Science.gov

Sample records for affect water quality

  1. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  2. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi. PMID:24459990

  3. Biosolids applications affect runoff water quality following forest fire.

    PubMed

    Meyer, V F; Redente, E F; Barbarick, K A; Brobst, R

    2001-01-01

    Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control. PMID:11577857

  4. How Do Our Actions Affect Water Quantity and Quality?

    ERIC Educational Resources Information Center

    Gordon, Jessica

    2008-01-01

    Water is an essential resource for all living things. How we live on our watershed can impact water quantity and quality. It is important to recognize how humans alter watershed dynamics, but students often find it challenging to visualize watershed processes and understand how decisions that they make as individuals and together as a community…

  5. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  6. WATER QUALITY IN THE NEAR COASTAL WATERS OF THE GULF OF MEXICO AFFECTED BY HURRICANE KATRINA: BEFORE AND AFTER THE STORM

    EPA Science Inventory

    Water quality was assessed following Hurricane Katrina in the affected waters of Alabama, Mississippi and Louisiana. Post-landfall water quality was compared to pre-hurricane conditions using indicators assessed by EPA's National Coastal Assessment program and additional indicat...

  7. Assessment of processes affecting low-flow water quality of Cedar Creek, west-central Illinois

    USGS Publications Warehouse

    Schmidt, Arthur R.; Freeman, W.O.; McFarlane, R.D.

    1989-01-01

    Water quality and the processes that affect dissolved oxygen, nutrient (nitrogen and phosphorus species), and algal concentrations were evaluated for a 23.8-mile reach of Cedar Creek near Galesburg, west-central Illinois, during periods of warm-weather, low-flow conditions. Water quality samples were collected and stream conditions were measured over a diel (24 hour) period on three occasions during July and August 1985. Analysis of data from the diel-sampling periods indicates that concentrations of iron, copper, manganese, phenols, and total dissolved-solids exceeded Illinois ' general-use water quality standards in some locations. Dissolved-oxygen concentrations were less than the State minimum standard throughout much of the study reach. These data were used to calibrate and verify a one-dimensional, steady-state, water quality model. The computer model was used to assess the relative effects on low-flow water quality of processes such as algal photosynthesis and respiration, ammonia oxidation, biochemical oxygen demand, sediment oxygen demand, and stream reaeration. Results from model simulations and sensitivity analysis indicate that sediment oxygen demand is the principal cause of low dissolved-oxygen concentrations in the creek. (USGS)

  8. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  9. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  10. Wash operations affect water quality and packaged fresh-cut romaine lettuce quality and microbial growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Washing during the preparation of fresh-cut produce is an important step to maintaining the quality and safety of the finished products. It is often the only step aimed at reducing microbial populations and removing tissue fluids from cut produce. However, little is known about the effects of washi...

  11. Microbial water quality in streams as affected by high flow events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottom sediments in surface water sources were shown to serve as reservoirs of pathogen and indicator microorganisms. Resuspension of these sediments during the high flow events strongly modifies microbial quality of recreation and irrigation waters. Therefore, changes in microbial water quality are...

  12. Water quality of a reservoir as affected by agriculture in the east of Thailand: a preliminary study.

    PubMed

    Tonmanee, N; Wada, H

    2001-01-01

    A preliminary study on the water quality of a reservoir, affected by agriculture, in the east of Thailand was conducted during 1996-1997. Monitoring water quality of a reservoir is important because the sloping lands surrounding the reservoirs are mainly utilized for cultivating cash crops (pineapple, cassava, etc). A lot of fertilizers and agrochemicals were applied to soil and crops which can polluted the water. The results from the preliminary studied will be applied for the monitoring of the water quality in other reservoirs in the 16 pilot areas. PMID:11724479

  13. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters.

    PubMed

    Wang, Hong; Masters, Sheldon; Falkinham, Joseph O; Edwards, Marc A; Pruden, Amy

    2015-07-21

    Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens. PMID:26121595

  14. Physical-Chemical Factors Affecting the Low Quality of Natural Water in the Khibiny Massif

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Maksimova, Viktoriia; Belkina, Natalia

    2014-05-01

    One peculiarity of the Khibiny Massif is its spatial location. Rising over 1000 m above the surrounding hilly land and thus obstructing the passage of air masses, it promotes condensation and accumulation of surface and underground water. Annual precipitation here amounts to 600-700 mm in the valleys and up to 1600 mm on mountainous plateaus. Using this water for drinking and household purposes is problematic due to excess Al and F concentrations and high pH values. Now it is known that in its profile, the Massif is represented by three hydrogeological subzones: the upper (aerated), medium and lower ones. The upper subzone spreads throughout the Massif and is affected by the local drainage network and climatic conditions. The medium subzone is permanently saturated with underground water flowing horizontally to sites of discharge at the level of local river valleys and lakes. The fissure-vein water in the lower subzone is confined to tectonic fractures and faults in the so far underexplored, deeper parts of the Massif. Being abundant, this water ascends under high pressure. At places, water has been observed spurting from as deep as 700 m, and even 960 m. In the latter case, the temperature of ascending water was higher than 18 centigrade (Hydrogeology of the USSR, V. 27, 1971). This work was undertaken to reveal the nature of the low quality of water in the Khibiny by using physical-chemical modeling (software package Selector, Chudnenko, 2010). Processes of surface and underground water formation in the Khibiny were examined within a physical-chemical model (PCM) of the "water-rock-atmosphere-hydrogen" system. In a multi-vessel model used, each vessel represented a geochemical level of the process interpreted as spatiotemporal data - ξ (Karpov, 1981). The flow reactor consisted of 4 tanks. In the first tank, water of the Kuniok River (1000 L) interacted with atmosphere and an organic substance. The resulting solution proceeded to tanks 2-4 containing with

  15. Benthic invertebrate population characteristics as affected by water quality in coal-bearing regions of Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.

    1986-01-01

    Benthic invertebrate and water quality data collected during previous U.S. Geological Survey studies to provide background hydrologic information on streams draining Tennessee coal reserves, were evaluated to identify possible relations between stream biota and water quality. Linear regressions produced low correlation coefficients relating the number of taxa/sample, total number of organisms/sample, sample diversity, and percentage composition of selected orders of invertebrates, with average water quality parameter values available at sampling stations (r is < 0.62 at p=0.05). Analyses of these data by linear regressions explained little of the variability in benthic invertebrate samples primarily because the distributions of benthic organisms along environmental gradients are nonlinear. Variability in substrate characteristics in the study area and seasonal insect emergence patterns also complicated interpretation of these data. However, analysis of variance tests did indicate significant trends towards reduced number of taxa, number of organisms, and sample diversity at stations with relatively poor water quality conditions. Decreasing percentage composition of Ephemeroptera was generally accompanied by an increase in percent Diptera at stations with higher water quality constituent concentrations and acidic pH ( > than 0.6 units). These trends indicate significant differences in benthic communities at sites with evidence of more severe land use impacts. Additional data on benthic invertebrates, water quality , and physical habitat conditions, along with analyses of data using multivariate statistical methods are needed to define ecological relations between specific groups of invertebrates and environmental conditions. (Author 's abstract)

  16. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  17. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers

  18. Dairy manure and plant nutrient management issues affecting water quality and the dairy industry.

    PubMed

    Lanyon, L E

    1994-07-01

    Specific requirements for dairy manure management to protect water quality from nutrient pollution depend on the organization of individual farms. Further, the management requirements and options are different for point (farmstead) and nonpoint (field-applied) sources of pollution from farms. A formal management process can guide decisions about existing crop nutrient utilization potential, provide a framework for tracking nutrients supplied to crops, and identify future requirements for dairy manure management to protect water quality. Farm managers can use the process to plan daily activities, to assess annual nutrient management performance, and to chart future requirements as herd size increases. Agronomic measures of nutrient balance and tracking of inputs and outputs for various farm management units can provide the quantitative basis for management to allocate better manure to fields, to modify dairy rations, or to develop alternatives to on-farm manure application. Changes in agricultural production since World War II have contributed to a shift from land-based dairy production to a reliance on capital factors of production supplied by the dairy industry. Meanwhile, management of dairy manure to meet increasingly stringent water quality protection requirements is still a land-based activity. Involving the dairy industry and off-farm stakeholders as participants in the management process for field, farm, and regional dairy production can be the basis for decision-making to reconcile the sometimes conflicting demands of production and water quality protection. PMID:7929961

  19. Benthic invertebrate population characteristics as affected by water quality in coal-bearing regions of Tennessee

    SciTech Connect

    Bradfield, A.D.

    1986-01-01

    Linear regressions produced low correlation coefficients relating the number of taxa/sample, total number of organisms/sample, sample diversity, and percentage composition of selected orders of invertebrates, with average water quality parameter values available at sampling stations. Analyses of these data by linear regressions explained little of the variability in benthic invertebrate samples primarily because the distributions of benthic organisms along environmental gradients are nonlinear. Variability in substrate characteristics in the study area and seasonal insect emergence patterns also complicated interpretation of these data. However, analysis of variance tests did indicate significant trends towards reduced number of taxa, number of organisms, and sample diversity at stations with relatively poor water quality conditions. Decreasing percentage composition of Ephemeroptera was generally accompanied by an increase in percent Diptera at stations with higher water quality constituent concentrations and acidic pH. These trends indicate significant differences in benthic communities at sites with evidence of more severe land use impacts. Additional data on benthic invertebrates, water quality, and physical habitat conditions, along with analyses of data using multivariate statistical methods are needed to define ecological relations between specific groups of invertebrates and environmental conditions. 44 refs., 1 fig., 8 tabs.

  20. THE ORDINATION OF AQUATIC NEMATODE COMMUNITIES AS AFFECTED BY STREAM WATER QUALITY

    EPA Science Inventory

    Benthic nematodes were sampled at 16 sites on two streams to investigate the relationships of nematode community structure to various water quality factors. A prominence value for each species was calculated for use in three-dimensional community ordination. Species composition o...

  1. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  2. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  3. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. PMID:21320738

  4. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation.

    PubMed

    Alexander, Brittany E; Mueller, Benjamin; Vermeij, Mark J A; van der Geest, Harm H G; de Goeij, Jasper M

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality. PMID:26664799

  5. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    PubMed Central

    Mueller, Benjamin; Vermeij, Mark J.A.; van der Geest, Harm H.G.

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality. PMID:26664799

  6. Application of an environmental decision support system to a water quality trading program affected by surface water diversions.

    PubMed

    Obropta, Christopher C; Niazi, Mehran; Kardos, Josef S

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon's (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions. PMID:18592303

  7. Application of an Environmental Decision Support System to a Water Quality Trading Program Affected by Surface Water Diversions

    NASA Astrophysics Data System (ADS)

    Obropta, Christopher C.; Niazi, Mehran; Kardos, Josef S.

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon’s (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.

  8. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    PubMed Central

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  9. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland.

    PubMed

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min-1h) over selected time scales. In addition, the stable isotopes of water (δD and δ(18)O-H2O) as well as those of nitrate (δ(15)N-NO3(-) and δ(18)O-NO3(-)) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes--mainly photosynthesis and respiration--were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal changes. High

  10. Principles of Water Quality

    SciTech Connect

    Waite, T.D.

    1984-01-01

    CONTENTS: Introduction to Water Quality Concepts. Natural Environmental Processes. Toxic Metals as Factors in Water Quality. Refractory Organic Compounds. Nutrients, Productivity, and Eutrophication. Microbes and Water Quality. Thermal Effects and Water Quality. Air Quality. Water Quality Interactions. Introduction to Water Quality Modeling. Water Quality Standards, and Management Approaches.

  11. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations. PMID:25626402

  12. Fermentation Quality of Ensiled Water Hyacinth (Eichhornia crassipes) as Affected by Additives

    PubMed Central

    Tham, Ho Thanh; Van Man, Ngo; Pauly, Thomas

    2013-01-01

    A lab-scale ensiling study was carried out to investigate the fermentation quality of water hyacinth (WH) supplemented with molasses, rice bran, as an absorbent, and an inoculant in the form of fermented vegetable juice and their combinations. After wilting the water hyacinths for 7 h to a dry matter (DM) content of 240 to 250 g/kg, the following treatments were applied: i) Control (C), WH only; ii) WH with sugarcane molasses at 40 g/kg WH (CM); iii) WH inoculated with fermented vegetable juice at 10 ml/kg WH (CI); iv) CM and CI (CMI) combined; v) WH with 150 g rice bran/kg WH (CA); vi) CA and CI combined (CAI); vii) CA and CM combined (CAM); and viii) CA, CM and CI combined (CAMI). After application of additives, the differently treated forages were mixed and ensiled in triplicates in 1,500-ml polyethylene jars. After ensiling for 3 d, pH values in all treatments, except C and CI, had decreased to approximately 4.0 and remained low till 14 d. After 56 d, pH had increased between 0.4 to 0.9 pH-units compared to those at 14 d. The ammonia nitrogen (NH3-N) concentration ranged from an acceptable level in treatment CM (8 g/kg N) to a high NH3-N value in treatment CMI (16 g/kg N). Lactic acid formation was higher in CI than in all other treatments. Butyric acid contents, which indicate badly fermented silages, were low in all silages (<2 g/kg DM). There were two-way interactions (p-values from <0.001 to 0.045) for almost all fermentation end-products and pH, except for the molasses×inoculant interaction on NH3-N (p = 0.26). Significant 3-way interactions were found on all observed variables except for weight losses of silages. It is concluded that conserving wilted WH as silage for ruminants may be improved by the addition of molasses or rice bran. PMID:25049776

  13. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer. PMID:26608758

  14. Biofilms in irrigation pipes affect the microbial quality of irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is an essential element in the production of many food crops. Irrigation water is often delivered to fields from surface or subsurface sources via pipe-based systems. Surface waters are known to contain pathogenic microorganisms. Disease outbreaks in crops that are eaten raw (i.e. leafy g...

  15. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  16. Reconnaissance Study of Water Quality in the Mining-Affected Aries River Basin, Romania

    USGS Publications Warehouse

    Friedel, Michael J.; Tindall, James A.; Sardan, Daniel; Fey, David L.; Poputa, G.L.

    2008-01-01

    The Aries River basin of western Romania has been subject to mining activities as far back as Roman times. Present mining activities are associated with the extraction and processing of various metals including Au, Cu, Pb, and Zn. To understand the effects of these mining activities on the environment, this study focused on three objectives: (1) establish a baseline set of physical parameters, and water- and sediment-associated concentrations of metals in river-valley floors and floodplains; (2) establish a baseline set of physical and chemical measurements of pore water and sediment in tailings; and (3) provide training in sediment and water sampling to personnel in the National Agency for Mineral Resources and the Rosia Poieni Mine. This report summarizes basin findings of physical parameters and chemistry (sediment and water), and ancillary data collected during the low-flow synoptic sampling of May 2006.

  17. Environmental setting and factors that affect water quality in the Georgia-Florida Coastal Plain study unit

    USGS Publications Warehouse

    Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.

    1996-01-01

    , geologic setting, ground-water systems, surface- water systems, climate, floods, droughts, population, land use, and water use. Factors affecting water quality in the study area are land use (primarily urban and agricultural land uses), water use in coastal areas, hydrogeology, ground-water/surface-water interaction, geology, and climate. Surface-water quality problems in urban areas have occurred in the Ogeechee, Canoochee, Ocmulgee, St. Marys, Alapaha, Withlacoochee (north), Santa Fe, Ochlockonee, St. Johns, and Oklawaha Rivers and include nitrogen and phosphorus loading, low dissolved oxygen, elevated bacteria, sediment, and turbidity, and increased concentrations of metals. In agricultural areas, surface-water quality problems include elevated nitrogen and phosphorus concentrations, erosion, and sedimentation and have occurred in the Ocmulgee, St. Marys, Santa Fe, Ochlockonee, St. Johns, Oklawaha, Withlacoochee (South), Hillsborough, and Alafia Rivers. Ground water-quality problems such as saltwater intrusion have occurred mostly in coastal areas and were caused by excessive withdrawals.

  18. THE SIGNIFICANCE OF "STAGNATION CURVES" FOR LEAD AND COPPER, AND WATER QUALITY FACTORS AFFECTING THEM

    EPA Science Inventory

    "Stagnation curves" are the response of metal levels, particularly lead and copper, to time under conditions of no water flow. Research on lead pipe in the early 1980's in the United States, Germany, and in the United Kingdom suggested that they were characterized by rapid incre...

  19. Recent (2003-05) Water Quality of Barton Springs, Austin, Texas, With Emphasis on Factors Affecting Variability

    USGS Publications Warehouse

    Mahler, Barbara J.; Garner, Bradley D.; Musgrove, MaryLynn; Guilfoyle, Amber L.; Rao, Mohan V.

    2006-01-01

    From 2003 to 2005, the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, collected and analyzed water samples from the four springs (orifices) of Barton Springs in Austin, Texas (Upper, Main, Eliza, and Old Mill Springs), with the objective of characterizing water quality. Barton Springs is the major discharge point for the Barton Springs segment of the Edwards aquifer. A three-pronged sampling approach was used: physicochemical properties (including specific conductance and turbidity) were measured continuously; samples were collected from the four springs routinely every 2 weeks (during August-September 2003) to 3 weeks (during June 2004-June 2005) and analyzed for some or all major ions, nutrients, trace elements, soluble pesticides, and volatile organic compounds; and samples were collected from the four springs at more closely spaced intervals during the 2 weeks following two storms and analyzed for the same suite of constituents. Following the two storms, samples also were collected from five of the six major streams that provide recharge to Barton Springs. Spring discharge during both sample collection periods was above average (60 cubic feet per second or greater). Barton Springs was found to be affected by persistent low concentrations of atrazine (an herbicide), chloroform (a drinking-water disinfection by-product), and tetrachloroethene (a solvent). Increased recharge from the major recharging streams resulted in increased calcium, sulfate, atrazine, simazine, and tetrachloroethene concentrations and decreased concentrations of most other major ions, nitrate, and chloroform at one or more of the springs. These changes in concentration demonstrate the influence of water quality in recharging streams on water quality at the springs even during non-stormflow conditions. The geochemical compositions of the four springs indicate that Upper Spring is more contaminated and is influenced by a contributing flow path that

  20. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration. PMID:24019143

  1. Water and sediment quality factors affecting unionid mussel populations in the Clinch River, Virginia, USA

    SciTech Connect

    Hassel, J.H Van; Cherry, D.S.; Yeager, M.M.; Farris, J.L.

    1995-12-31

    The Clinch River contains a very diverse unionid mussel fauna of 45 species, including 21 endemics and 11 federally listed endangered species. Recent surveys indicate that the mussel fauna is in decline in several areas of the river. To study this problem, differences in unionid mussel species-distribution, density, size demography, physiological condition, and contaminant body burden were quantified at sixteen sites encompassing 200 miles of the Clinch River in Virginia. These differences were associated with corresponding site differences in physical habitat and water and sediment contamination attributable to point (STPS, small industries) and nonpoint (abandoned mine lands, agriculture) discharge sources. Some of the documented impacts have been severe enough to prevent successful recruitment into local populations of several unionid species for several years. Validation of these sources of impact will allow evaluation of specific watershed management options for the protection and enhancement of unionid mussel resources of the Clinch River.

  2. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the North

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to assess if urban environments affect floodwater quality, and to determine the quantity and quality of overbank sediment deposited in an urban environment after floodwaters recede. Water samples during major flooding of the Red River of the North (RR) were taken on...

  3. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    NASA Astrophysics Data System (ADS)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study

  4. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to

  5. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  6. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    USGS Publications Warehouse

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  7. TDS-Eh graph analysis: a new water quality index and rural water supply implications of a river affected by mining in south-eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ezekwe, I. C.; Aisubeogun, A. O.; Chima, G. N.; Odubo, E.

    2012-03-01

    The Ivo River Basin of south-eastern Nigeria is a water scarce and mining region, which suffers from water scarcity. The influence of mining activities on the quality of the Ivo River and its capacity for community water supply was investigated. Also the efficacy of TDS-Eh graph in explaining water quality was presented. Results indicated that the TDS-Eh graph highlights subtle chemical relationships which control water quality and provide a simple but generic pollution index for rapid water quality assessment. It was also discovered that the Ivo River could become an adequate alternative to groundwater as a source of rural water supply in the study area with an estimated average daily discharge of 6726000 L and a rural population of less than 200000 persons. The Ivo River meets the WHO drinking water standards in 20 physicochemical water quality parameters (pH, temperature, conductivity, turbidity, salinity, TDS, Eh, alkalinity, chloride, nitrate, sulfate, phosphate, calcium, magnesium, iron, manganese, zinc, lead and cadmium) analyzed and can therefore (with little treatment) provide up to 133.4% of average community water demand and 83.8% of maximum community water demand. The impact of mining on Ivo River quality was found to have been moderated by the presence of carbonate rocks which may have enhanced the precipitation of heavy metals from the river.

  8. Economic analysis of proposed site-specific changes to water-quality regulations affecting Borden Chemical Company. Final report

    SciTech Connect

    Pershall, R.B.; Eliot, W.

    1989-01-01

    This study presents both direct and indirect benefits and costs associated with reducing Bordens' TDS and Chloride discharge concentrations. Six compliance alternatives involving various combinations of add-on waste-water controls and disposal of the collected waste product were analyzed in regard to feasibility and cost. Environmental threshold levels for TDS and Chlorides were determined and used to develop benefits resulting from reduced pollutant concentrations. Benefits were quantified in relation to recreational opportunities, aquatic life, human health, and residential water supplies. Impacts to ground-water from Bordens' discharge were assessed using information on stream and ground-water elevations, well location, and ground-water quality data. Also, the study compared current environmental operating costs at the plant with future costs associated with the least expensive control alternative.

  9. Factors Affecting Medical Service Quality

    PubMed Central

    MOSADEGHRAD, Ali Mohammad

    2014-01-01

    Abstract Background A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Methods Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Results Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Conclusion Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality. PMID:26060745

  10. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets. PMID:27441250

  11. Hydrogeologic factors affecting the availability and quality of ground water in the Temple Terrace area : Hillsborough County, Florida

    USGS Publications Warehouse

    Stewart, Joseph William; Goetz, Carole L.; Mills, L.R.

    1978-01-01

    Ground water occurs in two aquifers in the Temple Terrace area of Hillsborough County, Fla. The lower one is the artesian Floridan aquifer; the upper is the water-table aquifer. The Floridan aquifer is a thick sequence of limestone and dolomite layers which include several permeable zones that generally are treated as a single hydrologic unit. The top of the Tampa Limestone is considered to be the top of the Floridan in the Temple Terrace area. The public supply wells of the city tap the Tampa Limestone and the underlying Suwannee Limestone, in the upper part of the Floridan. The general direction of ground-water movement in the Floridan aquifer is from north to south, but within the city the direction of movement is from northeast to southwest. The quantity of water moving southwest through a 1.8 mile section of the aquifer is about 2.7 million gallons per day. Ample supplies of water in a cavernous limestone, considered to be the most productive water-yielding zone in the aquifer, are available for additional development from the Floridan aquifer. Water-quality data are included also. (Woodard-USGS)

  12. Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow

    USGS Publications Warehouse

    Robertson, Dale M.

    1998-01-01

    The variability in water quality throughout the WMIC Study Unit during base-flow conditions could be described very well by subdividing the area into Relatively Homogeneous Units and sampling a few streams with drainage basins completely within these homogeneous units. This subdivision and sampling scheme enabled the differences in water quality to be directly related to the differences in the environmental characteristics that exist throughout the Study Unit.

  13. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  14. Nowcasting recreational water quality

    USGS Publications Warehouse

    Boehm, Alexandria B.; Whitman, Richard L.; Nevers, Meredith; Hou, Deyi; Weisberg, Stephen B.

    2007-01-01

    Advances in molecular techniques may soon provide new opportunities to provide more timely information on whether recreational beaches are free from fecal contamination. However, an alternative approach is the use of predictive models. This chapter presents a summary of these developing efforts. First, we describe documented physical, chemical, and biological factors that have been demonstrated by researchers to affect bacterial concentrations at beaches and thus represent logical parameters for inclusion in a model. Then, we illustrate how various types of models can be applied to predict water quality at freshwater and marine beaches.

  15. WATER QUALITY CRITERIA DOCUMENTS

    EPA Science Inventory

    Background

    Water quality standards and criteria are the foundation for a wide range of programs under the Clean Water Act. Specifically, under section 304(a)(1) of the Clean Water Act it requires EPA to develop criteria for water quality that accurately re...

  16. How does higher frequency monitoring data affect the calibration of a process-based water quality model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, Leah; Helliwell, Rachel

    2015-04-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto

  17. Factors Affecting Water Quality in Domestic Wells in the Upper Floridan Aquifer, Southeastern United States, 1998-2005

    USGS Publications Warehouse

    Berndt, Marian P.; Crandall, Christy A.; Deacon, Michael; Embry, Teresa L.; Howard, Rhonda S.

    2009-01-01

    The Floridan aquifer system is a highly productive carbonate aquifer that provides drinking water to about 10 million people in Florida, Georgia, and South Carolina. Approximately 1.6 million people rely on domestic wells (privately owned household wells) for drinking water. Withdrawals of water from the Floridan aquifer system have increased by more than 500 percent from 630 million gallons per day (2.38 cubic meters per day) in 1950 to 4,020 million gallons per day (15.2 cubic meters per day) in 2000, largely due to increases in population, tourism, and agriculture production. Water samples were collected from 148 domestic wells in the Upper Floridan aquifer in Florida, Georgia, South Carolina, and Alabama during 1998-2005 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The wells were located in different hydrogeologic settings based on confinement of the Upper Floridan aquifer. Five networks of wells were sampled con-sisting of 28 to 30 wells each: two networks were in unconfined areas, two networks were in semiconfined areas, and one network was in the confined area. Physical properties and concentrations of major ions, trace elements, nutrients, radon, and organic compounds (volatile organic compounds and pesticides) were measured in water samples. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). The MCL for fluoride of 4 milligrams per liter (mg/L) was exceeded for two samples (about 1 percent of samples). A proposed MCL for radon of 300 picocuries per liter was exceeded in about 40 percent of samples. Nitrate concentrations in the Upper Floridan aquifer ranged from less than the laboratory reporting level of 0.06 to 8 mg/L, with a median nitrate concentration less than 0.06 mg/L (as nitrogen). Nitrate concentrations did not exceed the

  18. Pesticide Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred

    This publication describes in nontechnical language the problem of pesticide use and how it affects water quality. It provides information on laws affecting pesticide use and the reasons for them, as well as giving directions for the proper use of pesticides. The booklet is divided into five chapters, each of which concludes with a list of study…

  19. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    NASA Astrophysics Data System (ADS)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  20. EPANET WATER QUALITY MODEL

    EPA Science Inventory

    EPA NET represents a third generation of water quality modeling software developed by the U.S. EPA's Drinking Water Research Division, offering significant advances in the state of the art for network water quality analysis. PANET performs extended period simulation of hydraulic ...

  1. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    NASA Astrophysics Data System (ADS)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  2. How Does Higher Frequency Monitoring Data Affect the Calibration of a Process-Based Water Quality Model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, L.

    2014-12-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, but even in well-studied catchments, streams are often only sampled at a fortnightly or monthly frequency. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by one process-based catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the MCMC-DREAM algorithm. Using daily rather than fortnightly data resulted in improved simulation of the magnitude of peak TDP concentrations, in turn resulting in improved model performance statistics. Marginal posteriors were better constrained by the higher frequency data, resulting in a large reduction in parameter-related uncertainty in simulated TDP (the 95% credible interval decreased from 26 to 6 μg/l). The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, leading to the recommendation that parameters should not be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. Secondary study aims were to highlight the subjective elements involved in auto-calibration and suggest practical improvements

  3. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  4. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect

    Quinn, N.W.T.

    1993-01-01

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  5. Water quality management plan for Cherokee Reservoir

    SciTech Connect

    Not Available

    1984-01-01

    The management plan provides an assessment of Cherokee Reservoir's current water quality, identifies those factors which affect reservoir water quality, and develops recommendations aimed at restoring or maintaining water quality at levels sufficient to support diverse beneficial uses. 20 references, 8 figures, 15 tables. (ACR)

  6. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  7. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  8. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  9. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  10. Quality of Water and Sediment in Streams Affected by Historical Mining, and Quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    USGS Publications Warehouse

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  11. STREAM WATER QUALITY MODEL

    EPA Science Inventory

    QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

    • One dimensional. The channel is well-mixed vertically a...

    • WATER QUALITY REPORT, PALOUSE RIVER, WASHINGTON, 1970-1971

      EPA Science Inventory

      Accumulated water quality monitoring data indicates that Palouse River mainstem and south fork waters (17060108) suffer severe pollution problems throughout the year. South fork stations were more seriously affected. Coliform levels were generally far in excess of water quality...

    • Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

      USGS Publications Warehouse

      Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

      2013-01-01

      Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and

    • TRIBAL WATER QUALITY STANDARDS WORKSHOP

      EPA Science Inventory

      Water quality standards are the foundation for water management actions. They provide the basis for regulating discharges of pollutants to surface waters, and provide a target for restoration of degraded waters. Water quality standards identify and protect uses of the water bod...

    • Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

      USGS Publications Warehouse

      Rittmaster, R.L.; Shanley, J.B.

      1995-01-01

      The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

    • Water Quality Monitor

      NASA Technical Reports Server (NTRS)

      1982-01-01

      An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

    • Optical sensors for water quality

      USGS Publications Warehouse

      Pellerin, Brian A.; Bergamaschi, Brian A.

      2014-01-01

      Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

    • Quality criteria for water, 1986

      SciTech Connect

      Not Available

      1986-05-01

      Section 304(a) (1) of the Clean Water Act 33 U.S.C. 1314(a) (1) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water-quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation that may be expected from the presence of pollutants in any body of water including ground water; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters. In a continuing effort to provide those who use EPA's water-quality and human-health criteria with up-to-date criteria values and associated information, the document was assembled. The document includes summaries of all the contaminants for which EPA has developed criteria recommendations.

    • Handbook for aquaculture water quality

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

    • Hemodialysis and Water Quality

      PubMed Central

      Coulliette, Angela D.; Arduino, Matthew J.

      2015-01-01

      Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  1. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  2. Examination of Land Use, Hydrology, and Perceptions of Use and Management of the Colombian Paramo with Implications for Water Quality and Availability Concerns for Affected Watersheds

    NASA Astrophysics Data System (ADS)

    Tyson, A. F.; Covino, T.; Riveros-Iregui, D. A.; Gonzalez-Pinzon, R.

    2015-12-01

    The Northern and Central Andes have experienced greater anthropogenic land use/land-cover (LULC) change than nearly any other high mountain system on Earth. In particular, páramo ecosystems, high elevation grasslands of the tropical Andes of Colombia, are undergoing rapid conversion to cropland and pasture. These systems have strong hydrologic buffering capacity and have historically provided consistent freshwater flows to downstream communities. Therefore, loss of these systems could threaten the viability of freshwater resources in the region. While this region has some of the highest runoff ratios, precipitation, and largest river flows in the world, the resiliency of these hydrologic systems and the influence LULC change may have on them remains poorly understood. Here we seek to develop a deeper understanding of these relationships through quantitative analyses of LULC change and impacts on the quantity and quality of water exported from páramo landscapes of Colombia. Our results indicate the intensity and spatial distribution of LULC change, build upon past remote sensing studies of the region, and aid in prioritizing areas of concern for hydrologic research on the ground. This information provides an initial framework for characterizing the degree of modification and impact to water quantity/quality, as well as the long-term sustainability of water resources in the region. We highlight the complexities of watershed management practices in the Colombian páramo and the need to account for the impact of human activity on changes in water quantity and quality in the region.

  3. Water chemistry and poultry processing water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

  4. Factors Affecting the Quality of Staff Development.

    ERIC Educational Resources Information Center

    Purcell, Larry O.

    A review of the literature concerning the effectiveness and quality of staff development programs focuses on factors that affect the success of such programs. These factors include: individual concerns, training activities, applications, qualifications of consultants, scheduling, strategies, facilities, feedback, collaboration, and outcomes. It is…

  5. Affect, Meaning and Quality of Life

    ERIC Educational Resources Information Center

    Hughes, Michael

    2006-01-01

    Research on quality of life in sociology is largely focused on a narrow range of dimensions including affect, happiness and satisfaction. It largely avoids a concern with the meanings that provide people with the purpose, significance, validity and coherence that are a basis of social relationships and social integration. Evidence is presented…

  6. Watermelon quality traits as affected by ploidy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers offering high quality watermelons [Citrullus lanatus (Thumb.), Matsum & Nakai] that are also high in phytonutrients will have stronger market opportunities. In order to offer highly nutritious fruit, the industry must understand the nature of phytonutrient accumulation as it is affected by ...

  7. Nonmotion factors which can affect ride quality

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1975-01-01

    Data pertaining to nonmotion factors affecting ride quality of transport aircraft were obtained as part of NASA in-house and sponsored research studies carried out onboard commuter-airline and research aircraft. From these data, quantitative effects on passenger discomfort of seat width, seat legroom, change in cabin pressure, and cabin noise are presented. Visual cue effects are also discussed.

  8. WATER QUALITY ASSESSMENT METHODOLOGY (WQAM)

    EPA Science Inventory

    The Water Quality Assessment Methodology (WQAM) is a screening procedure for toxic and conventional pollutants in surface and ground waters and is a collection of formulas, tables, and graphs that planners can use for preliminary assessment of surface and ground water quality in ...

  9. RECREATIONAL WATER QUALITY AND HEALTH

    EPA Science Inventory

    The overall objective of this pilot study was to develop and evaluate methods to determine the effect of quality of recreational waters on the health of persons bathing in those waters. There is little scientific evidence upon which to base water quality standards for the safety ...

  10. WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER PROTECTION

    EPA Science Inventory

    Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as both a drinking water and ecological media. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic ...

  11. Bromide affecting drinking water mutagenicity.

    PubMed

    Myllykangas, T; Nissinen, T K; Mäki-Paakkanen, J; Hirvonen, A; Vartiainen, T

    2003-11-01

    The effect of bromide on the mutagenicity of artificially recharged groundwater and purified artificially recharged groundwater after chlorine, ozone, hydrogen peroxide, permanganate, and UV treatments alone and in various combinations was studied. The highest mutagenicity was observed after chlorination, while hydrogen peroxide-ozone-chlorine treatment produced the lowest value for both waters. Chlorinated waters, which were spiked with bromide, had up to 3.7 times more mutagenic activity than waters without bromide after every preoxidation method. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was found to correspond as much as 76% of the overall mutagenicity in the waters not spiked with bromide. MX formation was found to be lower when the treated water contained bromide, implicating the formation of brominated MX analogues. Trihalomethane formation increased when the treated water contained bromide. PMID:13129514

  12. Water availability, water quality water governance: the future ahead

    NASA Astrophysics Data System (ADS)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  13. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  14. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  15. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  16. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  17. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  18. WATER QUALITY ANALYSIS SIMULATION PROGRAM

    EPA Science Inventory

    The Water Quality Analysis Simulation Program (WASP6), an enhancement of the original WASP (Di Toro et al., 1983; Connolly and Winfield,1984; Ambrose, R.B. et al.,1988). This model helps users interpret and predict water quality responses to natural phenomena and man-made polluti...

  19. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  20. Primer on Water Quality

    MedlinePlus

    ... streams and ground water. After decades of use, pesticides are now widespread in streams and ground water, ... and guidelines established to protect human health. Some pesticides have not been used for 20 to 30 ...

  1. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  2. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS. PMID:26670120

  3. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  4. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  5. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  6. Water Quality Monitoring Manual.

    ERIC Educational Resources Information Center

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  7. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  8. GKI water quality studies. Progress report

    SciTech Connect

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  9. Water-quality indices for specific water uses

    USGS Publications Warehouse

    Stoner, J.D.

    1978-01-01

    Water-quality indices were developed to assess waters for two specific uses--public water supply and irrigation. The assessment for a spcific water use is based on the availability f (of (1) a set of limits for each water quality property selected, (2) a rationale for selection, and (3) information that permits one to appraise the relationship of the concentration of the selected property to the suitability of the specific water use. The selected properties are divided into two classes: Type-I properties, those normaly considered toxic at low concentrations, and type-II properties, those which affect aesthetic conditions or which at high concentrations can be considered toxic or would otherwise render the water unfit for its intended use. (Woodard-USGS)

  10. OPERATION OF WATER QUALITY DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. n order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wate...

  11. NEUSE RIVER WATER QUALITY DATABASE

    EPA Science Inventory

    The Neuse River water quality database is a Microsoft Access application that includes multiple data tables and some associated queries. The database was developed by Prof. Jim Bowen's research group.

  12. Quality assurance/quality control manual; National Water Quality Laboratory

    USGS Publications Warehouse

    Pritt, J.W.; Raese, J.W.

    1995-01-01

    Quality-control practices are established for the operation of the U.S. Geological Survey's National Water Quality Laboratory. These practices specify how samples are preserved, shipped, and analyzed in the Laboratory. This manual documents the practices that are currently (1995) used in the Laboratory.

  13. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  14. CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

  15. Water Quality Control, Curriculum Guide.

    ERIC Educational Resources Information Center

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  16. [Factors that affect inpatients' quality of sleep].

    PubMed

    da Costa, Shíntia Viana; Ceolim, Maria Filomena

    2013-02-01

    The aim of this study was to identify factors that interfere with the sleep quality of patients admitted to a university hospital in a city in the state of São Paulo, Brazil. This was an exploratory, cross sectional study using non-probability sampling. Participants were 117 patients (59% men, mean age 48.0 years, standard deviation 16.9) hospitalized for at least 72 hours in stable clinical condition. The data were collected with an identification questionnaire and the Factors Affecting Sleep Quality (FASQ) questionnaire. Data processing was performed with descriptive statistics; each item of the FASQ underwent a test and a retest. The factors most often reported were waking up early (55.6%), disrupted sleep (52.1%), excessive lighting (34.2%), receipt of care by nursing staff (33.3%) and organic disorders such as pain and fatigue (26.5%). It is suggested that nurses should plan interventions to modify factors that require intense noise and lighting at night in order to reduce disruption and, consequently, sleep deprivation among patients. PMID:23515802

  17. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%. PMID:23238782

  18. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  19. Determining regional water quality patterns and their ecological relationships

    NASA Astrophysics Data System (ADS)

    McDaniel, Tim W.; Hunsaker, Carolyn T.; Beauchamp, John J.

    1987-08-01

    A multivariate statistical method for analyzing spatial patterns of water quality in Georgia and Kansas was tested using data in the US Environmental Protection Agency's STORET data system. Water quality data for Georgia and Kansas were organized by watersheds. We evaluated three questions: (a) can distinctive regional water quality patterns be detected and predicted using only a few water quality variables, (b) are regional water quality patterns correlated with terrestrial biotic regions, and (c) are regional water quality patterns correlated with fish distributions? Using existing data, this method can distinguish regions with water quality very different from the average conditions (as in Georgia), but it does not discriminate well between regions that do not have diverse water quality conditions (as in Kansas). Data that are spatially and temporally adequate for representing large regions and for multivariate statistical analysis are available for only a few common water quality parameters. Regional climate, lithology, and biotic regimes all have the potential to affect water quality, and terrestrial biotic regions and fish distributions do compare with regional water quality patterns, especially in a state like Georgia, where watershed characteristics are diverse. Thus, identifiable relationships between watershed characteristics and water quality should allow the development of an integrated landaquatic classification system that would be a valuable tool for resource management. Because geographical distributions of species may be limited by Zoogeographic and environmental factors, the recognition of patterns in fish distributions that correlate with regional water quality patterns could influence management strategies and aid regional assessments.

  20. Water chemistry affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While columnaris disease has been well-studied, little is known about how specific water chemistries can affect attachment. Recent studies in our labs offer new insight on this subject. Well waters from the USDA/ARS Stuttgart National Aquaculture Research Center (SNARC; Stuttgart, Arkansas) and fr...

  1. Water hardness affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease can cause tremendous losses of freshwater fish. While it has been studied exhaustively, little is known about its affinity to specific water chemistries that affects attachment. Recent studies in our labs have illuminated this subject. In the first experiment, two waters were ...

  2. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  3. Undernutrition affects embryo quality of superovulated ewes.

    PubMed

    Abecia, J A; Forcada, F; Palacín, I; Sánchez-Prieto, L; Sosa, C; Fernández-Foren, A; Meikle, A

    2015-02-01

    To determine the effect of undernutrition on embryo production and quality in superovulated sheep, 45 ewes were allocated into two groups to be fed diets that provided 1.5 (control, C; n = 20) or 0.5 (low nutrition, L; n = 25) times daily requirements for maintenance, from oestrous synchronization with intravaginal sponges to embryo collection. Embryos were collected 7 days after the onset of oestrus (day 0). Low nutrition resulted in lower live weight and body condition at embryo collection (P < 0.05). Diet (P < 0.01) and day of sampling (P < 0.001) significantly affected plasma non-esterified fatty acid (NEFA) and insulin concentrations. Plasma leptin concentrations decreased on day 7 only in L ewes. A significant effect of dietary treatment (P < 0.05) and day (P < 0.0001) was observed on plasma insulin-like growth factor (IGF)-I concentrations. The number of recovered oocytes and embryos did not differ between the groups (L: 15.4 ± 0.4; C: 12.4 ± 0.4). Recovery rate was lower (P < 0.05) in the L (60%) than in the C group (73%). The total number of embryos and number of viable-transferable embryos (5.0 ± 0.3 and 3.4 ± 0.3 embryos, respectively) of the L group were lower (P < 0.1) when compared with controls (8.4 ± 0.4 and 6.2 ± 0.4 embryos, respectively). Undernutrition during the period of superovulation and early embryonic development reduced total and viable number of embryos. These effects might be mediated by disruption of endocrine homeostasis, oviduct environment and/or oocyte quality. PMID:24103562

  4. Water quality and surfactant effects on the water repellency of a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split ...

  5. Rare Event Detection Algorithm Of Water Quality

    NASA Astrophysics Data System (ADS)

    Ungs, M. J.

    2011-12-01

    A novel method is presented describing the development and implementation of an on-line water quality event detection algorithm. An algorithm was developed to distinguish between normal variation in water quality parameters and changes in these parameters triggered by the presence of contaminant spikes. Emphasis is placed on simultaneously limiting the number of false alarms (which are called false positives) that occur and the number of misses (called false negatives). The problem of excessive false alarms is common to existing change detection algorithms. EPA's standard measure of evaluation for event detection algorithms is to have a false alarm rate of less than 0.5 percent and a false positive rate less than 2 percent (EPA 817-R-07-002). A detailed description of the algorithm's development is presented. The algorithm is tested using historical water quality data collected by a public water supply agency at multiple locations and using spiking contaminants developed by the USEPA, Water Security Division. The water quality parameters of specific conductivity, chlorine residual, total organic carbon, pH, and oxidation reduction potential are considered. Abnormal data sets are generated by superimposing water quality changes on the historical or baseline data. Eddies-ET has defined reaction expressions which specify how the peak or spike concentration of a particular contaminant affects each water quality parameter. Nine default contaminants (Eddies-ET) were previously derived from pipe-loop tests performed at EPA's National Homeland Security Research Center (NHSRC) Test and Evaluation (T&E) Facility. A contaminant strength value of approximately 1.5 is considered to be a significant threat. The proposed algorithm has been able to achieve a combined false alarm rate of less than 0.03 percent for both false positives and for false negatives using contaminant spikes of strength 2 or more.

  6. Research on water quality of reservoir tailwaters

    SciTech Connect

    Dortch, M.S.; Hamlin, D.E.

    1988-01-01

    Many reservoirs experience seasonal thermal stratification often accompanied by dissolved oxygen (DO) depletion in bottom waters. When water is released to the downstream environment, reaeration occurs. Eventually, the water quality recovers to a more natural stream condition. The recovery distance, which depends on physical and biogeochemical factors, is often on the order of miles. To address this need, a study was conducted on poor water quality associated with deep, anoxic releases at four sites: (1) the tailwater of Lake Greeson, Little Missouri River, Arkansas; (2) tailwater of Nimrod Reservoir (Fourche La Fave River, Arkansas); (3) tailwater of Rough River Reservoir, Kentucky; and (4) Buford Dam tailwater on the Chattahoochee River, Georgia. The objectives were: to develop an improved understanding of chemical transformation in tailwaters; to provide guidance on sampling and analysis of tailwater quality; and to develop an easy-to-use PC model to predict impacts of reservoir releases on tailwater quality. Preliminary results are reported for the Greeson tailwater study only. The major process affecting DO concentrations was stream reaeration. Flow rate was shown to affect oxidation rates (e.g. for iron and manganese) so that a generalized formulation for reduced iron and manganese oxidation kinetics may need to account for the local temperature, DO concentration, pH, possible a flow-related variable, and the type of substrate in the stream. 14 refs., 2 figs., 1 tab.

  7. Changing Nitrate Concentrations in Arid Basin Aquifers- How Anthropogenic and Natural Processes Affect Water Quality and Availability in Trans-Pecos, TX

    NASA Astrophysics Data System (ADS)

    Robertson, W. M.; Bohlke, J. K.; Sharp, J. M.

    2012-12-01

    nitrogen. These effects are likely temporally and spatially variable, but have a substantial impact on strategies for addressing water quality and sustainability concerns in these basins and similar environments elsewhere.

  8. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  9. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  10. Water quality . . . potential sources of pollution

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank, (artist)

    1996-01-01

    What is water quality? To most students, water quality may suggest only "clean" water for drinking, swimming, and fishing. But to the farmer or manufacturer, water quality may have an entirely different meaning. One of the most important issues concerning the quality of water is how that water will be used. Water that is perfectly fine for irrigation might not be suitable for drinking or swimming.

  11. Water quality in organic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source contamination is a major water quality concern in the upper Midwestern USA, where plant nutrients, especially NO3-N, are susceptible to leaching due to extensive subsurface draining of the highly productive, but poorly drained, soils found in this region. Environmental impacts assoc...

  12. VERIFICATION OF WATER QUALITY MODELS

    EPA Science Inventory

    The basic concepts of water quality models are reviewed and the need to recognize calibration and verification of models with observed data is stressed. Post auditing of models after environmental control procedures are implemented is necessary to determine true model prediction ...

  13. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  14. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  15. Interspecies Correlation Estimation - Applications in Water Quality Criteria and Ecological Risk Assessment

    EPA Science Inventory

    Water quality criteria (WQC) designate the maximum concentrations of water-borne toxicants that do not adversely affect specific protection goals under certain natural conditions. As the foundation of water quality standards, WQC provide a critical scientific basis for environmen...

  16. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  17. SWQM: Source Water Quality Modeling Software

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  18. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and

  19. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    PubMed

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  20. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  1. Impact of multiple anthropogenic stressors on freshwater: how do glyphosate and the invasive mussel Limnoperna fortunei affect microbial communities and water quality?

    PubMed

    Pizarro, Haydée; Di Fiori, Eugenia; Sinistro, Rodrigo; Ramírez, Marina; Rodríguez, Patricia; Vinocur, Alicia; Cataldo, Daniel

    2016-01-01

    The study of the joint effect of multiple anthropogenic stressors is important because the emerging consequences are often unpredictable on the basis of knowledge of single effects. We explored the joint impact of glyphosate and the invasive golden mussel Limnoperna fortunei on freshwater phytoplankton, bacterioplankton and periphyton, and on the physical and chemical properties of the water. We manipulated both stressors simultaneously in a 25-day experiment using outdoor mesocosms; we assayed technical-grade glyphosate acid at four concentrations: 0, 1, 3 and 6 mg gly L(−1) under scenarios with and without mussels. The addition of the glyphosate significantly increased total phosphorus according to the concentration used; the high clearance rate of L. fortunei significantly decreased phytoplanktonic abundance leading to low values of turbidity. The mussel significantly stimulated the development of filamentous green algae (metaphyton). Interestingly, the combined effect revealed that L. fortunei accelerated the dissipation of glyphosate, which showed a 4-fold decrease in its half-life; this promoted the rapid bioavailability of glyphosate-derived phosphorus in the water. The interaction had a synergistic effect on soluble reactive phosphorus concentrations and was directly dependent on the concentration of glyphosate. A synergistic effect was also observed on bacterioplankton, water turbidity and metaphyton, thus inducing enhanced and rapid eutrophication. The ability of mussels to reduce glyphosate in water may be valued as positive, but our results allow us to predict that the invasion of Limnoperna fortunei in natural freshwater systems contaminated by glyphosate will accelerate the negative impact of the herbicide associated with eutrophication. PMID:26467805

  2. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  3. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  4. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  5. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  6. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  7. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  8. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  9. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  10. Water quality in Lake Lanier

    SciTech Connect

    Callaham, M.A. )

    1991-04-01

    Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreased at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.

  11. Factors affecting enhanced video quality preferences

    PubMed Central

    Satgunam, PremNandhini; Woods, Russell L; Bronstad, P Matthew; Peli, Eli

    2013-01-01

    The development of video quality metrics requires methods for measuring perceived video quality. Most such metrics are designed and tested using databases of images degraded by compression and scored using opinion ratings. We studied video quality preferences for enhanced images of normally-sighted participants using the method of paired comparisons with a thorough statistical analysis. Participants (n=40) made pair-wise comparisons of high definition (HD) video clips enhanced at four different levels using a commercially available enhancement device. Perceptual scales were computed with binary logistic regression to estimate preferences for each level and to provide statistical inference of the differences among levels and the impact of other variables. While moderate preference for enhanced videos was found, two unexpected effects were also uncovered: (1) Participants could be broadly classified into two groups: those who preferred enhancement ("Sharp") and those who disliked enhancement ("Smooth"). (2) Enhancement preferences depended on video content, particularly for human faces to be enhanced less. The results suggest that algorithms to evaluate image quality (at least for enhancement) may need to be adjusted or applied differentially based on video content and viewer preferences. The possible impact of similar effects on image quality of compressed video needs to be evaluated. PMID:24107400

  12. Quality-control design for surface-water sampling in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Mueller, David K.; Martin, Jeffrey D.; Lopes, Thomas J.

    1997-01-01

    The data-quality objectives of the National Water-Quality Assessment Program include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of chemical analyses of surface-water samples. The quality-control samples used to make these estimates include field blanks, field matrix spikes, and replicates. This report describes the design for collection of these quality-control samples in National Water-Quality Assessment Program studies and the data management needed to properly identify these samples in the U.S. Geological Survey's national data base.

  13. Factors Affecting School Quality in Florida

    ERIC Educational Resources Information Center

    Thornton, Barry; Arbogast, Gordon

    2014-01-01

    This paper examines the factors that are theorized to be determinants of school quality in the 67 counties of Florida from 2000 to 2011. The model constructed for this purpose is comprised of a mix of independent variables that include county educational attainment (number of high school graduates and State University System enrollees) and…

  14. Using Scientific Inquiry to Teach Students about Water Quality

    ERIC Educational Resources Information Center

    Puche, Helena; Holt, Jame

    2012-01-01

    This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…

  15. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  16. MOST CURRENT WATER QUALITY STANDARDS - WATERBODY SHAPEFILES

    EPA Science Inventory

    State Water Quality Standards' Designated Uses for river segments, lakes, and estuaries. 2000 Water Quality Standards coded onto the National Hydrography Dataset (NHD) Waterbody Reaches (region.rch) to create Waterbody Shapefiles.

  17. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  18. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  19. MOST CURRENT WATER QUALITY STANDARDS - LINEAR EVENTS

    EPA Science Inventory

    Designated uses (from State Water Quality Standards) for river segments, lakes, and estuaries. Most current Water Quality Standards Waterbodies coded onto route.rch (Transport and Coastline Reach) feature of the National Hydrography Dataset (NHD) to create Linear Events.

  20. Understanding water quality trading: the basics.

    PubMed

    Kibler, Virginia M; Kasturi, Kavya P

    2007-12-01

    The United States has entered a new era in water quality protection: the era of market-based incentives. In January 2003, the United States Environmental Protection Agency (EPA) issued its National Water Quality Trading Policy (Trading Policy) (USEPA, 2003). This action has generated greater interest in water quality trading and has prompted EPA to develop tools and training to assist interested parties in understanding what water quality trading is and what constitutes a successful trading program. PMID:18049767

  1. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  2. Optimal calibration method for water distribution water quality model.

    PubMed

    Wu, Zheng Yi

    2006-01-01

    A water quality model is to predict water quality transport and fate throughout a water distribution system. The model is not only a promising alternative for analyzing disinfectant residuals in a cost-effective manner, but also a means of providing enormous engineering insights into the characteristics of water quality variation and constituent reactions. However, a water quality model is a reliable tool only if it predicts what a real system behaves. This paper presents a methodology that enables a modeler to efficiently calibrate a water quality model such that the field observed water quality values match with the model simulated values. The method is formulated to adjust the global water quality parameters and also the element-dependent water quality reaction rates for pipelines and tank storages. A genetic algorithm is applied to optimize the model parameters by minimizing the difference between the model-predicted values and the field-observed values. It is seamlessly integrated with a well-developed hydraulic and water quality modeling system. The approach has provided a generic tool and methodology for engineers to construct the sound water quality model in expedient manner. The method is applied to a real water system and demonstrated that a water quality model can be optimized for managing adequate water supply to public communities. PMID:16854809

  3. Mind Wandering, Sleep Quality, Affect and Chronotype: An Exploratory Study

    PubMed Central

    Carciofo, Richard; Du, Feng; Song, Nan; Zhang, Kan

    2014-01-01

    Poor sleep quality impairs cognition, including executive functions and concentration, but there has been little direct research on the relationships between sleep quality and mind wandering or daydreaming. Evening chronotype is associated with poor sleep quality, more mind wandering and more daydreaming; negative affect is also a mutual correlate. This exploratory study investigated how mind wandering and daydreaming are related to different aspects of sleep quality, and whether sleep quality influences the relationships between mind wandering/daydreaming and negative affect, and mind wandering/daydreaming and chronotype. Three surveys (Ns = 213; 190; 270) were completed with Chinese adults aged 18–50, including measures of sleep quality, daytime sleepiness, mind wandering, daydreaming, chronotype and affect (positive and negative). Higher frequencies of mind wandering and daydreaming were associated with poorer sleep quality, in particular with poor subjective sleep quality and increased sleep latency, night-time disturbance, daytime dysfunction and daytime sleepiness. Poor sleep quality was found to partially mediate the relationships between daydreaming and negative affect, and mind wandering and negative affect. Additionally, low positive affect and poor sleep quality, in conjunction, fully mediated the relationships between chronotype and mind wandering, and chronotype and daydreaming. The relationships between mind wandering/daydreaming and positive affect were also moderated by chronotype, being weaker in those with a morning preference. Finally, while daytime sleepiness was positively correlated with daydream frequency, it was negatively correlated with a measure of problem-solving daydreams, indicating that more refined distinctions between different forms of daydreaming or mind wandering are warranted. Overall, the evidence is suggestive of a bi-directional relationship between poor sleep quality and mind wandering/daydreaming, which may be

  4. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  5. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  6. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  7. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  8. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  9. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  10. Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index.

    PubMed

    Massoud, May Afif

    2012-07-01

    Considering that water is becoming progressively scarce, monitoring water quality of rivers is a subject of ongoing concern and research. It is very intricate to accurately express water quality as water quantity due to the various variables influencing it. A water quality index which integrates several variables in a specific value may be used as a management tool in water quality assessment. Moreover, this index may facilitate communication with the public and decision makers. The main objectives of this research project are to evaluate the water quality index along a recreational section of a relatively small Mediterranean river in Southern Lebanon and to characterize the spatial and temporal variability. Accordingly, an assessment was conducted at the end of the dry season for a period of 5 years from 2005 to 2009. The estimated water quality index classified the average water quality over a 5-year period at the various sites as good. Results revealed that water quality of the Damour River is generally affected by the anthropogenic activities taking place along its watershed. The best quality was found in the upper sites and the worst at the estuary. The presence of fecal coliform bacteria in very high levels may indicate potential health risks to swimmers. This study can be used to support the evaluation of management, regulatory, and monitoring decisions. PMID:21853414

  11. Pollution and the protection of water quality

    SciTech Connect

    Risebrough, R.

    1986-01-01

    This book reports on research and development in the study of pollution and methodologies to protect water quality, with emphasis on arid countries. Topics covered include overview of the effects of pollution on natural and human environments; water cycle and groundwater resources in arid countries; salinization; standards and technologies for waste water treatment; uses of recycled water; solid waste disposal; assessment of wastes from industry, agriculture, and shipping; methodologies of quality control; synthetic organic pollutants, including pesticides and PCBs; analytical techniques; quality control; sampling methodologies for organics, metals, and trace elements, including data acquisition techniques and instrumentation; data management; bioindicator organisms; assimilative capacity of receiving waters; application of appropriate water quality standards.

  12. Phosphorus and Water Quality Paradox

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2008-12-01

    Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.

  13. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  14. EFFECTS OF LOG HANDLING AND STORAGE ON WATER QUALITY

    EPA Science Inventory

    The biological and chemical effects of three types of log storage on water quality were investigated. Three flow-through log ponds, two wet deck operations, and five log rafting areas were studied. Both biological and chemical aspects of stream quality can be adversely affected b...

  15. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  16. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  17. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  18. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  19. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  20. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  1. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  2. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  3. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  4. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  5. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  6. Microbiological evaluation of water quality from urban watersheds for domestic water supply improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, one has received little attention to date; that is, because soils ...

  7. IMPLEMENTATION GUIDANCE FOR AMBIENT WATER QUALITY CRITERIA FOR BACTERIA

    EPA Science Inventory

    The Implementation Guidance for Ambient Water Quality Criteria for Bacteria is a guidance document to assist state, territory, and authorized tribal water quality programs in adopting and implementing bacteriological water quality criteria into their water quality standards to pr...

  8. Protecting water quality in the watershed

    SciTech Connect

    James, C.R.; Johnson, K.E. ); Stewart, E.H. )

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships to each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.

  9. Water quality changes in Chini Lake, Pahang, West Malaysia.

    PubMed

    Shuhaimi-Othman, Mohammad; Lim, Eng C; Mushrifah, Idris

    2007-08-01

    A study of the water quality changes of Chini Lake was conducted for 12 months, which began in May 2004 and ended in April 2005. Fifteen sampling stations were selected representing the open water body in the lake. A total of 14 water quality parameters were measured and Malaysian Department of Environment Water Quality Index (DOE-WQI) was calculated and classified according to the Interim National Water Quality Standard, Malaysia (INWQS). The physical and chemical variables were temperature, dissolved oxygen (DO), conductivity, pH, total dissolved solid (TDS), turbidity, chlorophyll-a, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), ammonia-N, nitrate, phosphate and sulphate. Results show that base on Malaysian WQI, the water in Chini Lake is classified as class II, which is suitable for recreational activities and allows body contact. With respect to the Interim National Water Quality Standard (INWQS), temperature was within the normal range, conductivity, TSS, nitrate, sulphate and TDS are categorized under class I. Parameters for DO, pH, turbidity, BOD, COD and ammonia-N are categorized under class II. Comparison with eutrophic status indicates that chlorophyll-a concentration in the lake was in mesotrophic condition. In general water quality in Chini Lake varied temporally and spatially, and the most affected water quality parameters were TSS, turbidity, chlorophyll-a, sulphate, DO, ammonia-N, pH and conductivity. PMID:17171269

  10. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  11. WATER QUALITY EFFECTS RELATED TO BLENDING WATERS IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    This study was conducted to evaluate the effects of blending two or more waters of different quality and to relate their composition to the corrosive effects and calcium carbonate deposition tendency of the water on distribution systems. The EPA mobile water quality monitoring la...

  12. Harlem River water quality improvement

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2011-12-01

    Harlem River is a navigable tidal strait, which flows 8 miles connecting the Hudson River and the East River. In wet weather condition, there is untreated sewage mixed rainfall discharged to the river directly at CSO's discharge point. These raw sewer contain bacteria such as Fecal Coliform, E. Coli, Entercocci those can cause illness. There are total 37 CSOs dicharge point along the Harlem River. Water samples were collected from five sites and analyzed on a weekly basis in spring from March to May 2011, and on a monthly basis in July and August. Results showed that ammonia concentrations were ranged from 0.25 to 2.2 mg/L, and there was an increased pattern in summer when temperature increases; soluble reactive phosphorus (SRP) ranged from 0.04 to 0.2 mg/L; total P (TP) ranged from 0.03 to 0.7 mg/L; organic P (OP) ranged from 0.006 to 0.5 mg/L. In rain storm (wet weather condition), untreated sewer discharged into the river with distinguished higher nutrient concentrations (ammonia=2.9 mg/L, TP=3.1 mg/L, OP=2.9 mg/L) and extremely high bacteria levels (fecal coliform-millions, countless colonies; E. Coli-thousands). Results showed spatial variations among the five sites, seasonal variations from spring to summer, and variations under different weather conditions (temperature, storms). The raw sewer discharge during heavy rainstorms resulted in higher nutrients and bacteria levels, and the water quality was degraded.

  13. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  14. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest. PMID:12830937

  15. ORD Studies of Water Quality in Hospitals

    EPA Science Inventory

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  16. DRINKING WATER MICROBIOLOGY - NEW DIRECTIONS TOWARD WATER QUALITY ENHANCEMENT

    EPA Science Inventory

    Many concerns result from information on new waterborne agents, treatment problems of raw water qualities, biofilm development in some distribution systems, and special quality needs unique to hospitals and industries. Protozoan cyst penetration after some disinfection practices ...

  17. Water Temperature Affects Susceptibility to Ranavirus.

    PubMed

    Brand, Mabre D; Hill, Rachel D; Brenes, Roberto; Chaney, Jordan C; Wilkes, Rebecca P; Grayfer, Leon; Miller, Debra L; Gray, Matthew J

    2016-06-01

    The occurrence of emerging infectious diseases in wildlife populations is increasing, and changes in environmental conditions have been hypothesized as a potential driver. For example, warmer ambient temperatures might favor pathogens by providing more ideal conditions for propagation or by stressing hosts. Our objective was to determine if water temperature played a role in the pathogenicity of an emerging pathogen (ranavirus) that infects ectothermic vertebrate species. We exposed larvae of four amphibian species to a Frog Virus 3 (FV3)-like ranavirus at two temperatures (10 and 25°C). We found that FV3 copies in tissues and mortality due to ranaviral disease were greater at 25°C than at 10°C for all species. In a second experiment with wood frogs (Lithobates sylvaticus), we found that a 2°C change (10 vs. 12°C) affected ranaviral disease outcomes, with greater infection and mortality at 12°C. There was evidence that 10°C stressed Cope's gray tree frog (Hyla chrysoscelis) larvae, which is a species that breeds during summer-all individuals died at this temperature, but only 10% tested positive for FV3 infection. The greater pathogenicity of FV3 at 25°C might be related to faster viral replication, which in vitro studies have reported previously. Colder temperatures also may decrease systemic infection by reducing blood circulation and the proportion of phagocytes, which are known to disseminate FV3 through the body. Collectively, our results indicate that water temperature during larval development may play a role in the emergence of ranaviruses. PMID:27283058

  18. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  19. MEASURING & MODELING VARIATIONS IN DISTRIBUTION WATER QUALITY

    EPA Science Inventory

    Until recently most interest in drinking water quality has been in the finished water as it leaves the treatment plant. he Safe Drinking Water requires that MCLs be met at the consumers tap. ecause finished water may undergo substantial changes while being transported through the...

  20. Multiple interactive pollutants in water quality trading.

    PubMed

    Sarang, Amin; Lence, Barbara J; Shamsai, Abolfazl

    2008-10-01

    Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs. PMID:18584238

  1. Multiple Interactive Pollutants in Water Quality Trading

    NASA Astrophysics Data System (ADS)

    Sarang, Amin; Lence, Barbara J.; Shamsai, Abolfazl

    2008-10-01

    Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.

  2. WATER QUALITY IN OPEN FINISHED WATER RESERVOIRS - ALLEGHENY COUNTY, PENNSYLVANIA

    EPA Science Inventory

    The purpose of this investigation was to study water quality changes occurring in open reservoirs in the distribution systems of five water supplies located in Allegheny County, Pennsylvania. Results of chemical, bacteriological, and biological analyses showed deterioration of wa...

  3. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  4. Professional Development for Water Quality Control Personnel.

    ERIC Educational Resources Information Center

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  5. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  6. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  7. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  8. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  9. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  10. WATER QUALITY OF THE MIDDLE SNAKE RIVER

    EPA Science Inventory

    Clear Spring Foods, Inc., conducted a year-long study in the Middle Snake River to provide a perspective on water quality issues and the impact of aquaculture activities on water quality. The study area extended from Shoshone Falls Park to below Box Canyon. Physical and chemical ...

  11. MOBILE BAY AND WATERSHED WATER QUALITY MODELING

    EPA Science Inventory

    Two major products will come out of this project. The first is a compilation of 2001 water quality data for the Mobile bay area. The second is to develop and run a water quality moded for the bay to assist with development of TMDLs for the Bay

  12. MOST CURRENT WATER QUALITY STANDARDS - POINT EVENTS

    EPA Science Inventory

    State Water Quality Standards' Designated Uses for river segments, lakes, and estuaries. Most current Water Quality Standards coded onto route.rch (Transport and Coastline Reach) feature of the National Hydrography Dataset (NHD) to create NHD - Point Events. Point events are...

  13. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  14. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  15. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  16. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods. PMID:26592651

  17. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  18. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  19. ION SELECTIVE ELECTRODES IN WATER QUALITY ANALYSIS

    EPA Science Inventory

    The maintenance of water quality whether at the treatment plant or out in the distribution system is predicated on accurately knowing the condition of the water at any particular moment. Ion selective electrodes have shown tremendous potential in the area of continuous water qual...

  20. Factors Affecting Quality Enhancement Procedures for E-Learning Courses

    ERIC Educational Resources Information Center

    Jara, Magdalena; Mellar, Harvey

    2009-01-01

    Purpose: This paper reports on an empirical study exploring the way in which campus-based higher education institutions (HEIs) in the UK apply their internal quality assurance and enhancement (QA/QE) procedures to their e-learning courses. The purpose of this paper is to identify those characteristics of e-learning courses which affected the…

  1. Preslaughter factors affecting poultry meat quality chapter 2.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry meat quality is affected by numerous antemortem factors, in particular those occurring during the last 24 hours that the bird is alive. These short term factors influence carcass yield (live shrink), carcass defects (bruising, broken/dislocated bones), carcass microbiological contamination, ...

  2. CULTURAL SYSTEM AFFECTS FRUIT QUALITY AND ANTIOXIDANT CAPACITY IN STRAWBERRIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultural system [hill plasticulture (HC) vs. matted row (MR)] and genotypes interactions affected strawberry fruit quality. In general, fruit soluble content, total sugar, fructose, glucose, ascorbic acid, titratable acid and citric acid content were increased in the HC system. Fruit from HC also ...

  3. Neighborhood Perceptions Affect Dietary Behaviors and Diet Quality

    ERIC Educational Resources Information Center

    Keita, Akilah Dulin; Casazza, Krista; Thomas, Olivia; Fernandez, Jose R.

    2011-01-01

    Objective: The primary purpose of this study was to determine if perceived neighborhood disorder affected dietary quality within a multiethnic sample of children. Design: Children were recruited through the use of fliers, wide-distribution mailers, parent magazines, and school presentations from June 2005 to December 2008. Setting:…

  4. Can surfactants affect management of non-water repellent soils?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants affect the water relations of water repellent soils but may or may not affect those of wettable soils. We studied the effects of three surfactants, Aquatrols IrrigAid Gold®, an ethylene oxide/propylene oxide block copolymer, and an alkyl polyglycoside, along with untreated tap water as ...

  5. Water quality in Lis river, Portugal.

    PubMed

    Vieira, Judite; Fonseca, André; Vilar, Vítor J P; Boaventura, Rui A R; Botelho, Cidália M S

    2012-12-01

    In the past 30 years, the Lis river basin has been subjected to constant ecological disasters mainly due to piggery untreated wastewater discharges. The aim of this study was to evaluate the effect of existing domestic, agricultural, and industrial activities on the water quality, and to propose a watershed plan to protect and manage surface water resources within the Lis river basin. For this purpose, 16 monitoring stations have been strategically selected along the Lis river stretch and its main tributaries to evaluate the water quality in six different sampling periods (2003–2006). All samples were characterized in terms of organic material, nutrients, chlorophyll, and pathogenic bacteria. Generally, the Lis river presents poor water quality, according to environmental quality standards for surface water, principally in terms of dissolved oxygen, biochemical oxygen demand, total nitrogen, and fecal coliform, which can be associated mainly with the contamination source from pig-breeding farms. PMID:22286837

  6. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  7. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  8. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  9. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  10. National Water-Quality Assessment Program - Source Water-Quality Assessments

    USGS Publications Warehouse

    Delzer, Gregory C.; Hamilton, Pixie A.

    2007-01-01

    In 2002, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) implemented Source Water-Quality Assessments (SWQAs) to characterize the quality of selected rivers and aquifers used as a source of supply to community water systems in the United States. These assessments are intended to complement drinking-water monitoring required by Federal, State, and local programs, which focus primarily on post-treatment compliance monitoring.

  11. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  12. Parameters affecting HS emissions removal and re-circulating water quality in a pilot-scale sequential biological treatment system at a wastewater lift station in Brownsville, Texas, USA.

    PubMed

    Karre, Anand K; Bairu, Pavan; Jones, Kim D; Paca, Jan

    2012-01-01

    In this study, a pilot-scale sequential biological treatment system combining a biotrickling filter and biofilter was used to optimize the removal of variable emission H(2)S loadings ranging from 30 to 120 g m(-3) h(-1)at a wastewater lift station in Brownsville, Texas USA. The biotrickling filter recycle water pH remained between 2.0 to 3.0 during the four months of unit operation and the overall removal efficiency for H(2)S was >99%. The biotrickling filter removal efficiency was 70 ± 8%, with an elimination capacity of 10 to 80 g m(-3) h(-1) while the biofilter elimination capacity ranged from 10 to 40 g m(-3) h(-1). The sequential treatment system was operated initially at an Empty Bed Residence Time (EBRT) of 120 s (50 s for the biotrickling filter and 70 s for biofilter) for two months and then at an EBRT of 60 s (25 s for biotrickling filter and 35s for biofilter) for the remainder of the operating period; remarkably, there was only a slight decrease in removal efficiency at 60 s EBRT. In order to qualitatively evaluate the changes in recycle water quality in the system on the performance of the unit in precipitating sulfur species, the equilibrium chemical model, Visual MINTEQ was employed. The model predicted speciation results based on the feed water quality and sulfur loadings, and also forecast some iron-sulfur complexes which have potential to form some complex precipitates. This research demonstrated that low pH re-circulating water quality in the biological treatment of H(2)S was possible without compromising the high removal efficiency, and that an improved understanding of the recycle water chemistry of the trickling unit of a sequential treatment system could be useful in the overall optimization of the process. PMID:22486667

  13. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment. PMID:25348886

  14. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  15. WATER QUALITY ASSESSMENT OF AMERICAN FALLS RESERVOIR

    EPA Science Inventory

    A water quality model was developed to support a TMDL for phosphorus related to phytoplankton growth in the reservoir. This report documents the conceptual model, available data, model evaluation, and simulation results.

  16. Predicting 'very poor' beach water quality gradings using classification tree.

    PubMed

    Thoe, Wai; Choi, King Wah; Lee, Joseph Hun-wei

    2016-02-01

    A beach water quality prediction system has been developed in Hong Kong using multiple linear regression (MLR) models. However, linear models are found to be weak at capturing the infrequent 'very poor' water quality occasions when Escherichia coli (E. coli) concentration exceeds 610 counts/100 mL. This study uses a classification tree to increase the accuracy in predicting the 'very poor' water quality events at three Hong Kong beaches affected either by non-point source or point source pollution. Binary-output classification trees (to predict whether E. coli concentration exceeds 610 counts/100 mL) are developed over the periods before and after the implementation of the Harbour Area Treatment Scheme, when systematic changes in water quality were observed. Results show that classification trees can capture more 'very poor' events in both periods when compared to the corresponding linear models, with an increase in correct positives by an average of 20%. Classification trees are also developed at two beaches to predict the four-category Beach Water Quality Indices. They perform worse than the binary tree and give excessive false alarms of 'very poor' events. Finally, a combined modelling approach using both MLR model and classification tree is proposed to enhance the beach water quality prediction system for Hong Kong. PMID:26837834

  17. Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region

    NASA Astrophysics Data System (ADS)

    Lobato, T. C.; Hauser-Davis, R. A.; Oliveira, T. F.; Silveira, A. M.; Silva, H. A. N.; Tavares, M. R. M.; Saraiva, A. C. F.

    2015-03-01

    A novel Quality Indicator (QI) and Water Quality Index (WQI) were constructed in the present study for the evaluation of the water quality of a Hydroelectric Plant reservoir in the Amazon area, Brazil, taking into account the specific characteristics of the Amazon area. Factor analyses were applied in order to select the relevant parameters to be included in the construction of both indices. Quality curves for each selected parameter were then created and the constructed QI and WQI were then applied to investigate the water quality at the reservoir. The hydrological cycle was shown by the indices to directly affect reservoir water quality, and the WQI was further useful in identifying anthropogenic impacts in the area, since water sampling stations suffering different anthropogenic impacts were categorized differently, with poorer water quality, than stations near the dam and the environmental preservation area, which suffer significantly less anthropogenic impacts, and were categorized as presenting better water quality. The constructed indices are thus helpful in investigating environmental conditions in areas that show well-defined hydrological cycles, in addition to being valuable tools in the detection of anthropogenic impacts. The statistical techniques applied in the construction of these indices may also be used to construct other indices in different geographical areas, taking into account the specificities for each area.

  18. Producing Quality Water for Industrial Use.

    ERIC Educational Resources Information Center

    Schaezler, Donald J.

    1978-01-01

    This article discusses the quality of water demanded by industrial plants and the techniques which are currently employed to achieve them. Both quality and quantity requirements are considered including total plant operation, physical and chemical operating controls, and systems monitoring. (CS)

  19. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  20. Diatom (Bacillariophyta) community response to water quality and land use

    USGS Publications Warehouse

    Stewart, Paul M.; Butcher, Jason T.; Gerovac, Paul J.

    1999-01-01

    Aquatic algal communities are sensitive to environmental stresses and are used as indicators of water quality. Diatoms were collected from three streams that drain the Great Marsh at Indiana Dunes National Lakeshore. Diatom communities, water chemistry, and land use were measured at each site to test the hypothesis that differences in land use indirectly affect diatom communities, through changes in water quality. Relationships among these variables were examined by correlation, cluster, and detrended correspondence analysis. Several water chemistry variables were correlated to several land-use categories. Diatom species diversity was most variable in disturbed areas with poorer water quality and was correlated with land use and total alkalinity, total hardness, and specific conductance. Sites within each stream were grouped in terms of their diatom assemblage by both cluster and detrended correspondence analysis with but two exceptions in Dunes Creek. Diatom communities in the three streams responded to land use through its effects on water quality. The results of this study demonstrate the use of diatom assemblages as indicators of water quality, which can be linked to land use in a watershed.

  1. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  2. BIOMONITORING OF SOURCE WATER QUALITY

    EPA Science Inventory

    Living organisms are commonly used to determine the toxicity of environmental samples but are usually limited to survival, growth, or reproduction. With advances in electronic and computer technology, biomonitors are being developed that can assess the toxicity of water by monit...

  3. Baseline water quality of Iowa's coal region

    USGS Publications Warehouse

    Slack, Larry J.

    1979-01-01

    To assist the Iowa Department of Environmental Quality in determining the effects that coal mining and attendant activities will have on the water quality of Iowa streams, the U.S. Geological Survey collected three sets of water-quality samples (representative of high, average, and low streamflow) in the White Breast, English,aand Cedar Creek basins in south-central Iowa. These samples were analyzed by the U.S. Geological Survey Central Laboratory at Denver, Colorado, and by the Iowa State Hygienic Laboratory (Iowa City and Des Moines). The report presents the data collected from May to November 1978 at 15 stations in the study area. (Woodard-USGS)

  4. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  5. SAMPLING DESIGN FOR ASSESSING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    Current U.S. EPA guidelines for monitoring recreatoinal water quality refer to the geometric mean density of indicator organisms, enterococci and E. coli in marine and fresh water, respectively, from at least five samples collected over a four-week period. In order to expand thi...

  6. WATER QUALITY MULTI-YEAR PLAN

    EPA Science Inventory

    The water quality research program provides approaches and methods the Agency and its partners need to develop and apply criteria to support designated uses, tools to diagnose and assess impairment in aquatic systems, and tools to restore and protect aquatic systems. Water qualit...

  7. WQM: A Water Quality Management Simulation Game.

    ERIC Educational Resources Information Center

    Sharda, Ramesh; And Others

    1988-01-01

    Description of WQM, a simulation game designed to introduce students to the water quality management function, emphasizes the decision-making process involved in various facets of business. The simulation model is described, computer support is explained, and issues in water resource management are discussed. (13 references) (LRW)

  8. Drinking water quality monitoring using trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control. PMID:24937217

  9. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  10. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  11. Coal conversion siting on coal mined lands: water quality issues

    SciTech Connect

    Triegel, E. K.

    1980-01-01

    The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

  12. Three dimensional water quality modeling of a shallow subtropical estuary.

    PubMed

    Wan, Yongshan; Ji, Zhen-Gang; Shen, Jian; Hu, Guangdou; Sun, Detong

    2012-12-01

    Knowledge of estuarine hydrodynamics and water quality comes mostly from studies of large estuarine systems. The processes affecting algae, nutrients, and dissolved oxygen (DO) in small and shallow subtropical estuaries are relatively less studied. This paper documents the development, calibration, and verification of a three dimensional (3D) water quality model for the St. Lucie Estuary (SLE), a small and shallow estuary located on the east coast of south Florida. The water quality model is calibrated and verified using two years of measured data. Statistical analyses indicate that the model is capable of reproducing key water quality characteristics of the estuary within an acceptable range of accuracy. The calibrated model is further applied to study hydrodynamic and eutrophication processes in the estuary. Modeling results reveal that high algae concentrations in the estuary are likely caused by excessive nutrient and algae supplies in freshwater inflows. While algal blooms may lead to reduced DO concentrations near the bottom of the waterbody, this study indicates that stratification and circulation induced by freshwater inflows may also contribute significantly to bottom water hypoxia in the estuary. It is also found that high freshwater inflows from one of the tributaries can change the circulation pattern and nutrient loading, thereby impacting water quality conditions of the entire estuary. Restoration plans for the SLE ecosystem need to consider both a reduction of nutrient loading and regulation of the freshwater discharge pattern. PMID:23122270

  13. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings. PMID:27280609

  14. Water quality assessment in Ecuador

    SciTech Connect

    Chudy, J.P.; Arniella, E.; Gil, E.

    1993-02-01

    The El Tor cholera pandemic arrived in Ecuador in March 1991, and through the course of the year caused 46,320 cases, of which 692 resulted in death. Most of the cases were confined to cities along Ecuador's coast. The Water and Sanitation for Health Project (WASH), which was asked to participate in the review of this request, suggested that a more comprehensive approach should be taken to cholera control and prevention. The approach was accepted, and a multidisciplinary team consisting of a sanitary engineer, a hygiene education specialist, and an institutional specialist was scheduled to carry out the assessment in late 1992 following the national elections.

  15. Development of reclaimed potable water quality criteria

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Weir, F. W.

    1979-01-01

    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.

  16. Appraisal of ground-water quality near wastewater-treatment facilities, Glacier National Park, Montana

    USGS Publications Warehouse

    Moreland, Joe A.; Wood, Wayne A.

    1982-01-01

    Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system. Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant. Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts. (USGS)

  17. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM) plans. WQM plans consist of...

  18. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM) plans. WQM plans consist of...

  19. OPERATION OF WATER DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. In order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wat...

  20. Water quality in Scotland: the view of the regulator.

    PubMed

    Marsden, M W; Mackay, D W

    2001-01-29

    Water quality in Scotland has progressively improved over the past 50 years as the environmental damage, which resulted from the industrial revolution, has been addressed. This paper provides an overview of current water quality in rivers, lochs, estuaries and coastal waters and describes the limited information available on groundwater. The main factors affecting water quality are reviewed, with sewage, diffuse agricultural pollution, acidification and urban drainage identified as the most important. Trends in pollution pressure and levels of investment in pollution control have been used to predict the condition of Scotland's surface water over the next 10 years. Major improvements are expected. However, progress will be slowed by the increased relative importance of diffuse sources of pollution, which are less amenable to legislative controls. Future changes in environmental monitoring are also expected to move the emphasis away from point source pollution. The current freshwater classification schemes are based upon a relatively narrow measure of water quality and are expected to expand to include a wider range of ecological parameters. This will result in an increase in the waters defined as impacted as the effects of other environmental pressures are taken into account. Finally the implications of these changes for the future management of the aquatic environment are assessed. PMID:11227279

  1. Water-quality assessment of the Cook Inlet basin, Alaska : environmental setting

    USGS Publications Warehouse

    Brabets, Timothy P.; Nelson, Gordon L.; Dorava, Joseph M.; Milner, Alexander M.

    1999-01-01

    The Cook Inlet Basin in Alaska is one of 59 study units selected for study for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program. The Cook Inlet Basin study unit encompasses the fresh surface and ground waters in the 39,325 square-mile area that drains to Cook Inlet, but does not include the marine waters of Cook Inlet. This report describes the natural factors (climate, physiography, geology, soils, land cover) and the human factors (population, land use, water use) that affect water quality, which is the first step in designing and conducting a multidisciplinary regional water-quality assessment. The surface- and ground-water hydrology, and the aquatic ecosystems of the Cook Inlet Basin are described. The report provides an overview of existing water-quality conditions and summarizes the results of selected water-quality studies of the basin.

  2. Water quality monitor (EMPAX instrument)

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Clark, Ben; Thornton, Mike

    1991-01-01

    The impetus of the Viking Mission to Mars led to the first miniaturization of a X-ray Fluorescence Spectrometer (XRFS). Two units were flown on the Viking Mission and successfully operated for two years analyzing the elemental composition of the Martian soil. Under a Bureau of Mines/NASA Technology Utilization project, this XRFS design was utilized to produce a battery powered, portable unit for elemental analysis of geological samples. This paper will detail design improvements and additional sampling capabilities that were incorporated into a second generation portable XRFS that was funded by the EPA/NASA Technology Utilization project. The unit, Environment Monitoring with Portable Analysis by X-ray (EMPAX), was developed specifically for quantitative determination of the need of EPA and and any industry affected by environmental concerns, the EMPAX fulfills a critical need to provide on-site, real-time analysis of toxic metal contamination. A patent was issued on EMPAX, but a commercial manufacturer is still being sought.

  3. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  4. Water quality in sugar catchments of Queensland.

    PubMed

    Rayment, G E

    2003-01-01

    Water quality condition and trend are important indicators of the impact of land use on the environment, as degraded water quality causes unwelcome changes to ecosystem composition and health. These concerns extend to the sea, where discharges of nutrients, sediments and toxicants above natural levels are unwelcome, particularly when they drain to the Great Barrier Reef World Heritage Area and other coastal waters of Queensland. Sugarcane is grown in 26 major river catchments in Queensland, most in environmentally sensitive areas. This puts pressure on the Queensland Sugar Industry to manage the land in ways that have minimum adverse off-site impacts. Sugar researchers including CRC Sugar have been associated with water quality studies in North Queensland. These include investigations and reviews to assess the role of groundwater as a pathway for nitrate loss from canelands in the Herbert Catchment, to find causes of oxygen depletion in water (including irrigation runoff) from Ingham to Mackay, to use residues of superseded pesticides as indicators of sediment loss to the sea, and to assemble information on water quality pressure and status in sugar catchments. Key findings, plus information on input pressures are described in this paper, and areas of concern and opportunities discussed. PMID:14653632

  5. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  6. Arsenic in drinking water in bangladesh: factors affecting child health.

    PubMed

    Aziz, Sonia N; Aziz, Khwaja M S; Boyle, Kevin J

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people's individuals' time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children's health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  7. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  8. Water quality trends in the Blackwater River watershed, West Virginia

    USGS Publications Warehouse

    Smith, Jessica; Welsh, Stuart; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  9. Observations on a Montana water quality proposal.

    SciTech Connect

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

  10. Water quality in conventional and home haemodialysis.

    PubMed

    Damasiewicz, Matthew J; Polkinghorne, Kevan R; Kerr, Peter G

    2012-12-01

    Dialysis water can be contaminated by chemical and microbiological factors, all of which are potentially hazardous to patients on haemodialysis. The quality of dialysis water has seen incremental improvements over the years, with advances in water preparation, monitoring and disinfection methods, and high standards are now readily achievable in clinical practice. Advances in dialysis membrane technology have refocused attention on water quality and its potential role in the bioincompatibility of haemodialysis circuits and adverse patient outcomes. The role of ultrapure dialysate is increasingly being advocated, given its proposed clinical benefits and relative ease of production as a result of the widespread use of reverse osmosis and ultrafiltration. Many of the issues pertaining to water quality in hospital-based dialysis units are also pertinent to haemodialysis in the home. Furthermore, an increased awareness of the environmental and financial consequences of home haemodialysis has resulted in the development of automated and more efficient dialysis machines. These new machines have an increased emphasis on water conservation and recycling along with a decreased need for a complex infrastructure for water purification and maintenance. PMID:23090444

  11. Rotation of Boar Semen Doses During Storage Affects Sperm Quality.

    PubMed

    Schulze, M; Rüdiger, K; Waberski, D

    2015-08-01

    It is common practice to rotate boar semen doses during storage for prevention of sperm sedimentation. In this study, the effect of rotation of boar semen doses during storage on sperm quality was investigated. Manual turning twice daily and automatic rotation five times per hour resulted in the following effects: alkalinization of the BTS-extender, loss of membrane integrity at day 3, and loss of motility and changes in sperm kinematics during a thermoresistance test at day 5. Using a pH-stabilized variant of BTS extender, sperm motility and velocity decreased in continuously rotated samples, whereas membrane integrity and mitochondrial activity remain unaffected. It is concluded that rotation of semen samples adversely affects sperm quality and, therefore, should no longer be recommended for AI practice. PMID:25974759

  12. Subjective quality of life in war-affected populations

    PubMed Central

    2013-01-01

    Background Exposure to traumatic war events may lead to a reduction in quality of life for many years. Research suggests that these impairments may be associated with posttraumatic stress symptoms; however, wars also have a profound impact on social conditions. Systematic studies utilising subjective quality of life (SQOL) measures are particularly rare and research in post-conflict settings is scarce. Whether social factors independently affect SQOL after war in addition to symptoms has not been explored in large scale studies. Method War-affected community samples were recruited through a random-walk technique in five Balkan countries and through registers and networking in three Western European countries. The interviews were carried out on average 8 years after the war in the Balkans. SQOL was assessed on Manchester Short Assessment of Quality of Life - MANSA. We explored the impact of war events, posttraumatic stress symptoms and post-war environment on SQOL. Results We interviewed 3313 Balkan residents and 854 refugees in Western Europe. The MANSA mean score was 4.8 (SD = 0.9) for the Balkan sample and 4.7 (SD = 0.9) for refugees. In both samples participants were explicitly dissatisfied with their employment and financial situation. Posttraumatic stress symptoms had a strong negative impact on SQOL. Traumatic war events were directly linked with lower SQOL in Balkan residents. The post-war environment influenced SQOL in both groups: unemployment was associated with lower SQOL and recent contacts with friends with higher SQOL. Experiencing more migration-related stressors was linked to poorer SQOL in refugees. Conclusion Both posttraumatic stress symptoms and aspects of the post-war environment independently influence SQOL in war-affected populations. Aid programmes to improve wellbeing following the traumatic war events should include both treatment of posttraumatic symptoms and social interventions. PMID:23819629

  13. Quality of tomato slices disinfected with ozonated water.

    PubMed

    Aguayo, Encarna; Escalona, Víctor; Silveira, Ana Cecilia; Artés, Francisco

    2014-04-01

    Fresh-cut industry needs novel disinfectant to replace the use of chlorine. Ozone is one of the most powerful oxidizing agents and is applied in gaseous or aqueous form for sanitation purposes. However, the strong oxidative effect could affect the nutritional and sensorial quality, in particular, when time of washing is extended. For that reason, the overall impact of ozonated water (0.4 mg/L) dipping applied during 1, 3 and 5 min compared to control washed in water during 5 min was studied in tomato slices stored during 14 days at 5 . According to the results, ozonated water treatment of 3 min achieved the best firmness retention, microbial quality (mesophilic, psychrotrophic and yeas load) and reduced the consumption of fructose and glucose. The use of ozonated water did not affect the total acidity, pH, total solid soluble, organic acid as ascorbic, fumaric or succinic acid and the sensorial parameters, which were only affected by storage time. However, the poor appearance, aroma and overall quality obtained in all treatments prevented shelf life of 14 days and the quality at acceptable levels was established in 10 days at 5 . It is recommended to wash tomato slices with 0.4 mg/L ozonated water for 3 min only. Extending treatment duration did not improve the microbiological quality, possibly due to the extra time permitting the ozone to react with other components of the fruit tissue, undermining the antimicrobial benefits. PMID:23774605

  14. Factors affecting quality of dried low-rank coals

    SciTech Connect

    Karthikeyan, M.; Kuma, J.V.M.; Hoe, C.S.; Ngo, D.L.Y.

    2007-07-01

    The chemical and physical properties of coal are strongly affected by the upgrading process employed. For high-moisture coals, upgrading involves thermal dehydration to improve the calorific value of the coal on mass basis. This study evaluates the feasibility of upgrading a low-rank/grade coal using the oven drying method. The objective of this research work is to study the drying characteristics of low-rank coals and to understand the factors affecting the quality of dried low-rank coals. This article describes laboratory experiments conducted on the characterization of the low-rank coals before and after the drying process. The results on drying kinetics, re-absorption of coal samples, and proximate analysis of coal samples before and after drying are discussed. It was found that the upgrading process produced coal with better heating value and combustion characteristics than those of the raw coal samples.

  15. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  16. Water Quality and Sustainable Environmental Health

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  17. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  18. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  19. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  20. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... purposes of this rule and the Clean Water Act assistance programs under 40 CFR part 35, subparts A and H if... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  1. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... purposes of this rule and the Clean Water Act assistance programs under 40 CFR part 35, subparts A and H if... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  2. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  3. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  4. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  5. Water-quality assessment of the Lower Susquehanna River Basin, Pennsylvania and Maryland; design and implementation of water-quality studies, 1992-95

    USGS Publications Warehouse

    Siwiec, Steven F.; Hainly, Robert A.; Lindsey, Bruce D.; Bilger, Michael D.; Brightbill, Robin A.

    1997-01-01

    From 1992 through 1995, nearly 1,200 water-quality samples from about 500 sites were collected, processed, and analyzed for the U.S. Geological Survey?s (USGS) National Water-Quality Assessment (NAWQA) Program in the Lower Susquehanna River Basin in Pennsylvania and Maryland. Sites were selected and samples were collected for 28 integrated water-quality studies designed to provide a comprehensive and nationally consistent description of current water-quality conditions, to begin to identify trends in water quality, and to determine the major factors that affect observed water quality. To achieve this, stream-water, ground-water, streambed-sediment, and biota samples were collected, and habitat assessments were conducted at selected data-collection sites. This report discusses the water-quality study design, site-selection strategy, and implementation steps used to obtain water-quality and related data. Methods employed to collect, process, and analyze samples, characterize sites, and assess habitat are described. A comprehensive list of all sites employed in these studies and their characteristics is provided. Sample analyses conducted for the water-quality studies described in this report, including nutrients, pesticides, major ions, volatile organic compounds (VOC?s), and trace elements, as well as measured or observed physical properties and habitat characteristics, also are listed.

  6. Water Bouncing Balls: how material stiffness affects water entry

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  7. NONPOINT SOURCES AND WATER QUALITY TRADING

    EPA Science Inventory

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  8. Examining issues with water quality model configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex watershed–scale, water quality models require a considerable amount of data in order to be properly configured, especially in view of the scarcity of data in many regions due to temporal and economic constraints. In this study, we examined two different input issues incurred while building ...

  9. Nutrient Management: Water Quality/Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management programs must have a positive impact on water quality. The challenge for producers is to understand the nutrient balance in the soil and to reduce the risk of surface runoff of manure. The challenge for science is to increase our understanding of the value of manure in the soil a...

  10. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  11. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY

    EPA Science Inventory

    Scientists from ten countries presented papers at the Fifth International Symposium on Fish Physiology, Toxicology, and Water Quality, which was held on the campus of the city University of Hong Kong on November 10-13, 1998. These Proceedings include 23 papers presented in sessi...

  12. Water Quality Unit, Edmonds School District.

    ERIC Educational Resources Information Center

    Edmonds School District 15, Lynnwood, WA.

    This interdisciplinary program, developed for secondary students, contains 20 water quality activities that can either be used directly in, or as a supplement to, curriculum in Science, Home Economics and Industrial Arts, Mathematics, Health, English, and Social Studies. The topics investigated include: pollution analysis, industrial need,…

  13. Water quality issues and energy assessments

    SciTech Connect

    Davis, M.J.; Chiu, S.

    1980-11-01

    This report identifies and evaluates the significant water quality issues related to regional and national energy development. In addition, it recommends improvements in the Office assessment capability. Handbook-style formating, which includes a system of cross-references and prioritization, is designed to help the reader use the material.

  14. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY:

    EPA Science Inventory

    Twenty-one participants from Europe, North America and China convened in Chongqing, China, October 12-14, 2005, for the Eighth International Symposium in Fish Physiology, Toxicology and Water Quality. The subject of the meeting was "Hypoxia in vertebrates: Comparisons of terrestr...

  15. ASSESSING WATER QUALITY: AN ENERGETICS PERPECTIVE

    EPA Science Inventory

    Integrated measures of food web dynamics could serve as important supplemental indicators of water quality that are well related with ecological integrity and environmental well-being. When the concern is a well-characterized pollutant (posing an established risk to human health...

  16. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  17. Water Quality Considerations and Related Dishwashing Problems.

    ERIC Educational Resources Information Center

    McClelland, Nina I.

    A number of the chemical and physical factors which cause dishwashing problems are presented in a series of charts. Water quality considerations are vital, but the importance of good housekeeping and proper operating practices cannot and must not be minimized. Topics discussed include--(1) dissolved minerals, (2) dissolved gases, (3) detergents,…

  18. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. PMID:26346804

  19. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    USGS Publications Warehouse

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    NETPATH geochemical model code was used to mix waters from the alluvial aquifer with water from the Memphis aquifer using chloride as a conservative tracer. The resulting models indicated that a mixture containing 3 percent alluvial aquifer water mixed with 97 percent unaffected Memphis aquifer water would produce the chloride concentration measured in water from the Memphis aquifer well most affected by water-quality changes. NETPATH also was used to calculate mixing percentages of alluvial and Memphis aquifer Abstract waters based on changes in the concentrations of selected dissolved major inorganic and trace element constituents that define the dominant reactions that occur during mixing. These models indicated that a mixture containing 18 percent alluvial aquifer water and 82 percent unaffected Memphis aquifer water would produce the major constituent and trace element concentrations measured in water from the Memphis aquifer well most affected by water-quality changes. However, these model simulations predicted higher dissolved methane concentrations than were measured in water samples from the Memphis aquifer wells.

  20. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  1. Analysis of aerial multispectral imagery to assess water quality parameters of Mississippi water bodies

    NASA Astrophysics Data System (ADS)

    Irvin, Shane Adison

    The goal of this study was to demonstrate the application of aerial imagery as a tool in detecting water quality indicators in a three mile segment of Tibbee Creek in, Clay County, Mississippi. Water samples from 10 transects were collected per sampling date over two periods in 2010 and 2011. Temperature and dissolved oxygen (DO) were measured at each point, and water samples were tested for turbidity and total suspended solids (TSS). Relative reflectance was extracted from high resolution (0.5 meter) multispectral aerial images. A regression model was developed for turbidity and TSS as a function of values for specific sampling dates. The best model was used to predict turbidity and TSS using datasets outside the original model date. The development of an appropriate predictive model for water quality assessment based on the relative reflectance of aerial imagery is affected by the quality of imagery and time of sampling.

  2. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized

  3. Monitoring and assessment of water quality of Tasik Cempaka, Bangi

    NASA Astrophysics Data System (ADS)

    Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif

    2014-09-01

    A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.

  4. EPANET - AN ADVANCED WATER QUALITY MODELING PACKAGE FOR DISTRIBUTION SYSTEMS

    EPA Science Inventory

    EPANET is a third generation software package for modeling water quality within drinking water distribution systems. he program performs extended period simulation of hydraulic and water quality conditions within pressurized pipe networks. n addition to substance concentration wa...

  5. Water quality analysis of River Yamuna using water quality index in the national capital territory, India (2000-2009)

    NASA Astrophysics Data System (ADS)

    Sharma, Deepshikha; Kansal, Arun

    2011-12-01

    River Yamuna, in the national capital territory (NCT), commonly called Delhi (India), has been subjected to immense degradation and pollution due to the huge amount of domestic wastewater entering the river. Despite the persistent efforts in the form of the Yamuna Action Plan phase I and II (YAP) (since 1993 to date), the river quality in NCT has not improved. The restoration of river water quality has been a major challenge to the environmental managers. In the present paper, water quality index (WQI) was estimated for the River Yamuna within the NCT to study the aftereffects of the projects implemented during YAP I and II. The study was directed toward the use of WQI to describe the level of pollution in the river for a period of 10 years (2000-2009). The study also identifies the critical pollutants affecting the river water quality during its course through the city. The indices have been computed for pre-monsoon, monsoon and post-monsoon season at four locations, namely Palla, ODRB, Nizamuddin and Okhla in the river. It was found that the water quality ranged from good to marginal category at Palla and fell under poor category at all other locations. BOD, DO, total and fecal coliforms and free ammonia were found to be critical parameters for the stretch.

  6. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  7. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  8. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  9. Evaluation of military field-water quality

    SciTech Connect

    Daniels, J.I.; Gallegos, G.M.

    1990-05-01

    This is the first and summary volume of the nine-volume study entitled Evaluation of Military Field-Water Quality. This study is a comprehensive assessment of the chemical, radiological, and biological constituents of field-water supplied that could pose health risks to military personnel around the world; it also provides a detailed evaluation of the field-water-treatment capability of the US Armed Forces. This study identifies as being of concern three physical properties, i.e., turbidity, color, and total dissolved solids; seven chemical constituents, i.e., chloride, magnesium, sulfate, arsenic, cyanide, lindane, and metabolites of algae and associated aquatic bacteria; and over twenty types of water-related pathogenic microorganisms. It also addresses five threat agents, i.e., hydrogen cyanide, radioactivity, organophosphorous nerve agents, the trichotecene mycotoxin T-2, and lewisite. An overview of the criteria and recommendations for standards for these constituents for short- term and long-term exposure periods are presented in this volume, as are health-effects summaries for assessing the potential soldier performance degradation when recommended standards are exceeded. In addition, the existing military field-water-treatment capability is reviewed, and an abbreviated discussion is presented of the general physical, chemical, and biological qualities of field waters in geographic regions worldwide, representing potential theaters of operation for US military forces. Finally, research recommendations are outlined. 18 figs., 6 tabs.

  10. Drainage water management effects on tile discharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  11. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  12. Linking biological and physicochemical water quality.

    PubMed

    Bernatowicz, Waldemar; Weiss, Annett; Matschullat, Jörg

    2009-12-01

    To define water quality, the European Water Framework Directive (WFD) demands complex assessments through physicochemical, biological, and hydromorphological controls of water bodies. Since the biological assessment became the central focus with hydrochemistry playing a supporting role, an evaluation of the interrelationships within this approach deems necessary. This work identified and tested these relationships to help improve the quality and efficiency of related efforts. Data from the 384 km(2) Weisseritz catchment (eastern Erzgebirge, Saxony, Germany and northern Bohemia, Czech Republic) were used as a representative example for central European streams in mountainous areas. The data cover the time frame 1992 to 2003. To implement WFD demands, the analysis was based on accepted German methods and classifications, WFD quality standards, and novel German methods for the biological status assessment. Selected chemical parameters were compared with different versions of the German Saprobic Index, based on macroinvertebrate indicator taxa. Relevant dependencies applicable for integrated stream assessment were statistically tested. Correlation analysis showed significant relationships. The highest scores were found for nutrients (NO(2)(-), N(inorg), and total N), salinity (Cl(-), SO(4)(2-), conductivity), and microelements (K(+), Na(+), Ca(2+), Mg(2+)). The Saprobic Index used in the Integrated Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macro-invertebrates program seems to be the most sensitive indicator to correlate with chemical parameters. PMID:19067209

  13. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  14. Multilevel factors affecting quality: examples from the cancer care continuum.

    PubMed

    Zapka, Jane; Taplin, Stephen H; Ganz, Patricia; Grunfeld, Eva; Sterba, Katherine

    2012-05-01

    The complex environmental context must be considered as we move forward to improve cancer care and, ultimately, patient and population outcomes. The cancer care continuum represents several care types, each of which includes multiple technical and communication steps and interfaces among patients, providers, and organizations. We use two case scenarios to 1) illustrate the variability, diversity, and interaction of factors from multiple levels that affect care quality and 2) discuss research implications and provide hypothetical examples of multilevel interventions. Each scenario includes a targeted literature review to illustrate contextual influences upon care and sets the stage for theory-informed interventions. The screening case highlights access issues in older women, and the survivorship case illustrates the multiple transition challenges faced by patients, families, and organizations. Example interventions show the potential gains of implementing intervention strategies that work synergistically at multiple levels. While research examining multilevel intervention is a priority, it presents numerous study design, measurement, and analytic challenges. PMID:22623591

  15. Water quality monitoring using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Adsavakulchai, Suwannee; Panichayapichet, Paweena

    2003-03-01

    There has been a rapid growth of shrimp farm around Kung Krabaen Bay in the past decade. This has caused enormous rise in generation of domestic and industrial wastes. Most of these wastes are disposed in the Kung Krabaen Bay. There is a serious need to retain this glory by better water quality management of this river. Conventional methods of monitoring of water quality have limitations in collecting information about water quality parameters for a large region in detailed manner due to high cost and time. Satellite based technologies have offered an alternate approach for many environmental monitoring needs. In this study, the high-resolution satellite data (LANDSAT TM) was utilized to develop mathematical models for monitoring of chlorophyll-a. Comparison between empirical relationship of spectral reflectance with chl-a and band ratio between the near infrared (NIR) and red was suggested to detect chlorophyll in water. This concept has been successfully employed for marine zones and big lakes but not for narrow rivers due to constraints of spatial resolution of satellite data. This information will be very useful in locating point and non-point sources of pollution and will help in designing and implementing controlling structures.

  16. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  17. Recreational value of improved water quality in the Upper Big Walnut Watershed, Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper examines how water quality improvement affects the visitation behavior of boaters and anglers in Upper Big Walnut watershed in Columbus, Ohio. The societal benefits from improved water quality are important for deriving the benefit-cost estimates of different nutrient reduction technologi...

  18. Parameters affecting greywater quality and its safety for reuse.

    PubMed

    Maimon, Adi; Friedler, Eran; Gross, Amit

    2014-07-15

    Reusing greywater (GW) for on-site irrigation is becoming a common practice worldwide. Alongside its benefits, GW reuse might pose health and environmental risks. The current study assesses the risks associated with on-site GW reuse and the main factors affecting them. GW from 34 households in Israel was analyzed for physicochemical parameters, Escherichia coli (as an indicator for rotavirus), Pseudomonas aeruginosa and Staphylococcus aureus. Each participating household filled out a questionnaire about their GW sources, treatment and usages. Quantitative microbial risk assessment (QMRA) was performed based on the measured microbial quality, and on exposure scenarios derived from the questionnaires and literature data. The type of treatment was found to have a significant effect on the quality of the treated GW. The average E. coli counts in GW (which exclude kitchen effluent) treated by professionally-designed system resulted in acceptable risk under all exposure scenarios while the risk from inadequately-treated GW was above the accepted level as set by the WHO. In conclusion, safe GW reuse requires a suitable and well-designed treatment system. A risk-assessment approach should be used to adjust the current regulations/guidelines and to assess the performance of GW treatment and reuse systems. PMID:24751591

  19. Factors affecting response of surface waters to acidic deposition

    SciTech Connect

    Turner, R.S.; Johnson, D.W.; Elwood, J.W.; Van Winkle, W.; Clapp, R.B.; Reuss, J.O.

    1986-04-01

    Knowledge of watershed hydrology and of the biogeochemical reactions and elemental pools and fluxes occurring in watersheds can be used to classify the response of watersheds and surface waters to acidic deposition. A conceptual mosel is presented for classifying watersheds into those for which (1) surface water chemistry will change rapidly with deposition quality (direct response) (2) surface water chemistry will change only slowly over time (delayed response), and (3) surface water chemistry will not change significantly, even with continued acidic deposition (capacity-protected). Techniques and data available for classification of all watersheds in a region into these categories are discussed.

  20. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  1. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  2. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  3. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  4. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  5. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  6. Chapter 5: Surface water quality sampling in streams and canals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  7. National Water-Quality Assessment (NAWQA) program. A basis for water-resource policy development

    USGS Publications Warehouse

    Leahy, P. Patrick; Wilber, William G.

    1991-01-01

    The concepts that are the basis for the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program began forming in the early 1980's. By 1986, a pilot phase was initiated to test and refine assessment concepts and in 1991, the NAWQA program began a multi-year transition to a fully operational program. The goals of the program are to describe the status and trends in the quality of a large representative part of the Nation's ground- and surface-water resources and to develop an understanding of the natural and human factors affecting the quality of these resources. This information will provide a sound scientific basis upon which water resources decision making at all governmental levels can be based. To meet its goals, the program will integrate water-quality information at local, regional, and national scales. The program will be perennial and consist of two major components -- study-unit investigations and national assessment activities. Investigations of surface- and ground-water resources of major regional hydrologic systems (river basins and aquifer systems) each covering 1200 to about 60,000 square miles, will be conducted on a rotating basis for 60 study units located throughout the Nation. Key findings from these study-unit investigations will be used along with other information to provide issue-oriented water-quality assessments of regional and national interest.

  8. Water Quality Investigations at Lake Merritt in Oakland, California

    NASA Astrophysics Data System (ADS)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    has the greatest number and diversity of organisms as indicated through visual observation, which is located where marine waters flow directly into the Lake. In addition, high levels of dissolved oxygen were measured at two sites along an approximately 500 meters stretch of the Lake's eastern shoreline, where swift moving currents were observed. Dissolved oxygen levels were lowest in areas where storm drain runoff waters flow into the Lake, as well as those that include trash-filled, stagnant sections. Overall, our work has generated information that may be used to better understand important factors that affect Lake Merritt's water quality. Such studies should be continued in the future and used to help maintain a healthy ecosystem in and around Lake Merritt.

  9. Contemporary Quality of Life Issues Affecting Gynecologic Cancer Survivors

    PubMed Central

    Carter, Jeanne; Penson, Richard; Barakat, Richard; Wenzel, Lari

    2015-01-01

    Gynecologic cancers account for approximately 11% of the newly diagnosed cancers in women in the United States and 18% in the world.1 The most common gynecologic malignancies occur in the uterus and endometrium (53%), ovary (25%), and cervix (14%).2 Cervical cancer is most prevalent in premenopausal women, during their childbearing years, whereas uterine and ovarian cancers tend to present in the perimenopausal or menopausal period. Vaginal and vulvar cancers and malignancies arising from gestation, or gestational trophoblastic neoplasms, occur to a lesser extent. Regardless of cancer origin or age of onset, the disease and its treatment can produce short- and long-term sequelae (ie, sexual dysfunction, infertility, or lymphedema) that adversely affect quality of life (QOL). This article outlines the primary contemporary issues or concerns that may affect QOL and offers strategies to offset or mitigate QOL disruption. These contemporary issues are identified within the domains of sexual functioning, reproductive issues, lymphedema, and the contribution of health-related QOL (HRQOL) in influential gynecologic cancer clinical trials. PMID:22244668

  10. Domestic cooking methods affect the nutritional quality of red cabbage.

    PubMed

    Xu, Feng; Zheng, Yonghua; Yang, Zhenfeng; Cao, Shifeng; Shao, Xingfeng; Wang, Hongfei

    2014-10-15

    The aim of this work is to investigate the effects of domestic cooking methods, including steaming, microwave heating, boiling and stir-frying on the nutritional quality of red cabbage. Compared with fresh-cut red cabbage, all cooking methods were found to cause significant reduction in anthocyanin and total glucosinolates contents. Moreover, steaming resulted in significantly greater retention of vitamin C and DPPH radical-scavenging activity, while stir-frying and boiling, two popular Chinese cooking methods, led to significant losses of total phenolic, vitamin C, DPPH radical-scavenging activity, and total soluble sugar as well as reducing sugars. Normally, red cabbage consumed fresh in salads could maintain the highest nutrition. However, considering the habits of Asian cuisine, it is recommended to use less water and less cooking time, such as steaming based on our present results, so as to retain the optimum benefits of the health-promoting compounds. PMID:24837935

  11. Ground-water flow and water quality in the sand aquifer of Long Beach Peninsula, Washington

    USGS Publications Warehouse

    Thomas, B.E.

    1995-01-01

    This report describes a study that was undertaken to improve the understanding of ground-water flow and water quality in the coastal sand aquifer of the Long Beach Peninsula of southwestern Washington. Data collected for the study include monthly water levels at 103 wells and 28 surface-water sites during 1992, and water-quality samples from about 40 wells and 13 surface-water sites in February and July 1992. Ground water generally flows at right angles to a ground-water divide along the spine of the low-lying peninsula. Historical water-level data indicate that there was no long-term decline in the water table from 1974 to 1992. The water quality of shallow ground water was generally good with a few local problems. Natural concentrations of dissolved iron were higher than 0.3 milligrams per liter in about one-third of the samples. The dissolved-solids concentrations were generally low, with a range of 56 to 218 milligrams per liter. No appreciable amount of seawater has intruded into the sand aquifer, chloride concentrations were low, with a maximum of 52 milligrams per liter. Agricultural activities do not appear to have significantly affected the quality of ground water. Concentrations of nutrients were low in the cranberry-growing areas, and selected pesticides were not found above the analytical detection limits. Septic systems probably caused an increase in the concentration of nitrate from medians of less than 0.05 milligrams per liter in areas of low population density to 0.74 milligrams per liter in areas of high density.

  12. Quality of surface water in the Suwannee River Basin, Florida, August 1968 through December 1977

    USGS Publications Warehouse

    Hull, Robert W.; Dysart, Joel E.; Mann, William B., IV

    1981-01-01

    In the 9,950-square mile area of the Suwannee River basin in Florida and Georgia, 17 surface-water stations on 9 streams and several springs were sampled for selected water-quality properties and constituents from August 1968 through December 1977. Analyses from these samples indicate that: (1) the water quality of tributary wetlands controls the water quality of the upper Suwannee River headwaters; (2) groundwater substantially affects the water quality of the Suwannee River basin streams below these headquarters; (3) the water quality of the Suwannee River, and many of its tributaries, is determined by several factors and is not simply related to discharge; and (4) development in the Suwannee River basin has had observable effects on the quality of surface waters. (USGS)

  13. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, Marylynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  14. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    PubMed

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended. PMID:25750066

  15. Clinical factors affecting quality of life of patients with asthma

    PubMed Central

    Uchmanowicz, Bartosz; Panaszek, Bernard; Uchmanowicz, Izabella; Rosińczuk, Joanna

    2016-01-01

    Background In recent years, there has been increased interest in the subjective quality of life (QoL) of patients with bronchial asthma. QoL is a significant indicator guiding the efforts of professionals caring for patients, especially chronically ill ones. The identification of factors affecting the QoL reported by patients, despite their existing condition, is important and useful to provide multidisciplinary care for these patients. Aim To investigate the clinical factors affecting asthma patients’ QoL. Methods The study comprised 100 patients (73 female, 27 male) aged 18–84 years (mean age was 45.7) treated in the Allergy Clinic of the Wroclaw Medical University Department and Clinic of Internal Diseases, Geriatrics and Allergology. All asthma patients meeting the inclusion criteria were invited to participate. Data on sociodemographic and clinical variables were collected. In this study, we used medical record analysis and two questionnaires: the Asthma Quality of Life Questionnaire (AQLQ) to assess the QoL of patients with asthma and the Asthma Control Test to measure asthma control. Results Active smokers were shown to have a significantly lower QoL in the “Symptoms” domain than nonsmokers (P=0.006). QoL was also demonstrated to decrease significantly as the frequency of asthma exacerbations increased (R=−0.231, P=0.022). QoL in the domain “Activity limitation” was shown to increase significantly along with the number of years of smoking (R=0.404; P=0.004). Time from onset and the dominant symptom of asthma significantly negatively affected QoL in the “Activity limitation” domain of the AQLQ (R=−0.316, P=0.001; P=0.029, respectively). QoL scores in the “Emotional function” and “Environmental stimuli” subscale of the AQLQ decreased significantly as time from onset increased (R=−0.200, P=0.046; R=−0.328, P=0.001, respectively). Conclusion Patients exhibiting better symptom control have higher QoL scores. Asthma patients’ Qo

  16. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. PMID:22575375

  17. Overview of water quality and water resource research in the Water Quality and Ecology Research Unit, Oxford, MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Quality and Ecology Research Unit (WQERU) is part of the United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Sedimentation Laboratory located in Oxford, Mississippi. The stated research mission of the WQERU is to “address issues of water quality/quan...

  18. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  19. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  20. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  1. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  2. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  3. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially...

  4. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  5. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  6. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  7. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  8. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  9. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  10. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  11. Water quality in Illinois, 1990-1991. Biennial report

    SciTech Connect

    Northrop, C.

    1993-01-01

    The report is a summary of the 305(b) Illinois Water Quality Report. It highlights the 1990 - 1991 water quality conditions of Illinois rivers, streams, inland lakes, Lake Michigan, and groundwater. The report also outlines current water quality issues and the IEPA's water pollution control programs.

  12. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its... 7 Agriculture 6 2012-01-01 2012-01-01 false Water quality plan. 634.23 Section 634.23...

  13. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its... 7 Agriculture 6 2011-01-01 2011-01-01 false Water quality plan. 634.23 Section 634.23...

  14. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  15. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  16. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  17. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  18. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  19. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  20. Quality assessment of Romanian bottled mineral water and tap water.

    PubMed

    M Carstea, Elfrida; Levei, Erika A; Hoaghia, Maria-Alexandra; Savastru, Roxana

    2016-09-01

    This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses. PMID:27526046

  1. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  2. Kansas environmental and resource study: A Great Plains model. Monitoring fresh water resources. [water quality of reservoirs

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Processing and analysis of CCT's for numerous ground truth supported passes over Kansas reservoirs has demonstrated that sun angle and atmospheric conditions are strong influences on water reflectance levels as detected by ERTS-1 and can suppress the contributions of true water quality factors. Band ratios, on the other hand, exhibit very little dependence on sun angle and sky conditions and thus are more directly related to water quality. Band ratio levels can be used to reliably determine suspended load. Other water quality indicators appear to have little or no affect on reflectance levels.

  3. Water quality modeling. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the application of mathematical modeling to hydrological and limnological systems. Nutrient removal in lakes and reservoirs, effects of mine drainage on water quality, and various parameters affecting pollutant flow in aquifers, streams, and rivers are discussed. Physical processes affecting water quality are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Canadian water quality guidelines. Appendix 22: Interim marine and estuarine water quality guidelines for general variables

    SciTech Connect

    1996-12-31

    This document has been prepared in response to the need for marine water quality guidelines for general water quality variables. It presents interim guidelines, summaries of existing guidelines if any, the rationale for the guidelines, and variable-specific background information, and notes gaps in data, for the following variables: Debris, including floating or submerged litter, and settleable matter; dissolved oxygen; pH; salinity; temperature; and suspended solids and turbidity. For the purpose of this document, the marine environment includes shorelines, estuaries up to the freshwater limit, and nearshore and offshore waters.

  5. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water. PMID:24981877

  6. Water quality problems in Nogales, Sonora.

    PubMed

    Sanchez, R A

    1995-02-01

    This article presents the results of a transboundary water quality monitoring program at the two Nogales area in the Arizona-Sonora border region. The program was carried out jointly in 1990 by U.S. and Mexican institutions. The results show pollution problems due to deficiencies in Nogales, Sonora municipal sewerage system, causing not only sewage spills in several parts of the city but also creating occasional transboundary problems. The results also showed potential illegal dumping of industrial hazardous waste (VOCs) into Nogales' municipal sewerage system. All of the organic compounds found in the sewage samples are solvents frequently used by the border industry. Occasional brakes of pipes spill the pollutants into the Nogales Wash, a water stream that runs parallel to Nogales' main sewerage line. Samples of the municipal water system showed no traces of pollutants. However, two rounds of samples detected concentrations of VOCs in wells used to supply water by trucks to low income neighborhoods in Nogales, Sonora. Ironically, the pollution detected in these wells has a greater impact in low income groups of the city that pay three to four times more per liter of water they consume, than the rest of the inhabitants with clean water from the municipal system. PMID:7621811

  7. Water quality problems in Nogales, Sonora.

    PubMed Central

    Sanchez, R A

    1995-01-01

    This article presents the results of a transboundary water quality monitoring program at the two Nogales area in the Arizona-Sonora border region. The program was carried out jointly in 1990 by U.S. and Mexican institutions. The results show pollution problems due to deficiencies in Nogales, Sonora municipal sewerage system, causing not only sewage spills in several parts of the city but also creating occasional transboundary problems. The results also showed potential illegal dumping of industrial hazardous waste (VOCs) into Nogales' municipal sewerage system. All of the organic compounds found in the sewage samples are solvents frequently used by the border industry. Occasional brakes of pipes spill the pollutants into the Nogales Wash, a water stream that runs parallel to Nogales' main sewerage line. Samples of the municipal water system showed no traces of pollutants. However, two rounds of samples detected concentrations of VOCs in wells used to supply water by trucks to low income neighborhoods in Nogales, Sonora. Ironically, the pollution detected in these wells has a greater impact in low income groups of the city that pay three to four times more per liter of water they consume, than the rest of the inhabitants with clean water from the municipal system. PMID:7621811

  8. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  9. Determination of characteristics and drinking water quality index in Mzuzu City, Northern Malawi

    NASA Astrophysics Data System (ADS)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Gift

    An assessment of characteristics and chemical water quality index (WQI) of water supplied by the Northern Region water Board (NRWB) in Mzuzu City was carried out in order to ascertain the quality of water for domestic purposes. The WQI offers a single number that expresses overall water quality for a water sample based on several water quality parameters. In this study raw water and 72 tap water samples were collected monthly between March and September, 2011 and analyzed for major ions, pH, total dissolved solids (TDSs), electrical conductivity (EC), turbidity, total hardness (TH), suspended solids (SSs) and alkalinity using standard methods. The quality and accuracy of the chemical data was assessed by checking electrical balances. The calculated electrical balance errors were found to be less than ±10%, which meant the results were reliable. Based on the Sawyer and McCarty TH classification, 100% of the samples were soft waters (TH < 150 mg/L). Nitrates, which registered medium or average WQ-rating of 69.77 and WQ-rating range of 52.06-86.94, were observed to have significantly affected the overall water quality index of the treated water since the rest of the parameters registered good-excellent WQ-ratings (average WQ-rating: 80.21-97.87). The pH, which is used to determine suitability of water for various purposes, ranged between 6.40 and 6.90 and registered a good water quality rating (WQ rating range: 72.73-87.02) for both raw and treated water. Raw water registered an overall medium water quality rating of 62.67%. Overall, 91.67% of the samples registered a good water quality rating (WQI range: 80.28-88.80%) and 8.33% registered a very good water quality rating (WQI = 90.07%). The results suggested substantial water treatment by the NRWB since the treated water is protected with some negligible degree of impairment that rarely departs from desirable levels of domestic water quality. It is recommended that the WQI should be adopted as a tool to monitor and

  10. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  11. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey, (Edited By); Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  12. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    USGS Publications Warehouse

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  13. Livestock water quality in spring of 2009 to 2012 varies across years in Eastern Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mineral content of livestock water grazing rangelands can be a source of minerals affecting health and drinkability. To estimate yearly variation in water mineral concentrations, 9 indicators of quality were measured at 45 livestock water sites in May 2009 through 2012 at the USDA-ARS Fort Keogh Liv...

  14. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  15. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  16. Cellular-enabled water quality measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kerkez, B.

    2013-12-01

    While the past decade has seen significant improvements in our ability to measure nutrients and other water quality parameters, the use of these sensors has yet to gain traction due to their costprohibitive nature and deployment expertise required on the part of researchers. Furthermore, an extra burden is incurred when real-time data access becomes an experimental requirement. We present an open-source hardware design to facilitate the real-time, low-cost, and robust measurements of water quality across large urbanized areas. Our hardware platform interfaces an embedded, vastly configurable, high-precision, ultra-low power measurement system, with a low-power cellular module. Each sensor station is configured with an IP address, permitting reliable streaming of sensor data to off-site locations as measurements are made. We discuss the role of high-quality hardware components during extreme event scenarios, and present preliminary performance metrics that validate the ability of the platform to provide streaming access to sensor measurements.

  17. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  18. Barriers to adopting satellite remote sensing for water quality management

    EPA Science Inventory

    Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...

  19. LANDSAT ESTUARINE WATER QUALITY ASSESSMENT OF SILVICULTURE AND DREDGING ACTIVITIES

    EPA Science Inventory

    This report describes the application of Landsat multispectral scanning to estuarine water quality, with specific reference to dredging and silviculture practices. Water quality data collected biweekly since 1972 in the Apalachicola, Bay, Florida, by Florida State University, and...

  20. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  1. MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS

    EPA Science Inventory

    EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...

  2. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H., (compiler)

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  3. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  4. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking. PMID:27280603

  5. Reading Water Quality Variables with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules; Minkman, Ellen

    2015-04-01

    Many relevant water quality variables can be measured cost-effectively with standard indicator strips. These are local measurements, although usually done within a larger water network. Only if these measurements can be made available in a central database, the entire network can benefit from the extra data point. This requires an analog data source to be converted to a digital data point. A tool that is equipped to do that and also communicate the value to a central system, is a smartphone. A water quality monitoring method is introduced that requires standard indicator strips attached to a reference card and an app with which a picture can be taken from this card. The color or other indication is automatically read with dedicated pattern recognition algorithms and, by using the gps-localization of the smartphone, is stored in the right location in the central database. The method is low-cost and very user-friendly, which makes it suitable for crowd sourcing.

  6. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  7. Design of the National Water-Quality Assessment Program; occurrence and distribution of water-quality conditions

    USGS Publications Warehouse

    Gilliom, Robert J.; Alley, William M.; Gurtz, Martin E.

    1995-01-01

    The National Water-Quality Assessment Program assesses the status of and trends in the quality of the Nation's ground- and surface-water resources. The occurrence and distribution assessment component characterizes broad-scale water-quality conditions in relation to major contaminant sources and background conditions in each study area. The surface-water design focuses on streams. The ground-water design focuses on major aquifers, with emphasis on recently recharged ground water associated with human activities.

  8. Water Resources Data, New Jersey, Water Year 2002--Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Hoppe, H.L.; Heckathorn, H.A.; Gray, B.J.; Riskin, M.L.

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  9. Multidimensional Measurement of Household Water Poverty in a Mumbai Slum: Looking Beyond Water Quality

    PubMed Central

    Subbaraman, Ramnath; Nolan, Laura; Sawant, Kiran; Shitole, Shrutika; Shitole, Tejal; Nanarkar, Mahesh; Patil-Deshmukh, Anita; Bloom, David E.

    2015-01-01

    Objective A focus on bacterial contamination has limited many studies of water service delivery in slums, with diarrheal illness being the presumed outcome of interest. We conducted a mixed methods study in a slum of 12,000 people in Mumbai, India to measure deficiencies in a broader array of water service delivery indicators and their adverse life impacts on the slum’s residents. Methods Six focus group discussions and 40 individual qualitative interviews were conducted using purposeful sampling. Quantitative data on water indicators—quantity, access, price, reliability, and equity—were collected via a structured survey of 521 households selected using population-based random sampling. Results In addition to negatively affecting health, the qualitative findings reveal that water service delivery failures have a constellation of other adverse life impacts—on household economy, employment, education, quality of life, social cohesion, and people’s sense of political inclusion. In a multivariate logistic regression analysis, price of water is the factor most strongly associated with use of inadequate water quantity (≤20 liters per capita per day). Water service delivery failures and their adverse impacts vary based on whether households fetch water or have informal water vendors deliver it to their homes. Conclusions Deficiencies in water service delivery are associated with many non-health-related adverse impacts on slum households. Failure to evaluate non-health outcomes may underestimate the deprivation resulting from inadequate water service delivery. Based on these findings, we outline a multidimensional definition of household “water poverty” that encourages policymakers and researchers to look beyond evaluation of water quality and health. Use of multidimensional water metrics by governments, slum communities, and researchers may help to ensure that water supplies are designed to advance a broad array of health, economic, and social outcomes for

  10. Bacteriological Assessment of Spoon River Water Quality

    PubMed Central

    Lin, Shundar; Evans, Ralph L.; Beuscher, Davis B.

    1974-01-01

    Data from a study of five stations on the Spoon River, Ill., during June 1971 through May 1973 were analyzed for compliance with Illinois Pollution Control Board's water quality standards of a geometric mean limitation of 200 fecal coliforms per 100 ml. This bacterial limit was achieved about 20% of the time during June 1971 through May 1972, and was never achieved during June 1972 through May 1973. Ratios of fecal coliform to total coliform are presented. By using fecal coliform-to-fecal streptococcus ratios to sort out fecal pollution origins, it was evident that a concern must be expressed not only for municipal wastewater effluents to the receiving stream, but also for nonpoint sources of pollution in assessing the bacterial quality of a stream. PMID:4604145

  11. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  12. A workbook for preparing a district quality- assurance plan for water-quality activities

    USGS Publications Warehouse

    Schertz, Terry L.; Childress, Carolyn J.O.; Kelly, Valerie J.; Boucher, Michelle S.; Pederson, Gary L.

    1998-01-01

    APPEARS TO BE A REPORT ON HOW TO WRITE REPORTS --THE 'ABSTRACT' THAT FOLLOWS IS JUST THE GENERIC ABSTRACT TO BE USED FOR WATER USE REPORTS: In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Division of the U.S. Geological Survey, a quality-assurance plan has been created for use by the [State name] District in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the [State name] District for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the District quality-assurance plans for surface-water and ground-water activities and to supplement the [State name] District quality-assurance plan.

  13. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  14. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  15. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  16. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  17. WATER QUALITY STATUS REPORT, STOCKNEY CREEK, IDAHO COUNTY, IDAHO. 1986

    EPA Science Inventory

    A water quality monitoring study was conducted on Stockney Creek (17060305) for the following purposes: 1) to determine baseline water quality; 2) to document water quality effects of spring and storm agricultural runoff; and 3) to determine whether implementation of Best Manage...

  18. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  19. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  20. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  1. A Water Quality Monitoring Programme for Schools and Communities

    ERIC Educational Resources Information Center

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the context of…

  2. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  3. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  4. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  5. NHD INDEXED LOCATIONS FOR WATER QUALITY STANDARDS (WQS)

    EPA Science Inventory

    State (also includes DC, tribes, and territories; i.e., "jurisdictions") Water Quality Standards' Designated Uses for river segments, lakes, and estuaries. The Water Quality Standards' Designated Uses are able to be linked to tables of water quality criteria w...

  6. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  7. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  8. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  9. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  10. Remotely Sensed Optical Water Quality for Water Quality Assessment and Seagrass Protection in Florida's Big Bend Region

    NASA Astrophysics Data System (ADS)

    Carlson, P. R.; Hu, C.; Cannizarro, J.; Yarbro, L. A.; English, D. C.; Magley, W.; Charbonneau, M.; Barnes, B.

    2012-12-01

    Florida's Big Bend coastal region contains the second largest contiguous seagrass bed in the continental US. Approximately 250,000 ha of seagrass have been mapped in the region, but the total area of offshore seagrass beds might be several times greater. The Suwannee River drains a largely agricultural watershed (26,000 km2) in Georgia and Florida, and its discharge (x= 280 m3/s) affects water clarity over most of the Big Bend seagrass beds. Seagrass density, species composition and areal extent were severely affected by discharge associated with tropical cyclones in 2004 and 2005, focusing attention on this important resource and the near- and far-field impacts of the Suwannee River discharge. The Lower Suwannee River also has been identified by the Florida Department of Environmental Protection as an impaired water body due to high nitrogen and algal biomass. This project attempts to improve water quality and to protect Big Bend seagrasses by making remotely sensed optical water quality data more accessible to managers and stakeholders involved in the process of regulating nutrient loads in the Suwannee River and to provide data to assess effectiveness of management actions. To accomplish these goals, we have developed and tested new algorithms for retrieval of Kd, chlorophyll, and CDOM from Modis imagery, created a time series of optical water quality (OWQ) for the Suwannee River Estuary (SRE), and related seagrass gains and losses to annual variations in optical water quality. During two years of bimonthly ground-truth cruises, chlorophyll concentrations, Aph, Ad, and Acdom in the SRE were 0.3-38.3 mgm-3, 0.013-1.056, 0.013-0.735, and 0.042-7.24, respectively. For most locations and most cruises, CDOM was the dominant determinant of Kd. In the Modis time series, Kd488 estimates (calculated using the Quasi-Analytic Algorithm of Lee et al. 2006) covaried with Suwannee River discharge between 2002 and 2011 with an overall r2 value of 0.64. This relationship is

  11. Multivariate tests for trend in water quality

    NASA Astrophysics Data System (ADS)

    Loftis, Jim C.; Taylor, Charles H.; Chapman, Phillip L.

    1991-07-01

    Several methods of testing for multivariate trend have been discussed in the statistical and water quality literature. We review both parametric and nonparametric approaches and compare their performance using, synthetic data. A new method, based on a robust estimation and testing approach suggested by Sen and Puri, performed very well for serially independent observations. A modified version of the covariance inversion approach presented by Dietz and Killeen also performed well for serially independent observations. For serially correlated observations, the covariance eigenvalue method suggested by Lettenmaier was the best performer.

  12. Progress at Fresh Kills improving water quality

    SciTech Connect

    Londres, E.J.

    1991-06-01

    This paper reports that in December 1987, the federal district court in Nevada issued a consent order forcing New York City (NYC) to improve its handling of solid waste and reduce the discharge of solid waste into the surrounding waterway. Implementation of the consent order by NYC resulted in many improvements in the transport of solid waste from the Marine Transfer Station (MTS) to Fresh Kills Landfill. The end result was a marked reduction in solid waste discharge and an improvement in water quality along the New Jersey shore areas.

  13. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  14. How Does Premarital Cohabitation Affect Trajectories of Marital Quality?

    ERIC Educational Resources Information Center

    Tach, Laura; Halpern-Meekin, Sarah

    2009-01-01

    We investigate the link between premarital cohabitation and trajectories of subsequent marital quality using random effects growth curve models and repeated measures of marital quality from married women in the NLSY-79 (N = 3,598). We find that premarital cohabitors experience lower quality marital relationships on average, but this is driven by…

  15. Financial Health of Child Care Facilities Affects Quality of Care.

    ERIC Educational Resources Information Center

    Brower, Mary R.; Sull, Theresa M.

    2003-01-01

    Contends that child care facility owners, boards of directors, staff, and parents need to focus on financial management, as poor financial health compromises the quality of care for children. Specifically addresses the issues of: (1) concern for providing high quality child care; (2) the connection between quality and money; and (3) strengthening…

  16. Water quality management library. 2. edition

    SciTech Connect

    Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.

    1998-12-31

    A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.

  17. Use of probability based sampling of water quality indicators in supporting water quality criteria development - 2/28/08

    EPA Science Inventory

    We examine the proposition that water quality indicator data collected from large scale, probability based assessments of coastal condition such as the US Environmental Protection Agency National Coastal Assessment (NCA) can be used to support water quality criteria development f...

  18. Quality-Assurance Plan for Water-Quality Activities in the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Wagner, Richard J.; Kimbrough, Robert A.; Turney, Gary L.

    2007-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), this quality-assurance plan has been created for use by the USGS Washington Water Science Center (WAWSC) in conducting water-quality activities. The plan documents the standards, policies, and procedures used by the personnel of the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the WAWSC's quality-assurance plans for surface-water and ground-water activities and to supplement the WAWSC quality-assurance plan.

  19. The quality of our Nation's waters: water quality in Principal Aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  20. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  1. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  2. Deterioration of water quality of Surma river.

    PubMed

    Alam, J B; Hossain, A; Khan, S K; Banik, B K; Islam, Molla R; Muyen, Z; Rahman, M Habibur

    2007-11-01

    Surma River is polluted day by day by human activities, poor structured sewerage and drainage system, discharging industrial and household wastes. The charas (natural channels) are responsible for surface runoff conveyance from its urban catchments to the receiving Surma River. Water samples have been collected from a part of Surma River along different points and analyzed for various water quality parameters during dry and monsoon periods. Effects of industrial wastes, municipal sewage, and agricultural runoff on river water quality have been investigated. The study was conducted within the Chattak to Sunamganj portion of Surma River, which is significant due to the presence of two major industries--a paper mill and a cement factory. The other significant feature is the conveyors that travel from India to Chattak. The river was found to be highly turbid in the monsoon season. But BOD and fecal coliform concentration was found higher in the dry season. The water was found slightly acidic. The mean values of parameters were Conductivity 84-805 micros; DO: dry-5.52 mg/l, monsoon-5.72 mg/l; BOD: dry-1mg/l, monsoon-0.878 mg/l; Total Solid: dry-149.4 mg/l, monsoon-145.7 mg/l. In this study, an effort has been taken to investigate the status of concentration of phosphate (PO(-4)) and ammonia-nitrogen (NH4-N) at four entrance points of Malnichara to the city, Guali chara, Gaviar khal and Bolramer khal. Data has been collected from March-April and September-October of 2004. Concentrations have been measured using UV Spectrophotometer. Although the phosphate concentration has been found within the limit set by DOE for fishing, irrigation and recreational purposes, however ammonia-nitrogen has been found to exceed the limit. PMID:17294273

  3. Water Quality in Drinking Water Reservoirs of a Megacity, Istanbul

    NASA Astrophysics Data System (ADS)

    Baykal, Bilsen Beler; Tanik, Aysegul; Gonenc, I. Ethem

    2000-12-01

    Providing clean water at relevant quality and quantity is a challenge that regulatory authorities have to face in metropolitan cities that seem to develop at their limits of sustainability. Istanbul strives to face such a challenge for its population of over 10 million, through six surface water resources. Two approaches of classification for the reservoirs are presented, one based on current regulations and an alternative based on a more detailed classification. The results have shown that nutrient control is the primary issue, and one of the reservoirs has already exceeded the limits of being eutrophic, one is at mesotrophic conditions, and the remaining four are at the limit of being eutrophic, indicating the significance of making the correct decision and taking pertinent measures for management and control. It has been observed that the only mesotrophic resource, which also has the best general quality class, has no industry and a very low population density, whereas the one that is already eutrophic is also the one with the lowest quality class, has the highest population density, and has the greatest percentage of urban land use within its watershed.

  4. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    PubMed

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. PMID:26311274

  5. Evaluation of military field-water quality

    SciTech Connect

    Selleck, R.E.; Ungun, Z.; Chesler, G.; Diyamandoglu, V.; Marinas, B. . Sanitary Engineering and Environmental Health Research Lab.); Daniels, J.I. )

    1990-05-01

    A comparison is made between the performances of the 600-gph Reverse Osmosis Water Purification Unit (ROWPU) operated in the bypass mode and the Mobile Water Purification Unit (MWPU, frequently referred to as an ERDLATOR because the equipment was developed at the Engineer Research and Development Laboratory at Fort Belvoir, VA.) Generally, the performance of the MWPU is significantly better than the pretreatment units of the ROWPU in terms of removing both turbidity and pathogenic organisms. It is recommended that the practice of bypassing the reverse osmosis (RO) components of the ROWPU be avoided unless it can be demonstrated clearly that the cartridge filters will remove the cysts of infectious organisms effectively and reliably. If the ROWPU must be operated in the bypass mode, it is recommended that the dose of disinfectant used be made equal to that currently employed in the field for untreated raw water. The analytical methods used to determine total dissolved solids (TDS) and residual free chlorine with the new Water-Quality Monitor (WQM) are also reviewed briefly. The limitations of the methods used to calibrate the TDS and free-chlorine probes of the new WQM are discussed. 98 refs., 19 figs., 16 tabs.

  6. Interim results of quality-control sampling of surface water for the Upper Colorado River National Water-Quality Assessment Study Unit, water years 1995-96

    USGS Publications Warehouse

    Spahr, N.E.; Boulger, R.W.

    1997-01-01

    Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.

  7. Factors affecting sustainability of rural water schemes in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  8. Hyperspectral remote sensing for water quality applications in Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Irwin, D.

    2013-12-01

    Water quality measurements are relevant to control and prevent the pollution of surface water essential for human use. Previous studies have used standard methods of water sampling to estimate water quality parameters. Nevertheless those methods are extremely expensive and time-consuming and do not provide information for an entire water body. Hence it is important to implement techniques that allow for the monitoring of water quality parameters in a timely and cost-effective manner, and remote sensing represents a feasible alternative. This study focuses on the largest algal bloom affecting Lake Atitlan, located in Guatemala, by using the hyperspectral sensor Hyperion on board the EO-1 satellite. This algal bloom had a life span that extended for a little more than a month and had a maximum coverage of approximately 40% of the lake's 137 square kilometer surface. This algal bloom occurred at the end of the year 2009, with November being the most critical month. Different satellite sensors were used to monitor the extent of the algal bloom, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Advanced Land Imager (ALI). However, Hyperion images were used to distinguish the characteristics of the vegetation populating the algal bloom. Hyperion satellite images provided a more complete spectral profile of the algal bloom affecting the lake due to its high spectral resolution characteristics. This enabled the identification of unique peaks of reflectance and absorption features of the spectral signature obtained from the algal bloom. The algal bloom was formed mainly by the cyanobacteria Lyngbya robusta. Hyperion satellite images were used to characterize the algal bloom and the unique pigments of cyanobacteria such as phycocyanin. Atmospheric correction was critical to obtain the pure reflectance of the algal bloom and differentiate the spectral features unique to the cyanobacteria

  9. Water Quality Monitoring of Inland Waters using Meris data

    NASA Astrophysics Data System (ADS)

    Potes, M.; Costa, M. J.; Salgado, R.; Le Moigne, P.

    2012-04-01

    The successful launch of ENVISAT in March 2002 has given a great opportunity to understand the optical changes of water surfaces, including inland waters such as lakes and reservoirs, through the use of the Medium Resolution Imaging Spectrometer (MERIS). The potential of this instrument to describe variations of optically active substances has been examined in the Alqueva reservoir, located in the south of Portugal, where satellite spectral radiances are corrected for the atmospheric effects to obtain the surface spectral reflectance. In order to validate this spectral reflectance, several field campaigns were carried out, with a portable spectroradiometer, during the satellite overpass. The retrieved lake surface spectral reflectance was combined with limnological laboratory data and with the resulting algorithms, spatial maps of biological quantities and turbidity were obtained, allowing for the monitoring of these water quality indicators. In the framework of the recent THAUMEX 2011 field campaign performed in Thau lagoon (southeast of France) in-water radiation, surface irradiation and reflectance measurements were taken with a portable spectrometer in order to test the methodology described above. At the same time, water samples were collected for laboratory analysis. The two cases present different results related to the geographic position, water composition, environment, resources exploration, etc. Acknowledgements This work is financed through FCT grant SFRH/BD/45577/2008 and through FEDER (Programa Operacional Factores de Competitividade - COMPETE) and National funding through FCT - Fundação para a Ciência e a Tecnologia in the framework of projects FCOMP-01-0124-FEDER-007122 (PTDC / CTE-ATM / 65307 / 2006) and FCOMP-01-0124-FEDER-009303 (PTDC/CTE-ATM/102142/2008). Image data has been provided by ESA in the frame of ENVISAT projects AOPT-2423 and AOPT-2357. We thank AERONET investigators for their effort in establishing and maintaining Évora AERONET

  10. Quality requirements for irrigation with sewage water

    SciTech Connect

    Bouwer, H.; Idelovitch, E. )

    1987-11-01

    Irrigation is an excellent use for sewage effluent because it is mostly water with nutrients. For small flows, the effluent can be used on special, well-supervised sewage farms, where forage, fiber, or seed crops are grown that can be irrigated with standard primary or secondary effluent. Large-scale use of the effluent requires special treatment so that it meets the public health, agronomic, and aesthetic requirements for unrestricted use. Crops in the unrestricted-use category include those that are consumed raw or brought raw into the kitchen. Most state or government standards deal only with public health aspects, and prescribe the treatment processes or the quality parameters that the effluent must meet before it can be used to irrigate a certain category of crops. However, agronomic aspects related to crops and soils must also be taken into account. Quality parameters to be considered include bacteria, viruses, and other pathogens; total salt content and sodium adsorption ratio of the water; nitrogen; phosphorus; chloride and chlorine; bicarbonate; heavy metals, boron, and other trace elements; pH; and synthetic organics. 23 refs., 9 tabs.

  11. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    SciTech Connect

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-09-15

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

  12. How processing digital elevation models can affect simulated water budgets

    USGS Publications Warehouse

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  13. Water quality success stories: Integrated assessments from the IOOS regional associations and national water quality monitoring network

    USGS Publications Warehouse

    Ragsdale, Rob; Vowinkel, Eric; Porter, Dwayne; Hamilton, Pixie; Morrison, Ru; Kohut, Josh; Connell, Bob; Kelsey, Heath; Trowbridge, Phil

    2011-01-01

    The Integrated Ocean Observing System (IOOS®) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  14. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  15. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  16. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)

  17. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement V.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Presented are abstracts and indexes to selected materials related to wastewater treatment and water quality education and instruction. In addition, some materials related to pesticides, hazardous wastes, and public participation are included. Also included are procedures to illustrate how instructors and curriculum developers in the water quality…

  18. Questa baseline and pre-mining ground-water-quality investigation. 16. Quality assurance and quality control for water analyses

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Naus, Cheryl A.

    2004-01-01

    The Questa baseline and pre-mining ground-water quality investigation has the main objective of inferring the ground-water chemistry at an active mine site. Hence, existing ground-water chemistry and its quality assurance and quality control is of crucial importance to this study and a substantial effort was spent on this activity. Analyses of seventy-two blanks demonstrated that contamination from processing, handling, and analyses were minimal. Blanks collected using water deionized with anion and cation exchange resins contained elevated concentrations of boron (0.17 milligrams per liter (mg/L)) and silica (3.90 mg/L), whereas double-distilled water did not. Boron and silica were not completely retained by the resins because they can exist as uncharged species in water. Chloride was detected in ten blanks, the highest being 3.9 mg/L, probably as the result of washing bottles, filter apparatuses, and tubing with hydrochloric acid. Sulfate was detected in seven blanks; the highest value was 3.0 mg/L, most likely because of carryover from the high sulfate waters sampled. With only a few exceptions, the remaining blank analyses were near or below method detection limits. Analyses of standard reference water samples by cold-vapor atomic fluorescence spectrometry, ion chromatography, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, FerroZine, graphite furnace atomic absorption spectrometry, hydride generation atomic spectrometry, and titration provided an accuracy check. For constituents greater than 10 times the detection limit, 95 percent of the samples had a percent error of less than 8.5. For constituents within 10 percent of the detection limit, the percent error often increased as a result of measurement imprecision. Charge imbalance was calculated using WATEQ4F and 251 out of 257 samples had a charge imbalance less than 11.8 percent. The charge imbalance for all samples ranged from -16 to 16 percent. Spike

  19. Water Use and Quality Footprints of Biofuel Crops in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  20. Soil and water quality with tall fescue management in the Southern Piedmont

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasture management not only affects plant and animal productivity, but also soil quality, carbon sequestration, and water quality. These additional ecosystem services need to be evaluated under a diversity of management approaches, including how nutrients are supplied (i.e. inorganic or broiler litt...

  1. Chemical quality of ground water on Cape Cod, Massachusetts

    USGS Publications Warehouse

    Frimpter, M.H.; Gay, F.B.

    1979-01-01

    Cape Cod is a 440 square mile hook-shaped peninsula which extends 40 miles into the Atlantic. Freshwater in Pleistocene sand and gravel deposits is the source of supply for nearly 100 municipal and thousands of private domestic wells. Most ground water on Cape Cod is of good chemical quality for drinking and other uses. It is characteristically low in dissolved solids and is soft. In 90 percent of the samples analyzed, dissolved solids were less than 100 mg/l (milligrams per liter) and pH was less than 7.0. Highway deicing salt, sea-water flooding due to storms , and saltwater intrusion due to ground-water withdrawal are sources of sodium chloride contamination. Chloride concentrations have increased from 20 to 140 mg/l, owing to saltwater intrusion at Provincetown 's wells in Truro. In Yarmouth, contaminated ground water near a salt-storage area contained as much as 1,800 mg/l chloride. Heavy metals, insecticides, and herbicides were not found at concentrations above the U.S. Environmental Protection Agency 's recommended limits for public drinking-water supplies, but iron and manganese in some samples exceeded those limits. Ninety percent of 84 samples analyzed for nitrate reported as nitrogen contained less than 1.3 mg/l and 80 percent contained 0.5 mg/l or less of nitrate as nitrogen. Water containing nitrogen in excess of 0.5 mg/l has probably been affected by municipal or domestic sewage or fertilizer, and water with less than this amount may have been affected by them. (Woodard-USGS)

  2. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-01-01

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  3. Effects of sewage effluents on water quality in tropical streams.

    PubMed

    Figueroa-Nieves, Débora; McDowell, William H; Potter, Jody D; Martínez, Gustavo; Ortiz-Zayas, Jorge R

    2014-11-01

    Increased urbanization in many tropical regions has led to an increase in centralized treatment of sewage effluents. Research regarding the effects of these wastewater treatment plants (WWTPs) on the ecology of tropical streams is sparse, so we examined the effects of WWTPs on stream water quality on the Caribbean island of Puerto Rico. Nutrient concentrations, discharge, dissolved oxygen (DO), biochemical oxygen demand (CBOD), and specific UV absorbance (SUVA) at 254 nm were measured upstream from the WWTP effluent, at the WWTP effluent, and below the WWTP effluent. All parameters measured (except DO) were significantly affected by discharge of WWTP effluent to the stream. The values of SUVA at 254 nm were typically lower (<2.5 m mg L) in WWTP effluents than those measured upstream of the WWTP, suggesting that WWTP effluents are contributing labile carbon fractions to receiving streams, thus changing the chemical composition of dissolved organic carbon in downstream reaches. Effluents from WWTP contributed on average 24% to the stream flow at our tropical streams. More than 40% of the nutrient loads in receiving streams came from WWTP effluents, with the effects on NO-N and PO-P loads being the greatest. The effect of WWTPs on nutrient loads was significantly larger than the effect of flow due to the elevated nutrient concentrations in treated effluents. Our results demonstrate that inputs from WWTPs to streams contribute substantially to changes in water quality, potentially affecting downstream ecosystems. Our findings highlight the need to establish nutrient criteria for tropical streams to minimize degradation of downstream water quality of the receiving streams. PMID:25602222

  4. Analysis of water-quality data and sampling programs at selected sites in north-central Colorado. Water Resources Investigation

    SciTech Connect

    Mueller, D.K.

    1990-01-01

    The report provides an analysis of the water-quality data at selected sites and provides an evaluation of the suitability of the current (1987) sampling programs at each site for meeting future needs of defining water quality within the area affected by CBT Project operations. Specific objectives of the report are to: provide summary statistics of water-quality data at each site for the period of record; identify significant trends for water-quality constituents or properties at each site; determine whether certain stations could be discontinued without substantial loss of information; determine whether the frequency of sampling for any individual constituent or groups of constituents at any of the sites could be decreased without substantial loss of information; and evaluate which water-quality constituents and properties need to be measured in order to meet the water-quality-data needs at each site. Fourteen streamflow and reservoir stations were selected for the analysis. These sites represent a network of water-quality sampling stations that can be used to evaluate the effects of CBT Project water transfers on both sides of the Continental Divide.

  5. Water quality and water contamination in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2015-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during rainstorms; which elevated nutrient and bacteria/pathogen levels, degraded water quality, reduced dissolved oxygen levels, impact on fish consumption safety and threatening public health. Swimming, boating, fishing was not safe especially during rainstorms. Harlem River, a 9 miles natural straight connects the Hudson River and the East River, was used for water recreation in the past. Phosphate, ammonia, turbidity, dissolved oxygen (DO), and pathogens levels in CSOs collected during storms were significantly higher than EPA/DEP's standards (phosphate <0.033mg/L; ammonia<0.23mg/L; turbidity<5.25FAU; DO>=4mg/L; fecal coliform<200MPN/100ml; E.Coli.<126MPN/100ml; enterococcus < 104MPN /100ml). The maximum values are: phosphate: 0.181mg/L; ammonia: 2.864mg/L; turbidity: 245 FAU& 882 FAU; fecal coliform>millions MPN/100ml; E.coli > 5000MPN /100ml; enterococcus>10,000MPN/100ml; DO<2.9 mg/L. Data showed that pathogen levels are higher than published data from riverkeepers (enterococcus) and USGS (fecal coliform). PCB 11 (3,3'-dichlorobiphenyl, C12H8Cl2), an indicator of raw sewage and stormwater runoff, is analyzed. Fish caught from the Harlem River is banned from commercial. New York State Department of Health (NYS DOH) suggests that not to eat the fish because concerns of PCBs, dioxin and cadmium. How to reduce CSOs is critical on water quality improvement. Green wall/roof and wetland has been planned to use along the river to reduce stormwater runoff consequently to reduce CSOs volume.

  6. Wintering performance and how it affects carcass quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental variation undoubtedly can have the most significant impact on livestock performance in forage based production systems. Fluctuations in temperature and precipitation influence herbage production and quality, maintenance requirements and intake. Producers of “forage system” products h...

  7. Analysis of water quality in the Blue River watershed, Colorado, 1984 through 2007

    USGS Publications Warehouse

    Bauch, Nancy J.; Miller, Lisa D.; Yacob, Sharon

    2014-01-01

    Water quality of streams, reservoirs, and groundwater in the Blue River watershed in the central Rocky Mountains of Colorado has been affected by local geologic conditions, historical hard-rock metal mining, and recent urban development. With these considerations, the U.S. Geological Survey, in cooperation with the Summit Water Quality Committee, conducted a study to compile historical water-quality data and assess water-quality conditions in the watershed. To assess water-quality conditions, stream data were primarily analyzed from October 1995 through December 2006, groundwater data from May 1996 through September 2004, and reservoir data from May 1984 through November 2007. Stream data for the Snake River, upper Blue River, and Tenmile Creek subwatersheds upstream from Dillon Reservoir and the lower Blue River watershed downstream from Dillon Reservoir were analyzed separately. (The complete abstract is provided in the report)

  8. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... quality standards. After December 29, 1984, no grant can be awarded for projects that discharge into stream segments which have not, at least once since December 29, 1981, had their water quality...

  9. Water use and water productivity of sugarbeet, malt barley and potato as affected by irrigation frequency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful irrigation management is one of the most important agronomic practices for achieving profitable yield and maximizing crop water productivity (CWP) while maintaining environmental quality by minimizing water losses to runoff and deep drainage. This study was conducted to compare the influe...

  10. Landsat Thematic Mapper monitoring of turbid inland water quality

    SciTech Connect

    Lathrop, R.G., JR. )

    1992-04-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions. 17 refs.

  11. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  12. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  13. FIRESTORM: Modelling the water quality risk of wildfire.

    NASA Astrophysics Data System (ADS)

    Mason, C. I.; Sheridan, G. J.; Smith, H. G.; Jones, O.; Chong, D.; Tolhurst, K.

    2012-04-01

    Following wildfire, loss of vegetation and changes to soil properties may result in decreases in infiltration rates, less rainfall interception, and higher overland flow velocities. Rainfall events affecting burn areas before vegetation recovers can cause high magnitude erosion events that impact on downstream water quality. For cities and towns that rely upon fire-prone forest catchments for water supply, wildfire impacts on water quality represent a credible risk to water supply security. Quantifying the risk associated with the occurrence of wildfires and the magnitude of water quality impacts has important implications for managing water supplies. At present, no suitable integrative model exists that considers the probabilistic nature of system inputs as well as the range of processes and scales involved in this problem. We present FIRESTORM, a new model currently in development that aims to determine the range of sediment and associated contaminant loads that may be delivered to water supply reservoirs from the combination of wildfire and subsequent rainfall events. This Monte Carlo model incorporates the probabilistic nature of fire ignition, fire weather and rainfall, and includes deterministic models for fire behaviour and locally dominant erosion processes. FIRESTORM calculates the magnitude and associated annual risk of catchment-scale sediment loads associated with the occurrence of wildfire and rainfall generated by two rain event types. The two event types are localised, high intensity, short-duration convective storms, and widespread, longer duration synoptic-scale rainfall events. Initial application and testing of the model will focus on the two main reservoirs supplying water to Melbourne, Australia, both of which are situated in forest catchments vulnerable to wildfire. Probabilistic fire ignition and weather scenarios have been combined using 40 years of fire records and weather observations. These are used to select from a dataset of over 80

  14. Nursery Production Technologies for Enhancing Water Quality Protection and Water Conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The broad objectives of the Floral and Nursery Research Initiative, Nursery Production Technologies for Enhancing Water Quality Protection and Water Conservation project are to develop economically feasible production systems and management practices that promote water conservation and protect water...

  15. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  16. Skylab study of water quality. [Kansas reservoirs

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Analysis of S-190A imagery from 1 EREP pass over 3 reservoirs in Kansas establishes a strong linear correlation between the red/green radiance ratio and suspended solids. This result compares quite favorably to ERTS MSS CCT results. The linear fits RMS for Skylab is 6 ppm as compared to 12 ppm for ERTS. All of the ERTS satellite passes yielded fairly linear results with typical RMS values of 12 ppm. However, a few of the individual passes did yield RMS values of 5 or 6 ppm which is comparable to the one Skylab pass analyzed. In view of the cloudy conditions in the Skylab photos, yet good results, the indications are that S-190A may do somewhat better than the ERTS MSS in determining suspended load. More S-190A data is needed to confirm this. As was the case with the ERTS MSS, the Skylab S-190A showed no strong correlation with other water quality parameters. S-190B photos because of their high resolution can provide much first look information regarding relative degrees of turbidity within various parts of large lakes and among smaller bodies of water.

  17. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  18. Hydrologic and water quality modeling: spatial and temporal considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic and water quality models are used to help manage water resources by investigating the effects of climate, land use, land management, and water management on water resources. Each water-related issue is better investigated at a specific scale, which can vary spatially from point to watersh...

  19. The Water Quality Portal: a single point of access for water quality data

    NASA Astrophysics Data System (ADS)

    Kreft, J.

    2015-12-01

    The Water Quality Portal (WQP) is a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (EPA) overseen by the National Water Quality Monitoring Council (NWQMC). It was launched in April of 2012 as a single point of access for discrete water quality samples stored in the USGS NWIS and EPA STORET systems. Since launch thousands of users have visited the Water Quality Portal to download billions of results that are pertinent to their interests. Numerous tools have also been developed that use WQP web services as a source of data for further analysis. Since the launch of the Portal, the WQP development team at the USGS Center for Integrated Data Analytics has worked with USGS and EPA stakeholders as well as the wider user community to add significant new features to the WQP. WQP users can now directly plot sites of interest on a web map based on any of the 164 WQP query parameters, and then download data of interest directly from that map. In addition, the WQP has expanded beyond just serving out NWIS and STORET data, and provides data from the US Department of Agriculture's Agricultural Research Service STEWARDS system, the USGS BioData system and is working with others to bring in additional data. Finally, the WQP is linked to another NWQMC-supported project, the National Environmental Methods Index (NEMI), so WQP users can easily find the method behind the data that they are using. Future work is focused on incorporating additional biological data from the USGS BioData system, broadening the scope of discrete water quality sample types from STORET, and developing approaches to make the data in the WQP more visible and usable. The WQP team is also exploring ways to further integrate with other systems, such as those operated the U.S. Department of Agriculture Forest Service and other federal agencies to facilitate the overarching goal of improving access to water quality data for all users.

  20. Water-quality assessment of Cache Creek, Yolo, Lake, and Colusa counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Elliott, Ann L.

    1981-01-01

    Cache Creek and its tributaries from Clear Lake to Yolo Bypass have been the subject of quality and quantity of water studies by several governmental agencies since the early 1900's. Water-quality data from these studies showed that water in the basin is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Concentrations of dissolved constituents are substantially higher in the water in the two largest tributaries than in Cache Creek. Seasonal variations in dissolved constituents are also greater in the tributaries than in Cache Creek. Clear Lake has a major effect on water quality, resulting in little seasonal fluctuation in water quality in Cache Creek. Excessive voron and suspended-sediment concentrations are the greatest water-quality problems, according to existing data. Both of these problems are from natural sources. Water-quality monitoring is presently being conducted monthly at four sites by the California Department of Water Resurces and at several other sites by other agencies. Modifications in current monitoring are proposed to gain further information on diel dissolved-oxygen cycles, pesticides, and biological constituents that may adversely affect beneficial uses. (USGS)

  1. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... AGENCY 2012 Recreational Water Quality Criteria AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of the 2012 Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing...

  2. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality...

  3. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  4. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality...

  5. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  6. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  7. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  8. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  9. National Water Quality Inventory, 1975 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  10. Applications of spectroscopy to remote determination of water quality

    NASA Technical Reports Server (NTRS)

    Goldberg, M. C.; Weiner, E. R.

    1972-01-01

    The use of remote laser Raman and molecular spectroscopic techniques to measure water quality is examined. Measurements cover biological, chemical, and physical properties of the water. Experimental results show chemical properties are harder to obtain remotely than biological or physical properties and that molecular spectroscopy seems to be the best method for obtaining water quality data.

  11. Hydrologic and Water Quality Assessment from Managed Turf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for nutrients and pesticides to be transported to surface water from turf systems (especially golf courses) is often debated because of limited information on water quality exiting these systems. This four year study quantified the amount and quality of water draining from part of Nort...

  12. Catfish production and water quality in circulated ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal discharge, and up-welling and down-welling vertical discharge circulators have been used to manipulate water quality in large water bodies. Circulator-induced impact on lake or reservoir water quality has been variable, particularly in terms of the effect on phytoplankton abundance and sp...

  13. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  14. Water Quality from Grass-Based Dairy Farm Tile Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface water quality from agricultural systems varies with the type of system and management. Systems with high inputs from fertilizer and/or manure may have high nutrient levels, e.g. NO3-N, in subsurface water. This study investigates the water quality from tile lines on grass-based dairy fa...

  15. DRY CREEK, IDAHO WATER QUALITY STATUS REPORT, 1976-1977

    EPA Science Inventory

    Water quality samples were collected monthly at one station in Water Year 1977 to determine the water quality status of Dry Creek in Twin Falls and Cassia Counties, Idaho (17040212). The stream was sampled near the mouth upstream from Murtaugh Lake. The section of Dry Creek abo...

  16. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...EPA is proposing a rule that would identify provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus Rule) and Florida's Amended Everglades Forever Act (EFA) that EPA has disapproved and that therefore are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing today's rule following EPA's disapproval of......

  17. WATER QUALITY CHANGES IN HYPORHEIC FLOW AT THE AQUATIC-TERRESTRIAL INTERFACE OF A LARGER RIVER

    EPA Science Inventory

    Exchange between river water and groundwater in hyporheic flow at the aquatic-terrestrial interface can importantly affect water quality and aquatic habitat in the main channel of large rivers and at off-channel sites that include flowing and stagnant side channels. With tracer ...

  18. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  19. Stormwater Runoff and Water Quality Modeling in Urban Maryland

    NASA Astrophysics Data System (ADS)

    Wang, J.; Forman, B. A.; Natarajan, P.; Davis, A.

    2015-12-01

    Urbanization significantly affects storm water runoff through the creation of new impervious surfaces such as highways, parking lots, and rooftops. Such changes can adversely impact the downstream receiving water bodies in terms of physical, chemical, and biological conditions. In order to mitigate the effects of urbanization on downstream water bodies, stormwater control measures (SCMs) have been widely used (e.g., infiltration basins, bioswales). A suite of observations from an infiltration basin installed adjacent to a highway in urban Maryland was used to evaluate stormwater runoff attenuation and pollutant removal rates at the well-instrumented SCM study site. In this study, the Storm Water Management Model (SWMM) was used to simulate the performance of the SCM. An automatic, split-sample calibration framework was developed to improve SWMM performance efficiency. The results indicate SWMM can accurately reproduce the hydraulic response of the SCM (in terms of reproducing measured inflow and outflow) during synoptic scale storm events lasting more than one day, but is less accurate during storm events lasting only a few hours. Similar results were found for a suite of modeled (and observed) water quality constituents, including suspended sediment, metals, N, P, and chloride.

  20. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  1. A review of water quality concerns in livestock farming areas.

    PubMed

    Hooda, P S; Edwards, A C; Anderson, H A; Miller, A

    2000-04-24

    Post-war changes in farming systems and especially the move from mixed arable-livestock farming towards greater specialisation, together with the general intensification of food production have had adverse affects on the environment. Livestock systems have largely become separated into pasture-based (cattle and sheep) and indoor systems (pigs and poultry). This paper reviews water quality issues in livestock farming areas of the UK. The increased losses of nutrients, farm effluents (particularly livestock wastes), pesticides such as sheep-dipping chemicals, bacterial and protozoan contamination of soil and water are some of the main concerns regarding water quality degradation. There has been a general uncoupling of nutrient cycles, and problems relating to nutrient loss are either short-term direct losses or long-term, related to accumulated nutrient surpluses. Results from several field studies indicate that a rational use of manure and mineral fertilisers can help reduce the pollution problems arising from livestock farming practices. Several best management practices are suggested for the control of nutrient loss and minimising release of pathogen and sheep-dip chemicals into agricultural runoff. PMID:10811258

  2. A sediment resuspension and water quality model of Lake Okeechobee

    USGS Publications Warehouse

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  3. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  4. Linking water quality and well-being for improved assessment and valuation of ecosystem services.

    PubMed

    Keeler, Bonnie L; Polasky, Stephen; Brauman, Kate A; Johnson, Kris A; Finlay, Jacques C; O'Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-11-01

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting. PMID:23091018

  5. Linking water quality and well-being for improved assessment and valuation of ecosystem services

    PubMed Central

    Keeler, Bonnie L.; Polasky, Stephen; Brauman, Kate A.; Johnson, Kris A.; Finlay, Jacques C.; O’Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-01-01

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting. PMID:23091018

  6. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    PubMed Central

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  7. The maladies of water and war: addressing poor water quality in Iraq.

    PubMed

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  8. Anthropological perspectives on water availability, water quality and water managament in the IMPETUS research areas of Benin and Morocco

    NASA Astrophysics Data System (ADS)

    Kirscht, H.; Bollig, M.; Casciarri, B.; Casimir, M.; Rössler, M.; Bako-Arifari, N.

    2003-04-01

    The anthropological research in the framework of the interdisciplinary IMPETUS West Africa-project focuses on water availability, water quality and on social problems and conflicts concerning the management of this sometimes scarce or polluted resource. The northern project area, the catchment of the Drâa river in Southern Moroco, is characterised by a very low precipitation rate and an overall shortage of available water, a situation which has been aggravated by a drought in recent years. But even in the much moister southern research region, the catchment of the river Ouémé in Benin, water is not always available in the required quantity and quality. Although Morocco and Benin share no common cultural or ethnic identities, local 'traditional' water management institutions exist in both countries. The common objective of anthropological research is to identify and analyse these institutions on a micro- or mezzo-level, and to look into the social and cultural processes which lead to a sustainable - or ineffective - use of water. The prime research unit for anthropologists is the household, which is in general congruent with the basic economic unit. It is obvious that gender relations are an important aspect to consider if one looks into the management of water resources. Women are often in charge of supplying the household with drinking water, and in Benin many women are farmers, who, according to local concepts, spend more time on the fields than men. In addition, social changes caused by the shortage of water and their consequences for water management systems are investigated. In Morocco, the emigration of young men is a reaction to the recent droughts, transforming the household structure and gender relations in rural settlements. In return, the investment of the remittances into agriculture, for instance the purchase of motor-pumps for irrigation, affects the water management by circumventing traditional social and politically accepted water distribution

  9. An innovative index for evaluating water quality in streams.

    PubMed

    Said, Ahmend; Stevens, David K; Sehlke, Gerald

    2004-09-01

    A water quality index expressed as a single number is developed to describe overall water quality conditions using multiple water quality variables. The index consists of water quality variables: dissolved oxygen, specific conductivity, turbidity, total phosphorus, and fecal coliform. The objectives of this study were to describe the preexisting indices and to define a new water quality index that has advantages over these indices. The new index was applied to the Big Lost River Watershed in Idaho, and the results gave a quantitative picture for the water quality situation. If the new water quality index for the impaired water is less than a certain number, remediation-likely in the form of total maximum daily loads or changing the management practices-may be needed. The index can be used to assess water quality for general beneficial uses. Nevertheless, the index cannot be used in making regulatory decisions, indicate water quality for specific beneficial uses, or indicate contamination from trace metals, organic contaminants, and toxic substances. PMID:15520897

  10. SPIRIT LAKE, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1987

    EPA Science Inventory

    Spirit Lake is a high quality recreational lake located in northwestern Kootenai County, Idaho (17010214). A 1984 water quality assessment indicated nutrient enrichment from nonpoint sources, such as timber harvest and domestic wastewater, were causing increased aquatic plant gr...

  11. Magnitude of genotype x environment interactions affecting tomato fruit quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing interest by consumers to purchase fresh tomato with improved quality traits including lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) content. Therefore, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitabl...

  12. Cultural Practices Affect Fruit Quality and Antioxident Capacity in Blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of cultural practices on fruit quality and antioxidant capacity in highbush blueberries var. Bluecrop was evaluated from random samples of commercial late harvest fields in New Jersey. Results from this single season survey showed that blueberry fruit grown from organic culture yielded hi...

  13. Agriculture as a source of Aeolian sediment affecting air quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes on agricultural lands have been examined for the past several decades on nearly every continent and has led to a better understanding of detachment, entrainment, transport, and deposition. Relatively little is known concerning the effect of these processes on air quality. In fact, ...

  14. RICE BREAD QUALITY AS AFFECTED BY YEAST AND BRAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole rice bread (WRB) has been developed in our laboratory for people suffering from Celiac disease and other food allergies. The WRB has texture and related qualities comparable with white or whole wheat breads. This paper reports the results of three levels of yeast, defatted rice bran on the t...

  15. Identifying regional water quality patterns and their relationships with terrestrial ecosystems and fish distributions

    SciTech Connect

    McDaniel, T.W.; Hunsaker, C.T.; Beauchamp, J.J.

    1986-09-01

    A multivariate statistical method for analyzing spatial patterns in regional water quality was developed using existing water quality data in the US Environmental Protection Agency's STORET system. Regional patterns of terrestrial ecosystems have been described and mapped for various management and scientific purposes. Most of these methods ignored or placed little emphasis on the regional patterns in aquatic ecosystems even though they are bounded by the terrestrial systems and affected by their functioning. The procedure we used examined geographical patterns for selected water quality variables in Kansas and Georgia. It was able to distinguish regions with water quality very different from average conditions (as in Georgia) but did not discriminate well between regions that did not have diverse conditions in water quality (as in Kansas). The observed regional water quality patterns were compared with terrestrial ecosystem patterns. In addition, fish distributions were compared with regional patterns in water quality to determine if there was an association between them. In Georgia, water quality patterns were similar to ecosystem patterns and fish distributions, but correlation was not as good for the more homogeneous landscape in Kansas.

  16. Hydrological factors behind the water quality changes due to restoration in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Ronkanen, Anna-Kaisa; Marttila, Hannu; Walle Menberu, Meseret; Irannezhad, Masoud; Tahvanainen, Teemu; Penttinen, Jouni; Hokkanen, Reijo; Klöve, Björn

    2016-04-01

    Recovery of hydrological conditions after restoration in previously drained peatlands is typically faster process compared to changes in runoff water quality. Often nutrient load from restored sites increase remarkably during restoration operation and reduce over time when conditions stabilize. However, in some sites nutrient load can remain high for long periods of time which increase negative effects of restoration on downstream water bodies. The factors and challenges behind these processes are poorly understood in practical catchment restoration planning. This study aims to understand factors affecting water quality changes after peatland restoration. Totally 43 peatlands areas of which 24 sites were previously drained and restored during the study and 19 sites at their pristine stage (control sites) were included to the study. The control pristine sites had as little anthropogenic disturbances as possible and the sites were chosen so that the paired study sites closely share similar peatland type, nutrient status and weather conditions. Pore water quality (total phosphorus, total nitrogen, dissolved organic carbon, pH, electric conductivity and colour) was measured from all sites and runoff quality and amount from 7 sites in the years 2008-2014. Measured parameters, different peatland types and nutrient loads were studied together with numerous hydrological parameters (variation in water table fluctuations, peat pore water recharge coefficient, physical parameters of peat e.g. specific yield, degree of humification) by statistical methods. Differences in water table dependent hydrological conditions indicate e.g. flow paths and residence time of water that is known to have effect on runoff water quality. As a result, water table related hydrological changes following restoration are as well assumed to explain alterations in water quality in different peatland types. In addition, using water table related hydrological processes as a proxy for water quality

  17. WASP3 (WATER QUALITY ANALYSIS PROGRAM), A HYDRODYNAMIC AND WATER QUALITY MODEL - MODEL THEORY, USER'S MANUAL, AND PROGRAMMER'S GUIDE

    EPA Science Inventory

    The Water Quality Analysis Simulation Program--3 (WASP3) is a dynamic compartment modeling system that can be used to analyze a variety of water quality problems in a diverse set of water bodies. WASP3 simulates the transport and transformation of conventional and toxic pollutant...

  18. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  19. Derivation of water quality guidelines for priority pharmaceuticals.

    PubMed

    Kumar, Anupama; Batley, Graeme E; Nidumolu, Bhanu; Hutchinson, Thomas H

    2016-07-01

    Pharmaceuticals can enter freshwater and affect aquatic ecosystem health. Although toxicity tests have been carried out for the commonly used pharmaceuticals, evidence-based water quality guidelines have not been derived. High-reliability water quality guideline values have been derived for 4 pharmaceuticals-carbamazepine, diclofenac, fluoxetine, and propranolol-in freshwaters using a Burr type III distribution applied to species sensitivity distributions of chronic toxicity data. Data were quality-assured and had to meet acceptability criteria for "chronic" no-observed-effect concentrations or concentrations affecting 10% of species, endpoints of population relevance (namely, effect endpoints based on development, growth, reproduction, and survival). Biomarker response data (e.g., biochemical, histological, or molecular responses) were excluded from the derivation because they are typically not directly relevant to wildlife population-related impacts. The derived guideline values for 95% species protection were 9.2 μg/L, 770 μg/L, 1.6 μg/L, and 14 μg/L for carbamazepine, diclofenac, fluoxetine, and propranolol, respectively. These values are significantly higher than the unknown reliability values derived for the European Commission, Switzerland, or Germany that are based on the application of assessment factors to the most sensitive experimental endpoint (which may include biochemical, histological, or molecular biomarker responses) of a limited data set. The guideline values derived in the present study were not exceeded in recent data for Australian rivers and streams receiving pharmaceutical-containing effluents from wastewater-treatment plants. Environ Toxicol Chem 2016;35:1815-1824. © 2015 SETAC. PMID:26660719

  20. A national-scale analysis of the impacts of drought on water quality in UK rivers

    NASA Astrophysics Data System (ADS)

    Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.

    2015-12-01

    Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are