether hydrological niche separation can explain the diversity in canopy seasonality and biomass growth? (ii) How important are the yet uncertain belowground functional traits, especially root profile in determining canopy

  17. Evaluation of the snow regime in dynamic vegetation land surface models using field measurements

    NASA Astrophysics Data System (ADS)

    Kantzas, E.; Quegan, S.; Lomas, M.; Zakharova, E.

    2014-03-01

    An increasing number of studies have demonstrated significant climatic and ecological changes occurring in the northern latitudes over the past decades. As coupled Earth-system models attempt to describe and simulate the dynamics and complex feedbacks of the Arctic environment, it is important to reduce their uncertainties in short-term predictions by improving the description of both system processes and its initial state. This study focuses on snow-related variables and makes extensive use of a historical data set (1966-1996) of field snow measurements acquired across the extent of the former Soviet Union to evaluate a range of simulated snow metrics produced by several land surface models, most of them embedded in IPCC-standard climate models. We reveal model-specific failings in simulating snowpack properties such as magnitude, inter-annual variability, timings of snow water equivalent and evolution of snow density. We develop novel and model-independent methodologies that use the field snow measurements to extract the values of fresh snow density and snowpack sublimation, and exploit them to assess model outputs. By directly forcing the surface heat exchange formulation of a land surface model with field data on snow depth and snow density, we evaluate how inaccuracies in simulating snow metrics affect soil temperature, thaw depth and soil carbon decomposition. We also show how field data can be assimilated into models using optimization techniques in order to identify model defects and improve model performance.

  18. ATLANTIC RAIN FOREST AND CAATINGA VEGETATION DYNAMICS EXPLAIN PHYLOGEOGRAPHICAL PATTERN OF AN ENDEMIC BRAZILIAN PALM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Occurrence of a wetter and cooler climate associated with humid vegetation had been inferred for the Caatinga region during the late Pleistocene and early Holocene. The existence of rainforest migration routes in northeastern Brazil is widely recognized. Present-day rainforest nat...

  19. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya

    PubMed Central

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-01-01

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003–2013), detailed monitoring of vegetation changes in permanent plots (2009–2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable. PMID:27143226

  20. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya.

    PubMed

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-05-04

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003-2013), detailed monitoring of vegetation changes in permanent plots (2009-2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.

  1. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya

    NASA Astrophysics Data System (ADS)

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-05-01

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003–2013), detailed monitoring of vegetation changes in permanent plots (2009–2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.

  2. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    PubMed

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  3. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    PubMed Central

    Figiel, Adam; Michalska, Anna

    2016-01-01

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845

  4. A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils

    PubMed Central

    Ramirez-Andreotta, Monica D.; Brusseau, Mark L.; Artiola, Janick F.; Maier, Raina M.

    2012-01-01

    The uptake of arsenic by plants from contaminated soils presents a health hazard that may affect home gardeners neighboring contaminated environments. A controlled greenhouse study was conducted in parallel with a co-created citizen science program (home garden experiment) to characterize the uptake of arsenic by common homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund site in southern Arizona. The greenhouse and home garden arsenic soil concentrations varied considerably, ranging from 2.35 to 533 mg kg−1. In the greenhouse experiment four vegetables were grown in three different soil treatments and in the home garden experiment a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic in both the greenhouse and home garden experiments, ranging from 0.01 to 23.0 mg kg−1 dry weight. Bioconcentration factors were determined and show that arsenic uptake decreased in the order: Asteraceae > Brassicaceae > Amaranthaceae > Cucurbitaceae > Liliaceae > Solanaceae > Fabaceae. Certain members of the Asteraceae and Brassicaceae plant families have been previously identified as hyperaccumulator plants, and it can be inferred that members of these families have genetic and physiological capacity to accumulate, translocate, and resist high amounts of metals. Additionally, a significant linear correlation was observed between the amount of arsenic that accumulated in the edible portion of the plant and the arsenic soil concentration for the Asteraceae, Brassicaceae, Amaranthaceae, and Fabaceae families. The results suggest that home gardeners neighboring mining operations or mine tailings with elevated arsenic levels should be made aware that arsenic can accumulate considerably in certain vegetables, and in particular, it is recommended that gardeners limit consumption of vegetables from the Asteraceae and Brassicaceae plant families. PMID:23201696

  5. Altering recharge dynamics through woody vegetation removal: a study on the Carrizo-Wilcox aquifer of south Texas

    NASA Astrophysics Data System (ADS)

    Mattox, A. M.

    2011-12-01

    Grasslands in many semi-arid regions of the world have seen an expansion of woody vegetation over the past century and many now exist largely as woodlands or shrublands. This "woody encroachment" results in numerous changes to ecosystem function, including alteration of element and water cycles. As in many parts of the world, these shrublands in south Texas have been subjected to a variety of management practices intended to reduce woody vegetation and increase the dominance of herbaceous vegetation. In addition to the intended change in vegetation structure, this activity has the potential to affect hydrologic fluxes and potentially increase deep drainage through reduced transpiration and rooting depths. However, there is significant uncertainty about the hydrologic response of vegetation to woody vegetation removal. We report here the results of a large manipulative experiment designed to assess the effects of woody vegetation removal on soil moisture movement in the vadose zone in an area that serves as a recharge zone for an unconsolidated sediment aquifer (Carrizo-Wilcox). In this study woody vegetation has been removed using a mechanical method (roller chopping) as well as a mechanical and chemical method (chainsaw removal + stump herbicide). The treated plots are located on three different soil types that represent the range of soils typical in this area. A water balance approach is used to assess soil moisture fluxes and potential deep drainage. In this first year of the study we quantified ecological and edaphic components that have the greatest effect on deep drainage, namely rooting depth, soil texture and antecedent soil water conditions. Exceptionally dry conditions this year have provided a unique opportunity to understand plant soil water interactions in the critical zone given the strong soil moisture limitations observed in the surface soil horizons. Understanding these interactions across different plant communities and soil textures are the

  6. Affect dynamics in relation to depressive symptoms: variable, unstable or inert?

    PubMed

    Koval, Peter; Pe, Madeline L; Meers, Kristof; Kuppens, Peter

    2013-12-01

    Depression not only involves disturbances in prevailing affect, but also in how affect fluctuates over time. Yet, precisely which patterns of affect dynamics are associated with depressive symptoms remains unclear; depression has been linked with increased affective variability and instability, but also with greater resistance to affective change (inertia). In this paper, we argue that these paradoxical findings stem from a number of neglected methodological/analytical factors, which we address using a novel paradigm and analytic approach. Participants (N = 99), preselected to represent a wide range of depressive symptoms, watched a series of emotional film clips and rated their affect at baseline and following each film clip. We also assessed participants' affect in daily life over 1 week using experience sampling. When controlling for overlap between different measures of affect dynamics, depressive symptoms were independently associated with higher inertia of negative affect in the lab, and with greater negative affect variability both in the lab and in daily life. In contrast, depressive symptoms were not independently related to higher affective instability either in daily life or in the lab.

  7. Application of a simple dynamic vegetation model to an experimental plot and validation through satellite data and field observations

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, Guiomar; Pasquato, Marta; Medici, Chiara; González-Sanchis, María; Molina, Antonio; Fernandes, Tarcísio José Gualberto; del Campo, Antonio; Francés, Félix

    2014-05-01

    It is well known that the vegetation plays a key role in the catchment's water balance particularly for semi-arid areas that generally are water-controlled ecosystems. For this reason, the number of hydrological models which include vegetation as a state variable has increased substantially in the last decade. However, many of the available dynamic vegetation models are quite complex.To cope with the difficulty of estimating a large number of parameters and inputs, the authors focused on the use of a parsimonious model called LUE-model. This model is based on the amount of photosynthetically active radiation absorbed by green vegetation (APAR) and the Light Use Efficiency index (the efficiency by which that radiation is converted to plant biomass increment) in order to compute the gross primary production (GPP). The advantages of this simple conceptualization are: (1) the low number of parameters, (2) it could be easily coupled with a hydrological model and, (3) as it is based on APAR, it is directly connected with satellite data. This model has been calibrated and validated using remote sensing data and afterwards further tested against field observations. Plant transpiration and soil moisture were obtained in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), during the period from 27/03/2009 to 31/05/2011, covered by Aleppo pine.The satellite data used in this study were: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), both included in the products MOD13Q1 and MYD13Q1. Concerning NDVI, its own definition links this index to the "greenness" of the target, so that it appears highly linked to chlorophyll content and vegetation condition. Recent studies about Aleppo pine have shown that NDVI is sensitive to water stress, because the photosynthetic pigment is it. For this reason, the model simulated LAI was corrected by a plant water-stress factor. After such correction, the correlation coefficient with

  8. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Zhao, Menglong; Meng, Erhao

    2017-03-01

    It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter ω series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and ω variations. Results indicated that (1) the ω variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of ω series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and ω series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and ω series; (3) vegetation dynamics show significantly negative correlations with ω variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter ω changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance.

  9. Evaluating dynamic global vegetation models using meta-data analyses on soil carbon changes following land use change

    NASA Astrophysics Data System (ADS)

    Nyawira, Sylvia; Don, Axel; Nabel, Julia; Brovkin, Victor; Pongratz, Julia

    2015-04-01

    A major driver of changes in soil carbon in recent centuries has been land-use change. While evidence of land-use-related soil carbon changes exists based on local-scale observations, global estimates of these changes rely on modeling and remain highly uncertain. To understand the applicability of models to making future projections of soil carbon changes due to land use change, it is important to evaluate models using observations on soil carbon. A range of meta-data analyses on soil carbon changes following land use change has been published recently, aggregating local observations to levels potentially applicable to dynamic global vegetation models (DGVMs). However, up to now, this data has not been compared to DGVM simulations. The aim of this work is to develop an approach for evaluating DGVMs using these meta-analyses and apply the approach to evaluate the newly implemented soil carbon scheme-YASSO in the DGVM-JSBACH. YASSO is driven by vegetation productivity from JSBACH. However, the productivity by JSBACH is known to have biases in some regions as compared to what is observed in reality. To account for these biases, we confine the litter inputs to soils close to observations and constrain the decomposition by forcing YASSO with observed vegetation productivity and climate. Later we assess the bias introduced by JSBACH vegetation productivity on the soil carbon response in YASSO. We perform idealized simulations from one land-use to another to mimic the observational set-ups that the meta-data analyses comprise. To compare the simulated soil carbon response in the model with the meta-data, we select homogeneous physical regions based on the factors identified in literature as to influence the spatial and temporal variability of changes in soil carbon following land use change. Both the simulated equilibrium and the transient response of soil carbon to land use change simulated by YASSO for these regions is then compared with the meta-data analyses.

  10. Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?

    NASA Astrophysics Data System (ADS)

    Emberson, L. D.; Kitwiroon, N.; Beevers, S.; Büker, P.; Cinderby, S.

    2013-07-01

    This study investigates the effect of ozone (O3) deposition on ground level O3 concentrations and subsequent human health and ecosystem risk under hot summer "heat wave" type meteorological events. Under such conditions, extended drought can effectively "turn off" the O3 vegetation sink leading to a substantial increase in ground level O3 concentrations. Two models that have been used for human health (the CMAQ chemical transport model) and ecosystem (the DO3SE O3 deposition model) risk assessment are combined to provide a powerful policy tool capable of novel integrated assessments of O3 risk using methods endorsed by the UNECE Convention on Long-Range Transboundary Air Pollution. This study investigates 2006, a particularly hot and dry year during which a heat wave occurred over the summer across much of the UK and Europe. To understand the influence of variable O3 dry deposition three different simulations were investigated during June and July: (i) actual conditions in 2006, (ii) conditions that assume a perfect vegetation sink for O3 deposition and (iii) conditions that assume an extended drought period that reduces the vegetation sink to a minimum. The risks of O3 to human health, assessed by estimating the number of days during which running 8 h mean O3 concentrations exceeded 100 μg m-3, show that on average across the UK, there is a difference of 16 days exceedance of the threshold between the perfect sink and drought conditions. These average results hide local variation with exceedances between these two scenarios reaching as high as 20 days in the East Midlands and eastern UK. Estimates of acute exposure effects show that O3 removed from the atmosphere through dry deposition during the June and July period would have been responsible for approximately 460 premature deaths. Conversely, reduced O3 dry deposition will decrease the amount of O3 taken up by vegetation and, according to flux-based assessments of vegetation damage, will lead to a reduction in

  11. [Dynamics of major forest vegetations in Tiantong National Forest Park during the last 30 years].

    PubMed

    Wu, Yang-Yang; Guo, Chun-Zi; Ni, Jian

    2014-06-01

    The study of vegetation succession and development is not only one of the hot spots of modern ecology, but also a key issue of the sustainable development of human society, especially under the circumstances of climate change and anthropogenic disturbance. A comparison of forest communities in the Tiantong National Forest Park (TNFP) in Zhejiang Province, eastern China from 1982 to 2012 was performed. Six forests in the park were investigated, including the typical evergreen broadleaved forest (EBLF, three sub-associations), evergreen and deciduous broad-leaved mixed forest (EDBLMF), evergreen conifer forest (ECF) and bamboo forest (BF). Data from two field investigations in 1982 and 2012, respectively, were used to analyze the changes of species composition, community structure and species diversity during the past 30 years. The spatial pattern and community structure of the forest vegetation in the TNFP did not obviously change. The spatial distribution of plant communities did not significantly shifted. The proportion of young trees and individuals in small diameters increased. The regeneration status of communities was healthy and the natural regeneration ability of communities was enhanced. The species diversity of the TNFP forests showed an increasing trend in the tree layer and a decreasing trend in the shrub and herb layers. Meanwhile, the evergreen component increased. Along with the changed climate, forest vegetation in the TNFP was developing towards the forward succession. Species diversity, especially the trees, increased with the increase of temperature. This demonstrated that, on one hand, forest vegetation in Tiantong had been well protected; on the other hand, there was a potential positive relationship between the EBLF succession and climate change.

  12. Landscape dynamics in the Arctic foothills: Landscape evolution and vegetation succession on disturbances

    SciTech Connect

    Walker, D.A.; Walker, M.D.

    1990-10-20

    This document contains a summary of research accomplished by the University of Colorado's Institute of Arctic and Alpine Research (INSTAAR) Joint Facility for Regional Ecosystem Analysis (JFREA) for the Department of Energy's R D research program for 1989--1990. Aerial photographs, orthophoto topographic maps, and digital elevation models (DEMs) of the Toolik Lake region site were prepared by Aeromap US at 1:500 and 1:5000 scales. During August 1990, the region surrounding Toolik Lake was mapped at 1:5000 scale, and the intensive research grid was mapped at 1:500 scale. Mapped variables include vegetation, landforms, surface forms, and percentage surface water. Soil data from the Imnavait Creek and Toolik Lake sites are central to the analysis of landscape evolution. Soils were collected from the base of the O horizon at 72 gridpoints on the 1:500-scale map area at Imnavait Creek, and 85 grid points at Toolik Lake. Soils are being analyzed for percentage moisture, pH (saturated paste), electrical conductivity, percentage organic matter, nitrate, nitrogen, phosphorus, potassium, iron, manganese, copper. Soils were also collected from 81 permanent plots (199 horizons) which will be used for vegetation-environmental analyses. Permanent 1 {times} 1-meter point-quadrat plots were established at 85 points of the Toolik Lake grid. Data from the plots will be stratified according to slope position and terrain unit and used to compare vegetation structure and cover on different aged surfaces. Work continued on the study of the effects of road dust on tundra vegetation. 28 figs.

  13. Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Schaaf, Crystal; Zhang, Xiaoyang; Strahler, Alan; Roy, David; Morisette, Jeffrey; Wang, Zhuosen; Nightingale, Joanne; Nickeson, Jaime; Richardson, Andrew D.; Xie, Donghui; Wang, Jindi; Li, Xiaowen; Strabala, Kathleen; Davies, James E.

    2013-01-01

    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest.

  14. The Role of Riparian Vegetation Density, Channel Orientation and Water Velocity in Determining River Water Temperature Dynamics

    NASA Astrophysics Data System (ADS)

    Garner, G.; Malcolm, I.; Sadler, J. P.; Hannah, D. M.

    2015-12-01

    There is substantial scientific and practical interest in the potential of riparian shading to mitigate climate change impacts on river temperature extremes. However, there is limited process-based evidence to determine the density and spatial extent of riparian tree planting required to obtain temperature targets under differing environmental conditions. A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ~1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model for the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥ 1.7 °C) and maximum (≥ 3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  15. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    PubMed Central

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  16. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    USGS Publications Warehouse

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  17. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model.

    PubMed

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-12-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and

  18. Vegetation cover dynamics of the Mongolian semiarid zone according to multi-temporal LANDSAT imagery (the case of Darkhan test range)

    NASA Astrophysics Data System (ADS)

    Zharnikova, M. A.; Alymbaeva, ZH B.; Ayurzhanaev, A. A.; Garmaev, E. ZH

    2016-11-01

    At present much attention is given to the spatio-temporal dynamics of plant communities of steppes to assess their response to the current climate changes. In this study, a mapping of a selected modeling polygon was carried out on the basis of data decoding and field surveys of vegetation cover in the semi-arid zone. The resulting large-scale map of actual vegetation reflects the current state of the vegetation cover and its horizontal structure. It is a valuable material for monitoring of changes in the chosen area. With multi-temporal satellite Landsat imagery we consider the vegetation cover dynamics of the test range. To analyze the transformation of the environment by the climatic factors, we compared series of NDVI versus the precipitation and of NDVI versus the temperatures. Then we calculated the degree of correlation between them.

  19. The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River

    NASA Astrophysics Data System (ADS)

    Xu, Hailiang; Ye, Mao; Li, Jimei

    2009-10-01

    Based on data obtained from field investigations, this paper aims to analyze the influence of the river overflow on the desert riparian vegetation and discuss the function of the river overflow on the vegetation restoration at the lower Tarim River. The results show that (1) there are only 17 species, 13 genera and 9 families in the study areas before river overflow, while there are 34 species, 26 genera and 12 families after the overflowing in which 18 species emerged newly; (2) judging by the biodiversity indices, the species diversity and species richness in the river overflowed area increase more significantly than those in the un-overflow area; (3) judging by the importance of different species after years of river overflowing, the annual herbs germinate quickly at first, while the perennial herbs with deep roots or root clones become dominant in the plant community; (4) after several times of river overflowing, some arbors and shrubs such as Populus euphratica and Tamarix ramosissima germinate easily and can dominate gradually in the plant community. The results indicate that the river overflowing restores the severely degraded ecosystem in the lower Tarim River and the function is connected with restoration of eco-hydrological processes in the study areas. The results suggest that experimental overflowing has initiated a process of restoring ecosystem function within the riparian forest.

  20. Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway.

    PubMed

    Leoncini, Emanuela; Malaguti, Marco; Angeloni, Cristina; Motori, Elisa; Fabbri, Daniele; Hrelia, Silvana

    2011-09-01

    The isothiocyanate sulforaphane (SF), abundant in Cruciferous vegetables, is known to induce antioxidant/detoxification enzymes in many cancer cell lines, but studies focused on its cytoprotective action in nontransformed cells are just at the beginning. Since we previously demonstrated that SF elicits cardioprotection through an indirect antioxidative mechanism, the aim of this study was to analyze the signaling pathways through which SF exerts its protective effects. Using cultured rat cardiomyocytes, we investigated the ability of SF to activate Akt/protein kinase B (PKB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways, which are implicated in cardiac cell survival, and to increase the phosphorylation of Nuclear factor E2-related factor 2 (Nrf2) and its binding to the antioxidant response element. By means of specific inhibitors, we demonstrated that the Phosphatidylinositol 3-kinase (PI3K)/Akt pathway represents a mechanism through which SF influences both expression and activity of glutathione reductase, glutathione-S-transferase, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase-1, analyzed by western immunoblotting and spectrophotometric assay, respectively, and modulates Nrf2 binding and phosphorylation resulting in a cytoprotective action against oxidative damage. Results of this study confirm the importance of phase II enzymes modulation as cytoprotective mechanism and support the nutritional assumption of Cruciferous vegetables as source of nutraceutical cardioprotective agents.

  1. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Haines, Dustin F.; Larson, Jennifer L.

    2013-01-01

    Exotic plants have the ability to modify soil seed banks in habitats they invade, but little is known about the legacy of invasion on seed banks once an exotic plant has successfully been controlled. Natural areas previously invaded by leafy spurge in the northern Great Plains typically have one of two fates following its removal: a return of native plants, or a secondary invasion of other exotic plants. It is unknown, however, if this difference in plant communities following leafy spurge control is due to seed bank differences. To answer this question, we monitored seed banks and standing vegetation for 2 yr in mixed-grass prairies that were previously invaded by leafy spurge but controlled within 5 yr of our study. We found that native plant seed banks were largely intact in areas previously invaded by leafy spurge, regardless of the current living plant community, and leafy spurge invasion history had a larger impact on cover and diversity of the vegetation than on the seed banks. Differences in plant communities following leafy spurge control do not appear to be related to the seed banks, and soil conditions may be more important in determining trajectories of these postinvasion communities.

  2. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species.

    PubMed

    Daleo, Pedro; Alberti, Juan; Pascual, Jesús; Canepuccia, Alejandro; Iribarne, Oscar

    2014-05-01

    Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.

  3. Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data

    NASA Astrophysics Data System (ADS)

    Höpfner, C.; Scherer, D.

    2011-04-01

    Vegetation phenology as well as current variability and dynamics of vegetation and land cover including its climatic and human drivers are examined in a region in north-western Morocco of nearly 22 700 km2. A gapless time series of Normalized Differenced Vegetation Index (NDVI) composite raster data from 29 September 2000 to 29 September 2009 with a spatial resolution of 250 m and acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is utilised. The presented approach allows to compose and analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that high temporal resolution of 16 d is sufficient (a) for determining land cover better than global land cover classifications of Plant Functional Types (PFT) and Global Land Cover 2000 (GLC2000), and (b) for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared to the stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland) of about 259.3 km2. However, statistically significant inter-annual trends in vegetation dynamics during the last decade could not be discovered. A sequence of correlations was done to extract the most important period of rainfall for production of green biomass and for the extent of land cover types, respectively. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85) at intra-annual time scale to NDVI percentiles (50%) of land cover types. Correlation results of mean daily precipitation from 16 September to 15 January and percentage of yearly classified

  4. Calibration of the maximum carboxylation velocity (vcmax) for the Caatinga for use in dynamic global vegetation models (DGVMs)

    NASA Astrophysics Data System (ADS)

    Rezende, L. C.; Arenque, B.; von Randow, C.; Moura, M. S.; Aidar, S. D.; Buckeridge, M. S.; Menezes, R.; Souza, L. S.; Ometto, J. P.

    2013-12-01

    The Caatinga biome in the semi-arid region of northeastern Brazil is extremely important due to its biodiversity and endemism. This biome, which is under high anthropogenic influences, presents high levels of environmental degradation, land use being among the main causes of such degradation. The simulations of land cover and the vegetation dynamic under different climate scenarios are important features for prediction of environmental risks and determination of sustainable pathways for the planet in the future. Modeling of the vegetation can be performed by use of dynamic global vegetation models (DGVMs). The DGVMs simulate the surface processes (e.g. transfer of energy, water, CO2 and momentum); plant physiology (e.g. photosynthesis, stomatal conductance) phenology; gross and net primary productivity, respiration, plant species classified by functional traits; competition for light, water and nutrients, soil characteristics and processes (e.g. nutrients, heterotrophic respiration). Currently, most of the parameters used in DGVMs are static pre-defined values, and the lack of observational information to aid choosing the most adequate values for these parameters is particularly critical for the semi-arid regions in the world. Through historical meteorological data and measurements of carbon assimilation we aim to calibrate the maximum carboxylation velocity (Vcmax), for the native species Poincianella microphylla, abundant in the Caatinga region. The field data (collected at Lat: 90 2' S, Lon: 40019' W) displayed two contrasting meteorological conditions, with precipitations of 16 mm and 104 mm prior to the sampling campaigns (April 9-13, 2012 and February 4-8, 2013; respectively). Calibration (obtaining values of Vcmax more suitable for vegetation of Caatinga) has been performed through an algorithm of pattern recognition: Classification And Regression Tree (CART) and calculation of the vapor pressure deficit (VPD), which was used as attribute for discrimination

  5. Rangeland dynamics: investigating vegetation composition and structure of urban and exurban prairie dog habitat

    PubMed Central

    Hopson, Rebecca; Meiman, Paul

    2015-01-01

    Rapid human population growth and habitat modification in the western United States has led to the formation of urban and exurban rangelands. Many of these rangelands are also home to populations of black-tailed prairie dogs (Cynomys ludovicianus). Our study aimed to compare the vegetation composition of an urban and exurban rangeland, and explore the role that prairie dogs play in these systems. The percent absolute canopy cover of graminoids (grasses and grass-likes), forbs, shrubs, litter, and bare ground were estimated at sampling areas located on and off prairie dog colonies at an urban and an exurban site. Herbaceous forage quality and quantity were determined on plant material collected from exclosure cages located on the colony during the entire growing season, while a relative estimate of prairie dog density was calculated using maximum counts. The exurban site had more litter and plant cover and less bare ground than the urban site. Graminoids were the dominant vegetation at the exurban plots. In contrast, mostly introduced forbs were found on the urban prairie dog colony. However, the forage quality and quantity tests demonstrated no difference between the two colonies. The relative prairie dog density was greater at the urban colony, which has the potential to drive greater vegetation utilization and reduced cover. Exurban rangeland showed lower levels of impact and retained all of the plant functional groups both on- and off-colony. These results suggest that activities of prairie dogs might further exacerbate the impacts of humans in fragmented urban rangeland habitats. Greater understanding of the drivers of these impacts and the spatial scales at which they occur are likely to prove valuable in the management and conservation of rangelands in and around urban areas. PMID:25650011

  6. Differences in the dynamics of affective and cognitive processing - An ERP study.

    PubMed

    Mueller, Christina J; Fritsch, Nathalie; Hofmann, Markus J; Kuchinke, Lars

    2017-01-15

    A controversy in emotion research concerns the question of whether affective or cognitive primacy are evident in processing affective stimuli and the factors contributing to each alternative. Using electrophysiological recordings in an adapted visual oddball paradigm allowed tracking the dynamics of affective and cognitive effects. Stimuli consisted of face pictures displaying affective expressions with rare oddballs differing from frequent stimuli in either affective expression, structure (while frequent stimuli were shown frontally these deviants were turned sideways) or they differed on both dimensions, i.e. in affective expression and structure. Results revealed a defined sequence of differences in ERP amplitudes: For stimuli deviating in their affective expression only, P1 modulations ~100ms were evident, while affective differences of structure deviants were not evident before the N170 time window. All three types of deviants differed in P300 amplitudes, indicating integration of affective and structural information. These results encompass evidence for both, cognitive and affective primacy depending on stimulus properties. Specifically affective primacy is only visible when the respective facial features can be extracted with ease. When structural differences make face processing harder, however, cognitive primacy is brought forward.

  7. Changing facial affect recognition in schizophrenia: effects of training on brain dynamics.

    PubMed

    Popova, Petia; Popov, Tzvetan G; Wienbruch, Christian; Carolus, Almut M; Miller, Gregory A; Rockstroh, Brigitte S

    2014-01-01

    Deficits in social cognition including facial affect recognition and their detrimental effects on functional outcome are well established in schizophrenia. Structured training can have substantial effects on social cognitive measures including facial affect recognition. Elucidating training effects on cortical mechanisms involved in facial affect recognition may identify causes of dysfunctional facial affect recognition in schizophrenia and foster remediation strategies. In the present study, 57 schizophrenia patients were randomly assigned to (a) computer-based facial affect training that focused on affect discrimination and working memory in 20 daily 1-hour sessions, (b) similarly intense, targeted cognitive training on auditory-verbal discrimination and working memory, or (c) treatment as usual. Neuromagnetic activity was measured before and after training during a dynamic facial affect recognition task (5 s videos showing human faces gradually changing from neutral to fear or to happy expressions). Effects on 10-13 Hz (alpha) power during the transition from neutral to emotional expressions were assessed via MEG based on previous findings that alpha power increase is related to facial affect recognition and is smaller in schizophrenia than in healthy subjects. Targeted affect training improved overt performance on the training tasks. Moreover, alpha power increase during the dynamic facial affect recognition task was larger after affect training than after treatment-as-usual, though similar to that after targeted perceptual-cognitive training, indicating somewhat nonspecific benefits. Alpha power modulation was unrelated to general neuropsychological test performance, which improved in all groups. Results suggest that specific neural processes supporting facial affect recognition, evident in oscillatory phenomena, are modifiable. This should be considered when developing remediation strategies targeting social cognition in schizophrenia.

  8. Holocene Vegetation and Fire Dynamics on the Chilcotin Plateau, BC, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, R.; Hawkes, B.

    2014-12-01

    The Chilcotin Plateau is a high elevation plateau in the west central interior of British Columbia, Canada. It is characterised by a continental climate and located in a rainshadow setting. Pine-dominated forests dominate. The region is prone to frequent fires and mountain pine beetle outbreaks. Several surface sediment cores and an overlapping Livingstone sediment core were collected from centrally-located Scum Lake and analysed for pollen, charcoal and insect remains. During the early-Holocene warm-dry interval, a non-arboreal vegetation community dominated by grass and sage dominated and surface fire disturbance was frequent. Model predictions suggest that non-arboreal vegetation may expand in this region in the future, suggesting that the fire regime will likewise change as in the early-Holocene. In the mid-Holocene, pine, possibly Pinus ponderosa, increased in abundance, suggesting that a surface fire regime persisted at that time. Pinus contorta pollen increased in the late-Holocene, representing the establishment of the modern forest and mixed/crown fire regime. Fire return intervals typically ranged between 20-100 years, consistent with tree-ring based observation (40-70 years). Analyses of the surface cores revealed that identifiable mountain pine beetle remains were rare, suggesting that alternative approaches may be required to assess to insect disturbance through time.

  9. Drought impacts on vegetation dynamics in the Mediterranean based on remote sensing and multi-scale drought indices

    NASA Astrophysics Data System (ADS)

    Trigo, Ricardo; Gouveia, Celia M.; Beguería, Santiago; Vicente-Serrano, Sergio

    2015-04-01

    A number of recent studies have identified a significant increase in the frequency of drought events in the Mediterranean basin (e.g. Trigo et al., 2013, Vicente-Serrano et al., 2014). In the Mediterranean region, large drought episodes are responsible for the most negative impacts on the vegetation including significant losses of crop yield, increasing risk of forest fires (e.g. Gouveia et al., 2012) and even forest decline. The aim of the present work is to analyze in detail the impacts of drought episodes on vegetation in the Mediterranean basin behavior using NDVI data from (from GIMMS) for entire Mediterranean basin (1982-2006) and the multi-scale drought index (the Standardised Precipitation-Evapotranspiration Index (SPEI). Correlation maps between fields of monthly NDVI and SPEI for at different time scales (1-24 months) were computed in order to identify the regions and seasons most affected by droughts. Affected vegetation presents high spatial and seasonal variability, with a maximum in summer and a minimum in winter. During February 50% of the affected pixels corresponded to a time scale of 6 months, while in November the most frequent time scale corresponded to 3 months, representing more than 40% of the affected region. Around 20% of grid points corresponded to the longer time scales (18 and 24 months), persisting fairly constant along the year. In all seasons the wetter clusters present higher NDVI values which indicates that aridity holds a key role to explain the spatial differences in the NDVI values along the year. Despite the localization of these clusters in areas with higher values of monthly water balance, the strongest control of drought on vegetation activity are observed for the drier classes located over regions with smaller absolute values of water balance. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C. (2012) "Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards and Earth System

  10. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (< 130 m) aerial photographs acquired using off-the-shelf digital cameras mounted on an inexpensive (< USD$4000), lightweight (< 2 kg), hobbyist-grade unmanned aerial system (UAS). Ecosynth 3D point clouds with densities of 30 - 67 points m-2 were produced using commercial computer vision software from digital photographs acquired repeatedly by UAS over three 6.25 ha (250 m x 250 m) Temperate Deciduous forest sites in Maryland USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same

  11. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica.

    PubMed

    Fuller, D O; Troyo, A; Beier, J C

    2009-03-04

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns throughout Latin America and the Caribbean. This study focuses on Costa Rica, which experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface temperature anomalies related to the El Niño Southern Oscillation (ENSO) and two vegetation indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on the relationships between independent variables and DF/DHF cases. The model, which utilizes a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance in weekly DF/DHF cases when independent variables were shifted backwards in time. When the independent variables were shifted forward in time, consistently with a forecasting approach, the model explained 64% of the variance. Importantly, when five ENSO and two vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005. The unexplained variance in the model may be due to herd immunity and vector control measures, although information regarding these aspects of the disease system are generally lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as early as 40 weeks in advance and may also provide valuable information on the magnitude of future epidemics. In its current form it may be used to inform national vector control programs and policies regarding control measures; it is the first climate-based dengue model developed for this country and is potentially scalable to the broader region of Latin America and the Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.

  12. Using biogeochemical tracing and ecohydrological monitoring to increase understanding of water, sediment and carbon dynamics across dryland vegetation transitions

    NASA Astrophysics Data System (ADS)

    Puttock, Alan; Dungait, Jennifer; Macleod, Kit; Bol, Roland; Brazier, Richard

    2014-05-01

    Drylands worldwide have experienced rapid and extensive environmental change, which across large areas has been characterised by the encroachment of woody vegetation into grasslands. Woody encroachment leads to changes in the abiotic and biotic structure and function of dryland ecosystems and has been shown to result in accelerated soil erosion and loss of soil nutrients. The relationship between environmental change, soil erosion and the carbon cycle in dryland environments remains uncertain. Covering over 40 % of the terrestrial land surface, dryland environments are of significant global importance, both as a habitat and a soil carbon store. Thus, there is a clear need to further our understanding of dryland vegetation change and impacts on carbon dynamics. Here, grama grass to creosote shrub and grama grass to piñon-juniper woodland; two grass-to-woody ecotones that occur across large swathes of the semi-arid Southwestern United States are investigated. This study combines an ecohydrological monitoring framework with a multi-proxy biogeochemical approach using stable carbon isotope and n-alkane lipid biomarkers to trace the source of organic carbon. Results will be presented showing that following woody encroachment into grasslands, there is a transition to a more heterogeneous ecosystem structure and an increased hydrological connectivity. Consequentially, not only do drylands lose significantly more soil and organic carbon via accentuated fluvial erosion, but this includes significant amounts of legacy organic carbon which would previously have been stable under the previous grass cover. Results suggest that dryland soils may therefore, not act as a stable organic carbon pool and that accelerated fluvial erosion of carbon, driven by vegetation change, has important implications for the global carbon cycle.

  13. Vegetation dynamics and plant species interactions under grazed and ungrazed conditions in a western European salt marsh

    NASA Astrophysics Data System (ADS)

    Tessier, Marc; Vivier, Jean-Paul; Ouin, Annie; Gloaguen, Jean-Claude; Lefeuvre, Jean-Claude

    2003-05-01

    Experiments in exclosures were conducted on a salt marsh in a macrotidal system in western France. The aim of this study was threefold: (1) to compare vegetation dynamics over a period of 8 years in grazed and ungrazed conditions (2) to investigate the response of annual species to grazing duration during seedling establishment (3) to test the effect of an increase in soil nitrogen availability after cessation of grazing on interactions between Suaeda maritima and Puccinellia maritima. In grazed conditions, during all the survey, vegetation was dominated by a short P. maritima sward with the annual Salicornia europaea in the lower and middle marshes. However, after cessation of grazing in 1994, a homogeneous matrix of the forb Halimione portulacoides, quickly replaced P. maritima in the well drained lower marsh. At the middle marsh level, fine sediment and poor drainage maintained P. maritima while the annual S. maritima which tolerates taller and denser vegetation replaced S. europaea. Elymus pungens cover was limited till 2000 but its rising in 2001 let expect its dominance in the future. While P. maritima abundance remained high, spring abundance of annual species such as S. europaea and S. maritima globally decreased with sheep grazing duration on the salt marsh between February and June. Experiments with monocultures of P. maritima and S. maritima demonstrated that nitrogen was a limiting factor on the salt marsh. In a mixed community, a moderate application of nitrogen (15 g N m -2 year -1 as NH 4-NO 3) promoted growth of P. maritima and limited the biomass of S. maritima, but growth of the latter was enhanced by a high application of nitrogen (30 g N m -2 year -1). An increase in the abundance of annuals such as S. maritima on the salt marsh is discussed.

  14. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica

    NASA Astrophysics Data System (ADS)

    Fuller, D. O.; Troyo, A.; Beier, J. C.

    2009-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns throughout Latin America and the Caribbean. This study focuses on Costa Rica, which experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface temperature anomalies related to the El Niño Southern Oscillation (ENSO) and two vegetation indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on the relationships between independent variables and DF/DHF cases. The model, which utilizes a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance in weekly DF/DHF cases when independent variables were shifted backwards in time. When the independent variables were shifted forward in time, consistently with a forecasting approach, the model explained 64% of the variance. Importantly, when five ENSO and two vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005. The unexplained variance in the model may be due to herd immunity and vector control measures, although information regarding these aspects of the disease system are generally lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as early as 40 weeks in advance and may also provide valuable information on the magnitude of future epidemics. In its current form it may be used to inform national vector control programs and policies regarding control measures; it is the first climate-based dengue model developed for this country and is potentially scalable to the broader region of Latin America and the Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.

  15. Millennial-scale vegetation dynamics in an estuary at the onset of the Miocene Climate Optimum

    PubMed Central

    Kern, Andrea; Harzhauser, Mathias; Mandic, Oleg; Roetzel, Reinhard; Ćorić, Stjepan; Bruch, Angela A.; Zuschin, Martin

    2010-01-01

    Pollen analyses have been proven to possess the possibility to decipher rapid vegetational and climate shifts in Neogene sedimentary records. Herein, a c. 21-kyr-long transgression–regression cycle from the Lower Austrian locality Stetten is analysed in detail to evaluate climatic benchmarks for the early phase of the Middle Miocene Climate Optimum and to estimate the pace of environmental change. Based on the Coexistence Approach, a very clear signal of seasonality can be reconstructed. A warm and wet summer season with c. 204–236 mm precipitation during the wettest month was opposed by a rather dry winter season with precipitation of c. 9–24 mm during the driest month. The mean annual temperature ranged between 15.7 and 20.8 °C, with about 9.6–13.3 °C during the cold season and 24.7–27.9 °C during the warmest month. In contrast, today’s climate of this area, with an annual temperature of 9.8 °C and 660 mm rainfall, is characterized by the winter season (mean temperature: −1.4 °C, mean precipitation: 39 mm) and a summer mean temperature of 19.9 °C (mean precipitation: 84 mm). Different modes of environmental shifts shaped the composition of the vegetation. Within few millennia, marshes and salt marshes with abundant Cyperaceae rapidly graded into Taxodiaceae swamps. This quick but gradual process was interrupted by swift marine ingressions which took place on a decadal to centennial scale. The transgression is accompanied by blooms of dinoflagellates and of the green alga Prasinophyta and an increase in Abies and Picea. Afterwards, the retreat of the sea and the progradation of estuarine and wetland settings were a gradual progress again. Despite a clear sedimentological cyclicity, which is related to the 21-kyr precessional forcing, the climate data show little variation. This missing pattern might be due to the buffering of the precessional-related climate signal by the subtropical vegetation. Another explanation could be the method

  16. Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Tripathee, R.; Schäfer, K. V. R.; Jaffé, P. R.

    2013-12-01

    Estuarine and coastal wetlands exhibit high rates of carbon burial and storage in anaerobic sediments, but the extent to which carbon sequestration is offset by methane (CH4) emissions from these ecosystems remains unclear. In this study we combine measurements of sediment-air CH4 fluxes with monitoring of belowground CH4 pools in a New Jersey tidal marsh in order to clarify mechanistic links between environmental drivers, subsurface dynamics, and atmospheric emissions. Measurements were conducted in an unvegetated mud flat and adjacent low marsh vegetated with Spartina alterniflora and Phragmites australis. Pore water measurements throughout the year revealed long-term CH4 storage in mud flat sediments, leading to a seasonal lag in emissions that extended into winter months. CH4 reservoirs and fluxes in vegetated sediments were well described by an empirical temperature-response model, while poor model agreement in unvegetated sediments was attributed to decouplings between production and flux due to storage processes. This study highlights the need to incorporate sediment gas exchange rates and pathways into biogeochemical process models.

  17. Investigating the Effects of Sweat Therapy on Group Dynamics and Affect

    ERIC Educational Resources Information Center

    Colmant, Stephen A.; Eason, Evan A.; Winterowd, Carrie L.; Jacobs, Sue C.; Cashel, Chris

    2005-01-01

    In this study, we examined the effects of sweat therapy on group dynamics and affect. Sweat therapy is the combination of intense heat exposure with psychotherapy or counseling (Colmant & Merta, 1999; 2000). Twenty-four undergraduates were separated by sex and randomly assigned to eight sessions of either a sweat or non-sweat group counseling…

  18. Imperfect or Perfect Dynamic Bipolarity? The Case of Antonymous Affective Judgments

    ERIC Educational Resources Information Center

    Vautier, Stephane; Steyer, Rolf; Jmel, Said; Raufaste, Eric

    2005-01-01

    How is affective change rated with positive adjectives such as good related to change rated with negative adjectives such as bad? Two nested perfect and imperfect forms of dynamic bipolarity are defined using latent change structural equation models based on tetrads of items. Perfect bipolarity means that latent change scores correlate -1.…

  19. The Dynamic Nature of Leisure Experience: An Application of Affect Control Theory.

    ERIC Educational Resources Information Center

    Lee, BongKoo; Shafer, C. Scott

    2002-01-01

    Applied Affect Control Theory (ACT) to investigate the interaction process between leisure participants and their environment. Surveys of people on an urban, multiple-use trail indicated that most exhibited a dynamic emotional experience even though they were in the setting a short time. Respondents exhibited different emotions across events.…

  20. School Factors Explaining Achievement on Cognitive and Affective Outcomes: Establishing a Dynamic Model of Educational Effectiveness

    ERIC Educational Resources Information Center

    Creemers, Bert; Kyriakides, Leonidas

    2010-01-01

    The dynamic model of educational effectiveness defines school level factors associated with student outcomes. Emphasis is given to the two main aspects of policy, evaluation, and improvement in schools which affect quality of teaching and learning at both the level of teachers and students: a) teaching and b) school learning environment. Five…

  1. Environmental Factors Affecting Computer Assisted Language Learning Success: A Complex Dynamic Systems Conceptual Model

    ERIC Educational Resources Information Center

    Marek, Michael W.; Wu, Wen-Chi Vivian

    2014-01-01

    This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…

  2. Factors that Affect Synergies in Mergers, at Banking Sector: Simulation with a Dynamic Model

    NASA Astrophysics Data System (ADS)

    Yiannis, Triantafyllopoulos; Sakas, Damianos P.; Konstantopoulos, Nikolaos

    2007-12-01

    This article examines the factors that affect the intended synergy following an M&A, as they have emerged from the study of the M&A's that have taken place as yet in the Bank Sector of an EU country. On the basis of quality research, dynamic simulation models have been created for two out of the five factors.

  3. On the evaluation of vegetation resilience in Southern Italy by using satellite VEGETATION, MODIS, TM time series

    NASA Astrophysics Data System (ADS)

    Coluzzi, C.; Didonna, I.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Therefore variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 1998 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different type of environmenta diturbances (drought, salinity, pollution, etc). Our objective is to characterize quantitatively the resilient effect of vegetation cover at different temporal and

  4. On the evaluation of vegetation resilience in Southern Italy by using VEGETATION, MODIS, TM satellite time series

    NASA Astrophysics Data System (ADS)

    Didonna, I.; Coluzzi, R.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 2000 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION, MODIS and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different types of environmental diturbances (drought, salinity, pollution, etc). Our objective was to characterize quantitatively the resilient effect of vegetation cover at differen temporal and