Science.gov

Sample records for affect vegetative growth

  1. Field application of glyphosate induces molecular changes affecting vegetative growth processes in leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommended rates of glyphosate for non-cultivated areas destroy the aboveground shoots of the perennial plant leafy spurge. However, such applications cause little or no damage to underground adventitious buds (UABs), and thus the plant readily regenerates vegetatively. High concentrations of glyph...

  2. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    PubMed

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.

  3. Prevalent vegetation growth enhancement in urban environment.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-05-31

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.

  4. FT Duplication Coordinates Reproductive and Vegetative Growth

    SciTech Connect

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin; No, Kyoungok; Ma, Caiping; Strauss, Steven; Drnevich, Jenny; Wickett, Norman; Vandervelde, Lindsay; Ellis, Jeffrey D.; Rice, Brandon; Gunter, Lee E; Tuskan, Gerald A; Brunner, Amy M.; Page, Grier P.; Carlson, John E.; DePamphilis, Claude; Luthe, Dawn S.; Yuceer, Cetin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.

  5. Estimating wheat growth with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we computed the Radar Vegetation Index (RVI) using observations made with a ground based multi-frequency polarimetric scatterometer system over an entire wheat growth period. The temporal variations of the backscattering coefficients for L-, C-, and X-band, RVI, vegetation water conte...

  6. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term control of leafy spurge with glyphosate requires multiple applications because the plant reproduces vegetatively from abundant underground adventitious buds (UABs). Determining the molecular mechanisms involved in controlling vegetative reproduction in leafy spurge following foliar glyphos...

  7. Can landscape memory affect vegetation recovery in drylands?

    NASA Astrophysics Data System (ADS)

    Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max

    2016-04-01

    Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).

  8. Wheat growth monitoring with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave remote sensing can help in the monitoring of crop growth. Many experiments have been carried out to investigate the sensitivity of microwave sensors to crop growth parameters. These have clearly shown that canopy structure and water content can greatly affect the measurements. For agricult...

  9. How vegetation patterning affects sediment dynamics in complex landscapes

    NASA Astrophysics Data System (ADS)

    Baartman, Jantiene; Temme, Arnaud; Saco, Patricia

    2016-04-01

    Semi-arid ecosystems are often spatially self-organized in typical patterns of vegetation bands with high plant cover interspersed with bare soil areas, also known as 'tigerbush'. Tigerbush dynamics have been studied using model simulations on flat synthetic landscapes, although in some cases straight slopes were used. The feedbacks between vegetation and more realistic and complex landscapes have not been studied yet, even though these landscapes are much more prevalent. Hence, our objective was to determine the effect of landform variation on vegetation patterning and sediment dynamics. We linked two existing models that simulate (a) plant growth, death and dispersal of vegetation, and (b) erosion and sedimentation. The model was calibrated on a straight planar hillslope and then applied to (i) a set of synthetic but more complex topographies and (ii) three real-world landscapes. Furthermore, sediment dynamics were evaluated by comparing simulated sediment output with and without vegetation dynamics. Results show banded vegetation patterning on all synthetic topographies, always perpendicular to the slope gradient. For real topographies, banded vegetation was simulated in the relatively flat, rolling landscape and in the dissected landscape when slopes were gentle. In the steep dissected landscape and the alluvial fan, vegetation was simulated to grow in local depressions where moisture is present whereas hilltops were bare. Including vegetation dynamics resulted in significantly less simulated erosion and relatively more deposition compared to simulations with uniformly distributed vegetation.

  10. Water Control on Vegetation Growth Pattern in Eurasia from GRACE

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.

    2014-12-01

    High latitude ecosystem productivity is constrained by cold temperature and moisture limitations to plant growth, while these environmental restrictions may be changing with global warming. Satellite data driven assessments indicate that over the past three decades, rapid warming in the northern high latitudes has resulted in earlier and longer potential growing seasons and widespread greening, due to general relaxation of cold temperature constraints to vegetation productivity. However, warming may have also increased water stress limitations to growth. In this study, we use GRACE (Gravity Recovery and Climate Experiment) derived total water storage (TWS), 2-m air temperature (T) from ERA-interim reanalysis, normalized difference vegetation index (NDVI) data from MODIS (Collection 5) and satellite data driven vegetation gross primary productivity (GPP) estimates as surrogates for vegetation growth, for the period August 2002-December 2013 to evaluate terrestrial water supply controls to vegetation growth changes over the three major river basins of northern Eurasia. We find that during the analyzed period, the apparent growth response follows regional vegetation, moisture and temperature gradients and is spatially complex. In the drier southwest characterized by grassland, vegetation growth is mainly controlled by TWS availability. In the central region, dominated by cold temperature and water limited boreal forest, T is the main control on vegetation growth. In the Lena basin, where vegetation includes both boreal forest and water limited grassland, both T and TWS impact vegetation growth. We suggest that GRACE TWS estimates provide reliable observational constraints on water availability to vegetation that supplement sparse soil moisture observations and satellite precipitation estimates with unknown bias.

  11. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities

    PubMed Central

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities. PMID:26560705

  12. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    PubMed

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities. PMID:26560705

  13. Process for producing vegetative and tuber growth regulator

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W. (Inventor); Yorio, Neil C. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  14. Retrieval of wheat growth parameters with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Radar Vegetation Index (RVI) has a low sensitivity to changes in environmental conditions and has the potential as a tool to monitor the vegetation growth. In this study, we expand on previous research by investigating the radar response over a wheat canopy. RVI was computed using observations m...

  15. Deciphering the Costs of Reproduction in Mango – Vegetative Growth Matters

    PubMed Central

    Capelli, Mathilde; Lauri, Pierre-Éric; Normand, Frédéric

    2016-01-01

    Irregular fruit production across successive years is a major issue that limits the profitability of most temperate and tropical fruit crops. It is particularly affected by the reciprocal relationships between vegetative and reproductive growth. The concept of the costs of reproduction is defined in terms of losses in the potential future reproductive success caused by current investment in reproduction. This concept, developed in ecology and evolutionary biology, could provide a methodological framework to analyze irregular bearing in fruit crops, especially in relation to the spatial scale at which studies are done. The objective of this study was to investigate the direct effects of reproduction during a growing cycle on reproduction during the following growing cycle and the indirect effects through vegetative growth between these two reproductive events, for four mango cultivars and during two growing cycles. Two spatial scales were considered: the growth unit (GU) and the scaffold branch. Costs of reproduction were detected between two successive reproductive events and between reproduction and vegetative growth. These costs were scale-dependent, generally detected at the GU scale and infrequently at the scaffold branch scale, suggesting partial branch autonomy with respect to processes underlying the effects of reproduction on vegetative growth. In contrast, the relationships between vegetative growth and reproduction were positive at the GU scale and at the scaffold branch scale in most cases, suggesting branch autonomy for the processes, mainly local, underlying flowering and fruiting. The negative effect of reproduction on vegetative growth prevailed over the positive effect of vegetative growth on the subsequent reproduction. The costs of reproduction were also cultivar-dependent. Those revealed at the GU scale were related to the bearing behavior of each cultivar. Our results put forward the crucial role of vegetative growth occurring between two

  16. Sensing Vegetation Growth and Senescence with Reflected GPS Signals

    NASA Astrophysics Data System (ADS)

    Evans, S. G.; Small, E. E.; Larson, K. M.; Rocco, M.

    2012-12-01

    We have developed a new technique to estimate vegetation growth and senescence using reflected GPS signals (multipath) measured by geodetic-quality GPS stations. The sensing footprint is ~1000 m2, larger than that provided by typical in situ observations but smaller than that from space-based products. Because GPS satellites transmit L-band signals, the vegetation estimates derived from GPS reflections are a measure of vegetation water content, not greenness as is the case for optical remote sensing methods. We present results based on two distinct attributes of the multipath signal: (1) signal attenuation observed as the amplitude of the signal-to-noise (SNR) interference pattern; and (2) diffuse scattering measured via an operational GPS noise statistic, MP1rms. We have compared GPS multipath to biweekly measurements of biomass, vegetation height, and water content at ten test sites that span a range of vegetation characteristics. Vegetation height and water content are inversely correlated with amplitude of the SNR signal. The reflected signal is completely suppressed when vegetation water content exceeds 3 kg m-2, for example at peak growth at irrigated corn and alfalfa sites. We have also examined GPS data from hundreds of sites in NSF's Plate Boundary Observatory (PBO) network to more completely evaluate this method. These sites are located in the western U.S. where grasses and shrubs are dominant. The operational MP1rms statistic, a measure of multipath scattering, exhibits a clear seasonal cycle as expected for vegetation growth and senescence. MP1rms is inversely correlated with Normalized Difference Vegetative Index (NDVI) at most PBO sites: there is more scattering of L-band signals at times when vegetation is greener. The MP1rms variations lag NDVI by approximately three weeks, consistent with the idea that green-up precedes plant growth. We measured biomass, vegetation water content, and height at 25 PBO sites in Western California. Field sampling was

  17. Responses of vegetation growth to climate change in china

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhou, T.

    2015-04-01

    Global warming-related climate changes have significantly impacted the growth of terrestrial vegetation. Quantifying the spatiotemporal characteristic of the vegetation's response to climate is crucial for assessing the potential impacts of climate change on vegetation. In this study, we employed the normalized difference vegetation index (NDVI) and the standardized precipitation evapotranspiration index (SPEI) that was calculated for various time scales (1 to 12 months) from monthly records of mean temperature and precipitation totals using 511 meteorological stations in China to study the response of vegetation types to droughts. We separated the NDVI into 12 time series (one per month) and also used the SPEI of 12 droughts time scales to make the correlation. The results showed that the differences exist in various vegetation types. For needle-leaved forest, broadleaf forest and shrubland, they responded to droughts at long time scales (9 to 12 months). For grassland, meadow and cultivated vegetation, they responded to droughts at short time scales (1 to 5months). The positive correlations were mostly found in arid and sub-arid environments where soil water was a primary constraining factor for plant growth, and the negative correlations always existed in humid environments where temperature and radiation played significant roles in vegetation growth. Further spatial analysis indicated that the positive correlations were primarily found in northern China, especially in northwestern China, which is a region that always has water deficit, and the negative correlations were found in southern China, especially in southeastern China, that is a region has water surplus most of the year. The disclosed patterns of spatiotemporal responses to droughts are important for studying the impact of climate change to vegetation growth.

  18. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and

  19. Optimization of lamp spectrum for vegetable growth

    NASA Technical Reports Server (NTRS)

    Prikupets, L. B.; Tikhomirov, A. A.

    1994-01-01

    An increase in the demand for and production of vegetables in the winter, mainly in northern and Siberian regions, inevitably leads to mass building of structures for growing plants under completely artificial conditions. An industrial lighting technology is required whose main parameters (spectrum, irradiance, photoperiod) should be assigned carefully and should uniquely determine, along with other important characteristics of the artificial climate, the productivity of the plant-production facility. The most widespread crops grown in our country under indoor conditions are cucumber and tomato plants, which account for more than 98% of the area in greenhouses. These plants are good prospects for growing completely under intense artificial lighting conditions (photocultures). Optimization of the main parameters of optical radiation when growing these plants is the most important task of achieving their profitable production. At present, considerable experience has been gained in studying the dependence of productivity of cucumber and tomato communities on irradiation conditions. Fundamental studies of the Agrophysical Research Institute of the Russian Academy of Sciences, Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Timiryazev Agricultural Academy, and other institutes create a good basis for a detailed study of the given problem. Commercial sources of radiation substantially differing in spectral characteristics in the region of photosynthetically active radiation (PAR) were used in the studies.

  20. Factors Affecting Vegetable Growers’ Exposure to Fungal Bioaerosols and Airborne Dust

    PubMed Central

    Hansen, Vinni M.; Meyling, Nicolai Vitt; Winding, Anne; Eilenberg, Jørgen; Madsen, Anne Mette

    2012-01-01

    We have quantified vegetable growers’ exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers’ exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers’ exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m−3) compared to exposures reported from other occupational environments. In conclusion, vegetable growers’ exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop. PMID:22003240

  1. Monitoring vegetation growth and morphodynamic effects after stream restoration

    NASA Astrophysics Data System (ADS)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Ton; Keesstra, Saskia; Uijttewaal, Wim

    2016-04-01

    Vegetation processes are widely recognized as a key component on the ecological and morphological development of river channels. Moreover, plants reduce flow velocities and bed-shear stresses by increasing the local hydraulic roughness and thus increasing water levels. Therefore, monitoring the vegetation development is an important activity in river management not only for protecting ecological services, but also in flood risk reduction; especially in times of a changing climate. This paper presents the analysis the effects of riparian vegetation growth on the morphology of a lowland restored stream located in The Netherlands, the Lunterse beek. An Unmanned Aerial Vehicle (UAV) was used to obtain aerial imagery at different time steps which was the basis for generating land cover maps with semi-automated image classification. In addition hydrological series and multi-temporal high-resolution bathymetric data allowed analysing river bed morphology and the relevance of seasonality. The UAV campaigns were found a crucial step to ease the vegetation mapping and monitoring. The morphological change observed in this stream, represented by the channel-width adjustment and the cross sectional evolution, is slowed down once vegetation is stablished on the stream. Results of this work show that the vegetation root system assert a strong control on soil stabilization, even during the winter season when the plants biomass is highly reduced. Seasonal variations in plant development appear important only during the first stages of establishment, when vegetation has a low density and, more importantly, a root system that is not fully developed yet.

  2. Monitoring the growth or decline of vegetation on mine dumps

    NASA Technical Reports Server (NTRS)

    Gilbertson, B. P. (Principal Investigator)

    1975-01-01

    The author has identified the following signficant results. It was established that particular mine dumps throughout the entire test area can be detected and identified. It was also established that patterns of vegetative growth on the mine dumps can be recognized from a simple visual analysis of photographic images. Because vegetation tends to occur in patches on many mine dumps, it is unsatisfactory to classify complete dumps into categories of percentage vegetative cover. A more desirable approach is to classify the patches of vegetation themselves. The coarse resolution of conventional densitometers restricts the accuracy of this procedure, and consequently a direct analysis of ERTS CCT's is preferred. A set of computer programs was written to perform the data reading and manipulating functions required for basic CCT analysis.

  3. Plant characteristics and growth parameters of vegetable pigeon pea cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigeon pea is an important crop in dry land and semi-arid regions and is a supplementary source of dietary protein for the resource-constrained farmers. The aim of this research was to evaluate growth parameters of twelve vegetable pigeon pea genotypes at two locations in Eastern Kenya. The number o...

  4. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis.

    PubMed

    Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  5. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates.

    PubMed

    Pettorelli, Nathalie; Pelletier, Fanie; Von Hardenberg, Achaz; Festa-Bianchet, Marco; Côté, Steeve D

    2007-02-01

    Seasonal patterns of climate and vegetation growth are expected to be altered by global warming. In alpine environments, the reproduction of birds and mammals is tightly linked to seasonality; therefore such alterations may have strong repercussions on recruitment. We used the normalized difference vegetation index (NDVI), a satellite-based measurement that correlates strongly with aboveground net primary productivity, to explore how annual variations in the timing of vegetation onset and in the rate of change in primary production during green-up affected juvenile growth and survival of bighorn sheep (Ovis canadensis), Alpine ibex (Capra ibex), and mountain goats (Oreamnos americanus) in four different populations in two continents. We indexed timing of onset of vegetation growth by the integrated NDVI (INDVI) in May. The rate of change in primary production during green-up (early May to early July) was estimated as (1) the maximal slope between any two successive bimonthly NDVI values during this period and (2) the slope in NDVI between early May and early July. The maximal slope in NDVI was negatively correlated with lamb growth and survival in both populations of bighorn sheep, growth of mountain goat kids, and survival of Alpine ibex kids, but not with survival of mountain goat kids. There was no effect of INDVI in May and of the slope in NDVI between early May and early July on juvenile growth and survival for any species. Although rapid changes in NDVI during the green-up period could translate into higher plant productivity, they may also lead to a shorter period of availability of high-quality forage over a large spatial scale, decreasing the opportunity for mountain ungulates to exploit high-quality forage. Our results suggest that attempts to forecast how warmer winters and springs will affect animal population dynamics and life histories in alpine environments should consider factors influencing the rate of changes in primary production during green

  6. Effects of industrial wastewater on growth and biomass production in commonly grown vegetables.

    PubMed

    Uzma, Syeda; Azizullah, Azizullah; Bibi, Roqaia; Nabeela, Farhat; Muhammad, Uzair; Ali, Imran; Rehman, Zia Ur; Häder, Donat-Peter

    2016-06-01

    In developing countries like Pakistan, irrigation of crops with industrial and municipal wastewater is a common practice. However, the impact of wastewater irrigation on vegetables growth has rarely been studied. Therefore, the present study was conducted to determine the effect of industrial wastewater on the germination and seedling growth of some commonly grown vegetables in Pakistan. Wastewater samples were collected from two different industries (marble industry and match alam factory) at Hayatabad Industrial Estate (HIE) in Peshawar, Pakistan, and their effect on different growth parameters of four vegetables including Hibiscus esculentus, Lactuca sativa, Cucumis sativus, and Cucumis melo was investigated. The obtained results revealed that wastewater from marble industry did not affect seed germination except a minor inhibition in H. esculentus. Effluents from match alam factory stimulated seed germination in C. melo and C. sativus but had no effect on seed germination in the other two vegetables. Wastewater increased root and shoot length in H. esculentus, L. sativa and C. melo, but decreased it in C. sativus. Similarly, differential effects of wastewater were observed on fresh and dry biomass of seedlings in all vegetables. It can be concluded that wastewater may have different effects on different crops, depending upon the nature of wastewater and sensitivity of a plant species to wastewater. PMID:27149970

  7. Changes in Sahelian annual vegetation growth and phenology since 1960: A modeling approach

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Grippa, M.; Mougin, E.; Guichard, F.; Kergoat, L.

    2016-08-01

    In semi-arid areas like the Sahel, vegetation is particularly sensitive to climate variability and can play an important role in surface-atmosphere coupling. After a wet period extending from 1950 to 1970, the Sahel experienced a severe drought in the 1970s and 1980s, followed by a partial recovery of rainfall and a "re-greening" of vegetation beginning in the 1990s. This study explores how the multidecadal variability of Sahelian rainfall and particularly the drought period have affected vegetation phenology and growth since 1960. The STEP model, which is specifically designed to simulate the Sahelian annual vegetation, including the dry season processes, is run over an area extending from 13°N to 18°N and from 20°W to 20°E. Mean values, interannual variability and phenological characteristics of the Sahelian annual grasslands simulated by STEP are in good agreement with MODIS derived production and phenology over the 2001-2014 period, which demonstrates the skill of the model and allows the analysis of vegetation changes and variability over the last 50 years. It was found that droughts in the 1970s and 1980s shortened the mean vegetation cycle and reduced its amplitude and that, despite the rainfall recovery since the 1990s, the current conditions for green and dry vegetation are still below pre-drought conditions. While the decrease in vegetation production has been largely homogeneous during droughts, vegetation recovery has been heterogeneous over the Sahel since 1990, with specific changes near the western coast and at the eastern edge of the West African monsoon area. Since 1970, the Sahel also experienced an increased interannual variability in vegetation mass and phenology. In terms of phenology, region-averaged End and Length of Season are the most variable, while maximum date and Start of Season are the least variable, although the latter displays a high variability locally.

  8. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  9. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  10. Visualizing Bacillus subtilis During Vegetative Growth and Spore Formation.

    PubMed

    Wang, Xindan; Montero Llopis, Paula

    2016-01-01

    Bacillus subtilis is the most commonly used Gram-positive bacterium to study cellular processes because of its genetic tractability. In addition, during nutrient limitation, B. subtilis undergoes the development process of spore formation, which is among the simplest examples of cellular differentiation. Many aspects of these processes have benefited from fluorescence microscopy. Here, we describe basic wide-field fluorescence microscopy techniques to visualize B. subtilis during vegetative growth, and the developmental process of sporulation. PMID:27283315

  11. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.

  12. Recent Change of Vegetation Growth Trend in China

    NASA Technical Reports Server (NTRS)

    Peng, Shushi; Chen, Anping; Xu, Liang; Cao, Chunxiang; Fang, Jingyun; Myneni, Ranga B.; Pinzon, Jorge E.; Tucker, COmpton J.; Piao, Shilong

    2011-01-01

    Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982-99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013/yr is larger than those in June, July and August (JJA) (0.0003/yr) and September and October (SO) (0.0008/yr). This relatively small increasing trend of JJA NDVI during 1982-2010 compared with that during 1982-99 (0.0012/yr) (Piao et al 2003 J. Geophys. Res.-Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039/yr) to slightly decreasing (0:0002/yr) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020/yr) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.

  13. Growth and decline of vegetation on mine dumps

    NASA Technical Reports Server (NTRS)

    Gilbertson, B. P. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The main objective is to determine the extent to which can be used to differentiate between mine dumps having varying degrees of vegetative cover. At this stage it is clear that the various mine dumps can be located and identified. Differences in vegetative cover can be seen and measured. Patterns of vegetative growth, some characteristic to particular dumps, can also be seen. It is therefore tentatively concluded that mine dumps can be differentiated with respect to their vegetative cover on the imagery received to date, and this is reported as a significant result. Subsequent imagery showing seasonal variations should facilitate this program. In addition to work on the mine dumps, a photogeological project has been initiated on geotectonics of South Africa. Studies of ERTS-1 images has indicated that major structures (faults, folds, and linear features) associated with the three geotectonic environments can be identified. In addition, major as well as relatively minor stratigraphic subdivisions can be recognized by their color tones. Results obtained warrant continuation of this study using color composite prints enlarged to a scale of 1:500,000.

  14. Does vegetation affect the methane oxidation efficiency of passive biosystems?

    PubMed

    Ndanga, Éliane M; Bradley, Robert L; Cabral, Alexandre R

    2015-04-01

    It is often reported in the technical literature that the presence of vegetation improves the methane oxidation efficiency of biosystems; however, the phenomena involved and biosystem performance results are still poorly documented, particularly in the field. This triggered a study to assess the importance of vegetation in methane oxidation efficiency (MOE). In this study, 4 large scale columns, each filled with sand, topsoil and a mixture of compost and topsoil were tested under controlled conditions in the laboratory and partially controlled conditions in the field. Four series of laboratory tests and two series of field tests were performed. 4 different plant covers were tested for each series: Trifolium repens L. (White clover), Phleum pratense L. (Timothy grass), a mixture of both, and bare soil as the control biosystem. The study results indicated that up to a loading equal to 100 g CH4/m(2)/d, the type of plant cover did not influence the oxidation rates, and the MOE was quite high (⩾ 95%) in all columns. Beyond this point, the oxidation rate continued to increase, reaching 253 and 179 g CH4/m(2)/d in laboratory and field tests respectively. In the end, the bare soil achieved as high or higher MOEs than vegetated biosystems. Despite the fact that the findings of this study cannot be generalized to other types of biosystems and plants and that the vegetation types tested were not fully grown, it was shown that for the short-term tests performed and the types of substrates and plants used herein, vegetation does not seem to be a key factor for enhancing biosystem performance. This key conclusion does not corroborate the conclusion of the relatively few studies published in the technical literature assessing the importance of vegetation in MOE.

  15. Aminopyralid soil residues affect rotational vegetable crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the sensitivity of bell pepper, eggplant, tomato, muskmelon, and watermelon to aminopyralid soil residues. Aminopyralid was applied at six rates ranging from 0.0014 kg ae ha 1 to 0.0448 kg ae ha 1, and vegetable crops were planted in the treated areas. ...

  16. Factors affecting radionuclide availability to vegetables grown at Los Alamos

    SciTech Connect

    White, G.C.; Hakonson, T.E.; Ahlquist, A.J.

    1981-07-01

    A field study was conducted in 1977 on /sup 238/ /sup 239/Pu and /sup 137/Cs availability to zucchini squash (Curcurbita melopepo, hybrid seneca) and green bush beans (Phaseolus vulgaris, Landreths stringless) grown under home-garden conditions in an area at Los Alamos National Laboratory used for treated radioactive liquid waste disposal. Radionuclide concentrations were measured as a function of tissue type, height above the soil, fertilization regime, and for the squash, food-cleansing procedures. Analysis of variance procedures was used to analyze the data. Ratios of the concentration of a radionuclide in oven-dried vegetation to dry soil ranged from 0.0004 to 0.116 for the Pu isotopes, and from 0.051 to 0.255 for /sup 137/Cs. Fertilization with cattle manure reduced the Pu concentration ratios by 30% and /sup 137/Cs by 50%. Vegetative parts sampled within 20 cm of the ground surface were contaminated about four times as much as those parts growing further from the ground surface. About 65% of the contamination was removed by washing, indicating the presence of surficial contamination. The 50-year radiation dose commitment to humans consuming vegetables from the garden plot would be less than 0.05 mrem and would be due almost entirely to /sup 137/Cs.

  17. Joint use of soil moisture and vegetation growth condition by remote sensing on the agricultural drought monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yang, Siquan; Huang, He; He, Haixia; Li, Suju; Cui, Yan

    2015-12-01

    Remote sensing is one of important methods on the agricultural drought monitoring for its long-term and wide-area observations. The detection of soil moisture and vegetation growth condition are two widely used remote sensing methods on that. However, because of the time lag in the impact of water deficit on the crop growth, it is difficulty to indicate the severity of drought by once monitoring. It also cannot distinguish other negative impact on crop growth such as low temperature or solar radiation. In this paper, the joint use of soil moisture and vegetation growth condition detections was applied on the drought management during the summer of 2013 in Liaoning province, China, in which 84 counties were affected by agricultural drought. MODIS vegetation indices and land surface temperature (LST) were used to extract the drought index. Vegetation Condition Index (VCI), which only contain the change in vegetation index, and Vegetation Supply Water Index (VSWI), which combined the information of vegetation index and land surface temperature, were selected to compare the monitoring ability on drought during the drought period in Liaoning, China in 2014. It was found that VCI could be a good method on the loss assessment. VSWI has the information on the change in LST, which can indicate the spatial pattern of drought and can also be used as the early warning method in the study.

  18. Responses of some Nigerian vegetables of plant growth regulator treatments.

    PubMed

    Kadiri, M; Mukhtar, F; Agboola, D A

    1997-03-01

    The effects of single and combined growth regulator treatments of indole-3-acetic acid (IAA), gibberellic acid (GA3) and coconut milk on plant height, yield, chlorophyll and vitamin contents of Abelmoschus esculetus L and Solanum gilo L were investigated. The single growth regulator treatments consisted of 50mg/L, 100 mg/L of IAA and GA3 and 10%, 15% of coconut milk. In case of combined growth regulator treatments, the treatments were 100mg/L IAA + 100mg/L GA3, 100mg/L IAA + 15% coconut milk and 100mg/L GA3 + 15% coconut milk. Control vegetable plants were sprayed with water. Single treatments of 100mg/L IAA,100mg/L GA3. 10% and 15% coconut milk resulted in significantly increased plant height, chlorophyll contents and yield of A. esculentus, H. sabdariffa and S. gilo while only combined treatments of 100mg/L IAA + 10% coconut milk and 100mg/L GA3 + 15% coconut milk had such an effect on A. esculentus and S. gilo but not on H. sabdariffa. Moreover, singletreatments of 100mg/L GA3 and 15% coconut milk caused significantly higher vitamins A, B6 and C contents of treated plants whereas the combined treatments produced such an effect on only vitamin C contents of treated plants. Growth regulator treatments of 100mg/L GA3 and 15% coconut milk were consistently the best out of the entire growth regulator treatments tried with the treated plants having the greatest plant height, yield, chlorophyll and vitamin C contents. PMID:9404511

  19. Snow survey and vegetation growth in the Swiss Alps

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Analog processing of S190A and B color and infrared color transparencies showed that it is possible to evaluate the courses of the temporary snow line and the upper limit of vegetation growth over large areas. By transferring the results from S190A onto a topo-map 1:200,000, an accuracy of + or - 50 m could be achieved. With S190B transferred onto a map 1:100,000, an accuracy of + or - 20 m was reached. Digital processing of S192 multispectral data allowed a separation of snow and clouds by combining the information from channels 9, 15, and 18.

  20. Influence of liming and topsoil thickness on vegetative growth and leachate quality on acidic coal refuse

    SciTech Connect

    Li, R.S.; Daniels, W.L.; Stewart, B.

    1998-12-31

    Coal waste materials inhibit direct vegetation establishment due to adverse physical and chemical properties, particularly low water retention and high potential acidity. The Moss No. 1 coal refuse pile is located in Dickenson County, Virginia, and was idled in the late 1980`s with little topsoil resource available for final closure. The refuse was acidic (Total-S = 0.38%; pH = 3.6), black, high (70%) in coarse fragments, and had a low water holding capacity (4.5% in <2.0 mm fraction). A small plot experiment was established on the refuse pile to evaluate the influence of liming rates (50% and 100% of lime req.) and topsoil thickness (15, 30 and 60 cm) on vegetative growth and leachate quality. Liming and topsoil amendment increased the surface soil pH from <4.0 to >6.0 over a two-year period, which resulted in greater vegetative cover and biomass than the control plots. All topsoil treatments resulted in greater vegetative cover and biomass than plots treated with lime only due to improved surface soil physical and chemical properties. A topsoil treatment of 60 cm gave the thickest vegetative cover and biomass yield. Such a treatment, however, would be cost-prohibitive at this location. Application of 27 Mg/ha of lime to the refuse surface along with 15 cm of topsoil produced acceptable two-year vegetative cover and biomass, and appeared to be the optimal treatment for this particular situation. Both liming and topsoil had no affect on leachate pH and the electrical conductivity in leachates collected below the plots. This suggests that surface revegetation will have little effect on the quality of water draining through the pile, so long term water treatment requirements may not be reduced by successfully revegetating the pile surface.

  1. Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.

    2015-12-01

    We use GRACE-derived terrestrial water storage (TWS) and ERA-interim air temperature, as proxy for available water and temperature constraints on vegetation productivity, inferred from MODIS satellite normalized difference vegetation index (NDVI), in Northern Eurasia during 2002-2011. We investigate how changes in TWS affect the correlation between NDVI and temperature during the non-frozen season. We find that vegetation growth exhibits significant spatial and temporal variability associated with varying trend in TWS and temperature. The largest NDVI gains occur over boreal forests associated with warming and wetting. The largest NDVI losses occur over grasslands in the Southwestern Ob associated with regional drying and cooling, with dominant constraint from TWS. Over grasslands and temperate forests in the Southeast Ob and South Yenisei, wetting and cooling lead to a dominant temperature constraint due to the relaxation of TWS constraints. Overall, we find significant monthly correlation of NDVI with TWS and temperature over 35% and 50% of the domain, respectively. These results indicate that water availability (TWS) plays a major role in modulating Eurasia vegetation response to temperature changes.

  2. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  3. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    PubMed Central

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W.; Ryu, Choong-Min

    2015-01-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  4. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  5. Factors Affecting Growth of Pinus radiata in Chile

    NASA Astrophysics Data System (ADS)

    Alvarez-Munoz, Jose Santos

    (2005--2009) for a network of permanent sample plots in Pinus radiata plantations in Chile. In 2009, we calculated LAI from ground measurements using LI-COR LAI-2000 and TRAC instruments on each one hectare plot. These values of LAI were regressed against Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI) and Reduced Simple Ratio (RSR), derived from the TM 2009 data. Linear relationships were strong with R2 values of 0.65 for SR, 0.61 for NDVI and 0.67 for RSR. Using the RSR relationship, LAI values were estimated for the network of permanent sample plots of Pinus radiata plantations over the whole period. For project 3, we examined environmental factors affecting growth rates of Pinus radiata in Chile. Water availability (as affected by precipitation, soil water holding capacity, and potential evapotranspiration) appeared to be the factor most limiting to leaf area and growth. Maximum growing season temperature also negatively affected growth. Sites with highest productivities had the lowest annual water deficits and the most productive sites used water and light more efficiently. Good sites produced 1.6 as compared to 0.49 kg of wood per m3 of evapotranspired water for less productive sites. In addition, productive stands produced 0.5 as compared to 0.31 g of wood per MJ for less productive sites.

  6. Modeling of the Competitive Growth of Listeria monocytogenes and Lactococcus lactis in Vegetable Broth

    PubMed Central

    Breidt, Frederick; Fleming, Henry P.

    1998-01-01

    Current mathematical models used by food microbiologists do not address the issue of competitive growth in mixed cultures of bacteria. We developed a mathematical model which consists of a system of nonlinear differential equations describing the growth of competing bacterial cell cultures. In this model, bacterial cell growth is limited by the accumulation of protonated lactic acid and decreasing pH. In our experimental system, pure and mixed cultures of Lactococcus lactis and Listeria monocytogenes were grown in a vegetable broth medium. Predictions of the model indicate that pH is the primary factor that limits the growth of L. monocytogenes in competition with a strain of L. lactis which does not produce the bacteriocin nisin. The model also predicts the values of parameters that affect the growth and death of the competing populations. Further development of this model will incorporate the effects of additional inhibitors, such as bacteriocins, and may aid in the selection of lactic acid bacterium cultures for use in competitive inhibition of pathogens in minimally processed foods. PMID:9726854

  7. How population growth affects linkage disequilibrium.

    PubMed

    Rogers, Alan R

    2014-08-01

    The "LD curve" relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different rates for different LD statistics. They are especially slow for estimates of [Formula: see text], which therefore allow inferences about ancient population history. For the human population of Europe, these results suggest a history of population growth.

  8. Growth from Spores of Nonproteolytic Clostridium botulinum in Heat-Treated Vegetable Juice

    PubMed Central

    Stringer, Sandra C.; Haque, Nuzrul; Peck, Michael W.

    1999-01-01

    Unheated spores of nonproteolytic Clostridium botulinum were able to lead to growth in sterile deoxygenated turnip, spring green, helda bean, broccoli, or potato juice, although the probability of growth was low and the time to growth was longer than the time to growth in culture media. With all five vegetable juices tested, the probability of growth increased when spores were inoculated into the juice and then heated for 2 min in a water bath at 80°C. The probability of growth was greater in bean or broccoli juice than in culture media following 10 min of heat treatment in these media. Growth was prevented by heat treatment of spores in vegetable juices or culture media at 80°C for 100 min. We show for the first time that adding heat-treated vegetable juice to culture media can increase the number of heat-damaged spores of C. botulinum that can lead to colony formation. PMID:10224012

  9. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.

    PubMed

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-07-28

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.

  10. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.

    PubMed

    Walker, Tom N; Ward, Susan E; Ostle, Nicholas J; Bardgett, Richard D

    2015-05-01

    There is growing recognition that changes in vegetation composition can strongly influence peatland carbon cycling, with potential feedbacks to future climate. Nevertheless, despite accelerated climate and vegetation change in this ecosystem, the growth responses of peatland plant species to combined warming and vegetation change are unknown. Here, we used a field warming and vegetation removal experiment to test the hypothesis that dominant species from the three plant functional types present (dwarf-shrubs: Calluna vulgaris; graminoids: Eriophorum vaginatum; bryophytes: Sphagnum capillifolium) contrast in their growth responses to warming and the presence or absence of other plant functional types. Warming was accomplished using open top chambers, which raised air temperature by approximately 0.35 °C, and we measured air and soil microclimate as potential mechanisms through which both experimental factors could influence growth. We found that only Calluna growth increased with experimental warming (by 20%), whereas the presence of dwarf-shrubs and bryophytes increased growth of Sphagnum (46%) and Eriophorum (20%), respectively. Sphagnum growth was also negatively related to soil temperature, which was lower when dwarf-shrubs were present. Dwarf-shrubs may therefore promote Sphagnum growth by cooling the peat surface. Conversely, the effect of bryophyte presence on Eriophorum growth was not related to any change in microclimate, suggesting other factors play a role. In conclusion, our findings reveal contrasting abiotic and biotic controls over dominant peatland plant growth, suggesting that community composition and carbon cycling could be modified by simultaneous climate and vegetation change. PMID:25687830

  11. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.

    PubMed

    Walker, Tom N; Ward, Susan E; Ostle, Nicholas J; Bardgett, Richard D

    2015-05-01

    There is growing recognition that changes in vegetation composition can strongly influence peatland carbon cycling, with potential feedbacks to future climate. Nevertheless, despite accelerated climate and vegetation change in this ecosystem, the growth responses of peatland plant species to combined warming and vegetation change are unknown. Here, we used a field warming and vegetation removal experiment to test the hypothesis that dominant species from the three plant functional types present (dwarf-shrubs: Calluna vulgaris; graminoids: Eriophorum vaginatum; bryophytes: Sphagnum capillifolium) contrast in their growth responses to warming and the presence or absence of other plant functional types. Warming was accomplished using open top chambers, which raised air temperature by approximately 0.35 °C, and we measured air and soil microclimate as potential mechanisms through which both experimental factors could influence growth. We found that only Calluna growth increased with experimental warming (by 20%), whereas the presence of dwarf-shrubs and bryophytes increased growth of Sphagnum (46%) and Eriophorum (20%), respectively. Sphagnum growth was also negatively related to soil temperature, which was lower when dwarf-shrubs were present. Dwarf-shrubs may therefore promote Sphagnum growth by cooling the peat surface. Conversely, the effect of bryophyte presence on Eriophorum growth was not related to any change in microclimate, suggesting other factors play a role. In conclusion, our findings reveal contrasting abiotic and biotic controls over dominant peatland plant growth, suggesting that community composition and carbon cycling could be modified by simultaneous climate and vegetation change.

  12. Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals.

    PubMed

    Fritz, J I; Franke-Whittle, I H; Haindl, S; Insam, H; Braun, R

    2012-07-01

    Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments. PMID:22712623

  13. Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals.

    PubMed

    Fritz, J I; Franke-Whittle, I H; Haindl, S; Insam, H; Braun, R

    2012-07-01

    Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments.

  14. Variables affecting the yields of fatty esters from transesterified vegetable oils

    SciTech Connect

    Freedman, B.; Pryde, E.H.; Mounts, T.L.

    1984-10-01

    Transesterification reaction variables that affect yield and purity of the product esters from cottonseed, peanut, soybean and sunflower oils include molar ratio of alcohol to vegetable oil, type of catalyst (alkaline vs acidic), temperature and degree of refinement of the vegetable oil. With alkaline catalysts (either sodium hydroxide or methoxide), temperatures of 60 degrees C or higher, molar ratios of at least 6 to 1 and with fully refined oils, conversion to methyl, ethyl and butyl esters was essentially complete in 1 hr. At moderate temperatures (32 degrees C), vegetable oils were 99% transesterified in ca. 4 hr with an alkaline catalyst. Transesterification by acid catalysis was much slower than by alkali catalysis. Although the crude oils could be transesterified, ester yields were reduced because of gums and extraneous material present in the crude oils. 30 references.

  15. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    PubMed Central

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  16. Recall of vegetable eating affects future predicted enjoyment and choice of vegetables in British University undergraduate students.

    PubMed

    Robinson, Eric; Blissett, Jackie; Higgs, Suzanne

    2011-10-01

    Predictions about enjoyment of future experiences are influenced by recalling similar past experiences. However, little is known about the relationship between hedonic memories of past eating episodes and future eating behavior. We investigated recall of previous experiences of eating vegetables and the effect of recall on future predicted liking for and consumption of vegetables. British University undergraduate students were asked to retrieve memories of previous occasions when they ate vegetables and were asked to rate how enjoyable those experiences were (Study 1, n=54). The effect of different types of memory recall (including vegetable eating recall) and visualization of someone else eating vegetables (to control for priming effects) on predicted likelihood of choosing vegetables and predicted enjoyment of eating vegetables was examined (Study 2, n=95). Finally, the effect of recalling vegetable eating memories on actual food choice from a buffet was assessed (Study 3, n=63). It is reported that people recall positive memories of past vegetable consumption (P<0.05) and that reminding people of these experiences results in higher predicted future liking for vegetables (P<0.05) and choice of a larger portion size of vegetables (P<0.05) compared with recall of a personal nonfood memory, a nonvegetable food memory, or visualization of someone else enjoying eating vegetables (increase of approximately 70% in vegetable portion size compared to controls). The results suggest that recall of previous eating experiences could be a potential strategy for altering food choices.

  17. Vegetable oils affect the composition of lipoproteins in sea bream (Sparus aurata).

    PubMed

    Caballero, Maria José; Torstensen, Bente E; Robaina, Lidia; Montero, Daniel; Izquierdo, Marisol

    2006-11-01

    The aim of the present study was to determine the influence of the dietary fatty acid profile on the lipoprotein composition in sea bream fed different vegetable oils. Six experimental diets were formulated combining fish oil with three vegetable oils (soybean, rapeseed, linseed) in order to obtain 60-80 % (w/w) fish-oil replacement. VLDL, LDL and HDL in plasma samples were obtained by sequential centrifugal flotation. The lipid class, protein content and fatty acid composition of each lipoprotein fraction were analysed. HDL was the predominant lipoprotein in sea bream plasma containing the highest proportion of protein (34 %) and phosphatidylcholine. LDL presented a high content of cholesterol, whereas triacylglycerol comprised a larger proportion of VLDL. The lipid class of the lipoprotein fractions was affected by the dietary vegetable oils. Thus, a high dietary inclusion of soyabean and linseed oil (80 %) increased the cholesterol in HDL and LDL in comparison to fish oil. Similarly, the triacylglycerol concentration of VLDL was increased in fish fed 80 % soyabean and linseed oils owing to the low n-3 highly unsaturated fatty acid content of these diets. Lipoprotein fatty acid composition easily responded to dietary fatty acid composition. VLDL was the fraction more affected by dietary fatty acid, followed by LDL and HDL. The n-3 highly unsaturated fatty acid content increased in the order VLDL less than LDL and less than HDL, regardless of dietary vegetable oils.

  18. A model for seed dispersion and vegetation growth

    NASA Astrophysics Data System (ADS)

    da Silva, Jaqueline Maria; Vieira Kritz, Maurício

    2016-08-01

    The study of processes associated with vegetation grow is very important to understand the dynamics of flooded ecosystems and their sustainable management. We present a cell-centered individual-based probabilistic model for the dynamics of tree-populations, that is further tailored towards the environmental conditions present in the Amazon floodplains.

  19. A structured model for vegetative growth and sporulation in Bacillus thuringiensis

    SciTech Connect

    Starzak, M.; Bajpai, R.K.

    1991-12-31

    A mathematical model has been developed for the 6-endotoxin producing Bacillus thuringiensis. The structure of the model involves the processes taking place during vegetative growth, those leading to the initiation of sporulation under conditions of carbon and/or nitrogen limitation, and the sporulation events. The key features in the model are the pools of compounds, such as PRPP, IMP, ADP/ATP, GDP/GTP, pyrimidine nucleotides, NAD/NADH{sub 2}, amino acids, nucleic acids, cell wall, and vegetative and sporulation proteins. These, along with a-factors that control the nature of RNA-polymerase during the different phases, effectively stimulate the vegetative growth and sporulation. The initiation of sporulation is controlled by the intracellular concentration of GTP. Results of simulation of vegetative growth, initiation of sporulation, spore protein formation, and production of {delta}-endotoxin under C- or N-limitation are presented.

  20. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    NASA Astrophysics Data System (ADS)

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2015-04-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  1. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  2. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    PubMed Central

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  3. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  4. The use of sesame oil and other vegetable oils in the inhibition of human colon cancer growth in vitro.

    PubMed

    Salerno, J W; Smith, D E

    1991-01-01

    Sesame contains large quantities of the essential polyunsaturated fatty acid (PUFA), linoleic acid, in the form triglycerides. The antineoplastic properties of many PUFAs such as linoleic acid and their metabolites are known. We tested the hypothesis that natural vegetable oils, such as sesame oil and its component linoleic acid, when added to human colon adenocarcinoma cells growing in tissue culture would inhibit their growth and that normal colon cells would not be similarly affected. Three human colon cancer cell lines and one normal human colon cell line were exposed to the following: (1) pure linoleic acid; (2) lipase-digested sesame oil; (3) undigested sesame oil; (4) five additional common vegetable oils; (5) mineral oil. Linoleic acid inhibited the in vitro growth of all three malignant human colon adenocarcinoma cell lines. The normal colon cell line showed dramatically less inhibition of growth. Lipase-digested sesame oil (LDSO) and undigested sesame oil (UDSO) produced greater inhibition of growth of all three malignant colon cell lines than of the normal colon cells. Five other common vegetable oils containing various amounts of PUFAs such as corn, soybean, safflower, olive and coconut oils, all in their lipase-digested form, were found to dramatically inhibit the growth of the HT-29 malignant human colon cell line. Undigested olive and safflower oils also inhibited the HT-29 cells although not as markedly as the lipase-digested oils. Mineral oil did not inhibit the growth of HT-29 cells. Both lauric and palmitic acid, which are saturated fatty acids found in abundance in coconut oil inhibits the HT-29 cells more strongly than linoleic acid, while oleic acid did not inhibit. We conclude that many vegetable oils including sesame contain in vitro antineoplastic properties and that this finding warrants further investigation both in vitro and in vivo to assess their possible chemotherapeutic potential.

  5. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Eamus, Derek; Cleverly, James; Boulain, Nicolas; Cook, Peter; Zhang, Lu; Cheng, Lei; Yu, Qiang

    2014-11-01

    For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601 mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48 mm compared to that (58-672 mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions.

  6. The Long-Term Relationship between Population Growth and Vegetation Cover: An Empirical Analysis Based on the Panel Data of 21 Cities in Guangdong Province, China

    PubMed Central

    Li, Chao; Kuang, Yaoqiu; Huang, Ningsheng; Zhang, Chao

    2013-01-01

    It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons·km−2 and 3,820 persons·km−2, and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM) is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term. PMID:23435589

  7. Lifestyle factors affecting fruit and vegetable consumption in the UK Women's Cohort Study.

    PubMed

    Pollard, J; Greenwood, D; Kirk, S; Cade, J

    2001-08-01

    The UK Women's Cohort Study (UKWCS) was originally set up to look at morbidity and mortality data on subjects with a wide range of dietary intakes including vegans, lacto-ovo vegetarians, non-red meat eaters and red meat eaters. The aim of the present study was to investigate factors that affect fruit and vegetable consumption within this particular cohort of women. Females of ages 35-69 years, taking part in the UK Women's Cohort Study (N=35 367), provided health and lifestyle information including a 217-item food frequency questionnaire. In multiple logistic regression, the strongest predictors of a higher reported level of fruit and vegetable consumption were being a vegetarian or vegan, taking vitamin or mineral supplements, being married, educated to A-level or degree level and belonging to a higher socio-economic group. Conversely, smokers were found to be only half as likely as non-smokers to be high fruit and vegetable consumers. These lifestyle distinctions among three levels of reported fruit and vegetable consumption are relevant to the future targeting of health promotion strategies.

  8. Causes of spring vegetation growth in the northern mid-high latitudes from 1982 to 2004

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Thornton, P. E.

    2011-12-01

    The ability of a process-based ecosystem model like Version 4 of the Community Land Model (CLM4) to provide accurate estimates vegetation growth is a top priority for researchers, modelers and policy makers. Remote sensing can provide long-term and large scale products suitable for ecosystem model evaluation. Here we will describe how the CLM4 and the satellite-derived NDVI are applied to examine the spring Normalized Difference Vegetation Index (NDVI) changes in response to climate, CO2 fertilization, nitrogen deposition and land use land cover change (LULCC) effects on the inter-annual timescale over the northern mid-high latitudes (NMH) (>25 °N) for the recent decades (1982-2004). Our results show that the rising CO2 is simulated to cause a general increase of vegetation greenness. The predicted effects of nitrogen deposition on the vegetation growth are positive or negative dependent on the trend of the nitrogen change. The LULCC influence relies on the type of land management and the latitudes where the conversion happens. On the whole, the complicated impacts of multiple non-climate factors on spring NDVI variations locally alter the temperate-dominated inter-annual variations in the northern vegetation growth. Our results highlight the importance of the non-climate factors in mitigating or exacerbating the impact of temperature on spring vegetation growth, particularly across regions with intense human activity.

  9. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64.

  10. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64. PMID:24483084

  11. Expression of Bacillus thuringiensis delta-endotoxin genes during vegetative growth.

    PubMed Central

    Mettus, A M; Macaluso, A

    1990-01-01

    Bacillus thuringiensis delta-endotoxin (crystal protein) genes are normally expressed only during sporulation. It is possible to produce crystal protein during vegetative growth by placing B. thuringiensis crystal protein genes downstream of a strong vegetative promoter. By removing a possible transcriptional terminator of the tetracycline resistance gene of pBC16 and inserting a multiple cloning site, delta-endotoxin genes can be cloned downstream from the tetracycline resistance gene promoter. This construct allows for readthrough transcription from the strong vegetative promoter. Crystal protein is then produced during vegetative growth as well as during sporulation in both B. thuringiensis and Bacillus megaterium. This construct also allows for production of delta-endotoxin in B. thuringiensis strains that do not normally produce delta-endotoxin because of a defect in sporulation. Images PMID:2160219

  12. Vegetation structure determination using LIDAR data and the forest growth parameters

    NASA Astrophysics Data System (ADS)

    Rybansky, M.; Brenova, M.; Cermak, J.; van Genderen, J.; Sivertun, Å.

    2016-06-01

    The goal of this paper is to identify the main vegetation factors in the terrain, which are important for the analysis of forest structure. Such an analysis is important for forestry, rescue operations management during crises situations and disasters such as fires, storms, earthquakes and military analysis (transportation, cover, concealment, etc.). For the forest structure determination, both LIDAR and the forest growth prediction analysis were used. As main results, the vegetation height, tree spacing and stem diameters were determined

  13. Detection and attribution of vegetation growth change in China during the last thirty years

    NASA Astrophysics Data System (ADS)

    Tan, J.; Wang, X.; Mao, J.; Shi, X.; Peng, S.; Zeng, Z.; Piao, S.

    2013-12-01

    Enhanced terrestrial vegetation growth in China over the past three decades has been proved by satellite observations. During the same period, China has experienced dramatic land use and land cover changes. Those changes can not only strengthen the vegetation growth by afforestation and agricultural management, but also weaken it by urbanization and overgrazing. Compared to global climate changes, the effect of land use and land cover changes (LULCC) in China vegetation growth is still not clear. A further understanding of the mechanisms for this phenomenon is crucial for projecting future ecosystem dynamics. To investigate the variation of vegetation growth in Chinese provinces and evaluate its responses to external driving factors from 1982 to 2009, two mechanistic terrestrial carbon models (CLM and OCHIDEE) have been applied in this paper. The modeled Leaf Area Index (LAI) from the two models has been increasing, which is consistent to the satellite LAI. On that basis, a series of factorial simulations based on the two models were processed to separate independent contributions of external driving factors to LAI. Besides of climate changing and LULCC, other external driving factors were also considered such as CO2 and nitrogen deposition. The results indicate that the distribution of LAI trend is far from homogeneous at provincial scale and highest LAI trend happened in South China. The dominant influential factor varies in different provinces. Climate-only simulation may not explain the vegetation growth change well in all the provinces. CO2 and LULCC seem to play a more important role in South China which matches the region with sharp increase of LAI. This phenomenon shows that the anthropology-oriented impact cannot be ignored under the background of global climate change and it is vital for further exploration of the effect of human society to vegetation growth.

  14. Prevalence and growth of pathogens on salad vegetables, fruits and sprouts.

    PubMed

    Viswanathan, P; Kaur, R

    2001-03-01

    A total of 120 samples, comprising different types of raw vegetables (seven), fruits (three) and sprouts (three) obtained from street vendors, were tested for aerobic plate count, coliform count and various food-borne pathogens. Average aerobic plate counts for salad vegetables, fruits and sprouts were greater than 10(10) cfu/g and 10(9) cfu/g respectively. Pathogens isolated were S. aureus, E. coli, Enterobacter sp., Klebsiella sp., S. typhi, Serratia sp., Providencia sp. and P. aeruginosa. The antibiotic resistant patterns of the isolates revealed P. aeruginosa to be the most antibiotic resistant, E. coli, Salmonella, Enterobacter and P. aeruginosa also showed the presence of plasmids. The model development phase of this study involved 27 growth curves conducted under 9 combinations of temperature and pH in the Brain Heart Infusion Broth. Models for specific growth rate and lag period were developed by response surface modelling using multiple linear regression analysis. The model provides an estimate of bacterial growth in response to any combination of the variables studied within specified ranges. Growth patterns of organisms on vegetable and fruits were also studied at room temperature (32 degrees C) to assess the growth in the actual food environment. Cucumber and watermelon supports the growth of S. aureus and S. typhi, carrot retarded their growth while pineapple did not support the growth.

  15. The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components.

    PubMed

    Lee, B N; Elion, E A

    1999-10-26

    In haploid Saccharomyces cerevisiae, the mating and invasive growth (IG) pathways use the same mitogen-activated protein kinase kinase kinase kinase (MAPKKKK, Ste20), MAPKKK (Ste11), MAPKK (Ste7), and transcription factor (Ste12) to promote either G(1) arrest and fusion or foraging in response to distinct stimuli. This exquisite specificity is the result of pathway-specific receptors, G proteins, scaffold protein, and MAPKs. It is currently not thought that the shared signaling components function under the basal conditions of vegetative growth. We tested this hypothesis by searching for mutations that cause lethality when the STE11 gene is deleted. Strikingly, we found that Ste11, together with Ste20, Ste7, Ste12, and the IG MAPK Kss1, functions in a third pathway that promotes vegetative growth and is essential in an och1 mutant that does not synthesize mannoproteins. We term this pathway the STE vegetative growth (SVG) pathway. The SVG pathway functions, in part, to promote cell wall integrity in parallel with the protein kinase C pathway. During vegetative growth, the SVG pathway is inhibited by the mating MAPK Fus3. By contrast, the SVG pathway is constitutively activated in an och1 mutant, suggesting that it senses intracellular changes arising from the loss of mannoproteins. We predict that general proliferative functions may also exist for other MAPK cascades thought only to perform specialized functions. PMID:10535982

  16. Temperature Dependence of Vegetative Growth and Dark Respiration: A Mathematical Model

    PubMed Central

    Gent, Martin P. N.; Enoch, Herbert Z.

    1983-01-01

    A mathematical model of the processes involved in carbon metabolism is described that predicts the influence of temperature on the growth of plants. The model assumes that the rate of production of dry matter depends both on the temperature and the level of nonstructural carbohydrate. The level of nonstructural carbohydrate is determined by the rates of photosynthesis, growth, and maintenance respiration. The model describes the rate of growth and dark respiration, and the levels of carbohydrate seen in vegetative growth of carnation and tomato. The model suggests that the growth of plants at low temperatures is limited by a shortage of respiratory energy, whereas at high temperatures growth is limited by the shortage of carbohydrate. Thermoperiodism, wherein a warm day and cool night results in faster growth than does constant temperature, is explained by the model as an increase in the level of nonstructural carbohydrate which promotes the rate of growth relative to the rate of maintenance respiration. PMID:16662867

  17. Carica papaya (Caricaceae): a case study into the effects of domestication on plant vegetative growth and reproduction.

    PubMed

    Niklas, Karl J; Marler, Thomas E

    2007-06-01

    Few studies have quantitatively evaluated the gender specific effects of cultivation on plant growth and reproduction. The availability of cultivated and wild populations of different genders of Carica papaya L. (Caricaceae) on Guam provided an opportunity to study these effects quantitatively. We compared the gender specific allometry of height vs. basal stem diameter (H vs. D), stem slenderness ratio (H/D), and the height at first flowering (H(fl)) of carpellate and staminate plants growing under natural conditions (N = 150 each) with those of carpellate and hermaphroditic plants (N = 250 each) from two cultivars (Sunrise and Tainung 2). These comparisons indicated that (1) wild carpellate and staminate plants are significantly taller than either gender of the two cultivars with equivalent D; (2) the scaling exponent governing the H vs. D relationship of both genders of wild plants is significantly higher than that of either cultivated gender; (3) cultivar type does not affect the H vs. D exponent, but gender expression does; (4) gender expression (but not cultivar-type) also affects H(fl) (cultivation substantially reduces carpellate plant H(fl)); and (5) the onset of sexual maturity is associated with a dramatic reversal in H/D ontogeny. Cultivation therefore has "condensed" patterns of vegetative growth in a gender specific manner, whereas gender expression alters both vegetative and reproductive growth significantly more so than does cultivar-type. PMID:21636469

  18. Effect of prior vegetative growth, inoculum density and light on conidiation in Erysiphe necator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in epidemics of grape powdery mildew is the abundant production of conidia. Our objective was to better define the three factors involved in the qualitative change that occurs when a mildew colony switches from vegetative growth to sporulation –inoculum density, light, and a sporulat...

  19. Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009

    SciTech Connect

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E; Hoffman, Forrest M; Zhu, Zaichun; Myneni, Ranga B.

    2013-01-01

    Using a recent Leaf Area Index (LAI) dataset and the Community Land Model version 4 (CLM4), we investigate percent changes and controlling factors of global vegetation growth for the period 1982 to 2009. Over that 28-year period, both the remote-sensing estimate and model simulation show a significant increasing trend in annual vegetation growth. Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend. Heterogeneous precipitation functioned to decrease this latitudinal LAI gradient, and considerably regulated the local LAI change. CO2 fertilization during the last three decades, was simulated to be the dominant cause for the enhanced vegetation growth. Our study, though limited by observational and modeling uncertainties, adds further insight into vegetation growth trends and environmental correlations. These validation exercises also provide new quantitative and objective metrics for evaluation of land ecosystem process models at multiple spatio-temporal scales.

  20. Factors affecting sediment trapping in vegetated filter strips: simulation study using VFSMOD

    NASA Astrophysics Data System (ADS)

    Abu-Zreig, Majed

    2001-06-01

    Soil and water conservation practices have been promoted for a long time, in order to sustain agricultural activities and prevent environmental pollution. Vegetated filter strips (VFS) have been used to reduce sediment pollution into water bodies at or near the pollutant source. However, factors effecting VFS performance under natural conditions have not been well understood owing to the physical, time and financial limitations of field experiments. The use of well-validated simulation models to understand the performance of VFS and factors affecting sediment deposition is highly justified. The objective of this research is to investigate sediment trapping in VFS and to study various factors affecting VFS performance using the simulation model VFSMOD, which was developed by researchers at University of North Carolina. Recently, VFSMOD has been validated successfully by using 21 filters with varying length, slope and vegetated cover. A wide range of five parameters was selected for the simulations, namely filter length, filter slope, manning roughness coefficient, soil type and characteristics of incoming sediment from adjacent fields. Computer simulations revealed that the length of filter is the most significant factor affecting sediment trapping in VFS. The relative increase in trapping efficiencies was not linearly related to an increase in filter length. Inflow sediment class also has a major influence on sediment trapping in VFS. The trapping efficiency of clay sediments in a 15 m length VFS was 47% compared with 92% for silt from incoming sediment. Manning roughness coefficient had a moderate effect on sediment trapping and was more significant in short filters. Land slope and soil type of VFS had a minor influence on the performance of VFS.

  1. Physicochemical properties and structural changes in vegetative tissues as affected by a direct current electrical field.

    PubMed

    Zvitov, R; Nussinovitch, A

    2001-01-01

    Cylindrical pieces of potato, sweet potato, kohlrabi, radish, and pear were interposed between a pair of electrodes, and a direct current was applied. A special custom-made apparatus enabled the use of differently shaped electrodes. The electrical field was applied for 1 min at 40 V/cm and caused a reduction in specimen weight by a minimal value of 2.7% of initial weight in sweet potato to a maximum 38.4% in pear. The affected area of the tissue resembled the shape of the electrode. Pores were produced in the tissue (from the anode side), possibly promoting slow release of minerals and other cell components from the contracted specimens. From the cathode side, cell "sealing" could be observed. Weight loss was dependent on the mechanical properties of the nontreated vegetative tissue specimens. After confirmation that all samples pass through induced electrical shrinkage, further work, executed only on potato, demonstrated that after electrical treatment the samples were less brown (higher L values). In addition, a dependence of weight loss on current intensity, electrode diameter, and surface ratio between the electrode and specimen was shown. The reduction in weight loss could be useful for initial drying of vegetative materials. Indirect proof of a decrease in enzyme activity as a result of electrical field application could be beneficial in replacing traditional methods for browning prevention. PMID:11735447

  2. [Variations of ground vegetation and soil properties during the growth process of artificial sand-fixing Caragana intermedia plantations in desert steppe].

    PubMed

    Liu, Ren-Tao; Chai, Yong-Qing; Xu, Kun; Zhu, Fan

    2012-11-01

    To study the variation characteristics of ground vegetation and soil properties during the growth process of Caragana intermedia plantations in desert steppe is of scientific significance in revealing the ecological effect of the plantations on the restoration of desertified grassland ecosystem. In this paper, an investigation was conducted on the ground vegetation and soil properties in 6-, 15-, 24-, and 36-yr artificial sand-fixing C. intermedia plantations in desert steppe of Ningxia, Northwest China, with the variation characteristics of the ground vegetation and soil properties during the growth process of the C. intermedia plantations analyzed. With the growth and development of the plantations, the shrub crown width, height, sprout number, and basal diameter all increased significantly, the contents of soil coarse sand and fine sand had significant decrease while those of very fine sand and clay silt were in adverse, the soil organic carbon, total N, and total P contents increased linearly, and the soil pH decreased significantly. During the growth process of the plantations, the species number and individual number of ground vegetation increased significantly, and the vegetation coverage and height presented the order of 24- > 15- > 6- > 36-yr plantation. The soil texture, bulk density, nutrient contents, and pH value were the main factors affecting the species and individual number as well as the coverage of ground vegetation in C. intermedia plantations. It was suggested that in desert steppe, the growth process of artificial sand-fixing C. intermedia plantation benefited the improvement of soil conditions and the recovery of ground vegetation, and promoted the restoration of degraded grassland ecosystem in desert steppe.

  3. The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress.

    PubMed

    Ahammed, Golam Jalal; Wang, Meng-Meng; Zhou, Yan-Hong; Xia, Xiao-Jian; Mao, Wei-Hua; Shi, Kai; Yu, Jing-Quan

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are global environmental problem. To better understand the growth and physiological responses to atmospheric PAHs, we investigated biomass, photosynthetic machinery and antioxidant system in pakchoi, cucumber, flowering chinese cabbage, tomato and lettuce under various levels of phenanthrene (PHE) stress. Foliar exposure to PHE for 14d resulted in a dose dependent decrease in growth, photosynthesis and chlorophyll contents. With few exceptions, antioxidant enzymes (superoxide dismutase, guaicol peroxidase, catalase, ascorbate peroxidase and glutathione reductase) were upregulated following exposure to PHE. Dose dependent increase in malondialdehyde contents together with H(2)O(2) accumulation suggested an occurrence of oxidative stress following PHE exposure. However, to some extent, growth and antioxidant defense responses differ from species to species. Difference in defense capacity might result in different tolerance and phytotoxicity among the studied vegetables. Taken together, phytotoxicity of PHE to five vegetables could be sequenced in the following order: pakchoi>cucumber>lettuce>tomato>flowering chinese cabbage.

  4. Brief report: impaired differentiation of vegetative/affective and intentional nonverbal vocalizations in a subject with Asperger syndrome (AS).

    PubMed

    Dietrich, Susanne; Hertrich, Ingo; Riedel, Andreas; Ackermann, Hermann

    2012-10-01

    The Asperger syndrome (AS) includes impaired recognition of other people's mental states. Since language-based diagnostic procedures may be confounded by cognitive-linguistic compensation strategies, nonverbal test materials were created, including human affective and vegetative sounds. Depending on video context, each sound could be interpreted either as direct expression of an agent's affective/vegetative state or as result of intentional-executive mental operations. "Situational relevance" and "intentionality" ratings by a group of twelve healthy subjects nicely differentiated between context types. By contrast, an AS subject showed a systematic over-interpretation of vegetative/affective signals in terms of planned activities. Such overestimation of intentional motivation, leading to impaired social cognition, might be due to the inability to utilize "affective resonance" mechanisms for the interpretation of an individual's internal state. PMID:22314575

  5. Transition of vegetation states positively affects harvester ants in the Great Basin, United States

    USGS Publications Warehouse

    Holbrook, Joseph D.; Pilliod, David; Arkle, Robert; Rachlow, Janet L.; Vierling, Kerri T.; Wiest, Michelle M.

    2016-01-01

    Invasions by non-native plants can alter ecosystems such that new ecological states are reached, but less is known about how these transitions influence animal populations. Sagebrush (Artemisia tridentata) ecosystems are experiencing state changes because of fire and invasion by exotic annual grasses. Our goal was to study the effects of these state changes on the Owyhee and western harvester ants (Pogonomyrmex salinusOlsen and P. occidentalis Cresson, respectively). We sampled 358 1-ha plots across the northern Great Basin, which captured unburned and burned conditions across 1 −≥31 years postfire. Our results indicated an immediate and consistent change in vegetation states from shrubland to grassland between 1 and 31 years postfire. Harvester ant occupancy was unrelated to time since fire, whereas we observed a positive effect of fire on nest density. Similarly, we discovered that fire and invasion by exotic annuals were weak predictors of harvester ant occupancy but strong predictors of nest density. Occupancy of harvester ants was more likely in areas with finer-textured soils, low precipitation, abundant native forbs, and low shrub cover. Nest density was higher in arid locations that recently burned and exhibited abundant exotic annual and perennial (exotic and native) grasses. Finally, we discovered that burned areas that received postfire restoration had minimal influence on harvester ant occupancy or nest density compared with burned and untreated areas. These results suggest that fire-induced state changes from native shrublands to grasslands dominated by non-native grasses have a positive effect on density of harvester ants (but not occupancy), and that postfire restoration does not appear to positively or negatively affect harvester ants. Although wildfire and invasion by exotic annual grasses may negatively affect other species, harvester ants may indeed be one of the few winners among a myriad of losers linked to vegetation state changes within

  6. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  7. Changes in Remotely Sensed Vegetation Growth Trend in the Heihe Basin of Arid Northwestern China.

    PubMed

    Sun, Wenchao; Song, Hao; Yao, Xiaolei; Ishidaira, Hiroshi; Xu, Zongxue

    2015-01-01

    The Heihe River Basin (HRB) is the second largest inland river basin in China, characterized by high diversity in geomorphology and irrigated agriculture in middle reaches. To improve the knowledge about the relationship between biotic and hydrological processes, this study used Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (NDVI) data (1982-2006) to analyze spatiotemporal variations in vegetation growth by using the Mann-Kendall test together with Sen's slope estimator. The results indicate that 10.1% and 1.6% of basin area exhibit statistically significant (p < 0.05) upward and downward trends, and maximum magnitude is 0.066/10a and 0.026/10a, respectively. More specifically, an increasing trend was observed in the Qilian Mountains and Hexi Corridor and a decreasing trend detected in the transitional region between them. Increases in precipitation and temperature may be one possible reason for the changes of vegetation growth in the Qilian Mountains. And decreasing trend in transitional region may be driven by the changes in precipitation. Increases of irrigation contribute to the upward trend of NDVI for cropland in the Hexi Corridor, reflecting that agricultural development becomes more intensive. Our study demonstrates the complexity of the response of vegetation growth in the HRB to climate change and anthropogenic activities and correspondingly adopting mechanistic ecological models capable of describing both factors is favorable for reasonable predictions of future vegetation growth. It is also indicated that improving irrigation water use efficiency is one practical strategy to balance water demand between human and natural ecosystems in the HRB. PMID:26284656

  8. Changes in Remotely Sensed Vegetation Growth Trend in the Heihe Basin of Arid Northwestern China

    PubMed Central

    Yao, Xiaolei; Ishidaira, Hiroshi; Xu, Zongxue

    2015-01-01

    The Heihe River Basin (HRB) is the second largest inland river basin in China, characterized by high diversity in geomorphology and irrigated agriculture in middle reaches. To improve the knowledge about the relationship between biotic and hydrological processes, this study used Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (NDVI) data (1982–2006) to analyze spatiotemporal variations in vegetation growth by using the Mann—Kendall test together with Sen’s slope estimator. The results indicate that 10.1% and 1.6% of basin area exhibit statistically significant (p < 0.05) upward and downward trends, and maximum magnitude is 0.066/10a and 0.026/10a, respectively. More specifically, an increasing trend was observed in the Qilian Mountains and Hexi Corridor and a decreasing trend detected in the transitional region between them. Increases in precipitation and temperature may be one possible reason for the changes of vegetation growth in the Qilian Mountains. And decreasing trend in transitional region may be driven by the changes in precipitation. Increases of irrigation contribute to the upward trend of NDVI for cropland in the Hexi Corridor, reflecting that agricultural development becomes more intensive. Our study demonstrates the complexity of the response of vegetation growth in the HRB to climate change and anthropogenic activities and correspondingly adopting mechanistic ecological models capable of describing both factors is favorable for reasonable predictions of future vegetation growth. It is also indicated that improving irrigation water use efficiency is one practical strategy to balance water demand between human and natural ecosystems in the HRB. PMID:26284656

  9. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    PubMed

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  10. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    PubMed

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content. PMID:19209632

  11. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  12. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  13. Relationships between different burn, vegetation and soil ratios with Landsat spectral reflectance values in fire affected areas

    NASA Astrophysics Data System (ADS)

    Krina, Anastasia; Koutsias, Nikos

    2016-04-01

    The proportion of unburned vegetation within a fire affected area can be regarded as a proxy measure of fire severity that can be estimated by means of remote sensing techniques. Yet, in order to obtain sound results, it is essential to improve our current knowledge regarding the spectral discrimination of areas that have been completely burnt from adjacent areas within a fire perimeter that still have patches of vegetation, or unburned proportion of vegetation on them. The aim of our research is to reveal the role of the vegetation or the small vegetation gaps in spectral characteristics of pixels with mixed land cover synthesis (burned, vegetation and soil) to achieve a better assessment of fire mapping and the impact of fire in the burned area. Three land cover types were identified, namely vegetation, bare land and burned area by applying pixel based classification using the maximum likelihood algorithm in high-resolution aerial photographs (1m). Moreover, multispectral satellite Landsat data that were acquired close to capture date of the aerial photos and were converted to TOC reflectance from USGS, were used to measure the association between land cover portions and satellite-derived VIs and spectral signatures. A grid of 30x30m was created to extract the ratio of the land cover categories corresponding to each selected pixel of the satellite image LANDSAT TM. Samples of different land cover ratios and of different types of substrate (e.g. rocks, light- or dark-colored soil) were delineated and their reflectance values at each spectral channel were extracted and used to calculate statistics in order to characterize the spectral properties. Finally, various vegetation indices were computed to investigate the role of the proportion of land cover and substrate in the variation of VIs. The results of our study reveal the spectral characteristics of burnt area at the pixel level and suggest the efficiency of certain spectral channels for the estimation of the

  14. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  15. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  16. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    NASA Astrophysics Data System (ADS)

    Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena

    2015-04-01

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.

  17. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  18. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat

    NASA Technical Reports Server (NTRS)

    Grotenhuis, T. P.; Bugbee, B.

    1997-01-01

    Although terrestrial atmospheric CO2 levels will not reach 1000 micromoles mol-1 (0.1%) for decades, CO2 levels in growth chambers and greenhouses routinely exceed that concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1(1%). Numerous studies have examined CO2 effects up to 1000 micromoles mol-1, but biochemical measurements indicate that the beneficial effects of CO2 can continue beyond this concentration. We studied the effects of near-optimal (approximately 1200 micromoles mol-1) and super-optimal CO2 levels (2400 micromoles mol-1) on yield of two cultivars of hydroponically grown wheat (Triticum aestivum L.) in 12 trials in growth chambers. Increasing CO2 from sub-optimal to near-optimal (350-1200 micromoles mol-1) increased vegetative growth by 25% and seed yield by 15% in both cultivars. Yield increases were primarily the result of an increased number of heads per square meter. Further elevation of CO2 to 2500 micromoles mol-1 reduced seed yield by 22% (P < 0.001) in cv. Veery-10 and by 15% (P < 0.001) in cv. USU-Apogee. Super-optimal CO2 did not decrease the number of heads per square meter, but reduced seeds per head by 10% and mass per seed by 11%. The toxic effect of CO2 was similar over a range of light levels from half to full sunlight. Subsequent trials revealed that super-optimal CO2 during the interval between 2 wk before and after anthesis mimicked the effect of constant super-optimal CO2. Furthermore, near-optimal CO2 during the same interval mimicked the effect of constant near-optimal CO2. Nutrient concentration of leaves and heads was not affected by CO2. These results suggest that super-optimal CO2 inhibits some process that occurs near the time of seed set resulting in decreased seed set, seed mass, and yield.

  19. Changing vegetation self organisation affecting eco-hydrological and geomorphological processes under invasion of blue bush in SE South Africa

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.; Kakembo, V.

    2012-04-01

    In southeastern South Africa sub-humid grasslands on abandoned soils are spontaneously being invaded by the exotic shrub Pteronia incana (Blue bush) originating from the semi-arid and arid Karoo region. This results eventually in soil loss and rill and gully erosion and consequently loss in agricultural production affecting the local rural economy. Degradation of soils is occurring following replacement of grassland by unpalatable shrubs and altering the spatial organization of the vegetation. This in consequence is changing the eco-hydrological response of the hillslopes leading to a dramatic increase of runoff and erosion. However the reason for this spontaneous vegetation replacement is not clear. Various explanations have been proposed and discussed such as overgrazing, vegetation cover and rainfall, drought or climatic change or exposition. The study presented aims at quantifying the observed changes in the plant and bare spot patterns and which may help us unraveling vegetation self organisation processes in relation to environmental disturbances. We analyzed high resolution low altitude images of vegetation patterns in combination with high resolution digital terrain model analysis. We applied this procedure for different patterns reflecting a time series covering the observed changing patterns. These reflect changing interactions between the (re-) organization of the plant patterns during the bushy invasion and incorporated the interaction between vegetation, water redistribution and soil properties. By doing so we may be able to unravel critical processes as indicated by changes in vegetation patterns that might enable us to mitigate degradation of dryland ecosystems.

  20. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled.

  1. EXTENSIN18 is required for full male fertility as well as normal vegetative growth in Arabidopsis

    PubMed Central

    Choudhary, Pratibha; Saha, Prasenjit; Ray, Tui; Tang, Yuhong; Yang, David; Cannon, Maura C.

    2015-01-01

    EXTENSINS (EXTs) are a 65-member subfamily of hydroxyproline-rich glycoproteins (HRGPs) of which 20 putatively form crosslinking networks in the cell wall. These 20 classical EXTs are involved at the start of new wall assembly as evidenced by a requirement for EXT3 during cytokinesis, and the ability of some EXTs to polymerize in vitro into dendritic patterns. EXT3 was previously shown to form pulcherosine (three Tyrosines) cross-links. Little direct data exists on the other 19 classical EXTs. Here, we describe the phenotypes of ext18 mutants and rescued progeny as well as associated expression profiles of all 20 classical EXT genes. We found that EXT18 is required for full male fertility, as well as for normal vegetative growth. EXT18 has potential to form crosslinking networks via di-iso-di-tyrosine (four Tyrosines) covalent bonds, and not via pulcherosine due to deficit of lone Tyrosines. This together with ext18 defective pollen grains and pollen tubes, and reduced plant size, suggests that EXT18-type EXTs are important contributors to wall integrity, in pollen and other rapidly extending walls. The data also show that a knockout of EXT18 had a pleiotropic affect on the expression of several EXTs, as did the reintroduction of the native EXT18 gene, thus supporting the thesis that transcription of groups of EXTs are co-regulated and work in different combinations to make distinctive inputs into wall assembly of different cell types. These insights contribute to basic knowledge of cell wall self-assembly in different cell types, and potentially enable biotechnological advances in biomass increase and plant fertility control. PMID:26257758

  2. Reindeer grazing and climate change affects vegetation structure in the Swedish mountains

    NASA Astrophysics Data System (ADS)

    Vowles, Tage; Klemendtsen, Leif; Molau, Ulf; Björk, Robert G.

    2013-04-01

    There is substantial evidence indicating that arctic and alpine landscapes are undergoing distinct changes in plant community structure, presumably brought about by increasing temperatures and a prolonged snow-free season. However, recent studies have revealed that grazing by large herbivores can inhibit a climate-driven shrub expansion and plant community change. In northern Fennoscandia reindeer grazing has helped to shape the vegetation patterns since the last glacial period and is an important factor to consider in the understanding of how a changing climate will affect tundra ecosystems. This project examines the effects of reindeer grazing by revisiting fenced exclosures constructed in 1995. The exclosures were erected at four sites with different grazing intensities situated along the Scandinavian mountain range (from 61°30' to 68°30'). At three of the four sites, three fenced and three control (ambient conditions) plots (25×25 m each) were established in alpine tundra and in mountain birch forest, respectively. In the fourth site only tundra plots were established. In 2011/12 we used the same methodology as in the original 1995 inventories to determine the species composition, canopy height, and percentage cover of the shrub, field and bottom layers in the plots. In the birch forest, the tree layer was also estimated by determining species composition, cover, height, diameter, and individual density. Our results show that on the tundra, tall shrub cover has increased at our fenced-in plots over the past 16 years, whereas in ambient plots the response varies between sites. Low shrubs, too, have increased over time, yet showing no significant treatment effect. Graminoids, on the other hand have decreased overall, but significantly more in fenced-in plots. Furthermore, the shrub canopy height has increased significantly over time with implications for albedo and snow trapping effects. Bryophyte cover was significantly larger in ambient plots than in fenced

  3. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow

    NASA Astrophysics Data System (ADS)

    Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W.; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A.; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda

    2016-03-01

    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system.

  4. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W.; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A.; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda

    2016-01-01

    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system. PMID:26983697

  5. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda

    2016-01-01

    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system. PMID:26983697

  6. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  7. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia.

    PubMed

    Karofeld, Edgar; Müür, Mari; Vellak, Kai

    2016-07-01

    Increasing human activity continues to threaten peatlands, and as the area of natural mires declines, our obligation is to restore their ecosystem functions. Several restoration strategies have been developed for restoration of extracted peatlands, including "The moss layer transfer method", which was initiated on the Tässi extracted peatland in central Estonia in May 2012. Three-year study shows that despite the fluctuating water table, rainfall events can compensate for the insufficient moisture for mosses. Total plant cover on the restoration area attained 70 %, of which ~60 % is comprised of target species-Sphagnum mosses. From restoration treatments, spreading of plant fragments had a significant positive effect on the cover of bryophyte and vascular plants. Higher water table combined with higher plant fragments spreading density and stripping of oxidised peat layer affected positively the cover of targeted Sphagnum species. The species composition in the restoration area became similar to that in the donor site in a natural bog. Based on results, it was concluded that the method approved for restoration in North America gives good results also in the restoration of extracted peatland towards re-establishment of bog vegetation under northern European conditions. PMID:26490883

  8. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  9. Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994

    SciTech Connect

    Edwards, N.T.

    1994-08-01

    Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

  10. Does school environment affect 11-year-olds' fruit and vegetable intake in Denmark?

    PubMed

    Krølner, Rikke; Due, Pernille; Rasmussen, Mette; Damsgaard, Mogens Trab; Holstein, Bjørn E; Klepp, Knut-Inge; Lynch, John

    2009-04-01

    It is often found that adolescents eat too little fruit and vegetables. We examined the importance of school for 11-year-olds' daily intake measured by food frequency- and 24-h recall questionnaires in Danish data from the European 2003 Pro Children Survey. Multilevel logistic regression analyses included matched student-parent-school questionnaire data (N=1410) from a random sample of 59 schools and were conducted for fruit and vegetables separately: 1) without explanatory variables, to decompose the between-school and within-school variance; 2) with individual level covariates (socioeconomic position, parental intake, etc.) to examine if the between-school variance was attributable to different student compositions of schools; and 3) with individual- and school-level covariates (school availability of fruit/vegetables and unhealthy food) to examine the effect of context. Additional analyses stratified by gender and home availability of fruit/vegetables examined if school food availability influenced subgroups differently. Between-school variations were quantified by intra class correlations and median odds ratios. We found that 40% of the students ate > or = 200 g fruit/day and 25% ate > or = 130 g vegetables/day. Most of the total variance in students' intake occurred at the individual level (93-98%). There were larger between-school variations in vegetable intake than in fruit intake. Fruit and vegetable consumption clustered within schools to a larger degree for boys than girls. The between-school variance did not differ by home availability. Boys and students from high availability homes consumed more fruit and/or vegetables if enrolled in schools with access to fruit/vegetables and unhealthy food or contrarily with no food available versus schools with only fruit/vegetables available. The small school-level effects on 11-year-olds' fruit and vegetable intake imply that family level interventions may be more important and that the success of school

  11. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  12. Brief Report: Impaired Differentiation of Vegetative/Affective and Intentional Nonverbal Vocalizations in a Subject with Asperger Syndrome (AS)

    ERIC Educational Resources Information Center

    Dietrich, Susanne; Hertrich, Ingo; Riedel, Andreas; Ackermann, Hermann

    2012-01-01

    The Asperger syndrome (AS) includes impaired recognition of other people's mental states. Since language-based diagnostic procedures may be confounded by cognitive-linguistic compensation strategies, nonverbal test materials were created, including human affective and vegetative sounds. Depending on video context, each sound could be interpreted…

  13. Scaling relationships for soil formation and edaphic controls on vegetation growth

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Ghanbarian, B.

    2015-12-01

    Critical path analysis (CPA) is suited to calculating the hydraulic conductivity, K, of heterogeneous porous media by quantifying of paths of least resistance. Whenever CPA could be used to calculate K, advective transport scaling relationships from percolation theory should describe solute transport. Two solute transport relationships are applied to predict soil development and edaphic constraints on natural vegetation growth. These results use known exponents from percolation theory and known subsurface flow velocities. The typical flow velocity itself constrains optimal growth rates of cultivars. The percolation scaling relationship constraining vegetation growth is shown to be in accord with data over time scales from hours to 100,000 years, including over a dozen studies (and two models) of tree growth. The scaling function for soil development explains time scales for formation of soils from years to hundreds of millions of years. Data on soil development comes from 23 different studies. The key unification is the common origin of the time and space coordinates for all three relationships in the time of transport through a single pore of roughly micron size at a typical subsurface pore-scale flow velocity. The distinction in evolving time scales is primarily a result of the hierarchical nature of vascular plant root systems, which speed up nutrient access relative to physical transport rates in the soil. The results help explain reduction in forest productivity with age, diminishing soil production with time, and the temporal distinction between the relevance of chemical and biological processes in soils to the global carbon cycle.

  14. Effect of traditional leafy vegetables on the growth of lactobacilli and bifidobacteria.

    PubMed

    Kassim, Muhammad Arshad; Baijnath, Himansu; Odhav, Bharti

    2014-12-01

    Traditional leafy vegetables, apart from being a staple in the diet of most of sub-Saharan Africa, are an essential part of traditional medicine and are used daily by traditional healers in the region to treat a wide variety of ailments. In this study, a batch culture technique was used to investigate whether 25 infusions from 22 traditional leafy vegetables stimulated the growth of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus reuteri and Bifidobacterium longum in pure culture. High performance liquid chromatography was used to determine the inulin content of the infusions. Sonchus oleraceus stimulated all four strains and Taraxacum officinale stimulated three strains. In total, 18 plants stimulated at least one of the four probiotic strains. The inulin content of the infusions varied between 2.5% and 3.6%, with Asparagus sprengeri containing the highest percentage. These results indicate that traditional leafy vegetables do stimulate the growth of the selected lactobacilli and bifidobacteria in pure culture and contain inulin. These infusions can now be tested for prebiotic potential using mixed culture systems or human hosts. PMID:25088723

  15. Urban vegetation and thermal patterns following city growth in different socio-economic contexts

    NASA Astrophysics Data System (ADS)

    Dronova, I.; Clinton, N.; Yang, J.; Radke, J.; Marx, S. S.; Gong, P.

    2015-12-01

    Urban expansion accompanied by losses of vegetated spaces and their ecological services raises significant concerns about the future of humans in metropolitan "habitats". Despite recent growth of urban studies globally, it is still not well understood how environmental effects of urbanization vary with the rate and socioeconomic context of development. Our study hypothesized that with urban development, spatial patterns of surface thermal properties and green plant cover would shift towards higher occurrence of relatively warmer and less vegetated spaces such as built-up areas, followed by losses of greener and cooler areas such as urban forests, and that these shifts would be more pronounced with higher rate of economic and/or population growth. To test these ideas, we compared 1992-2011 changes in remotely sensed patterns of green vegetation and surface temperature in three example cities that experienced peripheral growth under contrasting socio-economic context - Dallas, TX, USA, Beijing, China and Kyiv, Ukraine. To assess their transformation, we proposed a metric of thermal-vegetation angle (TVA) estimated from per-pixel proxies of vegetation greenness and surface temperature from Landsat satellite data and examined changes in TVA distributions within each city's core and two decadal zones of peripheral sprawl delineated from nighttime satellite data. We found that higher economic and population growth were coupled with more pronounced changes in TVA distributions, and more urbanized zones often exhibited higher frequencies of warmer, less green than average TVA values with novel patterns such as "cooler" clusters of building shadows. Although greener and cooler spaces generally diminished with development, they remained relatively prevalent in low-density residential areas of Dallas and peripheral zones of Kyiv with exurban subsistence farming. Overall, results indicate that the effects of modified green space and thermal patterns within growing cities

  16. Strength of Rocks Affected by Deformation Enhanced Grain Growth

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.

    2005-12-01

    One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the

  17. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed Central

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  18. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  19. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  20. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues1[OPEN

    PubMed Central

    Yang, Yang; Munz, Jacob; Cass, Cynthia; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Sedbrook, John; Benning, Christoph

    2015-01-01

    Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species. PMID:26419778

  1. Protein restriction during pregnancy affects postnatal growth in swine progeny.

    PubMed

    Schoknecht, P A; Pond, W G; Mersmann, H J; Maurer, R R

    1993-11-01

    Protein deficiency during pregnancy affects fetal development. The critical period, when the fetus is most susceptible to maternal protein deficiency and its effect on neonatal growth, is unknown. Therefore, we studied the effect of a protein-restricted diet during early and late pregnancy and throughout pregnancy on growth of pigs from birth to market weight. Sows were fed a control (13% protein) or protein-restricted (0.5% protein) diet throughout pregnancy or protein-restricted diet from d 1 to 44, then control diet to term or control diet from d 1 to 81, then the protein-restricted diet to term. In Experiment 1, birth weights were measured, and 12 pigs/diet group were weaned at 4 wk and raised to market weight. Feeding the protein-restricted diet throughout pregnancy reduced birth and slaughter weights, whereas the control followed by protein-restricted and protein-restricted followed by control diets reduced only birth weight relative to controls. Indices of carcass lean were reduced in the protein-restricted piglets, with carcass fat not affected. In Experiment 2, control and control-protein-restricted litters were reduced to six piglets and 3/litter cross-fostered to a sow of the other treatment group. After weaning at 4 wk, 4 piglets/group were individually fed to 8 wk. The control and control followed by protein-restricted diet fed piglets had similar weights at birth, but piglets raised by a control-protein-restricted sow tended to weight less at weaning than their littermates raised by a control sow. After weaning, these piglets had greater feed intakes relative to other groups and there were no weight differences by 8 wk.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size.

  3. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. PMID:26675372

  4. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  5. Artificial Polychromatic Light Affects Growth and Physiology in Chicks

    PubMed Central

    Yang, Bo; Yu, Yonghua

    2014-01-01

    Despite the overwhelming use of artificial light on captive animals, its effect on those animals has rarely been studied experimentally. Housing animals in controlled light conditions is useful for assessing the effects of light. The chicken is one of the best-studied animals in artificial light experiments, and here, we evaluate the effect of polychromatic light with various green and blue components on the growth and physiology in chicks. The results indicate that green-blue dual light has two side-effects on chick body mass, depending on the various green to blue ratios. Green-blue dual light with depleted and medium blue component decreased body mass, whereas enriched blue component promoted body mass in chicks compared with monochromatic green- or blue spectra-treated chicks. Moreover, progressive changes in the green to blue ratios of green-blue dual light could give rise to consistent progressive changes in body mass, as suggested by polychromatic light with higher blue component resulting in higher body mass. Correlation analysis confirmed that food intake was positively correlated with final body mass in chicks (R2 = 0.7664, P = 0.0001), suggesting that increased food intake contributed to the increased body mass in chicks exposed to higher blue component. We also found that chicks exposed to higher blue component exhibited higher blood glucose levels. Furthermore, the glucose level was positively related to the final body mass (R2 = 0.6406, P = 0.0001) and food intake (R2 = 0.784, P = 0.0001). These results demonstrate that spectral composition plays a crucial role in affecting growth and physiology in chicks. Moreover, consistent changes in spectral components might cause the synchronous response of growth and physiology. PMID:25469877

  6. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  7. Interactions between Verticillium dahliae and its host: vegetative growth, pathogenicity, plant immunity.

    PubMed

    Luo, Xiumei; Xie, Chengjian; Dong, Jinyan; Yang, Xingyong; Sui, Anping

    2014-08-01

    Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt diseases in a wide variety of crop plants, resulting in extensive economic losses. In the past 5 years, progress has been made in elaborating the interaction between this hemibiotrophic fungus and its host plants. Some genes responsible for the vegetative growth and/or pathogenicity in V. dahliae have been identified. Plants have accrued a series of defense mechanisms, including inducible defense signaling pathways and some resistant genes to combat V. dahliae infection. Here, we have reviewed the progress in V. dahliae-plant interaction research.

  8. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    PubMed

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  9. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

    PubMed

    Wäschke, Nicole; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2015-09-01

    Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape. PMID:25986560

  10. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

    PubMed

    Wäschke, Nicole; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2015-09-01

    Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape.

  11. FOURTH GRADERS’ REPORTS OF FRUIT AND VEGETABLE INTAKE AT SCHOOL LUNCH: DOES TREATMENT ASSIGNMENT AFFECT ACCURACY?

    PubMed Central

    Harrington, Kathleen Fleege; Kohler, Connie L.; McClure, Leslie A.; Franklin, Frank A.

    2009-01-01

    Objective Dietary interventions with children often use self-reported data to assess efficacy despite that objective methods rarely support self-report findings in validation studies. This study compared fourth graders’ self-reported to observed lunch fruit and vegetable intake to determine if the accuracy of self-reported intake varied by treatment condition Design Matched randomized follow-up design examined three treatment groups (high and low intensity interventions and control) post-intervention. Subjects/Setting 379 middle-school children participating in a randomized controlled trial of a school-based fruit and vegetable intervention were observed during school lunch one day and asked to recall intake the following day. Main Outcome Measures Food items were coded as: “match,” “omission,” or “intrusion.” Students were classified as “accurate” if all food items matched, otherwise “inaccurate.” Matched foods’ portions were compared for accuracy. Servings were computed for total fruit and vegetable intake. Analyses Accuracy for fruits and vegetables were compared in separate analyses and tested for multiple potential associates: treatment condition, gender, race, BMI, subsidized meal eligibility, school district, fruit/vegetable availability, age and test scores. Fitted multivariable regression models included variables found to be significant in univariate or chi square analyses. Results Variables found to be significant for fruit item accuracy were availability at lunch, BMI, and subsidized lunch eligibility. For vegetable item accuracy, availability at lunch was significant. No differences were found for food portions or for efficacy of the intervention between the two methods of dietary data collection: observation and self-report. Conclusion Condition assignment did not bias recalled fruit and vegetable intakes among fourth graders. PMID:19103321

  12. Growth of lactic acid bacteria in waste waters of vegetable-processing plants.

    PubMed

    Mundt, J O; Larsen, S A; McCarty, I E

    1966-01-01

    Waters used in washing, blanching, cooling, and conveying vegetables during processing for freezing were filtered, sterilized, and inoculated with Streptococcus faecalis, S. lactis, or Lactobacillus plantarum. The contents of total nitrogen and total solids were determined, and ninhydrin tests and Benedict's tests for reducing sugars were performed. Substances positive to the ninyhydrin tests and also capable of supporting the growth of the bacteria to high levels of population were found in waters used to blanch cut green beans, but not in the cooling or conveying waters. They were found only in waters following slicing of blanched whole beans. They were also present in waters used in processing purple hull peas at all stages, but only in the waters used to blanch and cool lima beans. The substances were present in waters used to wash and blanch squash, but only in the waters used to blanch greens; they were not found in the cooling waters during the handling of either vegetable. No waters used in the processing of okra yielded a positive ninhydrin test, nor did they support the growth of the lactic acid bacteria. PMID:4958145

  13. Effect of salt stress on morpho-physiology, vegetative growth and yield of rice.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ali, E; Ismail, Mohd Razi; Selamat, Ahmed; Karim, S M Rezaul

    2014-03-01

    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.

  14. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  15. Putative floral brood-site mimicry, loss of autonomous selfing, and reduced vegetative growth are significantly correlated with increased diversification in Asarum (Aristolochiaceae).

    PubMed

    Sinn, Brandon T; Kelly, Lawrence M; Freudenstein, John V

    2015-08-01

    The drivers of angiosperm diversity have long been sought and the flower-arthropod association has often been invoked as the most powerful driver of the angiosperm radiation. We now know that features that influence arthropod interactions cannot only affect the diversification of lineages, but also expedite or constrain their rate of extinction, which can equally influence the observed asymmetric richness of extant angiosperm lineages. The genus Asarum (Aristolochiaceae; ∼100 species) is widely distributed in north temperate forests, with substantial vegetative and floral divergence between its three major clades, Euasarum, Geotaenium, and Heterotropa. We used Binary-State Speciation and Extinction Model (BiSSE) Net Diversification tests of character state distributions on a Maximum Likelihood phylogram and a Coalescent Bayesian species tree, inferred from seven chloroplast markers and nuclear rDNA, to test for signal of asymmetric diversification, character state transition, and extinction rates of floral and vegetative characters. We found that reduction in vegetative growth, loss of autonomous self-pollination, and the presence of putative fungal-mimicking floral structures are significantly correlated with increased diversification in Asarum. No significant difference in model likelihood was identified between symmetric and asymmetric rates of character state transitions or extinction. We conclude that the flowers of the Heterotropa clade may have converged on some aspects of basidiomycete sporocarp morphology and that brood-site mimicry, coupled with a reduction in vegetative growth and the loss of autonomous self-pollination, may have driven diversification within Asarum.

  16. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation

    NASA Astrophysics Data System (ADS)

    van Oijen, M.

    2012-04-01

    • Background and Aims. The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R:P ratio is constrained to a narrow range of about 0.4-0.5. Physiological explanations for the narrow range are not conclusive. We aim to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilisation). • Methods. Starting from the law of conservation of mass - in this case carbon - we derive equations for the relative magnitudes of all carbon fluxes which depend on only two parameters: the R:P ratio and the relative rate of storage of carbon into remobilisable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. • Key Results. Storage rate is shown to be a freely varying parameter, whereas R:P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilisation before photosynthesis takes over. • Conclusions. We conclude that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints. • Reference. Van Oijen, M., Schapendonk, A. & Höglind, M

  17. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers.

    PubMed

    Blarquez, Olivier; Ali, Adam A; Girardin, Martin P; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-09-02

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.

  18. Evaluation of bulk density and vegetation as affected by military vehicle traffic at Fort Riley, Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted using military vehicles to determine the influence of repeated traffic on soil compaction and vegetative losses. These data will eventually be incorporated into models such as the Wind Erosion Prediction System (WEPS). A replicated field experiment was conducted in the fall o...

  19. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers

    PubMed Central

    Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-01-01

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162

  20. Offer versus Serve or Serve Only: Does Service Method Affect Elementary Children's Fruit and Vegetable Consumption?

    ERIC Educational Resources Information Center

    Goggans, Margaret Harbison; Lambert, Laurel; Chang, Yunhee

    2011-01-01

    Purpose/Objectives: The purpose of this study was to determine if the use of the Offer versus Serve (OVS) provision in the National School Lunch Program would result in a significant difference in fruit and vegetable consumption by fourth and fifth grade elementary students, and in plate waste cost. Methods: Weighed and visual plate waste data…

  1. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers.

    PubMed

    Blarquez, Olivier; Ali, Adam A; Girardin, Martin P; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-01-01

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162

  2. Shifts in vegetation affect organic carbon quality in a coastal marsh along the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Zhang, A. H.; Corbett, J. E.; Tfaily, M. M.; Martin, I.; Ho, L.; Sun, E.; Sevilla, L.; Vincent, S.; Newton, R.; Peteet, D. M.

    2015-12-01

    To better understand carbon storage in coastal salt marshes, samples were collected from Piermont Marsh, NY (40 ̊00' N, 73 ̊55'W) located within the Hudson River Estuary. Porewater from three different vegetation sites was analyzed to compare the quality of the dissolved organic carbon. Sites contained either native or invasive vegetation with variations in live plant root depth. Porewater was taken from 0-3m in 50cm intervals, and sites were dominated either by invasive Phragmites australis, native Eleocharis , or native mixed vegetation (Spartina patens, Scirpus, and Typha angustifolia). Sites dominated by invasive Phragmites australis were found to have lower dissolved organic carbon (DOC) concentrations, lower cDOM absorption values, and more labile organic carbon compounds. The molecular composition of the DOC was determined with Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS). Labile DOC components were defined as proteins, carbohydrates, and amino sugars while recalcitrant DOC components were defined as lipids, unsaturated hydrocarbons, lignins, tannins, and condensed hydrocarbons. For the Phragmites, Eleocharis, and mixed vegetation sites, average DOC concentrations with depth were found to be 1.71 ± 1.06, 4.64 ± 1.73, and 4.62 ± 3.5 (mM), respectively and cDOM absorption values with depth were found to be 13.22 ± 4.81, 49.42 ± 10.8, and 35.74 ± 17.49 (m-1). Additionally, DOC concentrations increased with depth in the mixed vegetation and Eleocharis sites, but remained relatively constant in the Phragmites site. The percent of labile compounds in the surface samples were found to be 19.02, 14.64, and 14.07% for the Phragmites, Eleocharis, and mixed vegetation sites, respectively. These findings suggest that sites dominated by Phragmites may have more reactive DOC substrates than sites dominated by native vegetation. These results indicate that the carbon storage in marshes invaded by Phragmites would be expected to decrease over time.

  3. How do sink and source activities influence the reproduction and vegetative growth of spring ephemeral herbs under different light conditions?

    PubMed

    Sunmonu, Ninuola; Kudo, Gaku

    2014-07-01

    Spring ephemeral herbs inhabiting deciduous forests commonly complete reproduction and vegetative growth before canopy closure in early summer. Effects of shading by early canopy closure on reproductive output and vegetative growth, however, may vary depending on the seasonal allocation patterns of photosynthetic products between current reproduction and storage for future growth in each species. To clarify the effects of sink-source balance on seed production and bulb growth in a spring ephemeral herb, Gagea lutea, we performed a bract removal treatment (source reduction) and a floral-bud removal treatment (sink reduction) under canopy and open conditions. Leaf carbon fixations did not differ between the forest and open sites and among treatments. Bract carbon fixations were also similar between sites but tended to decrease when floral buds were removed. Seed production was higher under open condition but decreased by the bract-removal treatment under both light conditions. In contrast, bulb growth was independent of light conditions and the bract-removal treatment but increased greatly by the bud-removal treatment. Therefore, leaves and bracts acted as specialized source organs for vegetative and reproductive functions, respectively, but photosynthetic products by bracts were flexibly used for bulb growth when plants failed to set fruits. Extension of bright period was advantageous for seed production (i.e., source limited) but not for vegetative growth (i.e., sink limited) in this species.

  4. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk.

    PubMed

    Aouadhi, Chedia; Mejri, Slah; Maaroufi, Abderrazak

    2015-04-01

    The inhibitory activities of nisin or/and potassium sorbate on spores and vegetative cells of Bacillus sporothermodurans LTIS27, which are known to be a contaminant of dairy products and to be extremely heat-resistant, were investigated. First, the tested concentrations of nisin or potassium sorbate inhibited vegetative cell growth; with the minimum inhibitory concentrations were 5 × 10(3) IU/ml and 2% (w/v), respectively. Then, the behaviour of vegetative cells and spores in presence of sub-lethal concentrations of nisin (50 UI/ml) or/and potassium sorbate (0.2%), in milk at 37 °C for 5 days, were evaluated. In the absence of inhibitors, strain grew and sporulated at the end of the exponential phase. Nisin (50 UI/ml) was able to inhibit spore outgrowth but didn't affect their germination. It induced an immediate and transitory reduction (1.6log(10) after 1 h and 2.8log(10) after 6 h of incubation) of vegetative cell growth which reappeared between 10 h and 24 h. Potassium sorbate (0.2%) had a durable bacteriostatic effect (1.1log(10) after 6 h), on vegetative cells, followed by a slower regrowth. It was able to inhibit both germination and outgrowth of spores. Association of nisin and potassium sorbate, at sub-lethal concentrations, showed a synergistic effect and resulted in a total inhibition of cells growth after 5 days. The results illustrate the efficacy of nisin and potassium sorbate in combination, and the commercial potential of applying such treatment to decontaminate any product that has a problem with persistence of bacterial spores. PMID:25475264

  5. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk.

    PubMed

    Aouadhi, Chedia; Mejri, Slah; Maaroufi, Abderrazak

    2015-04-01

    The inhibitory activities of nisin or/and potassium sorbate on spores and vegetative cells of Bacillus sporothermodurans LTIS27, which are known to be a contaminant of dairy products and to be extremely heat-resistant, were investigated. First, the tested concentrations of nisin or potassium sorbate inhibited vegetative cell growth; with the minimum inhibitory concentrations were 5 × 10(3) IU/ml and 2% (w/v), respectively. Then, the behaviour of vegetative cells and spores in presence of sub-lethal concentrations of nisin (50 UI/ml) or/and potassium sorbate (0.2%), in milk at 37 °C for 5 days, were evaluated. In the absence of inhibitors, strain grew and sporulated at the end of the exponential phase. Nisin (50 UI/ml) was able to inhibit spore outgrowth but didn't affect their germination. It induced an immediate and transitory reduction (1.6log(10) after 1 h and 2.8log(10) after 6 h of incubation) of vegetative cell growth which reappeared between 10 h and 24 h. Potassium sorbate (0.2%) had a durable bacteriostatic effect (1.1log(10) after 6 h), on vegetative cells, followed by a slower regrowth. It was able to inhibit both germination and outgrowth of spores. Association of nisin and potassium sorbate, at sub-lethal concentrations, showed a synergistic effect and resulted in a total inhibition of cells growth after 5 days. The results illustrate the efficacy of nisin and potassium sorbate in combination, and the commercial potential of applying such treatment to decontaminate any product that has a problem with persistence of bacterial spores.

  6. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana.

    PubMed

    Vespermann, Anja; Kai, Marco; Piechulla, Birgit

    2007-09-01

    Volatiles of Stenotrophomonas, Serratia, and Bacillus species inhibited mycelial growth of many fungi and Arabidopsis thaliana (40 to 98%), and volatiles of Pseudomonas species and Burkholderia cepacia retarded the growth to lesser extents. Aspergillus niger and Fusarium species were resistant, and B. cepacia and Staphylococcus epidermidis promoted the growth of Rhizoctonia solani and A. thaliana. Bacterial volatiles provide a new source of compounds with antibiotic and growth-promoting features.

  7. Effects of river hydrology and fluvial processes on riparian vegetation establishment, growth, and survival

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; Merritt, D. M.; Wilcox, A. C.

    2012-12-01

    Stream hydrology, sediment, and geology interact to determine the spatial and temporal availability of river bottomland substrates on which plants establish and grow. Collectively, these surfaces comprise a mosaic of landscape patches with associated plant communities that fall along key gradients of physical disturbance and water availability. Aspects of flow such as magnitude, frequency, timing, and rate of change of floods and magnitude and duration of low flows, interact with sediment flux and plant traits to determine plant distribution and fitness in different parts of the bottomland. Flow and sediment dynamics can influence different aspects of the plant life cycle such as germination, establishment, growth, and survival. Feedbacks between plants and fluvial processes, such as increased surface roughness and associated reductions in flow velocity and potential for aggradation, can determine differential survival of plant species depending on their tolerance of high velocity flow and associated shear stress, dislodgement, or burial by sediment. We present an overview of some key relationships between flow, sediment, plant traits, and riparian vegetation responses, and provide specific examples from our research on rivers in the semi-arid western U.S., including unaltered systems, dam-altered systems, and in the context of development of environmental flows to restore native riparian vegetation communities. Further, we describe the riparian response guilds framework and demonstrate how it can facilitate both an understanding of vegetation response to changing flow, sediment, and disturbance regimes and the development of priorities for flow management. Through understanding how guilds of species respond to variations in flow and sediment regimes, we are be better able to anticipate and predict biotic change in response to human-caused and climate-driven flow alteration.

  8. The tolerance of grain amaranth (Amaranthus cruentus L.) to defoliation during vegetative growth is compromised during flowering.

    PubMed

    Vargas-Ortiz, Erandi; Délano-Frier, John Paul; Tiessen, Axel

    2015-06-01

    The biochemical processes underlying variations of tolerance are often accompanied by source-sink transitions affecting carbon (C) metabolism. We investigated the tolerance of Amaranthus cruentus L. to total mechanical defoliation through development and in different growing seasons. Defoliated A. cruentus recovered ∼80% of their above-ground biomass and ∼100% of grain yield compared to intact plants if defoliation occurred early during ontogeny, but could not compensate when defoliation occurred during flowering. Tolerance index was higher in the summer season (-0.3) than in the winter season (-0.7). Overall, defoliation tolerance was closely related to phosphoenolpyruvate carboxylase (PEPC) activity in leaves and the subsequent accumulation of starch (∼500 μmol/gDW) and sucrose (∼140 μmol/gDW) in stems and roots. Thus, A. cruentus accumulated sufficient C in roots and stem to allow branching and shoot re-growth after defoliation, but it only possessed sufficient C reserves to maintain <19% seed yield in the absence of new vegetative tissue. Seed size was larger during the warm season but it was not affected by foliar damage. Seed chemical composition was altered by defoliation at flowering. We conclude that A. cruentus defoliation tolerance depends on both, the re-allocation of starch from stem and roots, and the activation of dormant meristems before flowering to generate new photosynthetic capacity to sustain seed filling. PMID:25863889

  9. Changes in regulation of ribosomal protein synthesis during vegetative growth and sporulation of Saccharomyces cerevisiae.

    PubMed Central

    Pearson, N J; Haber, J E

    1980-01-01

    When diploid Saccharomyces cerevisiae cells logarithmically growing in acetate medium were placed in sporulation medium, the relative rates of synthesis of 40 or more individual ribosomal proteins (r-proteins) were coordinately depressed to approximately 20% of those of growing cells. These new depressed rates remained constant for at least 10 h into sporulation. If yeast nitrogen base was added 4 yh after the beginning of sporulation to shift the cells back to vegetative growth, the original relative rates of r-protein synthesis were rapidly reestablished. this upshift in the rates occurred even in diploids homozygous for the regulatory mutation rna2 at the restrictive temperature for this mutation (34 degrees C). However, once these mutant cells began to bud and grow at 34 degrees C, the phenotype of rna2 was expressed and the syntheses of r-proteins were again coordinately depressed. At least one protein whose rate of synthesis was not depressed by rna2 in vegetative cells did have a decreased rate of synthesis during sporulation. Another r-protein whose synthesis was depressed by rna2 maintained a high rate of synthesis at the beginning of sporulation. These data suggest that the mechanism responsible for coordinate control of r-protein synthesis during sporulation does not require the gene product of RNA2 and thus defines a separate mechanism by which r-proteins are coordinately controlled in S. cerevisiae. Images PMID:6997272

  10. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis

    PubMed Central

    Dou, Xiao‐Ying; Yang, Ke‐Zhen; Ma, Zhao‐Xia; Chen, Li‐Qun; Zhang, Xue‐Qin; Bai, Jin‐Rong

    2016-01-01

    Abstract In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis. PMID:26699939

  11. Synthetic Polymers Active against Clostridium difficile Vegetative Cell Growth and Spore Outgrowth

    PubMed Central

    2015-01-01

    Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen that causes highly infectious diarrheal disease. The best polymers match the human host-defense peptide LL-37 in blocking vegetative cell growth and inhibiting spore outgrowth. The polymers and LL-37 were effective against both the epidemic 027 ribotype and the 012 ribotype. In contrast, neither vancomycin nor nisin inhibited outgrowth for the 012 ribotype. The best polymer was less hemolytic than LL-37. Overall, these findings suggest that nylon-3 copolymers may be useful for combatting C. difficle. PMID:25279431

  12. Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-09-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806.

  13. Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-09-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806. PMID:27331100

  14. Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth.

    PubMed

    Liu, Runhui; Suárez, Jose M; Weisblum, Bernard; Gellman, Samuel H; McBride, Shonna M

    2014-10-15

    Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen that causes highly infectious diarrheal disease. The best polymers match the human host-defense peptide LL-37 in blocking vegetative cell growth and inhibiting spore outgrowth. The polymers and LL-37 were effective against both the epidemic 027 ribotype and the 012 ribotype. In contrast, neither vancomycin nor nisin inhibited outgrowth for the 012 ribotype. The best polymer was less hemolytic than LL-37. Overall, these findings suggest that nylon-3 copolymers may be useful for combatting C. difficle. PMID:25279431

  15. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest.

    PubMed

    Orwig, David A; Barker Plotkin, Audrey A; Davidson, Eric A; Lux, Heidi; Savage, Kathleen E; Ellison, Aaron M

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50-100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%-70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3-4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes underlying

  16. [Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field].

    PubMed

    Huang, Dong-feng; Wang, Guo; Li, Wei-hua; Qiu, Xiao-xuan

    2009-03-01

    A field experiment with Chinese cabbage, water spinach, and three-colored amaranth cropped three times in one year was conducted to study the effects of seven fertilization modes, i.e., none fertilization, basal application of chemical fertilizers, 1/2 basal application and 1/2 top-dressing of chemical fertilizers, basal application of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure, and basal application of organic manure, on the plant height, yield, nitrogen accumulation, and fertilizer nitrogen utilization of the vegetables, and the loss of NO3- -N and NH4+ -N from vegetable field under natural rainfall condition. The results showed that comparing with none fertilization, the fertilization modes '1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure' and 'basal application of chemical fertilizers and dicyandiamide' improved the agronomic properties of test vegetables, increased their yields by 103%-219% and 93%-226%, and nitrogen accumulation by 153% -216% and 231%-320%, respectively, and enhanced fertilizer nitrogen utilization rate. They also decreased the surface runoff loss of NO3- -N and NH4+ -N by 48.1% and 46.5%, respectively, compared with the mode 'basal application of chemical fertilizers', and hence, reduced the risk of agricultural non-point pollution. Therefore, these two fertilization modes could be popularized in vegetable production.

  17. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  18. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  19. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum

    PubMed Central

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  20. Factors affecting Staphylococcus epidermidis growth in peritoneal dialysis solutions.

    PubMed Central

    McDonald, W A; Watts, J; Bowmer, M I

    1986-01-01

    Staphylococcus epidermidis is the most frequent cause of peritonitis complicating continuous ambulatory peritoneal dialysis. We studied factors that might influence the growth of S. epidermidis in commercially available peritoneal dialysis solution (PDS). Test strains were inoculated into PDS and incubated overnight at 37 degrees C. Samples were removed at appropriate intervals, bacterial counts were performed, and growth curves were constructed. We studied the effects of various osmolarities, the neutralization and acidification of fresh and spent PDS, and the effect of intraperitoneal dwell time on the ability PDS to support growth of S. epidermidis. In fresh PDS, numbers of bacteria remained constant after 24 h. No significant differences in growth were observed among PDS with 0.5, 1.5, 2.5, and 4.25% glucose. Neutralizing acidic fresh PDS had no effect on bacterial growth. However, growth did occur in spent PDS. PDS which was recovered after only 2 h in the peritoneal cavity supported growth to the same extent as did PDS recovered after 4 to 6 h. Mean log10 changes after 24 h of incubation were as follows: for fresh PDS, -1.3; after 2 h dwell time, 2.9; after 4 h dwell time, 1.9; and after 6 h dwell time, 1.3. Acidification of spent PDS to less than pH 6.35 produced less rapid growth; mean log10 increases after 24 h of incubation were 1.9 for pH 7.75, 1.6 for pH 6.35, 0.6 for pH 5.75, and 0.7 for pH 4.95. Fresh PDS of all available osmolarities neither supported the growth of S. epidermidis nor was bactericidal. Spent PDS supported bacterial growth, and this growth was partly independent of the neutralization which occurred during the dialysis. PMID:3722356

  1. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  2. Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata).

    PubMed

    Caballero, Maria José; Gallardo, Germán; Robaina, Lidia; Montero, Daniel; Fernández, Antonio; Izquierdo, Marisol

    2006-03-01

    Despite the good growth performance of several fish species when dietary fish oil is partly replaced by vegetable oils, recent studies have reported several types of intestinal morphological alterations in cultured fish fed high contents of vegetable lipid sources. However, the physiological process implied in these morphological changes have not been clarified yet, since alterations in the physiological mechanisms involved in the different processes of lipid absorption could be responsible for such gut morphological features. The objective of the present study was to investigate the activities of reacylation pathways in fish, the glycerol-3-phosphate and the monoacylglycerol pathways, in order to clarify the intestinal triacylglycerol (TAG) and phospholipid biosynthesis to better understand the morphological alterations observed in the intestine of fish fed vegetable oils. Intestinal microsomes of sea bream fed different lipid sources (fish, soyabean and rapeseed oils) at three different inclusion levels were isolated and incubated with L-[(14)C(U)]glycerol-3-phosphate and [1-(14)C]palmitoyl CoA. The results showed that in this fish species the glycerol-3-phosphate pathway is mainly involved in phospholipid synthesis, whereas TAG synthesis is mainly mediated by the monoacylglycerol pathway. Feeding with rapeseed oil reduced the reacylation activity in both pathways, explaining the high accumulation of lipid droplets in the supranuclear portion of the intestinal epithelium, whereas soyabean oil enhanced phosphatidylcholine synthesis, being associated with the increase in VLDL found in previous studies.

  3. Environmental Crack Growth Behavior Affected by Thickness/Geometry Constraint

    NASA Astrophysics Data System (ADS)

    Kujawski, Daniel

    2013-03-01

    This article gives a short review on the effects of thickness/constraint and environment on crack growth behavior under cyclic and static loadings. Fatigue crack growth data taken from the literature, corresponding to different environments, ranging from vacuum to air and NaCl solution for a number of alloys and different specimens geometries are presented and analyzed. Reported results indicate that for relatively inert material/environment systems, there is a weak thickness/constraint effect on fatigue crack growth behavior. On the other hand, for corrosive material/environment systems, there is a significant thickness/constraint effect on crack growth rate behavior under both cyclic and static loadings. Some implications related to crack growth modeling are suggested.

  4. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Xu, Hao-jie; Wang, Xin-ping; Zhang, Xiao-xiao

    2016-10-01

    Climate change scenarios predict that Central Asia may experience an increase in the frequency and magnitude of temperature and precipitation extremes by the end of the 21st century, but the response regularity of different types of vegetation to climate extremes is uncertain. Based on remote-sensed vegetation index and in-situ meteorological data for the period of 2000-2012, we examined the diverse responses of vegetation to climate mean/extremes and differentiated climatic and anthropogenic influence on the vegetation in Central Asia. Our results showed that extensive vegetation degradation was related to summer water deficit as a result of the combined effect of decreased precipitation and increased potential evapotranspiration. Water was a primary climatic driver for vegetation changes regionally, and human-induced changes in vegetation confined mainly to local areas. Responses of vegetation to water stress varied in different vegetation types. Grasslands were most responsive to water deficit followed by forests and desert vegetation. Climate extremes caused significant vegetation changes, and different vegetation types had diverse responses to climate extremes. Grasslands represented a symmetric response to wet and dry periods. Desert vegetation was more responsive during wet years than in dry years. Forests responded more strongly to dry than to wet years due to a severe drought occurred in 2008. This study has important implications for predicting how vegetation ecosystems in drylands respond to climate mean/extremes under future scenarios of climate change.

  5. Low water potentials affect expression of genes encoding vegetative storage proteins and plasma membrane proton ATPase in soybean.

    PubMed

    Surowy, T K; Boyer, J S

    1991-02-01

    We have examined growth, water status and gene expression in dark-grown soybean (Glycine max L. Merr.) seedlings in response to water deficit (low water potentials) during the first days following germination. The genes encoded the plasma membrane proton ATPase and two proteins of 28 kDa and 31 kDa putatively involved in vegetative storage. Water potentials of stems and roots decreased when 2-day-old seedlings were transferred to water-saturated air. Stem growth was inhibited immediately. Root growth continued at control rates for one day and then was totally inhibited when the normal root-stem water potential gradient was reversed. Expression of mRNA for the 28 kDa and 31 kDa proteins, measured independently using specific 3'-end probes, occurred about equally in stems. However, only the mRNA for the 31 kDa protein was detected in roots and at a lower abundance than in stems. Low water potentials increased the mRNA only for the 28 kDa protein in stems and the 31 kDa protein in roots. This differential expression followed the inhibition of stem growth but preceded the inhibition of root growth. The expression of the message for the ATPase, measured using a probe synthesized from a partial oat ATPase clone, was low in stems and roots but there was a 6-fold increase at low water potentials in roots. The increase followed the inhibition of root growth. This appears to be the first instance of regulation of ATPase gene expression in plants and the first demonstration of differential expression of the 28 kDa, 31 kDa, and ATPase messages. The correlation with the differential growth responses of the stems and roots raises the possibility that the differential gene expression could be involved in the growth response to low water potentials.

  6. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  7. Slower Economic Growth Affects the 1995 Labor Market.

    ERIC Educational Resources Information Center

    Gardner, Jennifer M.; Hayghe, Howard V.

    1996-01-01

    Shows how job growth slowed dramatically in 1995, but the unemployment rate remained little changed. Discusses trends in nonfarm payroll employment by industry and changes in employment status of people in various demographic and occupational groups. (Author)

  8. Regulation of seed germination and seedling growth by chemical signals from burning vegetation.

    PubMed

    Nelson, David C; Flematti, Gavin R; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M

    2012-01-01

    It is well known that burning of vegetation stimulates new plant growth and landscape regeneration. The discovery that char and smoke from such fires promote seed germination in many species indicates the presence of chemical stimulants. Nitrogen oxides stimulate seed germination, but their importance in post-fire germination has been questioned. Cyanohydrins have been recently identified in aqueous smoke solutions and shown to stimulate germination of some species through the slow release of cyanide. However, the most information is available for karrikins, a family of butenolides related to 3-methyl-2H-furo[2,3-c]pyran-2-one. Karrikins stimulate seed germination and influence seedling growth. They are active in species not normally associated with fire, and in Arabidopsis they require the F-box protein MAX2, which also controls responses to strigolactone hormones. We hypothesize that chemical similarity between karrikins and strigolactones provided the opportunity for plants to employ a common signal transduction pathway to respond to both types of compound, while tailoring specific developmental responses to these distinct environmental signals.

  9. [Estimation model for daily transpiration of greenhouse muskmelon in its vegetative growth period].

    PubMed

    Zhang, Da-Long; Li, Jian-Ming; Wu, Pu-Te; Li, Wei-Li; Zhao, Zhi-Hua; Xu, Fei; Li, Jun

    2013-07-01

    For developing an estimation method of muskmelon transpiration in greenhouse, an estimation model for the daily transpiration of greenhouse muskmelon in its vegetative growth period was established, based on the greenhouse environmental parameters, muskmelon growth and development parameters, and soil moisture parameters. According to the specific environment in greenhouse, the item of aerodynamics in Penman-Monteith equation was modified, and the greenhouse environmental sub-model suitable for calculating the reference crop evapotranspiration in greenhouse was deduced. The crop factor sub-model was established with the leaf area index as independent variable, and the form of the model was linear function. The soil moisture sub-model was established with the soil relative effective moisture content as independent variable, and the form of the model was logarithmic function. With interval sowing, the model parameters were estimated and analyzed, according to the measurement data of different sowing dates in a year. The prediction accuracy of the model for sufficient irrigation and water-saving irrigation was verified, according to measurement data when the relative soil moisture content was 80%, 70%, and 60%, and the mean relative error was 11.5%, 16.2% , and 16.9% respectively. The model was a beneficial exploration for the application of Penman-Monteith equation under greenhouse environment and water-saving irrigation, having good application foreground and popularization value.

  10. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  11. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  12. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides.

    PubMed

    Guo, Li; Wenner, Nancy; Kuldau, Gretchen A

    2015-12-01

    Hyphal anastomosis is a hallmark of filamentous fungi and plays vital roles including cellular homoeostasis, interhyphal communication and nutrient translocation. Here we identify a gene, FvSO, in Fusarium verticillioides, a filamentous ascomycete causing maize ear and stalk rot and producing fumonisin mycotoxins. FvSO, like its Neurospora crassa homologue SO, is required for vegetative hyphal fusion. It is also essential for normal vegetative growth, sporulation, and pathogenesis. FvSO encodes a predicted WW domain protein and shares 70 % protein sequence identity with N. crassa SO. FvSO deletion mutants (ΔFvSO) had abnormal distribution of conidia size, and conidia of ΔFvSO germinated much later and slower than wild type. ΔFvSO was deficient in hyphal anastomosis, had slower radial growth and produced less fungal biomass than wild type. ΔFvSO were unable to perform anastomosis, a key feature of filamentous fungi. Interestingly, production of fumonisin B1 by ΔFvSO was significantly reduced compared to wild type. Additionally, ΔFvSO was nonpathogenic to corn ears, stalks and seedlings, likely due to defective growth and development. In conclusion, FvSO is essential for vegetative hyphal fusion and is required for normal vegetative growth and sporulation, normal levels of fumonisin production and pathogenicity in F. verticillioides. The pleiotropic nature of ΔFvSO phenotypes suggests that FvSO is likely involved in certain signalling pathways that regulate multiple cellular functions.

  13. Some factors affecting the growth and decay of plages

    NASA Astrophysics Data System (ADS)

    Howard, Robert F.

    1993-09-01

    The Mount Wilson coarse array magnetograph data set is analyzed to examine the dependence of growth and decay rates on the tilt angles of the magnetic axes of the regions. It is found that there is a relationship between these quantities which is similar to that found earlier for sunspot groups. Regions near the average tilt angle show larger average (absolute) growth and decay rates. The percentage growth and decay rates show minima (in absolute values) at the average tilt angles because the average areas of regions are largest near this angle. This result is similar to that derived earlier for sunspot groups. As in the case of spot groups, this suggests that, for decay, the effect results from the fact that the average tilt angle may represent the simplest subsurface configuration of the flux loop or loops that make up the region. In the case of region growth, it was suggested that the more complicated loop configuration should result in increased magnetic tension in the flux loop, and thus in a slower ascent of the loop to the surface, and thus a slower growth rate.

  14. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens.

    PubMed Central

    Sahi, S V; Chilton, M D; Chilton, W S

    1990-01-01

    Homogenates of corn seedlings inhibit both growth of Agrobacterium tumefaciens and induction of its Ti plasmid virulence (vir) genes by acetosyringone (AS). The heat-labile inhibitor has been identified as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), present in 2-week-old seedlings (B73) at a concentration of 1.5 mM or greater. A concentration of 0.3 mM DIMBOA is sufficient to block growth of A. tumefaciens completely for 220 hr. DIMBOA at 0.1 mM concentration completely inhibited vir gene induction by 100 microM AS and reduced growth rate by 50%. Thus, DIMBOA can be expected to have a significant effect on attempts to transform corn by using A. tumefaciens as a vector. Images PMID:11607078

  15. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  16. LAMMER Kinase LkhA Plays Multiple Roles in the Vegetative Growth and Asexual and Sexual Development of Aspergillus nidulans

    PubMed Central

    Kang, Eun-Hye; Kim, Ji-ae; Oh, Hyun-Woo; Park, Hee-Moon

    2013-01-01

    LAMMER kinase plays pivotal roles in various physiological processes in eukaryotes; however, its function in filamentous fungi is not known. We performed molecular studies on the function of the Aspergillus nidulans LAMMER kinase, LkhA, and report its involvement in multiple developmental processes. The gene for LkhA was highly expressed during reproductive organ development, such as that of conidiophores and cleistothecia. During vegetative growth, the patterns of germ tube emergence and hyphal polarity were changed and septation was increased by lkhA deletion. Northern analyses showed that lkhA regulated the transcription of brlA, csnD, and ppoA, which supported the detrimental effect of lkhA-deletion on asexual and sexual differentiation. LkhA also affected expression of cyclin-dependent kinase NimXcdc2, a multiple cell cycle regulator, and StuA, an APSES family of fungal transcription factors that play pivotal roles in multiple differentiation processes. Here, for the first time, we present molecular evidence showing that LAMMER kinase is involved in A. nidulans development by modulating the expression of key regulators of developmental processes. PMID:23516554

  17. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  18. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  19. Transgene Induced Co-Suppression during Vegetative Growth in Cryptococcus neoformans

    PubMed Central

    Wang, Xuying; Wang, Ping; Sun, Sheng; Darwiche, Sabrina; Idnurm, Alexander; Heitman, Joseph

    2012-01-01

    Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (∼50%), but at a much lower frequency during vegetative growth (∼0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ∼90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling. PMID:22916030

  20. Shade periodicity affects growth of container grown dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container-grown dogwoods rank third in the US in nursery sales of ornamental trees. However, Dogwoods are a challenging crop to produce in container culture, especially when bare root liners are used as the initial transplant into containers due unacceptable levels of mortality and poor growth. This...

  1. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  2. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  3. Big plants — Do they affect neighbourhood species richness and composition in herbaceous vegetation?

    NASA Astrophysics Data System (ADS)

    Aarssen, Lonnie W.; Schamp, Brandon S.; Wight, Stephanie

    2014-02-01

    According to traditional theory, success in competition between plant species generally involves a 'size-advantage'. We predicted therefore that plants with larger body size should impose greater limits on the number of species — especially relatively small ones — that can reside within their immediate neighbourhoods. Species composition was compared within local neighbourhoods surrounding target plants of different sizes belonging to one of the largest herbaceous species found within old-field vegetation in eastern Ontario Canada — Centaurea jacea. Resident species density was generally greater within immediate 'inner' target neighbourhoods than within adjacent circular 'outer' neighbourhoods, and mean body size of resident neighbour species was unrelated to increases in target plant size. As target plant size increased, the proportion of resident neighbour species that were reproductive increased. Relatively big plants of C. jacea do not limit the number or the proportion of reproductive species that can coexist within their immediate neighbourhoods, nor do they cause local exclusion of relatively small species from these neighbourhoods. These results fail to support the 'size-advantage' hypothesis and are more consistent with the 'reproductive economy advantage' hypothesis: success under intense competition is promoted by capacity to recruit offspring that — despite severe suppression — are able to reach their minimum body size needed for reproduction, and hence produce grand-offspring for the next generation. The latter is facilitated by a relatively small minimum reproductive threshold size, which is generally negatively correlated with a relatively large maximum potential body size.

  4. Phasic temperature change patterns affect growth and tuberization in potatoes

    SciTech Connect

    Cao, W.; Tibbitts, T.W. . Dept. of Horticulture)

    1994-07-01

    This study determined the response of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods. In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22 C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22 C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increased from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers was highest with 22-17-22C, and number of large tubers was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

  5. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest.

  6. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  7. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-06-16

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analyzed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:27043383

  8. Growth in body size affects rotational performance in women's gymnastics.

    PubMed

    Ackland, Timothy; Elliott, Bruce; Richards, Joanne

    2003-07-01

    National and state representative female gymnasts (n = 37), aged initially between 10 and 12 years, completed a mixed longitudinal study over 3.3 years, to investigate the effect of body size on gymnastic performance. Subjects were tested at four-monthly intervals on a battery of measures including structural growth, strength and gymnastic performance. The group were divided into 'high growers' and 'low growers' based on height (> 18 cm or < 14 cm/37 months, respectively) and body mass (> 15 kg or < 12 kg/37 months, respectively) for comparative purposes. Development of gymnastic performance was assessed through generic skills (front and back rotations, a twisting jump and a V-sit action) and a vertical jump for maximum height. The results show that the smaller gymnast, with a high strength to mass ratio, has greater potential for performing skills involving whole-body rotations. Larger gymnasts, while able to produce more power and greater angular momentum, could not match the performance of the smaller ones. The magnitude of growth experienced by the gymnast over this period has a varying effect on performance. While some activities were greatly influenced by rapid increases in whole-body moment of inertia (e.g. back rotation), performance on others like the front rotation and vertical jump, appeared partly immune to the physical and mechanical changes associated with growth. PMID:14737925

  9. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:26918325

  10. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    PubMed

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels. PMID:25666700

  11. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    PubMed

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels.

  12. Impact of plant growth and morphology and of sediment concentration on sediment retention efficiency of vegetative filter strips: Flume experiments and VFSMOD modeling

    NASA Astrophysics Data System (ADS)

    Lambrechts, Thomas; François, Sébastien; Lutts, Stanley; Muñoz-Carpena, Rafael; Bielders, Charles L.

    2014-04-01

    Vegetative filter strips (VFS) implemented downstream to the source of pollution can trap sediments and thus limit sediment export from agricultural fields. However, their retention efficiencies are determined by many factors, among others the type of plant species and its growth stage. The impact of plant growth and morphology, as well as of incoming sediment concentration, on the efficiency of VFS to trap sediments was assessed by means of an experimental flume. Two different plant species were tested, Lolium perenne and Trifolium repens, after 2 and 4 months of plant growth and for 2 different incoming silty-loam sediment concentrations. Measured retention efficiencies were compared to simulated values using VFSMOD based on goodness-of-fit indicators that take into account uncertainty linked to the measurements. The sediment storage capacity upstream of the VFS was limited in terms of mass, and therefore an increase in sediment concentration led to a decrease in sediment retention efficiency. After 2 months of plant growth, plant morphology affected the VFS potential to trap sediments, as reflected in the higher retention efficiency of T. repens due to its creeping shoot architecture. However, plant growth and development modified the plant morphology and VFS trapping potential. Indeed, L. perenne VFS retention efficiency increased from 35% after 2 months of growth to 50% after 4 months, due to the tillering capacity of grass species. Conversely, the trapping efficiency of T. repens decreased from 49% to 40% after 4 months. This highlights the possible degradation of VFS with time, which in the case of T.repens was due to an increased heterogeneity of plant density within the strips. These modifications of plant characteristics with growth stage, which affected sediment trapping efficiencies, can be effectively integrated into mechanistic models like VFSMOD, mainly through stem spacing and Manning's surface roughness coefficient inputs. Since these parameters

  13. Intrauterine growth restriction affects the preterm infant's hippocampus.

    PubMed

    Lodygensky, Gregory A; Seghier, Mohammed L; Warfield, Simon K; Tolsa, Cristina Borradori; Sizonenko, Stephane; Lazeyras, François; Hüppi, Petra S

    2008-04-01

    The hippocampus is known to be vulnerable to hypoxia, stress, and undernutrition, all likely to be present in fetal intrauterine growth restriction (IUGR). The effect of IUGR in preterm infants on the hippocampus was studied using 3D magnetic resonance imaging at term-equivalent age Thirteen preterm infants born with IUGR after placental insufficiency were compared with 13 infants with normal intrauterine growth age matched for gestational age. The hippocampal structural differences were defined using voxel-based morphometry and manual segmentation. The specific neurobehavioral function was evaluated by the Assessment of Preterm Infants' Behavior at term and at 24 mo of corrected age by a Bayley Scales of Infant and Toddler Development. Voxel-based morphometry detected significant gray matter volume differences in the hippocampus between the two groups. This finding was confirmed by manual segmentation of the hippocampus with a reduction of hippocampal volume after IUGR. The hippocampal volume reduction was further associated with functional behavioral differences at term-equivalent age in all six subdomains of the Assessment of Preterm Infants' Behavior but not at 24 mo of corrected age. We conclude that hippocampal development in IUGR is altered and might result from a combination of maternal corticosteroid hormone exposure, hypoxemia, and micronutrient deficiency. PMID:18356754

  14. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  15. Effects of five mulch materials on microclimatic conditions affecting the establishment of vegetation on minesoil

    SciTech Connect

    Cunningham, T.R.; Wittwer, R.F.

    1980-12-01

    The influence of five mulch materials (hardwood bark, hardwood bark with chicken manure, hardwood bark with composted sewage, pelletized grass by-products, and recycled magazine stock) on microclimate and their effect on the revegetation of mine spoils was evaluated. Four tree species (black walnut, Juglan nigra L., boxelder, Acer negundo L., Ohio buckeye, Aesculus glabra Willd., and eastern white pine, Pinus strobus L.) were spot-seeded and a forage mixture of tall fescue, Festuca arundinacea Schreb., orchard grass, Dactylis glomerata L., Dutch white clover, Trifolium repens L., and birdsfoot refoil, Lotus cornicalatans L. was broadcast as a cover. Minesoil temperature and moisture, germination, survival and height growth of trees, and percent cover by forages were variables measured. Chemical analysis for mineral content of the five mulch materials was obtained.

  16. Development of centrifugal phytotron to study the gravity effect on vegetable plant growth.

    PubMed

    Zaidi, M A; Murase, H; Nishiura, Y; Takigawa, H; Honami, N; Tani, A

    1996-12-01

    The present Spacetron is used to cultivate plants over a long term by controlling environment condition. The cultivation drum was rotated in perpendicular direction creating fluctuation in gravity. Centrifugal force plus 1 G ground gravity, are distributed unevenly over the cultivation drum. This fluctuation effect on plant growth was not clear. In the modified Spacetron the cultivation drum rotates horizontally whereas the plant stage rotated in the perpendicular direction. To find the basic information for design of centrifugal phytotron the two axes Spacetron Junior (clinostat) was developed to formulate the micro and hypergravity environment. It would be used to study the effect on a plant growth process of different gravity conditions. In order to produce the different values of gravity, the clinostat's axis was rotated with a stepping motor at different angular velocity. The axis rotated at 5.2 revolutions per minute (rpm) to create a centrifugal force equivalent to 0.01 G and the plant stage was rotated at 5.2 rpm. The chlorophyll value is higher in the plants under microgravity condition of 0.01 G whereas the fresh weight and dry weight are higher in the plants under control condition of 1 G earth gravity. The result of this study showed that the plant growth was affected by microgravity along with other known factors such as vibration and unknown factors.

  17. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  18. Sweet potato [Ipomoea batatas (L.) Lam.] cultivated as tuber or leafy vegetable supplier as affected by elevated tropospheric ozone.

    PubMed

    Keutgen, Norbert; Keutgen, Anna J; Janssens, Marc J J

    2008-08-13

    Sweet potato cultivars respond differently to elevated tropospheric ozone concentrations of ca. 130 mug m (-3), 8 h a day for 4 weeks, which affects their selection for cultivation. In the first cultivar presented here, an adequate leafy vegetable supplier, the ozone load resulted in a shift of biomass to maintain the canopy at the expense of tuber development. Starch content of leaves was reduced, indicating an impairment of quality, but carotenoid content remained stable. The second cultivar may be grown for tuber production. Although the ratio tuber/plant remained stable under ozone, tuber yield and its starch content were significantly reduced. The lower starch content indicated a worse quality for certain industrial processing, but it is desirable for chip production. Elevated tropospheric ozone concentrations also influenced free amino acids and macronutrient contents of tubers, but these modifications were of minor significance for tuber quality in the second cultivar.

  19. Plant growth and elemental uptake by floating vegetation on a single stage swine wastewater lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed for utilizing nutrients contained within animal wastewater lagoons. One potential method for removing nutrients is to have vegetation growing on the lagoon. A study was conducted from 2005-2008 to determine the feasibility of growing vegetation on floating platforms on a single ...

  20. Mid1, a Mechanosensitive Calcium Ion Channel, Affects Growth, Development, and Ascospore Discharge in the Filamentous Fungus Gibberella zeae▿

    PubMed Central

    Cavinder, Brad; Hamam, Ahmed; Lew, Roger R.; Trail, Frances

    2011-01-01

    The role of Mid1, a stretch-activated ion channel capable of being permeated by calcium, in ascospore development and forcible discharge from asci was examined in the pathogenic fungus Gibberella zeae (anamorph Fusarium graminearum). The Δmid1 mutants exhibited a >12-fold reduction in ascospore discharge activity and produced predominately abnormal two-celled ascospores with constricted and fragile septae. The vegetative growth rate of the mutants was ∼50% of the wild-type rate, and production of macroconidia was >10-fold lower than in the wild type. To better understand the role of calcium flux, Δmid1 Δcch1 double mutants were also examined, as Cch1, an L-type calcium ion channel, is associated with Mid1 in Saccharomyces cerevisiae. The phenotype of the Δmid1 Δcch1 double mutants was similar to but more severe than the phenotype of the Δmid1 mutants for all categories. Potential and current-voltage measurements were taken in the vegetative hyphae of the Δmid1 and Δcch1 mutants and the wild type, and the measurements for all three strains were remarkably similar, indicating that neither protein contributes significantly to the overall electrical properties of the plasma membrane. Pathogenicity of the Δmid1 and Δmid1Δcch1 mutants on the host (wheat) was not affected by the mutations. Exogenous calcium supplementation partially restored the ascospore discharge and vegetative growth defects for all mutants, but abnormal ascospores were still produced. These results extend the known roles of Mid1 to ascospore development and forcible discharge. However, Neurospora crassa Δmid1 mutants were also examined and did not exhibit defects in ascospore development or in ascospore discharge. In comparison to ion channels in other ascomycetes, Mid1 shows remarkable adaptability of roles, particularly with regard to niche-specific adaptation. PMID:21357477

  1. Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    PubMed

    Ye, Wenyu; Chen, Xiao; Zhong, Zhenhui; Chen, Meilian; Shi, Lei; Zheng, Huakun; Lin, Yahong; Zhang, Dongmei; Lu, Guodong; Li, Guangpu; Chen, Jisheng; Wang, Zonghua

    2014-06-01

    Rho GTPases, acting as molecular switches, are involved in the regulation of diverse cellular functions. Rho GTPase activating proteins (Rho GAPs) function as negative regulators of Rho GTPases and are required for a variety of signaling processes in cell development. But the mechanisms underlying Rho GAPs in Rho-mediated signaling pathways in fungi are still elusive. There are eight RhoGAP domain-containing genes annotated in the Magnaporthe oryzae genome. To understand the function of these RhoGAP genes, we generated knockout mutants of each of the RhoGAP genes through a homologous recombination-based method. Phenotypic analysis showed that growth rate of aerial hyphae of the Molrg1 deletion mutant decreased dramatically. The ΔMolrg1 mutant showed significantly reduced conidiation and appressorium formation by germ tubes. Moreover, it lost pathogenicity completely. Deletion of another Rho GAP (MoRga1) resulted in high percentage of larger or gherkin-shaped conidia and slight decrease in conidiation. Appressorial formation of the ΔMoRga1 mutant was delayed significantly on hydrophobic surface, while the development of mycelial growth and pathogenicity in plants was not affected. Confocal fluorescence microscopy imaging showed that MoRga1-GFP localizes to septal pore of the conidium, and this localization pattern requires both LIM and RhoGAP domains. Furthermore, either deleting the LIM or RhoGAP domain or introducing an inactivating R1032A mutation in the RhoGAP domain of MoRga1 caused similar defects as the Morga1 deletion mutant in terms of conidial morphology and appressorial formation, suggesting that MoRga1 is a stage-specific regulator of conidial differentiation by regulating some specific Rho GTPases. In this regard, MoRga1 and MoLrg1 physically interacted with both MoRac1-CA and MoCdc42-CA in the yeast two-hybrid and pull-down assays, suggesting that the actions of these two GAPs are involved in MoRac1 and MoCdc42 pathways. On the other hand, six other

  2. Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors

    NASA Astrophysics Data System (ADS)

    Terrón, J. M.; Blanco, J.; Moral, F. J.; Mancha, L. A.; Uriarte, D.; Marques da Silva, J. R.

    2015-06-01

    Precision agriculture is a useful tool to assess plant growth and development in vineyards. The present study focused on spatial and temporal analysis of vegetation growth variability, in four irrigation treatments with four replicates. The research was carried out in a vineyard located in the southwest of Spain during the 2012 and 2013 growing seasons. Two multispectral sensors mounted on an all-terrain vehicle (ATV) were used in the different growing seasons/stages in order to calculate the vineyard normalized difference vegetation index (NDVI). Soil apparent electrical conductivity (ECa) was also measured up to 0.8 m soil depth using an on-the-go geophysical sensor. All measured data were analysed by means of principal component analysis (PCA). The spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and climatological conditions.

  3. CO2 and fertility affect growth and reproduction but not susceptibility to aphids in field grown Solanum ptycanthum

    SciTech Connect

    Long, T.M.

    1995-09-01

    In general, C3 annual plants respond positively in terms of growth, reproduction and biomass accrued when grown under elevated levels of atmospheric carbon dioxide. However, most studies documenting this response have been conducted in growth chambers where plants can be reared under conditions free form environmental stressors such as nutrient and water constraints, UV exposure and damage from pests. During the 1993 fieldseason, I grew 200 individuals of Solanum ptycanthum in an array of 10 outdoor, open-topped CO2 enclosures (5 @ 700 ppm CO2) at the University of Michigan Biological Station in Pellston, MI. Half of the plants were grown in a 50;50 mix of native C-horizon soil and topsoil (low fertility); the other half were grown in 100% topsoil (high-fertility). Plants were censused throughout the growing season for flower and fruit production, growth rate and degree of infestation of aphids. Fertility and CO2 both significantly affected production of flowers and fruits, but only fertility was significantly related to vegetative growth. Aphid infestation varied significantly among enclosures, but was not related to CO2 or fertility.

  4. Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshihiro; Shibayama, Michio; Kimura, Akihiko; Takada, Eiji

    2011-11-01

    A commercially available digital camera can be used in a low-cost automatic observation system for monitoring crop growth change in open-air fields. We developed a prototype Crop Phenology Recording System (CPRS) for monitoring rice growth, but the ready-made waterproof cases that we used produced shadows on the images. After modifying the waterproof cases, we repeated the fixed-point camera observations to clarify questions regarding digital camera-derived vegetation indices (VIs), namely, the visible atmospherically resistant index (VARI) based on daytime normal color images (RGB image) and the nighttime relative brightness index (NRBI NIR) based on nighttime near infrared (NIR) images. We also took frequent measurements of agronomic data such as plant length, leaf area index (LAI), and aboveground dry matter weight to gain a detailed understanding of the temporal relationship between the VIs and the biophysical parameters of rice. In addition, we conducted another nighttime outdoor experiment to establish the link between NRBI NIR and camera-to-object distance. The study produced the following findings. (1) The customized waterproof cases succeeded in preventing large shadows from being cast, especially on nighttime images, and it was confirmed that the brightness of the nighttime NIR images had spatial heterogeneity when a point light source (flashlight) was used, in contrast to the daytime RGB images. (2) The additional experiment using a forklift showed that both the ISO sensitivity and the calibrated digital number of the NIR (cDN NIR) had significant effects on the sensitivity of NRBI NIR to the camera-to-object distance. (3) Detailed measurements of a reproductive stem were collected to investigate the connection between the morphological feature change caused by the panicle sagging process and the downtrend in NRBI NIR during the reproductive stages. However, these agronomic data were not completely in accord with NRBI NIR in terms of the temporal pattern

  5. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  6. Recent decadal growth of the Atchafalaya River Delta complex: Effects of variable riverine sediment input and vegetation succession

    NASA Astrophysics Data System (ADS)

    Rosen, Timothy; Xu, Y. Jun

    2013-07-01

    The Mississippi River Delta Plain has experienced substantial wetland loss from subsidence, erosion, and sea level rise, threatening coastal communities and the ecosystems that support them. The Atchafalaya River, the largest distributary of the Mississippi River, has one of the few prograding delta features along the ~ 200-km deltaic coastline. Understanding changes in the Atchafalaya River Delta complex (ARDC) development has critical implications for future prediction and management strategy for the Mississippi River Delta Plain. This study was organized to answer two major questions: (1) how did development of the ARDC respond to fluctuation in riverine sediment supply over the period 1989-2010, and (2) has vegetation succession helped stabilize subaerial land? The study quantified annual total suspended sediment yields to the two ARDC subdeltas—Atchafalaya River subdelta (ARSD) and Wax Lake outlet subdelta (WLSD)—classified delta land cover using satellite imagery over ~ 5-year intervals into three classes: barren land, vegetation, and open water and investigated the relationship of delta land change with sediment yield and vegetation succession. Over the entire 21-year study period, we found a net land gain of 59 km2, with the ARSD accounting for 58% of this gain and WLSD 42%. Sediment yield to the subdeltas decreased from an average annual of 38 megatonnes (MT) for ARSD and 18 MT for WLSD during 1989-1995 to an average annual of 24 MT for ARSD and 17 MT for WLSD during 2004-2010, corresponding to the decrease in riverine suspended sediment concentration. Concurrently, total land growth rate decreased from 2.4 km2 y- 1 to 1.6 km2 y- 1 for ARSD and 3.2 km2 y- 1 to 0.6 km2 y- 1 for WLSD. However, the ARDC had a net land loss of 2.1 km2 during 1999-2004 because of tropical system effects in conjunction with the lack of large river floods (defined as discharge > 13,800 m3 s- 1). On average, more than 60% of newly vegetated land remained vegetated in

  7. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  8. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana.

    PubMed

    Mwamburi, Lizzy A; Laing, Mark D; Miller, Ray M

    2015-03-01

    Three non-ionic surfactants: Tween20, Tween80 and Breakthru (®) were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassiana spore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations . Breakthru (®) had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25-30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  9. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands.

    PubMed

    Hernandez, Maria E; Mitsch, William J

    2007-01-01

    Denitrification potential (DP) and organic matter (OM) in soils were compared in three different vegetation communities-emergent macrophyte, open water, and forested edge-in two 10-yr-old created riverine wetlands. Organic matter, cold water-extractable organic matter (CWEOM), anaerobic mineralizable carbon (AnMC), and DP varied significantly (P<0.05) among vegetation communities. The surface (0 to 9 cm) soils in the emergent macrophyte community (EMC) showed highest DP (0.07+/-0.01 mg N h-1 kg-1), OM (84.90+/-5.60 g kg-1), CWEOM (1.12+/-0.20 g kg-1), and AnMC (1.50+/-0.10 mg C h-1 kg-1). In the deeper layer (9 to 18 cm), DP and CWEOM (0.04+/-0.01 mg N h-1 kg-1 and 1.13+/-0.20 g kg-1, respectively) were significantly higher in the open water community (OWC) than in the emergent macrophyte and forested edge communities. Plant introduction did not affect DP or OM content and characteristics. After 10 yr of wetland development, mean DP increased 25-fold in the surface layer (from 0.002 to 0.053 mg N h-1 kg-1); OM content more than doubled to 90.80+/-19.22 g kg-1, and CWEOM and HWEOM increased 2.5 and 2.7 times respectively from 1993 (prewetland conditions) to 2004. Humic acids were the most abundant form of OM in 2004 and 1993 samples. Significant (P<0.05) positive relationships between DP and OM, CWEOM, and AnMC were found in the surface layer; in the 9- to 18-cm layer, significant positive relationships were found between DP and CWEOM and AnMC.

  10. Assessing vulnerability to vegetation growth on earth dikes using geophysical investigation

    NASA Astrophysics Data System (ADS)

    Mary, Benjamin; Saracco, Ginette; Peyras, Laurent; Vennetier, Michel; Mériaux, Patrice

    2015-04-01

    The Mediterranean Basin is prone to a plethora of natural hazards including floods. Vegetation growth in hydraulic earth structures, such as flood protections or channel levees and dams, may induce several degradation mechanisms leading to a risk of failure. Typically, trees' rooting generates two types of risks: internal erosion from root development in earth embankments, and external erosion (slopes and crest) which is often related to trees uprooting. To better assess how woody vegetation can compromise levee integrity, we designed a methodology using acoustical and complex electrical tomography as non destructives methods to spot dangerous roots in the embankment. Our work has been first initiated during laboratory experiments; we performed soundings in controlled conditions to determine both acoustical and electrical intrinsic behavior of our root samples. By comparison with soil samples we expected to point out specific signatures that would be useful for the roots anomaly identification in real conditions. Measurements were repeated on several samples to ensure statistical interpretation. With help of an ultrasonic transmission device, we identified significant relative velocity differences of compressional waves propagation between soil and root samples. We also studied spectral properties using wavelet processing method as an additional parameter of root distinction with the surrounding soil. In the case of electrical soundings, complex resistivity was measured and we computed resistivity spectra. Amplitude of resistivity term showed us that root material behaves as an insulator compared to the soil. With the phase resistivity term information, root can also be seen as an electric power capacitance and reveals maximum polarization effect located around 1Hz. Then, as experimental device for the field measurements, we selected a 320 cm high poplar (Populus) planted in a homogeneous loamy-clayed soil, which is the same soil used in laboratory experiment to

  11. Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata.

    PubMed

    Montero, D; Mathlouthi, F; Tort, L; Afonso, J M; Torrecillas, S; Fernández-Vaquero, A; Negrin, D; Izquierdo, M S

    2010-12-01

    Commercial gilthead sea bream feeds are highly energetic, fish oil traditionally being the main lipid source. But the decreased fish oil production together with the increased prices of this oil encourages its substitution by vegetable oils, imposing new nutritional habits to aquaculture species. Partial replacement of fish oil by vegetable oils in diets for marine species allows good feed utilization and growth but may affect fish health, since imbalances in dietary fatty acids may alter fish immunological status. The effect of dietary oils on different aspects of fish immune system has been reported for some species, but very little is known about the effect of dietary oils on immune-related genes expression in fish. Thus, the objective of this study was to elucidate the role of dietary oils on the expression of two pro-inflammatory cytokines, Tumor Necrosis Factor-α (TNF-α) and Interleukine 1β (IL-1β) on intestine and head kidney after exposure to the bacterial pathogen Photobacterium damselae sp. piscicida. For that purpose, 5 iso-nitrogenous and iso-lipidic diets (45% crude protein, 22% crude lipid content) were formulated. Anchovy oil was the only lipid source used in the control diet (FO), but in the other diets, fish oil was totally (100%) or partially (70%) substituted by linseed (rich in n-3 fatty acids) or soybean (rich in n-6 fatty acids) (100L, 100S, 70L, 70S). Fish were fed experimental diets during 80 days and after this period were exposed to an experimental intestinal infection with the pathogen. Serum and tissue samples were obtained at pre-infection and after 1, 3 and 7 days of infection. RNA was extracted and cDNA was synthesized by reverse transcription from intestine and head kidney and the level expression of TNF-α and IL-1β were assayed by using quantitative real time PCR. The expression level of genes analysed was represented as relative value, using the comparative Ct method (2(-ΔΔCt)). Serum anti-bacterial activity was measured as

  12. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum.

    PubMed

    Hu, Weiqun; Zhang, Xiaoping; Chen, Xiang; Zheng, Jingwu; Yin, Yanni; Ma, Zhonghua

    2015-04-01

    The filamentous ascomycete Fusarium asiaticum contains two homologous genes FaTUA1 and FaTUA2 encoding α-tubulins. In this study, we found that FaTUA2 was dispensable for vegetative growth and sporulation in F. asiaticum. The deletion of FaTUA1 however led to dramatically reduced mycelial growth, twisted hyphae and abnormal nuclei in apical cells of hyphae. The FaTUA1 deletion mutant (ΔFaTuA1-5) also showed a significant decrease in conidiation, and produced abnormal conidia. Pathogenicity assays showed that ΔFaTuA1-5 exhibited decreased virulence on wheat head. Unexpectedly, the deletion of FaTUA1 led to resistance to high temperatures. In addition, ΔFaTuA2 showed increased sensitivity to carbendazim. Furthermore, increased FaTUA2 expression in ΔFaTuA1-5 partially restored the defects of the mutant in mycelial growth, conidial production and virulence, vice versa, increased FaTUA1 expression in the FaTUA2 deletion mutant also partially relieved the defect of the mutant in the delay of conidial germination. Taken together, these results indicate that FaTuA1 plays crucial roles in vegetative growth and development, and the functions of FaTuA1 and FaTuA2 are partially interchangeable in F. asiaticum.

  13. [Variability of vegetation growth season in different latitudinal zones of North China: a monitoring by NOAA NDVI and MSAVI].

    PubMed

    Wang, Hong; Li, Xiaobing; Han, Ruibo; Ge, Yongqin

    2006-12-01

    In this study, North China was latitudinally divided into five zones, i.e., 32 degrees - 36 degrees N (Zone I), 36 degrees - 40 degrees N (Zone II), 40 degrees - 44 degrees N (Zone III), 44 degrees - 48 degrees N (Zone IV) and 48 degrees - 52 degrees N (Zone V), and the NOAA/ AVHRR NDVI and MSAVI time-series images from 1982 to 1999 were smoothed with Savitzky-Golay filter algorithm. Based on the EOF analysis, the principal components of NDVI and MSAVI for the vegetations in different latitudinal zones of North China were extracted, the annual beginning and ending dates and the length of growth season in 1982 - 1999 were estimated, and the related parameters were linearly fitted, aimed to analyze the variability of vegetation growth season. The results showed that the beginning date of the growth season in different zones tended to be advanced, while the ending date tended to be postponed with increasing latitude. The length of the growth season was also prolonged, with the prolonging time exceeded 10 days.

  14. Polyamine metabolism and transforming growth factor-beta signaling are affected in Caco-2 cells by differentially cooked broccoli extracts.

    PubMed

    Furniss, Caroline S M; Bennett, Richard N; Bacon, James R; LeGall, Gwen; Mithen, Richard F

    2008-10-01

    The health benefits of consuming cruciferous vegetables are widely considered to be due to the biological activity of glucosinolate degradation products. However, it is conceivable that other phytochemicals within crucifers may also have biological activity that may contribute to health benefits. In this study, we analyzed global gene expression in Caco-2 cells exposed to extracts derived from broccoli that had been heat treated to different extents to result in contrasting profiles of glucosinolates and their degradation products. Extracts microwaved for 0, 1, and 4 min contained 9.5, 25.5, and 0 micromol/L sulforaphane and induced changes in expression of 381, 1017, and 101 genes, respectively (>2 fold; P < 0.01). Seventy-two genes showed similar changes in expression after treatment with all 3 extracts. These included genes involved in polyamine catabolism and transforming growth factor (TGF)-beta signaling. Consistent with these changes in gene expression, subsequent studies demonstrated that exposing cells to these extracts, including the 4-min extract that contained no glucosinolate degradation products, increased putrescine and N-acetyl-spermine concentration, and suppressed the TGFbeta1-mediated induction of phosphorylated Smad 2. This is the first report, to our knowledge, of phytochemicals from a cruciferous vegetable affecting both a signaling pathway and a catabolic process.

  15. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.

    PubMed

    Tang, An-Ching; Boyer, John S

    2003-11-01

    Profiles of water potential (Psi w) were measured from the soil to the tips of growing leaves of maize (Zea mays L.) when pressure (P) was applied to the soil/root system. At moderately low soil Psi w, leaf elongation was somewhat inhibited, large tensions existed in the xylem, and Psi w were slightly lower in the elongating leaf tissues than in the xylem, i.e. a growth-induced Psi w was present but small. With P, the tension was relieved, enlarging the difference in Psi w between the xylem and the elongating tissues, i.e. enlarging the growth-induced Psi w, which is critical for growth. Guttation occurred, confirming the high Psi w of the xylem, and the mature leaf tissue rehydrated. Water uptake increased and met the requirements of transpiration. Leaf elongation recovered to control rates. Under more severe conditions at lower soil Psi w, P induced only a brief elongation and the growth-induced Psi w responded only slightly. Guttation did not occur, water flow did not meet the requirements of transpiration, and the mature leaf tissues did not rehydrate. A rewatering experiment indicated that a low conductance existed in the severely dehydrated soil, which limited water delivery to the root and shoot. Therefore, the initial growth inhibition appeared to be hydraulic because the enlargement of the growth-induced Psi w by P together with rehydration of the mature leaf tissue were essential for growth recovery. In more severe conditions, P was ineffective because the soil could not supply water at the required rate, and metabolic factors began to contribute to the inhibition. PMID:14512379

  16. Effects of shading on early growth of Cyclobalanopsis glauca (Fagaceae) in subtropical abandoned fields: Implications for vegetation restoration

    NASA Astrophysics Data System (ADS)

    Du, Xiaojun; Liu, Canran; Yu, Xingjun; Ma, Keping

    2008-03-01

    In order to restore natural ecosystems and improve the environment, the restoration of abandoned agricultural lands to their native vegetation is urgent and challenging work. In response to a new initiative in China, the National Engineering Program on Converting Abandoned Agriculture Land to Forest Stands, this study was undertaken to seek novel approaches for accelerating forest restoration efforts. We tested the hypothesis that the late-successional tree species, Cyclobalanopsis glauca, is not able to establish and grow in full-sun environments on abandoned lands due to inhibited early growth of C. glauca seedlings. We carried out a 2-year field experiment on early growth of C. glauca in subtropical abandoned fields under three different shade treatments (no shade, fully exposed to ambient sunlight; medium shade and heavy shade, about 40% and 22% of full ambient sunlight, respectively) and compared their growth and biomass to 2-year old C. glauca seedlings growing in a natural forest environment. Our results showed that: 1) both medium shade and heavy shade treatments enhanced the establishment and early growth of C. glauca seedlings as compared to no shade, and that growth and survivorship was greatest in the heavy shade treatment; and 2) the growth and biomass of C. glauca seedlings on abandoned fields (in the cleared and prepared plots in this study) were equal to or greater than the growth and biomass of seedlings growing in nearby forests. This study supports the viewpoint that consideration of species shade tolerance is important when developing restoration management strategies.

  17. Temporal variations of low molecular mass organic acids during vegetation period in temperate forest soil affected by acidification

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Drabek, O.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    The Low Molecular Mass Organic Acids (LMMOA) are essential in processes affecting the soils and represent reactive fraction of dissolved organic carbon (DOC). LMMOA influence soil-chemistry behaviour, participate in transport of mineral nutrition and reduce potential toxicity of selected elements like Al. The aim of this research was to assess behaviour, amount and composition of LMMOA in forest soil under different vegetation cover. The researched area is located in the naturally acid Jizera Mountains (Czech Republic), which was further affected by acid deposition and improper forest management. Soil samples from organic F and H horizons, organo-mineral A horizon and spodic or cambic mineral B horizons were taken under beech and spruce stands monthly (from April to October). Both stands were located immediately next to each other. The collected soil samples were analyzed immediately in a "fresh" state. Contents of LMMOA in deionised water extract were determined by means of ion-exchange chromatography (ICS-1600, Dionex, USA) with suppressed conductivity and gradient elution of KOH mobile phase. The contents of LMMOAS were also determined in precipitation samples. In addition, other selected elements (Al, Fe, Ca, Na, Mg and K), Al speciation and main inorganic anions were determined in water extract and precipitation samples. The highest amounts of LMMOA (mainly lactic, acetic, formic, malic and oxalic acid) were observed in organic F and H horizons and measured amounts decreased with increasing soil profile depth. Higher contents were determined in soil under spruce forest than under beech forest. External inputs of LMMOA in a form of precipitation were assessed as less significant in comparison with the soil processes (e.g. soil biological activity, soil organic matter decomposition processes). LMMOA amounts were higher in spring and summer (from April to August), caused by increased biological activity, while lower amounts were observed during the autumn period

  18. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Du, Jiaqiang; Shu, Jianmin; Yin, Junqi; Yuan, Xinjie; Jiaerheng, Ahati; Xiong, Shanshan; He, Ping; Liu, Weiling

    2015-06-01

    Vegetation plays an important role in regulating the terrestrial carbon balance and the climate system, and also overwhelmingly dominates the provisioning of ecosystem services. In this study, a non-stationary 1982-2012 AVHRR NDVI3g time series, the newest dataset, were used to evaluate spatio-temporal patterns of seasonal vegetation changes in Xinjiang province of China at regional, biome and pixel scales over progressively longer periods from 18 to 31 years, starting in 1982, and their linkages to climatic factors and human activities were analyzed. At regional scale, the increases were statistically significant for autumn NDVI during fourteen periods, for growing season and summer NDVI during the most periods, and for spring only during the first four periods. The rates of NDVI increase in growing season and all seasons significantly decreased over fourteen periods. At pixel scale, areas with significant browning rapidly increased over fourteen periods for growing season and all seasons, and these areas were mainly concentrated in northern desert of Xinjiang. Vegetation growth in Xinjiang was regulated by both moisture and thermal conditions: the response of NDVI in spring and autumn was more sensitive to thermal factors, such as temperature and potential evapotranspiration, and correlations between NDVI and precipitation and between NDVI and humidity index were stronger in summer and growing season. Extensive use of fertilizers and expanded farmland irrigated area increased vegetation growth for cropland. However, the rapid increase in the proportion of cotton cultivation and use of drip irrigation may reduce spring NDVI in the part of farmlands. Trend analysis during the multiple nested time series may contribute to a better and deep understanding of NDVI dynamic and foreseeing changes in the future. Accordingly, NDVI in Xinjiang will continuously increase at regional scale and the areas showing significant browning will also furthermore grow.

  19. Clarifying the Effects of Dwarfing Rootstock on Vegetative and Reproductive Growth during Tree Development: A Study on Apple Trees

    PubMed Central

    Costes, E.; García-Villanueva, E.

    2007-01-01

    Background and Aims Despite the widespread use of dwarfing rootstocks in the fruit-tree industry, their impact on tree architectural development and possible role in the within-tree balance between growth and flowering are still poorly understood, in particular during the early years of growth. The present study addressed this question in apple trees, through a detailed analysis of shoot populations, i.e. both vegetative and flowering shoots, during tree development. Methods Architectural databases were constructed for trees of two cultivars that were either own-rooted or grafted on dwarfing rootstock. Within-tree shoot demographics and annual shoot characteristics, i.e. their dimensions, number of laterals and flowering, were observed from the first to the fifth year of growth and compared among scion/root system combinations. Key Results Differences in axis demographics appeared among scion/root system combinations after the second year of growth. Differences were found (a) in the number of long axes and (b) the number of medium axes. Dwarfing rootstock reduced the total number of axes developed in a tree, and this reduction resulted from proportionally more medium axes and spurs than long axes. The life span of spurs was also shortened. These phenomena appeared after an increase in flowering that started in the second year of growth and involved both axillary and terminal positions. Flowering regularity was also increased in grafted trees. Conclusions These results confirm that the number of long shoots and flowering potential depend on the cultivar. They indicate that tree architectural plasticity in response to its root system mainly derives from the number of medium shoots developed and follows priorities within the whole tree axis population. There was also evidence for dwarfing rootstock involvement in adjusting the flowering abundance and that differences in flowering occurrence take precedence over those regarding vegetative growth during tree development

  20. Study on gametophyte vegetative growth of Undaria pinnatifida and its applications

    NASA Astrophysics Data System (ADS)

    Pang, Shao-Jun; Wu, Chao-Yuan

    1996-09-01

    When cultured under certain environmental conditions (25°C, light intensity 80 μmol/m2·s, LD 12/12, in enriched seawater medium with 7×10-4 mol/L NO3-N, 1.56×10-4 mol/L, PO4-P and supplements of other elements like Mn, Fe, I, etc.), male and female gametophytes of U. pinnatifida kept growing vegetatively and propagated fast at average daily fresh weight increase rate of about 20%. The empirical formula G m= G o·3m was established to estimate the output of vegetative gametophytes. Vigorous vegetative gametophyte cells began to form reproductive structures (oogonium and spermatangium, when the temperature was lower than 25°C and other environmental factors were kept optimal. The sufficient supply of gametophyte cells provided enough seeds for raising Undaria sporelings on production scale. Controlled cross-breeding experiments using selected male and female gametophyte clones which increase their cell number by mitosis instead of meiosis were also carried out in vitro. Juvenile sporophytes from the cross-breeding had almost the same length and width increase rates as those of the control. The fact that vegetative gametophytes can be purposely selected, propagated quickly, cross-bred, with the resulting sporophytes having almost the same characteristics leads to a new way to select desired Undaria strains for long time use without losing the desired economic characteristics.

  1. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011

    NASA Astrophysics Data System (ADS)

    Miao, Lijuan; Liu, Qiang; Fraser, Richard; He, Bin; Cui, Xuefeng

    The Mongolian Plateau (MP) steppe is one of the largest steppe environments in the world. To monitor the terrestrial vegetation dynamics on the MP and to ascertain what the driving forces, this study examined the vegetation dynamics in Republic of Mongolia (M) and the Inner Mongolia Autonomous Region (IM) of China from the period 1982 to 2011, based on the satellite-derived GIMMS NDVI3g (Normalized Difference Vegetation Index) data across three biomes (desert, grassland and forest). The results are as followed: (1) Vegetation coverage in IM was generally greater than that in M. Before 2002, time series of NDVI over the MP increased at an average rate of 0.05% yr-1. Additionally, after 2002, the NDVI increased at a rate of 0.21% yr-1. From 1982 to 2011, the area of IM and M with positive anomalies in the NDVI increased at a separate rate of 1.82% yr-1 and 1.76% yr-1, respectively. (2) At the biome scale, the inter-annual forest NDVI variation in IM and desert NDVI for the entire MP had a significant increasing trend (0.06% yr-1 and 0.04% yr-1, respectively). (3) Climate forcing was a dominant controlling factor affecting the vegetation, and the anthropogenic behavior exhibited no significant value in the whole region. However, overgrazing was the most important reason for the regional degradation, particularly in IM. (4) In the future, the forest biome will go to recovery, whereas both the grassland and desert biomes are predicted to degrade continuously.

  2. A Mutation in an Hsp90 Gene Affects the Sexual Cycle and Suppresses Vegetative Incompatibility in the Fungus Podospora Anserina

    PubMed Central

    Loubradou, G.; Begueret, J.; Turcq, B.

    1997-01-01

    Vegetative incompatibility is widespread in fungi but its molecular mechanism and biological function are still poorly understood. A way to study vegetative incompatibility is to investigate the function of genes whose mutations suppress this phenomenon. In Podospora anserina, these genes are known as mod genes. In addition to suppressing vegetative incompatibility, mod mutations cause some developmental defects. This suggests that the molecular mechanisms of vegetative incompatibility and development pathways are interconnected. The mod-E1 mutation was isolated as a suppressor of the developmental defects of the mod-D2 strain. We show here that mod-E1 also partially suppresses vegetative incompatibility, strengthening the link between development and vegetative incompatibility. mod-E1 is the first suppressor of vegetative incompatibility characterized at the molecular level. It encodes a member of the Hsp90 family, suggesting that development and vegetative incompatibility use common steps of a signal transduction pathway. The involvement of mod-E in the sexual cycle has also been further investigated. PMID:9335595

  3. Discrimination of growth and water stress in wheat by various vegetation indices through a clear a turbid atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Slater, P. M.; Pinter, P. J. (Principal Investigator)

    1982-01-01

    Reflectance data were obtained over a drought-stressed and a well-watered wheat plot with a hand-held radiometer having bands similar to the MSS bands of the LANDSAT satellites. Data for 48 clear days were interpolated to yield reflectance values for each day of the growing season, from planting until harvest. With an atmospheric path radiance model and LANDSAT-2 calibration data, the reflectance were used to simulate LANDSAT digital counts (not quantized) for the four LANDSAT bands for each day of the growing season, through a clear (approximately 100 km meteorological range) and a turbid (approximately 10 km meteorological range) atmosphere. Several ratios and linear combinations of bands were calculated using the simulated data, then assessed for their relative ability to discriminate vegetative growth and plant stress through the two atmospheres. The results show that water stress was not detected by any of the indices until after growth was retarded, and the sensitivity of the various indices to vegetation depended on plant growth stage and atmospheric path radiance.

  4. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth.

    PubMed

    Smith, Harley M; Samach, Alon

    2013-06-01

    Farmers lack effective methods to achieve and maintain stable production from year to year in many commercial fruit crops. Annual fruit yield within a region often alternates between high and low fruit load and is termed alternate bearing. The underlying cause of alternate bearing is the negative impact of high fruit load on vegetative growth and next year's flowering. In this review, we emphasize common responses of diverse perennials to heavy crop load. We present botanical, ecological and horticultural perspectives on irregular bearing. The later part of this review focuses on understanding how high fruit load dominates over vegetative growth. We discuss sink strengths and putative mobile signals (hormones), perhaps seed-derived. We highlight gaps in current understanding of alternate bearing, and discuss new approaches to better understand fruit load dominance. Assuming the effect of high fruit load may be related to other mechanisms of sink partitioning, other forms of dominance are presented such as apical, first fruit and king fruit dominance. Dominance seems to be enforced, in independent cases through the establishment of a polar auxin transport system from the stronger sink. Once established this somehow perturbs the transport of auxin out of weaker sinks. Possibly, fruit derived auxin may alter the polar auxin transport system of the shoot to inhibit shoot growth.

  5. Water availability and population origin affect the expression of the tradeoff between reproduction and growth in Plantago coronopus.

    PubMed

    Hansen, C F; García, M B; Ehlers, B K

    2013-05-01

    Investment in reproduction and growth represent a classic tradeoff with implication for life history evolution. The local environment can play a major role in the magnitude and evolutionary consequences of such a tradeoff. Here, we examined the investment in reproductive and vegetative tissue in 40 maternal half-sib families from four different populations of the herb Plantago coronopus growing in either a dry or wet greenhouse environment. Plants originated from populations with an annual or a perennial life form, with annuals prevailing in drier habitats with greater seasonal variation in both temperature and precipitation. We found that water availability affected the expression of the tradeoff (both phenotypic and genetic) between reproduction and growth, being most accentuated under dry condition. However, populations responded very differently to water treatments. Plants from annual populations showed a similar response to drought condition with little variation among maternal families, suggesting a history of selection favouring genotypes with high allocation to reproduction when water availability is low. Plants from annual populations also expressed the highest level of plasticity. For the perennial populations, one showed a large variation among maternal families in resource allocation and expressed significant negative genetic correlations between reproductive and vegetative biomass under drought. The other perennial population showed less variation in response to treatment and had trait values similar to those of the annuals, although it was significantly less plastic. We stress the importance of considering intraspecific variation in response to environmental change such as drought, as conspecific plants exhibited very different abilities and strategies to respond to high versus low water availability even among geographically close populations.

  6. Water availability and population origin affect the expression of the tradeoff between reproduction and growth in Plantago coronopus.

    PubMed

    Hansen, C F; García, M B; Ehlers, B K

    2013-05-01

    Investment in reproduction and growth represent a classic tradeoff with implication for life history evolution. The local environment can play a major role in the magnitude and evolutionary consequences of such a tradeoff. Here, we examined the investment in reproductive and vegetative tissue in 40 maternal half-sib families from four different populations of the herb Plantago coronopus growing in either a dry or wet greenhouse environment. Plants originated from populations with an annual or a perennial life form, with annuals prevailing in drier habitats with greater seasonal variation in both temperature and precipitation. We found that water availability affected the expression of the tradeoff (both phenotypic and genetic) between reproduction and growth, being most accentuated under dry condition. However, populations responded very differently to water treatments. Plants from annual populations showed a similar response to drought condition with little variation among maternal families, suggesting a history of selection favouring genotypes with high allocation to reproduction when water availability is low. Plants from annual populations also expressed the highest level of plasticity. For the perennial populations, one showed a large variation among maternal families in resource allocation and expressed significant negative genetic correlations between reproductive and vegetative biomass under drought. The other perennial population showed less variation in response to treatment and had trait values similar to those of the annuals, although it was significantly less plastic. We stress the importance of considering intraspecific variation in response to environmental change such as drought, as conspecific plants exhibited very different abilities and strategies to respond to high versus low water availability even among geographically close populations. PMID:23621367

  7. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction.

    PubMed

    Hu, Liang; Liu, Yan; Yan, Chuan; Peng, Xie; Xu, Qin; Xuan, Yue; Han, Fei; Tian, Gang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Zhang, Keying; Chen, Daiwen; Wu, De; Che, Lianqiang

    2015-07-14

    Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets. PMID:26059215

  8. Effect of Production Phase on Growth, Enzyme Activities and Feed Selection of Broilers Raised on Vegetable Protein Diet

    PubMed Central

    Hossain, M. A.; Islam, A. F.; Iji, P. A.

    2014-01-01

    This study consisted of two experiments, conducted to assess the impact of phase at which vegetable protein (VP) diets are introduced to broiler chicks, and preference of birds for diets based on soybean or canola meal (CM). Two hundred and ten day-old Cobb 500 chicks were randomly distributed into five dietary groups in the main experiment. One group was fed on animal protein (AP) diet all through to 21 days of age; two other groups were started on AP diet for 7 days and then switched to diets containing soybean meal (AP-SBM) or AP-CM, while two other diets (SBM-AP and CM-AP) were started on one of the VP diets for 7 days and then switched to AP diet. A sub-experiment on thirty birds raised on a commercial diet to 7 days was used in a feed selection test to quantify the preference of birds for the diets containing mainly CM or SBM. Chicks were reared under similar care and management conditions and the diets were iso-caloric and iso-nitrogenous. Results of the main experiment showed that chicks on CM-AP diet ate more (p<0.05) than those on the other diets up to day 7. Body weight gain was highest (p<0.001) on the AP-SBM diet while birds on the CM-AP diet weighed the least at 7 d. Feed intake, body weight gain, feed conversion ratio, mortality, bone growth, visceral organ development, and activities of digestive enzymes were similar between the groups from hatch to 21 days of age. Results of the second sub-experiment showed that chicks preferred the CM-based diets to the SBM-based diets at 8 to 14 d (p<0.001) and 15 to 21 d (p<0.01) when given a choice. Overall, the birds were not affected by the nature of the starter diet although they tended to prefer the canola to soybean diets. PMID:25358319

  9. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area

    NASA Astrophysics Data System (ADS)

    Pleniou, Magdalini; Koutsias, Nikos

    2013-05-01

    The aim of our study was to explore the spectral properties of fire-scorched (burned) and non fire-scorched (vegetation) areas, as well as areas with different burn/vegetation ratios, using a multisource multiresolution satellite data set. A case study was undertaken following a very destructive wildfire that occurred in Parnitha, Greece, July 2007, for which we acquired satellite images from LANDSAT, ASTER, and IKONOS. Additionally, we created spatially degraded satellite data over a range of coarser resolutions using resampling techniques. The panchromatic (1 m) and multispectral component (4 m) of IKONOS were merged using the Gram-Schmidt spectral sharpening method. This very high-resolution imagery served as the basis to estimate the cover percentage of burned areas, bare land and vegetation at pixel level, by applying the maximum likelihood classification algorithm. Finally, multiple linear regression models were fit to estimate each land-cover fraction as a function of surface reflectance values of the original and the spatially degraded satellite images. The main findings of our research were: (a) the Near Infrared (NIR) and Short-wave Infrared (SWIR) are the most important channels to estimate the percentage of burned area, whereas the NIR and red channels are the most important to estimate the percentage of vegetation in fire-affected areas; (b) when the bi-spectral space consists only of NIR and SWIR, then the NIR ground reflectance value plays a more significant role in estimating the percent of burned areas, and the SWIR appears to be more important in estimating the percent of vegetation; and (c) semi-burned areas comprising 45-55% burned area and 45-55% vegetation are spectrally closer to burned areas in the NIR channel, whereas those areas are spectrally closer to vegetation in the SWIR channel. These findings, at least partially, are attributed to the fact that: (i) completely burned pixels present low variance in the NIR and high variance in the

  10. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  11. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.

    PubMed Central

    Carlin, F; Peck, M W

    1996-01-01

    Seven strains of nonproteolytic Clostridium botulinum (types B, E, and F) were each inoculated into a range of anaerobic cooked puréed vegetables. After incubation at 10 degrees C for 15 to 60 days, all seven strains formed toxin in mushrooms, five did so in broccoli, four did so in cauliflower, three did so in asparagus, and one did so in kale. Growth kinetics of nonproteolytic C. botulinum type B in cooked mushrooms, cauliflower, and potatoes were determined at 16, 10, 8, and 5 degrees C. Growth and toxin production occurred in cooked cauliflower and mushrooms at all temperatures and in potatoes at 16 and 8 degrees C. The C. botulinum neurotoxin was detected within 3 to 5 days at 16 degrees C, 11 to 13 days at 10 degrees C, 10 to 34 days at 8 degrees C, and 17 to 20 days at 5 degrees C. PMID:8702303

  12. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.

    PubMed

    Abdallah, M; Dubousset, L; Meuriot, F; Etienne, P; Avice, J-C; Ourry, A

    2010-06-01

    Because it has a high demand for sulphur (S), oilseed rape is particularly sensitive to S limitation. However, the physiological effects of S limitation remain unclear, especially during the rosette stage. For this reason a study was conducted to determine the effects of mineral S limitation on nitrogen (N) and S uptake and remobilization during vegetative growth of oilseed rape at both the whole-plant and leaf rank level for plants grown during 35 d with 300 microM (34)SO(4)(2-) (control plants; +S) or with 15 microM (34)SO(4)(2-) (S-limited plants; -S). The results highlight that S-limited plants showed no significant differences either in whole-plant and leaf biomass or in N uptake, when compared with control plants. However, total S and (34)S (i.e. deriving from S uptake) contents were greatly reduced for the whole plant and leaf after 35 d, and a greater redistribution of endogenous S from leaves to the benefit of roots was observed. The relative expression of tonoplast and plasmalemma sulphate transporters was also strongly induced in the roots. In conclusion, although S-limited plants had 20 times less mineral S than control plants, their development remained surprisingly unchanged. During S limitation, oilseed rape is able to recycle endogenous S compounds (mostly sulphate) from leaves to roots. However, this physiological adaptation may be effective only over a short time scale (i.e. vegetative growth).

  13. The Small G Protein AtRAN1 Regulates Vegetative Growth and Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Xu, Peipei; Zang, Aiping; Chen, Haiying; Cai, Weiming

    2016-01-01

    The evolutionarily conserved small G-protein Ran plays important role in nuclear translocation of proteins, cell cycle regulation, and nuclear envelope maintenance in mammalian cells and yeast. Arabidopsis Ran proteins are encoded by a family of four genes and are highly conserved at the protein level. However, their biological functions are poorly understood. We report here that AtRAN1 plays an important role in vegetative growth and the molecular improvement of stress tolerance in Arabidopsis. AtRAN1 overexpression promoted vegetative growth and enhanced abiotic tolerance, while the atran1 atran3 double mutant showed higher freezing sensitivity than WT. The AtRAN1 gene is ubiquitously expressed in plants, and the expression levels are higher in the buds, flowers and siliques. Subcellular localization results showed that AtRAN1 is mainly localized in the nucleus, with some present in the cytoplasm. AtRAN1 could maintain cell division and cell cycle progression and promote the formation of an intact nuclear envelope, especially under freezing conditions. PMID:27258048

  14. Pests of the Home Vegetable Garden. MP-24.

    ERIC Educational Resources Information Center

    Spackman, Everett W.; Lawson, Fred A.

    This document presents information about some of the more common insects affecting vegetables in the home garden. Specific control recommendations are not included in this publication. Ways to recognize the different insects in their various growth stages are discussed. (CS)

  15. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  16. Seed Production Affects Maternal Growth and Senescence in Arabidopsis1[OPEN

    PubMed Central

    Philipp, Matthias Anton; Guthörl, Daniela

    2016-01-01

    Correlative control (influence of one organ over another organ) of seeds over maternal growth is one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis (Arabidopsis thaliana) inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We observed transcriptional responses to growth- and branching-inhibitory hormones, and low mitotic activity in meristems upon GPA, but found that meristems retain their identity and proliferative potential. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels, suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA, a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds, allowing offspring control over maternal resources, simultaneously restricting offspring number. This would provide a mechanistic explanation for the constraint between offspring quality and quantity. PMID:27009281

  17. Satellite Detection and Attribution of Divergent Northern Vegetation Growth Responses to Lengthening Non-Frozen Seasons (Invited)

    NASA Astrophysics Data System (ADS)

    Kimball, J. S.; Kim, Y.; Zhang, K.; Didan, K.; Velicogna, I.; McDonald, K. C.

    2013-12-01

    Changes in the timing and duration of the non-frozen season strongly impact the northern carbon cycle where frozen temperatures are a major constraint to land surface phenology, vegetation productivity and other biological processes. The landscape freeze-thaw (FT) signal from satellite microwave remote sensing detects changes in relative abundance of liquid water between predominantly frozen and non-frozen surface conditions, and provides a surrogate measure of frozen season constraints to the potential growing season over northern land areas. Increasing evidence indicates that these constraints are changing in a warming climate, with diverse impacts to vegetation growth and land-atmosphere carbon exchange. We analyzed a global satellite data record of daily landscape FT dynamics derived from temporal classification of overlapping SMMR and SSM/I sensor 37 GHz frequency passive microwave brightness temperatures. The FT record was used to quantify regional patterns, annual variability and trends in the non-frozen season over all northern (≥45N) vegetated land areas. The ecological significance of these changes for regional productivity was evaluated using NDVI summer growth anomalies determined from a calibrated long-term multi-sensor satellite optical-NIR sensor data record. Regional differences in relations between the non-frozen season and NDVI growth changes was evaluated in relation to estimated moisture and temperature constraints to productivity determined from meteorological reanalysis and atmospheric CO2 records. The FT record shows a lengthening (2.4 days per decade; p<0.005) mean annual non-frozen season trend (1979-2010) for the high northern latitudes that is 26% larger than the Northern Hemisphere trend. The NDVI summer growth response to these changes is spatially complex, coinciding with local dominance of cold temperature or moisture constraints to productivity. Longer non-frozen seasons are predominantly enhancing productivity in dominant cold

  18. Factors related to fruit, vegetable and traditional food consumption which may affect health among Alaska Native People in Western Alaska

    PubMed Central

    Johnson, Jennifer S.; Nobmann, Elizabeth D.; Asay, Elvin

    2012-01-01

    Objectives Determine intake of fruits, vegetables and traditional foods (TF), availability of foods, and attitudes towards increasing their consumption. Study design Establish community baseline through a cross-sectional sample of residents who were weighed, measured and interviewed. Village stores were surveyed for food availability, price and quality. Methods Eighty-eight respondents self-identified as the household member primarily responsible for food shopping and cooking were surveyed in 3 Western Alaska Native villages using a food frequency questionnaire, and village stores were evaluated using food environment surveys. Results Overweight (BMI[kg/m2] >25) was present in 68% of participants. Fruit and vegetable intake (3.3 median servings/day) was low in comparison to recommended intakes of 5–9 servings/d. Seventy-two per cent were eating less than 5 servings/d of fruits and vegetables combined. Thirty-four per cent of respondents were trying to eat more vegetables; 41% were trying to eat more fruits. The median number of servings of TF was 3.2/d (mean 4.3/d). Seventy-seven per cent of respondents reported that they ate enough TF. Conclusion Recommendations to continue use of TF and increase intake of fruits and vegetables are consistent with local attitudes. Our findings indicate that increasing the availability of fruits and vegetables would be well received. Information from this study provides a basis for nutrition education and food supplement programs that is responsive to the needs and perceptions of the residents. Continued TF intake and increased fruit and vegetable intake have the potential to benefit the health of rural residents. PMID:22456043

  19. A carbohydrate supply and demand model of vegetative growth: response to temperature and light.

    PubMed

    Gent, Martin P N; Seginer, Ido

    2012-07-01

    Photosynthesis is the limiting factor in crop growth models, but metabolism may also limit growth. We hypothesize that, over a wide range of temperature, growth is the minimum of the supply of carbohydrate from photosynthesis, and the demand of carbohydrate to synthesize new tissue. Biosynthetic demand limits growth at cool temperatures and increases exponentially with temperature. Photosynthesis limits growth at warm temperatures and decreases with temperature. Observations of tomato seedlings were used to calibrate a model based on this hypothesis. Model predictions were tested with published data for growth and carbohydrate content of sunflower and wheat. The model qualitatively fitted the response of growth of tomato and sunflower to both cool and warm temperatures. The transition between demand and supply limitation occurred at warmer temperatures under higher light and faster photosynthesis. Modifications were required to predict the observed non-structural carbohydrate (NSC). Some NSC was observed at warm temperatures, where demand should exceed supply. It was defined as a required reserve. Less NSC was found at cool temperatures than predicted from the difference between supply and demand. This was explained for tomato and sunflower, by feedback inhibition of NSC on photosynthesis. This inhibition was much less in winter wheat. PMID:22321060

  20. Impact of early season apical meristem injury by gall inducing tipworm (Diptera: Cecidomyiidae) on reproductive and vegetative growth of cranberry.

    PubMed

    Tewari, S; Buonaccorsi, J P; Averill, A L

    2013-06-01

    Larvae of cranberry tipworm, Dasineura oxycoccana Johnson, disrupt early season growth of cranberry (Vaccinium macrocarpon Aiton) uprights or shoots by feeding on apical meristem tissue. A 2-yr field study was carried out at three different locations to determine the impact of tipworm feeding injury on the reproductive and vegetative growth of two cranberry cultivars ('Howes' and 'Stevens') in Massachusetts. In addition to tipworm-injured and intact control uprights, an artificial injury treatment simulating tipworm feeding was also included. Individual uprights of cranberry exhibited tolerance to natural (tipworm) and simulated apical meristem injury in the current growing season (fruit production) and results were corroborated by a greenhouse study. In the field study, weight of fruit was higher in tipworm-injured uprights as compared with intact control uprights at the sites with Howes. However, majority of injured uprights (tipworm and simulated) did not produce new growth from lateral buds (side-shoots) before the onset of dormancy. In the next growing season, fewer injured uprights resumed growth and produced flowers as compared with intact uprights at two of the three sites. We suggest that multiple-year studies focusing on whole plant response to tipworm herbivory will be required to determine the costs of chronic feeding injury over time.

  1. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2015-06-01

    Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery.

  2. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2015-06-01

    Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery. PMID:25791003

  3. Landsat monitoring of desert vegetation growth, 1972-1979 using a plant-shadowing model

    USGS Publications Warehouse

    Otterman, Joseph; Robinove, C.J.

    1982-01-01

    Landsat digital data spanning the period 1972-1979 were analyzed to monitor the status of vegetation within and outside an exclosure in the northern Sinai (precipitation 100-150 mm/year). This 6??6 km exclosure was fenced off in the summer of 1974 and subsequently has been free from the anthropogenic pressures (overgrazing, cultivation in small fields, and harvesting of dry plants as firewood) that continued outside the exclosure. The recovery of the ecosystem within the exclosure is monitored applying a previously tested model. The model quantitatively describes the reduction in the reflectivity to zenith due to shadowing effects by mostly vertical plants. The darkening (reduction in the reflectivity) in the exclosure was compared to the status before the fencing-off and to the essentially unchanging bare sands outside the exclosure. The vegetation protrusion parameter s (sum of the products of plant height times diameter for a unit area of the surface), calculated from Landsat digital data for the exclosure, increased from essentially zero in 1972 and 1973 to about 0.18 in 1975 and changed only within narrow limits from 1975 to 1979. The s value of 0.18 indicates that if the clumps of the plants protruding from the surface in the exclosure were laid horizontally on the soil, they would cover 18 percent of the area. This parameter provides a quantitative measure of the condition of the ecosystem, but the relation to the total green and/or brown biomass remains to be determined. ?? 1983.

  4. Soil C, N, P and Its Stratification Ratio Affected by Artificial Vegetation in Subsoil, Loess Plateau China

    PubMed Central

    Deng, Jian; Sun, Pingsheng; Zhao, Fazhu; Han, Xinhui; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin

    2016-01-01

    Artificial vegetation restoration can induce variations in accumulation and distribution of soil carbon (C), nitrogen (N) and phosphorus (P). However, little is known about variations in soil C, N and P nutrient fraction stratification following artificial vegetation in Loess Plateau China. Based on the hypothesis that re-vegetated can improve soil quality and stratification ratios (SR) can be used as an indicator to evaluate soil quality. This study measured contents and storages of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and their SRs in topsoil (0–20 cm) and subsoil (20–60 cm) in three 30-year re-vegetated lands that had been converted from arable land (Robinia pseudoacacia L., Caragana Korshinskii Kom. and abandoned cropland with low interferences and few management measures) and one slope cropland (SC) as a control for three soil profiles(0–20 cm, 20–40 cm and 40–60 cm) from June 2009 to June 2013. The results showed that the contents and storages of SOC, TN and TP in re-vegetated land were significantly higher than those in the SC in both topsoil and subsoil. The storages of SOC, TN and TP in the topsoil (0–20 cm) of the re-vegetated lands increased by 16.2%-26.4%, 12.7%-28.4% and 16.5%-20.9%, respectively, and increased by smaller but significant amounts in subsoil from 2009 to 2013. The SRs for SOC, TN and TP in the re-vegetated lands were mostly >2 (either for 0–20:20–40 cm or 0–20:40–60 cm) and greater than that in the SC. The SRs showed an increasing trend with increasing restoration age. The results also showed that the land use type and soil depth were the most influential factors for the SRs and storages, and the SRs of SOC and TN had significantly positive correlations with their storages. The SRs were concluded to be a good indicator for evaluating the soil quality, which can be significantly enhanced through vegetation restoration. Moreover, vegetation restoration can significantly enhance SOC, TN

  5. Soil C, N, P and Its Stratification Ratio Affected by Artificial Vegetation in Subsoil, Loess Plateau China.

    PubMed

    Deng, Jian; Sun, Pingsheng; Zhao, Fazhu; Han, Xinhui; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin

    2016-01-01

    Artificial vegetation restoration can induce variations in accumulation and distribution of soil carbon (C), nitrogen (N) and phosphorus (P). However, little is known about variations in soil C, N and P nutrient fraction stratification following artificial vegetation in Loess Plateau China. Based on the hypothesis that re-vegetated can improve soil quality and stratification ratios (SR) can be used as an indicator to evaluate soil quality. This study measured contents and storages of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and their SRs in topsoil (0-20 cm) and subsoil (20-60 cm) in three 30-year re-vegetated lands that had been converted from arable land (Robinia pseudoacacia L., Caragana Korshinskii Kom. and abandoned cropland with low interferences and few management measures) and one slope cropland (SC) as a control for three soil profiles(0-20 cm, 20-40 cm and 40-60 cm) from June 2009 to June 2013. The results showed that the contents and storages of SOC, TN and TP in re-vegetated land were significantly higher than those in the SC in both topsoil and subsoil. The storages of SOC, TN and TP in the topsoil (0-20 cm) of the re-vegetated lands increased by 16.2%-26.4%, 12.7%-28.4% and 16.5%-20.9%, respectively, and increased by smaller but significant amounts in subsoil from 2009 to 2013. The SRs for SOC, TN and TP in the re-vegetated lands were mostly >2 (either for 0-20:20-40 cm or 0-20:40-60 cm) and greater than that in the SC. The SRs showed an increasing trend with increasing restoration age. The results also showed that the land use type and soil depth were the most influential factors for the SRs and storages, and the SRs of SOC and TN had significantly positive correlations with their storages. The SRs were concluded to be a good indicator for evaluating the soil quality, which can be significantly enhanced through vegetation restoration. Moreover, vegetation restoration can significantly enhance SOC, TN and TP accumulation

  6. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil.

    PubMed

    Thomson, Bruce C; Ostle, Nick; McNamara, Niall; Bailey, Mark J; Whiteley, Andrew S; Griffiths, Robert I

    2010-02-01

    Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO(2)-C efflux.

  7. Salinity fluctuation of the brine discharge affects growth and survival of the seagrass Cymodocea nodosa.

    PubMed

    Garrote-Moreno, A; Fernández-Torquemada, Y; Sánchez-Lizaso, J L

    2014-04-15

    The increase of seawater desalination plants may affect seagrasses as a result of its hypersaline effluents. There are some studies on the salinity tolerance of seagrasses under controlled laboratory conditions, but few have been done in situ. To this end, Cymodocea nodosa shoots were placed during one month at four localities: two close to a brine discharge; and the other two not affected by the discharge, and this experiment was repeated four times. The results obtained showed a decrease in growth and an increased mortality at the localities affected by the brine discharge. An increase was detected in the percentage of horizontal shoots in respect to vertical shoots at the impacted localities. It is probably that not only the average salinity, but also the constant salinity fluctuations and slightly higher temperatures associated with the brine that may have caused physiological stress thus reducing C. nodosa growth and survival.

  8. CHARACTERIZATION OF RIPARIAN VEGETATION IN OFF-CHANNEL HABITATS AND RELATIONSHIPS WITH ANNUAL FLOODING PATTERNS, UPPER MAIN STEM, WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    Hydrogeomorphic processes drive riparian vegetation establishment, growth, and longevity. The stage of vegetation development (e.g. age, composition, height, density) affects its degree of functionality with respect to hydrology, nutrient cycling, and terrestrial and aquatic hab...

  9. Dietary fish oil affects food intake, growth and hematologic values of weanling rats.

    PubMed

    Domínguez, Z; Bosch, V

    1994-06-01

    The object of this study was to evaluate the effect of increasing amounts of dietary fish oil on growth and hematological variables of the weanling male Sprague-Dawley rat. Animals were fed diets containing either fish oil (FO) or sesame oil (SO) at 5, 10 or 15% (w/w) for 31 d. Growth retardation and reduced food intake was noted in groups fed FO. Hemoglobin (Hb) concentration diminished when the dietary FO was above 5% (w/w). FO is a poor source of (n-6) fatty acids. We postulate that a partial deficiency in (n-6) polyenic family, is a consequence of the increasing amounts of FO in the diets, that may affect growth and erytropoiesis. In this report we show evidence supporting the hypothesis that diets enriched with fish oil can alter normal growth and induced hematological changes in the male weanling rat.

  10. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state.

    PubMed Central

    Lee, C A; Falkow, S

    1990-01-01

    We have examined the effect of different growth conditions on the ability of Salmonella to interact with Madin-Darby canine kidney cells. Two growth conditions that affect the expression of Salmonella adherence and invasiveness have been identified. First, bacteria lose their invasiveness in the stationary phase of growth. Second, bacteria growing in oxygen-limited growth conditions are induced for adherence and invasiveness, whereas those growing aerobically are relatively nonadherent and noninvasive. Salmonella from cultures aerated with gas mixtures containing 0% or 1% oxygen were 6- to 70-fold more adherent and invasive than those from cultures aerated with a gas mixture containing 20% oxygen. The Salmonella typhimurium oxrA gene that is required for the anaerobic induction of many proteins is not involved in the regulation of Salmonella invasiveness. We speculate that oxygen limitation might be an environmental cue that triggers the expression of Salmonella invasiveness within the intestinal lumen and other tissues. Images PMID:2349239

  11. Dietary zinc affects concentrations of insulin, insulin-like growth factor-I and growth hormone in lambs

    SciTech Connect

    Droke, E.A.; Spears, J.W.; Armstrong, J.D. )

    1991-03-15

    Glucose tolerance and concentrations of insulin, growth hormone (GH) and insulin-like growth factor-I (IGF-I) were evaluated in lambs deficient, marginal or adequate in zinc (Zn). Lambs were fed a semipurified diet that contained either 3.7, 8.7, or 43.7 mg Zn/kg. Zinc deficiency resulted in lower serum insulin levels 1 h after feeding while levels in marginal lambs were not different from that of adequate lambs. Dietary Zn did not affect plasma glucose post feeding. One h after IV glucose administration plasma glucose concentrations were lower in deficient lambs compared to adequate lambs; marginal lambs had intermediate glucose levels. Concentration of GH before and after feeding or glucose challenge were not affected by Zn status; however, serum IGF-I was lower in deficient than in marginal or adequate lambs. A GH releasing factor (GRF) analog was given to evaluate the release of GH. Serum GH in response to GRF challenge was higher in deficient lambs and tended to be higher in marginal lambs when compared to adequate lambs. Impaired growth observed with Zn deficiency may be mediated in part by its effect on insulin, GH and IGF-I concentrations.

  12. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils.

    PubMed

    Francisco, A; Dentinho, M T; Alves, S P; Portugal, P V; Fernandes, F; Sengo, S; Jerónimo, E; Oliveira, M A; Costa, P; Sequeira, A; Bessa, R J B; Santos-Silva, J

    2015-02-01

    The effects of dietary inclusion of Cistus ladanifer L. (CL) and a vegetable oil blend were evaluated on growth performance,carcass and meat quality of fifty four lambs that were assigned to 9 diets, corresponding to 3 levels of CL(50, 100 and 200 g/kg DM) and 3 levels of oil inclusion (0, 40 and 80 g/kg DM). Treatments had no effects on growth rate. Oil depressed dry matter intake (P = 0.017), carcass muscle (P = 0.041) and increased (P = 0.016) kidney knob channel fat. Chemical and physical meat quality traits were not affected by treatments. Off-flavour perception was higher for 8% of oil (P b 0.001). The level of 100 g/kg DM of CL inclusion improved meat stability after 7 days of storage. Supplementation with linseed and soybean oils (2:1) was a good approach to improve meat nutritional value from feedlot lambs, increasing total n-3 PUFA.

  13. Replacement of dietary fish oil with vegetable oils improves the growth and flesh quality of large yellow croaker ( Larmichthys crocea)

    NASA Astrophysics Data System (ADS)

    Duan, Qingyuan; Mai, Kangsen; Shentu, Jikang; Ai, Qinghui; Zhong, Huiying; Jiang, Yujian; Zhang, Lu; Zhang, Chunxiao; Guo, Sitong

    2014-06-01

    We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker ( Larmichthys crocea). The basal diet (FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil (SO50), 100% soybean oil (SO100) and 100% palm oil (PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages (3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100 ( P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets ( P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed ( P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets (1 d, 4°C) ( P<0.05). Similarly, thiobarbituric acid reactive substance (TBARS) values of fillets under different storage conditions (1 d, 4°C; 7 d, 4°C; 4 weeks, -20°C; 8 weeks, -20°C) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties (liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.

  14. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    PubMed

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. PMID:27067424

  15. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables.

  16. Effects of vegetable fats versus lard in milk replacers on feed intake, digestibility, and growth in Finnish Ayrshire bull calves.

    PubMed

    Huuskonen, A; Khalili, H; Kiljala, J; Joki-Tokola, E; Nousiainen, J

    2005-10-01

    The aim was to study whether vegetable fat mixtures could be used instead of lard [15.2% in dry matter (DM)] in milk replacers without impairing the performance of Finnish Ayrshire bull calves (n = 58). The growth performance of the calves was measured before and after weaning from 14 d to 6 mo of age. The following 3 fat sources in a milk replacer were studied: 1) a mixture of palm, coconut, and rapeseed oil, 2) palm and coconut oil, and 3) lard. The calves were bucket-fed 2 L of milk replacer 3 times per day. The milk replacer contained 116 g of DM/L, resulting in an average DM intake of 4.8 g of DM/kg of body weight0.75 (BW0.75) during the 8-wk trial, after which the calves were weaned. All the calves had free access to water, commercial starter, and grass silage before weaning. The weaned calves had free access to water and grass silage and were given 3 kg/d (air-dry basis) of a commercial concentrate mixture. The concentrate was replaced by barley when the bulls were 4.5 mo old. There were no significant differences between the diets in feed intake and apparent diet digestibility. The health and BW of the calves were similar during the study. The feed conversion rate (kg of DM intake/kg of gain) before weaning was significantly greater for the lard diet compared with the 2 vegetable fat mixtures. After weaning, the feed conversion rate was slightly lower for the diet that included the palm, coconut, and rapeseed oil mixture than for the diet that included palm and coconut oil mixture. The study showed that the 2 mixtures consisting solely of vegetable oils were effective dietary components, thus providing 2 alternative fat mixtures of milk replacers, for use instead of lard in formulating commercial calf milk replacers. PMID:16162531

  17. Effects of vegetable fats versus lard in milk replacers on feed intake, digestibility, and growth in Finnish Ayrshire bull calves.

    PubMed

    Huuskonen, A; Khalili, H; Kiljala, J; Joki-Tokola, E; Nousiainen, J

    2005-10-01

    The aim was to study whether vegetable fat mixtures could be used instead of lard [15.2% in dry matter (DM)] in milk replacers without impairing the performance of Finnish Ayrshire bull calves (n = 58). The growth performance of the calves was measured before and after weaning from 14 d to 6 mo of age. The following 3 fat sources in a milk replacer were studied: 1) a mixture of palm, coconut, and rapeseed oil, 2) palm and coconut oil, and 3) lard. The calves were bucket-fed 2 L of milk replacer 3 times per day. The milk replacer contained 116 g of DM/L, resulting in an average DM intake of 4.8 g of DM/kg of body weight0.75 (BW0.75) during the 8-wk trial, after which the calves were weaned. All the calves had free access to water, commercial starter, and grass silage before weaning. The weaned calves had free access to water and grass silage and were given 3 kg/d (air-dry basis) of a commercial concentrate mixture. The concentrate was replaced by barley when the bulls were 4.5 mo old. There were no significant differences between the diets in feed intake and apparent diet digestibility. The health and BW of the calves were similar during the study. The feed conversion rate (kg of DM intake/kg of gain) before weaning was significantly greater for the lard diet compared with the 2 vegetable fat mixtures. After weaning, the feed conversion rate was slightly lower for the diet that included the palm, coconut, and rapeseed oil mixture than for the diet that included palm and coconut oil mixture. The study showed that the 2 mixtures consisting solely of vegetable oils were effective dietary components, thus providing 2 alternative fat mixtures of milk replacers, for use instead of lard in formulating commercial calf milk replacers.

  18. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  19. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  20. Controlled Cu nanoparticle growth on wrinkle affecting deposition of large scale graphene

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohsin; Uddin, Md Jasim; Rahman, Muhammad Anisur; Kishi, Naoki; Soga, Tetsuo

    2016-09-01

    For Chemical Vapor Deposition (CVD) grown graphene on Cu substrate, deviation from atomic orientation in crystals may be resulted from diffusion of abnormalities in the form of Cu nanoparticle (NP) formation or defects and affects graphene quality and properties drastically. However, for the uniform graphene deposition, mechanism of nanoparticle formation and its suppression procedure need to be better understood. We report growth of graphene, affected by Cu nanoparticles (NPs) emergence on Cu substrates. In the current study, growth of these nanoparticles has been suppressed by fine tuning of carrier gas by two-fold gas insertion mechanism and hence, quality and uniformity of graphene is significantly improved. It has been also observed that during the deposition by CVD, Cu nanoparticles cluster preferentially on wrinkles or terrace of the Cu surface. Composition of NP is extensively studied and found to be the oxide nanoparticle of Cu. Our result, controlled NP growth affecting deposition of graphene layer would provide useful insight on the growth of uniform and high quality Single layer or bilayer graphene for numerous electronics applications.

  1. Timing of cotyledon damage affects growth and flowering in mature plants.

    PubMed

    Hanley, M E; Fegan, E L

    2007-07-01

    Although the effects of herbivory on plant fitness are strongly linked to age, we understand little about how the timing of herbivory at the seedling stage affects growth and reproduction for plants that survive attack. In this study, we subjected six north-western European, dicotyledonous grassland species (Leontodon autumnalis, Leontodon hispidus, Plantago lanceolata, Plantago major, Trifolium pratense and Trifolium repens) to cotyledon removal at 7, 14 and 21 d old. We monitored subsequent growth and flowering (number of inflorescences recorded, and time taken for first flowers to open) over a 107 d period. Cotyledon removal reduced growth during establishment (35 d) for all species, and a further three exhibited reduced growth at maturity. Four species developed fewer inflorescences, or had delayed flowering after cotyledon removal. Although early damage (7 d old) had the greatest long-term effect on plant performance, responses varied according to the age at which the damage occurred and the species involved. Our results illustrate how growth and flowering into the mature phase is affected by cotyledon damage during different stages of seedling ontogeny, and we highlight the ways in which ontogenetic variation in seedling tolerance of tissue loss might impact upon plant fitness in mature plant communities. PMID:17547653

  2. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth.

    PubMed

    Mouhu, Katriina; Kurokura, Takeshi; Koskela, Elli A; Albert, Victor A; Elomaa, Paula; Hytönen, Timo

    2013-09-01

    In the annual long-day plant Arabidopsis thaliana, suppressor of overexpression of constans1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv terminal flower1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv flowering locus T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.

  3. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children

    PubMed Central

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Study background Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Methods Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale [‘like extremely’ (1) to ‘dislike extremely’ (10)] and children through a five-point facial scale [‘dislike very much’ (1) to ‘like very much’ (5)]. Results After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). Conclusions A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly. PMID:25317121

  4. Shoot versus Root Signal Involvement in Nodulation and Vegetative Growth in Wild-Type and Hypernodulating Soybean Genotypes.

    PubMed Central

    Sheng, C.; Harper, J. E.

    1997-01-01

    Grafting studies involving Williams 82 (normally nodulating) and NOD1-3 (hypernodulating) soybean (Glycine max [L.] Merr.) lines and Lablab purpureus were used to evaluate the effect of shoot and root on nodulation control and plant growth. A single- or double-wedge graft technique, with superimposed partial defoliation, was used to separate signal control from a photosynthate supply effect. Grafting of hypernodulated soybean shoots to roots of Williams 82 or L. purpureus resulted in increased nodule numbers. Grafting of two shoots to one root enhanced root growth in both soybean genotypes, whereas the nodule number was a function of shoot genotype but not of the photosynthetic area. In double-shoot, single-root-grafted plants, removing trifoliolate leaves from either Williams 82 or NOD1-3 shoots decreased root and shoot dry matter, attributable to decreased photosynthetic source. Concurrently, Williams 82 shoot defoliation increased the nodule number, whereas NOD1-3 shoot defoliation decreased the nodule number on both soybean and L. purpureus roots. It was concluded that (a) soybean leaves are the dominant site of autoregulatory signal production, which controls the nodule number; (b) soybean and L. purpureus have a common, translocatable, autoregulatory control signal; (c) seedling vegetative growth and nodule number are independently controlled; and (d) two signals, inhibitor and promoter, may be involved in controlling legume nodule numbers. PMID:12223646

  5. Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus: Vegetative growth and reproductive expression

    SciTech Connect

    Jules, E.S.; Shaw, A.J. )

    1994-06-01

    Many observations suggest that morphological evolution occurs slowly in bryophytes, and this has been suggested to reflect low genetic diversity within species. Isozyme studies, however, stand in apparent contrast and have shown that bryophytes can contain high levels of genetic variability within and among populations. In light of this conflict, we tested the potential of the moss, Ceratodon purpureus, to undergo adaptive change (i.e., ecotypic differentiation) in response to soils that have been contaminated with high levels of metals for 90 years by measuring gametophytic growth and reproductive expression under experimental conditions. Variation in protonemal growth in sterile culture indicates that plants from one population growing on contaminated soil near a smelter are significantly more tolerant of zinc, cadmium, and lead than plants from uncontaminated sites. Results from a common garden experiment, in which plants were grown on soil from the smelter site, indicate that plants from near the smelter are significantly more tolerant of contaminated soils than plants from uncontaminated sites for vegetative growth. The same experiment suggests that plants from the smelter site are also more tolerant in terms of gametangial production (although we could not test this statistically). Our results demonstrate that C. purpureus has been able to undergo relatively rapid evolution in response to strong selective pressures. 29 refs., 4 figs., 5 tabs.

  6. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.

    PubMed Central

    Abdallah, M.; Dubousset, L.; Meuriot, F.; Etienne, P.; Avice, J-C.; Ourry, A.

    2010-01-01

    Because it has a high demand for sulphur (S), oilseed rape is particularly sensitive to S limitation. However, the physiological effects of S limitation remain unclear, especially during the rosette stage. For this reason a study was conducted to determine the effects of mineral S limitation on nitrogen (N) and S uptake and remobilization during vegetative growth of oilseed rape at both the whole-plant and leaf rank level for plants grown during 35 d with 300 μM 34SO42– (control plants; +S) or with 15 μM 34SO42– (S-limited plants; –S). The results highlight that S-limited plants showed no significant differences either in whole-plant and leaf biomas or in N uptake, when compared with control plants. However, total S and 34S (i.e. deriving from S uptake) contents were greatly reduced for the whole plant and leaf after 35 d, and a greater redistribution of endogenous S from leaves to the benefit of roots was observed. The relative expression of tonoplast and plasmalemma sulphate transporters was also strongly induced in the roots. In conclusion, although S-limited plants had 20 times less mineral S than control plants, their development remained surprisingly unchanged. During S limitation, oilseed rape is able to recycle endogenous S compounds (mostly sulphate) from leaves to roots. However, this physiological adaptation may be effective only over a short time scale (i.e. vegetative growth). PMID:20403880

  7. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    PubMed

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  8. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    PubMed

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  9. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions

    PubMed Central

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H.

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant−1) and 25.5% (304 mg N2 fixed plant−1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated

  10. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  11. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth.

    PubMed

    G T Pereira, Anirene; Utsunomiya, Yuri T; Milanesi, Marco; Torrecilha, Rafaela B P; Carmo, Adriana S; Neves, Haroldo H R; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S; Sölkner, Johann; Contreras-Castillo, Carmen J; Garcia, José F

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  12. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    PubMed Central

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  13. Dietary nucleotides affect hepatic growth and composition in the weanling mouse.

    PubMed

    Novak, D A; Carver, J D; Barness, L A

    1994-01-01

    The effect of dietary nucleotides upon hepatic growth and composition was examined in weanling mice. For 5 weeks, mice were fed either Purina Rat Chow, a nucleotide-free diet (NT-), a nucleotide-free diet supplemented with a mixture of five nucleotides (0.21% w/w), (NT+) or a nucleotide-free diet supplemented with adenosine 5'-monophosphate (0.0425% w/w) (NTA). Hepatic cholesterol and lipid phosphorous were significantly higher, whereas liver weight (expressed as a percentage of body weight), and glycogen were lower in animals fed NT- vs all other groups. NTA-fed animals presented a greater contrast to the NT- group than did animals fed the mixture of nucleotides. Liver fatty acid composition and distribution of phospholipid subclasses were not affected by dietary nucleotide supplementation. Dietary nucleotide supplementation in weanling mice affects hepatic growth and composition; adenosine 5'-monophosphate may play a unique role in these effects.

  14. Color of illumination during growth affects LHCII chiral macroaggregates in pea plant leaves.

    PubMed

    Gussakovsky, Eugene E; Shahak, Yosepha; Schroeder, Dana F

    2007-02-01

    To determine whether the color of illumination under which plants are grown, affects the structure of photosynthetic antennae, pea plants were grown under either blue-enriched, red-enriched, or white light. Carotenoid content of isolated chloroplasts was found to be insensitive to the color of illumination during growth, while chlorophyll a/b ratio in chloroplasts isolated from young illuminated leaves showed susceptibility to color. Color of illumination affects the LHCII chiral macroaggregates in intact leaves and isolated chloroplasts, providing light-induced alteration of the handedness of the LHCII chiral macroaggregate, as measured with circular dichroism and circularly polarized luminescence. The susceptibility of handedness to current illumination (red light excitation of chlorophyll fluorescence) is dependent on the color under which the plants were grown, and was maximal for the red-enriched illumination. We propose the existence of a long-term (growth period) color memory, which influences the susceptibility of the handedness of LHCII chiral macroaggregates to current light.

  15. Macronutrient content of plant-based food affects growth of a carnivorous arthropod.

    PubMed

    Wilder, Shawn M; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2011-02-01

    Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States.

  16. Macronutrient content of plant-based food affects growth of a carnivorous arthropod.

    PubMed

    Wilder, Shawn M; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2011-02-01

    Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States. PMID:21618912

  17. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  18. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  19. Soil Particle Heterogeneity Affects the Growth of a Rhizomatous Wetland Plant

    PubMed Central

    Xue, Wei; Peng, Yi-Ke; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Soil is commonly composed of particles of different sizes, and soil particle size may greatly affect the growth of plants because it affects soil physical and chemical properties. However, no study has tested the effects of soil particle heterogeneity on the growth of clonal plants. We conducted a greenhouse experiment in which individual ramets of the wetland plant Bolboschoenus planiculmis were grown in three homogeneous soil treatments with uniformly sized quartz particles (small: 0.75 mm, medium: 1.5 mm, or large: 3 mm), one homogeneous treatment with an even mixture of large and medium particles, and two heterogeneous treatments consisting of 16 or 4 patches of large and medium particles. Biomass, ramet number, rhizome length and spacer length were significantly greater in the treatment with only medium particles than in the one with only large particles. Biomass, ramet number, rhizome length and tuber number in the patchy treatments were greater in patches of medium than of large particles; this difference was more pronounced when patches were small than when they were large. Soil particle size and soil particle heterogeneity can greatly affect the growth of clonal plants. Thus, studies to test the effects of soil heterogeneity on clonal plants should distinguish the effects of nutrient heterogeneity from those of particle heterogeneity. PMID:23936110

  20. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles.

    PubMed

    Kim, Yoon Young; Yun, Jun-Won; Kim, Jong Min; Park, Chung Gyu; Rosenwaks, Zev; Liu, Hung Ching; Kang, Byeong-Cheol; Ku, Seung-Yup

    2016-04-01

    In vitro follicle growth (IVFG) strategy is critical in the fertility preservation of cancer survivors; however, its optimal protocol needs to be developed using primate models since the availability of human samples is limited. Only a few previous studies have reported the successful IVFG of rhesus monkey ovaries using low-dose follicle-stimulating hormone (FSH) (0.3 or 3 ng/mL) and long-term culture (up to 5 weeks) and it is still uncertain in regard to the optimal culture duration and effective dose of treated gonadotropins applicable to the IVFG of rhesus preantral follicles. Recently, we have reported that the FSH to luteinizing hormone (LH) ratio affects the in vitro growth of murine ovarian follicles. We aimed to investigate whether gonadotropin ratios affect the efficiency of rhesus follicular growth in vitro Ovaries were collected from six necropsied rhesus macaques (4-9 years) and preantral follicles were retrieved and cultured for 14 days using 200 mIU/mL FSH. The characteristics of follicular growth were compared between the FSH:LH=1:1 (n=24) and FSH:LH=2:1 (n=24) groups. High concentration gonadotropin treatment shortened the duration required for in vitro maturation of rhesus preantral follicles. The FSH:LH=2:1 group showed a faster follicular growth and enabled the acquisition of mature oocytes, although the expression of growth differentiation factor (GDF)-9 and anti-Müllerian hormone (AMH) did not differ significantly between the two groups. Taken together, high dose gonadotropin treatment can shorten the duration of IVFG and the gonadotropin ratio is important in the IVFG of rhesus monkey ovaries.

  1. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles

    PubMed Central

    Kim, Yoon Young; Yun, Jun-Won; Kim, Jong Min; Park, Chung Gyu; Rosenwaks, Zev; Liu, Hung Ching; Kang, Byeong-Cheol; Ku, Seung-Yup

    2016-01-01

    In vitro follicle growth (IVFG) strategy is critical in the fertility preservation of cancer survivors; however, its optimal protocol needs to be developed using primate models since the availability of human samples is limited. Only a few previous studies have reported the successful IVFG of rhesus monkey ovaries using low-dose follicle-stimulating hormone (FSH) (0.3 or 3 ng/mL) and long-term culture (up to 5 weeks) and it is still uncertain in regard to the optimal culture duration and effective dose of treated gonadotropins applicable to the IVFG of rhesus preantral follicles. Recently, we have reported that the FSH to luteinizing hormone (LH) ratio affects the in vitro growth of murine ovarian follicles. We aimed to investigate whether gonadotropin ratios affect the efficiency of rhesus follicular growth in vitro. Ovaries were collected from six necropsied rhesus macaques (4–9 years) and preantral follicles were retrieved and cultured for 14 days using 200 mIU/mL FSH. The characteristics of follicular growth were compared between the FSH:LH=1:1 (n=24) and FSH:LH=2:1 (n=24) groups. High concentration gonadotropin treatment shortened the duration required for in vitro maturation of rhesus preantral follicles. The FSH:LH=2:1 group showed a faster follicular growth and enabled the acquisition of mature oocytes, although the expression of growth differentiation factor (GDF)-9 and anti-Müllerian hormone (AMH) did not differ significantly between the two groups. Taken together, high dose gonadotropin treatment can shorten the duration of IVFG and the gonadotropin ratio is important in the IVFG of rhesus monkey ovaries. PMID:26980777

  2. Magnitude of nighttime transpiration does not affect plant growth or nutrition in well-watered Arabidopsis.

    PubMed

    Christman, Mairgareth A; Donovan, Lisa A; Richards, James H

    2009-07-01

    Significant water loss occurs throughout the night via partially open stomata in many C(3) and C(4) plant species. Although apparently wasteful in terms of water use, nighttime transpiration (E(night)) is hypothesized to benefit plants by enhancing nutrient supply. We tested the hypothesis that plants with greater E(night) would have improved plant nutrient status and greater fitness, estimated as pre-bolting biomass, for Arabidopsis thaliana. Two very different levels of E(night) were generated in plants by exposing them to high vs low nighttime leaf-to-air vapor pressure deficits (VPD(leaf)) in controlled environment chambers. An assessment of responses of nighttime leaf conductance (g(night)) to VPD(leaf) indicated that E(night) differed by at least 80% between the treatments. This large difference in E(night), imposed over the entire vegetative growth phase of Arabidopsis, had no effect on leaf nutrient content (N, Ca, K) or pre-bolting rosette biomass. The lack of response to differences in E(night) held true for both a high and a low nitrogen (N) treatment, even though the low N treatment decreased leaf N and biomass by 40-60%. The N treatment had no effect on g(night). Thus, higher E(night) did not provide a nutrient or growth benefit to Arabidopsis, even when the plants were N-limited.

  3. A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils.

    PubMed

    Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick F; Maier, Raina M

    2013-01-15

    The uptake of arsenic by plants from contaminated soils presents a health hazard that may affect home gardeners neighboring contaminated environments. A controlled greenhouse study was conducted in parallel with a co-created citizen science program (home garden experiment) to characterize the uptake of arsenic by common homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund site in southern Arizona. The greenhouse and home garden arsenic soil concentrations varied considerably, ranging from 2.35 to 533 mg kg(-1). In the greenhouse experiment four vegetables were grown in three different soil treatments and in the home garden experiment a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic in both the greenhouse and home garden experiments, ranging from 0.01 to 23.0 mg kg(-1) dry weight. Bioconcentration factors were determined and show that arsenic uptake decreased in the order: Asteraceae>Brassicaceae>Amaranthaceae>Cucurbitaceae>Liliaceae>Solanaceae>Fabaceae. Certain members of the Asteraceae and Brassicaceae plant families have been previously identified as hyperaccumulator plants, and it can be inferred that members of these families have genetic and physiological capacity to accumulate, translocate, and resist high amounts of metals. Additionally, a significant linear correlation was observed between the amount of arsenic that accumulated in the edible portion of the plant and the arsenic soil concentration for the Asteraceae, Brassicaceae, Amaranthaceae, and Fabaceae families. The results suggest that home gardeners neighboring mining operations or mine tailings with elevated arsenic levels should be made aware that arsenic can accumulate considerably in certain vegetables, and in particular, it is recommended that gardeners limit consumption of vegetables from the Asteraceae and Brassicaceae plant families.

  4. A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils

    PubMed Central

    Ramirez-Andreotta, Monica D.; Brusseau, Mark L.; Artiola, Janick F.; Maier, Raina M.

    2012-01-01

    The uptake of arsenic by plants from contaminated soils presents a health hazard that may affect home gardeners neighboring contaminated environments. A controlled greenhouse study was conducted in parallel with a co-created citizen science program (home garden experiment) to characterize the uptake of arsenic by common homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund site in southern Arizona. The greenhouse and home garden arsenic soil concentrations varied considerably, ranging from 2.35 to 533 mg kg−1. In the greenhouse experiment four vegetables were grown in three different soil treatments and in the home garden experiment a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic in both the greenhouse and home garden experiments, ranging from 0.01 to 23.0 mg kg−1 dry weight. Bioconcentration factors were determined and show that arsenic uptake decreased in the order: Asteraceae > Brassicaceae > Amaranthaceae > Cucurbitaceae > Liliaceae > Solanaceae > Fabaceae. Certain members of the Asteraceae and Brassicaceae plant families have been previously identified as hyperaccumulator plants, and it can be inferred that members of these families have genetic and physiological capacity to accumulate, translocate, and resist high amounts of metals. Additionally, a significant linear correlation was observed between the amount of arsenic that accumulated in the edible portion of the plant and the arsenic soil concentration for the Asteraceae, Brassicaceae, Amaranthaceae, and Fabaceae families. The results suggest that home gardeners neighboring mining operations or mine tailings with elevated arsenic levels should be made aware that arsenic can accumulate considerably in certain vegetables, and in particular, it is recommended that gardeners limit consumption of vegetables from the Asteraceae and Brassicaceae plant families. PMID:23201696

  5. Impacts of summer ozone exposure on the growth and overwintering of UK upland vegetation

    NASA Astrophysics Data System (ADS)

    Hayes, Felicity; Mills, Gina; Williams, Philip; Harmens, Harry; Büker, Patrick

    The effects of ozone exposure on species of an upland grassland were assessed. Thirty-three species from Snowdonia, North Wales, UK, were exposed for 10 weeks to a weekly episodic ozone regime in solardomes representing predicted future concentrations. Two solardomes were used as controls, with ozone added to charcoal-filtered air to give a continuous ozone concentration of 30 ppb (O 3(30)). A weekly episodic ozone regime was applied to two other solardomes, with concentrations rising for 8 h per day to 80 ppb on day 1, 100 ppb on days 2 and 3, and 80 ppb on day 4; ozone concentrations remained at 30 ppb at all other times (O 3(30+peaks)). The control and background ozone concentrations of 30 ppb were maintained throughout the night as well as during the daytime. During exposure to the episodic ozone regime, some species were sensitive to ozone and showed ozone-specific leaf injury symptoms (e.g . Carex echinata) and/or premature senescence (e.g. Festuca rubra) and/or changes in above-ground biomass (e.g. Armeria maritima), whereas other species (e.g Holcus lanatus and Carex demissa) showed no effects. Some species, although showing no effects during the 10-week ozone exposure, showed carry-over effects on biomass the following spring, after a winter period of ambient ozone exposure (e.g. Galium saxatile, Nardus stricta and Saxifraga stellaris). The carry-over effects shown in this study indicate the potential ecological impact of ozone on semi-natural vegetation species and indicate the importance of longer-term studies on the effects of ozone on plants.

  6. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables

    PubMed Central

    Adesemoye, A.O.; Obini, M.; Ugoji, E.O.

    2008-01-01

    Our objective was to compare some plant growth promoting rhizobacteria (PGPR) properties of Bacillus subtilis and Pseudomonas aeruginosa as representatives of their two genera. Solanum lycopersicum L. (tomato), Abelmoschus esculentus (okra), and Amaranthus sp. (African spinach) were inoculated with the bacterial cultures. At 60 days after planting, dry biomass for plants treated with B. subtilis and P. aeruginosa increased 31% for tomato, 36% and 29% for okra, and 83% and 40% for African spinach respectively over the non-bacterized control. Considering all the parameters tested, there were similarities but no significant difference at P < 0.05 between the overall performances of the two organisms. PMID:24031240

  7. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice

    PubMed Central

    Liu, Guangmeng; Zhang, Ke; Ai, Jun; Deng, Xianjun; Hong, Yueyun; wang, Xuemin

    2015-01-01

    Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion. PMID:26290597

  8. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice.

    PubMed

    Liu, Guangmeng; Zhang, Ke; Ai, Jun; Deng, Xianjun; Hong, Yueyun; Wang, Xuemin

    2015-11-01

    Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion. PMID:26290597

  9. Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life.

    PubMed

    Sant'Ana, Anderson S; Barbosa, Matheus S; Destro, Maria Teresa; Landgraf, Mariza; Franco, Bernadette D G M

    2012-06-15

    Growth potential (δ) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of δ of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the δ of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7°C) and abuse temperature (15°C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L. monocytogenes was able to grow (δ≥0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L. monocytogenes. The highest δ values were obtained when the RTE vegetables were stored 15°C/6days in collard greens (δ=3.3) and arugula (δ=3.2) (L. monocytogenes) and arugula (δ=4.1) and escarole (δ=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L. monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products.

  10. Feedback dynamics of grazing lawns: Coupling vegetation change with animal growth

    USGS Publications Warehouse

    Person, B.T.; Herzog, M.P.; Ruess, R.W.; Sedinger, J.S.; Anthony, R.M.; Babcock, C.A.

    2003-01-01

    We studied the effects of grazing by Black Brant (Branta bernicla nigricans) geese (hereafter Brant) on plant community zonation and gosling growth between 1987 and 2000 at a nesting colony in southwestern Alaska. The preferred forage of Brant, Carex subspathacea, is only found as a grazing lawn. An alternate forage species, C. ramenskii, exists primarily as meadow but also forms grazing lawns when heavily grazed. We mowed plots of ungrazed C. ramenskii meadows to create swards that Brant could select and maintain as grazing lawns. Fecal counts were higher on mowed plots than on control plots in the year after plots were mowed. Both nutritional quality and aboveground biomass of C. ramenskii in mowed plots were similar to that of C. subspathacea grazing lawns. The areal extent of grazing lawns depends in part on the population size of Brant. High Brant populations can increase the areal extent of grazing lawns, which favors the growth of goslings. Grazing lawns increased from 3% to 8% of surface area as the areal extent of C. ramenskii meadows declined between 1991 and 1999. Gosling mass was lower early in this time period due to density dependent effects. As the goose population stabilized, and area of grazing lawns increased, gosling mass increased between 1993 and 1999. Because larger goslings have increased survival, higher probability of breeding, and higher fecundity, herbivore-mediated changes in the distribution grazing lawn extent may result in a numerical increase of the population within the next two decades.

  11. Transcriptional Profile of Bacillus subtilis sigF-Mutant during Vegetative Growth

    PubMed Central

    Overkamp, Wout; Kuipers, Oscar P.

    2015-01-01

    Sigma factor F is the first forespore specific transcription factor in Bacillus subtilis and controls genes required for the early stages of prespore development. The role of sigF is well studied under conditions that induce sporulation. Here, the impact of sigF disruption on the transcriptome of exponentially growing cultures is studied by micro-array analysis. Under these conditions that typically don’t induce sporulation, the transcriptome showed minor signs of sporulation initiation. The number of genes differentially expressed and the magnitude of expression were, as expected, quite small in comparison with sporulation conditions. The genes mildly down-regulated were mostly involved in anabolism and the genes mildly up-regulated, in particular fatty acid degradation genes, were mostly involved in catabolism. This is probably related to the arrest at sporulation stage II occurring in the sigF mutant, because continuation of growth from the formed disporic sporangia may require additional energy. The obtained knowledge is relevant for various experiments, such as industrial fermentation, prolonged experimental evolution or zero-growth studies, where sporulation is an undesirable trait that should be avoided, e.g by a sigF mutation. PMID:26506528

  12. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong

    2016-01-01

    Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.

  13. Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley 1

    PubMed Central

    Termaat, Annie; Passioura, John B.; Munns, Rana

    1985-01-01

    The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot. PMID:16664152

  14. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters.

    PubMed

    Thangasamy, Saminathan; Chen, Pei-Wei; Lai, Ming-Hsing; Chen, Jychian; Jauh, Guang-Yuh

    2012-07-01

    Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.

  15. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters.

    PubMed

    Thangasamy, Saminathan; Chen, Pei-Wei; Lai, Ming-Hsing; Chen, Jychian; Jauh, Guang-Yuh

    2012-07-01

    Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice. PMID:22409537

  16. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    PubMed

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution. PMID:25659332

  17. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    PubMed

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.

  18. Molecular-level variation affects population growth in a butterfly metapopulation.

    PubMed

    Hanski, Ilkka; Saccheri, Ilik

    2006-05-01

    The dynamics of natural populations are thought to be dominated by demographic and environmental processes with little influence of intraspecific genetic variation and natural selection, apart from inbreeding depression possibly reducing population growth in small populations. Here we analyse hundreds of well-characterised local populations in a large metapopulation of the Glanville fritillary butterfly (Melitaea cinxia), which persists in a balance between stochastic local extinctions and recolonisations in a network of 4,000 discrete habitat patches. We show that the allelic composition of the glycolytic enzyme phosphoglucose isomerase (Pgi) has a significant effect on the growth of local populations, consistent with previously reported effects of allelic variation on flight metabolic performance and fecundity in the Glanville fritillary and Colias butterflies. The strength and the sign of the molecular effect on population growth are sensitive to the ecological context (the area and spatial connectivity of the habitat patches), which affects genotype-specific gene flow and the influence of migration on the dynamics of local populations. The biological significance of the results for Pgi is underscored by lack of any association between population growth and allelic variation at six other loci typed in the same material. In demonstrating, to our knowledge for the first time, that molecular variation in a candidate gene affects population growth, this study challenges the perception that differential performance of individual genotypes, leading to differential fitness, is irrelevant to population dynamics. These results also demonstrate that the spatial configuration of habitat and spatial dynamics of populations contribute to maintenance of Pgi polymorphism in this species.

  19. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    NASA Astrophysics Data System (ADS)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  20. ChSte7 Is Required for Vegetative Growth and Various Plant Infection Processes in Colletotrichum higginsianum.

    PubMed

    Yuan, Qinfeng; Chen, Meijuan; Yan, Yaqin; Gu, Qiongnan; Huang, Junbin; Zheng, Lu

    2016-01-01

    Colletotrichum higginsianum is an important hemibiotrophic phytopathogen that causes crucifer anthracnose in various regions of the world. In many plant-pathogenic fungi, the Ste11-Ste7-Fus3/Kss1 kinase pathway is essential to pathogenicity and various plant infection processes. To date, the role of ChSte7 in C. higginsianum encoding a MEK orthologue of Ste7 in Saccharomyces cerevisiae has not been elucidated. In this report, we investigated the function of ChSte7 in the pathogen. The ChSte7 is predicted to encode a 522-amino-acid protein with a S_TKc conserved domain that shares 44% identity with Ste7 in S. cerevisiae. ChSte7 disruption mutants showed white colonies with irregularly shaped edges and extremely decreased growth rates and biomass productions. The ChSte7 disruption mutants did not form appressoria and showed defects in pathogenicity on leaves of Arabidopsis thaliana. When inoculated onto wounded leaf tissues, the ChSte7 disruption mutants grew only on the surface of host tissues but failed to cause lesions beyond the wound site. In contrast, both the wild-type and complementation strains showed normal morphology, produced appressoria, and caused necrosis on leaves of Arabidopsis. Analysis with qRT-PCR suggested that ChSte7 was highly expressed during the late stages of infection. Taken together, our results demonstrate that ChSte7 is involved in regulation of vegetative growth, appressorial formation of C. higginsianum, and postinvasive growth in host tissues. PMID:27563675

  1. ChSte7 Is Required for Vegetative Growth and Various Plant Infection Processes in Colletotrichum higginsianum

    PubMed Central

    Chen, Meijuan; Yan, Yaqin; Gu, Qiongnan; Huang, Junbin

    2016-01-01

    Colletotrichum higginsianum is an important hemibiotrophic phytopathogen that causes crucifer anthracnose in various regions of the world. In many plant-pathogenic fungi, the Ste11-Ste7-Fus3/Kss1 kinase pathway is essential to pathogenicity and various plant infection processes. To date, the role of ChSte7 in C. higginsianum encoding a MEK orthologue of Ste7 in Saccharomyces cerevisiae has not been elucidated. In this report, we investigated the function of ChSte7 in the pathogen. The ChSte7 is predicted to encode a 522-amino-acid protein with a S_TKc conserved domain that shares 44% identity with Ste7 in S. cerevisiae. ChSte7 disruption mutants showed white colonies with irregularly shaped edges and extremely decreased growth rates and biomass productions. The ChSte7 disruption mutants did not form appressoria and showed defects in pathogenicity on leaves of Arabidopsis thaliana. When inoculated onto wounded leaf tissues, the ChSte7 disruption mutants grew only on the surface of host tissues but failed to cause lesions beyond the wound site. In contrast, both the wild-type and complementation strains showed normal morphology, produced appressoria, and caused necrosis on leaves of Arabidopsis. Analysis with qRT-PCR suggested that ChSte7 was highly expressed during the late stages of infection. Taken together, our results demonstrate that ChSte7 is involved in regulation of vegetative growth, appressorial formation of C. higginsianum, and postinvasive growth in host tissues. PMID:27563675

  2. Physiological integration of parents and ramets of Agave deserti: Carbon relations during vegetative and sexually reproductive growth

    SciTech Connect

    Tissue, D.T.

    1989-01-01

    Agave deserti is a semelparous perennial occurring in the northwestern Sonoran Desert that flowers after 50-55 years, but propagates primarily vegetatively by ramets. Shading ramets in the field to light compensation for two years did not decrease their relative growth rate compared with unshaded ramets. However, parents experienced a 30% decrease in total nonstructural carbohydrate (TNC) level, indicating that carbohydrates were translocated from parents to ramets. Parents were also shaded in the field for two years and about 10% of the growth of the shaded parents was attributed to TNC received from their attached, unshaded ramets indicating bidirectional translocation of carbohydrates between parents and ramets. The amount of carbon imported by a ramet from its parent, measured using {sup 14}CO{sub 2} techniques, was related to its photosynthetically active radiation environment, shaded ramets received 2.1 times more carbon than unshaded ramets, and was inversely related to the mass of the ramet, small ramets received up to 4.5 times more carbon than large ramets. The physiological integration of parents and ramets allows ramets to draw upon the reserves of the parent, thereby facilitating ramet growth and establishment in a resource-limited environment. Rosettes of Agave deserti must attain a minimum size (> 1,000 g dry mass) to initiate flowering, unless they are connected to a large flowering parent. Ramets that flower precociously can not complete formation of their inflorescence unless partially supported by carbon supplied by their attached parent. TNC reserves of the parent provided 70% of the carbon required to produce its own inflorescence, typically 4 m tall and 1.5 kg in dry mass, and CO{sub 2} uptake by the leaves and the inflorescence provided the remaining 30%.

  3. Influence of Vertical Attenuation of Photosynthetically Active Radiation on the Growth of Submerged Aquatic Vegetation in Tropical Reservoir.

    NASA Astrophysics Data System (ADS)

    da Silva Rotta, L. H.; Mishra, D. R.; Alcântara, E. H.; Imai, N. N.

    2015-12-01

    Reservoir construction cause many changes in lotic ecosystems and can favor the aquatic macrophyte growth. Nova Avanhandava Reservoir (São Paulo, Brazil), is fully inhabited by submerged aquatic vegetation (SAV) which may cause serious problems to hydropower and irrigation systems. The goal of this study was to assess the radiation availability in the water column in Nova Avanhandava and analyze its influence on SAV development and growth. The measurements were carried out between 28th and 30th June, 2013, at 19 sampling stations. Water samples for analytical determination of the suspended solids and chlorophyll-a concentration were collected. Hyperspectral downwelling irradiance (Ed) data, at several depths, were measured using the TriOS/RAMSES optical sensor. Depths and SAV heights were collected through hydroacoustic measurements by transects using the scientific digital sonar BioSonics DT-X (Echosounder). The Ed data were normalized, than calculated the Kd PAR - downwelling diffuse attenuation coefficient of photosynthetically active radiation, and the euphotic zone depth (ZEZ). Results showed that SAV height values were lower at upstream (around P01) with highest TSS (Total Suspended Solids) and Kd, compared to areas downstream (around P19) (Figure). The maximum depth of SAV development, average SAV height, maximum SAV height, variability, and depth of occurrence of SAV were primarily influenced by Kd. A linear inverse relationship between the average SAV height and the Kd PAR (R2 = 0.56, p<0.001), and between maximum SAV height and Kd PAR (R²=0.5, p<0.001) demonstrated that the SAV heigth can be estimated by Kd PAR with significant accuracy. Therefore, studies on subaquatic radiation availability measured by the vertical attenuation of Ed PAR in the water column and the optically active components can be effiectivly linked to SAV growth and occurrence and aid in understanding SAV in tropical reservoirs, contributing to its management.

  4. Growth inhibitory effects of kimchi (Korean traditional fermented vegetable product) against Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus.

    PubMed

    Kim, Yong-Suk; Zheng, Zian-Bin; Shin, Dong-Hwa

    2008-02-01

    Kimchi is a unique Korean traditional vegetable product that is fermented by lactic acid bacteria (LAB) and is mainly consumed as a side dish with boiled rice. Its main ingredients are brined Chinese cabbage, red pepper powder, and fermented fish sauce, and these are combined with many spices such as garlic, green onion, ginger, and some seaweed. The relationship between the concentration of LAB or the pH and the growth of three gram-positive foodborne pathogens (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) was evaluated. Heat treatment (HT; 85 degrees C for 15 min) or neutralization treatment (NT; pH 7.0) was conducted on day 0 (0-D group) and day 3 (3-D group) of incubation. The pH in the control group and the NT group dropped sharply to 4.12 to 4.30 after 2 days of incubation and slightly decreased thereafter, whereas the pH in the control group and HT group stayed at 7.0 during incubation. LAB were not detected in the HT kimchi during incubation. B. cereus in the NT-0-D, NT-3-D, and HT-3-D groups was reduced by 1.5 to 3.1 log CFU/ml but increased slightly in the HT-0-D group. L. monocytogenes in HT-3-D and NT-3-D groups disappeared after 5 days of incubation, and S. aureus in the NT-0-D group disappeared after 4 days. These findings indicate that growth of all the foodborne pathogens was inhibited by NT-0-D, HT-3-D, and NT-3-D, but B. cereus was not inhibited by HT-0-D. Thus, growth of LAB in kimchi is an important factor in the control of foodborne pathogens. PMID:18326182

  5. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  6. The Evolution of the FT/TFL1 Genes in Amaranthaceae and Their Expression Patterns in the Course of Vegetative Growth and Flowering in Chenopodium rubrum

    PubMed Central

    Drabešová, Jana; Černá, Lucie; Mašterová, Helena; Koloušková, Pavla; Potocký, Martin; Štorchová, Helena

    2016-01-01

    The FT/TFL1 gene family controls important aspects of plant development: MFT-like genes affect germination, TFL1-like genes act as floral inhibitors, and FT-like genes are floral activators. Gene duplications produced paralogs with modified functions required by the specific lifestyles of various angiosperm species. We constructed the transcriptome of the weedy annual plant Chenopodium rubrum and used it for the comprehensive search for the FT/TFL1 genes. We analyzed their phylogenetic relationships across Amaranthaceae and all angiosperms. We discovered a very ancient phylogenetic clade of FT genes represented by the CrFTL3 gene of C. rubrum. Another paralog CrFTL2 showed an unusual structural rearrangement which might have contributed to the functional shift. We examined the transcription patterns of the FT/TFL1 genes during the vegetative growth and floral transition in C. rubrum to get clues about their possible functions. All the genes except for the constitutively expressed CrFTL2 gene, and the CrFTL3 gene, which was transcribed only in seeds, exhibited organ-specific expression influenced by the specific light regime. The CrFTL1 gene was confirmed as a single floral activator from the FT/TFL1 family in C. rubrum. Its floral promoting activity may be counteracted by CrTFL1. C. rubrum emerges as an easily manipulated model for the study of floral induction in weedy fast-cycling plants lacking a juvenile phase. PMID:27473314

  7. Application of PALSAR Data to Classify Vegetation in an Anthropogenically Affected Wetland Area in Central Spain (Las Tablas de Daimiel)

    NASA Astrophysics Data System (ADS)

    Schmid, Thomas; Koch, Magaly; Solana, Jesus; Gumuzzio, Jose

    2008-11-01

    Semiarid wetlands are very dynamic ecosystems as the different characteristics (areal extension, water depth and salinity, seasonal flooding, vegetation and fauna) that define them vary greatly in the short and long term. The objective of this work is the incorporation of ALOS PALSAR and AVNIR2 data within ongoing work for a semi-arid wetland area in the National Park of Las Tablas de Daimiel and were ample information (obtained from spaceborne, airborne and field data) already exist. An intergrated methodology is presented where ALOS data is used to characterise wetland components and will be used for monitoring purposes. Preliminary results suggest that the multipolarized SAR data enables a better separation of the vegetation structure and fragmentation than with the optical data. Multispectral data from the AVNIR2 has the advantage of improved spatial resolution. Therefore, a combination of the radar and optical data can be used to assess the wetland degradation status, so that appropriate measures can be designed for a sustainable management of the wetland.

  8. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Haines, Dustin F.; Larson, Jennifer L.

    2013-01-01

    Exotic plants have the ability to modify soil seed banks in habitats they invade, but little is known about the legacy of invasion on seed banks once an exotic plant has successfully been controlled. Natural areas previously invaded by leafy spurge in the northern Great Plains typically have one of two fates following its removal: a return of native plants, or a secondary invasion of other exotic plants. It is unknown, however, if this difference in plant communities following leafy spurge control is due to seed bank differences. To answer this question, we monitored seed banks and standing vegetation for 2 yr in mixed-grass prairies that were previously invaded by leafy spurge but controlled within 5 yr of our study. We found that native plant seed banks were largely intact in areas previously invaded by leafy spurge, regardless of the current living plant community, and leafy spurge invasion history had a larger impact on cover and diversity of the vegetation than on the seed banks. Differences in plant communities following leafy spurge control do not appear to be related to the seed banks, and soil conditions may be more important in determining trajectories of these postinvasion communities.

  9. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits.

    PubMed

    Stone, R T; Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M

    1999-06-01

    A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits. PMID:10375215

  10. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens.

    PubMed

    Uemoto, Y; Sato, S; Odawara, S; Nokata, H; Oyamada, Y; Taguchi, Y; Yanai, S; Sasaki, O; Takahashi, H; Nirasawa, K; Kobayashi, E

    2009-03-01

    We constructed a chicken F(2) resource population to facilitate the genetic improvement of economically important traits, particularly growth and carcass traits. An F(2) population comprising 240 chickens obtained by crossing a Shamo (lean, lightweight Japanese native breed) male and White Plymouth Rock breed (fat, heavyweight broiler) females was measured for BW, carcass weight (CW), abdominal fat weight (AFW), breast muscle weight (BMW), and thigh muscle weight (TMW) and was used for genome-wide linkage and QTL analysis, using a total of 240 microsatellite markers. A total of 14 QTL were detected at a 5% chromosome-wide level, and 7 QTL were significant at a 5% experiment-wide level for the traits evaluated in the F(2) population. For growth traits, significant and suggestive QTL affecting BW (measured at 6 and 9 wk) and average daily gain were identified on similar regions of chromosomes 1 and 3. For carcass traits, the QTL effects on CW were detected on chromosomes 1 and 3, with the greatest F-ratio of 15.0 being obtained for CW on chromosome 3. Quantitative trait loci positions affecting BMW and TMW were not detected at the same loci as those detected for BMW percentage of CW and TMW percentage of CW. For AFW, QTL positions were detected at the same loci as those detected for AFW percentage of CW. The present study identified significant QTL affecting BW, CW, and AFW. PMID:19211515

  11. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits.

    PubMed

    Stone, R T; Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M

    1999-06-01

    A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.

  12. Response to long-term growth hormone therapy in patients affected by RASopathies and growth hormone deficiency: Patterns of growth, puberty and final height data.

    PubMed

    Tamburrino, Federica; Gibertoni, Dino; Rossi, Cesare; Scarano, Emanuela; Perri, Annamaria; Montanari, Francesca; Fantini, Maria Pia; Pession, Andrea; Tartaglia, Marco; Mazzanti, Laura

    2015-11-01

    RASopathies are developmental disorders caused by heterozygous germline mutations in genes encoding proteins in the RAS-MAPK signaling pathway. Reduced growth is a common feature. Several studies generated data on growth, final height (FH), and height velocity (HV) after growth hormone (GH) treatment in patients with these disorders, particularly in Noonan syndrome, the most common RASopathy. These studies, however, refer to heterogeneous cohorts in terms of molecular information, GH status, age at start and length of therapy, and GH dosage. This work reports growth data in 88 patients affected by RASopathies with molecularly confirmed diagnosis, together with statistics on body proportions, pubertal pattern, and FH in 33, including 16 treated with GH therapy for proven GH deficiency. Thirty-three patients showed GH deficiency after pharmacological tests, and were GH-treated for an average period of 6.8 ± 4.8 years. Before starting therapy, HV was -2.6 ± 1.3 SDS, and mean basal IGF1 levels were -2.0 ± 1.1 SDS. Long-term GH therapy, starting early during childhood, resulted in a positive height response compared with untreated patients (1.3 SDS in terms of height-gain), normalizing FH for Ranke standards but not for general population and Target Height. Pubertal timing negatively affected pubertal growth spurt and FH, with IGF1 standardized score increased from -2.43 to -0.27 SDS. During GH treatment, no significant change in bone age velocity, body proportions, or cardiovascular function was observed.

  13. Quantitative changes in the biochemical composition of lignocellulosic residues during the vegetative growth of Lentinula edodes

    PubMed Central

    Gaitán-Hernández, Rigoberto; Esqueda, Martín; Gutiérrez, Aldo; Beltrán-García, Miguel

    2011-01-01

    The chemical changes in barley-straw (BS), wheat-straw (WS) and vineyard-pruning (VP) substrates were determined during colonization of Lentinula edodes mycelia (during primordium development) in solid state fermentation. Primordia appeared 39-50 days after inoculation. VP appeared to promote early sporophore initiation. The concentration of hemicellulose in BS and VP decreased gradually from 25.5% to 15.6% and from 15.8% to 12.3%, respectively. However in WS, hemicellulose decreased from 27.2% to 9.5%. Lignin broke down continuously in BS and WS, with 31.8% and 34.4% degradation, respectively; higher than that of cellulose. During the pinning stage, the C:N ratio decreased in VP and BS, but not in WS. On all substrates the phenols decreased notably throughout the first week of mycelial growth. The time elapsed (days) to pinning was positively correlated with cellulose content (r=0.89), total sugar (r=0.85) and inversely correlated to lignin (r=−1.00) and phenol content (r=−0.55). PMID:24031601

  14. Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp

    SciTech Connect

    Nancharaiah, Y.V.; Francis, A.

    2011-06-01

    In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L{sup -1} of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L{sup -1}, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L{sup -1} of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L{sup -1}. Total gas production was affected by ILs at {ge}2.5 g L{sup -1} and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L{sup -1}.

  15. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    PubMed

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection. PMID:23593941

  16. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    PubMed

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  17. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  18. Long-term cleaner fish presence affects growth of a coral reef fish.

    PubMed

    Clague, Gillian E; Cheney, Karen L; Goldizen, Anne W; McCormick, Mark I; Waldie, Peter A; Grutter, Alexandra S

    2011-12-23

    Cleaning behaviour is considered to be a classical example of mutualism. However, no studies, to our knowledge, have measured the benefits to clients in terms of growth. In the longest experimental study of its kind, over an 8 year period, cleaner fish Labroides dimidiatus were consistently removed from seven patch reefs (61-285 m(2)) and left undisturbed on nine control reefs, and the growth and parasite load of the damselfish Pomacentrus moluccensis determined. After 8 years, growth was reduced and parasitic copepod abundance was higher on fish from removal reefs compared with controls, but only in larger individuals. Behavioural observations revealed that P. moluccensis cleaned by L. dimidiatus were 27 per cent larger than nearby conspecifics. The selective cleaning by L. dimidiatus probably explains why only larger P. moluccensis individuals benefited from cleaning. This is the first demonstration, to our knowledge, that cleaners affect the growth rate of client individuals; a greater size for a given age should result in increased fecundity at a given time. The effect of the removal of so few small fish on the size of another fish species is unprecedented on coral reefs. PMID:21733872

  19. Field population abundance of leafhopper (Homoptera: Cicadelidae) and planthopper (Homoptera: Delphacidae) as affected by rice growth stages

    NASA Astrophysics Data System (ADS)

    Hafizal, M. M.; Idris, A. B.

    2013-11-01

    The leafhopper (Homoptera: Delphacidae) and planthopper (Homoptera: Cicadelidae) are considered as important rice pest in Asia including Malaysia. As phloem-feeders, they can cause loss to rice growth development and their population abundance is thought to be influenced by rice growth stages. This study was conducted to examine the population of Delphacidae and Cicadelidae between different rice growth stages, i.e. before and after rice planting periods. Monthly sampling was conducted in three sites in Kuala Selangor at before planting, vegetative, reproductive, maturing stages and post-harvest period using sweeping net and light traps. Population abundance of Delphacidae and Cicadelidae were found to be significantly different and positively correlated with different rice growth stages (p<0.05). Delphacidae was most abundance during maturing stages, while the abundance of Cicadelidae peaked during reproductive stage of rice growth. Differences in temporal abundance of the population of these two homopterans indicated adaptive feeding strategy to reduce food competition.

  20. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  1. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  2. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  3. Monitoring and Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and In-situ Observations.

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2015-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE, in-situ groundwater measurements and atmospheric moisture data to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depth in relation to satellite based vegetation metrics, including vegetation greenness (NDVI) measures from MODIS and related higher order productivity (GPP) before, during and following the major drought events observed in the continental US for the past 14 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, NDVI and GPP. We study how changes in atmosphere moisture stress and coupling of water storage components at different depth impact on the spatial and temporal correlation between TWS, SM and vegetation metrics. In Texas, we find that surface SM and GRACE TWS agree with each other in general, and both capture the underlying water supply constraints to vegetation growth. Triggered by a transit increase in precipitation following the 2011 hydrological drought, vegetation productivity in Texas shows more sensitivity to surface SM than TWS. In the Great Plains, the correspondence between TWS and vegetation productivity is modulated by temperature-induced atmosphere moisture stress and by the coupling between surface soil moisture and groundwater through irrigation.

  4. Role of plants in the vegetative and reproductive growth of saprobic basidiomycetous ground fungi.

    PubMed

    Gramss, Gerhard; Bergmann, Hans

    2008-11-01

    Non-symbiotic microorganisms engineered or expensively selected to degrade xenobiotic hydrocarbons or modify heavy-metal uptake of plants in soil remediations die back after their introduction into the target soils. Mycelia of saprobic basidiomycetes were therefore inoculated into soil samples of 1 l in glass vessels to record mycelial growth and reproduction in the immediate rhizosphere of up to 11 herbaceous plant species, or to study their responses to the separate volatiles from whole plant swards or their root balls whose emanations had been collected in 1.5-l plastic bags fixed to the glass vessels. Excess CO2 was controlled with NaOH solution. Volatiles from root balls of parsley and pea but not wheat, from unplanted soils, from the fungus-permeated, unplanted substrate soil itself, and from the rooting soil of whole wheat sward increased mycelial densities in Clitocybe sp. more than in Agaricus macrocarpus and indicated thus a higher nutrient state of the mycelia. Organic volatiles proved therefore to be a significant carbon source for certain basidiomycetes in poor natural soils. The contemporary decline in the number of basidiocarp initials to 0 to 36% in both fungi relative to the unplanted and aerated controls was caused by volatiles from rooted and unplanted soil and pointed thus to their ecological role as antibiotics, fumigants, toxins, and hormonal compounds. Aqueous extracts from root balls of wheat stimulated mycelial density and fruiting in A. macrocarpus contemporarily because of their contents in soil-derived macronutrients. They suppressed once more fruiting in the more sensitive Clitocybe sp. by active agents in the aqueous phase. Within plant rhizospheres, densities of Clitocybe sp. mycelia were stimulated in the presence of alfalfa, carrot, red clover, ryegrass, and spinach, whereas those of A. macrocarpus were halved by 7 of 10 plant species including alfalfa, red clover, ryegrass, and spinach. Mycelia of A. macrocarpus may thereby have

  5. Temperature trends in desert cities: how vegetation and urbanization affect the urban heat island dynamics in hyper-arid climates

    NASA Astrophysics Data System (ADS)

    Marpu, P. R.; Lazzarini, M.; Molini, A.; Ghedira, H.

    2013-12-01

    Urban areas represent a unique micro-climatic system, mainly characterized by scarcity of vegetation and ground moisture, an albedo strictly dependent on building materials and urban forms, high heat capacity, elevated pollutants emissions, anthropogenic heat production, and a characteristic boundary layer dynamics. For obvious historical reasons, the first to be addressed in the literature were the effects of urbanization on the local microclimate of temperate regions, where most of the urban development took place in the last centuries. Here micro-climatic characteristics all contribute to the warming of urban areas, also known as 'urban heat island' effect, and are expected to crucially impact future energy and water consumption, air quality, and human health. However, rapidly increasing urbanization rates in arid and hyper-arid developing countries could soon require more attention towards studying the effects of urban development on arid climates, which remained mainly unexplored till now. In this talk we investigate the climatology of urban heat islands in seven highly urbanized desert cities based on day and night temporal trends of land surface temperature (LST) and normalized difference vegetation index (NDVI) acquired using MODIS satellite during 2000-2012. Urban and rural areas are distinguished by analyzing the high-resolution temporal variability and averaged monthly values of LST, NDVI and Surface Urban Heat Island (SUHI) for all the seven cities and adjacent sub-urban areas. Different thermal behaviors were observed at the selected sites, also including temperature mitigation and inverse urban heat island, and are here discussed together with detailed analysis of the corresponding trends.

  6. Essential oils from clove affect growth of Penicillium species obtained from lemons.

    PubMed

    Martínez, J A; González, R

    2013-01-01

    Continuous use of fungicides to control citrus postharvest diseases has led to increasing resistant strains of pathogens. Since the appearance of fungicide resistance has become an important factor in limiting the efficacy fungicide treatments, new studies have been needed in order to improve control methods. There is a growing consumer's concern about the possible harmful effects of synthetic fungicides on the human health and the environment. Alternatives to synthetic fungicides for citrus decay control include essential oils. These compounds are known for their natural components and they are searched for potential bioactive plant extracts against fungi. In this study, two isolates of P. digitatum and P. italicum each were collected from lemon fruits affected by green and blue mould, respectively. Isolates were purified in potato dextrose agar (PDA) in order to separate the two species which we are demonstrated that they commonly grow together in nature. In vitro assays, in which isolates were grown at 26 degrees C on Petri dishes containing PDA for up to 17 days, were carried out by pouring several doses of essential oils from clove (Syzygium aromaticum L.) on PDA to obtain the following concentrations (v/v): 1.6; 8, 40, 200 and 500 microL L(-1) + tween 80 (0.1 mL L(-1)). Mycelial growth curves and growth, conidiation, mass of aerial mycelium and conidial size were measured. Penicillium isolates showed a slight degree of variability in their growth kinetics, depending on the isolate. 500 microL L(-1) inhibited the growth of all the isolates, whereas concentrations lower than 40 microL L(-1) slightly increased the growth. 200 microL L(-1) reduced both growth and conidiation in all isolates. Aerial mycelium of P. digitatum was not affected by clove, whereas reduced the mass of mycelium of P. italicum at concentrations higher than 8 microL L(-1). In vivo experiment was carried out inoculating a drop of an extract of conidia with a hypodermal syringe though a

  7. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.

    PubMed

    Wu, Jinjin; Liu, Yuting; Lv, Wuyun; Yue, Xiaofeng; Que, Yawei; Yang, Nan; Zhang, Zhengguang; Ma, Zhonghua; Talbot, Nicholas J; Wang, Zhengyi

    2015-10-01

    Proteins of the resistance to inhibitors of cholinesterase 8 (Ric8) group act as guanine nucleotide exchange factors (GEFs) and play important roles in regulating G-protein signaling in animals. In filamentous fungi, putative Ric8 orthologs have so far been identified in Magnaporthe oryzae, Neurospora crassa, Aspergillus nidulans and Aspergillus fumigatus. Here, we report the functional investigation of a potential RIC8 ortholog (FgRIC8) in the wheat head blight pathogen Fusarium graminearum. Targeted gene deletion mutants of FgRIC8 exhibited a significant reduction in vegetative growth, conidiation, pigment production as well as deoxynivalenol (DON) biosynthesis. Pathogenicity assays using a point-inoculated spikelet approach showed that the mutants were severely impaired in virulence on flowering wheat heads. Quantitative RT-PCR analysis revealed that genes encoding F. graminearum Gα (FgGpa1 and FgGpa3), Gβ (FgGpb1) and Gγ (FgGpg1) subunits were significantly down-regulated in Fgric8 mutants. Moreover, we showed that FgRic8 physically interacts with both FgGpa1 and FgGpa3, but not FgGpa2, in yeast two-hybrid assays. The intracellular cAMP levels in Fgric8 mutants were significantly decreased compared to the isogenic wild-type strain. Taken together, our results indicate that FgRic8 plays critical roles in fungal development, secondary metabolism and virulence in F. graminearum and may act as a regulator of G protein alpha subunits.

  8. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.

    PubMed

    Wu, Jinjin; Liu, Yuting; Lv, Wuyun; Yue, Xiaofeng; Que, Yawei; Yang, Nan; Zhang, Zhengguang; Ma, Zhonghua; Talbot, Nicholas J; Wang, Zhengyi

    2015-10-01

    Proteins of the resistance to inhibitors of cholinesterase 8 (Ric8) group act as guanine nucleotide exchange factors (GEFs) and play important roles in regulating G-protein signaling in animals. In filamentous fungi, putative Ric8 orthologs have so far been identified in Magnaporthe oryzae, Neurospora crassa, Aspergillus nidulans and Aspergillus fumigatus. Here, we report the functional investigation of a potential RIC8 ortholog (FgRIC8) in the wheat head blight pathogen Fusarium graminearum. Targeted gene deletion mutants of FgRIC8 exhibited a significant reduction in vegetative growth, conidiation, pigment production as well as deoxynivalenol (DON) biosynthesis. Pathogenicity assays using a point-inoculated spikelet approach showed that the mutants were severely impaired in virulence on flowering wheat heads. Quantitative RT-PCR analysis revealed that genes encoding F. graminearum Gα (FgGpa1 and FgGpa3), Gβ (FgGpb1) and Gγ (FgGpg1) subunits were significantly down-regulated in Fgric8 mutants. Moreover, we showed that FgRic8 physically interacts with both FgGpa1 and FgGpa3, but not FgGpa2, in yeast two-hybrid assays. The intracellular cAMP levels in Fgric8 mutants were significantly decreased compared to the isogenic wild-type strain. Taken together, our results indicate that FgRic8 plays critical roles in fungal development, secondary metabolism and virulence in F. graminearum and may act as a regulator of G protein alpha subunits. PMID:26341536

  9. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize.

    PubMed

    Turc, Olivier; Bouteillé, Marie; Fuad-Hassan, Avan; Welcker, Claude; Tardieu, François

    2016-10-01

    The elongation of styles and stigma (silks) of maize (Zea mays) flowers is rapid (1-3 mm h(-1) ), occurs over a short period and plays a pivotal role in reproductive success in adverse environments. Silk elongation rate was measured using displacement transducers in 350 plants of eight genotypes during eight experiments with varying evaporative demand and soil water status. Measured time courses revealed that silk elongation rate closely followed changes in soil water status and evaporative demand, with day-night alternations similar to those in leaves. Day-night alternations were steeper with high than with low plant transpiration rate, manipulated via evaporative demand or by covering part of the leaf area. Half times of changes in silk elongation rate upon changes in evaporative demand or soil water status were 10-30 min, similar to those in leaves. The sensitivity of silk elongation rate to xylem water potential was genetically linked to that of leaf elongation rate. Lines greatly differed for these sensitivities. These results are consistent with a common hydraulic control of expansive growth in vegetative and reproductive structures upon changes in environmental conditions via a close connection with the xylem water potential. They have important implications for breeding, modelling and phenotyping. PMID:27400762

  10. Effects of drought-affected corn and nonstarch polysaccharide enzyme inclusion on nursery pig growth performance.

    PubMed

    Jones, C K; Frantz, E L; Bingham, A C; Bergstrom, J R; DeRouchey, J M; Patience, J F

    2015-04-01

    The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of β-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0

  11. Effects of drought-affected corn and nonstarch polysaccharide enzyme inclusion on nursery pig growth performance.

    PubMed

    Jones, C K; Frantz, E L; Bingham, A C; Bergstrom, J R; DeRouchey, J M; Patience, J F

    2015-04-01

    The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of β-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0

  12. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  13. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  14. L-Carnosine Affects the Growth of Saccharomyces cerevisiae in a Metabolism-Dependent Manner

    PubMed Central

    Cartwright, Stephanie P.; Bill, Roslyn M.; Hipkiss, Alan R.

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10–30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. PMID:22984600

  15. A growth QTL on chicken chromosome 1 affects emotionality and sociality.

    PubMed

    Wirén, Anna; Jensen, Per

    2011-03-01

    Domestication of animals, regardless of species, is often accompanied by simultaneous changes in several physiological and behavioral traits (e.g. growth rate and fearfulness). In this study we compared the social behavior and emotional reactivity, as measured in a battery of behavioral tests, of two groups of chickens selected from a common genetic background, an advanced intercross line between the ancestral red junglefowl ("RJF") and the domesticated White Leghorn layer ("WL"). The birds were selected for homozygosity for alternative alleles at one locus (a microsatellite marker), centrally positioned in a previously identified pleiotropic growth QTL on chromosome 1, closely linked to one major candidate gene (AVPR1a) for certain aspects of social behavior. Birds homozygous for the WL allele ("WL genotype") had a modified pattern of social and emotional reactions than birds homozygous for the RJF allele ("RJF genotype"), shown by different scores in a principal components analysis. These results suggest that the growth QTL affects a number of domestication related behavioral traits, and may have been a primary target of selection during domestication. The QTL contains a multitude of genes, several of which have been linked to social behavior (for example the vasotocin receptor AVPR1a targeted in this experiment). Future studies aimed at making a higher resolution genotypic characterization of the QTL should give more information about which of these genes may be considered the strongest candidates for bringing about the behavioral changes associated with animal domestication. PMID:20596888

  16. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    PubMed

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  17. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  18. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment. PMID:27344399

  19. Pollen development and tube growth are affected in the symbiotic mutant of Lotus japonicus, crinkle.

    PubMed

    Tansengco, Myra L; Imaizumi-Anraku, Haruko; Yoshikawa, Makoto; Takagi, Shingo; Kawaguchi, Masayoshi; Hayashi, Makoto; Murooka, Yoshikatsu

    2004-05-01

    The symbiotic mutant of Lotus japonicus, crinkle (crk), exhibits abnormal nodulation and other alterations in the root hairs, trichomes, and seedpods. Defective nodulation in crk mutant is due to the arrested infection thread growth from the epidermis into the cortex. Here, we describe that crk is also affected in male fertility that causes the production of small pods with few seeds. Under in vitro conditions, pollen germination and tube growth were markedly reduced in the crk mutant. A swollen tip phenotype with disorganized filamentous actin (F-actin) was observed in the mutant pollen tubes after prolonged in vitro culture. During pollen development, the striking difference noted in the mutant was the small size of the microspores that remained spherical. Histological examination of ovule development, as well as outcrosses of the mutant as female to wild type as male, showed no evidence of abnormality in the female gametophyte development. Based on these findings, the Crk gene, aside from its role in the infection process during nodulation, is also involved in male gametophyte development and function. Therefore, this gene represents a connection between nodule symbiosis, polar tip growth, and other plant developmental processes.

  20. Sodic Soil Properties and Sunflower Growth as Affected by Byproducts of Flue Gas Desulfurization

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  1. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.

  2. Review of Factors Affecting the Growth and Survival of Follicular Grafts

    PubMed Central

    Parsley, William M; Perez-Meza, David

    2010-01-01

    Great strides have been made in hair restoration over the past 20 years. A better understanding of natural balding and non-balding patterns along with more respect for ageing has helped guide proper hairline design. Additionally, the use of smaller grafts has created a significantly improved natural appearance to the transplanted grafts. Inconsistent growth and survival of follicular grafts, however, has continued to be a problem that has perplexed hair restoration surgeons. This review attempts to explore the stresses affecting grafts during transplantation and some of the complexities involved in graft growth and survival. These authors reviewed the literature to determine the primary scope of aspects influencing growth and survival of follicular grafts. This scope includes patient selection, operating techniques, graft care, storage solutions and additives. The primary focus of the hair restoration surgeons should first be attention to the fundamentals of hair care, hydration, temperature, time out of body and gentle handling. Factors such as advanced storage solutions and additives can be helpful once the fundamentals have been addressed. PMID:21031063

  3. Loss of stromal JUNB does not affect tumor growth and angiogenesis.

    PubMed

    Braun, Jennifer; Strittmatter, Karin; Nübel, Tobias; Komljenovic, Dorde; Sator-Schmitt, Melanie; Bäuerle, Tobias; Angel, Peter; Schorpp-Kistner, Marina

    2014-03-15

    The transcription factor AP-1 subunit JUNB has been shown to play a pivotal role in angiogenesis. It positively controls angiogenesis by regulating Vegfa as well as the transcriptional regulator Cbfb and its target Mmp13. In line with these findings, it has been demonstrated that tumor cell-derived JUNB promotes tumor growth and angiogenesis. In contrast to JUNB's function in tumor cells, the role of host-derived stromal JUNB has not been elucidated so far. Here, we show that ablation of Junb in stromal cells including endothelial cells (ECs), vascular smooth muscle cells (SMCs) and fibroblasts does not affect tumor growth in two different syngeneic mouse models, the B16-F1 melanoma and the Lewis lung carcinoma model. In-depth analyses of the tumors revealed that tumor angiogenesis remains unaffected as assessed by measurements of the microvascular density and relative blood volume in the tumor. Furthermore, we could show that the maturation status of the tumor vasculature, analyzed by the SMC marker expression, α-smooth muscle actin and Desmin, as well as the attachment of pericytes to the endothelium, is not changed upon ablation of Junb. Taken together, these results indicate that the pro-angiogenic functions of stromal JUNB are well compensated with regard to tumor angiogenesis and tumor growth. PMID:24027048

  4. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth.

    PubMed

    Momoi, Nobuo; Tinney, Joseph P; Liu, Li J; Elshershari, Huda; Hoffmann, Paul J; Ralphe, John C; Keller, Bradley B; Tobita, Kimimasa

    2008-05-01

    Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.

  5. Does Coral Disease Affect Symbiodinium? Investigating the Impacts of Growth Anomaly on Symbiont Photophysiology

    PubMed Central

    Burns, John Henrik Robert; Gregg, Toni Makani; Takabayashi, Misaki

    2013-01-01

    Growth anomaly (GA) is a commonly observed coral disease that impairs biological functions of the affected tissue. GA is prevalent at Wai ‘ōpae tide pools, southeast Hawai ‘i Island. Here two distinct forms of this disease, Type A and Type B, affect the coral, Montiporacapitata. While the effects of GA on biology and ecology of the coral host are beginning to be understood, the impact of this disease on the photophysiology of the dinoflagellate symbiont, Symbiodinium spp., has not been investigated. The GA clearly alters coral tissue structure and skeletal morphology and density. These tissue and skeletal changes are likely to modify not only the light micro-environment of the coral tissue, which has a direct impact on the photosynthetic potential of Symbiodinium spp., but also the physiological interactions within the symbiosis. This study utilized Pulse amplitude modulation fluorometry (PAM) to characterize the photophysiology of healthy and GA-affected M. capitata tissue. Overall, endosymbionts within GA-affected tissue exhibit reduced photochemical efficiency. Values of both Fv/Fm and ΔF/ Fm’ were significantly lower (p<0.01) in GA tissue compared to healthy and unaffected tissues. Tracking the photophysiology of symbionts over a diurnal time period enabled a comparison of symbiont responses to photosynthetically available radiation (PAR) among tissue conditions. Symbionts within GA tissue exhibited the lowest values of ΔF/Fm’ as well as the highest pressure over photosystem II (p<0.01). This study provides evidence that the symbionts within GA-affected tissue are photochemically compromised compared to those residing in healthy tissue. PMID:23967301

  6. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    PubMed

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation.

  7. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    NASA Astrophysics Data System (ADS)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-12-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 °C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO2), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos θ values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos θ values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability.

  8. Spatio-Temporal Variation in Contrasting Effects of Resident Vegetation on Establishment, Growth and Reproduction of Dry Grassland Plants: Implications for Seed Addition Experiments

    PubMed Central

    Knappová, Jana; Knapp, Michal; Münzbergová, Zuzana

    2013-01-01

    Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle. PMID:23755288

  9. Spatio-temporal variation in contrasting effects of resident vegetation on establishment, growth and reproduction of dry grassland plants: implications for seed addition experiments.

    PubMed

    Knappová, Jana; Knapp, Michal; Münzbergová, Zuzana

    2013-01-01

    Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle.

  10. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis.

    PubMed

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V; Nagaraja, Valakunja

    2015-02-01

    The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects. PMID:25516959

  11. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  12. Temperature-induced elevation of basal metabolic rate does not affect testis growth in great tits.

    PubMed

    Caro, Samuel P; Visser, Marcel E

    2009-07-01

    The timing of reproduction varies from year to year in many bird species. To adjust their timing to the prevailing conditions of that year, birds use cues from their environment. However, the relative importance of these cues, such as the initial predictive (e.g. photoperiod) and the supplemental factors (e.g. temperature), on the seasonal sexual development are difficult to distinguish. In particular, the fine-tuning effect of temperature on gonadal growth is not well known. One way temperature may affect timing is via its strong effect on energy expenditure as gonadal growth is an energy-demanding process. To study the interaction of photoperiod and temperature on gonadal development, we first exposed 35 individually housed male great tits (Parus major) to mid-long days (after 6 weeks of 8 h L:16 h D at 15 degrees C, photoperiod was set to 13 h L:11 h D at 15 degrees C). Two weeks later, for half of the males the temperature was set to 8 degrees C, and for the other half to 22 degrees C. Unilateral laparotomies were performed at weeks 5 (i.e one week before the birds were transferred to mid-long days), 8 and 11 to measure testis size. Two measures of basal metabolic rate (BMR) were performed at the end of the experiment (weeks 11 and 12). Testis size increased significantly during the course of the experiment, but independently of the temperature treatment. BMR was significantly higher in birds exposed to the cold treatment. These results show that temperature-related elevation of BMR did not impair the long-day-induced testis growth in great tits. As a consequence, temperature may not be a crucial cue and/or constraint factor in the fine-tuning of the gonadal recrudescence in male great tits, and testis growth is not a high energy-demanding seasonal process. PMID:19525424

  13. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed Central

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  14. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues

    PubMed Central

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-01-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  15. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  16. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Leibman, M. O.; Epstein, H. E.; Forbes, B. C.; Bhatt, U. S.; Raynolds, M. K.; Comiso, J. C.; Gubarkov, A. A.; Khomutov, A. V.; Jia, G. J.; Kaarlejärvi, E.; Kaplan, J. O.; Kumpula, T.; Kuss, P.; Matyshak, G.; Moskalenko, N. G.; Orekhov, P.; Romanovsky, V. E.; Ukraientseva, N. G.; Yu, Q.

    2009-10-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  17. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.

    PubMed

    Khodakovskaya, Mariya; Dervishi, Enkeleda; Mahmood, Meena; Xu, Yang; Li, Zhongrui; Watanabe, Fumiya; Biris, Alexandru S

    2009-10-27

    Carbon nanotubes (CNTs) were found to penetrate tomato seeds and affect their germination and growth rates. The germination was found to be dramatically higher for seeds that germinated on medium containing CNTs (10-40 mug/mL) compared to control. Analytical methods indicated that the CNTs are able to penetrate the thick seed coat and support water uptake inside seeds, a process which can affect seed germination and growth of tomato seedlings. PMID:19772305

  18. Associations of serum carotenoid concentrations and fruit or vegetable consumption with serum insulin-like growth factor (IGF)-1 and IGF binding protein-3 concentrations in the Third National Health and Nutrition Examination Survey (NHANES III).

    PubMed

    Diener, Anja; Rohrmann, Sabine

    2016-01-01

    Dietary intervention may alter the insulin-like growth factor (IGF) system and thereby cancer risk. In a qualitative review, eleven of twenty studies showed a link between one or more carotenoids, vegetable or fruit intake and the IGF system, however, with partly contrary findings, such that no firm conclusion can be drawn. Therefore, we evaluated associations between serum carotenoid concentrations or the intake of fruits and vegetables with IGF-1, IGF binding protein (BP)-3 and their molar ratio (IGF-1:IGFBP-3) within the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). In our analysis, we included 6061 NHANES III participants and used multivariable-adjusted linear regression models. IGF-1 concentrations were significantly positively associated with serum concentrations of lycopene, β-carotene, α-carotene, β-cryptoxanthin and lutein/zeaxanthin in men and women. Statistically significant positive associations were observed for serum concentrations of α-carotene and lutein/zeaxanthin and intake of fruits with serum IGFBP-3 concentrations in women, but not in men. The IGF-1:IGFBP-3 molar ratio was significantly positively associated with serum concentrations of lycopene, β-carotene and α-carotene in men and with β-carotene in women. In conclusion, dietary interventions with carotenoids, fruits and vegetables may affect the IGF system, although the direction of these effects is currently unclear. PMID:27313849

  19. Factors Affecting the Pattern of Vegetation Biomass and Canopy Height With Elevation at Hubbard Brook Experimental Forest

    NASA Astrophysics Data System (ADS)

    Schilz, M. H.; Hurtt, G. C.

    2005-12-01

    Understanding patterns of carbon stocks and fluxes on the land surface is important for studies of terrestrial ecology, the carbon cycle, and climate change and is an increasingly high priority for environmental policymakers. This need is especially relevant in areas of mountainous terrain, where methodological challenges limit the usefulness of atmospheric methods such as eddy covariance. At the Hubbard Brook Experimental Forest (White Mountains, New Hampshire), both field data and remote sensing data demonstrate that forests exhibit decreased height and biomass with elevation. In particular, aboveground biomass (AGB) values decline from an average of 280 mg/ha at 250 meters elevation to 145 mg/ha at 910 meters elevation. Correspondingly, average canopy height declines from 28 meters to 15 meters within the same elevational range. Although this trend is well documented by field and LiDar data, the relative influence of various causal factors has not been well established. Potential mechanisms include increased rates of disturbance and mortality, decreased rates of growth and changes in tree allometry. These factors may in turn be influenced by changes in water and nutrient availability, edaphic factors, and climate. This study examines the relative importance of these mechanisms through 2 objectives; statistical analysis of existing Hubbard Brook data and collection and analysis of additional field data. Our analysis of 1999 LiDar data indicates that differences in slope and aspect do not explain the AGB and height trend. Analysis of ground based measurements of tree diameters (DBH) and remote sensing measurements of tree height suggest that allometric changes are not responsible for the observed trends. To evaluate the remaining hypothesis of growth, mortality, and disturbance, we obtained and analyzed 371 previously collected tree cores. Using a stratified random sampling design based on LiDar data, 108 additional tree cores have been collected to better

  20. Fibroblast growth factor 9 is a novel modulator of negative affect.

    PubMed

    Aurbach, Elyse L; Inui, Edny Gula; Turner, Cortney A; Hagenauer, Megan H; Prater, Katherine E; Li, Jun Z; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E; Myers, Richard M; Barchas, Jack D; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda

    2015-09-22

    Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.

  1. Fibroblast growth factor 9 is a novel modulator of negative affect

    PubMed Central

    Aurbach, Elyse L.; Inui, Edny Gula; Turner, Cortney A.; Hagenauer, Megan H.; Prater, Katherine E.; Li, Jun Z.; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E.; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda

    2015-01-01

    Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9’s function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders. PMID:26351673

  2. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity.

    PubMed

    Kanai, Synsuke; Moghaieb, Reda E; El-Shemy, Hany A; Panigrahi, R; Mohapatra, Pravat K; Ito, J; Nguyen, Nguyen T; Saneoka, Hirofumi; Fujita, Kounosuke

    2011-02-01

    The potassium requirement of green house tomatoes is very high for vegetative growth and fruit production. Potassium deficiency in plants takes long time for expression of visible symptoms. The objective of this study is to detect the deficiency early during the vegetative growth and define the roles of aquaporin and K-channel transporters in the process of regulation of water status and source-sink relationship. The tomato plants were grown hydroponically inside green house of Hiroshima University, Japan and subjected to different levels of K in the rooting medium. Potassium deficiency stress decreased photosynthesis, expansion and transport of ¹⁴C assimilates of the source leaf, but the effects became evident only after diameter expansion of the growing stem (sink) was down-regulated. The depression of stem diameter expansion is assumed to be associated with the suppression of water supply more than photosynthate supply to the organ. The stem diameter expansion is parameterized by root water uptake and leaf transpiration rates. The application of aquaporin inhibitor (AgNO₃) decreased leaf water potential, stem expansion and root hydraulic conductance within minutes of application. Similar results were obtained for application of the K-channel inhibitors. These observations suggested a close relationship between stem diameter expansion and activities of aquaporins and K-channel transporters in roots. The deficiency of potassium might have reduced aquaporin activity, consequently suppressing root hydraulic conductance and water supply to the growing stem for diameter expansion and leaf for transpiration. We conclude that close coupling between aquaporins and K-channel transporters in water uptake of roots is responsible for regulation of stem diameter dynamics of green house tomato plants. PMID:21421382

  3. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity.

    PubMed

    Kanai, Synsuke; Moghaieb, Reda E; El-Shemy, Hany A; Panigrahi, R; Mohapatra, Pravat K; Ito, J; Nguyen, Nguyen T; Saneoka, Hirofumi; Fujita, Kounosuke

    2011-02-01

    The potassium requirement of green house tomatoes is very high for vegetative growth and fruit production. Potassium deficiency in plants takes long time for expression of visible symptoms. The objective of this study is to detect the deficiency early during the vegetative growth and define the roles of aquaporin and K-channel transporters in the process of regulation of water status and source-sink relationship. The tomato plants were grown hydroponically inside green house of Hiroshima University, Japan and subjected to different levels of K in the rooting medium. Potassium deficiency stress decreased photosynthesis, expansion and transport of ¹⁴C assimilates of the source leaf, but the effects became evident only after diameter expansion of the growing stem (sink) was down-regulated. The depression of stem diameter expansion is assumed to be associated with the suppression of water supply more than photosynthate supply to the organ. The stem diameter expansion is parameterized by root water uptake and leaf transpiration rates. The application of aquaporin inhibitor (AgNO₃) decreased leaf water potential, stem expansion and root hydraulic conductance within minutes of application. Similar results were obtained for application of the K-channel inhibitors. These observations suggested a close relationship between stem diameter expansion and activities of aquaporins and K-channel transporters in roots. The deficiency of potassium might have reduced aquaporin activity, consequently suppressing root hydraulic conductance and water supply to the growing stem for diameter expansion and leaf for transpiration. We conclude that close coupling between aquaporins and K-channel transporters in water uptake of roots is responsible for regulation of stem diameter dynamics of green house tomato plants.

  4. Predator Presence and Vegetation Density Affect Capture Rates and Detectability of Litoria aurea Tadpoles: Wide-Ranging Implications for a Common Survey Technique

    PubMed Central

    Sanders, Madeleine R.; Clulow, Simon; Bower, Deborah S.; Clulow, John; Mahony, Michael J.

    2015-01-01

    Trapping is a common sampling technique used to estimate fundamental population metrics of animal species such as abundance, survival and distribution. However, capture success for any trapping method can be heavily influenced by individuals’ behavioural plasticity, which in turn affects the accuracy of any population estimates derived from the data. Funnel trapping is one of the most common methods for sampling aquatic vertebrates, although, apart from fish studies, almost nothing is known about the effects of behavioural plasticity on trapping success. We used a full factorial experiment to investigate the effects that two common environmental parameters (predator presence and vegetation density) have on the trapping success of tadpoles. We estimated that the odds of tadpoles being captured in traps was 4.3 times higher when predators were absent compared to present and 2.1 times higher when vegetation density was high compared to low, using odds ratios based on fitted model means. The odds of tadpoles being detected in traps were also 2.9 times higher in predator-free environments. These results indicate that common environmental factors can trigger behavioural plasticity in tadpoles that biases trapping success. We issue a warning to researchers and surveyors that trapping biases may be commonplace when conducting surveys such as these, and urge caution in interpreting data without consideration of important environmental factors present in the study system. Left unconsidered, trapping biases in capture success have the potential to lead to incorrect interpretations of data sets, and misdirection of limited resources for managing species. PMID:26605923

  5. Woodland Patch Dynamics Affected by Oak Growth: Fire, Climate, and Human Influences

    NASA Astrophysics Data System (ADS)

    Murray, D. B.; White, J. D.

    2010-12-01

    Woodland fragmentation and aggregation occur due to impacts of fire, climate, and human factors. In our study we investigate the growth response of a deciduous oak species, Quercus buckleyii (Texas Red Oak) within a juniper-dominated woodland. This species may be a sentinel species for woodland patch developmental processes that could be used as a proxy for woodland patch contraction and expansion events. In this study, we used tree rings, fire scar, and multi-temporal aerial photographic data to assess response of oaks to disturbance type and resultant impact on woodland patches. Three hundred and seventy tree slabs from downed and dead red oaks were collected in the Balcones National Wildlife Refuge outside Austin, Texas. We analyzed tree rings from these slabs to determine recruitment date, annual ring width, and where evident, time of fire. Changes in tree ring widths associated with canopy openings were derived from neighborhood analysis of digital aerial photos from 1939, 1951, 1964, 1980, 1995, and 2004. Results indicated that red oaks increased radial growth following fire. Analysis of canopy openings associated with the aerial photographs showed that the oak species did not respond to canopy openings with increased radial growth as predicted by gap-phase dynamics. Climate impacted average radial ring growth as demonstrated by comparison with the Palmer Drought Severity and Nino 3 Index values (p = .56). Given that radial growth is influenced by both fire and climate, we explored the possibility that dramatic climate and related disturbance events (drought and high occurrence of fire) of the 1950’s created a possible ecological regime shift. Changes in both index value variance and disturbance frequency were noted during the 1950’s. These results were confirmed by landscape analysis of disturbance patches identified from the historical photographs which show cutting and burning occurred with the highest frequency between 1951 and 1964 with 70% of the

  6. The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5.

    PubMed

    Funabiki, Atsushi; Takano, Sho; Matsuda, Shuichi; Tokuji, Yoshihiko; Takamure, Itsuro; Kato, Kiyoaki

    2013-10-01

    Low temperature tolerance during vegetative growth is an important objective in rice (Oryza sativa L.) breeding programs. We isolated a novel reduced culm number mutant, designated reduced culm number11 (rcn11), by screening under low-temperature condition in a paddy fields. Since the shoot architecture of the rcn11 was very similar to that of the rcn1, we examined whether RCN11 is involved in RCN1/OsABCG5-associated vegetative growth control. The rcn11 mutant has no mutation in the RCN1/OsABCG5 gene and rcn11 has no effect on RCN1/OsABCG5 gene expression. In the rcn1 mutant, RCN1/OsABCG5 was upregulated showing that RCN1/OsABCG5 is controlled by negative feedback regulation. Absence of an effect of rcn11 on RCN1/OsABCG5 feedback regulation supported that RCN11 is not involved in the RCN1/OsABCG5-associated transport system. A genetic allelism test and molecular mapping study showed that rcn11 is independent of rcn1 on rice chromosome 3 and located on chromosome 8. The rcn1 rcn11 phenotype suggests that RCN11 acts on vegetative growth independent of RCN1/OsABCG5. A root development comparison between rcn1 and rcn11 in young seedlings represented that rcn11 reduced crown root number and elongation, whereas rcn1 reduced lateral root density and elongation. Thus, rcn11 will shed new light on vegetative growth control under low temperature.

  7. Does the silver moss Bryum argenteum exhibit sex-specific patterns in vegetative growth rate, asexual fitness or prezygotic reproductive investment?

    PubMed Central

    Horsley, Kimberly; Stark, Lloyd R.; McLetchie, D. Nicholas

    2011-01-01

    Background and Aims Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale. Methods Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass. Key Results The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females. Conclusions Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and

  8. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. PMID:22687186

  9. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations.

  10. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry. PMID:25755081

  11. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.

    PubMed

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.

  12. A review on the factors affecting mite growth in stored grain commodities.

    PubMed

    Collins, D A

    2012-03-01

    A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.

  13. Meloidogyne incognita Inoculum Source Affects Host Suitability and Growth of Yellow Nutsedge and Chile Pepper.

    PubMed

    Thomas, S H; Schroeder, J; Kenney, M J; Murray, L W

    1997-09-01

    Meloidogyne incognita (Mi) reproduction and host plant responses in chile pepper (Capsicum annuum) and yellow nutsedge (Cyperus esculentus = YNS) to three sources of inoculum obtained by rearing a single Mi population on chile, YNS, and tomato were evaluated in two factorial greenhouse experiments. The interactive effects of Mi inoculum source and crop-weed competition were determined. In the absence of YNS competition, chile growth was reduced less by Mi inoculum from chile than by inoculum from YNS or tomato. When YNS was present, chile root weight was not affected and shoot weight increased with Mi initial inoculation, regardless of inoculum source. Chile plants inoculated with Mi from tomato exhibited double the nematode reproduction observed with inoculum from chile or YNS. With chile present, Mi reproduction on YNS was nearly three times greater with inoculum from tomato, but reproduction was similar among inoculum sources when chile was absent. Reductions in YNS root mass due to competition from chile failed to reduce the total number of Mi eggs produced on YNS plants. Differences in total Mi reproduction among inoculum sources were not attributable to differences in root growth or plant competition. This study illustrates the influence of Mi-YNS interactions and previous hosts on severity of Mi infection. PMID:19274174

  14. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry.

  15. Overexpression of BrMORN, a novel 'membrane occupation and recognition nexus' motif protein gene from Chinese cabbage, promotes vegetative growth and seed production in Arabidopsis.

    PubMed

    Lee, Jeongyeo; Han, Ching-Tack; Hur, Yoonkang

    2010-02-28

    Proteins that contain membrane occupation and recognition nexus (MORN) motifs regulate various aspects of cellular metabolism by localizing proteins in different cellular organelles. The full-length Brassica rapa MORN motif protein (BrMORN) cDNA consists of 1,510 bp encoding 502 deduced amino acids with a predicted molecular mass of 55.8 kDa and an isoelectric point of 9.72. BrMORN is a novel protein composed of two N-terminal transmembrane helices and seven C-terminal MORN motifs and it appears to be localized on the plastid envelope. BrMORN expression was relatively high in actively-growing tissues, but low in mature tissues and under some abiotic stresses. Arabidopsis thaliana plants overexpressing BrMORN showed an enhanced rate of growth, hypocotyl elongation, and increases in the size of vegetative organs and seed productivity under normal growth conditions. In addition, cell size in Arabidopsis plants overexpressing BrMORN was 24% larger than that of wild-type plants, implying that the increase in the size of vegetative organs is due to cell enlargement. The increased size of the vegetative organs also led to increased seed production. Our data suggest that the MORN motif of BrMORN may act at the plastid envelope and facilitate plant growth via cell enlargement.

  16. Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in Populus tremuloides.

    PubMed

    Stevens, Michael T; Gusse, Adam C; Lindroth, Richard L

    2012-03-01

    Although considerable research has explored how tree growth and defense can be influenced by genotype, the biotic environment, and their interaction, little is known about how genotypic differences, prior defoliation, and their interactive effects persist in trees that re-grow after damage that severs their primary stem. To address these issues, we established a common garden consisting of twelve genotypes of potted aspen (Populus tremuloides) trees, and subjected half of the trees to defoliation in two successive years. At the beginning of the third year, all trees were severed at the soil surface (coppiced) and allowed to regenerate for five months. Afterwards, we counted the number of root and stump sprouts produced and measured the basal diameter (d) and height (h) of the tallest ramet in each pot. We collected leaves one and two years after the second defoliation and assessed levels of phenolic glycosides, condensed tannins, and nitrogen. In terms of re-growth, we found that the total number of sprouts produced varied by 3.6-fold among genotypes, and that prior defoliation decreased total sprout production by 24%. The size (d(2)h) of ramets, however, did not differ significantly among genotypes or defoliation classes. In terms of phytochemistry, we observed genotypic differences in concentrations of all phytochemicals assessed both one and two years after the second defoliation. Two years after defoliation, we observed effects of prior defoliation in a genotype-by-defoliation interaction for condensed tannins. Results from this study demonstrate that genotypic differences and impacts of prior defoliation persist to influence growth and defense traits in trees even after complete removal of above-ground stems, and thus likely influence productivity and plant-herbivore interactions in forests affected by natural disturbances or actively managed through coppicing.

  17. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells.

    PubMed

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-06-23

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.

  18. Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth.

    PubMed

    Rehfeldt, C; Lang, I S; Görs, S; Hennig, U; Kalbe, C; Stabenow, B; Brüssow, K-P; Pfuhl, R; Bellmann, O; Nürnberg, G; Otten, W; Metges, C C

    2011-02-01

    The aim of this study was to investigate whether dietary protein intake during gestation less than or greater than recommendations affects gilts growth and body composition, gestation outcome, and colostrum composition. German Landrace gilts were fed gestation diets (13.7 MJ of ME/kg) containing a low (n = 18; LP, 6.5% CP), an adequate (n = 20; AP, 12.1%), or a high (n = 16; HP, 30%) protein content corresponding to a protein:carbohydrate ratio of 1:10.4, 1:5, and 1:1.3, respectively, from mating until farrowing. Gilts were inseminated by semen of pure German Landrace boars and induced to farrow at 114 d postcoitum (dpc; Exp. 1). Energy and protein intake during gestation were 33.3, 34.4, and 35.8 MJ of ME/d (P < 0.001) and 160, 328, and 768 g/d, respectively, in LP, AP, and HP gilts (P < 0.001). From insemination to 109 dpc, BW gain was least in LP (42.1 kg), intermediate in HP (63.1 kg), and greatest in AP gilts (68.3 kg), whereas increase of backfat thickness was least in gilts fed the HP diet compared with LP and AP diets (3.8, 5.1, 5.0 mm; P = 0.01). Litter size, % stillborn piglets, and mummies were unaffected (P > 0.28) by the gestation diet. Total litter weight tended to be less in the offspring of LP and HP gilts (14.67, 13.77 vs. 15.96 kg; P = 0.07), and the percentage of male piglets was greater in litters of HP gilts (59.4%; P < 0.01). In piglets originating from LP and HP gilts, individual birth weight was less (1.20, 1.21 vs. 1.40 kg; P = 0.001) and birth weight/crown-rump length ratio was reduced (45.3, 46.4 vs. 50.7 g/cm; P = 0.003). Colostrum fat (7.8, 7.4 vs. 8.1%) and lactose concentrations (2.2, 2.1 vs. 2.6%) tended to be reduced in LP and HP gilts (P = 0.10). In Exp. 2, 28 gilts (LP, 10; AP, 9; HP, 9) were treated as in Exp. 1 but slaughtered at 64 dpc. At 64 dpc, LP gilts were 7% lighter than AP gilts (P = 0.03), whereas HP gilts were similar to AP gilts. Body composition was markedly altered in response to LP and HP feeding with less lean (P

  19. How Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.

    PubMed

    Qiao, Baofu; Demars, Thomas; Olvera de la Cruz, Monica; Ellis, Ross J

    2014-04-17

    Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure of an aggregating amphiphile-oil solution containing a coordinating metal complex by means of atomistic molecular dynamics simulations and X-ray techniques. For the first time, we show that H-bonds not only stabilize the metal complex in the hydrophobic environment by coordinating between the Eu(NO3)3 outer-sphere and aggregating amphiphiles, but also affect the growth of such reverse micellar aggregates. The formation of swollen, elongated reverse micelles elevates the extraction of metal ions with increased H-bonds under acidic condition. These new insights into H-bonds are of broad interest to nanosynthesis and biological applications, in addition to metal ion separations.

  20. Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva.

    PubMed

    Roger, P; Harn-Arsa, S; Delettre, J; Béal, C

    2011-12-01

    To better understand the phenomena governing the establishment of the oral bacterium Streptococcus salivarius in the mouth, the effect of some environmental factors has been studied in complemented artificial saliva, under oral pH and temperature conditions. Three salivary enzymes at physiological concentrations were tested: peroxidase, lysozyme and amylase, as well as injection of exhaled air. Injection of air containing 5% CO2 and 16% O2 induced a deleterious effect on S. salivarius K12, mainly by increasing redox potential. Addition of lysozyme slightly affected the physiological state of S. salivarius by altering membrane integrity. In contrast, peroxidase was not detrimental as it made it possible to decrease the redox potential. The addition of amylase reduced the specific growth rate of S. salivarius by formation of a complex with amylase and mucins, but led to high final biomass, as a result of enzymatic degradation of some nutrients. Finally, this work demonstrated that salivary enzymes had a slight impact on S. salivarius behaviour. It can thus be concluded that this bacterium was well adapted to in-mouth conditions, as it was able to resist certain salivary enzymes, even if tolerance to expired air was affected, as a result of an increased redox potential. PMID:21892611

  1. The effects of applying sewage sludge into Jiangxi red soil on the growth of vegetables and the migration and enrichment of Cu and Zn.

    PubMed

    Rrong, Wang; Aiping, Tang; Ashraf, Muhammad Aqeel

    2016-09-01

    Jiangxi red soil was used as the tested soil and water spinach (Ipomoea aquatic) and Chinese chive (Allium tuberosum) were used as the tested vegetables in this study to investigate the effects of different amounts of sewage-sludge application on the growth of vegetables and the migration and enrichment patterns of Cu and Zn in vegetables using the potted method. The results indicated that the application of sewage sludge could improve the properties of red soil and promote vegetable growth. The dry weight of water spinach and Chinese chive reached the maximal levels when treated with the amount of sewage sludge at 4% and 10%, which was 4.38 ± 0.82 g and 1.56 ± 0.31 g, respectively. The dry weights after the application of sewage sludge were all larger than control treatment (CK) without sludge application. With increases in the applied amount of sewage sludge, the concentrations of Cu and Zu in red soil continued to increase, and the peak value was not reached. After the two vegetables were planted, the concentrations of Cu and Zn in red soil decreased by different degrees. The degrees of decrease of Zn were generally higher than those of Cu. The enrichment coefficient of water spinach on Cu showed a trend of increase followed by a decrease and reached the peak value of 1.04 ± 0.38 when the applied amount was 4%. The enrichment coefficient of Chinese chive on Cu overall showed a decreasing trend and did not reach the peak value under the treatment levels used in this experiment. The enrichment pattern of Chinese chive on Zn was not obvious, and the differences among all treatment levels were not significant (p < 0.05). However, the enrichment coefficient after the application of sewage sludge was significantly lower than that without the application of sludge. PMID:27579018

  2. The effects of applying sewage sludge into Jiangxi red soil on the growth of vegetables and the migration and enrichment of Cu and Zn.

    PubMed

    Rrong, Wang; Aiping, Tang; Ashraf, Muhammad Aqeel

    2016-09-01

    Jiangxi red soil was used as the tested soil and water spinach (Ipomoea aquatic) and Chinese chive (Allium tuberosum) were used as the tested vegetables in this study to investigate the effects of different amounts of sewage-sludge application on the growth of vegetables and the migration and enrichment patterns of Cu and Zn in vegetables using the potted method. The results indicated that the application of sewage sludge could improve the properties of red soil and promote vegetable growth. The dry weight of water spinach and Chinese chive reached the maximal levels when treated with the amount of sewage sludge at 4% and 10%, which was 4.38 ± 0.82 g and 1.56 ± 0.31 g, respectively. The dry weights after the application of sewage sludge were all larger than control treatment (CK) without sludge application. With increases in the applied amount of sewage sludge, the concentrations of Cu and Zu in red soil continued to increase, and the peak value was not reached. After the two vegetables were planted, the concentrations of Cu and Zn in red soil decreased by different degrees. The degrees of decrease of Zn were generally higher than those of Cu. The enrichment coefficient of water spinach on Cu showed a trend of increase followed by a decrease and reached the peak value of 1.04 ± 0.38 when the applied amount was 4%. The enrichment coefficient of Chinese chive on Cu overall showed a decreasing trend and did not reach the peak value under the treatment levels used in this experiment. The enrichment pattern of Chinese chive on Zn was not obvious, and the differences among all treatment levels were not significant (p < 0.05). However, the enrichment coefficient after the application of sewage sludge was significantly lower than that without the application of sludge.

  3. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    PubMed

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  4. Chronic maternal stress affects growth, behaviour and hypothalamo-pituitary-adrenal function in juvenile offspring.

    PubMed

    Emack, Jeff; Kostaki, Alice; Walker, Claire-Dominique; Matthews, Stephen G

    2008-09-01

    Maternal stress during pregnancy, particularly that combined with low socioeconomic status (SES), has been linked to an increased risk for impaired behavioural and emotional development and affective disorders in children. In animal models, acute periods of prenatal stress have profound effects on hypothalamo-pituitary-adrenal (HPA) function and behaviour. However, few studies have determined the impact of chronic exposure to stress in animal models. The objective of this study was to determine the effects of chronic maternal stress (CMS) during the 2nd half of pregnancy and nursing on growth, locomotor behaviour and HPA axis function in juvenile guinea pig offspring. Pregnant guinea pigs were exposed to a random combination of variable stressors every other day over the 2nd half of gestation and from postnatal day (pnd) 1 until weaning (pnd25). CMS mothers displayed increased basal salivary cortisol levels in the later stages of pregnancy compared to control mothers (p<0.05). The male offspring of CMS mothers had a lower bodyweight, which was maintained to weaning (p<0.01). In open-field testing, CMS male offspring showed a decrease in activity compared to controls (p<0.05). There was no effect of CMS on bodyweight or activity in female offspring. In contrast, both male and female offspring born to CMS mothers displayed increased (p<0.05) basal salivary cortisol at pnd25, but a blunted adrenocortical response to exposure to the novel open-field enclosure. In conclusion, CMS leads to modification of growth trajectory, locomotor activity and adrenocortical responses to stress in juvenile offspring. Further, males appear considerably more vulnerable to these effects than females. PMID:18674758

  5. [Combined stress of enhanced UV-B radiation and 1,2,4-trichlorobenzene contamination on the growth of green vegetable].

    PubMed

    Liu, Cui-Ying; Fan, Jian-Ling; Xu, Xiang-Hua

    2014-03-01

    A pot experiment was conducted to study the effects of UV-B radiation enhancement alone, 1,2,4-trichlorobenzene (TCB) contamination soil alone, and the combined stress on the growing process, stomatal resistance and leaf structure of green vegetable. The results showed that 1,2,4-TCB contamination alone had more significant inhibitory effect on the growth of green vegetable than the combined stress. Both UV-B radiation enhancement and 1,2,4-TCB contamination reduced the stomatal resistance of front and reverse leaves. Enhanced UV-B radiation resulted in the albino of leaves. 1,2,4-TCB contamination resulted in the fading of leaf color and the appearing of black spots on leaf surfaces, and the enhanced UV-B radiation strengthened the black-spot symptom. In conclusion, the effects of UV-B radiation enhancement alone, 1,2,4-trichlorobenzene (TCB) contamination soil alone and the combined stress on the growth indicators of green vegetable were different.

  6. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  7. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  8. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth.

    PubMed

    Ghorbani, Peyman; Santhakumar, Prisila; Hu, Qingda; Djiadeu, Pascal; Wolever, Thomas M S; Palaniyar, Nades; Grasemann, Hartmut

    2015-10-01

    The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem 1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5-2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5-2.5 mM) SCFA concentrations increased, while high (25-50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth of Pseudomonas aeruginosa in a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.

  9. Mir-373 affects human lung cancer cells' growth and its E-cadherin expression.

    PubMed

    Wu, Weihua; He, Xiaoyan; Kong, Jing; Ye, Bin

    2012-01-01

    The aims of this study was to elucidate whether the expression of E-cadherin can be affected by the recombinant has-mir-373 eukaryotic expression plasmid vector through tests in vitro, and to analyze the relationship between the expression of E-cadherin and tumor growth. According to the has-mir-373 sequence in miRBase database, two template DNA sequences were designed. The has-mir-373 sequence and a control sequence were synthesized and cloned into pGenesil-1 eukaryotic expression plasmid vector. The recombinant plasmids were transfected into human lung cancer A549 cells by liposome-mediated method. The mir-373 expression in A549 cells was detected by using real-time quantitative polymerase chain reaction (real-time PCR). MTT (methyl thiazolyl tetrazolium) was used to analyze the growth of cancer cell cycle. RT-PCR and Western blotting were used to evaluate the levels of E-cadherin mRNA and protein expression, respectively. The expression of E-cadherin in cells was determined by immunocytochemistry. The mobility capability of transfected cells were evaluated by using wound healing assay in vitro. The fluorescent light was observed under fluorescent microscope. RT-PCR indicated that the mRNA of E-cadherin increased, and the Western blotting results also displayed that mir-373 promoted the expression of the E-cadherin protein. Compared with the control groups, MTT method and wound healing assay demonstrated that both the growth rate and migration of A549 cells transfected with the recombinant has-mir-373 eukaryotic expression plasmid was also decreased significantly (p < 0.001). The differences between the other two control groups were not significant (p > 0.05). The immunocytochemistry demonstrated a significant increase of E-cadherin protein levels in the cells transfected with mir-373, but not in the cells of the control group. Mir-373 could increase the expression levels of the E-cadherin and decrease the migration ability of human lung cancer A549 cells in

  10. Individual heterogeneity and offspring sex affect the growth-reproduction trade-off in a mammal with indeterminate growth.

    PubMed

    Gélin, Uriel; Wilson, Michelle E; Cripps, Jemma; Coulson, Graeme; Festa-Bianchet, Marco

    2016-04-01

    Reproduction can lead to a trade-off with growth, particularly when individuals reproduce before completing body growth. Kangaroos have indeterminate growth and may always face this trade-off. We combined an experimental manipulation of reproductive effort and multi-year monitoring of a large sample size of marked individuals in two populations of eastern grey kangaroos to test the predictions (1) that reproduction decreases skeletal growth and mass gain and (2) that mass loss leads to reproductive failure. We also tested if sex-allocation strategies influenced these trade-offs. Experimental reproductive suppression revealed negative effects of reproduction on mass gain and leg growth from 1 year to the next. Unmanipulated females, however, showed a positive correlation between number of days lactating and leg growth over periods of 2 years and longer, suggesting that over the long term, reproductive costs were masked by individual heterogeneity in resource acquisition. Mass gain was necessary for reproductive success the subsequent year. Although mothers of daughters generally lost more mass than females nursing sons, mothers in poor condition experienced greater mass gain and arm growth if they had daughters than if they had sons. The strong links between individual mass changes and reproduction suggest that reproductive tactics are strongly resource-dependent.

  11. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass... lakes. (b) Possible loss of values: The discharge of dredged or fill material can smother vegetation and... the growth of nuisance vegetation....

  12. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass... lakes. (b) Possible loss of values: The discharge of dredged or fill material can smother vegetation and... the growth of nuisance vegetation....

  13. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass... lakes. (b) Possible loss of values: The discharge of dredged or fill material can smother vegetation and... the growth of nuisance vegetation....

  14. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass... lakes. (b) Possible loss of values: The discharge of dredged or fill material can smother vegetation and... the growth of nuisance vegetation....

  15. Incubation temperature affects growth and energy metabolism in blue tit nestlings.

    PubMed

    Nord, Andreas; Nilsson, Jan-Åke

    2011-11-01

    Because the maintenance of proper developmental temperatures during avian incubation is costly to parents, embryos of many species experience pronounced variation in incubation temperature. However, the effects of such temperature variation on nestling development remain relatively unexplored. To investigate this, we artificially incubated wild blue tit (Cyanistes caeruleus L.) clutches at 35.0°, 36.5°, or 38.0°C for two-thirds of the incubation period. We returned clutches to their original nests before hatching and subsequently recorded nestling growth and resting metabolic rate. The length of the incubation period decreased with temperature, whereas hatching success increased. Nestlings from the lowest incubation temperature group had shorter tarsus lengths at 2 weeks of age, but body mass and wing length were not affected by temperature. In addition, nestlings from the lowest temperature group had a significantly higher resting metabolic rate compared with mid- and high-temperature nestlings, which may partly explain observed size differences between the groups. These findings suggest that nest microclimate can influence nestling phenotype, but whether observed differences carry over to later life-history stages remains unknown.

  16. Histopathology of growth anomaly affecting the coral, Montipora capitata: implications on biological functions and population viability.

    PubMed

    Burns, John H R; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1-93.7%), symbiotic dinoflagellates (38.8-67.5%), mesenterial filaments (11.2-29.0%), and nematocytes (28.8-46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7-49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  17. Ice cover affects the growth of a stream-dwelling fish.

    PubMed

    Watz, Johan; Bergman, Eva; Piccolo, John J; Greenberg, Larry

    2016-05-01

    Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production. PMID:26787075

  18. Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response

    PubMed Central

    Norton, L.W.; Koschwanez, H.E.; Wisniewski, N.A.; Klitzman, B.; Reichert, W.M.

    2014-01-01

    Vascular endothelial growth factor (VEGF) and dexamethasone (DX) release from hydrogel coatings were examined as a means to modify tissue inflammation and induce angiogenesis. Antibiofouling hydrogels for implantable glucose sensor coatings were prepared from 2-hydro-xyethyl methacrylate, N-vinyl pyrrolidinone, and polyethylene glycol. Microdialysis sampling was used to test the effect of the hydrogel coating on glucose recovery. VEGF-releasing hydrogel-coated fibers increased vascularity and inflammation in the surrounding tissue after 2 weeks of implantation compared to hydrogel-coated fibers. DX-releasing hydrogel-coated fibers reduced inflammation compared to hydrogel-coated fibers and had reduced capsule vascularity compared to VEGF-releasing hydrogel-coated fibers. Hydrogels that released both VEGF and DX simultaneously also showed reduced inflammation at 2 weeks implantation; however, no enhanced vessel formation was observed indicating that the DX diminished the VEGF effect. At 6 weeks, there were no detectable differences between drug-releasing hydrogel-coated fibers and control fibers. From this study, hydrogel drug release affected initial events of the foreign body response with DX inhibiting VEGF, but once the drug depot was exhausted these effects disappeared. PMID:17236219

  19. Ice cover affects the growth of a stream-dwelling fish.

    PubMed

    Watz, Johan; Bergman, Eva; Piccolo, John J; Greenberg, Larry

    2016-05-01

    Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production.

  20. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate.

    PubMed

    Sylvander, Peter; Häubner, Norbert; Snoeijs, Pauline

    2013-04-01

    Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs. PMID:23263236

  1. Pinus halepensis tree-ring widths at the periphery of the eastern Mediterranean forest growth as a possible proxy for recontruction of vegetation greeness.

    NASA Astrophysics Data System (ADS)

    Ababneh, L. N.

    2015-12-01

    The IPCC report (2014) signifies the importance of understanding the dynamic and elastic relationship between global climate change and forest growth as ramifications are still uncertain despite increased experimental efforts (IPCC 2014, Frank et al.,2015). Further, understanding and modeling this relationship is over emphasized in arid to semi-arid areas such as the Middle East where limited natural resources have proven record of correlation with conflict (e.g.Kelley et al., 2015). This work reports on the response of a forest stand of Pinus halepensis (Aleppo pine) from north Jordan to variability in precipitation using instrumental and satellite derived data. The site is located in north Jordan on the transitional zones from forest to steppe of the eastern Mediterranean as classified by the European Forest Genetic Resources Programme (EUFORGEN, 2015). The aim is to model the relationship between annual earlywood, latewood and tree-ring width indices with instrumental data, reanalysis data and Normalized Difference Vegetation Index (NDVI) in the period from 1976-2012 for a possible use of tree-ring widths as vegetation greenness proxy. The highest significant correlation (p< 0.005, α =0.05) is between current year's growth and prior spring precipitation (instrumental and reanalysis) and NDVI. Reanalysis data correlates significantly (p<0.005, α =0.05, r: 0.85) with instrumental data (1976-2012) but is limited by the records' length. There is definitely a proven correlation between seasonal tree-ring widths and vegetation index that offers the potential for reconstruction of vegetation index if applied at the regional level and could be extrapolated to desert areas that lacks proxy data with annually resolved resolution such as tree-rings.

  2. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow.

    PubMed

    Morandi, Brunella; Losciale, Pasquale; Manfrini, Luigi; Zibordi, Marco; Anconelli, Stefano; Galli, Fabio; Pierpaoli, Emanuele; Corelli Grappadelli, Luca

    2014-10-15

    Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv. Abbé Fétel, subjected to two irrigation regimes, corresponding to a water restitution of 100% and 25% of the estimated Etc, respectively. Drought stress progressively increased during the season due to lower soil tensions and higher daily vapour pressure deficits (VPDs). Stem water potential was the first parameter to be negatively affected by stress and determined the simultaneous reduction of fruit xylem flow, which at 95 DAFB was reflected by a decrease in fruit daily growth. Leaf photosynthesis was reduced only from 95 DAFB on, but was not immediately reflected by a decrease in fruit phloem flow, which instead was reduced only at 145 DAFB. This work shows how water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. This determines a progressive increase in the phloem relative contribution to growth, which lead to the typical higher dry matter percentages of stressed fruit.

  3. Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.)

    PubMed Central

    Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin

    2015-01-01

    Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830

  4. Transitions in High-Arctic Vegetation Growth Patterns and Ecosystem Productivity from 2000-2013 Tracked with Cameras

    NASA Astrophysics Data System (ADS)

    Westergaard-Nielsen, A.; Hansen, B. U.; Klosterman, S.; Pedersen, S. H.; Schmidt, N. M.; Abermann, J.; Lund, M.

    2015-12-01

    The changes in vegetation seasonality in high northern latitudes resulting from changes atmospheric temperatures and precipitation are still not well understood. Continued monitoring and research is therefore needed. In this study we use 13 years of time lapse camera data and climate data from high-Arctic Northeast Greenland to assess the seasonal response of a dwarf shrub heath, grassland, and fens to snow cover, soil moisture, and atmospheric and soil temperatures. Based on the camera data, we computed a greenness index which was subsequently used to analyze transition dates in vegetation seasonality. We show that snow cover and subsequent water from the melting snow pack is highly important for the seasonality. We found a significant advancement in start of growing season of 12 days but not a significant increase in growing season length. Both the timing and greenness index value of peak of growing season was significantly correlated to the available water in the pre-melt snow pack, mostly pronounced in vegetation with limited soil water. The end of growing season was likewise significantly correlated to the water equivalents in the pre-melt snowpack. Moreover, the vegetation greenness was highly correlated to GPP, and shifts in seasonality as tracked by the greenness index are thus expected to have direct influence on ecosystem productivity.

  5. Culture surfaces coated with various implant materials affect chondrocyte growth and metabolism.

    PubMed

    Hambleton, J; Schwartz, Z; Khare, A; Windeler, S W; Luna, M; Brooks, B P; Dean, D D; Boyan, B D

    1994-07-01

    The effect on chondrocyte metabolism of culture surfaces sputter-coated with various materials used for orthopaedic implants was studied and correlated with the stage of cartilage cell maturation. Confluent, fourth-passage chondrocytes from the costochondral resting zone and growth zone of rats were cultured for 6 or 9 days on 24-well plates sputter-coated with ultrathin films of titanium, titanium dioxide, aluminum oxide, zirconium oxide, and calcium phosphate (1.67:1). Corona-discharged tissue culture plastic served as the control. The effect of surface material was examined with regard to cell morphology; cell proliferation (cell number) and DNA synthesis ([3H]thymidine incorporation); RNA synthesis ([3H]uridine incorporation); collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen production; and alkaline phosphatase-specific activity, both in the cell layer and in trypsinized chondrocytes. Cell morphology was dependent on surface material; only cells cultured on titanium had an appearance similar to that of cells cultured on plastic. While titanium or titanium dioxide surfaces had no effect on cell number or [3H]thymidine incorporation, aluminum oxide, calcium phosphate, and zirconium oxide surfaces inhibited both parameters. Cells cultured on aluminum oxide, calcium phosphate, zirconium oxide, and titanium dioxide exhibited decreased collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen production, but [3H]uridine incorporation was decreased only in those chondrocytes cultured on aluminum oxide, calcium phosphate, or zirconium oxide. Chondrocytes cultured on titanium had greater alkaline phosphatase-specific activity than did cells cultured on plastic, but the incorporation of [3H]uridine and production of collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen was comparable. The response of chondrocytes from the growth zone and resting zone

  6. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways.

  7. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  8. Analyzing nonlinear variations in terrestrial vegetation in China during 1982-2012.

    PubMed

    Liu, Yanxu; Liu, Xianfeng; Hu, Yi'na; Li, Shuangshuang; Peng, Jian; Wang, Yanglin

    2015-11-01

    effects of human management on spatial patterns, develop trend-fitting methods, and explore more refined methods of analyzing the driving forces affecting large-scale changes in vegetative growth.

  9. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition

    PubMed Central

    Peters, Jan; Byrne, Gerald I.

    2015-01-01

    Chlamydia trachomatis is auxotrophic for a variety of essential metabolites. Inhibitors that interrupt host cell catabolism may inhibit chlamydial growth and reveal Chlamydia metabolite requirements. We used the known indoleamine-2,3-dioxygenase (IDO)-inhibitor 4-phenyl imidazole (4-PI) to reverse Interferon (IFN)-γ-induced chlamydial growth inhibition. However, at elevated inhibitor concentrations chlamydial growth was arrested even in the absence of IFN-γ. Since 4-PI is known to interfere with cholesterol metabolism, the effect of cholesterol add-back was tested. Chlamydia growth was restored in the presence of cholesterol in serum-containing, but not serum-free medium suggesting that cholesterol and other serum components are required for growth recovery. When serum factors were tested, either cholesteryl linoleate or the combination of cholesterol and linoleic acid restored chlamydial growth. However, growth was not restored when either cholesterol or linoleic acid were added alone, suggesting that the production of cholesteryl esters from cholesterol and fatty acids was affected by 4-PI treatment. In eukaryotic cells, the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the production of cholesteryl esters. When HeLa cells were treated with the ACAT-specific inhibitor 4-hydroxycinnamicacid amide C. trachomatis growth was interrupted, but was restored by the addition of cholesteryl linoleate, suggesting that ACAT activity is necessary for intracellular Chlamydia growth. PMID:25883118

  10. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  11. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    PubMed Central

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert HJ; Goodwin, Stephen B; Dunkle, Larry D

    2008-01-01

    Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value ≤ 10-05) to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO) classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi. PMID:18983654

  12. Chronic, dietary polybrominated diphenyl ether exposure affects survival, growth, and development of Rana pipiens tadpoles.

    PubMed

    Cary Coyle, Tawnya L; Karasov, William H

    2010-01-01

    Levels of polybrominated diphenyl ethers (PBDEs) in the environment have been increasing rapidly over the past two decades; however, the toxicology of these compounds to aquatic organisms is poorly understood. Because amphibians play a role in both aquatic and terrestrial food webs, and are currently undergoing worldwide population declines, it is of interest to determine how PBDEs may affect amphibian health. This is the first study that reports chronic, dietary effects of environmentally relevant levels (7-277 ng/g wet food) of PBDEs in amphibians throughout larval development. Beginning at the free-swimming stage (Gosner Stage [GS] 25), Rana pipiens tadpoles were orally exposed to a technical pentabromodiphenyl ether mixture (DE-71) through metamorphic climax (GS 42). On exposure day 43, a subset of tadpoles was removed for body residue analysis. Sum PBDEs in whole-body tissue correlated linearly to dietary concentrations with BDE-99 represented as the highest contributing congener in both diet and tissue. Survival among all treatments compared to the control was decreased by DE-71 exposure. Further, growth and development were delayed in all but the highest treatment, perhaps indicating greater PBDE tolerance among those individuals that survived the highest treatment. Time to metamorphic climax was delayed, on average, 22 to 36 d in DE-71-treated tadpoles compared to control tadpoles. Additionally, size at metamorphosis was smaller in the highest treatment, suggesting that individuals that survived and metamorphosed similarly to the controls did so with a trade-off in size. At environmentally relevant levels, PBDEs induced mortality as well as sublethal effects on developing tadpoles through dietary exposure.

  13. Climate change effects on vegetation in Northeastern Siberian tundra - How does shrub growth relate to local climate and what are potential effects of shrub expansion on permafrost thawing?

    NASA Astrophysics Data System (ADS)

    Blok, Daan; Schaepman-Strub, Gabriela; Heijmans, Monique; Sass-Klaassen, Ute; Bartholomeus, Harm; Knyazikhin, Yuri; Berendse, Frank

    2010-05-01

    The Siberian tundra is one of the key permafrost regions in the Arctic because of its large spatial extent and carbon-rich yedoma soils. Changes in permafrost thaw and concomitant carbon losses to the atmosphere can have large impacts on the global climate. Permafrost thaw is believed to strongly increase this century as a result of predicted increasing air temperature. At the same time, Arctic vegetation growth and composition is predicted to respond to future climate change. Deciduous shrubs are expected to benefit most from climate warming by increasing growth and expanding their range to higher latitudes. Evidence for recent increases in deciduous shrub cover in the Arctic region is limited thus far to small areas in Alaska. We examined if deciduous shrubs at our research site in the Indigirka lowlands, Northeastern Siberia, show a growth response to the main climate variables, temperature and precipitation. We constructed tree-ring width chronologies for two key Arctic deciduous shrub species, Betula nana and Salix pulchra, dating back roughly 60 years. The ring widths records are compared to summer-warmth index and summer-precipitation data from the closest climate station, approximately 30 km from our site in order to detect the climate factor that mainly determines shrub growth. On a larger scale, recent increases in Arctic productivity, measured as Arctic greenness (Normalized Difference Vegetation Index, NDVI), suggest that shrubs may have expanded during the 80ies and 90ies of the last century. Spectral reflectance data of varying vegetation composition measured at the tundra site were reduced to NDVI to link up with long-term NDVI data. We used a multiple regression analysis to estimate how variation in NDVI is explained by plant fractional cover of different plant functional types (graminoids, deciduous shrubs, evergreen shrubs, forbs, mosses and lichens). Deciduous shrub cover was the only significant explanatory parameter in the model after parameter

  14. On the evaluation of vegetation resilience in Southern Italy by using satellite VEGETATION, MODIS, TM time series

    NASA Astrophysics Data System (ADS)

    Coluzzi, C.; Didonna, I.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Therefore variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 1998 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different type of environmenta diturbances (drought, salinity, pollution, etc). Our objective is to characterize quantitatively the resilient effect of vegetation cover at different temporal and

  15. On the evaluation of vegetation resilience in Southern Italy by using VEGETATION, MODIS, TM satellite time series

    NASA Astrophysics Data System (ADS)

    Didonna, I.; Coluzzi, R.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 2000 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION, MODIS and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different types of environmental diturbances (drought, salinity, pollution, etc). Our objective was to characterize quantitatively the resilient effect of vegetation cover at differen temporal and

  16. Growth characteristics of Listeria monocytogenes as affected by a -native microflora in cooked ham under refrigerated and temperature abuse conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the growth characteristics of L. monocytogenes as affected by a native microflora in cooked ham at refrigerated and abuse temperatures. A five-strain mixture of L. monocytogenes and a native microflora isolated from cooked meat were inoculated alone (monocultured) or co-inoculate...

  17. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  18. Red5 and three nuclear pore components are essential for efficient suppression of specific mRNAs during vegetative growth of fission yeast.

    PubMed

    Sugiyama, Tomoyasu; Wanatabe, Nobuyoshi; Kitahata, Eri; Tani, Tokio; Sugioka-Sugiyama, Rie

    2013-07-01

    Zinc-finger domains are found in many nucleic acid-binding proteins in both prokaryotes and eukaryotes. Proteins carrying zinc-finger domains have important roles in various nuclear transactions, including transcription, mRNA processing and mRNA export; however, for many individual zinc-finger proteins in eukaryotes, the exact function of the protein is not fully understood. Here, we report that Red5 is involved in efficient suppression of specific mRNAs during vegetative growth of Schizosaccharomyces pombe. Red5, which contains five C3H1-type zinc-finger domains, localizes to the nucleus where it forms discrete dots. A red5 point mutation, red5-2, results in the upregulation of specific meiotic mRNAs in vegetative mutant red5-2 cells; northern blot data indicated that these meiotic mRNAs in red5-2 cells have elongated poly(A) tails. RNA-fluorescence in situ hybridization results demonstrate that poly(A)(+) RNA species accumulate in the nucleolar regions of red5-deficient cells. Moreover, Red5 genetically interacts with several mRNA export factors. Unexpectedly, three components of the nuclear pore complex also suppress a specific set of meiotic mRNAs. These results indicate that Red5 function is important to meiotic mRNA degradation; they also suggest possible connections among selective mRNA decay, mRNA export and the nuclear pore complex in vegetative fission yeast.

  19. Growth factors and hormones which affect survival, growth, and differentiation of the MCF-7 stem cells and their descendants

    SciTech Connect

    Resnicoff, M.; Medrano, E.E. )

    1989-03-01

    The human breast tumor cell line was separated by Percoll density gradient centrifugation into six different subpopulations, A to F, of which (E) appears to contain the stem cells on the basis of several criteria. The authors analyzed the response of the isolated subpopulations to insulin, thrombin, PGF{sub 2{alpha}}, estradiol, and 13-cis-retinal. They demonstrate that the first two growth factors stimulate ({sup 3}H)thymidine incorporation in the more differentiated subpopulations (D and F), while PGF{sub 2{alpha}} has mitogenic activity in subpopulations C and D. In the absence of any added growth factor, estradiol has the extreme and transient capacity of allowing the stem cell to detach from the tissue culture dish and to grow in suspension as multicellular aggregates (MCF-7/SE cells). 13-cis-Retinal acts as a negative modulator of differentiation and protects the cells from the inhibitory and differentiation activity in Na-butyrate.

  20. Scaling Vegetation on Experimental Channel Patterns

    NASA Astrophysics Data System (ADS)

    van Breemen, D. M.; van de Lageweg, W. I.; van Dijk, W. M.; Kleinhans, M. G.

    2010-12-01

    There are strong feedbacks between river channels, floodplains and riparian and floodplain vegetation. We study the effect of experimental vegetation on channel pattern. Through linear bar theory it is known that channel width-depth ratio affects bar pattern and relatively narrow channels with strong banks are required for meandering. Riparian vegetation is able to alter the channel width-depth ratio and therefore the channel pattern through strengthening of the banks. Floodplain vegetation adds hydraulic resistance so the flow is more focused into the channels. However, determination of the underlying mechanisms and processes has remained scarce and qualitative and hence these effects are not yet fully understood. The objectives of this study are 1) to develop a controllable and scalable method to reproduce vegetation effect in experimental self-formed channels, and 2) to experimentally determine the effects of riparian vegetation on bank strength, channel pattern and meandering dynamics. Sprouts of three plant species were systematically subjected to different seeding densities and to various growing conditions, including light intensity, submergence and nutrient starvation. Denser seeding reduced sprout growth after about a week. Stronger light increased plant growth and plant strength. Nutrient starvation caused different branching intensity of the root system. Tens of small-scale bank erosion experiments and bank failure experiments (see Kleinhans et al., this conference) were performed to quantify the strength of banks reinforced by plant roots at the experimental scale, demonstrating that bank strength is strongly determined by seeding density, rooting density and depth relative to channel depth. To study pattern evolution and morphodynamics we used a 1.25x7.5 m flume with a constant discharge and sediment feed. The introduction of vegetation in experiments results in narrower and deeper channels. Higher vegetation density leads to static channels with

  1. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth.

    PubMed

    Gavito, M E; Curtis, P S; Mikkelsen, T N; Jakobsen, I

    2001-09-01

    Nutrient requirements for plant growth are expected to rise in response to the predicted changes in CO(2) and temperature. In this context, little attention has been paid to the effects of soil temperature, which limits plant growth at early stages in temperate regions. A factorial growth-room experiment was conducted with winter wheat, varying soil temperature (10 degrees C and 15 degrees C), atmospheric CO(2) concentration (360 and 700 ppm), and N supply (low and high). The hypothesis was that soil temperature would modify root development, biomass allocation and nutrient uptake during vegetative growth and that its effects would interact with atmospheric CO(2) and N availability. Soil temperature effects were confirmed for most of the variables measured and 3-factor interactions were observed for root development, plant biomass components, N-use efficiency, and shoot P content. Importantly, the soil temperature effects were manifest in the absence of any change in air temperature. Changes in root development, nutrient uptake and nutrient-use efficiencies were interpreted as counterbalancing mechanisms for meeting nutrient requirements for plant growth in each situation. Most variables responded to an increase in resource availability in the order: N supply >soil temperature >CO(2).

  2. A depth-averaged 2-D shallow water model for breaking and non-breaking long waves affected by rigid vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...

  3. Milk and Protein Intake by Pregnant Women Affects Growth of Foetus

    PubMed Central

    Borazjani, Fatemeh; Kulkarni, Shanuak S.

    2013-01-01

    The study assessed the effects of the daily intake of milk and protein by pregnant women on foetal growth and determined the growth pattern and velocity of growth. A total of 504 ultrasound observations from 156 respondents were collected following a cross-sectional design in the last trimester of pregnancy; majority of them were in the last month of pregnancy. De facto and purposive sampling was done, and direct interviews of affluent pregnant women were conducted. Kruskal-Wallis test shows that majority of the respondents had tendency to consume 155.65 to 465.17 mL of milk per day, resulting in better and higher foetal growth. Most respondents consumed about 50-70 g of protein per day, and the foetal growth measurements, such as abdomen-circumference, femur length, biparietal diameter, and head-circumference, on an average, were higher in the same group. Quadratic regression model exhibited that all the traits of growth pattern in Model 1 (low milk and protein intake) appeared to have more mode of decline, in contrast to Model 2 (more milk and protein intake), which shows better growth. In addition, velocity of growth pattern was obtained through the first derivative of quadratic regression of growth pattern. Moreover, 95% confidence interval calculated for regression line slope of Model 1 and Model 2 showed that the estimation point (2 B2) of Model 1 does not lay into 95% CI of Model 2; so, statistical significance assorted and also the same trend conversely hold for Model 2. The rate of growth was highly influenced by maternal milk and protein intake. These findings suggest that contribution of common nutrients or other nutritional factors present in milk and protein promote the growth of foetus. PMID:24592584

  4. Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans

    PubMed Central

    García-Fraile, Paula; Carro, Lorena; Robledo, Marta; Ramírez-Bahena, Martha-Helena; Flores-Félix, José-David; Fernández, María Teresa; Mateos, Pedro F.; Rivas, Raúl; Igual, José Mariano; Martínez-Molina, Eustoquio; Peix, Álvaro; Velázquez, Encarna

    2012-01-01

    The biofertilization of crops with plant-growth-promoting microorganisms is currently considered as a healthy alternative to chemical fertilization. However, only microorganisms safe for humans can be used as biofertilizers, particularly in vegetables that are raw consumed, in order to avoid sanitary problems derived from the presence of pathogenic bacteria in the final products. In the present work we showed that Rhizobium strains colonize the roots of tomato and pepper plants promoting their growth in different production stages increasing yield and quality of seedlings and fruits. Our results confirmed those obtained in cereals and alimentary oil producing plants extending the number of non-legumes susceptible to be biofertilized with rhizobia to those whose fruits are raw consumed. This is a relevant conclusion since safety of rhizobia for human health has been demonstrated after several decades of legume inoculation ensuring that they are optimal bacteria for biofertilization. PMID:22675441

  5. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  6. [Spatial and Temporal Variations in Spectrum-Derived Vegetation Growth Trend in Qinghai-Tibetan Plateau from 1982 to 2014].

    PubMed

    Wang, Zhi-wei; Wu, Xiao-dong; Yue, Guang-yang; Zhao, Lin; Wang, Qian; Nan, Zhuo-tong; Qin, Yu; Wu, Tong-hua; Shi, Jian-zong; Zou, De-fu

    2016-02-01

    Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming. Meanwhile NDVI dataset was one of the most useful tools to monitor the vegetation activity with high spatial and temporal resolution, which is a normalized transform of the near-infrared radiation (NIR) to red reflectance ratio. Therefore, an extended GIMMS NDVI dataset from 1982-2006 to 1982-2014 was presented using a unary linear regression by MODIS dataset from 2000 to 2014 in QTP. Compared with previous researches, the accuracy of the extended NDVI dataset was improved again with consideration the residuals derived from scale transformation. So the model of extend NDVI dataset could be a new method to integrate different NDVI products. With the extended NDVI dataset, we found that in growing season there was a statistically significant increase (0.000 4 yr⁻¹, r² = 0.585 9, p < 0.001) in QTP from 1982 to 2014. During the study pe- riod, the trends of NDVI were significantly increased in spring (0.000 5 yr⁻¹, r² = 0.295 4, p = 0.001), summer (0.000 3 yr⁻¹, r² = 0.105 3, p = 0.065) and autumn respectively (0.000 6 yr⁻¹, r² = 0.436 7, p < 0.001). Due to the increased vegeta- tion activity in Qinghai-Tibet Plateau from 1982 to 2014, the magnitude of carbon sink was accumulated in this region also at this same period. Then the data of temperature and precipitation was used to explore the reason of vegetation changed. Although the trends of them are both increased, the correlation between NDVI and temperature is higher than precipitation in vegetation grow- ing season, spring, summer and autumn. Furthermore, there is significant spatial heterogeneity of the

  7. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  8. Does solar radiation affect the growth of tomato seeds relative to their environment?

    SciTech Connect

    Holzer, K.

    1995-09-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as the authors plans to note growth in artificial verses natural environment as the basic experiment.

  9. Dissolved oxygen levels affect dimorphic growth by the entomopathogenic fungus Isaria fumosorosea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. In shake flask studies, we evaluated the impact of aeration on the mode of growth of I. fumosorosea. Using 250 mL baffled Erlenmeyer flasks, culture volumes of 50, 100, 150, a...

  10. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora

    PubMed Central

    Voigt, Oliver; Pöggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions. PMID:23064313

  11. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies

    PubMed Central

    Murthi, Padma; Yong, Hannah E. J.; Ngyuen, Thy P. H.; Ellery, Stacey; Singh, Harmeet; Rahman, Rahana; Dickinson, Hayley; Walker, David W.; Davies-Tuck, Miranda; Wallace, Euan M.; Ebeling, Peter R.

    2016-01-01

    Fetal growth restriction (FGR) is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s) by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR) is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signaling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation. PMID:26924988

  12. Phosphoenolpyruvate carboxykinase (PEPCK) deficiency affects the germination, growth and fruit sugar content in tomato (Solanum lycopersicum L.).

    PubMed

    Huang, Yong-Xing; Yin, Yong-Gen; Sanuki, Atsuko; Fukuda, Naoya; Ezura, Hiroshi; Matsukura, Chiaki

    2015-11-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme and is utilized in the gluconeogenesis pathway in plants. Although, its catalytic and regulatory properties are quite well understood, there are uncertainties regarding its physiological role in many plants tissues such as the flesh of developing fruits. To further understand the function of PEPCK in fruits and other tissues, RNAi transgenic tomato plants in which SlPEPCK transcription was down-regulated by either CaMV 35S constitutive promoter or the fruit-specific E8 promoter were generated and characterized on the basis of their phenotypic and metabolic aspects. In the PEPCK-deficient lines, prominent growth suppression of germinated seedlings was observed and other vegetative suppression appeared during the early stage of plant growth in the 35S promoter-driven lines. In particular, root elongation was most obviously suppressed in the germinated seedlings, indicating that the gluconeogenesis pathway is involved in the root growth of seedlings. Regarding the primary metabolism in fruit, the soluble sugar content tended to decrease, whereas the malate content tended to increase in ripening fruits of the RNAi lines compared with the wild type. These results indicate that activation of the gluconeogenesis pathway from organic acids to sugars occurs during ripening but is suppressed by the knocking down of the PEPCK gene, suggesting that PEPCK participates in determining the sugar/acid ratio in ripening fruit. PMID:26381194

  13. Phosphoenolpyruvate carboxykinase (PEPCK) deficiency affects the germination, growth and fruit sugar content in tomato (Solanum lycopersicum L.).

    PubMed

    Huang, Yong-Xing; Yin, Yong-Gen; Sanuki, Atsuko; Fukuda, Naoya; Ezura, Hiroshi; Matsukura, Chiaki

    2015-11-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme and is utilized in the gluconeogenesis pathway in plants. Although, its catalytic and regulatory properties are quite well understood, there are uncertainties regarding its physiological role in many plants tissues such as the flesh of developing fruits. To further understand the function of PEPCK in fruits and other tissues, RNAi transgenic tomato plants in which SlPEPCK transcription was down-regulated by either CaMV 35S constitutive promoter or the fruit-specific E8 promoter were generated and characterized on the basis of their phenotypic and metabolic aspects. In the PEPCK-deficient lines, prominent growth suppression of germinated seedlings was observed and other vegetative suppression appeared during the early stage of plant growth in the 35S promoter-driven lines. In particular, root elongation was most obviously suppressed in the germinated seedlings, indicating that the gluconeogenesis pathway is involved in the root growth of seedlings. Regarding the primary metabolism in fruit, the soluble sugar content tended to decrease, whereas the malate content tended to increase in ripening fruits of the RNAi lines compared with the wild type. These results indicate that activation of the gluconeogenesis pathway from organic acids to sugars occurs during ripening but is suppressed by the knocking down of the PEPCK gene, suggesting that PEPCK participates in determining the sugar/acid ratio in ripening fruit.

  14. Cyclic Stretch Affects Pulmonary Endothelial Cell Control of Pulmonary Smooth Muscle Cell Growth

    PubMed Central

    Ochoa, Cristhiaan D.; Baker, Haven; Hasak, Stephen; Matyal, Robina; Salam, Aleya; Hales, Charles A.; Hancock, William; Quinn, Deborah A.

    2008-01-01

    Endothelial cells are subjected to mechanical forces in the form of cyclic stretch resulting from blood pulsatility. Pulmonary artery endothelial cells (PAECs) produce factors that stimulate and inhibit pulmonary artery smooth muscle cell (PASMC) growth. We hypothesized that PAECs exposed to cyclic stretch secrete proteins that inhibit PASMC growth. Media from PAECs exposed to cyclic stretch significantly inhibited PASMC growth in a time-dependent manner. Lyophilized material isolated from stretched PAEC-conditioned media significantly inhibited PASMC growth in a dose-dependent manner. This inhibition was reversed by trypsin inactivation, which is consistent with the relevant factor being a protein(s). To identify proteins that inhibited cell growth in conditioned media from stretched PAECs, we used proteomic techniques and found that thrombospondin (TSP)-1, a natural antiangiogenic factor, was up-regulated by stretch. In vitro, exogenous TSP-1 inhibited PASMC growth. TSP-1–blocking antibodies reversed conditioned media–induced inhibition of PASMC growth. Cyclic stretched PAECs secrete protein(s) that inhibit PASMC proliferation. TSP-1 may be, at least in part, responsible for this inhibition. The complete identification and understanding of the secreted proteome of stretched PAECs may lead to new insights into the pathophysiology of pulmonary vascular remodeling. PMID:18314539

  15. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  16. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  17. Influence of thermally oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum cholesterol and triglycerides in young pigs.

    PubMed

    Liu, P; Chen, C; Kerr, B J; Weber, T E; Johnston, L J; Shurson, G C

    2014-07-01

    To evaluate the effect of feeding thermally oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum fatty acid and cholesterol concentration in young pigs, 102 barrows (6.67 ± 0.03 kg BW) were divided into 3 groups and randomly assigned to dietary treatments in a 4 × 3 factorial arrangement. The main factors were lipid source (n = 4; corn oil [CN], canola oil [CA], poultry fat [PF], and tallow [TL]) and lipid peroxidation level (n = 3; original lipids [OL], slow oxidation [SO] through heating at 95°C for 72 h, or rapid oxidation [RO] through heating at 185°C for 7 h). Pigs were provided ad libitum access to diets in group pens for 28 d followed by controlled feed intake in metabolism crates for 10 d. On d 39, all pigs were euthanized for liver samples to determine liver weight, lipid profile, and gene expression patterns. Lipid oxidation analysis indicated that compared with the OL, SO and RO of lipids had a markedly increased concentrations of primary and secondary peroxidation products, and the increased lipid peroxidation products in CN and CA were greater than those in PF and TL. After a 28-d ad libitum feeding period, pigs fed RO lipids tended to have reduced ADFI (P = 0.09) and ADG (P < 0.05) compared with pigs fed OL, and pigs fed CA had reduced G:F (P < 0.05) compared with pigs fed all other lipids. Pigs fed RO lipids tended to have increased relative liver weight (P = 0.09) compared with pigs fed OL. Liver triglyceride concentration (LTG) in pigs fed OL was greater (P < 0.05) than in pigs fed SO lipids and tended to be greater (P < 0.07) than in pigs fed SO. The reduced LTG were consistent with increased (P < 0.05) mRNA expression of PPARα factor target genes (acyl-CoA oxidase, carnitine palmitoyltransferase 1, and mitochondrial 3-hydroxy-3-methylglutary-CoA synthase) in pigs fed SO and RO lipids compared with pigs fed OL. Pigs fed CN or CA tended to have increased LTG (P = 0.09) compared with pigs fed

  18. Density but not climate affects the population growth rate of guanacos ( Lama guanicoe) (Artiodactyla, Camelidae)

    PubMed Central

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E

    2014-01-01

    We analyzed the effects of population density and climatic variables on the rate of population growth in the guanaco ( Lama guanicoe), a wild camelid species in South America. We used a time series of 36 years (1977-2012) of population sampling in Tierra del Fuego, Chile. Individuals were grouped in three age-classes: newborns, juveniles, and adults; for each year a female population transition matrix was constructed, and the population growth rate (λ) was estimated for each year as the matrix highest positive eigenvalue. We applied a regression analysis with finite population growth rate (λ) as dependent variable, and total guanaco population, sheep population, annual mean precipitation, and winter mean temperature as independent variables, with and without time lags. The effect of guanaco population size was statistically significant, but the effects of the sheep population and the climatic variables on guanaco population growth rate were not statistically significant. PMID:25187878

  19. Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

    NASA Astrophysics Data System (ADS)

    Čufar, Katarina; De Luis, Martin; Prislan, Peter; Gričar, Jožica; Črepinšek, Zalika; Merela, Maks; Kajfež-Bogataj, Lučka

    2015-08-01

    We used a dendrochronological and leaf phenology network of European beech ( Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955-2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding—as observed in a previous study—probably does not cause increased tree growth rates in beech in Slovenia.

  20. Mortality affects adaptive allocation to growth and reproduction: field evidence from a guild of body snatchers

    PubMed Central

    2010-01-01

    Background The probability of being killed by external factors (extrinsic mortality) should influence how individuals allocate limited resources to the competing processes of growth and reproduction. Increased extrinsic mortality should select for decreased allocation to growth and for increased reproductive effort. This study presents perhaps the first clear cross-species test of this hypothesis, capitalizing on the unique properties offered by a diverse guild of parasitic castrators (body snatchers). I quantify growth, reproductive effort, and expected extrinsic mortality for several species that, despite being different species, use the same species' phenotype for growth and survival. These are eight trematode parasitic castrators—the individuals of which infect and take over the bodies of the same host species—and their uninfected host, the California horn snail. Results As predicted, across species, growth decreased with increased extrinsic mortality, while reproductive effort increased with increased extrinsic mortality. The trematode parasitic castrator species (operating stolen host bodies) that were more likely to be killed by dominant species allocated less to growth and relatively more to current reproduction than did species with greater life expectancies. Both genders of uninfected snails fit into the patterns observed for the parasitic castrator species, allocating as much to growth and to current reproduction as expected given their probability of reproductive death (castration by trematode parasites). Additionally, species differences appeared to represent species-specific adaptations, not general plastic responses to local mortality risk. Conclusions Broadly, this research illustrates that parasitic castrator guilds can allow unique comparative tests discerning the forces promoting adaptive evolution. The specific findings of this study support the hypothesis that extrinsic mortality influences species differences in growth and reproduction

  1. Contribution of PPi-Hydrolyzing Function of Vacuolar H+-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes

    PubMed Central

    Asaoka, Mariko; Segami, Shoji; Ferjani, Ali; Maeshima, Masayoshi

    2016-01-01

    The vacuolar-type H+-pyrophosphatase (H+-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H+-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H+-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H+-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H+-PPase overexpressors exhibited enhanced activity of H+-PPase during vegetative growth, but no change in the activity of vacuolar H+-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H+-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H+-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H+-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme. PMID:27066051

  2. Contribution of PPi-Hydrolyzing Function of Vacuolar H(+)-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes.

    PubMed

    Asaoka, Mariko Mariko Asaoka; Segami, Shoji; Ferjani, Ali; Maeshima, Masayoshi

    2016-01-01

    The vacuolar-type H(+)-pyrophosphatase (H(+)-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H(+)-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H(+)-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H(+)-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H(+)-PPase overexpressors exhibited enhanced activity of H(+)-PPase during vegetative growth, but no change in the activity of vacuolar H(+)-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H(+)-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H(+)-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H(+)-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme.

  3. Affective Determinants of Anxiety and Depression Development in Children and Adolescents: An Individual Growth Curve Analysis

    ERIC Educational Resources Information Center

    De Bolle, Marleen; De Clercq, Barbara; Decuyper, Mieke; De Fruyt, Filip

    2011-01-01

    The tripartite model (in Clark and Watson, "J Abnorm Psychol" 100:316-336, 1991) comprises Negative Affect (NA), Positive Affect (PA), and Physiological Hyperarousal (PH), three temperamental-based dimensions. The current study examined the tripartite model's assumptions that (a) NA interacts with PA to predict subsequent depressive (but not…

  4. Traffic pollution affects P. pinea growth according to tree ring width and C and N isotopic composition

    NASA Astrophysics Data System (ADS)

    Battipaglia, Giovanna; Marzaioli, Fabio; Lubritto, Carmine; Altieri, Simona; Strumia, Sandro; Cherubini, Paolo; Cotrufo, M. Francesca

    2010-05-01

    Urbanization and industrialization are rapidly growing, as a consequence roads and their associated vehicular traffic exerts major and increasing impacts on adjacent ecosystems. Various studies have shown the impact of vehicle exhausts on road side vegetation through their visible and non-visible effects (Farmer and Lyon 1977, Sarkar et al., 1986, Angold 1997, Nuhoglu 2005) but, presently there is little known about the long term effect of air pollution on vegetation and on trees, in particular. Developing proxies for atmospheric pollution that would be used to identify the physiological responses of trees under roadside car exhaust pollution stress is needed. In this context we propose a novel method to determine the effect of car exhaust pollution on tree growth, coupling classical dendrochronological analyses and analyses of 15N and 13C in tree rings, soils and leaves with tree ring radiocarbon (14C) data. Pinus pinea individuals, adjacent to main roads in the urban area of Caserta (South Italy) and exposed to large amounts of traffic exhausts since 1980, were sampled and the time-related trend in the growth residuals was estimated. We found a consistent decrease in the ring width starting from 1980, with a slight increase in δ13C value, which was considered to be a consequence of environmental stress. No clear pattern was identified in δ15N, while an increasing effect of the fossil fuel dilution on the atmospheric bomb-enriched 14C background was detected in tree rings, as a consequence of the increase in traffic exhausts. Our findings suggest that radiocarbon is a very sensitive tool to investigate small-scale (i.e. traffic exhaust at the level crossing) and large-scale (urban area pollution) induced disturbances. References Angold PG. Impact of a road upon adjacent heathland vegetations: effect on plant species compositions. J Appl Ecol 1997; 34 (2): 409-417. Farmer JC, Lyon TDB. Lead in Glasgow street dirt and soil. Sci Tot Environ 1977; 8: 89-93. Nuhoglu

  5. Relevance of fruits, vegetables and flavonoids from fruits and vegetables during early life, mid-childhood and adolescence for levels of insulin-like growth factor (IGF-1) and its binding proteins IGFBP-2 and IGFBP-3 in young adulthood.

    PubMed

    Krupp, Danika; Remer, Thomas; Penczynski, Katharina J; Bolzenius, Katja; Wudy, Stefan A; Buyken, Anette E

    2016-02-14

    The growth hormone (GH) insulin-like growth factor (IGF) axis has been linked to insulin metabolism and cancer risk. Experimental evidence indicates that the GH-IGF axis itself can be influenced by dietary flavonoids. As fruit and vegetable (FV) intake is a major source of flavonoid consumption, FV's beneficial health effects may be explained via flavonoids' influence on the GH-IGF axis, but observational evidence is currently rare. We used data from Dortmund Nutritional and Anthropometric Longitudinally Designed Study participants to analyse prospective associations between FV, fruit intake and flavonoid intake from FV (FlavFV) with IGF-1 and its binding proteins IGFBP-2 and IGFBP-3. Subjects needed to provide a fasting blood sample in adulthood (18-39 years) and at least two 3-d weighed dietary records in early life (0·5-2 years, n 191), mid-childhood (3-7 years, n 265) or adolescence (girls: 9-15 years, boys: 10-16 years, n 261). Additional analyses were conducted among those providing at least three 24-h urine samples in adolescence (n 236) to address the predictor urinary hippuric acid (HA), a biomarker of polyphenol intake. Higher fruit intake in mid-childhood and adolescence was related to higher IGFBP-2 in adulthood (P=0·03 and P=0·045). Comparable trends (P=0·045-0·09) were discernable for FV intake (but not FlavFV) in all three time windows. Similarly, higher adolescent HA excretion tended to be related (P=0·06) to higher adult IGFBP-2 levels. Regarding IGFBP-3, a marginal (P=0·08) positive association was observed with FlavFV in mid-childhood only. None of the investigated dietary factors was related to IGF-1. In conclusion, higher fruit and FV intakes during growth may be relevant for adult IGFBP-2, but probably not for IGFBP-3 or IGF-1.

  6. Effects of pomegranate and pomegranate-apple blend juices on the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 type strain vegetative cells and spores.

    PubMed

    Molva, Celenk; Baysal, Ayse Handan

    2015-05-01

    The present study examined the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores after inoculation into apple, pomegranate and pomegranate-apple blend juices (10, 20, 40 and 80%, v/v). Also, the effect of sporulation medium was tested using mineral [Bacillus acidoterrestris agar (BATA) and Bacillus acidocaldarius agar (BAA)] and non-mineral containing media [potato dextrose agar (PDA) and malt extract agar (MEA)]. The juice samples were inoculated separately with approximately 10(5)CFU/mL cells or spores from different sporulation media and then incubated at 37°C for 336 h. The number of cells decreased significantly with increasing pomegranate juice concentration in the blend juices and storage time (p<0.001). Based on the results, 3.17, 3.53, and 3.72 log cell reductions were observed in 40%, 80% blend and pomegranate juices, respectively while the cell counts attained approximately 7.17 log CFU/mL in apple juice after 336 h. On the other hand, the cell growth was inhibited for a certain time, and then the numbers started to increase after 72 and 144 h in 10% and 20% blend juices, respectively. After 336 h, total population among spores produced on PDA, BATA, BAA and MEA indicated 1.49, 1.65, 1.67, and 1.28 log reductions in pomegranate juice; and 1.51, 1.38, 1.40 and 1.16 log reductions in 80% blend juice, respectively. The inhibitory effects of 10%, 20% and 40% blend juices varied depending on the sporulation media used. The results obtained in this study suggested that pomegranate and pomegranate-apple blend juices could inhibit the growth of A. acidoterrestris DSM 3922 vegetative cells and spores.

  7. Bone quality is affected by food restriction and by nutrition-induced catch-up growth.

    PubMed

    Pando, Rakefet; Masarwi, Majdi; Shtaif, Biana; Idelevich, Anna; Monsonego-Ornan, Efrat; Shahar, Ron; Phillip, Moshe; Gat-Yablonski, Galia

    2014-12-01

    Growth stunting constitutes the most common effect of malnutrition. When the primary cause of malnutrition is resolved, catch-up (CU) growth usually occurs. In this study, we have explored the effect of food restriction (RES) and refeeding on bone structure and mechanical properties. Sprague-Dawley male rats aged 24 days were subjected to 10 days of 40% RES, followed by refeeding for 1 (CU) or 26 days long-term CU (LTCU). The rats fed ad libitum served as controls. The growth plates were measured, osteoclasts were identified using tartrate-resistant acid phosphatase staining, and micro-computed tomography (CT) scanning and mechanical testing were used to study structure and mechanical properties. Micro-CT analysis showed that RES led to a significant reduction in trabecular BV/TV and trabecular number (Tb.N), concomitant with an increase in trabecular separation (Tb.Sp). Trabecular BV/TV and Tb.N were significantly greater in the CU group than in the RES in both short- and long-term experiments. Mechanical testing showed that RES led to weaker and less compliant bones; interestingly, bones of the CU group were also more fragile after 1 day of CU. Longer term of refeeding enabled correction of the bone parameters; however, LTCU did not achieve full recovery. These results suggest that RES in young rats attenuated growth and reduced trabecular bone parameters. While nutrition-induced CU growth led to an immediate increase in epiphyseal growth plate height and active bone modeling, it was also associated with a transient reduction in bone quality. This should be taken into consideration when treating children undergoing CU growth. PMID:25248555

  8. Research Spotlight: Vegetation-climate feedback hot spots in Europe

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    Changing temperatures affect the growth of vegetation, which in turn can affect climate through changes in surface reflectivity, carbon dioxide (CO2) absorption, and evapotranspiration. These vegetation feedbacks to climate can be important, especially on local or regional scales, but regional climate models often do not include these feedbacks. Wramneby et al.e ran simulations that included vegetation dynamics in a regional climate model of Europe. They found three areas that could be hot spots for vegetation climate feedbacks. In their simulations, by the end of the 21st century in the Scandinavian mountains, a positive vegetation-warming feedback would occur as warming temperatures result in forest expansion, which masks snow cover. Forest reflects less light than snow, leading to further increased warming. In central Europe the simulations indicate that a negative vegetation-warming feedback would take place as increased CO2 levels stimulate plant growth; this would mitigate warming through increased evapotranspiration, which cools the surface. In southern Europe, rising temperatures would lead to increased dryness in the summer, which restricts plant growth and survival, leading to positive warming feedback through reduced evapotranspiration. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2010JD014307, 2010)

  9. Plasticity in Vegetative Growth over Contrasted Growing Sites of an F1 Olive Tree Progeny during Its Juvenile Phase.

    PubMed

    Ben Sadok, Inès; Martinez, Sebastien; Moutier, Nathalie; Garcia, Gilbert; Leon, Lorenzo; Belaj, Angelina; De La Rosa, Raúl; Khadari, Bouchaib; Costes, Evelyne

    2015-01-01

    Climatic changes impact fruit tree growth and severely limit their production. Investigating the tree ability to cope with environmental variations is thus necessary to adapt breeding and management strategies in order to ensure sustainable production. In this study, we assessed the genetic parameters and genotype by environment interaction (GxE) during the early tree growth. One hundred and twenty olive seedlings derived from the cross 'Olivière' x 'Arbequina' were examined across two sites with contrasted environments, accounting for ontogenet