Science.gov

Sample records for affect white matter

  1. Early life trauma is associated with altered white matter integrity and affective control.

    PubMed

    Corbo, Vincent; Amick, Melissa A; Milberg, William P; McGlinchey, Regina E; Salat, David H

    2016-08-01

    Early life trauma (ELT) has been shown to impair affective control and attention well into adulthood. Neuroimaging studies have further shown that ELT was associated with decreased white matter integrity in the prefrontal areas in children and adults. However, no study to date has looked at the relationship between white matter integrity and affective control in individuals with and without a history of ELT. To examine this, we tested 240 Veterans with (ELT N = 80) and without (NoELT N = 160) a history of childhood sexual abuse, physical abuse or family violence. Affective control was measured with the Affective Go/No-Go (AGN) and attention was indexed with the Test of Variable Attention (TOVA). White matter integrity was measured using fractional anisotropy (FA). Results showed greater number of errors on the AGN in ELT compared to NoELT. There was no difference on the TOVA. While there were no mean differences in FA, there was an interaction between FA and reaction time to positive stimuli on the AGN where the ELT group showed a positive relationship between FA and reaction time in right frontal and prefrontal areas, whereas the NoELT group showed a negative or no association between FA and reaction time. This suggests that ELT may be associated with a distinct brain-behavior relationship that could be related to other determinants of FA than those present in healthy adults.

  2. White matter integrity and its association with affective and interpersonal symptoms in borderline personality disorder

    PubMed Central

    Whalley, Heather C.; Nickson, Thomas; Pope, Merrick; Nicol, Katie; Romaniuk, Liana; Bastin, Mark E.; Semple, Scott I.; McIntosh, Andrew M.; Hall, Jeremy

    2015-01-01

    Background Borderline personality disorder (BPD) is a severe psychiatric disorder involving a range of symptoms including marked affective instability and disturbances in interpersonal interactions. Neuroimaging studies are beginning to provide evidence of altered processing in fronto-limbic network deficits in the disorder, however, few studies directly examine structural connections within this circuitry together with their relation to proposed causative processes and clinical features. Methods In the current study, we investigated whether individuals with BPD (n = 20) have deficits in white matter integrity compared to a matched group of healthy controls (n = 18) using diffusion tensor MRI (DTI). We hypothesized that the BPD group would have decreased fractional anisotropy (FA), a measure of white matter integrity, compared to the controls in white matter tracts connecting frontal and limbic regions, primarily the cingulum, fornix and uncinate fasciculus. We also investigated the extent to which any such deficits related to childhood adversity, as measured by the childhood trauma questionnaire, and symptom severity as measured by the Zanarini rating scale for BPD. Results We report decreased white matter integrity in BPD versus controls in the cingulum and fornix. There were no significant relationships between FA and measures of childhood trauma. There were, however, significant associations between FA in the cingulum and clinical symptoms of anger, and in the fornix with affective instability, and measures of avoidance of abandonment from the Zanarini rating scale. Conclusions We report deficits within fronto-limbic connections in individuals with BPD. Abnormalities within the fornix and cingulum were related to severity of symptoms and highlight the importance of these tracts in the pathogenesis of the disorder. PMID:25685714

  3. White matter abnormalities: Insights into the pathophysiology of major affective disorders

    PubMed Central

    Serafini, Gianluca; Gonda, Xenia; Rihmer, Zoltan; Girardi, Paolo; Amore, Mario

    2014-01-01

    The presence of white matter hyperintensities (WMHs) has been commonly associated with poor outcome in subjects with major affective disorders. Unfortunately, WMHs may be frequently confounded by the use of psychoactive medications and duration of illness. Although findings from the current literature are quite conflicting, we proposed that subjects with WMHs may be at higher suicidal risk when compared to other subgroups without. Based on the Fazekas modified scale, the severity of WMHs may serve as a trait marker of disease. Interestingly, the presence of WMHs may represent a neurobiological marker between the underlying vulnerability and clinical presentation of major affective disorders. PMID:24976925

  4. COMT genotype affects brain white matter pathways in attention-deficit/hyperactivity disorder.

    PubMed

    Hong, Soon-Beom; Zalesky, Andrew; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Kim, BoAh; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Kim, Jae-Won

    2015-01-01

    Increased dopamine availability may be associated with impaired structural maturation of brain white matter connectivity. This study aimed to derive a comprehensive, whole-brain characterization of large-scale axonal connectivity differences in attention-deficit/hyperactivity disorder (ADHD) associated with catechol-O-methyltransferase gene (COMT) Val158Met polymorphism. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in youth with ADHD who were COMT Val-homozygous (N = 29) compared with those who were Met-carriers (N = 29). Additionally, we examined whether dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4) polymorphisms were associated with white matter differences. Level of attention was assessed using the continuous performance test before and after an 8-week open-label trial of methylphenidate (MPH). A network of white matter connections linking 18 different brain regions was significantly weakened in youth with ADHD who were COMT Met-carriers compared to those who were Val-homozygous (P < 0.05, family-wise error-corrected). A measure of white matter integrity, fractional anisotropy, was correlated with impaired pretreatment performance in continuous performance test omission errors and response time variability, as well as with improvement in continuous performance test response time variability after MPH treatment. Altered white matter connectivity was exclusively based on COMT genotypes, and was not evident in DAT1 or DRD4. We demonstrated that white matter connectivity in youth with ADHD is associated with COMT Val158Met genotypes. The present findings suggest that different layers of dopamine-related genes and interindividual variability in the genetic polymorphisms should be taken into account when investigating the human connectome.

  5. Cerebral White Matter Lesions and Affective Episodes Correlate in Male Individuals with Bipolar Disorder

    PubMed Central

    Birner, Armin; Seiler, Stephan; Lackner, Nina; Bengesser, Susanne A.; Queissner, Robert; Fellendorf, Frederike T.; Platzer, Martina; Ropele, Stefan; Enzinger, Christian; Schwingenschuh, Petra; Mangge, Harald; Pirpamer, Lukas; Deutschmann, Hannes; McIntyre, Roger S.; Kapfhammer, Hans-Peter; Reininghaus, Bernd; Reininghaus, Eva Z.

    2015-01-01

    Background Cerebral white matter lesions (WML) have been found in normal aging, vascular disease and several neuropsychiatric conditions. Correlations of WML with clinical parameters in BD have been described, but not with the number of affective episodes, illness duration, age of onset and Body Mass Index in a well characterized group of euthymic bipolar adults. Herein, we aimed to evaluate the associations between bipolar course of illness parameters and WML measured with volumetric analysis. Methods In a cross-sectional study 100 euthymic individuals with BD as well as 54 healthy controls (HC) were enrolled to undergo brain magnetic resonance imaging using 3T including a FLAIR sequence for volumetric assessment of WML-load using FSL-software. Additionally, clinical characteristics and psychometric measures including Structured Clinical Interview according to DSM-IV, Hamilton-Depression, Young Mania Rating Scale and Beck’s Depression Inventory were evaluated. Results Individuals with BD had significantly more (F = 3.968, p < .05) WML (Mdn = 3710mm3; IQR = 2961mm3) than HC (Mdn = 2185mm3; IQR = 1665mm3). BD men (Mdn = 4095mm3; IQR = 3295mm3) and BD women (Mdn = 3032mm3; IQR = 2816mm3) did not significantly differ as to the WML-load or the number and type of risk factors for WML. However, in men only, the number of manic/hypomanic episodes (r = 0.72; p < .001) as well as depressive episodes (r = 0.51; p < .001) correlated positively with WML-load. Conclusions WML-load strongly correlated with the number of manic episodes in male BD patients, suggesting that men might be more vulnerable to mania in the context of cerebral white matter changes. PMID:26252714

  6. White matter of the brain

    MedlinePlus

    White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...

  7. Microvasculature of the human cerebral white matter: arteries of the deep white matter.

    PubMed

    Nonaka, Hiroko; Akima, Michio; Hatori, Tsutomu; Nagayama, Tadashi; Zhang, Zean; Ihara, Fumie

    2003-06-01

    The vascular architecture of the human cerebral deep white matter was studied using soft X-ray and diaphanized specimens, achieved by intra-arterial injection of barium and vascular stain respectively, and also by electron microscopic examination of the corrosion cast of arteries in normal adult brains. The deep white matter arteries passed through the cerebral cortex with a few branches to the cortex and ran straight through the white matter. The arteries concentrated ventriculopetally to the white matter around the lateral ventricle. Anastomoses were noted around the ventricular wall at the terminals of the deep white matter arteries. No centrifugal branches irrigating the periventricular white matter from the lenticulo-striate arteries were observed in the present study. The presence of anastomoses among the terminal branches of deep white matter arteries protects against ischemic change or infarction in this area from an occlusion of a single deep white matter artery. This may lead to development of terminal zone infarction from ischemia or vascular diseases, affecting multiple deep white matter arteries. The subcortical and deep white matter arteries had thick adventitial sheaths and large adventitial spaces in the white matter but not in the cortex. The presence or absence of the adventitial space is regarded as another characteristic difference between the arteries in the white matter and cortex. This difference may influence pathological changes in vascular lesions in these respective areas.

  8. Modeling white matter microstructure

    PubMed Central

    Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Summary Quantitative magnetic resonance imaging can be combined with advanced biophysical models to measure microstructural features of white matter. Non-invasive microstructural imaging has the potential to revolutionize neuroscience, and acquiring these measures in clinically feasible times would greatly improve patient monitoring and clinical studies of drug efficacy. However, a good understanding of microstructural imaging techniques is essential to set realistic expectations and to prevent over-interpretation of results. This review explains the methodology behind microstructural modeling and imaging, and gives an overview of the breakthroughs and challenges associated with it. PMID:28072382

  9. Deviant white matter structure in adults with attention-deficit/hyperactivity disorder points to aberrant myelination and affects neuropsychological performance.

    PubMed

    Onnink, A Marten H; Zwiers, Marcel P; Hoogman, Martine; Mostert, Jeanette C; Dammers, Janneke; Kan, Cornelis C; Vasquez, Alejandro Arias; Schene, Aart H; Buitelaar, Jan; Franke, Barbara

    2015-12-03

    Attention-deficit/hyperactivity disorder (ADHD) in childhood is characterized by gray and white matter abnormalities in several brain areas. Considerably less is known about white matter microstructure in adults with ADHD and its relation with clinical symptoms and cognitive performance. In 107 adult ADHD patients and 109 gender-, age- and IQ-matched controls, we used diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) to investigate whole-skeleton changes of fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). Additionally, we studied the relation of FA and MD values with symptom severity and cognitive performance on tasks measuring working memory, attention, inhibition, and delay discounting. In comparison to controls, participants with ADHD showed reduced FA in corpus callosum, bilateral corona radiata, and thalamic radiation. Higher MD and RD were found in overlapping and even more widespread areas in both hemispheres, also encompassing internal and external capsule, sagittal stratum, fornix, and superior lateral fasciculus. Values of FA and MD were not associated with symptom severity. However, within some white matter clusters that distinguished patients from controls, worse inhibition performance was associated with reduced FA and more impulsive decision making was associated with increased MD. This study shows widespread differences in white matter integrity between adults with persistent ADHD and healthy individuals. Changes in RD suggest aberrant myelination as a pathophysiological factor in persistent ADHD. The microstructural differences in adult ADHD may contribute to poor inhibition and greater impulsivity but appear to be independent of disease severity.

  10. White matter plasticity in adulthood.

    PubMed

    Wang, S; Young, K M

    2014-09-12

    CNS white matter is subject to a novel form of neural plasticity which has been termed "myelin plasticity". It is well established that oligodendrocyte generation and the addition of new myelin internodes continue throughout normal adulthood. These new myelin internodes maybe required for the de novo myelination of previously unmyelinated axons, myelin sheath replacement, or even myelin remodeling. Each process could alter axonal conduction velocity, but to what end? We review the changes that occur within the white matter over the lifetime, the known regulators and mediators of white matter plasticity in the mature CNS, and the physiological role this plasticity may play in CNS function.

  11. Bootstrapping white matter segmentation, Eve++

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-03-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  12. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination.

    PubMed

    Kirk, John; Plumb, Jonnie; Mirakhur, Meenakshi; McQuaid, Stephen

    2003-10-01

    Blood-brain barrier (BBB) hyperpermeability in multiple sclerosis (MS) is associated with lesion pathogenesis and has been linked to pathology in microvascular tight junctions (TJs). This study quantifies the uneven distribution of TJ pathology and its association with BBB leakage. Frozen sections from plaque and normal-appearing white matter (NAWM) in 14 cases were studied together with white matter from six neurological and five normal controls. Using single and double immunofluorescence and confocal microscopy, the TJ-associated protein zonula occludens-1 (ZO-1) was examined across lesion types and tissue categories, and in relation to fibrinogen leakage. Confocal image data sets were analysed for 2198 MS and 1062 control vessels. Significant differences in the incidence of TJ abnormalities were detected between the different lesion types in MS and between MS and control white matter. These were frequent in oil-red O (ORO)(+) active plaques, affecting 42% of vessel segments, but less frequent in ORO(-) inactive plaques (23%), NAWM (13%), and normal (3.7%) and neurological controls (8%). A similar pattern was found irrespective of the vessel size, supporting a causal role for diffusible inflammatory mediators. In both NAWM and inactive lesions, dual labelling showed that vessels with the most TJ abnormality also showed most fibrinogen leakage. This was even more pronounced in active lesions, where 41% of vessels in the highest grade for TJ alteration showed severe leakage. It is concluded that disruption of TJs in MS, affecting both paracellular and transcellular paths, contributes to BBB leakage. TJ abnormality and BBB leakage in inactive lesions suggests either failure of TJ repair or a continuing pathological process. In NAWM, it suggests either pre-lesional change or secondary damage. Clinically inapparent TJ pathology has prognostic implications and should be considered when planning disease-modifying therapy.

  13. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.

  14. White matter and cognition: making the connection.

    PubMed

    Filley, Christopher M; Fields, R Douglas

    2016-11-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society.

  15. White matter astrocytes in health and disease.

    PubMed

    Lundgaard, I; Osório, M J; Kress, B T; Sanggaard, S; Nedergaard, M

    2014-09-12

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. We discuss how astrocytes in the white matter are specialized to promote myelination and myelin maintenance by clearance of extracellular ions and neurotransmitters and by secretion of pro-myelinating factors. Additionally, astrocyte-oligodendrocyte coupling via gap junctions is crucial for both myelin formation and maintenance, due to K(+) buffering and possibly metabolic support for oligodendrocytes via the panglial syncytium. Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.

  16. Astrocytes and Developmental White Matter Disorders

    ERIC Educational Resources Information Center

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  17. White Matter Glial Pathology in Autism

    DTIC Science & Technology

    2014-09-01

    The majority of total nuclear-encoded non-ribosomal RNA in a human cell is “ dark matter ” un-annotated RNA. BMC Biol. 8, 149 (2010). 9. Ginsberg, S...DATE September 2014 2. REPORT TYPE Annual 3. DATES COVERED 1 Sep 2013 - 31 Aug 2014 4. TITLE AND SUBTITLE White Matter Glial Pathology in...stages of preparation due to poor sample quality factors such as low RIN or insufficient sequencing reads. Superficial white matter was laser

  18. Development of white matter and reading skills.

    PubMed

    Yeatman, Jason D; Dougherty, Robert F; Ben-Shachar, Michal; Wandell, Brian A

    2012-10-30

    White matter tissue properties are highly correlated with reading proficiency; we would like to have a model that relates the dynamics of an individual's white matter development to their acquisition of skilled reading. The development of cerebral white matter involves multiple biological processes, and the balance between these processes differs between individuals. Cross-sectional measures of white matter mask the interplay between these processes and their connection to an individual's cognitive development. Hence, we performed a longitudinal study to measure white-matter development (diffusion-weighted imaging) and reading development (behavioral testing) in individual children (age 7-15 y). The pattern of white-matter development differed significantly among children. In the left arcuate and left inferior longitudinal fasciculus, children with above-average reading skills initially had low fractional anisotropy (FA) that increased over the 3-y period, whereas children with below-average reading skills had higher initial FA that declined over time. We describe a dual-process model of white matter development comprising biological processes with opposing effects on FA, such as axonal myelination and pruning, to explain the pattern of results.

  19. White matter injury detection in neonatal MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Irene; Hajari, Nasim; Firouzmanesh, Amirhossein; Shen, Rui; Miller, Steven; Poskitt, Ken; Basu, Anup

    2013-02-01

    Early detection of white matter injury in premature newborns can facilitate timely clinical treatments reducing the potential risk of later developmental deficits. It was reported that there were more than 5% premature newborns in British Columbia, Canada, among which 5-10% exhibited major motor deficits and 25-50% exhibited significant developmental and visual deficits. With the advancement of computer assisted detection systems, it is possible to automatically identify white matter injuries, which are found inside the grey matter region of the brain. Atlas registration has been suggested in the literature to distinguish grey matter from the soft tissues inside the skull. However, our subjects are premature newborns delivered at 24 to 32 weeks of gestation. During this period, the grey matter undergoes rapid changes and differs significantly from one to another. Besides, not all detected white spots represent injuries. Additional neighborhood information and expert input are required for verification. In this paper, we propose a white matter feature identification system for premature newborns, which is composed of several steps: (1) Candidate white matter segmentation; (2) Feature extraction from candidates; (3) Validation with data obtained at a later stage on the children; and (4) Feature confirmation for automated detection. The main challenge of this work lies in segmenting white matter injuries from noisy and low resolution data. Our approach integrates image fusion and contrast enhancement together with a fuzzy segmentation technique to achieve promising results. Other applications, such as brain tumor and intra-ventricular haemorrhage detection can also benefit from our approach.

  20. Abnormal white matter properties in adolescent girls with anorexia nervosa.

    PubMed

    Travis, Katherine E; Golden, Neville H; Feldman, Heidi M; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D; Dougherty, Robert F

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN.

  1. Abnormal white matter properties in adolescent girls with anorexia nervosa

    PubMed Central

    Travis, Katherine E.; Golden, Neville H.; Feldman, Heidi M.; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D.; Dougherty, Robert F.

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN. PMID:26740918

  2. The superficial white matter in Alzheimer's disease.

    PubMed

    Phillips, Owen R; Joshi, Shantanu H; Piras, Fabrizio; Orfei, Maria Donata; Iorio, Mariangela; Narr, Katherine L; Shattuck, David W; Caltagirone, Carlo; Spalletta, Gianfranco; Di Paola, Margherita

    2016-04-01

    White matter abnormalities have been shown in the large deep fibers of Alzheimer's disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. To investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer's disease (Age: 71.02 ± 5.84, 16M/28F) and 47 healthy controls (Age 69.23 ± 4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (P < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (P < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer's disease.

  3. White Matter Microstructure and Cognitive Function

    PubMed Central

    Anderson, Elaine J.; Husain, Masud

    2013-01-01

    In recent years, diffusion-weighted magnetic resonance imaging (DW-MRI) has been increasingly used to explore the relationship between white matter structure and cognitive function. This technique uses the passive diffusion of water molecules to infer properties of the surrounding tissue. DW-MRI has been extensively employed to investigate how individual differences in behavior are related to variability in white matter microstructure on a range of different cognitive tasks and also to examine the effect experiential learning might have on brain structural connectivity. Using diffusion tensor tractography, large white matter pathways have been traced in vivo and used to explore patterns of white matter projections between different brain regions. Recent findings suggest that diffusion-weighted imaging might even be used to measure functional differences in water diffusion during task performance. This review describes some research highlights in diffusion-weighted imaging and how this technique can be employed to further our understanding of cognitive function. PMID:22020545

  4. The white matter query language: a novel approach for describing human white matter anatomy.

    PubMed

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2016-12-01

    We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.

  5. Dark-matter admixed white dwarfs

    NASA Astrophysics Data System (ADS)

    Leung, Shing Chi; Chu, Ming Chung; Lin, Lap Ming; Wong, Ka Wing

    2014-03-01

    We study the equilibrium structures of white dwarfs (WD) with dark matter cores formed by non-self-annihilating dark matter (DM) particles with masses ranging from 1 GeV to 100 GeV, assuming in form of an ideal degenerate Fermi gas inside the stars. For DM particles of mass 10 GeV and 100 GeV, we find that stable stellar models exist only if the mass of the DM core inside the star is less than O and -3)Msun , respectively. The global properties of these stars, and the corresponding Chandrasekhar mass (CM) limits, are essentially the same as those of traditional WD models without DM. Nevertheless, in the 10 GeV case, the gravitational attraction of the DM core is strong enough to squeeze the normal matter in the core region to densities above neutron drip. For the 1 GeV case, the DM core inside the star can be as massive as O and affects the global structure of the star significantly. The radius of a stellar model with DM can be about two times smaller than that of a traditional WD. Furthermore, the CM limit can be decreased by as much as 40%. Our results may have implications on the extent to which type Ia supernovae can be regarded as standard candles. This work is partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 400910).

  6. White matter synapses: form, function, and dysfunction.

    PubMed

    Alix, James J P; Domingues, António Miguel de Jesus

    2011-01-25

    Synaptic transmission in the CNS represents the classic mechanism through which neural cells communicate. While vesicular neurotransmitter release has been known to be the preserve of gray matter, it is now known that synaptic-style release of glutamate, the brain's major excitatory neurotransmitter, occurs deep in white matter. Here it permits communication between axons and glial cells, enabling axon activity to couple with high fidelity to glial physiology. As white matter is increasingly well-recognized as a substrate for disease, dysregulation of white matter synaptic transmission will play an important role in the development of pathologies as diverse as stroke, multiple sclerosis, Alzheimer disease, and schizophrenia. This review highlights progress in this new and important field.

  7. White matter disintegration in cluster headache

    PubMed Central

    2013-01-01

    Background Previous studies in primary headache disorders showed microstructural alterations in the white matter as measured by diffusion imaging. However these investigations are not in full agreement and some of those, especially in cluster headache, restricted the analysis to only a limited number of diffusion parameters. Therefore, in the current study we examined white matter microstructure in cluster headache patients. Methods Diffusion weighted MRI images with 60 directions were acquired from thirteen patients with cluster headache and sixteen age-matched healthy controls. Tract based spatial statistics were used to compare white matter integrity in the core of the fibre bundles. Correlation of the diffusion parameters with cumulative number of headache days was examined. Results There was a significant increment of the mean, axial and perpendicular diffusivity in widespread white matter regions in the frontal, parietal, temporal and occipital lobes. Reduced fractional anisotropy was found in the corpus callosum and some frontal and parietal white matter tracts mainly in the contralateral side of the pain. Axial diffusivity showed negative correlation to the number of the headache attacks. Conclusions The in vivo analysis of microstructural alterations in cluster headache provides important features of the disease, which might offer a deeper insight into the pathomechanism of the disease. PMID:23883140

  8. Prolonged Cortisol Reactivity to Stress and White Matter in Schizophrenia

    PubMed Central

    Nugent, Katie L.; Chiappelli, Joshua; Sampath, Hemalatha; Rowland, Laura M.; Thangavelu, Kavita; Davis, Beshaun; Du, Xiaoming; Muellerklein, Florian; Daughters, Stacey; Kochunov, Peter; Hong, L. Elliot

    2015-01-01

    Objective While acute hypothalamic-pituitary-adrenal axis response to stress is often adaptive, prolonged responses may have detrimental effects. Many components of white matter structures are sensitive to prolonged cortisol exposure. We aimed to identify a behavioral laboratory assay for which cortisol response related to brain pathophysiology in schizophrenia. We hypothesized that an abnormally prolonged cortisol response to stress may be linked to abnormal white matter integrity in patients with schizophrenia. Methods Acute and prolonged salivary cortisol response was measured outside the scanner at pre-test and then at 0, 20, and 40 minutes after a psychological stress task in patients with schizophrenia (n=45) and controls (n=53). Tract-averaged white matter was measured by 64-direction diffusion tensor imaging in a subset of patients (n=30) and controls (n=33). Results Patients who did not tolerate and quit the psychological stress task had greater acute (t=2.52, p=0.016; t=3.51, p=0.001 at zero and 20 minutes) and prolonged (t=3.62, p=0.001 at 40 minutes) cortisol reactivity compared with patients who finished the task. Abnormally prolonged cortisol reactivity in patients was significantly associated with reduced white matter integrity (r=−0.468, p=0.009). Regardless of task completion status, acute cortisol response was not related to the white matter measures in patients or controls. Conclusions This paradigm was successful at identifying a subset of patients whose cortisol response was associated with brain pathophysiology. Abnormal cortisol response may adversely affect white matter integrity, partly explaining this pathology observed in schizophrenia. Prolonged stress responses may be targeted for intervention to test for protective effects against white matter damages. PMID:26186431

  9. [What matters more in the white matter: thinking inside of the brain].

    PubMed

    Uchihara, Toshiki; Shishido-Hara, Yukiko

    2015-04-01

    The proportion of white matter in the brain has increased during evolution, and white matter comprises approximately half of the human brain. Its macroscopic as well as microscopic structures change during development, aging, and disease progression as well as following physical or mental training. Knowledge about the structural plasticity of the white matter may alter our cortex-oriented view of brain functions and expand our strategies for diagnosis and treatment, including rehabilitation, since the gray and white matter are complementary. Although the presence of white matter lesions is easy to detect with magnetic resonance imaging of the brain, their qualitative differentiation requires vast knowledge about the underlying processes. Examples from multiple ischemic lesions caused by different disease processes affecting the cerebral arteries are presented for comparison. It is worth considering "what matters more in the white matter" by taking into account the basic structures of the brain as well as their plasticity. Such "thinking inside of the brain" may further expand our understanding of the brain to improve our clinical interpretations and treatments.

  10. [Brain function and white matter].

    PubMed

    Wake, Hiroaki; Kato, Daisuke

    2015-04-01

    Accumulated evidence shows that neural information processing takes place in superficial layers of the brain called the gray matter. Synapses, which connect different neurons reside in the gray matter and are considered the major components of information processing and plasticity. On the other hand, myelinated axons lie beneath the gray matter. These bundles of cables connect neurons in the different brain regions to form functional neural circuits. Myelinated axons were of little of interest to neuroscientists and have long been ignored in the formation of functional neuronal circuits. Recent evidence shows that myelin formed by oligodendrocytes shows plastic changes depending on neuronal activity. In this issue, we discuss the plastic changes of myelin and its functional role in learning and training.

  11. Astrocytes are central in the pathomechanisms of vanishing white matter

    PubMed Central

    Dooves, Stephanie; Bugiani, Marianna; Postma, Nienke L.; Polder, Emiel; Land, Niels; Horan, Stephen T.; van Deijk, Anne-Lieke F.; van de Kreeke, Aleid; Jacobs, Gerbren; Vuong, Caroline; Klooster, Jan; Kamermans, Maarten; Wortel, Joke; Wisse, Lisanne E.; Scheper, Gert C.; Abbink, Truus E.M.; Heine, Vivi M.; van der Knaap, Marjo S.

    2016-01-01

    Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients’ tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders. PMID:26974157

  12. A Versatile Murine Model of Subcortical White Matter Stroke for the Study of Axonal Degeneration and White Matter Neurobiology.

    PubMed

    Nunez, Stefanie; Doroudchi, M Mehdi; Gleichman, Amy J; Ng, Kwan L; Llorente, Irene L; Sozmen, Elif G; Carmichael, S Thomas; Hinman, Jason D

    2016-03-17

    Stroke affecting white matter accounts for up to 25% of clinical stroke presentations, occurs silently at rates that may be 5-10 fold greater, and contributes significantly to the development of vascular dementia. Few models of focal white matter stroke exist and this lack of appropriate models has hampered understanding of the neurobiologic mechanisms involved in injury response and repair after this type of stroke. The main limitation of other subcortical stroke models is that they do not focally restrict the infarct to the white matter or have primarily been validated in non-murine species. This limits the ability to apply the wide variety of murine research tools to study the neurobiology of white matter stroke. Here we present a methodology for the reliable production of a focal stroke in murine white matter using a local injection of an irreversible eNOS inhibitor. We also present several variations on the general protocol including two unique stereotactic variations, retrograde neuronal tracing, as well as fresh tissue labeling and dissection that greatly expand the potential applications of this technique. These variations allow for multiple approaches to analyze the neurobiologic effects of this common and understudied form of stroke.

  13. Canavan Disease: A White Matter Disorder

    ERIC Educational Resources Information Center

    Kumar, Shalini; Mattan, Natalia S.; de Vellis, Jean

    2006-01-01

    Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life.…

  14. Biofidelic white matter heterogeneity decreases computational model predictions of white matter strains during rapid head rotations.

    PubMed

    Maltese, Matthew R; Margulies, Susan S

    2016-11-01

    The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction.

  15. Genetics Home Reference: leukoencephalopathy with vanishing white matter

    MedlinePlus

    ... Leukoencephalopathy with vanishing white matter Other Diagnosis and Management Resources (1 link) GeneReview: Childhood Ataxia with Central Nervous System Hypomelination/Vanishing White Matter General Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy ...

  16. White Matter Glial Pathology in Autism

    DTIC Science & Technology

    2015-11-01

    and oxidative stress as observed in depressed suicide victims. To examine this, oligodendrocytes will be captured from the region of the brainstem...captured materials. This decision was made on both a scientific and financial basis. All superficial white matter and pyramidal neuron samples were...9/09-2/8/11 American Foundation for Suicide Prevention. “Glutamatergic signaling in the locus coeruleus in depression and suicide ” The major goal

  17. Microglia of prefrontal white matter in suicide.

    PubMed

    Schnieder, Tatiana P; Trencevska, Iskra; Rosoklija, Gorazd; Stankov, Aleksandr; Mann, J John; Smiley, John; Dwork, Andrew J

    2014-09-01

    Immune functions in the brain are associated with psychiatric illness and temporary alteration of mental state. Microglia, the principal brain immunologic cells, respond to changes in the internal brain milieu through a sequence of activated states, each with characteristic function and morphology. To assess a possible association of frontal white matter pathology with suicide, we stained autopsy brain tissue samples from 11 suicide and 25 nonsuicide subjects for ionized calcium-binding adapter molecule 1, cluster of differentiation 68, and myelin. Groups were matched by age, sex, and psychiatric diagnosis. We classified ionized calcium-binding adapter molecule 1-immunoreactive cells based on shape, immunoreactivity to cluster of differentiation 68, and association with blood vessels to obtain stereologic estimates of densities of resting microglia, activated phagocytes, and perivascular cells. We found no effect of psychiatric diagnosis but 2 statistically significant effects of suicide: 1) The dorsal-ventral difference in activated microglial density was reversed such that, with suicide, the density was greater in ventral prefrontal white matter than in dorsal prefrontal white matter, whereas in the absence of suicide, the opposite was true; and 2) with suicide, there was a greater density of ionized calcium-binding adapter molecule 1-immunoreactive cells within or in contact with blood vessel walls in dorsal prefrontal white matter. These observations could reflect a mechanism for the stress/diathesis (state/trait) model of suicide, whereby an acute stress activates a reactive process in the brain, either directly or by compromising the blood-brain barrier, and creates a suicidal state in an individual at risk. They also indicate the theoretical potential of imaging studies in living vulnerable individuals for the assessment of suicide risk. Further studies are needed to investigate specific phenotypes of perivascular cells and blood-brain barrier changes

  18. White Matter Hyperintensities and Hypobaric Exposure

    DTIC Science & Technology

    2014-11-01

    unknown environmental and genetic suscepti- bility risk factors. FIGURE 1: Distribution of individual subjects displaying (A) white matter...neurocognitive impact in a popu- lation that is free of cardiovascular, cerebrovascular, and other genetic risk factors posited as the culprits of neuro...neurodegeneration: a microar- ray study. J Neuroinflammation 2012;9:179. 21. Wyss-Coray T. Inflammation in Alzheimer disease: driving force

  19. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  20. Gray matter and white matter abnormalities in online game addiction.

    PubMed

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  1. White matter connectivity and Internet gaming disorder.

    PubMed

    Jeong, Bum Seok; Han, Doug Hyun; Kim, Sun Mi; Lee, Sang Won; Renshaw, Perry F

    2016-05-01

    Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play.

  2. Microglia of Prefrontal White Matter in Suicide

    PubMed Central

    Schnieder, Tatiana P.; Trencevska, Iskra; Rosoklija, Gorazd; Stankov, Aleksandr; Mann, J. John; Smiley, John; Dwork, Andrew J.

    2014-01-01

    Immune functions in the brain are associated with psychiatric illness and with temporary alteration of mental state. Microglia, the principal brain immunological cells, respond to changes in the internal brain milieu through a sequence of activated states, each with characteristic function and morphology. To assess a possible association of frontal white matter pathology with suicide, autopsy brain tissue samples from 11 suicide and 25 non-suicide subjects were stained for ionized calcium-binding adapter molecule 1 (Iba-1), CD68, and myelin. Groups were matched by age, sex, and psychiatric diagnosis. We classified Iba-1-immunoreactive cells on the basis of shape, immunoreactivity for CD68, and association with blood vessels to obtain stereologic estimates of densities of resting microglia, activated phagocytes, and perivascular cells. We found no effect of psychiatric diagnosis but 2 statistically significant effects of suicide: 1) the dorsal-ventral difference in activated microglial density was reversed such that with suicide, the density was greater in ventral than in dorsal prefrontal white matter, whereas in the absence of suicide, the opposite was true; and 2) with suicide there was a greater density of Iba-1-immunoreactive cells within or in contact with blood vessel walls in dorsal prefrontal white matter. These observations could reflect a mechanism for the stress/diathesis (state/trait) model of suicide whereby an acute stress activates a reactive process in the brain, either directly or by compromising the blood-brain barrier, and creates a suicidal state in an individual at risk. They also indicate the theoretical potential of imaging studies in live, vulnerable individuals for the assessment of suicide risk. Further studies are needed to investigate specific phenotypes of perivascular cells and blood-brain barrier changes associated with suicide. PMID:25101704

  3. Imaging White Matter in Human Brainstem

    PubMed Central

    Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI

  4. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  5. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease.

    PubMed

    Minnerop, Martina; Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-12-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T(1)/T(2)/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (P(corrected) < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were

  6. Gender Differences in White Matter Microstructure

    PubMed Central

    Kanaan, Richard A.; Allin, Matthew; Picchioni, Marco; Barker, Gareth J.; Daly, Eileen; Shergill, Sukhwinder S.; Woolley, James; McGuire, Philip K.

    2012-01-01

    Background Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity. Methods A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact. Results Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI. Discussion The size of the differences was substantial - of the same order as that attributed to some pathology – suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively. PMID:22701619

  7. Posterior Reversible Encephalopathy Syndrome with Extensive Deep White Matter Lesions Including the Temporal Pole

    PubMed Central

    Ohira, Junichiro; Mori, Nobuyuki; Kajikawa, Shunsuke; Nakamura, Takeshi; Arisato, Tetsuya; Takahashi, Makio

    2016-01-01

    Posterior reversible encephalopathy syndrome (PRES) typically affects the posterior subcortical white matter. We report the case of a 55-year-old man with atypical PRES, who had malignant hypertension and renal dysfunction. Magnetic resonance imaging of the brain revealed extensive vasogenic edema in the deep white matter including the temporal pole, as well as in the brainstem and cerebellum. Antihypertensive therapy and hemodialysis contributed to both clinical and radiological improvement. Involvement of the deep white matter including the temporal pole, which is rarely affected in an ischemic stroke, should be recognized as a potential sign of PRES. PMID:27904123

  8. White matter neuroanatomical differences in young children who stutter.

    PubMed

    Chang, Soo-Eun; Zhu, David C; Choo, Ai Leen; Angstadt, Mike

    2015-03-01

    The ability to express thoughts through fluent speech production is a most human faculty, one that is often taken for granted. Stuttering, which disrupts the smooth flow of speech, affects 5% of preschool-age children and 1% of the general population, and can lead to significant communication difficulties and negative psychosocial consequences throughout one's lifetime. Despite the fact that symptom onset typically occurs during early childhood, few studies have yet examined the possible neural bases of developmental stuttering during childhood. Here we present a diffusion tensor imaging study that examined white matter measures reflecting neuroanatomical connectivity (fractional anisotropy) in 77 children [40 controls (20 females), 37 who stutter (16 females)] between 3 and 10 years of age. We asked whether previously reported anomalous white matter measures in adults and older children who stutter that were found primarily in major left hemisphere tracts (e.g. superior longitudinal fasciculus) are also present in younger children who stutter. All children exhibited normal speech, language, and cognitive development as assessed through a battery of assessments. The two groups were matched in chronological age and socioeconomic status. Voxel-wise whole brain comparisons using tract-based spatial statistics and region of interest analyses of fractional anisotropy were conducted to examine white matter changes associated with stuttering status, age, sex, and stuttering severity. Children who stutter exhibited significantly reduced fractional anisotropy relative to controls in white matter tracts that interconnect auditory and motor structures, corpus callosum, and in tracts interconnecting cortical and subcortical areas. In contrast to control subjects, fractional anisotropy changes with age were either stagnant or showed dissociated development among major perisylvian brain areas in children who stutter. These results provide first glimpses into the neuroanatomical

  9. White matter involvement in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Caverzasi, Eduardo; Mandelli, Maria Luisa; DeArmond, Stephen J; Hess, Christopher P; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L; Lobach, Irina V; Bastianello, Stefano; Geschwind, Michael D; Henry, Roland G

    2014-12-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P=0.002), axial (P=0.0003) and radial (P=0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P<0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P=0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter

  10. White matter involvement in sporadic Creutzfeldt-Jakob disease

    PubMed Central

    Mandelli, Maria Luisa; DeArmond, Stephen J.; Hess, Christopher P.; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L.; Lobach, Irina V.; Bastianello, Stefano; Geschwind, Michael D.; Henry, Roland G.

    2014-01-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P = 0.002), axial (P = 0.0003) and radial (P = 0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P < 0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P = 0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white

  11. White matter abnormalities of microstructure and physiological noise in schizophrenia

    PubMed Central

    Newman, Sharlene D.; Kent, Jerillyn S.; Bolbecker, Amanda; Klaunig, Mallory J.; O'Donnell, Brian F.; Puce, Aina; Hetrick, William P.

    2015-01-01

    White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality. PMID:25560665

  12. White matter abnormalities of microstructure and physiological noise in schizophrenia.

    PubMed

    Cheng, Hu; Newman, Sharlene D; Kent, Jerillyn S; Bolbecker, Amanda; Klaunig, Mallory J; O'Donnell, Brian F; Puce, Aina; Hetrick, William P

    2015-12-01

    White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality.

  13. White matter hyperintensities and imaging patterns of brain ageing in the general population.

    PubMed

    Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos

    2016-04-01

    White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P < 0.0001) lower SPARE-BA and higher SPARE-AD values compared to those with low white matter hyperintensities burden, indicating that the former had more patterns of atrophy in brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P < 0.0001) causal relationship between them. Structural equation modelling showed that the age effect on SPARE-BA was mediated by white matter hyperintensities and cardiovascular risk score each explaining 10.4% and 21.6% of the variance, respectively. The direct age effect explained 70.2% of the SPARE-BA variance. Only white matter hyperintensities significantly mediated the age effect on SPARE-AD explaining 32.8% of the variance. The direct age effect explained 66.0% of the SPARE

  14. Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis

    PubMed Central

    Kuceyeski, A.F.; Vargas, W.; Dayan, M.; Monohan, E.; Blackwell, C.; Raj, A.; Fujimoto, K.; Gauthier, S.A.

    2016-01-01

    Background and Purpose Quantitative assessment of clinical and pathologic consequences of white matter abnormalities in multiple sclerosis is critical in understanding the pathways of disease. This study aimed to test whether gray matter atrophy was related to abnormalities in connecting white matter and to identify patterns of imaging biomarker abnormalities that were related to patient processing speed. Materials and Methods Image data and Symbol Digit Modalities Test scores were collected from a cohort of patients with early multiple sclerosis. The Network Modification Tool was used to estimate connectivity irregularities by projecting white matter abnormalities onto connecting gray matter regions. Partial least-squares regression quantified the relationship between imaging biomarkers and processing speed as measured by the Symbol Digit Modalities Test. Results Atrophy in deep gray matter structures of the thalami and putamen had moderate and significant correlations with abnormalities in connecting white matter (r = 0.39–0.41, P < .05 corrected). The 2 models of processing speed, 1 for each of the WM imaging biomarkers, had goodness-of-fit (R2) values of 0.42 and 0.30. A measure of the impact of white matter lesions on the connectivity of occipital and parietal areas had significant nonzero regression coefficients. Conclusions We concluded that deep gray matter regions may be susceptible to inflammation and/or demyelination in white matter, possibly having a higher sensitivity to remote degeneration, and that lesions affecting visual processing pathways were related to processing speed. The Network Modification Tool may be used to quantify the impact of early white matter abnormalities on both connecting gray matter structures and processing speed. PMID:25414004

  15. White matter tracts of speech and language.

    PubMed

    Smits, Marion; Jiskoot, Lize C; Papma, Janne M

    2014-10-01

    Diffusion tensor imaging (DTI) has been used to investigate the white matter (WM) tracts underlying the perisylvian cortical regions known to be associated with language function. The arcuate fasciculus is composed of 3 segments (1 long and 2 short) whose separate functions correlate with traditional models of conductive and transcortical motor or sensory aphasia, respectively. DTI mapping of language fibers is useful in presurgical planning for patients with dominant hemisphere tumors, particularly when combined with functional magnetic resonance imaging. DTI has found damage to language networks in stroke patients and has the potential to influence poststroke rehabilitation and treatment. Assessment of the WM tracts involved in the default mode network has been found to correlate with mild cognitive impairment, potentially explaining language deficits in patients with apparently mild small vessel ischemic disease. Different patterns of involvement of language-related WM structures appear to correlate with different clinical subtypes of primary progressive aphasias.

  16. Effects of anesthesia on resting state BOLD signals in white matter of non-human primates.

    PubMed

    Wu, Tung-Lin; Wang, Feng; Anderson, Adam W; Chen, Li Min; Ding, Zhaohua; Gore, John C

    2016-11-01

    Resting state functional magnetic resonance imaging (rsfMRI) has been widely used to measure functional connectivity between cortical regions of the brain. However, there have been minimal reports of bold oxygenation level dependent (BOLD) signals in white matter, and even fewer attempts to detect resting state connectivity. Recently, there has been growing evidence that suggests that reliable detection of white matter BOLD signals may be possible. We have previously shown that nearest neighbor inter-voxel correlations of resting state BOLD signal fluctuations in white matter are anisotropic and can be represented by a functional correlation tensor, but the biophysical origins of these signal variations are not clear. We aimed to assess whether MRI signal fluctuations in white matter vary for different baseline levels of neural activity. We performed imaging studies on live squirrel monkeys under different levels of isoflurane anesthesia at 9.4T. We found 1) the fractional power (0.01-0.08Hz) in white matter was between 60 to 75% of the level in gray matter; 2) the power in both gray and white matter low frequencies decreased monotonically in similar manner with increasing levels of anesthesia; 3) the distribution of fractional anisotropy values of the functional tensors in white matter were significantly higher than those in gray matter; and 4) the functional tensor eigenvalues decreased with increasing level of anesthesia. Our results suggest that as anesthesia level changes baseline neural activity, white matter signal fluctuations behave similarly to those in gray matter, and functional tensors in white matter are affected in parallel.

  17. Microinfarct disruption of white matter structure

    PubMed Central

    Auriel, Eitan; Edlow, Brian L.; Reijmer, Yael D.; Fotiadis, Panagiotis; Ramirez-Martinez, Sergi; Ni, Jun; Reed, Anne K.; Vashkevich, Anastasia; Schwab, Kristin; Rosand, Jonathan; Viswanathan, Anand; Wu, Ona; Gurol, M. Edip

    2014-01-01

    Objective: To evaluate the local effect of small asymptomatic infarctions detected by diffusion-weighted imaging (DWI) on white matter microstructure using longitudinal structural and diffusion tensor imaging (DTI). Methods: Nine acute to subacute DWI lesions were identified in 6 subjects with probable cerebral amyloid angiopathy who had undergone high-resolution MRI both before and after DWI lesion detection. Regions of interest (ROIs) corresponding to the site of the DWI lesion (lesion ROI) and corresponding site in the nonlesioned contralateral hemisphere (control ROI) were coregistered to the pre- and postlesional scans. DTI tractography was additionally performed to reconstruct the white matter tracts containing the ROIs. DTI parameters (fractional anisotropy [FA], mean diffusivity [MD]) were quantified within each ROI, the 6-mm lesion-containing tract segments, and the entire lesion-containing tract bundle. Lesion/control FA and MD ratios were compared across time points. Results: The postlesional scans (performed a mean 7.1 ± 4.7 months after DWI lesion detection) demonstrated a decrease in median FA lesion/control ROI ratio (1.08 to 0.93, p = 0.038) and increase in median MD lesion/control ROI ratio (0.97 to 1.17, p = 0.015) relative to the prelesional scans. There were no visible changes on postlesional high-resolution T1-weighted and fluid-attenuated inversion recovery images in 4 of 9 lesion ROIs and small (2–5 mm) T1 hypointensities in the remaining 5. No postlesional changes in FA or MD ratios were detected in the 6-mm lesion-containing tract segments or full tract bundles. Conclusions: Asymptomatic DWI lesions produce chronic local microstructural injury. The cumulative effects of these widely distributed lesions may directly contribute to small-vessel–related vascular cognitive impairment. PMID:24920857

  18. White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?

    PubMed

    Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven

    2016-02-01

    Tinnitus is a condition characterized by the perception of auditory phantom sounds. It is known as the result of complex interactions between auditory and nonauditory regions. However, previous structural imaging studies on tinnitus patients showed evidence of significant white matter changes caused by hearing loss that are positively correlated with aging. Current study focused on which aspects of tinnitus pathologies affect the white matter integrity the most. We used the diffusion tensor imaging technique to acquire images that have higher contrast in brain white matter to analyze how white matter is influenced by tinnitus-related factors using voxel-based methods, region of interest analysis, and deterministic tractography. As a result, white matter integrity in chronic tinnitus patients was both directly affected by age and also mediated by the hearing loss. The most important changes in white matter regions were found bilaterally in the anterior corona radiata, anterior corpus callosum, and bilateral sagittal strata. In the tractography analysis, the white matter integrity values in tracts of right parahippocampus were correlated with the subjective tinnitus loudness.

  19. White matter hyperintensities and normal-appearing white matter integrity in the aging brain.

    PubMed

    Maniega, Susana Muñoz; Valdés Hernández, Maria C; Clayden, Jonathan D; Royle, Natalie A; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S; Gow, Alan J; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2015-02-01

    White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10(-9) m(2)s(-1) (area under curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe.

  20. Inflammation in White Matter: Clinical and Pathophysiological Aspects

    ERIC Educational Resources Information Center

    Pleasure, David; Soulika, Athena; Singh, Sunit K.; Gallo, Vittorio; Bannerman, Peter

    2006-01-01

    While the central nervous system (CNS) is generally thought of as an immunopriviledged site, immune-mediated CNS white matter damage can occur in both the perinatal period and in adults, and can result in severe and persistent neurological deficits. Periventricular leukomalacia (PVL) is an inflammatory white matter disease of premature infants…

  1. A probabilistic atlas of the cerebellar white matter.

    PubMed

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders.

  2. Frontoparietal white matter integrity predicts haptic performance in chronic stroke.

    PubMed

    Borstad, Alexandra L; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S

    2016-01-01

    strongly correlated with the shared variance across tracts in the control, but not in the poststroke participants. A moderate to good relationship was found between ipsilesional T-M1 MD and affected hand HASTe score (r = - 0.62, p = 0.006) and less affected hand HASTe score (r = - 0.53, p = 0.022). Regression analysis revealed approximately 90% of the variance in affected hand HASTe score was predicted by the white matter integrity in the frontoparietal network (as indexed by MD) in poststroke participants while 87% of the variance in HASTe score was predicted in control participants. This study demonstrates the importance of frontoparietal white matter in mediating haptic performance and specifically identifies that T-M1 and precuneus interhemispheric tracts may be appropriate targets for piloting rehabilitation interventions, such as noninvasive brain stimulation, when the goal is to improve poststroke haptic performance.

  3. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry.

    PubMed

    Takao, H; Hayashi, N; Ohtomo, K

    2013-02-12

    Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.

  4. White matter involvement in chronic musculoskeletal pain

    PubMed Central

    Lieberman, Gregory; Shpaner, Marina; Watts, Richard; Andrews, Trevor; Filippi, Christopher G.; Davis, Marcia; Naylor, Magdalena R.

    2014-01-01

    There is emerging evidence that chronic musculoskeletal pain is associated with anatomical and functional abnormalities in gray matter. However, little research has investigated the relationship between chronic musculoskeletal pain and white matter (WM). In this study, we used whole-brain tract-based spatial statistics, and region-of-interest analyses of diffusion tensor imaging (DTI) data to demonstrate that patients with chronic musculoskeletal pain exhibit several abnormal WM integrity as compared to healthy controls. Chronic musculoskeletal pain was associated with lower fractional anisotropy (FA) in the splenium of corpus callosum, and left cingulum adjacent to the hippocampus. Patients also had higher radial diffusivity (RD) in the splenium, right anterior and posterior limbs of internal capsule, external capsule, superior longitudinal fasciculus, and cerebral peduncle. Patterns of axial diffusivity (AD) varied: patients exhibited lower AD in the left cingulum adjacent to the hippocampus and higher AD bilaterally in the anterior limbs of internal capsule, and in the right cerebral peduncle. Several correlations between diffusion metrics and clinical variables were also significant at a p<0.01 level: FA in the left uncinate fasciculus correlated positively with Total Pain Experience and typical levels of pain severity. AD in the left anterior limb of internal capsule and left uncinate fasciculus were correlated with Total Pain Experience and typical pain level. Positive correlations were also found between AD in the right uncinate and both Total Pain Experience and Pain Catastrophizing. These results demonstrate that WM abnormalities play a role in chronic musculoskeletal pain; either as a cause, predisposing factor, consequence, or compensatory adaptation. PMID:25135468

  5. SREBF-2 polymorphism influences white matter microstructure in bipolar disorder.

    PubMed

    Poletti, Sara; Aggio, Veronica; Bollettini, Irene; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco

    2016-11-30

    The aim of the study is to investigate if gene polymorphisms in sterol regulatory element binding protein transcriptional factors SREBF-1 and SREBF-2, which regulate lipid and cholesterol metabolism, could affect white matter (WM) microstructure, the most recognized structural biomarker of bipolar disorder (BD). In a sample of 93 patients affected by BD, we investigated the effect of SREBF-1 rs11868035, and SREBF-2 rs1052717, on WM microstructure, using diffusion tensor imaging and tract-based spatial statistics. We observed increased radial diffusivity in the rs1052717 A/A genotype compared to A/G and G/G, and reduced fractional anisotropy (FA) in the rs1052717 A/A genotype compared to G carriers in cingulum, corpus callosum, superior and inferior longitudinal fasciculi, and anterior thalamic radiation. These results seem to suggest an involvement of SREBF-2 in the integrity of white matter tracts in BD and therefore a possible role of SREBP pathway in CNS myelination processes.

  6. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    PubMed

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  7. Diabetes mellitus and white matter hyperintensity.

    PubMed

    Tamura, Yoshiaki; Araki, Atsushi

    2015-12-01

    White matter hyperintensity (WMH) is a brain lesion detected as a high-intensity area in magnetic resonance imaging T2 and fluid-attenuated inversion recovery images, and it has been suggested that WMH reflects damage to small vessels in periventricular and subcortical areas. Although WMH has been linked to the incidence of stroke, more recently it has been clarified that WMH is also associated with progression of cognitive decline and functional disability, which are components of so-called geriatric syndrome. In addition to hypertension, which is the classical risk factor for WMH, evidence has been accumulating to suggest that diabetes mellitus could also be associated with WMH progression, and some studies have shown that WMH severity is correlated with cognitive decline in patients with diabetes. The factors that accelerate WMH formation in elderly patients with diabetes remain poorly defined. It is considered that insulin resistance is an exacerbating factor, but the effects of hypertension, dyslipidemia or other vascular risk factors have yet be clarified, and further studies are required.

  8. Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease.

    PubMed

    Bugiani, Marianna; Postma, Nienke; Polder, Emiel; Dieleman, Nikki; Scheffer, Peter G; Sim, Fraser J; van der Knaap, Marjo S; Boor, Ilja

    2013-01-01

    Vanishing white matter disease is a genetic leukoencephalopathy caused by mutations in eukaryotic translation initiation factor 2B. Patients experience a slowly progressive neurological deterioration with episodes of rapid clinical worsening triggered by stress. The disease may occur at any age and leads to early death. Characteristic neuropathological findings include cystic degeneration of the white matter with feeble, if any, reactive gliosis, dysmorphic astrocytes and paucity of myelin despite an increase in oligodendrocytic density. These features have been linked to a maturation defect of astrocytes and oligodendrocytes. However, the nature of the link between glial immaturity and the observed neuropathological features is unclear. We hypothesized that the defects in maturation and function of astrocytes and oligodendrocytes are related. Brain tissue of seven patients with genetically proven vanishing white matter disease was investigated using immunohistochemistry, western blotting, quantitative polymerase chain reaction and size exclusion chromatography. The results were compared with those obtained from normal brain tissue of age-matched controls, from chronic demyelinated multiple sclerosis lesions and from other genetic and acquired white matter disorders. We found that the white matter of patients with vanishing white matter disease is enriched in CD44-expressing astrocyte precursor cells and accumulates the glycosaminoglycan hyaluronan. Hyaluronan is a major component of the extracellular matrix, and CD44 is a hyaluronan receptor. We found that a high molecular weight form of hyaluronan is overabundant, especially in the most severely affected areas. Comparison between the more severely affected frontal white matter and the relatively spared cerebellum confirms that high molecular weight hyaluronan accumulation is more pronounced in the frontal white matter than in the cerebellum. High molecular weight hyaluronan is known to inhibit astrocyte and

  9. Altered Superficial White Matter on Tractography MRI in Alzheimer's Disease

    PubMed Central

    Reginold, William; Luedke, Angela C.; Itorralba, Justine; Fernandez-Ruiz, Juan; Islam, Omar; Garcia, Angeles

    2016-01-01

    Background/Aims Superficial white matter provides extensive cortico-cortical connections. This tractography study aimed to assess the diffusion characteristics of superficial white matter tracts in Alzheimer's disease. Methods Diffusion tensor 3T magnetic resonance imaging scans were acquired in 24 controls and 16 participants with Alzheimer's disease. Neuropsychological test scores were available in some participants. Tractography was performed by the Fiber Assignment by Continuous Tracking (FACT) method. The superficial white matter was manually segmented and divided into frontal, parietal, temporal and occipital lobes. The mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AxD) and fractional anisotropy (FA) of these tracts were compared between controls and participants with Alzheimer's disease and correlated with available cognitive tests while adjusting for age and white matter hyperintensity volume. Results Alzheimer's disease was associated with increased MD (p = 0.0011), increased RD (p = 0.0019) and increased AxD (p = 0.0017) in temporal superficial white matter. In controls, superficial white matter was associated with the performance on the Montreal Cognitive Assessment, Stroop and Trail Making Test B tests, whereas in Alzheimer's disease patients, it was not associated with the performance on cognitive tests. Conclusion Temporal lobe superficial white matter appears to be disrupted in Alzheimer's disease. PMID:27489557

  10. Tryptophan Metabolism and White Matter Integrity in Schizophrenia.

    PubMed

    Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot

    2016-09-01

    Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and (1)H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (p<0.001), and kynurenine/tryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=-0.391 and -0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia.

  11. White matter microstructures underlying mathematical abilities in children.

    PubMed

    van Eimeren, Lucia; Niogi, Sumit N; McCandliss, Bruce D; Holloway, Ian D; Ansari, Daniel

    2008-07-16

    The role of gray matter function and structure in mathematical cognition has been well researched. Comparatively little is known about white matter microstructures associated with mathematical abilities. Diffusion tensor imaging data from 13 children (7-9 years) and two measures of their mathematical competence were collected. Relationships between children's mathematical competence and fractional anisotropy were found in two left hemisphere white matter regions. Although the superior corona radiata was found to be associated with both numerical operations and mathematical reasoning, the inferior longitudinal fasciculus was correlated with numerical operations specifically. These findings suggest a role for microstructure in left white matter tracts for the development of mathematical skills. Moreover, the findings point to the involvement of different white matter tracts for numerical operations and mathematical reasoning.

  12. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke.

    PubMed

    Griffis, Joseph C; Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2017-01-01

    Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  13. Major Superficial White Matter Abnormalities in Huntington's Disease

    PubMed Central

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  14. White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs.

    PubMed

    Klauser, Paul; Baker, Simon T; Cropley, Vanessa L; Bousman, Chad; Fornito, Alex; Cocchi, Luca; Fullerton, Janice M; Rasser, Paul; Schall, Ulrich; Henskens, Frans; Michie, Patricia T; Loughland, Carmel; Catts, Stanley V; Mowry, Bryan; Weickert, Thomas W; Shannon Weickert, Cynthia; Carr, Vaughan; Lenroot, Rhoshel; Pantelis, Christos; Zalesky, Andrew

    2016-08-17

    White matter abnormalities associated with schizophrenia have been widely reported, although the consistency of findings across studies is moderate. In this study, neuroimaging was used to investigate white matter pathology and its impact on whole-brain white matter connectivity in one of the largest samples of patients with schizophrenia. Fractional anisotropy (FA) and mean diffusivity (MD) were compared between patients with schizophrenia or schizoaffective disorder (n = 326) and age-matched healthy controls (n = 197). Between-group differences in FA and MD were assessed using voxel-based analysis and permutation testing. Automated whole-brain white matter fiber tracking and the network-based statistic were used to characterize the impact of white matter pathology on the connectome and its rich club. Significant reductions in FA associated with schizophrenia were widespread, encompassing more than 40% (234ml) of cerebral white matter by volume and involving all cerebral lobes. Significant increases in MD were also widespread and distributed similarly. The corpus callosum, cingulum, and thalamic radiations exhibited the most extensive pathology according to effect size. More than 50% of cortico-cortical and cortico-subcortical white matter fiber bundles comprising the connectome were disrupted in schizophrenia. Connections between hub regions comprising the rich club were disproportionately affected. Pathology did not differ between patients with schizophrenia and schizoaffective disorder and was not mediated by medication. In conclusion, although connectivity between cerebral hubs is most extensively disturbed in schizophrenia, white matter pathology is widespread, affecting all cerebral lobes and the cerebellum, leading to disruptions in the majority of the brain's fiber bundles.

  15. Brain White Matter Impairment in Patients with Spinal Cord Injury

    PubMed Central

    Zheng, Weimin; Chen, Qian; Chen, Xin; Wan, Lu; Qin, Wen; Qi, Zhigang; Li, Kuncheng

    2017-01-01

    It remains unknown whether spinal cord injury (SCI) could indirectly impair or reshape the white matter (WM) of human brain and whether these changes are correlated with injury severity, duration, or clinical performance. We choose tract-based spatial statistics (TBSS) to investigate the possible changes in whole-brain white matter integrity and their associations with clinical variables in fifteen patients with SCI. Compared with the healthy controls, the patients exhibited significant decreases in WM fractional anisotropy (FA) in the left angular gyrus (AG), right cerebellum (CB), left precentral gyrus (PreCG), left lateral occipital region (LOC), left superior longitudinal fasciculus (SLF), left supramarginal gyrus (SMG), and left postcentral gyrus (PostCG) (p < 0.01, TFCE corrected). No significant differences were found in all diffusion indices between the complete and incomplete SCI. However, significantly negative correlation was shown between the increased radial diffusivity (RD) of left AG and total motor scores (uncorrected p < 0.05). Our findings provide evidence that SCI can cause not only direct degeneration but also transneuronal degeneration of brain WM, and these changes may be irrespective of the injury severity. The affection of left AG on rehabilitation therapies need to be further researched in the future. PMID:28255458

  16. Widespread effects of alcohol on white matter microstructure

    PubMed Central

    Fortier, Catherine Brawn; Leritz, Elizabeth C.; Salat, David H.; Lindemer, Emily; Maksimovskiy, Arkadiy L.; Shepel, Juli; Williams, Victoria; Venne, Jonathan R.; Milberg, William P.; McGlinchey, Regina E.

    2014-01-01

    Background Evidence suggests that chronic misuse of alcohol may preferentially affect the integrity of frontal white matter tracts, which can impact executive functions important to achieve and maintain abstinence. Methods Global and regional white matter (WM) microstructure was assessed using diffusion magnetic resonance (MR) measures of fractional anisotropy (FA) for 31 abstinent alcoholics with an average of 25 years of abuse and approximately 5 years of sobriety and 20 nonalcoholic control participants. Data processing was conducted with FreeSurfer and FSL processing streams. Voxelwise processing of the FA data was carried out using TBSS (Tract-Based Spatial Statistics). Clusters of significance were created to provide a quantitative summary of highly significant regions within the voxel wise analysis. Results Widespread, bilateral reductions in FA were observed in abstinent alcoholics as compared to nonalcoholic control participants in multiple frontal, temporal, parietal, and cerebellar WM tracts. FA in the left inferior frontal gyrus was associated with drinking severity. Conclusions The present study found widespread reductions in WM integrity in a group of abstinent alcoholics compared to nonalcoholic control participants, with most pronounced effects in frontal and superior tracts. Decreased FA throughout the frontostriatal circuits that mediate inhibitory control may result in impulsive behavior and inability to maintain sobriety. PMID:25406797

  17. Maturation of normal primate white matter: computed tomographic correlation

    SciTech Connect

    Quencer, R.M.

    1982-09-01

    Five infant baboons were examined with computed tomography (CT) during the first year of their lives to determine the rate and degree of normal white matter maturation in frontal, occipital, and parietal areas. The increase in CT numbers with age was correlated with gross and histologic specimens. Two phases of maturation were identified: a rapid phase (first 8-12 weeks) and a gradual phase (after 12 weeks). Frontal white matter was the most immature in the immediate postnatal period but it became equal in attenuation to the other regions by 4 weeks of age. Knowledge of white matter maturation rates may be particularly useful in cases of neonatal hypoxia/ischemia where zones of periventricular hypodensity are identified. The failure of such regions to follow a normal rate of maturation may indicate damage to the white matter and have significant prognostic implications.

  18. Fiber tracking of brain white matter based on graph theory.

    PubMed

    Lu, Meng

    2015-01-01

    Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.

  19. Extensive abnormality of brain white matter integrity in pathological gambling.

    PubMed

    Joutsa, Juho; Saunavaara, Jani; Parkkola, Riitta; Niemelä, Solja; Kaasinen, Valtteri

    2011-12-30

    Several magnetic resonance imaging (MRI) studies in substance use disorders have shown brain white matter integrity abnormalities, but there are no studies in pathological gambling, a form of behavioral addiction. Our objective was to investigate possible changes in regional brain gray and white matter volumes, and axonal white matter integrity in pathological gamblers compared to healthy controls. Twenty-four subjects (12 clinically diagnosed male pathological gamblers and 12 age-matched healthy male volunteers) underwent structural and diffusion weighted brain MRI scans, which were analyzed with voxel-based morphometry and tract based spatial statistics. In pathological gamblers, widespread lower white matter integrity (lower fractional anisotropy, higher mean diffusivity) was seen in multiple brain regions including the corpus callosum, the cingulum, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the anterior limb of internal capsule, the anterior thalamic radiation, the inferior longitudinal fascicle and the uncinate/inferior fronto-occipital fascicle. There were no volumetric differences in gray or white matter between pathological gamblers and controls. The results suggest that pathological gambling is associated with extensive lower integrity of several brain white matter tracts. The diffusion abnormality closely resembles previous findings in individuals with substance addictions.

  20. Cortical gray and subcortical white matter associations in Parkinson's disease.

    PubMed

    Sterling, Nicholas W; Du, Guangwei; Lewis, Mechelle M; Swavely, Steven; Kong, Lan; Styner, Martin; Huang, Xuemei

    2017-01-01

    Cortical atrophy has been documented in both Parkinson's disease (PD) and healthy aging, but its relationship to changes in subcortical white matter is unknown. This was investigated by obtaining T1- and diffusion-weighted images from 76 PD and 70 controls at baseline and 18 and 36 months, from which cortical volumes and underlying subcortical white matter axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had significant group differences, and for these, underlying subcortical white matter was explored. At baseline, higher cortical volumes were significantly correlated with lower underlying subcortical white matter AD, RD, and higher FA (ps ≤ 0.017) in PD. Longitudinally, higher rates of cortical atrophy in PD were associated with increased rates of change in AD RD, and FA values (ps ≤ 0.0013) in 2 subregions explored. The significant gray-white matter associations were not found in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may not be independent events in PD.

  1. White matter development in adolescence: a DTI study.

    PubMed

    Asato, M R; Terwilliger, R; Woo, J; Luna, B

    2010-09-01

    Adolescence is a unique period of physical and cognitive development that includes concurrent pubertal changes and sex-based vulnerabilities. While diffusion tensor imaging (DTI) studies show white matter maturation throughout the lifespan, the state of white matter integrity specific to adolescence is not well understood as are the contributions of puberty and sex. We performed whole-brain DTI studies of 114 children, adolescents, and adults to identify age-related changes in white matter integrity that characterize adolescence. A distinct set of regions across the brain were found to have decreasing radial diffusivity across age groups. Region of interest analyses revealed that maturation was attained by adolescence in broadly distributed association and projection fibers, including those supporting cortical and brain stem integration that may underlie known enhancements in reaction time during this period. Maturation after adolescence included association and projection tracts, including prefrontal-striatal connections, known to support top-down executive control of behavior and interhemispheric connectivity. Maturation proceeded in parallel with pubertal changes to the postpubertal stage, suggesting hormonal influences on white matter development. Females showed earlier maturation of white matter integrity compared with males. Together, these findings suggest that white matter connectivity supporting executive control of behavior is still immature in adolescence.

  2. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    PubMed

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-01-20

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases.

  3. DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development.

    PubMed

    Darki, Fahimeh; Peyrard-Janvid, Myriam; Matsson, Hans; Kere, Juha; Klingberg, Torkel

    2014-10-22

    Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth.

  4. White matter deficits in psychopathic offenders and correlation with factor structure.

    PubMed

    Hoppenbrouwers, Sylco S; Nazeri, Arash; de Jesus, Danilo R; Stirpe, Tania; Felsky, Daniel; Schutter, Dennis J L G; Daskalakis, Zafiris J; Voineskos, Aristotle N

    2013-01-01

    Psychopathic offenders show a persistent pattern of emotional unresponsivity to the often horrendous crimes they perpetrate. Recent studies have related psychopathy to alterations in white matter. Therefore, diffusion tensor imaging followed by tract-based spatial statistics (TBSS) analysis in 11 psychopathic offenders matched to 11 healthy controls was completed. Fractional anisotropy was calculated within each voxel and comparisons were made between groups using a permutation test. Any clusters of white matter voxels different between groups were submitted to probabilistic tractography. Significant differences in fractional anisotropy were found between psychopathic offenders and healthy controls in three main white matter clusters. These three clusters represented two major networks: an amygdalo-prefrontal network, and a striato-thalamo-frontal network. The interpersonal/affective component of the PCL-R correlated with white matter deficits in the orbitofrontal cortex and frontal pole whereas the antisocial component correlated with deficits in the striato-thalamo-frontal network. In addition to replicating earlier work concerning disruption of an amygdala-prefrontal network, we show for the first time that white matter integrity in a striato-thalamo-frontal network is disrupted in psychopathic offenders. The novelty of our findings lies in the two dissociable white matter networks that map directly onto the two major factors of psychopathy.

  5. White Matter Microstructure and Cognitive Function in Young Women With Polycystic Ovary Syndrome

    PubMed Central

    Rees, D. Aled; Udiawar, Maneesh; Berlot, Rok; Jones, Derek K.

    2016-01-01

    Context: Polycystic ovary syndrome (PCOS) is a disorder characterized by insulin resistance and hyperandrogenism, which leads to an increased risk of type 2 diabetes in later life. Androgens and insulin signaling affect brain function but little is known about brain structure and function in younger adults with PCOS. Objective: To establish whether young women with PCOS display altered white matter microstructure and cognitive function. Patients, interventions, and main outcome measures: Eighteen individuals with PCOS (age, 31 ± 6 y; body mass index [BMI] 30 ± 6 kg/m2) and 18 control subjects (age, 31 ± 7 y; BMI, 29 ± 6 kg/m2), matched for age, IQ, and BMI, underwent anthropometric and metabolic evaluation, diffusion tensor MRI, a technique especially sensitive to brain white matter structure, and cognitive assessment. Cognitive scores and white matter diffusion metrics were compared between groups. White matter microstructure was evaluated across the whole white matter skeleton using tract-based spatial statistics. Associations with metabolic indices were also evaluated. Results: PCOS was associated with a widespread reduction in axial diffusivity (diffusion along the main axis of white matter fibers) and increased tissue volume fraction (the proportion of volume filled by white or grey matter rather than cerebrospinal fluid) in the corpus callosum. Cognitive performance was reduced compared with controls (first principal component, t = 2.9, P = .007), reflecting subtle decrements across a broad range of cognitive tests, despite similar education and premorbid intelligence. In PCOS, there was a reversal of the relationship seen in controls between brain microstructure and both androgens and insulin resistance. Conclusions: White matter microstructure is altered, and cognitive performance is compromised, in young adults with PCOS. These alterations in brain structure and function are independent of age, education and BMI. If reversible, these changes represent

  6. Whiteness as Technology of Affect: Implications for Educational Praxis

    ERIC Educational Resources Information Center

    Leonardo, Zeus; Zembylas, Michalinos

    2013-01-01

    This article explores the embodiment and affectivity of whiteness, particularly as it implicates educational praxis and social justice in education, focusing on the following questions: In what ways are affect and whiteness constitutive of each other in race dialogue? How does emotion intersect with racial practices and white privilege, and what…

  7. Diffusion Tensor Imaging for Assessing Brain Gray and White Matter Abnormalities in a Feline Model of α-Mannosidosis.

    PubMed

    Kumar, Manoj; Duda, Jeff T; Yoon, Sea Young; Bagel, Jessica; O'Donnell, Patricia; Vite, Charles; Pickup, Stephen; Gee, James C; Wolfe, John H; Poptani, Harish

    2016-01-01

    α-Mannosidosis (AMD) is an autosomal recessively inherited lysosomal storage disorder affecting brain function and structure. We performed ex vivo and in vivo diffusion tensor imaging (DTI) on the brains of AMD-affected cats to assess gray and white matter abnormalities. A multi-atlas approach was used to generate a brain template to process the ex vivo DTI data. The probabilistic label method was used to measure fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity values from gray and white matter regions from ex vivo DTI. Regional analysis from various regions of the gray matter (frontal cortex, cingulate gyrus, caudate nucleus, hippocampus, thalamus, and occipital cortex), and white matter (corpus callosum, corticospinal tract, cerebral peduncle, external and internal capsule) was also performed on both ex vivo and in vivo DTI. Ex vivo DTI revealed significantly reduced FA from both gray and white matter regions in AMD-affected cats compared to controls. Significantly reduced FA was also observed from in vivo DTI of AMD-affected cats compared to controls, with lower FA values observed in all white matter regions. We also observed significantly increased axial and radial diffusivity values in various gray and white matter regions in AMD cats from both ex vivo and in vivo DTI data. Imaging findings were correlated with histopathologic analyses suggesting that DTI studies can further aid in the characterization of AMD by assessing the microstructural abnormalities in both white and gray matter.

  8. Epigenetic Age Acceleration Assessed With Human White-Matter Images.

    PubMed

    Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald Hh; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C

    2017-04-06

    The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie inter-individual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n=628; age=23.28-93.11 years), epigenetic age was estimated using the method developed by S. Horvath (2013). For n=376 individuals, DTI scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity were investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρpheno=-0.119, p=0.028), with evidence of shared genetic (ρgene=-0.463, p=0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings that increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain, and shares common genetic influences. provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging.SIGNIFICANCE STATEMENTEpigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age

  9. Cardiorespiratory fitness and brain volume and white matter integrity

    PubMed Central

    Zhu, Na; Schreiner, Pamela J.; Launer, Lenore J.; Whitmer, Rachel A.; Sidney, Stephen; Demerath, Ellen; Thomas, William; Bouchard, Claude; He, Ka; Erus, Guray; Battapady, Harsha; Bryan, R. Nick

    2015-01-01

    Objective: We hypothesized that greater cardiorespiratory fitness is associated with lower odds of having unfavorable brain MRI findings. Methods: We studied 565 healthy, middle-aged, black and white men and women in the CARDIA (Coronary Artery Risk Development in Young Adults) Study. The fitness measure was symptom-limited maximal treadmill test duration (Maxdur); brain MRI was measured 5 years later. Brain MRI measures were analyzed as means and as proportions below the 15th percentile (above the 85th percentile for white matter abnormal tissue volume). Results: Per 1-minute-higher Maxdur, the odds ratio for having less whole brain volume was 0.85 (p = 0.04) and for having low white matter integrity was 0.80 (p = 0.02), adjusted for age, race, sex, clinic, body mass index, smoking, alcohol, diet, physical activity, education, blood pressure, diabetes, total cholesterol, and lung function (plus intracranial volume for white matter integrity). No significant associations were observed between Maxdur and abnormal tissue volume or blood flow in white matter. Findings were similar for associations with continuous brain MRI measures. Conclusions: Greater physical fitness was associated with more brain volume and greater white matter integrity measured 5 years later in middle-aged adults. PMID:25957331

  10. White matter integrity in hair-pulling disorder (trichotillomania).

    PubMed

    Roos, Annerine; Fouche, Jean-Paul; Stein, Dan J; Lochner, Christine

    2013-03-30

    Hair-pulling disorder (trichotillomania, HPD) is a disabling condition that is characterized by repetitive hair-pulling resulting in hair loss. Although there is evidence of structural grey matter abnormalities in HPD, there is a paucity of data on white matter integrity. The aim of this study was to explore white matter integrity using diffusion tensor imaging (DTI) in subjects with HPD and healthy controls. Sixteen adult female subjects with HPD and 13 healthy female controls underwent DTI. Hair-pulling symptom severity, anxiety and depressive symptoms were also assessed. Tract-based spatial statistics were used to analyze data on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). There were no differences in DTI measures between HPD subjects and healthy controls. However, there were significant associations of increased MD in white matter tracts of the fronto-striatal-thalamic pathway with longer HPD duration and increased HPD severity. Our findings suggest that white matter integrity in fronto-striatal-thalamic pathways in HPD is related to symptom duration and severity. The molecular basis of measures of white matter integrity in HPD deserves further exploration.

  11. Evaluation of Atlas-Based White Matter Segmentation with Eve

    PubMed Central

    Plassard, Andrew J.; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-01-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary. PMID:25914503

  12. Evaluation of Atlas-Based White Matter Segmentation with Eve.

    PubMed

    Plassard, Andrew J; Hinton, Kendra E; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M; Landman, Bennett A

    2015-03-20

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  13. Military blast exposure, ageing and white matter integrity

    PubMed Central

    Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.

    2015-01-01

    Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast

  14. Military blast exposure, ageing and white matter integrity.

    PubMed

    Trotter, Benjamin B; Robinson, Meghan E; Milberg, William P; McGlinchey, Regina E; Salat, David H

    2015-08-01

    Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure-one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan-is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a 'dose-response' relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group

  15. Age exacerbates HIV-associated white matter abnormalities.

    PubMed

    Seider, Talia R; Gongvatana, Assawin; Woods, Adam J; Chen, Huaihou; Porges, Eric C; Cummings, Tiffany; Correia, Stephen; Tashima, Karen; Cohen, Ronald A

    2016-04-01

    Both HIV disease and advanced age have been associated with alterations to cerebral white matter, as measured with white matter hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI), and more recently with diffusion tensor imaging (DTI). This study investigates the combined effects of age and HIV serostatus on WMH and DTI measures, as well as the relationships between these white matter measures, in 88 HIV seropositive (HIV+) and 49 seronegative (HIV-) individuals aged 23-79 years. A whole-brain volumetric measure of WMH was quantified from FLAIR images using a semi-automated process, while fractional anisotropy (FA) was calculated for 15 regions of a whole-brain white matter skeleton generated using tract-based spatial statistics (TBSS). An age by HIV interaction was found indicating a significant association between WMH and older age in HIV+ participants only. Similarly, significant age by HIV interactions were found indicating stronger associations between older age and decreased FA in the posterior limbs of the internal capsules, cerebral peduncles, and anterior corona radiata in HIV+ vs. HIV- participants. The interactive effects of HIV and age were stronger with respect to whole-brain WMH than for any of the FA measures. Among HIV+ participants, greater WMH and lower anterior corona radiata FA were associated with active hepatitis C virus infection, a history of AIDS, and higher current CD4 cell count. Results indicate that age exacerbates HIV-associated abnormalities of whole-brain WMH and fronto-subcortical white matter integrity.

  16. NMDA receptor antibodies associated with distinct white matter syndromes

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

    2014-01-01

    Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

  17. White matter development in the early stages of psychosis.

    PubMed

    Peters, Bart D; Karlsgodt, Katherine H

    2015-01-01

    Schizophrenia has been conceptualized as a disorder of both neurodevelopment and a disorder of connectivity. One important aspect of the neurodevelopmental hypothesis is that schizophrenia is no longer thought to have discrete illness time points, but rather a long trajectory of brain changes, spanning many years, across a series of stages of the disease including the prodrome, first episode, and chronic period. As the disease progresses, there is a complex relationship between age related changes and disease related changes. Therefore, neural changes, and specifically white matter based connectivity changes, in schizophrenia may be best conceptualized based on a lifespan trajectory. In this selective review, we discuss healthy changes in white matter integrity that occur with age, as well as changes that occur across illness stages. We further propose a set of models that might explain lifespan changes in white matter integrity in schizophrenia, with the conclusion that the evidence most strongly supports a pattern of disrupted maturation during adolescence, with the potential for later changes that may be a result of disease neurotoxicity, abnormal or excessive aging effects, as well as medication, cohort or other effects. Thus, when considering white matter integrity in psychosis, it is critical to consider age in addition to other contributing factors including disease specific effects. Discovery of the factors driving healthy white matter development across the lifespan and deviations from the normal developmental trajectory may provide insights relevant to the discovery of early treatment interventions.

  18. White matter development and early cognition in babies and toddlers.

    PubMed

    O'Muircheartaigh, Jonathan; Dean, Douglas C; Ginestet, Cedric E; Walker, Lindsay; Waskiewicz, Nicole; Lehman, Katie; Dirks, Holly; Piryatinsky, Irene; Deoni, Sean C L

    2014-09-01

    The normal myelination of neuronal axons is essential to neurodevelopment, allowing fast inter-neuronal communication. The most dynamic period of myelination occurs in the first few years of life, in concert with a dramatic increase in cognitive abilities. How these processes relate, however, is still unclear. Here we aimed to use a data-driven technique to parcellate developing white matter into regions with consistent white matter growth trajectories and investigate how these regions related to cognitive development. In a large sample of 183 children aged 3 months to 4 years, we calculated whole brain myelin volume fraction (VFM ) maps using quantitative multicomponent relaxometry. We used spatial independent component analysis (ICA) to blindly segment these quantitative VFM images into anatomically meaningful parcels with distinct developmental trajectories. We further investigated the relationship of these trajectories with standardized cognitive scores in the same children. The resulting components represented a mix of unilateral and bilateral white matter regions (e.g., cortico-spinal tract, genu and splenium of the corpus callosum, white matter underlying the inferior frontal gyrus) as well as structured noise (misregistration, image artifact). The trajectories of these regions were associated with individual differences in cognitive abilities. Specifically, components in white matter underlying frontal and temporal cortices showed significant relationships to expressive and receptive language abilities. Many of these relationships had a significant interaction with age, with VFM becoming more strongly associated with language skills with age. These data provide evidence for a changing coupling between developing myelin and cognitive development.

  19. Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients

    SciTech Connect

    Uh, Jinsoo; Merchant, Thomas E.; Li, Yimei; Li, Xingyu; Sabin, Noah D.; Indelicato, Daniel J.; Ogg, Robert J.; Boop, Frederick A.; Jane, John A.; Hua, Chiaho

    2015-09-01

    Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally

  20. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  1. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    PubMed Central

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  2. Metabolic maturation of white matter is altered in preterm infants.

    PubMed

    Blüml, Stefan; Wisnowski, Jessica L; Nelson, Marvin D; Paquette, Lisa; Panigrahy, Ashok

    2014-01-01

    Significant physiological switches occur at birth such as the transition from fetal parallel blood flow to a two-circuit serial system with increased arterial oxygenation of blood delivered to all organs including the brain. In addition, the extra-uterine environment exposes premature infants to a host of stimuli. These events could conceivably alter the trajectory of brain development in premature infants. We used in vivo magnetic resonance spectroscopy to measure absolute brain metabolite concentrations in term and premature-born infants without evidence of brain injury at equivalent post-conceptional age. Prematurity altered the developmental time courses of N-acetyl-aspartate, a marker for axonal and neuronal development, creatine, an energy metabolite, and choline, a membrane metabolite, in parietal white matter. Specifically, at term-equivalency, metabolic maturation in preterm infants preceded development in term infants, but then progressed at a slower pace and trajectories merged at ≈340-370 post-conceptional days. In parieto/occipital grey matter similar trends were noticed but statistical significance was not reached. The timing of white matter development and synchronization of white matter and grey matter maturation in premature-born infants is disturbed. This may contribute to the greater risk of long-term neurological problems of premature infants and to their higher risk for white matter injury.

  3. White matter morphometric changes uniquely predict children's reading acquisition.

    PubMed

    Myers, Chelsea A; Vandermosten, Maaike; Farris, Emily A; Hancock, Roeland; Gimenez, Paul; Black, Jessica M; Casto, Brandi; Drahos, Miroslav; Tumber, Mandeep; Hendren, Robert L; Hulme, Charles; Hoeft, Fumiko

    2014-10-01

    This study examined whether variations in brain development between kindergarten and Grade 3 predicted individual differences in reading ability at Grade 3. Structural MRI measurements indicated that increases in the volume of two left temporo-parietal white matter clusters are unique predictors of reading outcomes above and beyond family history, socioeconomic status, and cognitive and preliteracy measures at baseline. Using diffusion MRI, we identified the left arcuate fasciculus and superior corona radiata as key fibers within the two clusters. Bias-free regression analyses using regions of interest from prior literature revealed that volume changes in temporo-parietal white matter, together with preliteracy measures, predicted 56% of the variance in reading outcomes. Our findings demonstrate the important contribution of developmental differences in areas of left dorsal white matter, often implicated in phonological processing, as a sensitive early biomarker for later reading abilities, and by extension, reading difficulties.

  4. White matter abnormalities are associated with overall cognitive status in blast-related mTBI.

    PubMed

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-10-04

    Blast-related mild traumatic brain injury (mTBI) is a common injury of the Iraq and Afghanistan Wars. Research has suggested that blast-related mTBI is associated with chronic white matter abnormalities, which in turn are associated with impairment in neurocognitive function. However, findings are inconsistent as to which domains of cognition are affected by TBI-related white matter disruption. Recent evidence that white matter abnormalities associated with blast-related mTBI are spatially variable raises the possibility that the associated cognitive impairment is also heterogeneous. Thus, the goals of this study were to examine (1) whether mTBI-related white matter abnormalities are associated with overall cognitive status and (2) whether white matter abnormalities provide a mechanism by which mTBI influences cognition. Ninety-six Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OEF) veterans were assigned to one of three groups: no-TBI, mTBI without loss of consciousness (LOC) (mTBI-LOC), and mTBI with LOC (mTBI + LOC). Participants were given a battery of neuropsychological tests that were selected for their sensitivity to mTBI. Results showed that number of white matter abnormalities was associated with the odds of having clinically significant cognitive impairment. A mediation analysis revealed that mTBI + LOC was indirectly associated with cognitive impairment through its effect on white matter integrity. These results suggest that cognitive difficulties in blast-related mTBI can be linked to injury-induced neural changes when taking into account the variability of injury as well as the heterogeneity in cognitive deficits across individuals.

  5. Extensive White Matter Alterations and Its Correlations with Ataxia Severity in SCA 2 Patients

    PubMed Central

    Hernandez-Castillo, Carlos R.; Galvez, Victor; Mercadillo, Roberto; Diaz, Rosalinda; Campos-Romo, Aurelio; Fernandez-Ruiz, Juan

    2015-01-01

    Background Previous studies of SCA2 have revealed significant degeneration of white matter tracts in cerebellar and cerebral regions. The motor deficit in these patients may be attributable to the degradation of projection fibers associated with the underlying neurodegenerative process. However, this relationship remains unclear. Statistical analysis of diffusion tensor imaging enables an unbiased whole-brain quantitative comparison of the diffusion proprieties of white matter tracts in vivo. Methods Fourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Tract-based spatial statistics were performed to analyze structural white matter damage using two different measurements: fractional anisotropy (FA) and mean diffusivity (MD). Significant diffusion differences were correlated with the patient's ataxia impairment. Results Our analysis revealed decreased FA mainly in the inferior/middle/superior cerebellar peduncles, the bilateral posterior limb of the internal capsule and the bilateral superior corona radiata. Increases in MD were found mainly in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Clinical impairment measured with the SARA score correlated with FA in superior parietal white matter and bilateral anterior corona radiata. Correlations with MD were found in cerebellar white matter and the middle cerebellar peduncle. Conclusion Our findings show significant correlations between diffusion measurements in key areas affected in SCA2 and measures of motor impairment, suggesting a disruption of information flow between motor and sensory-integration areas. These findings result in a more comprehensive view of the clinical impact of the white matter degeneration in SCA2. PMID:26263162

  6. MR volume segmentation of gray matter and white matter using manual thresholding: Dependence on image brightness

    SciTech Connect

    Harris, G.J.; Barta, P.E.; Peng, L.W.; Lee, S.; Brettschneider, P.D.; Shah, A.; Henderer, J.D.; Schlaepfer, T.E.; Pearlson, G.D. Tufts Univ. School of Medicine, Boston, MA )

    1994-02-01

    To describe a quantitative MR imaging segmentation method for determination of the volume of cerebrospinal fluid, gray matter, and white matter in living human brain, and to determine the method's reliability. We developed a computer method that allows rapid, user-friendly determination of cerebrospinal fluid, gray matter, and white matter volumes in a reliable manner, both globally and regionally. This method was applied to a large control population (N = 57). Initially, image brightness had a strong correlation with the gray-white ratio (r = .78). Bright images tended to overestimate, dim images to underestimate gray matter volumes. This artifact was corrected for by offsetting each image to an approximately equal brightness. After brightness correction, gray-white ratio was correlated with age (r = -.35). The age-dependent gray-white ratio was similar to that for the same age range in a prior neuropathology report. Interrater reliability was high (.93 intraclass correlation coefficient). The method described here for gray matter, white matter, and cerebrospinal fluid volume calculation is reliable and valid. A correction method for an artifact related to image brightness was developed. 12 refs., 3 figs.

  7. Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia.

    PubMed

    Savadjiev, P; Whitford, T J; Hough, M E; Clemm von Hohenberg, C; Bouix, S; Westin, C-F; Shenton, M E; Crow, T J; James, A C; Kubicki, M

    2014-05-01

    The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.

  8. Scalable brain network construction on white matter fibers

    NASA Astrophysics Data System (ADS)

    Chung, Moo K.; Adluru, Nagesh; Dalton, Kim M.; Alexander, Andrew L.; Davidson, Richard J.

    2011-03-01

    DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there is no agreed-upon method for constructing the brain structural network graphs out of large number of white matter tracts. In this paper, we present a scalable iterative framework called the ɛ-neighbor method for building a network graph and apply it to testing abnormal connectivity in autism.

  9. White matter tracts critical for recognition of sarcasm.

    PubMed

    Davis, Cameron L; Oishi, Kenichi; Faria, Andreia V; Hsu, John; Gomez, Yessenia; Mori, Susumu; Hillis, Argye E

    2016-01-01

    Failure to recognize sarcasm can lead to important miscommunications. Few previous studies have identified brain lesions associated with impaired recognition of sarcasm. We tested the hypothesis that percent damage to specific white matter tracts, age, and education together predict accuracy in sarcasm recognition. Using multivariable linear regression, with age, education, and percent damage to each of eight white matter tracts as independent variables, and percent accuracy on sarcasm recognition as the dependent variable, we developed a model for predicting sarcasm recognition. Percent damage to the sagittal stratum had the greatest weight and was the only independent predictor of sarcasm recognition.

  10. Brain white matter tracts: functional anatomy and clinical relevance.

    PubMed

    Gerrish, Amy C; Thomas, Adam G; Dineen, Robert A

    2014-10-01

    Diffusion tensor imaging is increasingly available on clinical magnetic resonance scanners and can be acquired in a relatively short time. There has been an explosion of applications in the research field but the use to the practicing radiologist may seem obscure. This paper aims to highlight how diffusion tensor imaging can be used to prompt a dedicated neuroanatomical search for white matter lesions in clinical presentations relating to motor, sensory, language, and visuospatial deficits. The enhanced depiction of white matter tracts in the temporal stem is also highlighted, which is a region of importance in epilepsy surgery planning.

  11. Early Neglect Is Associated with Alterations in White Matter Integrity and Cognitive Functioning

    ERIC Educational Resources Information Center

    Hanson, Jamie L.; Adluru, Nagesh; Chung, Moo K.; Alexander, Andrew L.; Davidson, Richard J.; Pollak, Seth D.

    2013-01-01

    Cognitive deficits have been reported in children who experienced early neglect, especially children raised in institutionalized settings. Previous research suggests that early neglect may differentially affect the directional organization of white matter in the prefrontal cortex (PFC). This may be one mechanism to explain cognitive deficits…

  12. Tissue plasminogen activator prevents white matter damage following stroke

    PubMed Central

    Correa, Fernando; Gauberti, Maxime; Parcq, Jérôme; Macrez, Richard; Hommet, Yannick; Obiang, Pauline; Hernangómez, Miriam; Montagne, Axel; Liot, Géraldine; Guaza, Carmen; Maubert, Eric; Ali, Carine; Vivien, Denis

    2011-01-01

    Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor–like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment. PMID:21576385

  13. Abnormal white matter in a neurologically intact child with incontinentia pigmenti.

    PubMed

    Bryant, Shannon A; Rutledge, S Lane

    2007-03-01

    Incontinentia pigmenti is an X-linked neurocutaneous disorder which is often lethal in males. Ectodermal tissues are involved, and affected females often have abnormalities of skin, teeth, hair, eyes, and the central nervous system. Central nervous system involvement ranges from none to multiple strokes, seizures, and mental retardation. Deletions in the nuclear factor kappa beta essential modulator gene at Xq28 are present in 70-80% of patients with incontinentia pigmenti. White matter abnormalities have been reported in females with significant neurologic involvement. This report describes a neurologically intact child with deletion positive incontinentia pigmenti with significant white matter involvement, broadening the scope of this finding in incontinentia pigmenti.

  14. White matter integrity in right hemisphere predicts pitch-related grammar learning.

    PubMed

    Loui, Psyche; Li, H Charles; Schlaug, Gottfried

    2011-03-15

    White matter plays an important role in various domains of cognitive function. While disruptions in white matter are known to affect many domains of behavior and cognition, the ability to acquire grammatical regularities has been mostly linked to the left hemisphere, perhaps due to its dependence on linguistic stimuli. The role of white matter in the right hemisphere in grammar acquisition is yet unknown. Here we show for the first time that in the domain of pitch, intact white matter connectivity in right-hemisphere analogs of language areas is important for grammar learning. A pitch-based artificial grammar learning task was conducted on subjects who also underwent diffusion tensor imaging. Probabilistic tractography using seed regions of interest in the right inferior frontal gyrus and right middle temporal gyrus showed positive correlations between tract volume and learning performance. Furthermore, significant correlations were observed between learning performance and FA in white matter underlying the supramarginal gyrus, corresponding to the right temporal-parietal junction of the arcuate fasciculus. The control task of recognition did not correlate with tract volume or FA, and control tracts in the left hemisphere did not correlate with behavioral performance. Results show that the right ventral arcuate fasciculus is important in pitch-based artificial grammar learning, and that brain structures subserving learning may be tied to the hemisphere that processes the stimulus more generally.

  15. Quantitative MRI assessments of white matter in children treated for acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Reddick, Wilburn E.; Glass, John O.; Helton, Kathleen J.; Li, Chin-Shang; Pui, Ching-Hon

    2005-04-01

    The purpose of this study was to use objective quantitative MR imaging methods to prospectively assess changes in the physiological structure of white matter during the temporal evolution of leukoencephalopathy (LE) in children treated for acute lymphoblastic leukemia. The longitudinal incidence, extent (proportion of white matter affect), and intensity (elevation of T1 and T2 relaxation rates) of LE was evaluated for 44 children. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and white matter, gray matter and CSF a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map (SOM). Quantitative T1 and T2 relaxation maps were generated using a nonlinear parametric optimization procedure to fit the corresponding multi-exponential models. A Cox proportional regression was performed to estimate the effect of intravenous methotrexate (IV-MTX) exposure on the development of LE followed by a generalized linear model to predict the probability of LE in new patients. Additional T-tests of independent samples were performed to assess differences in quantitative measures of extent and intensity at four different points in therapy. Higher doses and more courses of IV-MTX placed patients at a higher risk of developing LE and were associated with more intense changes affecting more of the white matter volume; many of the changes resolved after completion of therapy. The impact of these changes on neurocognitive functioning and quality of life in survivors remains to be determined.

  16. Linking white matter and deep gray matter alterations in premanifest Huntington disease.

    PubMed

    Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Younes, Laurent; Miller, Michael I

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  17. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    PubMed Central

    Faria, Andreia V.; Ratnanather, J. Tilak; Tward, Daniel J.; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S.; Ross, Christopher A.; Younes, Laurent; Miller, Michael I.

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  18. Anomalous White Matter Morphology in Adults Who Stutter

    ERIC Educational Resources Information Center

    Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.

    2015-01-01

    Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…

  19. Structural white matter differences underlying heterogeneous learning abilities after TBI.

    PubMed

    Chiou, Kathy S; Genova, Helen M; Chiaravalloti, Nancy D

    2016-12-01

    The existence of learning deficits after traumatic brain injury (TBI) is generally accepted; however, our understanding of the structural brain mechanisms underlying learning impairment after TBI is limited. Furthermore, our understanding of learning after TBI is often at risk for overgeneralization, as research often overlooks within sample heterogeneity in learning abilities. The present study examined differences in white matter integrity in a sample of adults with moderate to severe TBI who differed in learning abilities. Adults with moderate to severe TBI were grouped into learners and non-learners based upon achievement of the learning criterion of the open-trial Selective Reminding Test (SRT). Diffusion tensor imaging (DTI) was used to identify white matter differences between the learners and non-learners. Adults with TBI who were able to meet the learning criterion had greater white matter integrity (as indicated by higher fractional anisotropy [FA] values) in the right anterior thalamic radiation, forceps minor, inferior fronto-occipital fasciculus, and forceps minor than non-learners. The results of the study suggest that differences in white matter integrity may explain the observed heterogeneity in learning ability after moderate to severe TBI. This also supports emerging evidence for the involvement of the thalamus in higher order cognition, and the role of thalamo-cortical tracts in connecting functional networks associated with learning.

  20. White matter microstructure correlates of mathematical giftedness and intelligence quotient.

    PubMed

    Navas-Sánchez, Francisco J; Alemán-Gómez, Yasser; Sánchez-Gonzalez, Javier; Guzmán-De-Villoria, Juan A; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2014-06-01

    Recent functional neuroimaging studies have shown differences in brain activation between mathematically gifted adolescents and controls. The aim of this study was to investigate the relationship between mathematical giftedness, intelligent quotient (IQ), and the microstructure of white matter tracts in a sample composed of math-gifted adolescents and aged-matched controls. Math-gifted subjects were selected through a national program based on detecting enhanced visuospatial abilities and creative thinking. We used diffusion tensor imaging to assess white matter microstructure in neuroanatomical connectivity. The processing included voxel-wise and region of interest-based analyses of the fractional anisotropy (FA), a parameter which is purportedly related to white matter microstructure. In a whole-sample analysis, IQ showed a significant positive correlation with FA, mainly in the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for higher intellectual capabilities. In addition, math-gifted adolescents showed increased FA (adjusted for IQ) in white matter tracts connecting frontal lobes with basal ganglia and parietal regions. The enhanced anatomical connectivity observed in the forceps minor and splenium may underlie the greater fluid reasoning, visuospatial working memory, and creative capabilities of these children.

  1. Improved Segmentation of White Matter Tracts with Adaptive Riemannian Metrics

    PubMed Central

    Hao, Xiang; Zygmunt, Kristen; Whitaker, Ross T.; Fletcher, P. Thomas

    2014-01-01

    We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geometry of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics, which have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment the white matter tracts based on the computed geodesics. We show the robustness of our method on simulated data with different noise levels. We also compare our method with tractography methods and geodesic approaches using other Riemannian metrics and demonstrate that the proposed method results in improved geodesics and segmentations using both synthetic and real DTI data. PMID:24211814

  2. Cognitive correlates of white matter lesion load and brain atrophy

    PubMed Central

    Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov

    2015-01-01

    Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514

  3. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  4. Neurocognitive Correlates of White Matter Quality in Adolescent Substance Users

    ERIC Educational Resources Information Center

    Bava, Sunita; Jacobus, Joanna; Mahmood, Omar; Yang, Tony T.; Tapert, Susan F.

    2010-01-01

    Background: Progressive myelination during adolescence implicates an increased vulnerability to neurotoxic substances and enduring neurocognitive consequences. This study examined the cognitive manifestations of altered white matter microstructure in chronic marijuana and alcohol-using (MJ + ALC) adolescents. Methods: Thirty-six MJ + ALC…

  5. Maternal adiposity negatively influences infant brain white matter development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Methods: Diffusion tensor imaging was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age infants from uncomplicat...

  6. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain.

    PubMed

    Taylor, Sabrina R; Smith, Colin M; Keeley, Kristen L; McGuone, Declan; Dodge, Carter P; Duhaime, Ann-Christine; Costine, Beth A

    2016-01-01

    Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU(+) neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that

  7. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain

    PubMed Central

    Taylor, Sabrina R.; Smith, Colin M.; Keeley, Kristen L.; McGuone, Declan; Dodge, Carter P.; Duhaime, Ann-Christine; Costine, Beth A.

    2016-01-01

    Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU+ neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that

  8. Exploring white matter tracts in band heterotopia using diffusion tractography.

    PubMed

    Eriksson, Sofia H; Symms, Mark R; Rugg-Gunn, Fergus J; Boulby, Philip A; Wheeler-Kingshott, Claudia A M; Barker, Gareth J; Duncan, John S; Parker, Geoffrey J M

    2002-09-01

    Band heterotopia is a malformation of cortical development characterized by bands of gray matter in the white matter parallel to the surface of the neocortex. Histopathological studies have suggested that small white matter tracts pass through the heterotopia, and functional magnetic resonance imaging studies have shown activation in the malformation. We used diffusion tractography to explore the anatomical connectivity of band heterotopia and, in particular, whether in vivo white matter tracts traverse the heterotopic gray matter. Five patients with band heterotopia and five control subjects were scanned with whole brain diffusion tensor imaging. Anisotropy maps were calculated. Using fast marching tractography, we produced maps of connectivity and tract traces from two seed points, in the splenium of the corpus callosum and the right parietal lobe. Eigenvectors were found to pass through the band heterotopia in an aligned fashion. Patterns for maps of connectivity were similar in patients and control subjects. Areas of high connectivity were found in the band heterotopia and in cortical areas on the far side of the malformation from the seed point. The tracts hence appeared to traverse or end within the band heterotopia. The results are in agreement with previous histopathological studies and indicate the structural basis of the functional connectivity and absence of focal deficits in these patients.

  9. White Matter Change Revealed by Diffusion Tensor Imaging in Gliomas

    PubMed Central

    Won, Young Il; Kim, Chi Heon; Park, Chul-Kee; Koo, Bang-Bon; Lee, Jong-Min; Jung, Hee-Won

    2016-01-01

    Background Tumor-related white matter change is detected at late stages with magnetic resonance imaging (MRI), when mass effect or prominent edema is present. We analyzed if diffusion tensor imaging (DTI) white matter change earlier than conventional MRI. Methods Twenty-six patients with gliomas (World Health Organization grade II, 5; grade III, 12; and grade IV, 9) within 2 cm from the posterior limb of the internal capsule (IC) were studied. Fifteen normal adults were enrolled as controls. Fluid attenuation inversion recovery MRI showed a high signal change at the posterior limb of the IC (HSIC) in 9 patients with grade III or IV gliomas. We classified the gliomas as WHO grade II (gliomas II), grade III or IV without HSIC [gliomas III/IV(-)] and grade III or IV with HSIC [gliomas III/IV(+)], as an indicator of the increase in the severity of the white matter changes. Fractional anisotropy (FA) and apparent diffusion coefficients (ADC) were calculated for the pyramidal tract. Tumor progression along pyramidal tract was evaluated by follow-up MRI in 16 patients at 40±18 months. Results FA showed no significant difference between gliomas II and control (p=0.694), but was lower in gliomas III/IV(-) and gliomas III/IV(+) (p<0.001). ADCs were higher in gliomas II, gliomas III/IV(-) and gliomas III/IV(+) than control (p<0.001). Tumor progression was detected in 2/16 patients. Conclusion DTI detected white matter changes that appeared to be normal in MRI. ADC changed even in low grade glioma, indicating ADC may be a better parameter for the early detection of white matter change. PMID:27867919

  10. Plasticity of white matter connectivity in phonetics experts.

    PubMed

    Vandermosten, Maaike; Price, Cathy J; Golestani, Narly

    2016-09-01

    Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.

  11. White matter structure changes as adults learn a second language.

    PubMed

    Schlegel, Alexander A; Rudelson, Justin J; Tse, Peter U

    2012-08-01

    Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878-3883, 2010; Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670-11677, 2010; Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371, 2009; Draganski, B., Gaser, C., Busch, V., Schuirer, G., Bogdahn, U., & May, A. Changes in grey matter induced by training. Nature, 427, 311-312, 2004]. Although the significance of these changes is not fully understood, they reveal a brain that remains plastic well beyond early developmental periods. Here we investigate the role of adult structural plasticity in the complex, long-term learning process of foreign language acquisition. We collected monthly diffusion tensor imaging scans of 11 English speakers who took a 9-month intensive course in written and spoken Modern Standard Chinese as well as from 16 control participants who did not study a language. We show that white matter reorganizes progressively across multiple sites as adults study a new language. Language learners exhibited progressive changes in white matter tracts associated with traditional left hemisphere language areas and their right hemisphere analogs. Surprisingly, the most significant changes

  12. White matter integrity and cognitive performance in children with prenatal methamphetamine exposure.

    PubMed

    Roos, Annerine; Kwiatkowski, Maja A; Fouche, Jean-Paul; Narr, Katherine L; Thomas, Kevin G F; Stein, Dan J; Donald, Kirsty A

    2015-02-15

    There is emerging evidence on the harmful effects of prenatal methamphetamine (MA) exposure on the structure and function of the developing brain. However, few studies have assessed white matter structural integrity in the presence of prenatal MA exposure, and results are inconsistent. This investigation thus used diffusion tensor imaging (DTI) to investigate white matter microstructure and cognitive performance in a group of prenatal MA exposed (or MA) children and controls of similar age. Seventeen MA children and 15 healthy controls (aged 6-7 years) underwent DTI and assessment of motor function and general cognitive ability. Whole brain analyses of white matter structure were performed using FSL's tract-based spatial statistics comparing fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Mean diffusion values were extracted from white matter regions shown to differ across groups to determine whether variations in FA predicted cognitive performance. Analyses were controlled for maternal nicotine use. MA children showed significantly lower FA as well as higher MD, RD and AD in tracts that traverse striatal, limbic and frontal regions. Abnormal FA levels in MA children were significantly associated with poorer motor coordination and general cognitive ability sub-items that relate to aspects of executive function. Our findings suggest that, consistent with previous studies in older children, there are disruptions of white matter microstructural integrity in striatal, limbic and frontal regions of young MA exposed children, with prominent cognitive implications. Future longitudinal studies may clarify how prenatal MA exposure affects white matter structural connectivity at different stages of brain maturation.

  13. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents

    PubMed Central

    Ben-Shachar, Michal; Feldman, Heidi M.

    2015-01-01

    Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood. PMID:26560745

  14. Kynurenine pathway and white matter microstructure in bipolar disorder.

    PubMed

    Poletti, Sara; Myint, Aye Mu; Schüetze, Gregor; Bollettini, Irene; Mazza, Elena; Grillitsch, Doris; Locatelli, Clara; Schwarz, Markus; Colombo, Cristina; Benedetti, Francesco

    2016-09-12

    Decreased availability of serotonin in the central nervous system has been suggested to be a central factor in the pathogenesis of depression. Activation of indoleamine 2-3 dioxygenase following a pro-inflammatory state could reduce the amount of tryptophan converted to serotonin and increase the production of tryptophan catabolites such as kynurenic acid, an antagonist of ionotropic excitatory aminoacid receptors, whose levels are reduced in bipolar disorder. Abnormalities in white matter (WM) integrity have been widely reported in BD. We then hypothesized that metabolites involved in serotoninergic turnover in BD could influence DTI measures of WM microstructure. Peripheral levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxy-kynurenine, and 5-HIAA were analysed in 22 patients affected by BD and 15 healthy controls. WM microstructure was evaluated using diffusion tensor imaging and tract-based spatial statistics with threshold-free cluster enhancement only in bipolar patients. We observed that kynurenic acid and 5-HIAA were reduced in BD and associated with DTI measures of WM integrity in several association fibres: inferior and superior longitudinal fasciculus, cingulum bundle, corpus callosum, uncus, anterior thalamic radiation and corona radiata. Our results seem to suggest that higher levels of 5-HIAA, a measure of serotonin levels, and higher levels of kynurenic acid, which protects from glutamate excitotoxicity, could exert a protective effect on WM microstructure. Reduced levels of these metabolites in BD thus seem to confirm a crucial role of serotonin turnover in BD pathophysiology.

  15. Structural gray and white matter changes in patients with HIV.

    PubMed

    Küper, Michael; Rabe, K; Esser, S; Gizewski, E R; Husstedt, I W; Maschke, M; Obermann, M

    2011-06-01

    In this cross-sectional study we used magnetic resonance imaging (MRI)-based voxel based morphometry (VBM) in a sample of HIV positive patients to detect structural gray and white matter changes. Forty-eight HIV positive subjects with (n = 28) or without (n = 20) cognitive deficits (mean age 48.5 ± 9.6 years) and 48 age- and sex-matched HIV negative controls underwent MRI for VBM analyses. Clinical testing in HIV patients included the HIV dementia scale (HDS), Unified Parkinson's Disease Rating Scale (UPDRS) and the grooved pegboard test. Comparing controls with HIV positive patients with cognitive dysfunction (n = 28) VBM showed gray matter decrease in the anterior cingulate and temporal cortices along with white matter reduction in the midbrain region. These changes were more prominent with increasing cognitive decline, when assigning HIV patients to three cognitive groups (not impaired, mildly impaired, overtly impaired) based on performance in the HIV dementia scale. Regression analysis including all HIV positive patients with available data revealed that prefrontal gray matter atrophy in HIV was associated with longer disease duration (n = 48), while motor dysfunction (n = 48) was associated with basal ganglia gray matter atrophy. Lower CD4 cell count (n = 47) correlated with decrease of occipital gray matter. Our results provide evidence for atrophy of nigro-striatal and fronto-striatal circuits in HIV. This pattern of atrophy is consistent with motor dysfunction and dysexecutive syndrome found in HIV patients with HIV-associated neurocognitive disorder.

  16. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia.

    PubMed

    Saggu, Raman; Schumacher, Toni; Gerich, Florian; Rakers, Cordula; Tai, Khalid; Delekate, Andrea; Petzold, Gabor C

    2016-08-04

    Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.

  17. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration.

    PubMed

    Downey, Laura E; Mahoney, Colin J; Buckley, Aisling H; Golden, Hannah L; Henley, Susie M; Schmitz, Nicole; Schott, Jonathan M; Simpson, Ivor J; Ourselin, Sebastien; Fox, Nick C; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI) was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification) and uncinate fasciculus (sarcasm identification). DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries.

  18. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration

    PubMed Central

    Downey, Laura E.; Mahoney, Colin J.; Buckley, Aisling H.; Golden, Hannah L.; Henley, Susie M.; Schmitz, Nicole; Schott, Jonathan M.; Simpson, Ivor J.; Ourselin, Sebastien; Fox, Nick C.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI) was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification) and uncinate fasciculus (sarcasm identification). DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries. PMID:26236629

  19. Abnormal gray and white matter volume in delusional infestation.

    PubMed

    Wolf, Robert Christian; Huber, Markus; Depping, Malte Sebastian; Thomann, Philipp Arthur; Karner, Martin; Lepping, Peter; Freudenmann, Roland W

    2013-10-01

    Little is known about the neural basis of delusional infestation (DI), the delusional belief to be infested with pathogens. Case series and the response to anti-dopaminergic medication indicate disruptions in dopaminergic neurotransmission in the striatum (caudate, putamen), but did not allow for population-based inference. Here, we report the first whole-brain structural neuroimaging study to investigate gray and white matter abnormalities in DI compared to controls. In this study, we used structural magnetic resonance imaging and voxel-based morphometry to investigate gray and white matter volume in 16 DI patients and 16 matched healthy controls. Lower gray matter volume in DI patients compared to controls was found in left medial, lateral and right superior frontal cortices, left anterior cingulate cortex, bilateral insula, left thalamus, right striatal areas and in lateral and medial temporal cortical regions (p<0.05, cluster-corrected). Higher white matter volume in DI patients compared to controls was found in right middle cingulate, left frontal opercular and bilateral striatal regions (p<0.05, cluster-corrected). This study shows that structural changes in prefrontal, temporal, insular, cingulate and striatal brain regions are associated with DI, supporting a neurobiological model of disrupted prefrontal control over somato-sensory representations.

  20. A case of Jacobsen syndrome with multifocal white matter lesions.

    PubMed

    Yu, Fang; Carter, John E; Bazan, Carlos

    2016-01-01

    Jacobsen syndrome is a rare disorder caused by partial deletions of the long arm of chromosome 11. The phenotype is variable with involvement of multiple organ systems, resulting in congenital heart defects, blood dyscrasias, and impaired growth. We describe a case of a 30-year-old man with multiple ophthalmic manifestations and brain magnetic resonance imaging (MRI) that was remarkable for multiple T2-hyperintense subcortical white matter lesions. It is important to be aware that patients with Jacobsen syndrome may have nonspecific white changes seen on MRI.

  1. White University Students' Racial Affect : Understanding the Antiracist Type

    ERIC Educational Resources Information Center

    Kordesh, Kathleen S.; Spanierman, Lisa B.; Neville, Helen A.

    2013-01-01

    Prior quantitative research using the Psychosocial Costs of Racism to Whites scale (PCRW; Spanierman & Heppner, 2004) identified five racial affect types among White undergraduate students. To better understand the Antiracist type, the most racially aware and sensitive among the five types, the authors of the present study conducted two focus…

  2. Vanishing White Matter Disease: A Review with Focus on Its Genetics

    ERIC Educational Resources Information Center

    Pronk, Jan C.; van Kollenburg, Barbara; Scheper, Gert C.; van der Knaap, Marjo S.

    2006-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive brain disorder, most often with a childhood onset. Magnetic resonance imaging and spectroscopy indicate that, with time, increasing amounts of cerebral white matter vanish and are replaced by fluid. Autopsy confirms white matter rarefaction and cystic degeneration. The…

  3. Lower Orbital Frontal White Matter Integrity in Adolescents with Bipolar I Disorder

    ERIC Educational Resources Information Center

    Kafantaris, Vivian; Kingsley, Peter; Ardekani, Babak; Saito, Ema; Lencz, Todd; Lim, Kelvin; Szeszko, Philip

    2009-01-01

    Patients with bipolar I disorder demonstrated white matter abnormalities in white matter regions as seen through the use of diffusion tensor imaging. The findings suggest that white matter abnormalities in pediatric bipolar disorder may be useful in constructing neurobiological models of the disorder.

  4. Multiple Factors Involved in the Pathogenesis of White Matter Lesions

    PubMed Central

    Lin, Jing; Wang, Dilong; Lan, Linfang

    2017-01-01

    White matter lesions (WMLs), also known as leukoaraiosis (LA) or white matter hyperintensities (WMHs), are characterized mainly by hyperintensities on T2-weighted or fluid-attenuated inversion recovery (FLAIR) images. With the aging of the population and the development of imaging technology, the morbidity and diagnostic rates of WMLs are increasing annually. WMLs are not a benign process. They clinically manifest as cognitive decline and the subsequent development of dementia. Although WMLs are important, their pathogenesis is still unclear. This review elaborates on the advances in the understanding of the pathogenesis of WMLs, focusing on anatomy, cerebral blood flow autoregulation, venous collagenosis, blood brain barrier disruption, and genetic factors. In particular, the attribution of WMLs to chronic ischemia secondary to venous collagenosis and cerebral blood flow autoregulation disruption seems reasonable. With the development of gene technology, the effect of genetic factors on the pathogenesis of WMLs is gaining gradual attention. PMID:28316994

  5. Characterizing longitudinal white matter development during early childhood.

    PubMed

    Dean, Douglas C; O'Muircheartaigh, Jonathan; Dirks, Holly; Waskiewicz, Nicole; Walker, Lindsay; Doernberg, Ellen; Piryatinsky, Irene; Deoni, Sean C L

    2015-07-01

    Post-mortem studies have shown the maturation of the brain's myelinated white matter, crucial for efficient and coordinated brain communication, follows a nonlinear spatio-temporal pattern that corresponds with the onset and refinement of cognitive functions and behaviors. Unfortunately, investigation of myelination in vivo is challenging and, thus, little is known about the normative pattern of myelination, or its association with functional development. Using a novel quantitative magnetic resonance imaging technique sensitive to myelin we examined longitudinal white matter development in 108 typically developing children ranging in age from 2.5 months to 5.5 years. Using nonlinear mixed effects modeling, we provide the first in vivo longitudinal description of myelin water fraction development. Moreover, we show distinct male and female developmental patterns, and demonstrate significant relationships between myelin content and measures of cognitive function. These findings advance a new understanding of healthy brain development and provide a foundation from which to assess atypical development.

  6. Microstructural white matter alterations in preclinical Alzheimer's disease detected using free water elimination diffusion tensor imaging.

    PubMed

    Hoy, Andrew R; Ly, Martina; Carlsson, Cynthia M; Okonkwo, Ozioma C; Zetterberg, Henrik; Blennow, Kaj; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B

    2017-01-01

    Brain changes associated with Alzheimer's disease (AD) begin decades before disease diagnosis. While β-amyloid plaques and neurofibrillary tangles are defining features of AD, neuronal loss and synaptic pathology are closely related to the cognitive dysfunction. Brain imaging methods that are tuned to assess degeneration of myelinated nerve fibers in the brain (collectively called white matter) include diffusion tensor imaging (DTI) and related techniques, and are expected to shed light on disease-related loss of structural connectivity. Participants (N = 70, ages 47-76 years) from the Wisconsin Registry for Alzheimer's Prevention study underwent DTI and hybrid diffusion imaging to determine a free-water elimination (FWE-DTI) model. The study assessed the extent to which preclinical AD pathology affects brain white matter. Preclinical AD pathology was determined using cerebrospinal fluid (CSF) biomarkers. The sample was enriched for AD risk (APOE ε4 and parental history of AD). AD pathology assessed by CSF analyses was significantly associated with altered microstructure on both DTI and FWE-DTI. Affected regions included frontal, parietal, and especially temporal white matter. The f-value derived from the FWE-DTI model appeared to be the most sensitive to the relationship between the CSF AD biomarkers and microstructural alterations in white matter. These findings suggest that white matter degeneration is an early pathological feature of AD that may have utility both for early disease detection and as outcome measures for clinical trials. More complex models of microstructural diffusion properties including FWE-DTI may provide increased sensitivity to early brain changes associated with AD over standard DTI.

  7. EEG functional connectivity, axon delays and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  8. The effects of puberty on white matter development in boys.

    PubMed

    Menzies, Lara; Goddings, Anne-Lise; Whitaker, Kirstie J; Blakemore, Sarah-Jayne; Viner, Russell M

    2015-02-01

    Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7-16.0 years. Participants were grouped into early-mid puberty (≤Tanner Stage 3 in pubic hair and gonadal development; n=22) and late-post puberty (≥Tanner Stage 4 in pubic hair or gonadal development; n=39). Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol) were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty×age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone.

  9. White matter fractional anisotropy predicts balance performance in older adults.

    PubMed

    Van Impe, Annouchka; Coxon, James P; Goble, Daniel J; Doumas, Mihail; Swinnen, Stephan P

    2012-09-01

    Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.

  10. Longitudinal changes in white matter microstructure after heavy cannabis use.

    PubMed

    Becker, Mary P; Collins, Paul F; Lim, Kelvin O; Muetzel, R L; Luciana, M

    2015-12-01

    Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.

  11. Evaluating the accuracy of diffusion MRI models in white matter.

    PubMed

    Rokem, Ariel; Yeatman, Jason D; Pestilli, Franco; Kay, Kendrick N; Mezer, Aviv; van der Walt, Stefan; Wandell, Brian A

    2015-01-01

    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM model-accuracy, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking.

  12. Longitudinal changes in white matter microstructure after heavy cannabis use

    PubMed Central

    Becker, Mary P.; Collins, Paul F.; Lim, Kelvin O.; Muetzel, R.L.; Luciana, M.

    2015-01-01

    Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment. PMID:26602958

  13. Organising white matter in a brain without corpus callosum fibres.

    PubMed

    Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

    2015-02-01

    Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis.

  14. Asymmetry of White Matter Pathways in Developing Human Brains.

    PubMed

    Song, Jae W; Mitchell, Paul D; Kolasinski, James; Ellen Grant, P; Galaburda, Albert M; Takahashi, Emi

    2015-09-01

    Little is known about the emergence of structural asymmetry of white matter tracts during early brain development. We examined whether and when asymmetry in diffusion parameters of limbic and association white matter pathways emerged in humans in 23 brains ranging from 15 gestational weeks (GW) up to 3 years of age (11 ex vivo and 12 in vivo cases) using high-angular resolution diffusion imaging tractography. Age-related development of laterality was not observed in a limbic connectional pathway (cingulum bundle or fornix). Among the studied cortico-cortical association pathways (inferior longitudinal fasciculus [ILF], inferior fronto-occipital fasciculus, and arcuate fasciculus), only the ILF showed development of age-related laterality emerging as early as the second trimester. Comparisons of ages older and younger than 40 GW revealed a leftward asymmetry in the cingulum bundle volume and a rightward asymmetry in apparent diffusion coefficient and leftward asymmetry in fractional anisotropy in the ILF in ages older than 40 GW. These results suggest that morphometric asymmetry in cortical areas precedes the emergence of white matter pathway asymmetry. Future correlative studies will investigate whether such asymmetry is anatomically/genetically driven or associated with functional stimulation.

  15. Clinical effect of white matter network disruption related to amyloid and small vessel disease

    PubMed Central

    Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong-Min; Kim, Changsoo; Kim, Yeo Jin; Jung, Na-Yeon; Cho, Hanna; Ye, Byoung Seok; Noh, Young; Kim, Geon Ha; Ko, En-Da; Kim, Jae Seung; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Lee, Jae Hong; Ewers, Michael; Weiner, Michael W.; Na, Duk L.

    2015-01-01

    Background: We tested our hypothesis that the white matter network might mediate the effect of amyloid and small vessel disease (SVD) on cortical thickness and/or cognition. Methods: We prospectively recruited 232 patients with cognitive impairment. Amyloid was assessed using Pittsburgh compound B–PET. SVD was quantified as white matter hyperintensity volume and lacune number. The regional white matter network connectivity was measured as regional nodal efficiency by applying graph theoretical analysis to diffusion tensor imaging data. We measured cortical thickness and performed neuropsychological tests. Results: SVD burden was associated with decreased nodal efficiency in the bilateral frontal, lateral temporal, lateral parietal, and occipital regions. Path analyses showed that the frontal nodal efficiency mediated the effect of SVD on the frontal atrophy and frontal-executive dysfunction. The temporoparietal nodal efficiency mediated the effect of SVD on the temporoparietal atrophy and memory dysfunction. However, Pittsburgh compound B retention ratio affected cortical atrophy and cognitive impairment without being mediated by nodal efficiency. Conclusions: We suggest that a disrupted white matter network mediates the effect of SVD, but not amyloid, on specific patterns of cortical atrophy and/or cognitive impairment. Therefore, our findings provide insight to better understand how amyloid and SVD burden can give rise to brain atrophy or cognitive impairment in specific patterns. PMID:26062629

  16. Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia.

    PubMed

    Szeszko, Philip R; Robinson, Delbert G; Ashtari, Manzar; Vogel, Joshua; Betensky, Julia; Sevy, Serge; Ardekani, Babak A; Lencz, Todd; Malhotra, Anil K; McCormack, Joanne; Miller, Rachel; Lim, Kelvin O; Gunduz-Bruce, Handan; Kane, John M; Bilder, Robert M

    2008-04-01

    The objective of this study was to investigate the clinical and neuropsychological correlates of white matter abnormalities in patients with schizophrenia studied early in the course of illness. A total of 33 (21 male/12 female) patients with recent onset schizophrenia and 30 (18 male/12 female) healthy volunteers completed structural and diffusion tensor imaging exams. Patients also received clinical and neuropsychological assessments. Fractional anisotropy (FA) maps were compared between groups in the white matter using a voxelwise analysis following intersubject registration to Talairach space and correlated with functional indices. Compared to healthy volunteers, patients demonstrated significantly (p<0.001, cluster size >or=100) lower FA within temporal lobe white matter regions corresponding approximately to the right and left uncinate fasciculus, left inferior fronto-occipital fasciculus, and left superior longitudinal fasciculus. There were no areas of significantly higher FA in patients compared to healthy volunteers. Lower FA in the bilateral uncinate fasciculus correlated significantly with greater severity of negative symptoms (alogia and affective flattening), and worse verbal learning/memory functioning. In addition, higher FA in the inferior fronto-occipital fasciculus correlated significantly with greater severity of delusions and hallucinations. White matter abnormalities are evident in patients with schizophrenia early in the course of illness, appearing most robust in left temporal regions. These abnormalities have clinical and neuropsychological correlates, which may be useful in further characterizing structure-function relations in schizophrenia and constraining neurobiological models of the disorder.

  17. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis.

    PubMed

    Gelineau-Morel, Rose; Tomassini, Valentina; Jenkinson, Mark; Johansen-Berg, Heidi; Matthews, Paul M; Palace, Jacqueline

    2012-12-01

    Previous imaging studies assessing the relationship between white matter (WM) damage and matter (GM) atrophy have raised the concern that Multiple Sclerosis (MS) WM lesions may affect measures of GM volume by inducing voxel misclassification during intensity-based tissue segmentation. Here, we quantified this misclassification error in simulated and real MS brains using a lesion-filling method. Using this method, we also corrected GM measures in patients before comparing them with controls in order to assess the impact of this lesion-induced misclassification error in clinical studies. We found that higher WM lesion volumes artificially reduced total GM volumes. In patients, this effect was about 72% of that predicted by simulation. Misclassified voxels were located at the GM/WM border and could be distant from lesions. Volume of individual deep gray matter (DGM) structures generally decreased with higher lesion volumes, consistent with results from total GM. While preserving differences in GM volumes between patients and controls, lesion-filling correction revealed more lateralised DGM shape changes in patients, which were not evident with the original images. Our results confirm that WM lesions can influence MRI measures of GM volume and shape in MS patients through their effect on intensity-based GM segmentation. The greater effect of lesions at increasing levels of damage supports the use of lesion-filling to correct for this problem and improve the interpretability of the results. Volumetric or morphometric imaging studies, where lesion amount and characteristics may vary between groups of patients or change over time, may especially benefit from this correction.

  18. Gray and White Matter Distribution in Dyslexia: A VBM Study of Superior Temporal Gyrus Asymmetry

    PubMed Central

    Dole, Marjorie; Meunier, Fanny; Hoen, Michel

    2013-01-01

    In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the

  19. [Lipids from gray and white rat brain matter in autolysis].

    PubMed

    Gribanov, G A; Il'iashenko, D V

    1993-01-01

    A decrease in relative content of phospholipids and cholesterol simultaneously with increase in cholesterol esters and free fatty acids were detected in tissues of rat brain gray and white matters during autolysis at 37 degrees within 6-7 min, 1, 4 and 24 hrs; the most distinct alterations were observed in lipids of the gray matter especially at early (6-7 min) and late (24 hrs) stages of autolysis. In the gray matter, relative content of all the lipid fractions studied was restored to initial level within 4 hrs of incubation. In the white matter, during autolysis the content of cholesterol varied, the content of phospholipids was only slightly increased, while the level of free fatty acids was increased only at 24 hrs of incubation with synchronous decrease in content of triacylglycerols, cholesterol and, partially, phospholipids. These experimental data are of importance in resuscitation. Both common and dissimilar mechanisms of these lipid alterations are discussed. Not only the complex of hydrolase reactions but also that of transacylase and other reactions, involved in the degradation and biotransformation of brain lipids in autolysis, were noted.

  20. White Matter Tracts Critical for Recognition of Sarcasm

    PubMed Central

    Davis, Cameron; Oishi, Kenichi; Faria, Andreia; Hsu, John; Gomez, Yessenia; Mori, Susumu; Hillis, Argye E.

    2015-01-01

    Sarcasm is commonly used to express criticism in a non-aggressive or humorous way. Failure to understand that the speaker is being sarcastic can lead to important miscommunications. Although numerous studies have identified impaired sarcasm comprehension in neurological impaired patients, few have attempted to identify lesions that lead to impaired sarcasm. Several gray matter structures seem to be critical for processing sarcasm, including right prefrontal cortex, superior temporal cortex, thalamus, and basal ganglia. In this study we tested the hypothesis that percent damage to specific white matter tracts (including those connect the critical gray matter structures), age, and education together predict accuracy in sarcasm comprehension. Using multivariable linear regression, with age, education, and percent damage to each of 8 white matter tracts as independent variables, and percent accuracy on sarcasm recognition as the dependent variable, we developed a model for predicting sarcasm recognition. Percent damage to the sagittal stratum had the greatest weight, and was the only independent predictor of error rate on sarcasm. Results indicate that: (1) sagittal stratum has an important role in the network underlying sarcasm comprehension; (2) sagittal stratum lesions are likely to cause deficits in understanding sarcasm and may require innovative therapies to address this disability. PMID:25805326

  1. White matter lesions relate to tract-specific reductions in functional connectivity.

    PubMed

    Langen, Carolyn D; Zonneveld, Hazel I; White, Tonya; Huizinga, Wyke; Cremers, Lotte G M; de Groot, Marius; Ikram, Mohammad Arfan; Niessen, Wiro J; Vernooij, Meike W

    2017-03-01

    White matter lesions play a role in cognitive decline and dementia. One presumed pathway is through disconnection of functional networks. Little is known about location-specific effects of lesions on functional connectivity. This study examined location-specific effects within anatomically-defined white matter tracts in 1584 participants of the Rotterdam Study, aged 50-95. Tracts were delineated from diffusion magnetic resonance images using probabilistic tractography. Lesions were segmented on fluid-attenuated inversion recovery images. Functional connectivity was defined across each tract on resting-state functional magnetic resonance images by using gray matter parcellations corresponding to the tract ends and calculating the correlation of the mean functional activity between the gray matter regions. A significant relationship between both local and brain-wide lesion load and tract-specific functional connectivity was found in several tracts using linear regressions, also after Bonferroni correction. Indirect connectivity analyses revealed that tract-specific functional connectivity is affected by lesions in several tracts simultaneously. These results suggest that local white matter lesions can decrease tract-specific functional connectivity, both in direct and indirect connections.

  2. Fronto-Parietal gray matter and white matter efficiency differentially predict intelligence in males and females.

    PubMed

    Ryman, Sephira G; Yeo, Ronald A; Witkiewitz, Katie; Vakhtin, Andrei A; van den Heuvel, Martijn; de Reus, Marcel; Flores, Ranee A; Wertz, Christopher R; Jung, Rex E

    2016-11-01

    While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc.

  3. White Matter Hyperintensities among Older Adults Are Associated with Futile Increase in Frontal Activation and Functional Connectivity during Spatial Search

    PubMed Central

    Lockhart, Samuel N.; Luck, Steven J.; Geng, Joy; Beckett, Laurel; Disbrow, Elizabeth A.; Carmichael, Owen; DeCarli, Charles

    2015-01-01

    The mechanisms by which aging and other processes can affect the structure and function of brain networks are important to understanding normal age-related cognitive decline. Advancing age is known to be associated with various disease processes, including clinically asymptomatic vascular and inflammation processes that contribute to white matter structural alteration and potential injury. The effects of these processes on the function of distributed cognitive networks, however, are poorly understood. We hypothesized that the extent of magnetic resonance imaging white matter hyperintensities would be associated with visual attentional control in healthy aging, measured using a functional magnetic resonance imaging search task. We assessed cognitively healthy older adults with search tasks indexing processing speed and attentional control. Expanding upon previous research, older adults demonstrate activation across a frontal-parietal attentional control network. Further, greater white matter hyperintensity volume was associated with increased activation of a frontal network node independent of chronological age. Also consistent with previous research, greater white matter hyperintensity volume was associated with anatomically specific reductions in functional magnetic resonance imaging functional connectivity during search among attentional control regions. White matter hyperintensities may lead to subtle attentional network dysfunction, potentially through impaired frontal-parietal and frontal interhemispheric connectivity, suggesting that clinically silent white matter biomarkers of vascular and inflammatory injury can contribute to differences in search performance and brain function in aging, and likely contribute to advanced age-related impairments in cognitive control. PMID:25793922

  4. White matter hyperintensities among older adults are associated with futile increase in frontal activation and functional connectivity during spatial search.

    PubMed

    Lockhart, Samuel N; Luck, Steven J; Geng, Joy; Beckett, Laurel; Disbrow, Elizabeth A; Carmichael, Owen; DeCarli, Charles

    2015-01-01

    The mechanisms by which aging and other processes can affect the structure and function of brain networks are important to understanding normal age-related cognitive decline. Advancing age is known to be associated with various disease processes, including clinically asymptomatic vascular and inflammation processes that contribute to white matter structural alteration and potential injury. The effects of these processes on the function of distributed cognitive networks, however, are poorly understood. We hypothesized that the extent of magnetic resonance imaging white matter hyperintensities would be associated with visual attentional control in healthy aging, measured using a functional magnetic resonance imaging search task. We assessed cognitively healthy older adults with search tasks indexing processing speed and attentional control. Expanding upon previous research, older adults demonstrate activation across a frontal-parietal attentional control network. Further, greater white matter hyperintensity volume was associated with increased activation of a frontal network node independent of chronological age. Also consistent with previous research, greater white matter hyperintensity volume was associated with anatomically specific reductions in functional magnetic resonance imaging functional connectivity during search among attentional control regions. White matter hyperintensities may lead to subtle attentional network dysfunction, potentially through impaired frontal-parietal and frontal interhemispheric connectivity, suggesting that clinically silent white matter biomarkers of vascular and inflammatory injury can contribute to differences in search performance and brain function in aging, and likely contribute to advanced age-related impairments in cognitive control.

  5. Effects of prenatal alcohol exposure on the development of white matter volume and change in executive function.

    PubMed

    Gautam, P; Nuñez, S C; Narr, K L; Kan, E C; Sowell, E R

    2014-01-01

    Prenatal alcohol exposure can cause a wide range of deficits in executive function that persist throughout life, but little is known about how changes in brain structure relate to cognition in affected individuals. In the current study, we predicted that the rate of white matter volumetric development would be atypical in children with fetal alcohol spectrum disorders (FASD) when compared to typically developing children, and that the rate of change in cognitive function would relate to differential white matter development between groups. Data were available for 103 subjects [49 with FASD, 54 controls, age range 6-17, mean age = 11.83] with 153 total observations. Groups were age-matched. Participants underwent structural magnetic resonance imaging (MRI) and an executive function (EF) battery. Using white matter volumes measured bilaterally for frontal and parietal regions and the corpus callosum, change was predicted by modeling the effects of age, intracranial volume, sex, and interactions with exposure status and EF measures. While both groups showed regional increases in white matter volumes and improvement in cognitive performance over time, there were significant effects of exposure status on age-related relationships between white matter increases and EF measures. Specifically, individuals with FASD consistently showed a positive relationship between improved cognitive function and increased white matter volume over time, while no such relationships were seen in controls. These novel results relating improved cognitive function with increased white matter volume in FASD suggest that better cognitive outcomes could be possible for FASD subjects through interventions that enhance white matter plasticity.

  6. Automated Detection of Lupus White Matter Lesions in MRI

    PubMed Central

    Roura, Eloy; Sarbu, Nicolae; Oliver, Arnau; Valverde, Sergi; González-Villà, Sandra; Cervera, Ricard; Bargalló, Núria; Lladó, Xavier

    2016-01-01

    Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration. PMID:27570507

  7. Temperature dependence of water diffusion pools in brain white matter.

    PubMed

    Dhital, Bibek; Labadie, Christian; Stallmach, Frank; Möller, Harald E; Turner, Robert

    2016-02-15

    Water diffusion in brain tissue can now be easily investigated using magnetic resonance (MR) techniques, providing unique insights into cellular level microstructure such as axonal orientation. The diffusive motion in white matter is known to be non-Gaussian, with increasing evidence for more than one water-containing tissue compartment. In this study, freshly excised porcine brain white matter was measured using a 125-MHz MR spectrometer (3T) equipped with gradient coils providing magnetic field gradients of up to 35,000 mT/m. The sample temperature was varied between -14 and +19 °C. The hypothesis tested was that white matter contains two slowly exchanging pools of water molecules with different diffusion properties. A Stejskal-Tanner diffusion sequence with very short gradient pulses and b-factors up to 18.8 ms/μm(2) was used. The dependence on b-factor of the attenuation due to diffusion was robustly fitted by a biexponential function, with comparable volume fractions for each component. The diffusion coefficient of each component follows Arrhenius behavior, with significantly different activation energies. The measured volume fractions are consistent with the existence of three water-containing compartments, the first comprising relatively free cytoplasmic and extracellular water molecules, the second of water molecules in glial processes, and the third comprising water molecules closely associated with membranes, as for example, in the myelin sheaths and elsewhere. The activation energy of the slow diffusion pool suggests proton hopping at the surface of membranes by a Grotthuss mechanism, mediated by hydrating water molecules.

  8. Enhanced white matter tracts integrity in children with abacus training.

    PubMed

    Hu, Yuzheng; Geng, Fengji; Tao, Lixia; Hu, Nantu; Du, Fenglei; Fu, Kuang; Chen, Feiyan

    2011-01-01

    Experts of abacus, who have the skills of abacus-based mental calculation (AMC), are able to manipulate numbers via an imagined abacus in mind and demonstrate extraordinary ability in mental calculation. Behavioral studies indicated that abacus experts utilize visual strategy in solving numerical problems, and fMRI studies confirmed the enhanced involvement of visuospatial-related neural resources in AMC. This study aims to explore the possible changes in brain white matter induced by long-term training of AMC. Two matched groups participated: the abacus group consisting of 25 children with over 3-year training in abacus calculation and AMC, the controls including 25 children without any abacus experience. We found that the abacus group showed higher average fractional anisotropy (FA) in whole-brain fiber tracts, and the regions with increased FA were found in corpus callosum, left occipitotemporal junction and right premotor projection. No regions, however, showed decreased FA in the abacus group. Further analysis revealed that the differences in FA values were mainly driven by the alternation of radial rather than axial diffusivities. Furthermore, in forward digit and letter memory span tests, AMC group showed larger digit/letter memory spans. Interestingly, individual differences in white matter tracts were found positively correlated with the memory spans, indicating that the widespread increase of FA in the abacus group result possibly from the AMC training. In conclusion, our findings suggested that long-term AMC training from an early age may improve the memory capacity and enhance the integrity in white matter tracts related to motor and visuospatial processes.

  9. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.

    PubMed

    Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien

    2017-04-15

    The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T2(*)-weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T2*-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T2*-weighted data. Results of automatic segmentation on T2*-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter

  10. White Matter Integrity is Reduced in Bulimia Nervosa

    PubMed Central

    Mettler, Lisa N.; Shott, Megan E.; Pryor, Tamara; Yang, Tony T.; Frank, Guido K.W.

    2013-01-01

    Objective To investigate brain white matter (WM) functionality in bulimia nervosa (BN) in relation to anxiety. Method Twenty-one control (CW, mean age 27±7 years) and 20 BN women (mean age 25±5 years) underwent brain diffusion tensor imaging (DTI) to measure fractional anisotropy (FA; an indication of WM axon integrity) and the apparent diffusion coefficient (ADC; reflecting WM cell damage). Results FA was decreased in BN in the bilateral corona radiata extending into the posterior limb of the internal capsule, the corpus callosum, the right sub-insular white matter and right fornix. In CW but not BN trait anxiety correlated negatively with fornix, corpus callosum and left corona radiata FA. ADC was increased in BN compared to CW in the bilateral corona radiata, corpus callosum, inferior fronto-occipital and uncinate fasciculus. Alterations in BN WM functionality were not due to structural brain alterations. Discussion WM integrity is disturbed in BN, especially in the corona radiate, which has been associated with taste and brain reward processing. Whether this is a premorbid condition or an effect from the illness is yet uncertain. The relationships between WM FA and trait anxiety in CW but not BN may suggest that altered WM functionality contributes to high anxious traits in BN. PMID:23354827

  11. Development of white matter pathways in typically developing preadolescent children.

    PubMed

    Muftuler, L Tugan; Davis, Elysia Poggi; Buss, Claudia; Solodkin, Ana; Su, Min Ying; Head, Kevin M; Hasso, Anton N; Sandman, Curt A

    2012-07-23

    The first phase of major neuronal rearrangements in the brain takes place during the prenatal period. While the brain continues maturation throughout childhood, a critical second phase of synaptic overproduction and elimination takes place during the preadolescent period. Despite the importance of this developmental phase, few studies have evaluated neural changes taking place during this period. In this study, MRI diffusion tensor imaging data from a normative sample of 126 preadolescent children (59 girls and 67 boys) between the ages of 6 and 10 years were analyzed in order to characterize age-relationships in the white matter microstructure. Tract Based Spatial Statistics (TBSS) method was used for whole brain analysis of white matter tracts without a priori assumption about the location of age associated differences. Our results demonstrate significant age-associated differences in most of the major fiber tracts bilaterally and along the whole body of the tracts. In contrast, developmental differences in the cingulum at the level of the parahippocampal region were only observed in the right hemisphere. We suggest that these age-relationships with a widespread distribution seen during the preadolescent years maybe relevant for the implementation of cognitive and social behaviors needed for a normal development into adulthood.

  12. Neuropsychiatry and White Matter Microstructure in Huntington’s Disease

    PubMed Central

    Gregory, Sarah; Scahill, Rachael I.; Seunarine, Kiran K.; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A.C.; Langbehn, Douglas R.; Long, Jeffrey D.; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J.; Craufurd, David

    2015-01-01

    Abstract Background: Neuropsychiatric symptoms in Huntington’s disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. Objective: We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. Methods: DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). Results: For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. Conclusions: We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation. PMID:26443926

  13. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury

    PubMed Central

    Lee, Hyun Kyoung; Laug, Dylan; Zhu, Wenyi; Patel, Jay M; Ung, Kevin; Arenkiel, Benjamin R; Fancy, Stephen PJ; Mohila, Carrie; Deneen, Benjamin

    2015-01-01

    Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS, therefore it is critical to understand how the factors associated with the various regulatory layers of this complex pathway contribute to these processes. Recently, Apcdd1 was identified as a negative regulator of proximal Wnt signaling, however its role in oligodendrodcyte (OL) differentiation and reymelination in the CNS remain undefined. Analysis of Apcdd1 expression revealed dynamic expression during OL development, where its expression is upregulated during differentiation. Functional studies using ex vivo and in vitro OL systems, revealed that Apcdd1 promotes OL differentiation, suppresses Wnt signaling, and associates with β-catenin. Application of these findings to white matter injury (WMI) models revealed that Apcdd1 similarly promotes OL differentiation after gliotoxic injury in vivo and acute hypoxia ex vivo. Examination of Apcdd1 expression in white matter lesions from neonatal WMI and adult Multiple Sclerosis revealed its expression in subsets of oligodendrocyte precursors. These studies describe, for the first time, the role of Apcdd1 in OLs after WMI and reveal that negative regulators of the proximal Wnt pathway can influence regenerative myelination, suggesting a new therapeutic strategy for modulating Wnt signaling and stimulating repair after WMI. PMID:25946682

  14. Aortic hemodynamics and white matter hyperintensities in normotensive postmenopausal women.

    PubMed

    Barnes, Jill N; Harvey, Ronée E; Zuk, Samantha M; Lundt, Emily S; Lesnick, Timothy G; Gunter, Jeffrey L; Senjem, Matthew L; Shuster, Lynne T; Miller, Virginia M; Jack, Clifford R; Joyner, Michael J; Kantarci, Kejal

    2017-04-07

    Hypertension is associated with development of white matter hyperintensities (WMH) in the brain, which are risk factors for mild cognitive impairment. Hormonal shifts at menopause alter vascular function putting women at risk for both hypertension and WMH. Elevations in aortic hemodynamics precede the appearance of clinically defined hypertension but the relationship of aortic hemodynamics to development of WMH in women is not known. Therefore, this study aimed to characterize aortic hemodynamics in relationship to WMH in postmenopausal women. Aortic systolic and diastolic blood pressure (BP), aortic augmentation index (Alx) and aortic round trip travel time (Aortic T R) by tonometry were examined in 53 postmenopausal women (age 60 ± 2 years). WMH was calculated from fluid-attenuated inversion recovery MRI using a semi-automated segmentation algorithm. WMH as a fraction of total white matter volume positively associated with aortic systolic BP (regression coefficient = 0.018; p = 0.04) after adjusting for age. In addition, WMH fraction was positively associated with AIx (0.025; p = 0.04), and inversely associated with Aortic T R (-0.015; p = 0.04) after adjusting for age. Our results suggest that assessing aortic hemodynamics may identify individuals at risk for accelerated development of WMH and guide early treatment to reduce WMH burden and cognitive impairment in the future.

  15. Brain white matter structural properties predict transition to chronic pain.

    PubMed

    Mansour, Ali R; Baliki, Marwan N; Huang, Lejian; Torbey, Souraya; Herrmann, Kristi M; Schnitzer, Thomas J; Apkarian, A Vania

    2013-10-01

    Neural mechanisms mediating the transition from acute to chronic pain remain largely unknown. In a longitudinal brain imaging study, we followed up patients with a single sub-acute back pain (SBP) episode for more than 1 year as their pain recovered (SBPr), or persisted (SBPp) representing a transition to chronic pain. We discovered brain white matter structural abnormalities (n=24 SBP patients; SBPp=12 and SBPr=12), as measured by diffusion tensor imaging (DTI), at entry into the study in SBPp in comparison to SBPr. These white matter fractional anisotropy (FA) differences accurately predicted pain persistence over the next year, which was validated in a second cohort (n=22 SBP patients; SBPp=11 and SBPr=11), and showed no further alterations over a 1-year period. Tractography analysis indicated that abnormal regional FA was linked to differential structural connectivity to medial vs lateral prefrontal cortex. Local FA was correlated with functional connectivity between medial prefrontal cortex and nucleus accumbens in SBPr. As we have earlier shown that the latter functional connectivity accurately predicts transition to chronic pain, we can conclude that brain structural differences, most likely existing before the back pain-inciting event and independent of the back pain, predispose subjects to pain chronification.

  16. White matter abnormalities revealed by DTI correlate with interictal grey matter FDG-PET metabolism in focal childhood epilepsies.

    PubMed

    Lippé, Sarah; Poupon, Cyril; Cachia, Arnaud; Archambaud, Frédérique; Rodrigo, Sébastian; Dorfmuller, Georg; Chiron, Catherine; Hertz-Pannier, Lucie

    2012-12-01

    For patients with focal epilepsy scheduled for surgery, including MRI-negative cases, (18)FDG-PET was shown to disclose hypometabolism in the seizure onset zone. However, it is not clear whether grey matter hypometabolism is informative of the integrity of the surrounding white matter cerebral tissue. In order to study the relationship between metabolism of the seizure onset zone grey matter and the integrity of the surrounding white matter measured by diffusion tensor imaging (DTI), we performed a monocentric prospective study (from 2006 to 2009) in 15 children with pharmacoresistant focal epilepsy, suitable for interictal (18)FDG-PET, T1-, T2-, FLAIR sequence MRI and DTI. Children had either positive or negative MRI (eight with symptomatic and seven with cryptogenic epilepsies, respectively). Seven children subsequently underwent surgery. Standardised uptake values of grey matter PET metabolism were compared with DTI indices (fractional anisotropy [FA], apparent diffusion coefficient [ADC], parallel diffusion coefficient [PDC], and transverse diffusion coefficient [TDC]) in grey matter within the seizure onset zone and adjacent white matter, using regions of interest automatically drawn from individual sulcal and gyral parcellation. Hypometabolism correlated positively with white matter ADC, PDC, and TDC, and negatively with white matter FA. In the cryptogenic group of children, hypometabolism correlated positively with white matter ADC. Our results demonstrate a relationship between abnormalities of grey matter metabolism in the seizure onset zone and adjacent white matter structural alterations in childhood focal epilepsies, even in cryptogenic epilepsy. This relationship supports the hypothesis that microstructural alterations of the white matter are related to epileptic networks and has potential implications for the evaluation of children with MRI-negative epilepsy.

  17. White Matter Neurons in Young Adult and Aged Rhesus Monkey

    PubMed Central

    Mortazavi, Farzad; Wang, Xiyue; Rosene, Douglas L.; Rockland, Kathleen S.

    2016-01-01

    In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative

  18. Lipocalin 2 and Blood-Brain Barrier Disruption in White Matter after Experimental Subarachnoid Hemorrhage.

    PubMed

    Egashira, Yusuke; Hua, Ya; Keep, Richard F; Iwama, Toru; Xi, Guohua

    2016-01-01

    We reported previously that subarachnoid hemorrhage (SAH) causes acute white matter injury in mice. In this study, we investigated lipocalin 2 (LCN2) mediated blood-brain barrier (BBB) disruption in white matter, which may lead to subsequent injury. SAH was induced by endovascular perforation in wild-type (WT) and LCN2-knockout (LCN2(-/-)) mice. Sham mice underwent the same procedure without perforation. Mice underwent magnetic resonance imaging (MRI) 24 h after SAH to confirm the development of T2-hyperintensity in white matter. Western blotting and immunohistochemistry were performed to elucidate the mechanisms of LCN2-mediated white matter injury and BBB disruption. It was confirmed that LCN2 expression was significantly increased in white matter of WT mice after SAH by Western blotting (versus sham; p < 0.05). Immunohistochemistry showed that LCN2 receptor 24p3R was expressed in oligodendrocytes, astrocytes, endothelial cells, and pericytes in the white matter. In WT mice with SAH, albumin leakage along the white matter was prominently observed and was consistent with T2-hyperintensity on MRI. As with our previous report, LCN2(-/-) mice scarcely developed T2-hyperintensity on MRI or albumin leakage in white matter. Our results suggest that BBB leakage occurs in white matter after SAH and that LCN2 contributes to SAH-induced BBB disruption.

  19. Variation in blood pressure is associated with white matter microstructure but not cognition in African Americans.

    PubMed

    Leritz, Elizabeth C; Salat, David H; Milberg, William P; Williams, Victoria J; Chapman, Caroline E; Grande, Laura J; Rudolph, James L; Schnyer, David M; Barber, Colleen E; Lipsitz, Lewis A; McGlinchey, Regina E

    2010-03-01

    Although hypertension is a major risk factor for cerebrovascular disease (CVD) and is highly prevalent in African Americans, little is known about how blood pressure (BP) affects brain-behavior relationships in this population. In predominantly Caucasian populations, high BP is associated with alterations in frontal-subcortical white matter and in executive functioning aspects of cognition. We investigated associations among BP, brain structure, and neuropsychological functioning in 52 middle-older-age African Americans without diagnosed history of CVD. All participants underwent diffusion tensor imaging for examination of white matter integrity, indexed by fractional anisotropy (FA). Three regions of interest were derived in the anterior (genu) and posterior (splenium) corpus callosum and across the whole brain. A brief neuropsychological battery was administered from which composite scores of executive function and memory were derived. Blood pressure was characterized by mean arterial blood pressure (MABP). When controlling for age, higher MABP was associated with lower FA in the genu, and there was a trend for this same relationship with regard to whole-brain FA. When the sample was broken into groups on the basis of treatment for BP regulation (medicated vs. nonmedicated), MABP was related to genu and whole-brain FA only in the nonmedicated group. Neither MABP nor FA was significantly related to either neuropsychological composite score regardless of medication use. These data provide important evidence that variation in BP may contribute to significant alterations in specific neural regions of white matter in nonmedicated individuals without symptoms of overt CVD.

  20. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    PubMed

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  1. Quantitative MR assessment of structural changes in white matter of children treated for ALL

    NASA Astrophysics Data System (ADS)

    Reddick, Wilburn E.; Glass, John O.; Mulhern, Raymond K.

    2001-07-01

    Our research builds on the hypothesis that white matter damage resulting from therapy spans a continuum of severity that can be reliably probed using non-invasive MR technology. This project focuses on children treated for ALL with a regimen containing seven courses of high-dose methotrexate (HDMTX) which is known to cause leukoencephalopathy. Axial FLAIR, T1-, T2-, and PD-weighted images were acquired, registered and then analyzed with a hybrid neural network segmentation algorithm to identify normal brain parenchyma and leukoencephalopathy. Quantitative T1 and T2 maps were also analyzed at the level of the basal ganglia and the centrum semiovale. The segmented images were used as mask to identify regions of normal appearing white matter (NAWM) and leukoencephalopathy in the quantitative T1 and T2 maps. We assessed the longitudinal changes in volume, T1 and T2 in NAWM and leukoencephalopathy for 42 patients. The segmentation analysis revealed that 69% of patients had leukoencephalopathy after receiving seven courses of HDMTX. The leukoencephalopathy affected approximately 17% of the patients' white matter volume on average (range 2% - 38%). Relaxation rates in the NAWM were not significantly changed between the 1st and 7th courses. Regions of leukoencephalopathy exhibited a 13% elevation in T1 and a 37% elevation in T2 relaxation rates.

  2. Neonatal Hyperoxia Exposure Disrupts Axon-Oligodendrocyte Integrity in the Sub-Cortical White Matter

    PubMed Central

    Ritter, Jonathan; Schmitz, Thomas; Chew, Li-Jin; Bührer, Christoph; Möbius, Wiebke; Zonouzi, Marzieh; Gallo, Vittorio

    2013-01-01

    The pathological mechanisms underlying neurological deficits observed in individuals born pre-maturely are not completely understood. A common form of injury in the pre-term population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate white matter injury, there is an urgent need to understand the pathological mechanism(s) involved on a neurobiological, structural and functional level. Recent clinical data suggests that a percentage of pre-mature infants experience relative hyperoxia. Using a hyperoxic model of pre-mature brain injury, we have previously demonstrated that neonatal hyperoxia exposure in the mouse disrupts development of the white matter (WM) by delaying the maturation of the oligodendroglial lineage. In the present study, we address the question of how hyperoxia-induced alterations in WM development affect overall WM integrity and axonal function. We show that neonatal hyperoxia causes ultra-structural changes, including i) myelination abnormalities (reduced myelin thickness and abnormal extra myelin loops) and ii) axonopathy (altered neurofilament phosphorylation, paranodal defects and changes in node of Ranvier number and structure). This disruption of axon-oligodendrocyte integrity results in the lasting impairment of conduction properties in the adult WM. Understanding the pathology of pre-mature PWMI injury will allow for the development of interventional strategies to preserve WM integrity and function. PMID:23699510

  3. White matter microstructure in schizophrenia: effects of disorder, duration and medication

    PubMed Central

    Kanaan, Richard; Barker, Gareth; Brammer, Michael; Giampietro, Vincent; Shergill, Sukhwinder; Woolley, James; Picchioni, Marco; Toulopoulou, Timothea; McGuire, Philip

    2009-01-01

    Background Diffusion tensor magnetic resonance imaging studies in schizophrenia to date have been largely inconsistent. This may reflect variation in methodology, and the use of small samples with differing illness duration and medication exposure. Aims To determine the extent and location of white matter microstructural changes in schizophrenia, using optimised diffusion tensor imaging in a large patient sample, and to consider the effects of illness duration and medication exposure. Method Scans from 76 patients with schizophrenia and 76 matched controls were used to compare fractional anisotropy, a measure of white matter microstructural integrity, between the groups. Results We found widespread clusters of reduced fractional anisotropy in patients, affecting most major white matter tracts. These reductions did not correlate with illness duration, and there was no difference between age-matched chronically and briefly medicated patients. Conclusions The finding of widespread fractional anisotropy reductions in our larger sample of patients with schizophrenia may explain some of the inconsistent findings of previous, smaller studies. PMID:19252154

  4. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes.

    PubMed

    Back, Stephen A; Luo, Ning Ling; Mallinson, Rebecca A; O'Malley, Jean P; Wallen, Linda D; Frei, Balz; Morrow, Jason D; Petito, Carol K; Roberts, Charles T; Murdoch, Geoffrey H; Montine, Thomas J

    2005-07-01

    Periventricular white matter injury (PWMI) is the leading cause of cerebral palsy and chronic neurological disability in survivors of prematurity. Despite the large number of affected children, the pathogenetic mechanisms related to PWMI remain controversial. Through studies of 33 human autopsy brains, we determined that early PWMI was related to oxidative damage that particularly targeted the oligodendrocyte lineage, whereas other neuronal and glial cell types were markedly more resistant. F(2)-isoprostanes, an arachidinate metabolite/lipid peroxidation marker of oxidative damage, were significantly increased in early PWMI lesions but not in cerebral cortex. That deleterious lipid peroxidation accompanied early PWMI was supported by similar increases in F(2)-isoprostanes levels in the cerebral cortex from term infants with hypoxic-ischemic cortical injury. Detection of F(4)-neuroprostanes, a neuronal-specific oxidative damage marker, confirmed that neuroaxonal elements were resistant to injury in cerebral cortex and white matter. Significant protein nitration was not detected in PWMI lesions by 3-nitrotyrosine staining. Significant cellular degeneration was confirmed in early PWMI lesions by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and a marked depletion of oligodendrocyte progenitors of 71 +/- 8%. Hence, the predilection of preterm infants for PWMI is related to selective lipid peroxidation-mediated injury of cerebral white matter and targeted death of oligodendrocyte progenitors.

  5. The axon-glia unit in white matter stroke: mechanisms of damage and recovery.

    PubMed

    Rosenzweig, Shira; Carmichael, S Thomas

    2015-10-14

    Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.

  6. White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder.

    PubMed

    Chang, Yi-Shin; Gratiot, Mathilde; Owen, Julia P; Brandes-Aitken, Anne; Desai, Shivani S; Hill, Susanna S; Arnett, Anne B; Harris, Julia; Marco, Elysa J; Mukherjee, Pratik

    2015-01-01

    Sensory processing disorders (SPDs) affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI) study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA), correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8-12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children (TDC), along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity - not just in children with SPD, but also

  7. White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder

    PubMed Central

    Chang, Yi-Shin; Gratiot, Mathilde; Owen, Julia P.; Brandes-Aitken, Anne; Desai, Shivani S.; Hill, Susanna S.; Arnett, Anne B.; Harris, Julia; Marco, Elysa J.; Mukherjee, Pratik

    2016-01-01

    Sensory processing disorders (SPDs) affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI) study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA), correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8–12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children (TDC), along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity – not just in children with SPD, but

  8. Oligodendroglial Alterations and the Role of Microglia in White Matter Injury: Relevance to Schizophrenia

    PubMed Central

    Chew, Li-Jin; Fusar-Poli, Paolo; Schmitz, Thomas

    2015-01-01

    Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex

  9. White matter tract and glial-associated changes in 5-hydroxymethylcytosine following chronic cerebral hypoperfusion.

    PubMed

    Tsenkina, Yanina; Ruzov, Alexey; Gliddon, Catherine; Horsburgh, Karen; De Sousa, Paul A

    2014-12-10

    White matter abnormalities due to age-related cerebrovascular alterations is a common pathological hallmark associated with functional impairment in the elderly which has been modeled in chronically hypoperfused mice. 5-Methylcytosine (5mC) and its oxidized derivative 5-hydroxymethylcytosine (5hmC) are DNA modifications that have been recently linked with age-related neurodegeneration and cerebrovascular pathology. Here we conducted a pilot investigation of whether chronic cerebral hypoperfusion might affect genomic distribution of these modifications and/ or a Ten-Eleven Translocation protein 2 (TET2) which catalyses hydroxymethylation in white and grey matter regions of this animal model. Immunohistochemical evaluation of sham and chronically hypoperfused mice a month after surgery revealed significant (p<0.05) increases in the proportion of 5hmC positive cells, Iba1 positive inflammatory microglia, and NG2 positive oligodendroglial progenitors in the hypoperfused corpus callosum. In the same white matter tract there was an absence of hypoperfusion-induced alterations in the proportion of 5mC, TET2 positive cells and CC1 positive mature oligodrendrocytes. Correlation analysis across animals within both treatment groups demonstrated a significant association of the elevated 5hmC levels with increases in the proportion of inflammatory microglia only (p=0.01) in the corpus callosum. In vitro studies revealed that 5hmC is lost during oligodendroglial maturation but not microglial activation. Additionally, TET1, TET2, and TET3 protein levels showed dynamic alterations during oligodendroglial development and following oxidative stress in vitro. Our study suggests that 5hmC exhibits white matter tract and cell type specific dynamics following chronic cerebral hypoperfusion in mice.

  10. Abnormal gray matter and white matter volume in 'Internet gaming addicts'.

    PubMed

    Lin, Xiao; Dong, Guangheng; Wang, Qiandong; Du, Xiaoxia

    2015-01-01

    Internet gaming addiction (IGA) is usually defined as the inability of an individual to control his/her use of the Internet with serious negative consequences. It is becoming a prevalent mental health concern around the world. To understand whether Internet gaming addiction contributes to cerebral structural changes, the present study examined the brain gray matter density and white matter density changes in participants suffering IGA using voxel-based morphometric analysis. Compared with the healthy controls (N=36, 22.2 ± 3.13 years), IGA participants (N=35, 22.28 ± 2.54 years) showed significant lower gray matter density in the bilateral inferior frontal gyrus, left cingulate gyrus, insula, right precuneus, and right hippocampus (all p<0.05). IGA participants also showed significant lower white matter density in the inferior frontal gyrus, insula, amygdala, and anterior cingulate than healthy controls (all p<0.05). Previous studies suggest that these brain regions are involved in decision-making, behavioral inhibition and emotional regulation. Current findings might provide insight in understanding the biological underpinnings of IGA.

  11. Connectivity-driven white matter scaling and folding in primate cerebral cortex

    PubMed Central

    Herculano-Houzel, Suzana; Mota, Bruno; Kaas, Jon H.

    2010-01-01

    Larger brains have an increasingly folded cerebral cortex whose white matter scales up faster than the gray matter. Here we analyze the cellular composition of the subcortical white matter in 11 primate species, including humans, and one Scandentia, and show that the mass of the white matter scales linearly across species with its number of nonneuronal cells, which is expected to be proportional to the total length of myelinated axons in the white matter. This result implies that the average axonal cross-section area in the white matter, a, does not scale significantly with the number of neurons in the gray matter, N. The surface area of the white matter increases with N0.87, not N1.0. Because this surface can be defined as the product of N, a, and the fraction n of cortical neurons connected through the white matter, we deduce that connectivity decreases in larger cerebral cortices as a slowly diminishing fraction of neurons, which varies with N−0.16, sends myelinated axons into the white matter. Decreased connectivity is compatible with previous suggestions that neurons in the cerebral cortex are connected as a small-world network and should slow down the increase in global conduction delay in cortices with larger numbers of neurons. Further, a simple model shows that connectivity and cortical folding are directly related across species. We offer a white matter-based mechanism to account for increased cortical folding across species, which we propose to be driven by connectivity-related tension in the white matter, pulling down on the gray matter. PMID:20956290

  12. A non-invasive method to relate the timing of neural activity to white matter microstructural integrity.

    PubMed

    Stufflebeam, Steven M; Witzel, Thomas; Mikulski, Szymon; Hämäläinen, Matti S; Temereanca, Simona; Barton, Jason J S; Tuch, David S; Manoach, Dara S

    2008-08-15

    The neurophysiological basis of variability in the latency of evoked neural responses has been of interest for decades. We describe a method to identify white matter pathways that may contribute to inter-individual variability in the timing of neural activity. We investigated the relation of the latency of peak visual responses in occipital cortex as measured by magnetoencephalography (MEG) to fractional anisotropy (FA) in the entire brain as measured with diffusion tensor imaging (DTI) in eight healthy young adults. This method makes no assumptions about the anatomy of white matter connections. Visual responses were evoked during a saccadic paradigm and were time-locked to arrival at a saccadic goal. The latency of the peak visual response was inversely related to FA in bilateral parietal and right lateral frontal white matter adjacent to cortical regions that modulate early visual responses. These relations suggest that biophysical properties of white matter affect the timing of early visual responses. This preliminary report demonstrates a non-invasive, unbiased method to relate the timing information from evoked-response experiments to the biophysical properties of white matter measured with DTI.

  13. A non-invasive method to relate the timing of neural activity to white matter microstructural integrity

    PubMed Central

    Stufflebeam, Steven M.; Witzel, Thomas; Mikulski, Szymon; Hämäläinen, Matti S.; Temereanca, Simona; Barton, Jason J. S.; Tuch, David S.; Manoach, Dara S.

    2008-01-01

    The neurophysiological basis of variability in the latency of evoked neural responses has been of interest for decades. We describe a method to identify white matter pathways that may contribute to inter-individual variability in the timing of neural activity. We investigated the relation of the latency of peak visual responses in occipital cortex as measured by magnetoencephalography (MEG) to fractional anisotropy (FA) in the entire brain as measured with diffusion tensor imaging (DTI) in eight healthy young adults. This method makes no assumptions about the anatomy of white matter connections. Visual responses were evoked during a saccadic paradigm and were time-locked to arrival at a saccadic goal. The latency of the peak visual response was inversely related to FA in bilateral parietal and right lateral frontal white matter adjacent to cortical regions that modulate early visual responses. These relations suggest that biophysical properties of white matter affect the timing of early visual responses. This preliminary report demonstrates a non-invasive, unbiased method to relate the timing information from evoked-response experiments to the biophysical properties of white matter measured with DTI. PMID:18565766

  14. Enriched environment increases myelinated fiber volume and length in brain white matter of 18-month female rats.

    PubMed

    Yang, Shu; Lu, Wei; Zhou, De-shan; Tang, Yong

    2015-04-23

    Cognition and memory decline with normal aging, which could be partly attributed to the degeneration of brain white matter. Previous studies demonstrated that exposure to an enriched environment (EE) could protect cognition and memory from aging. However, if or how EE might affect the brain white matter has not been thoroughly investigated. In the current study, 24 middle-aged (14-month-old) female Sprague -Dawley (SD) rats were randomly assigned to EE or standard environment (SE) for 4 months. At the end of the environment intervention, the Morris water maze tests were performed. Then, 5 rats were randomly selected from each group for stereological assessment of the brain white matter and its myelinated fibers. The results revealed that middle-aged rats living in EE displayed better spatial learning than SE controls. The white matter volume was 124.6 ± 7.8mm(3) in EE rats, which was significantly enlarged compared with 84.8 ± 3.4mm(3) in SE rats. Likewise, the myelinated fiber volume was markedly increased from 56.6 ± 1.7 mm(3) in SE rats to 87.2 ± 9.0mm(3) in EE rats; so was the myelinated fiber length from 83.5 ± 6.6 km in SE rats to 119.0 ± 10.0 km in EE rats. Our data suggested that EE could protect brain white matter and its myelinated fibers of female rats at middle age.

  15. [Left hemiparesis as a sign of onset of vanishing white matter disease. Identification of a new mutation].

    PubMed

    Alías Hernández, I; Ramos Lizana, J; Aguirre Rodríguez, J; Aguilera López, P; Garzón Cabrera, M I; Entrala Bernal, C

    2013-07-01

    Vanishing white matter disease is a genetic disorder of autosomal recessive inheritance that affects the brain white matter There are various phenotypes that differ in severity and age at onset. Usually, it is characterized by ataxia, spasticity and a progressive motor decline with exacerbations triggered by fever and mild head traumas. The patient was a 2.5 year-old girl who developed unstable gait, left hemiparesis and increased tendon reflexes following a mild head trauma. Brain MRI showed diffuse and symmetric white matter abnormalities with decreased signal on T1 and increased signal on T2 and FLAIR sequences. Vanishing White Matter disease was suspected. The diagnosis was confirmed by genetic molecular testing that showed 2 mutations in EIF2B5 gene. Both mutations were considered pathogenic, although one had not been previously described. Hemiparesis must be included among clinical features of vanishing white matter disease. Early diagnosis can help to avoid infections and traumas and allows families to be genetically counselled. Our case contributes with the identification of a new mutation in EIF2B5 gene (p.Gly132Ala in position 395), not previously described. Its characteristics suggest a high probability of being pathogenic. We believe that it should be considered among the complex EIF2B mutations responsible for the disease.

  16. Roles of white matter in central nervous system pathophysiologies

    PubMed Central

    Matute, Carlos; Ransom, Bruce R

    2012-01-01

    The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement. PMID:22313331

  17. Periventricular White Matter Is a Nexus for Network Connectivity in the Human Brain.

    PubMed

    Owen, Julia P; Wang, Maxwell B; Mukherjee, Pratik

    2016-09-01

    The edges of the structural connectome traverse the white matter to connect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Characterization of the geometry of the structural connectome could provide an improved understanding of the relative importance of various white matter regions to the network architecture of the human brain in normal development and aging, as well as in white matter diseases with regionally specific patterns of vulnerability. Edge density imaging (EDI) has previously been used to show that the posterior periventricular white matter contains a disproportionately large number of connectome edges. In this study, the regional distribution of connectome edges within cerebral white matter, including the importance of posterior periventricular white matter, is further investigated and demonstrated to be invariant to different gray matter parcellations and different diffusion MRI acquisition and postprocessing/tractography methods. An examination of the highest k-core edges and a virtual lesion analysis illuminate hemispheric asymmetries (left>right) in the embedding of connectome edges. Therefore, EDI reveals specific areas of vulnerability within the white matter connectivity of the human brain, especially in the periventricular white matter. The idea of a periventricular nexus fits with the known neurobiology of brain development and may result from simple geometrical considerations in minimizing wiring cost in structural brain connectivity.

  18. Hemodynamic and Metabolic Correlates of Perinatal White Matter Injury Severity

    PubMed Central

    Riddle, Art; Maire, Jennifer; Cai, Victor; Nguyen, Thuan; Gong, Xi; Hansen, Kelly; Grafe, Marjorie R.; Hohimer, A. Roger; Back, Stephen A.

    2013-01-01

    Background and Purpose Although the spectrum of perinatal white matter injury (WMI) in preterm infants is shifting from cystic encephalomalacia to milder forms of WMI, the factors that contribute to this changing spectrum are unclear. We hypothesized that the variability in WMI quantified by immunohistochemical markers of inflammation could be correlated with the severity of impaired blood oxygen, glucose and lactate. Methods We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. Since there is small but measurable residual brain blood flow during occlusion, we sought to determine if the metabolic state of the residual arterial blood was associated with severity of WMI. Near the conclusion of hypoxia-ischemia, we recorded cephalic arterial blood pressure, blood oxygen, glucose and lactate levels. To define the spectrum of WMI, an ordinal WMI rating scale was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microgliosis derived from the entire white matter. Results A spectrum of WMI was observed that ranged from diffuse non-necrotic lesions to more severe injury that comprised discrete foci of microscopic or macroscopic necrosis. Residual arterial pressure, oxygen content and blood glucose displayed a significant inverse association with WMI and lactate concentrations were directly related. Elevated glucose levels were the most significantly associated with less severe WMI. Conclusions Our results suggest that under conditions of hypoxemia and severe cephalic hypotension, WMI severity measured using unbiased immunohistochemical measurements correlated with several physiologic parameters, including glucose, which may be a useful marker of fetal response to hypoxia or provide protection against energy failure and more severe WMI. PMID:24416093

  19. Detection of white matter lesions in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Riad, Medhat M.; Platel, Bram; de Leeuw, Frank-Erik; Karssemeijer, Nico

    2013-02-01

    White matter lesions (WML) are diffuse white matter abnormalities commonly found in older subjects and are important indicators of stroke, multiple sclerosis, dementia and other disorders. We present an automated WML detection method and evaluate it on a dataset of small vessel disease (SVD) patients. In early SVD, small WMLs are expected to be of importance for the prediction of disease progression. Commonly used WML segmentation methods tend to ignore small WMLs and are mostly validated on the basis of total lesion load or a Dice coefficient for all detected WMLs. Therefore, in this paper, we present a method that is designed to detect individual lesions, large or small, and we validate the detection performance of our system with FROC (free-response ROC) analysis. For the automated detection, we use supervised classification making use of multimodal voxel based features from different magnetic resonance imaging (MRI) sequences, including intensities, tissue probabilities, voxel locations and distances, neighborhood textures and others. After preprocessing, including co-registration, brain extraction, bias correction, intensity normalization, and nonlinear registration, ventricle segmentation is performed and features are calculated for each brain voxel. A gentle-boost classifier is trained using these features from 50 manually annotated subjects to give each voxel a probability of being a lesion voxel. We perform ROC analysis to illustrate the benefits of using additional features to the commonly used voxel intensities; significantly increasing the area under the curve (Az) from 0.81 to 0.96 (p<0.05). We perform the FROC analysis by testing our classifier on 50 previously unseen subjects and compare the results with manual annotations performed by two experts. Using the first annotator results as our reference, the second annotator performs at a sensitivity of 0.90 with an average of 41 false positives per subject while our automated method reached the same

  20. Superficial white matter: effects of age, sex, and hemisphere.

    PubMed

    Phillips, Owen R; Clark, Kristi A; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H; Woods, Roger P; Mazziotta, John C; Toga, Arthur W; Narr, Katherine L

    2013-01-01

    Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.

  1. Assessing prenatal white matter connectivity in commissural agenesis.

    PubMed

    Kasprian, Gregor; Brugger, Peter C; Schöpf, Veronika; Mitter, Christian; Weber, Michael; Hainfellner, Johannes A; Prayer, Daniela

    2013-01-01

    Complete or partial agenesis of the corpus callosum are rather common developmental abnormalities, resulting in a wide spectrum of clinical neurodevelopmental deficits. Currently, a significant number of these cases are detected by prenatal sonography during second trimester screening examinations. However, major uncertainties about a detailed morphological diagnosis and the clinical significance do not allow accurate prenatal counselling. Here, we were able to demonstrate the 3D connectivity of aberrant commissural tracts in 16 cases with complete and four cases with partial callosal agenesis using the foetal magnetic resonance imaging techniques of diffusion tensor imaging and tractography in utero and in vivo between gestational weeks 20 and 37. The 'misguided' pre-myelinated callosal axons that represent the bundle of Probst were non-invasively visualized, and they showed a degree of structural integrity similar to that of the callosal pathways of age-matched foetuses without cerebral pathologies. In two foetuses, we were able to prove, by post-mortem histology, that diffusion tensor imaging allows the depiction of the bundle of Probst, even during early stages of pre-myelination at 20 and 22 gestational weeks. In cases with partial callosal agenesis, an aberrant sigmoid-shaped bundle was prenatally depicted, confirming the findings of heterotopic interhemispheric connectivity in adults with partial callosal agenesis. In addition to the corpus callosum, other white matter pathways were also involved, including somatosensory and motor pathways that showed significantly higher fractional anisotropy values in cases with callosal agenesis compared with control subjects. A detailed prenatal assessment of abnormal white matter connectivity in cases of midline anomalies will help to explain and understand the clinical heterogeneity in these cases, taking future foetal neurological counselling strategies to a new level.

  2. Superficial White Matter: Effects of Age, Sex, and Hemisphere

    PubMed Central

    Phillips, Owen R.; Clark, Kristi A.; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H.; Woods, Roger P.; Mazziotta, John C.; Toga, Arthur W.

    2013-01-01

    Abstract Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18–74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies. PMID:23461767

  3. Pharmacological Effects of Erythropoietin and its Derivative Carbamyl erythropoietin in Cerebral White Matter Injury

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    with translational potential for PVL, which is the primary injury underlying cerebral palsy. After confirming the neuroprotective effects of EPO and CEPO on PVL mice, we continued to study the mechanisms relating to their functions. As we learned from our lab's previous study, microglia play an important role in the pathogenesis of PVL, linking multiple effectors downstream of hypoxia-ischemia and inflammation. We found that EPO and CEPO inhibit microglial activation and reduced the severity of injury. Furthermore, we found that EPO and CEPO decreased the activity of poly (ADP-ribose) polymerase-1 (PARP-1) in activated microglia. PARP-1 activity increases in response to many insults, such as infection, ischemia and toxicity. Therefore, we hypothesized that EPO and CEPO decrease microglial activation by inhibiting PARP-1 activity, and thus leading to protection against inflammation and cell death. Besides pharmacological studies of EPO and CEPO on PVL, we also investigated other endogenous factors that may affect neonatal white matter injury. Heat shock proteins (HSPs) are important chaperones that facilitate appropriate protein folding and modification. HSP60, a chaperonin located in the mitochondria, is one of these important molecules that promote appropriate protein folding. HSP60 expression levels increased significantly in the brains of PVL mice compared with control animals. In microglial cell culture, we found that after LPS treatment, HSP60 expression levels increased both inside microglial cells and in the extracellular medium. In addition, we noted enhanced HSP60 immunoreactivity in the brains of PVL mice, which localized inside activated microglial cells and extracellularly. The rise in HSP60 activity after hypoxia-ischemia and LPS administration implies that it potentially functions as one of the triggers of microglial activation and central nervous system inflammation.

  4. Gray- and white-matter anatomy of absolute pitch possessors.

    PubMed

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability.

  5. Pathological differences between white and grey matter multiple sclerosis lesions.

    PubMed

    Prins, Marloes; Schul, Emma; Geurts, Jeroen; van der Valk, Paul; Drukarch, Benjamin; van Dam, Anne-Marie

    2015-09-01

    Multiple sclerosis (MS) is a debilitating disease characterized by demyelination of the central nervous system (CNS), resulting in widespread formation of white matter lesions (WMLs) and grey matter lesions (GMLs). WMLs are pathologically characterized by the presence of immune cells that infiltrate the CNS, whereas these immune cells are barely present in GMLs. This striking pathological difference between WMLs and GMLs raises questions about the underlying mechanism. It is known that infiltrating leukocytes contribute to the generation of WMLs; however, since GMLs show a paucity of infiltrating immune cells, their importance in GML formation remains to be determined. Here, we review pathological characteristics of WMLs and GMLs, and suggest some possible explanations for the observed pathological differences. In our view, cellular and molecular characteristics of WM and GM, and local differences within WMLs and GMLs (in particular, in glial cell populations and the molecules they express), determine the pathway to demyelination. Further understanding of GML pathogenesis, considered to contribute to chronic MS, may have a direct impact on the development of novel therapeutic targets to counteract this progressive neurological disorder.

  6. White matter plasticity in the cerebellum of elite basketball athletes

    PubMed Central

    Park, In Sung; Lee, Ye Na; Kwon, Soonwook; Lee, Nam Joon

    2015-01-01

    Recent neuroimaging studies indicate that learning a novel motor skill induces plastic changes in the brain structures of both gray matter (GM) and white matter (WM) that are associated with a specific practice. We previously reported an increased volume of vermian lobules VI-VII (declive, folium, and tuber) in elite basketball athletes who require coordination for dribbling and shooting a ball, which awakened the central role of the cerebellum in motor coordination. However, the precise factor contributing to the increased volume was not determined. In the present study, we compared the volumes of the GM and WM in the sub-regions of the cerebellar vermis based on manual voxel analysis with the ImageJ program. We found significantly larger WM volumes of vermian lobules VI-VII (declive, folium, and tuber) in elite basketball athletes in response to long-term intensive motor learning. We suggest that the larger WM volumes of this region in elite basketball athletes represent a motor learning-induced plastic change, and that the WM of this region likely plays a critical role in coordination. This finding will contribute to gaining a deeper understanding of motor learning-evoked WM plasticity. PMID:26770877

  7. Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29.

    PubMed

    Chiang, Ming-Chang; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Hickie, Ian; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2011-02-01

    White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12-29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 80% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity.

  8. Understanding Neuronal Architecture in Obesity through Analysis of White Matter Connection Strength.

    PubMed

    Riederer, Justin W; Shott, Megan E; Deguzman, Marisa; Pryor, Tamara L; Frank, Guido K W

    2016-01-01

    Despite the prevalence of obesity, our understanding of its neurobiological underpinnings is insufficient. Diffusion weighted imaging and calculation of white matter connection strength are methods to describe the architecture of anatomical white matter tracts. This study is aimed to characterize white matter architecture within taste-reward circuitry in a population of obese individuals. Obese (n = 18, age = 28.7 ± 8.3 years) and healthy control (n = 24, age = 27.4 ± 6.3 years) women underwent diffusion weighted imaging. Using probabilistic fiber tractography (FSL PROBTRACKX2 toolbox) we calculated connection strength within 138 anatomical white matter tracts. Obese women (OB) displayed lower and greater connectivity within taste-reward circuitry compared to controls (Wilks' λ < 0.001; p < 0.001). Connectivity was lower in white matter tracts connecting insula, amygdala, prefrontal cortex (PFC), orbitofrontal cortex (OFC) and striatum. Connectivity was greater between the amygdala and anterior cingulate cortex (ACC). This study indicates that lower white matter connectivity within white matter tracts of insula-fronto-striatal taste-reward circuitry are associated with obesity as well as greater connectivity within white matter tracts connecting the amygdala and ACC. The specificity of regions suggests sensory integration and reward processing are key associations that are altered in and might contribute to obesity.

  9. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  10. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders.

    PubMed

    Cecil, Kim M; Kos, Radmila Savcic

    2006-08-01

    This review provides the reader with an overview of the magnetic resonance spectroscopy technique and the clinical, pathological, imaging, and metabolic features for select white matter disorders of interest. With this composite summary, the reader should find it easier to implement and interpret spectroscopy in the clinical setting for the diagnosis and monitoring of patients with white matter disorders.

  11. White Matter Maturation Supports the Development of Reasoning Ability through Its Influence on Processing Speed

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Whitaker, Kirstie J.; Steele, Joel S.; Green, Chloe T.; Wendelken, Carter; Bunge, Silvia A.

    2013-01-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes…

  12. Understanding Neuronal Architecture in Obesity through Analysis of White Matter Connection Strength

    PubMed Central

    Riederer, Justin W.; Shott, Megan E.; Deguzman, Marisa; Pryor, Tamara L.; Frank, Guido K. W.

    2016-01-01

    Despite the prevalence of obesity, our understanding of its neurobiological underpinnings is insufficient. Diffusion weighted imaging and calculation of white matter connection strength are methods to describe the architecture of anatomical white matter tracts. This study is aimed to characterize white matter architecture within taste-reward circuitry in a population of obese individuals. Obese (n = 18, age = 28.7 ± 8.3 years) and healthy control (n = 24, age = 27.4 ± 6.3 years) women underwent diffusion weighted imaging. Using probabilistic fiber tractography (FSL PROBTRACKX2 toolbox) we calculated connection strength within 138 anatomical white matter tracts. Obese women (OB) displayed lower and greater connectivity within taste-reward circuitry compared to controls (Wilks’ λ < 0.001; p < 0.001). Connectivity was lower in white matter tracts connecting insula, amygdala, prefrontal cortex (PFC), orbitofrontal cortex (OFC) and striatum. Connectivity was greater between the amygdala and anterior cingulate cortex (ACC). This study indicates that lower white matter connectivity within white matter tracts of insula-fronto-striatal taste-reward circuitry are associated with obesity as well as greater connectivity within white matter tracts connecting the amygdala and ACC. The specificity of regions suggests sensory integration and reward processing are key associations that are altered in and might contribute to obesity. PMID:27375463

  13. Perinatal White Matter Injury: The Changing Spectrum of Pathology and Emerging Insights into Pathogenetic Mechanisms

    ERIC Educational Resources Information Center

    Back, Stephen A.

    2006-01-01

    Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal…

  14. Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel

    2011-01-01

    Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…

  15. White matter maturation in visual and motor areas predicts the latency of visual activation in children.

    PubMed

    Dockstader, Colleen; Gaetz, William; Rockel, Conrad; Mabbott, Donald J

    2012-01-01

    In humans, white matter maturation is important for the improvement of cognitive function and performance with age. Across studies the variables of white matter maturity and age are highly correlated; however, the unique contributions of white matter to information processing speed remain relatively unknown. We investigated the relations between the speed of the visually-evoked P100m response and the biophysical properties of white matter in 11 healthy children performing a simple, visually-cued finger movement. We found that: (1) the latency of the early, visually-evoked response was related to the integrity of white matter in both visual and motor association areas and (2) white matter maturation in these areas accounted for the variations in visual processing speed, independent of age. Our study is a novel investigation of spatial-temporal dynamics in the developing brain and provides evidence that white matter maturation accounts for age-related decreases in the speed of visual response. Developmental models of cortical specialization should incorporate the unique role of white matter maturation in mediating changes in performance during tasks involving visual processing.

  16. Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

    2011-01-01

    Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

  17. Disrupted white matter in language and motor tracts in developmental stuttering.

    PubMed

    Connally, Emily L; Ward, David; Howell, Peter; Watkins, Kate E

    2014-04-01

    White matter tracts connecting areas involved in speech and motor control were examined using diffusion-tensor imaging in a sample of people who stutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend our knowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotor cortex, cerebral peduncles and posterior corpus callosum in people who stutter relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within the left corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people who stutter in the three pairs of cerebellar peduncles that carry the afferent and efferent fibers of the cerebellum. Within the group of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the left angular gyrus, but the greater the white matter connectivity in the left corticobulbar tract. Also, in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.

  18. White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism

    ERIC Educational Resources Information Center

    Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria

    2010-01-01

    The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…

  19. Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance

    ERIC Educational Resources Information Center

    Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.

    2009-01-01

    Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white…

  20. Depressive Symptoms in Adolescents: Associations with White Matter Volume and Marijuana Use

    ERIC Educational Resources Information Center

    Medina, Krista Lisdahl; Nagel, Bonnie J.; Park, Ann; McQueeny, Tim; Tapert, Susan F.

    2007-01-01

    Background: Depressed mood has been associated with decreased white matter and reduced hippocampal volumes. However, the relationship between brain structure and mood may be unique among adolescents who use marijuana heavily. The goal of this study was to examine the relationship between white matter and hippocampal volumes and depressive symptoms…

  1. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    PubMed

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.

  2. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    PubMed Central

    Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709

  3. The effect of lifelong bilingualism on regional grey and white matter volume.

    PubMed

    Olsen, Rosanna K; Pangelinan, Melissa M; Bogulski, Cari; Chakravarty, M Mallar; Luk, Gigi; Grady, Cheryl L; Bialystok, Ellen

    2015-07-01

    Lifelong bilingualism is associated with the delayed diagnosis of dementia, suggesting bilingual experience is relevant to brain health in aging. While the effects of bilingualism on cognitive functions across the lifespan are well documented, less is known about the neural substrates underlying differential behaviour. It is clear that bilingualism affects brain regions that mediate language abilities and that these regions are at least partially overlapping with those that exhibit age-related decline. Moreover, the behavioural advantages observed in bilingualism are generally found in executive function performance, suggesting that the frontal lobes may also be sensitive to bilingualism, which exhibit volume reductions with age. The current study investigated structural differences in the brain of lifelong bilingual older adults (n=14, mean age=70.4) compared with older monolinguals (n=14, mean age=70.6). We employed two analytic approaches: 1) we examined global differences in grey and white matter volumes; and, 2) we examined local differences in volume and cortical thickness of specific regions of interest previously implicated in bilingual/monolingual comparisons (temporal pole) or in aging (entorhinal cortex and hippocampus). We expected bilinguals would exhibit greater volume of the frontal lobe and temporal lobe (grey and white matter), given the importance of these regions in executive and language functions, respectively. We further hypothesized that regions in the medial temporal lobe, which demonstrate early changes in aging and exhibit neural pathology in dementia, would be more preserved in the bilingual group. As predicted, bilinguals exhibit greater frontal lobe white matter compared with monolinguals. Moreover, increasing age was related to decreasing temporal pole cortical thickness in the monolingual group, but no such relationship was observed for bilinguals. Finally, Stroop task performance was positively correlated with frontal lobe white

  4. Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

    PubMed Central

    Madden, David J.; Bennett, Ilana J.; Song, Allen W.

    2009-01-01

    The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281

  5. Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning.

    PubMed

    Samanez-Larkin, Gregory R; Levens, Sara M; Perry, Lee M; Dougherty, Robert F; Knutson, Brian

    2012-04-11

    Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.

  6. Metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline

    PubMed Central

    Wang, Maggie; Norman, Jennifer E; Srinivasan, Vivek J; Rutledge, John C

    2016-01-01

    White Matter Disease is increasingly being recognized as an important cause of cognitive decline and dementia. Various investigations have linked chronic diet-related conditions to the development of white matter lesions, which appear as white matter hyperintensities on T2-weighted magnetic resonance imaging (MRI) scans of the brain. Thus, it can be postulated that the metabolic, inflammatory, and microvascular changes accompanying a western diet, hyperlipidemia, hypertension, and diabetes mellitus type II (DMII) are potential mediators in the development and progression of white matter disease, which in turn contributes to the development and progression of cognitive decline. This review will examine evidence for potential metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline. Specifically, we will focus on the effects of altered insulin signaling in diabetes, obesity-induced oxidative stress, neuroinflammation, arterial stiffness due to hypertension, ischemia secondary to cerebral small vessel disease, and blood brain barrier disturbances. PMID:28078193

  7. Brain white matter plasticity and functional reorganization underlying the central pathogenesis of trigeminal neuralgia

    PubMed Central

    Tian, Tian; Guo, Linying; Xu, Jing; Zhang, Shun; Shi, Jingjing; Liu, Chengxia; Qin, Yuanyuan; Zhu, Wenzhen

    2016-01-01

    Peripheral nerve damage does not fully explain the pathogenesis of trigeminal neuralgia (TN). Central nervous system changes can follow trigeminal nerve dysfunction. We hypothesized that brain white matter and functional connectivity changes in TN patients were involved in pain perception, modulation, the cognitive-affective system, and motor function; moreover, changes in functional reorganization were correlated with white matter alterations. Twenty left TN patients and twenty-two healthy controls were studied. Diffusion kurtosis imaging was analyzed to extract diffusion and kurtosis parameters, and functional connectivity density (FCD) mapping was used to explore the functional reorganization in the brain. In the patient group, we found lower axial kurtosis and higher axial diffusivity in tracts participated in sensory, cognitive-affective, and modulatory aspects of pain, such as the corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, cingulated gyrus, forceps major and uncinate fasciculus. Patients exhibited complex FCD reorganization of hippocampus, striatum, thalamus, precentral gyrus, precuneus, prefrontal cortex and inferior parietal lobule in multiple modulatory networks that played crucial roles in pain perception, modulation, cognitive-affective system, and motor function. Further, the correlated structural-functional changes may be responsible for the persistence of long-term recurrent pain and sensory-related dysfunction in TN. PMID:27779254

  8. An advanced white matter tract analysis in frontotemporal dementia and early-onset Alzheimer's disease.

    PubMed

    Daianu, Madelaine; Mendez, Mario F; Baboyan, Vatche G; Jin, Yan; Melrose, Rebecca J; Jimenez, Elvira E; Thompson, Paul M

    2016-12-01

    Cortical and subcortical nuclei degenerate in the dementias, but less is known about changes in the white matter tracts that connect them. To better understand white matter changes in behavioral variant frontotemporal dementia (bvFTD) and early-onset Alzheimer's disease (EOAD), we used a novel approach to extract full 3D profiles of fiber bundles from diffusion-weighted MRI (DWI) and map white matter abnormalities onto detailed models of each pathway. The result is a spatially complex picture of tract-by-tract microstructural changes. Our atlas of tracts for each disease consists of 21 anatomically clustered and recognizable white matter tracts generated from whole-brain tractography in 20 patients with bvFTD, 23 with age-matched EOAD, and 33 healthy elderly controls. To analyze the landscape of white matter abnormalities, we used a point-wise tract correspondence method along the 3D profiles of the tracts and quantified the pathway disruptions using common diffusion metrics - fractional anisotropy, mean, radial, and axial diffusivity. We tested the hypothesis that bvFTD and EOAD are associated with preferential degeneration in specific neural networks. We mapped axonal tract damage that was best detected with mean and radial diffusivity metrics, supporting our network hypothesis, highly statistically significant and more sensitive than widely studied fractional anisotropy reductions. From white matter diffusivity, we identified abnormalities in bvFTD in all 21 tracts of interest but especially in the bilateral uncinate fasciculus, frontal callosum, anterior thalamic radiations, cingulum bundles and left superior longitudinal fasciculus. This network of white matter alterations extends beyond the most commonly studied tracts, showing greater white matter abnormalities in bvFTD versus controls and EOAD patients. In EOAD, network alterations involved more posterior white matter - the parietal sector of the corpus callosum and parahipoccampal cingulum bilaterally

  9. White matter changes in chronic alcoholic liver disease: Hypothesized association and putative biochemical mechanisms.

    PubMed

    Hathout, Leith; Huang, Jimmy; Zamani, Amir; Morioka, Craig; El-Saden, Suzie

    2015-12-01

    Advanced liver disease has long been associated with cerebral abnormalities. These abnormalities, termed acquired hepatocerebral degeneration, are typically visualized as T1 weighted hyperintensity on MRI in the deep gray matter of the basal ganglia. Recent reports, however, have demonstrated that a subset of patients with chronic alcoholic liver disease may also develop white matter abnormalities. Thus far, the morphology of these changes is not well characterized. Previous studies have described these changes as patchy, sporadic white matter abnormalities but have not posited localization of these changes to any particular white matter tracts. This paper hypothesizes that the white matter findings associated with advanced alcoholic liver disease localize to the corticocerebellar tracts. As an initial investigation of this hypothesis, 78 patients with a diagnosis of liver cirrhosis and an MRI showing clearly abnormal T1 weighted hyperintensity in the bilateral globus pallidus, characteristic of chronic liver disease, were examined for white matter signal abnormalities in the corticocerebellar tracts using FLAIR and T2 weighted images. The corticocerebellar tracts were subdivided into two regions: periventricular white matter (consisting of the sum of the centrum-semiovale and corona radiata), and lower white matter (consisting of the corona radiata, internal capsules, middle cerebral peduncles, middle cerebellar peduncles and cerebellum). As compared to matched controls, significantly greater signal abnormalities in both the periventricular white matter and lower white matter regions of the corticocerebellar tracts were observed in patients with known liver cirrhosis and abnormal T1 W hyperintensity in the globi pallidi. This difference was most pronounced in the lower white matter region of the corticocerebellar tract, with statistical significance of p<0.0005. Furthermore, the pathophysiologic mechanism underlying these changes remains unknown. This paper

  10. Autism and sensory processing disorders: shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways.

    PubMed

    Chang, Yi-Shin; Owen, Julia P; Desai, Shivani S; Hill, Susanna S; Arnett, Anne B; Harris, Julia; Marco, Elysa J; Mukherjee, Pratik

    2014-01-01

    Over 90% of children with Autism Spectrum Disorders (ASD) demonstrate atypical sensory behaviors. In fact, hyper- or hyporeactivity to sensory input or unusual interest in sensory aspects of the environment is now included in the DSM-5 diagnostic criteria. However, there are children with sensory processing differences who do not meet an ASD diagnosis but do show atypical sensory behaviors to the same or greater degree as ASD children. We previously demonstrated that children with Sensory Processing Disorders (SPD) have impaired white matter microstructure, and that this white matter microstructural pathology correlates with atypical sensory behavior. In this study, we use diffusion tensor imaging (DTI) fiber tractography to evaluate the structural connectivity of specific white matter tracts in boys with ASD (n = 15) and boys with SPD (n = 16), relative to typically developing children (n = 23). We define white matter tracts using probabilistic streamline tractography and assess the strength of tract connectivity using mean fractional anisotropy. Both the SPD and ASD cohorts demonstrate decreased connectivity relative to controls in parieto-occipital tracts involved in sensory perception and multisensory integration. However, the ASD group alone shows impaired connectivity, relative to controls, in temporal tracts thought to subserve social-emotional processing. In addition to these group difference analyses, we take a dimensional approach to assessing the relationship between white matter connectivity and participant function. These correlational analyses reveal significant associations of white matter connectivity with auditory processing, working memory, social skills, and inattention across our three study groups. These findings help elucidate the roles of specific neural circuits in neurodevelopmental disorders, and begin to explore the dimensional relationship between critical cognitive functions and structural connectivity across affected and

  11. Progressive Volume Loss and White Matter Degeneration in Cstb-Deficient Mice: A Diffusion Tensor and Longitudinal Volumetry MRI Study

    PubMed Central

    Manninen, Otto; Laitinen, Teemu; Lehtimäki, Kimmo K.; Tegelberg, Saara; Lehesjoki, Anna-Elina; Gröhn, Olli; Kopra, Outi

    2014-01-01

    Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 patients and in 6-month-old cystatin B–deficient mice, a mouse model for the EPM1 disease. In order to elucidate the spatiotemporal dynamics of the brain atrophy and white matter changes in EPM1, we conducted longitudinal in vivo magnetic resonance imaging and ex vivo diffusion tensor imaging accompanied with tract-based spatial statistics analysis to compare volumetric changes and fractional anisotropy in the brains of 1 to 6 months of age cystatin B–deficient and control mice. The results reveal progressive but non-uniform volume loss of the cystatin B–deficient mouse brains, indicating that different neuronal populations possess distinct sensitivity to the damage caused by cystatin B deficiency. The diffusion tensor imaging data reveal early and progressive white matter alterations in cystatin B–deficient mice affecting all major tracts. The results also indicate that the white matter damage in the cystatin B–deficient brain is most likely secondary to glial activation and neurodegenerative events rather than a primary result of CSTB deficiency. The data also show that diffusion tensor imaging combined with TBSS analysis provides a feasible approach not only to follow white matter damage in neurodegenerative mouse models but also to detect fractional anisotropy changes related to normal white matter maturation and reorganisation. PMID:24603771

  12. Impact of breast milk on intelligence quotient, brain size, and white matter development.

    PubMed

    Isaacs, Elizabeth B; Fischl, Bruce R; Quinn, Brian T; Chong, Wui K; Gadian, David G; Lucas, Alan

    2010-04-01

    Although observational findings linking breast milk to higher scores on cognitive tests may be confounded by factors associated with mothers' choice to breastfeed, it has been suggested that one or more constituents of breast milk facilitate cognitive development, particularly in preterms. Because cognitive scores are related to head size, we hypothesized that breast milk mediates cognitive effects by affecting brain growth. We used detailed data from a randomized feeding trial to calculate percentage of expressed maternal breast milk (%EBM) in the infant diet of 50 adolescents. MRI scans were obtained (mean age=15 y 9 mo), allowing volumes of total brain (TBV) and white and gray matter (WMV, GMV) to be calculated. In the total group, %EBM correlated significantly with verbal intelligence quotient (VIQ); in boys, with all IQ scores, TBV and WMV. VIQ was, in turn, correlated with WMV and, in boys only, additionally with TBV. No significant relationships were seen in girls or with gray matter. These data support the hypothesis that breast milk promotes brain development, particularly white matter growth. The selective effect in males accords with animal and human evidence regarding gender effects of early diet. Our data have important neurobiological and public health implications and identify areas for future mechanistic study.

  13. Comparison of the Relationship between Cerebral White Matter and Grey Matter in Normal Dogs and Dogs with Lateral Ventricular Enlargement.

    PubMed

    Schmidt, Martin J; Laubner, Steffi; Kolecka, Malgorzata; Failing, Klaus; Moritz, Andreas; Kramer, Martin; Ondreka, Nele

    2015-01-01

    Large cerebral ventricles are a frequent finding in brains of dogs with brachycephalic skull conformation, in comparison with mesaticephalic dogs. It remains unclear whether oversized ventricles represent a normal variant or a pathological condition in brachycephalic dogs. There is a distinct relationship between white matter and grey matter in the cerebrum of all eutherian mammals. The aim of this study was to determine if this physiological proportion between white matter and grey matter of the forebrain still exists in brachycephalic dogs with oversized ventricles. The relative cerebral grey matter, white matter and cerebrospinal fluid volume in dogs were determined based on magnetic-resonance-imaging datasets using graphical software. In an analysis of covariance (ANCOVA) using body mass as the covariate, the adjusted means of the brain tissue volumes of two groups of dogs were compared. Group 1 included 37 mesaticephalic dogs of different sizes with no apparent changes in brain morphology, and subjectively normal ventricle size. Group 2 included 35 brachycephalic dogs in which subjectively enlarged cerebral ventricles were noted as an incidental finding in their magnetic-resonance-imaging examination. Whereas no significant different adjusted means of the grey matter could be determined, the group of brachycephalic dogs had significantly larger adjusted means of lateral cerebral ventricles and significantly less adjusted means of relative white matter volume. This indicates that brachycephalic dogs with subjective ventriculomegaly have less white matter, as expected based on their body weight and cerebral volume. Our study suggests that ventriculomegaly in brachycephalic dogs is not a normal variant of ventricular volume. Based on the changes in the relative proportion of WM and CSF volume, and the unchanged GM proportions in dogs with ventriculomegaly, we rather suggest that distension of the lateral ventricles might be the underlying cause of pressure

  14. Are white matter abnormalities associated with “unexplained dizziness”?

    PubMed Central

    Ahmad, Hena; Cerchiai, Niccolò; Mancuso, Michelangelo; Casani, Augusto P.; Bronstein, Adolfo M.

    2015-01-01

    Introduction Although cerebral small vessel disease is a significant contributor to the development of imbalance and falls in the elderly, whether it causes dizziness is not known. Methods A retrospective case analysis was conducted for 122 dizzy patients referred to two neuro-otology tertiary centres in London and Pisa. Patients were divided into ‘explained’ causes of dizziness (e.g. benign positional vertigo, vestibular neuritis, orthostatic hypotension, cerebellar ataxias) and ‘unexplained’ dizziness. White matter hyperintensities (WMH) in MRI (T2 weighted and FLAIR sequences) were blindly rated according to the Fazekas scale. Results 122 patients; 58 (mean age = 72, SD = 7.95 years) in the ‘unexplained’ group and 64 (mean age = 72.01, SD = 8.28 years) in the ‘explained’ group were recruited. The overall frequency of lesions (Fazekas 1–3) significantly differed between groups (p = 0.011). The frequency of severe lesions (Fazekas 3) was significantly higher in the ‘unexplained’ group (22%) than in the ‘explained’ group (5%; p = 0.003). Conclusion Increased severity of WMH in cases of unexplained dizziness suggests that such abnormalities are likely contributory to the development of dizziness. WM lesions may induce dizziness either because patients perceive a degree of objective unsteadiness or by a disconnection syndrome involving vestibular or locomotor areas of the brain. PMID:26412160

  15. Lifelong bilingualism maintains white matter integrity in older adults.

    PubMed

    Luk, Gigi; Bialystok, Ellen; Craik, Fergus I M; Grady, Cheryl L

    2011-11-16

    Previous research has shown that bilingual speakers have higher levels of cognitive control than comparable monolinguals, especially at older ages. The present study investigates a possible neural correlate of this behavioral effect. Given that white matter (WM) integrity decreases with age in adulthood, we tested the hypothesis that bilingualism is associated with maintenance of WM in older people. Using diffusion tensor imaging, we found higher WM integrity in older people who were lifelong bilinguals than in monolinguals. This maintained integrity was measured by fractional anisotropy (FA) and was found in the corpus callosum extending to the superior and inferior longitudinal fasciculi. We also hypothesized that stronger WM connections would be associated with more widely distributed patterns of functional connectivity in bilinguals. We tested this by assessing the resting-state functional connectivity of frontal lobe regions adjacent to WM areas with group differences in FA. Bilinguals showed stronger anterior to posterior functional connectivity compared to monolinguals. These results are the first evidence that maintained WM integrity is related to lifelong naturally occurring experience; the resulting enhanced structural and functional connectivity may provide a neural basis for "brain reserve."

  16. White matter abnormalities in schizophrenia and schizotypal personality disorder.

    PubMed

    Lener, Marc S; Wong, Edmund; Tang, Cheuk Y; Byne, William; Goldstein, Kim E; Blair, Nicholas J; Haznedar, M Mehmet; New, Antonia S; Chemerinski, Eran; Chu, King-Wai; Rimsky, Liza S; Siever, Larry J; Koenigsberg, Harold W; Hazlett, Erin A

    2015-01-01

    Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.

  17. Social reward dependence and brain white matter microstructure.

    PubMed

    Bjørnebekk, Astrid; Westlye, Lars T; Fjell, Anders M; Grydeland, Håkon; Walhovd, Kristine B

    2012-11-01

    People show consistent differences in their cognitive and emotional responses to environmental cues, manifesting, for example, as variability in social reward processing and novelty-seeking behavior. However, the neurobiological foundation of human temperament and personality is poorly understood. A likely hypothesis is that personality traits rely on the integrity and function of distributed neurocircuitry. In this diffusion tensor imaging (DTI) study, this hypothesis was tested by examining the associations between reward dependence (RD) and novelty seeking (NS), as measured by Cloninger's Temperament and Character Inventory, and fractional anisotropy (FA) and mean diffusivity (MD) as DTI-derived indices of white matter (WM) microstructure across the brain. The results supported the hypothesis. RD was associated with WM architecture coherence as indicated by a negative correlation between RD and FA in frontally distributed areas including pathways connecting important constituents of reward-related neurocircuitry. The associations between RD and FA could not be explained by age, sex, alcohol consumption, or trait anxiety. In contrast, no effects were observed for NS. These findings support the theory that WM fiber tract properties modulate individual differences in social reward processing.

  18. Small white matter lesion detection in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram

    2015-03-01

    Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.

  19. Myelin vs axon abnormalities in white matter in bipolar disorder.

    PubMed

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-03-13

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ.

  20. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-01-01

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ. PMID:25409595

  1. Fronto-temporal white matter connectivity predicts reversal learning errors.

    PubMed

    Alm, Kylie H; Rolheiser, Tyler; Mohamed, Feroze B; Olson, Ingrid R

    2015-01-01

    Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus-outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex.

  2. Altered White Matter Architecture in BDNF Met Carriers

    PubMed Central

    Ziegler, Erik; Foret, Ariane; Mascetti, Laura; Muto, Vincenzo; Le Bourdiec-Shaffii, Anahita; Stender, Johan; Balteau, Evelyne; Dideberg, Vinciane; Bours, Vincent; Maquet, Pierre; Phillips, Christophe

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically silent axonal arbors. The Met allele of the BDNF gene is associated with a reduction in the neurotrophin's activity-dependent release. We used diffusion-weighted imaging to construct structural brain networks for 36 healthy subjects with known BDNF genotypes. Through permutation testing we discovered clear differences in connection strength between subjects carrying the Met allele and those homozygotic for the Val allele. We trained a Gaussian process classifier capable of identifying the subjects' allelic group with 86% accuracy and high predictive value. In Met carriers structural connectivity was greatly increased throughout the forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well as corticothalamic and corticospinal projections from the sensorimotor, premotor, and prefrontal portions of the internal capsule. Interhemispheric connectivity was also increased via the corpus callosum and anterior commissure, and extremely high connectivity values were found between inferior medial frontal polar regions via the anterior forceps. We propose that the decreased availability of BDNF leads to deficits in axonal maintenance in carriers of the Met allele, and that this produces mesoscale changes in white matter architecture. PMID:23935975

  3. White matter degeneration in schizophrenia: a comparative diffusion tensor analysis

    NASA Astrophysics Data System (ADS)

    Ingalhalikar, Madhura A.; Andreasen, Nancy C.; Kim, Jinsuh; Alexander, Andrew L.; Magnotta, Vincent A.

    2010-03-01

    Schizophrenia is a serious and disabling mental disorder. Diffusion tensor imaging (DTI) studies performed on schizophrenia have demonstrated white matter degeneration either due to loss of myelination or deterioration of fiber tracts although the areas where the changes occur are variable across studies. Most of the population based studies analyze the changes in schizophrenia using scalar indices computed from the diffusion tensor such as fractional anisotropy (FA) and relative anisotropy (RA). The scalar measures may not capture the complete information from the diffusion tensor. In this paper we have applied the RADTI method on a group of 9 controls and 9 patients with schizophrenia. The RADTI method converts the tensors to log-Euclidean space where a linear regression model is applied and hypothesis testing is performed between the control and patient groups. Results show that there is a significant difference in the anisotropy between patients and controls especially in the parts of forceps minor, superior corona radiata, anterior limb of internal capsule and genu of corpus callosum. To check if the tensor analysis gives a better idea of the changes in anisotropy, we compared the results with voxelwise FA analysis as well as voxelwise geodesic anisotropy (GA) analysis.

  4. White matter structures associated with loneliness in young adults.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-11-20

    Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18-27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy.

  5. White matter structures associated with loneliness in young adults

    PubMed Central

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18–27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy. PMID:26585372

  6. Fronto-temporal white matter connectivity predicts reversal learning errors

    PubMed Central

    Alm, Kylie H.; Rolheiser, Tyler; Mohamed, Feroze B.; Olson, Ingrid R.

    2015-01-01

    Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus–outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex. PMID:26150776

  7. Lifelong Bilingualism Maintains White Matter Integrity in Older Adults

    PubMed Central

    Luk, Gigi; Bialystok, Ellen; Craik, Fergus I. M.; Grady, Cheryl L.

    2012-01-01

    Previous research has shown that bilingual speakers have higher levels of cognitive control than comparable monolinguals, especially at older ages. The present study investigates a possible neural correlate of this behavioral effect. Given that white matter (WM) integrity decreases with age in adulthood, we tested the hypothesis that bilingualism is associated with maintenance of WM in older people. Using diffusion tensor imaging, we found higher WM integrity in older people who were lifelong bilinguals than in monolinguals. This maintained integrity was measured by fractional anisotropy (FA) and was found in the corpus callosum extending to the superior and inferior longitudinal fasciculi. We also hypothesized that stronger WM connections would be associated with more widely distributed patterns of functional connectivity in bilinguals. We tested this by assessing the resting-state functional connectivity of frontal lobe regions adjacent to WM areas with group differences in FA. Bilinguals showed stronger anterior to posterior functional connectivity compared to monolinguals. These results are the first evidence that maintained WM integrity is related to lifelong naturally occurring experience; the resulting enhanced structural and functional connectivity may provide a neural basis for “brain reserve.” PMID:22090506

  8. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy

    PubMed Central

    Manning, Emily N.; Bartlett, Jonathan W.; Cash, David M.; Malone, Ian B.; Ridgway, Gerard R.; Lehmann, Manja; Leung, Kelvin K.; Sudre, Carole H.; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T.; Fox, Nick C.; Cardoso, M. Jorge; Barnes, Josephine

    2017-01-01

    ABSTRACT This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27933676

  9. Profiles of aberrant white matter microstructure in fragile X syndrome

    PubMed Central

    Hall, Scott S.; Dougherty, Robert F.; Reiss, Allan L.

    2016-01-01

    Previous studies attempting to quantify white matter (WM) microstructure in individuals with fragile X syndrome (FXS) have produced inconsistent findings, most likely due to the various control groups employed, differing analysis methods, and failure to examine for potential motion artifact. In addition, analyses have heretofore lacked sufficient specificity to provide regional information. In this study, we used Automated Fiber-tract Quantification (AFQ) to identify specific regions of aberrant WM microstructure along WM tracts in patients with FXS that differed from controls who were matched on age, IQ and degree of autistic symptoms. Participants were 20 patients with FXS, aged 10 to 23 years, and 20 matched controls. Using Automated Fiber-tract Quantification (AFQ), we created Tract Profiles of fractional anisotropy and mean diffusivity along 18 major WM fascicles. We found that fractional anisotropy was significantly increased in the left and right inferior longitudinal fasciculus (ILF), right uncinate fasciculus, and left cingulum hippocampus in individuals with FXS compared to controls. Conversely, mean diffusivity was significantly decreased in the right ILF in patients with FXS compared to controls. Age was significantly negatively associated with MD values across both groups in 11 tracts. Taken together, these findings indicate that FXS results in abnormal WM microstructure in specific regions of the ILF and uncinate fasciculus, most likely caused by inefficient synaptic pruning as a result of decreased or absent Fragile X Mental Retardation Protein (FMRP). Longitudinal studies are needed to confirm these findings. PMID:26937381

  10. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy.

    PubMed

    Fiford, Cassidy M; Manning, Emily N; Bartlett, Jonathan W; Cash, David M; Malone, Ian B; Ridgway, Gerard R; Lehmann, Manja; Leung, Kelvin K; Sudre, Carole H; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T; Fox, Nick C; Cardoso, M Jorge; Barnes, Josephine

    2017-03-01

    This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5-T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  11. Brain asymmetry in the white matter making and globularity

    PubMed Central

    Theofanopoulou, Constantina

    2015-01-01

    Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i) white matter myelination is delayed relative to other brain structures and, in humans, is protracted compared with other primates and that (ii) neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I argue that one significant evolutionary change in Homo sapiens’ lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum present an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas “high- order” areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry (‘lateralization’) in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry, and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain. PMID:26441731

  12. Regional differences in cerebral asymmetries of human cortical white matter.

    PubMed

    Iwabuchi, Sarina J; Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Patston, Lucy L M; Waldie, Karen E; Tippett, Lynette J; Corballis, Michael C; Kirk, Ian J

    2011-11-01

    The form of the structural asymmetries across the cerebral hemispheres, that support well-established functional asymmetries, are not well understood. Although, many previous studies have investigated structural differences in areas associated with strong functional asymmetries, such as language processes, regions of the brain with less well established functional laterality have received less attention. The current study aims to address this by exploring global white matter asymmetries of the healthy human brain using diffusion tensor imaging (DTI) and tractography. DTI was conducted on twenty-nine healthy right-handed males, and pathways from the four major lobes were reconstructed using probabilistic tractography. Mean FA, parallel and perpendicular diffusion values were calculated and compared across hemispheres for each pathway generated. Significant asymmetries in the parietal (rightward asymmetry) and occipital (leftward asymmetry) pathways were found in FA measures. However, asymmetric patterns in parallel and/or perpendicular diffusion were observed in all four lobes, even in pathways with symmetrical FA. For instance, significant rightward asymmetry in parallel diffusion was found in the parietal and frontal lobes, whereas significant leftward asymmetry was found in the temporal and occipital lobes. We suggest that these different patterns of diffusion asymmetry reflect differences in microanatomy that support the known patterns of differential functional asymmetry. The different directions of anatomical asymmetry support the notion that there may be a number of different lateralising influences operating in the brain.

  13. Brain asymmetry in the white matter making and globularity.

    PubMed

    Theofanopoulou, Constantina

    2015-01-01

    Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i) white matter myelination is delayed relative to other brain structures and, in humans, is protracted compared with other primates and that (ii) neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I argue that one significant evolutionary change in Homo sapiens' lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum present an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas "high- order" areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry ('lateralization') in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry, and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain.

  14. White matter atrophy and myelinated fiber disruption in a rat model of depression.

    PubMed

    Gao, Yuan; Ma, Jing; Tang, Jing; Liang, Xin; Huang, Chun-Xia; Wang, San-Rong; Chen, Lin-Mu; Wang, Fei-Fei; Tan, Chuan-Xue; Chao, Feng-Lei; Zhang, Lei; Qiu, Xuan; Luo, Yan-Min; Xiao, Qian; Du, Lian; Xiao, Qian; Tang, Yong

    2017-06-01

    Brain imaging and postmortem studies have indicated that white matter abnormalities may contribute to the pathology and pathogenesis of depression. However, until now, no study has quantitatively investigated white matter changes in depression in rats. The current study used the chronic unpredictable stress (CUS) model of depression. Body weight and sucrose preference test (SPT) scores were assessed weekly. Upon successfully establishing the CUS animal model, all animals were tested using the SPT and the open field test (OFT). Then, transmission electron microscopy and unbiased stereological methods were used to investigate white matter changes in the rats. Compared with the control group, the body weight and sucrose preference of the CUS rats were significantly decreased (p < .001, p < .001, respectively). In the OFT, the total time spent and the total distance traveled in the inner area by the CUS rats were significantly lower than those of the control group (p = .002, p = .001, respectively). The stereological results revealed that white matter volume, the total volume, and the total length and mean diameter of myelinated fibers in the white matter of the CUS rats were significantly decreased compared to the control rats (p = .042, p = .038, p = .035, p = .019, respectively). The results of this study suggested that white matter atrophy and disruption of myelinated fibers in the white matter may contribute to the pathophysiology underlying depression, which might provide new targets for the development of novel therapeutic interventions for depression.

  15. Altered tract-specific white matter microstructure is related to poorer cognitive performance: The Rotterdam Study.

    PubMed

    Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Krestin, Gabriel P; van der Lugt, Aad; Niessen, Wiro J; Vernooij, Meike W; Ikram, M Arfan

    2016-03-01

    White matter microstructural integrity has been related to cognition. Yet, the potential role of specific white matter tracts on top of a global white matter effect remains unclear, especially when considering specific cognitive domains. Therefore, we determined the tract-specific effect of white matter microstructure on global cognition and specific cognitive domains. In 4400 nondemented and stroke-free participants (mean age 63.7 years, 55.5% women), we obtained diffusion magnetic resonance imaging parameters (fractional anisotropy and mean diffusivity) in 14 white matter tracts using probabilistic tractography and assessed cognitive performance with a cognitive test battery. Tract-specific white matter microstructure in all supratentorial tracts was associated with poorer global cognition. Lower fractional anisotropy in association tracts, primarily the inferior fronto-occipital fasciculus, and higher mean diffusivity in projection tracts, in particular the posterior thalamic radiation, most strongly related to poorer cognition. Altered white matter microstructure related to poorer information processing speed, executive functioning, and motor speed, but not to memory. Tract-specific microstructural changes may aid in better understanding the mechanism of cognitive impairment and neurodegenerative diseases.

  16. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    PubMed

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.

  17. Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations.

    PubMed

    Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua

    2017-03-08

    Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods.

  18. Infection and white matter injury in infants with congenital cardiac disease.

    PubMed

    Glass, Hannah C; Bowman, Chelsea; Chau, Vann; Moosa, Alisha; Hersh, Adam L; Campbell, Andrew; Poskitt, Kenneth; Azakie, Anthony; Barkovich, A James; Miller, Steven P; McQuillen, Patrick S

    2011-10-01

    More than 60% of newborns with severe congenital cardiac disease develop perioperative brain injuries. Known risk factors include: pre-operative hypoxemia, cardiopulmonary bypass characteristics, and post-operative hypotension. Infection is an established risk factor for white matter injury in premature newborns. In this study, we examined term infants with congenital cardiac disease requiring surgical repair to determine whether infection is associated with white matter injury. Acquired infection was specified by site - bloodstream, pneumonia, or surgical site infection - according to strict definitions. Infection was present in 23 of 127 infants. Pre- and post-operative imaging was evaluated for acquired injury by a paediatric neuroradiologist. Overall, there was no difference in newly acquired post-operative white matter injury in infants with infection (30%), compared to those without (31%). When stratified by anatomy, infants with transposition of the great arteries, and bloodstream infection had an estimated doubling of risk of white matter injury that was not significant, whereas those with single ventricle anatomy had no apparent added risk. When considering only infants without stroke, the estimated association was higher, and became significant after adjusting for duration of inotrope therapy. In this study, nosocomial infection was not associated with white matter injury. Nonetheless, when controlling for risk factors, there was an association between bloodstream infection and white matter injury in selected sub-populations. Infection prevention may have the potential to mitigate long-term neurologic impairment as a consequence of white matter injury, which underscores the importance of attention to infection control for these patients.

  19. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury.

    PubMed

    Liu, Xiao-Bo; Shen, Yan; Plane, Jennifer M; Deng, Wenbin

    2013-04-01

    Premature birth is a significant economic and public health burden, and its incidence is rising. Periventricular leukomalacia (PVL) is the predominant form of brain injury in premature infants and the leading cause of cerebral palsy. PVL is characterized by selective white-matter damage with prominent oligodendroglial injury. The maturation-dependent vulnerability of developing and premyelinating oligodendrocytes to excitotoxic, oxidative, and inflammatory forms of injury is a major factor in the pathogenesis of PVL. Recent studies using mouse models of PVL reveal that synapses between axons and developing oligodendrocytes are quickly and profoundly damaged in immature white matter. Axon-glia synapses are highly vulnerable to white-matter injury in the developing brain, and the loss of synapses between axons and premyelinating oligodendrocytes occurs before any cellular loss in the immature white matter. Microglial activation and astrogliosis play important roles in triggering white-matter injury. Impairment of white-matter development and function in the neonatal period contributes critically to functional and behavioral deficits. Preservation of the integrity of the white matter is likely key in the treatment of PVL and subsequent neurological consequences and disabilities.

  20. Frontal White Matter Volume Is Associated with Brain Enlargement and Higher Structural Connectivity in Anthropoid Primates

    PubMed Central

    Smaers, Jeroen Bert; Schleicher, Axel; Zilles, Karl; Vinicius, Lucio

    2010-01-01

    Previous research has indicated the importance of the frontal lobe and its ‘executive’ connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter) has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the ‘universal scaling law’ of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal) white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to ‘executive control’. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids. PMID:20161758

  1. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling.

    PubMed

    Feng, Yuan; Lee, Chung-Hao; Sun, Lining; Ji, Songbai; Zhao, Xuefeng

    2017-01-01

    Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties.

  2. Examining the relationships between cortical maturation and white matter myelination throughout early childhood.

    PubMed

    Croteau-Chonka, Elise C; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan; Deoni, Sean C L

    2016-01-15

    Cortical development and white matter myelination are hallmark processes of infant and child neurodevelopment, and play a central role in the evolution of cognitive and behavioral functioning. Non-invasive magnetic resonance imaging (MRI) has been used to independently track these microstructural and morphological changes in vivo, however few studies have investigated the relationship between them despite their concurrency in the developing brain. Further, because measures of cortical morphology rely on underlying gray-white matter tissue contrast, which itself is a function of white matter myelination, it is unclear if contrast-based measures of cortical development accurately reflect cortical architecture, or if they merely represent adjacent white matter maturation. This may be particularly true in young children, in whom brain structure is rapidly maturing. Here for the first time, we investigate the dynamic relationship between cortical and white matter development across early childhood, from 1 to 6years. We present measurements of cortical thickness with respect to cortical and adjacent myelin water fraction (MWF) in 33 bilateral cortical regions. Significant results in only 14 of 66 (21%) cortical regions suggest that cortical thickness measures are not heavily driven by changes in adjacent white matter, and that brain imaging studies of cortical and white matter maturation reflect distinct, but complimentary, neurodevelopmental processes.

  3. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats.

    PubMed

    Ni, Wei; Okauchi, Masanobu; Hatakeyama, Tetsuhiro; Gu, Yuxiang; Keep, Richard F; Xi, Guohua; Hua, Ya

    2015-10-01

    Iron contributes to c-Jun N-terminal kinases (JNK) activation in young rats and white matter injury in piglets after intracerebral hemorrhage (ICH). In the present study, we examined the effect of deferoxamine on ICH-induced white matter injury and JNK activation and in aged rats. Male Fischer 344 rats (18months old) had either an intracaudate injection of 100μl of autologous blood or a needle insertion (sham). The rats were treated with deferoxamine or vehicle with different regimen (dosage, duration and time window). White matter injury and activation of JNK were examined. We found that a dose of DFX should be at more than 10mg/kg for a therapeutic duration more than 2days with a therapeutic time window of 12h to reduce ICH-induced white matter loss at 2months. ICH-induced white matter injury was associated with JNK activation. The protein levels of phosphorylated-JNK (P-JNK) were upregulated at day-1 after ICH and then gradually decreased. P-JNK immunoreactivity was mostly located in white matter bundles. ICH-induced JNK activation was reduced by DFX treatment. This study demonstrated that DFX can reduce ICH-induced JNK activation and white matter damage.

  4. Raymond de Vieussens and his contribution to the study of white matter anatomy: historical vignette.

    PubMed

    Vergani, Francesco; Morris, Christopher M; Mitchell, Patrick; Duffau, Hugues

    2012-12-01

    In recent years, there has been a renewed interest in the study of white matter anatomy, both with the use of postmortem dissections and diffusion tensor imaging tractography. One of the precursors in the study of white matter anatomy was Raymond de Vieussens (1641-1716), a French anatomist born in Le Vigan. He studied medicine at the University of Montpellier in southern France, one of the most ancient and lively schools of medicine in Europe. In 1684 Vieussens published his masterpiece, the Neurographia Universalis, which is still considered one of the most complete and accurate descriptions of the nervous system provided in the 17th century. He described the white matter of the centrum ovale and was the first to demonstrate the continuity of the white matter fibers from the centrum ovale to the brainstem. He also described the dentate nuclei, the pyramids, and the olivary nuclei. According to the theory of Galen, Vieussens considered that the function of the white matter was to convey the "animal spirit" from the centrum ovale to the spinal cord. Although neglected, Vieussens' contribution to the study of white matter is relevant. His pioneering work showed that the white matter is not a homogeneous substance, but rather a complex structure rich in fibers that are interconnected with different parts of the brain. These initial results paved the way to advancements observed in later centuries that eventually led to modern hodology.

  5. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia

    PubMed Central

    Gordon, Brian A.; Najmi, Safa; Hsu, Phillip; Roe, Catherine M.; Morris, John C.; Benzinger, Tammie L.S.

    2015-01-01

    Background and purpose Elevated levels of amyloid deposition as well as white matter damage are thought to be risk factors for Alzheimer Disease (AD). Here we examined whether qualitative ratings of white matter damage predicted cognitive impairment beyond measures of amyloid. Materials and methods The study examined 397 cognitively normal, 51 very mildly demented, and 11 mildly demented individuals aged 42–90 (mean 68.5). Participants obtained a T2-weighted scan as well as a positron emission tomography scan using 11[C] Pittsburgh Compound B. Periventricular white matter hyperintensities (PVWMHs) and deep white matter hyperintensities (DWMHs) were measured on each T2 scan using the Fazekas rating scale. The effects of amyloid deposition and white matter damage were assessed using logistic regressions. Results Levels of amyloid deposition (ps < 0.01), as well as ratings of PVWMH (p < 0.01) and DWMH (p < 0.05) discriminated between cognitively normal and demented individuals. Conclusions The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels. PMID:26106548

  6. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study.

    PubMed

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Gallagher, Louise; Leemans, Alexander

    2013-10-01

    Autism spectrum disorders (ASDs) are associated with a marked disturbance of neural functional connectivity, which may arise from disrupted organization of white matter. The aim of this study was to use constrained spherical deconvolution (CSD)-based tractography to isolate and characterize major intrahemispheric white matter tracts that are important in visuospatial processing. CSD-based tractography avoids a number of critical confounds that are associated with diffusion tensor tractography, and to our knowledge, this is the first time that this advanced diffusion tractography method has been used in autism research. Twenty-five participants with ASD and aged 25, intelligence quotient-matched controls completed a high angular resolution diffusion imaging scan. The inferior fronto-occipital fasciculus (IFOF) and arcuate fasciculus were isolated using CSD-based tractography. Quantitative diffusion measures of white matter microstructural organization were compared between groups and associated with visuospatial processing performance. Significant alteration of white matter organization was present in the right IFOF in individuals with ASD. In addition, poorer visuospatial processing was associated in individuals with ASD with disrupted white matter in the right IFOF. Using a novel, advanced tractography method to isolate major intrahemispheric white matter tracts in autism, this research has demonstrated that there are significant alterations in the microstructural organization of white matter in the right IFOF in ASD. This alteration was associated with poorer visuospatial processing performance in the ASD group. This study provides an insight into structural brain abnormalities that may influence atypical visuospatial processing in autism.

  7. Financial literacy is associated with white matter integrity in old age.

    PubMed

    Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D; Bennett, David A

    2016-04-15

    Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age.

  8. Age-related differences in autism: The case of white matter microstructure.

    PubMed

    Koolschijn, P Cédric M P; Caan, Matthan W A; Teeuw, Jalmar; Olabarriaga, Sílvia D; Geurts, Hilde M

    2017-01-01

    Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc.

  9. Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants.

    PubMed

    Wisnowski, Jessica L; Blüml, Stefan; Paquette, Lisa; Zelinski, Elizabeth; Nelson, Marvin D; Painter, Michael J; Damasio, Hanna; Gilles, Floyd; Panigrahy, Ashok

    2013-01-01

    Preterm infants (∼10% of all births) are at high-risk for long-term neurodevelopmental disabilities, most often resulting from white matter injury sustained during the neonatal period. Glutamate excitotoxicity is hypothesized to be a key mechanism in the pathogenesis of white matter injury; however, there has been no in vivo demonstration of glutamate excitotoxicity in preterm infants. Using magnetic resonance spectroscopy (MRS), we tested the hypothesis that glutamate and glutamine, i.e., markers of glutamatergic metabolism, are altered in association with punctate white matter lesions and "diffuse excessive high signal intensity" (DEHSI), the predominant patterns of preterm white matter injury. We reviewed all clinically-indicated MRS studies conducted on preterm infants at a single institution during a six-year period and determined the absolute concentration of glutamate, glutamine, and four other key metabolites in the parietal white matter in 108 of those infants after two investigators independently evaluated the studies for punctate white matter lesions and DEHSI. Punctate white matter lesions were associated with a 29% increase in glutamine concentration (p = 0.002). In contrast, there were no differences in glutamatergic metabolism in association with DEHSI. Severe DEHSI, however, was associated with increased lactate concentration (p = 0.001), a marker of tissue acidosis. Findings from this study support glutamate excitotoxicity in the pathogenesis of punctate white matter lesions, but not necessarily in DEHSI, and suggest that MRS provides a useful biomarker for determining the pathogenesis of white matter injury in preterm infants during a period when neuroprotective agents may be especially effective.

  10. Cortical Grey Matter and Subcortical White Matter Brain Microstructural Changes in Schizophrenia Are Localised and Age Independent: A Case-Control Diffusion Tensor Imaging Study

    PubMed Central

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18–65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18–65 year age range. PMID:24124469

  11. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    PubMed

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  12. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.

  13. Brain white matter structure and COMT gene are linked to second-language learning in adults

    PubMed Central

    Mamiya, Ping C.; Richards, Todd L.; Coe, Bradley P.; Eichler, Evan E.; Kuhl, Patricia K.

    2016-01-01

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects’ grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  14. White-matter vascular lesions correlate with alpha EEG sources in mild cognitive impairment.

    PubMed

    Babiloni, Claudio; Frisoni, Giovanni B; Pievani, Michela; Toscano, Leonia; Del Percio, Claudio; Geroldi, Cristina; Eusebi, Fabrizio; Miniussi, Carlo; Rossini, Paolo M

    2008-01-01

    It is an open issue if vascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI), as a preclinical stage of Alzheimer's disease (AD) at group level. In the present study, we tested the hypothesis that electroencephalographic (EEG) alpha rhythms, which are affected (i.e. decreased in amplitude) by AD processes, are relatively preserved in MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold), 80 MCI, and 40 AD subjects. In the MCI subjects, white-matter vascular load was quantified based on MRI (0-30 Wahlund visual rating scale). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), and beta 2 (20-30Hz). Low resolution electromagnetic source tomography (LORETA) was used for EEG source analysis. As expected, we observed that alpha 1 sources in parietal, occipital, and temporal areas were lower in amplitude in the AD and MCI subjects than in the Nold subjects, whereas the amplitude of wide delta sources was higher in the AD than in the Nold and MCI subjects. As novel results, the amplitude of parietal, occipital, and temporal alpha 1 sources was higher in the MCI V+ (high vascular load; N=42; MMSE=26) than MCI V- group (low vascular load; N=37; MMSE=26.7). Furthermore, a weak but significant (p<0.05) positive statistical correlation was found between the parietal alpha 1 sources and the score of Wahlund scale across all MCI subjects (i.e. the more severe white-matter lesions, the higher parietal alpha source power). The present results are in line with the additive model of cognitive impairment postulating that this arises as the sum of neurodegenerative and cerebrovascular lesions.

  15. DTI reveals structural differences in white matter tracts between bilingual and monolingual children.

    PubMed

    Mohades, Seyede Ghazal; Struys, Esli; Van Schuerbeek, Peter; Mondt, Katrien; Van De Craen, Piet; Luypaert, Robert

    2012-01-30

    The impact of bilingualism on the microstructure of the white matter pathways related to language processing is assessed in elementary school children by magnetic resonance diffusion tensor imaging (MR-DTI). Forty children, 8-11 years old, subdivided into 3 different groups (15 simultaneous bilinguals, 15 sequential bilinguals and 10 monolinguals), were scanned. The hypothesis was that the starting age and the manner of second language acquisition would affect the characteristics of language circuitry. In each subject the mean fractional anisotropy (FA) was obtained for four major white matter pathways: 1 - the left arcuate fasciculus/superior longitudinal fasciculus (lAF/lSLF) that connects Broca's area in the opercular and triangular regions of the left inferior frontal gyrus to the posterior language zone, 2 - the left inferior occipitofrontal fasciculus (lIFOF), connecting anterior regions in the frontal lobe with posterior regions in the temporal occipital lobes, 3 - the bundle arising from the anterior part of the corpus callosum projecting to the orbital lobe (AC-OL) and 4 - the fibers emerging from the anterior midbody (AMB) of the corpus callosum that associate with the premotor and supplementary motor cortices (AMB-PMC). The three groups did not show significant differences in mean FA over the lAF/lSLF or AMB-PMC tracts. In simultaneous bilingual subjects the lIFOF tracts had higher mean FA value compared to monolinguals and also sequential bilinguals, whereas the comparison for the AC-OL fibers yielded a significantly lower mean FA value in simultaneous bilingual subjects compared to monolinguals. In both cases the FA value for sequential bilinguals was intermediate to that of the other two groups. To our knowledge, this study provides the first evidence of bilingualism related adaptation of white matter microstructure in the human brain.

  16. Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression.

    PubMed

    Chhetry, Binod Thapa; Hezghia, Adrienne; Miller, Jeffrey M; Lee, Seonjoo; Rubin-Falcone, Harry; Cooper, Thomas B; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth

    2016-04-01

    White matter abnormalities are implicated in major depressive disorder (MDD). As omega-3 polyunsaturated fatty acids (PUFAs) are low in MDD and affect myelination, we hypothesized that PUFA supplementation may alleviate depression through improving white matter integrity. Acutely depressed MDD patients (n = 16) and healthy volunteers (HV, n = 12) had 25-direction diffusion tensor imaging before and after 6 weeks of fish oil supplementation. Plasma phospholipid omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and omega-6 PUFA arachidonic acid (AA) levels were determined before and after supplementation using high-throughput extraction and gas chromatography and expressed as a percentage of total phospholipids (PUFA%). Fractional anisotropy (FA) was computed using a least-squares-fit diffusion tensor with non-linear optimization. Regression analyses were performed with changes in PUFA levels or Hamilton Depression Rating Scale scores as predictors, voxel-wise difference maps of FA as outcome, covariates age and sex, with family-wise correction for multiple comparisons. Increases in plasma phospholipid DHA% (but not EPA% or AA%) after fish oil predicted increases in FA in MDD but not HV, in a cluster including genu and body of the corpus callosum, and anterior corona radiata and cingulum (cluster-level p < 0.001, peak t-score = 8.10, p = 0.002). There was a trend for greater change in FA in MDD responders over nonresponders (t = -1.874, df = 13.56, p = 0.08). Decreased depression severity predicted increased FA in left corticospinal tract and superior longitudinal fasciculus (cluster-level p < 0.001, peak t-score = 5.04, p = 0.0001). Increased FA correlated with increased DHA% and decreased depression severity after fish oil supplementation suggests therapeutic effects of omega-3 PUFAs may be related to improvements in white matter integrity.

  17. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  18. White matter changes in paediatric multiple sclerosis and monophasic demyelinating disorders.

    PubMed

    Longoni, Giulia; Brown, Robert A; MomayyezSiahkal, Parya; Elliott, Colm; Narayanan, Sridar; Bar-Or, Amit; Ann Marrie, Ruth; Ann Yeh, E; Filippi, Massimo; Banwell, Brenda; Arnold, Douglas L

    2017-03-14

    Most children who experience an acquired demyelinating syndrome of the central nervous system will have a monophasic disease course, with no further clinical or radiological symptoms. A subset will be diagnosed with multiple sclerosis, a life-long disorder. Using linear mixed effects models we examined longitudinal diffusion properties of normal-appearing white matter in 505 serial scans of 132 paediatric participants with acquired demyelinating syndromes followed for a median of 4.4 years, many from first clinical presentation, and 106 scans of 80 healthy paediatric participants. Fifty-three participants with demyelinating syndromes eventually received a diagnosis of paediatric-onset multiple sclerosis. Diffusion tensor imaging measures properties of water diffusion through tissue, which normally becomes increasingly restricted and anisotropic in the brain during childhood and adolescence, as fibre bundles develop and myelinate. In the healthy paediatric participants, our data demonstrate the expected trajectory of more restricted and anisotropic white matter diffusivity with increasing age. However, in participants with multiple sclerosis, fractional anisotropy decreased and mean diffusivity of non-lesional, normal-appearing white matter progressively increased after clinical presentation, suggesting not only a failure of age-expected white matter development but also a progressive loss of tissue integrity. Surprisingly, patients with monophasic disease failed to show age-expected changes in diffusion parameters in normal-appearing white matter, although they did not show progressive loss of integrity over time. Further analysis demonstrated that participants with monophasic disease experienced different post-onset trajectories in normal-appearing white matter depending on their presenting phenotype: those with acute disseminated encephalomyelitis demonstrated abnormal trajectories of diffusion parameters compared to healthy paediatric participants, as did

  19. Microstructural white matter alterations in preclinical Alzheimer’s disease detected using free water elimination diffusion tensor imaging

    PubMed Central

    Ly, Martina; Carlsson, Cynthia M.; Okonkwo, Ozioma C.; Zetterberg, Henrik; Blennow, Kaj; Sager, Mark A.; Asthana, Sanjay; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.

    2017-01-01

    Brain changes associated with Alzheimer’s disease (AD) begin decades before disease diagnosis. While β-amyloid plaques and neurofibrillary tangles are defining features of AD, neuronal loss and synaptic pathology are closely related to the cognitive dysfunction. Brain imaging methods that are tuned to assess degeneration of myelinated nerve fibers in the brain (collectively called white matter) include diffusion tensor imaging (DTI) and related techniques, and are expected to shed light on disease-related loss of structural connectivity. Participants (N = 70, ages 47–76 years) from the Wisconsin Registry for Alzheimer’s Prevention study underwent DTI and hybrid diffusion imaging to determine a free-water elimination (FWE-DTI) model. The study assessed the extent to which preclinical AD pathology affects brain white matter. Preclinical AD pathology was determined using cerebrospinal fluid (CSF) biomarkers. The sample was enriched for AD risk (APOE ε4 and parental history of AD). AD pathology assessed by CSF analyses was significantly associated with altered microstructure on both DTI and FWE-DTI. Affected regions included frontal, parietal, and especially temporal white matter. The f-value derived from the FWE-DTI model appeared to be the most sensitive to the relationship between the CSF AD biomarkers and microstructural alterations in white matter. These findings suggest that white matter degeneration is an early pathological feature of AD that may have utility both for early disease detection and as outcome measures for clinical trials. More complex models of microstructural diffusion properties including FWE-DTI may provide increased sensitivity to early brain changes associated with AD over standard DTI. PMID:28291839

  20. Relationship Between Cortical Gyrification, White Matter Connectivity, and Autism Spectrum Disorder

    PubMed Central

    Ecker, C.; Andrews, D.; Dell'Acqua, F.; Daly, E.; Murphy, C.; Catani, M.; Thiebaut de Schotten, M.; Baron-Cohen, S.; Lai, M.C.; Lombardo, M.V.; Bullmore, E.T.; Suckling, J.; Williams, S.; Jones, D.K.; Chiocchetti, A.; Murphy, D.G.M.

    2016-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, which is accompanied by differences in gray matter neuroanatomy and white matter connectivity. However, it is unknown whether these differences are linked or reflect independent aetiologies. Using a multimodal neuroimaging approach, we therefore examined 51 male adults with ASD and 48 neurotypical controls to investigate the relationship between gray matter local gyrification (lGI) and white matter diffusivity in associated fiber tracts. First, ASD individuals had a significant increase in gyrification around the left pre- and post-central gyrus. Second, white matter fiber tracts originating and/or terminating in the cluster of increased lGI had a significant increase in axial diffusivity. This increase in diffusivity was predominantly observed in tracts in close proximity to the cortical sheet. Last, we demonstrate that the increase in lGI was significantly correlated with increased diffusivity of short tracts. This relationship was not significantly modulated by a main effect of group (i.e., ASD), which was more closely associated with gray matter gyrification than white matter diffusivity. Our findings suggest that differences in gray matter neuroanatomy and white matter connectivity are closely linked, and may reflect common rather than distinct aetiological pathways. PMID:27130663

  1. WHITE MATTER INTEGRITY IN TRAUMATIC BRAIN INJURY: EFFECTS OF PERMISSIBLE FIBER TURNING ANGLE

    PubMed Central

    Dennis, Emily L.; Jin, Yan; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Diffusion weighted imaging (DWI) methods have been shown to be especially sensitive to white matter abnormalities in TBI. We used our newly developed autoMATE algorithm (automated multi-atlas tract extraction) to map altered WM integrity in TBI. Even so, tractography methods include a free parameter that limits the maximum permissible turning angles for extracted fibers, with little investigation of how this may affect statistical group comparisons. Here, we examined WM integrity calculated over a range of fiber turning angles to determine to what extent this parameter affects our ability to detect group differences. Fiber turning angle threshold has a subtle, but sometimes significant, effect on the differences we were able to detect between TBI and healthy children. PMID:26413206

  2. Cryptococcal meningitis accompanying lymphocytic inflammation predominantly in cerebral deep white matter: a possible manifestation of immune reconstitution inflammatory syndrome.

    PubMed

    Kuwahara, Hiroya; Tsuchiya, Kuniaki; Kobayashi, Zen; Inaba, Akira; Akiyama, Haruhiko; Mizusawa, Hidehiro

    2014-02-01

    Cryptococcal meningitis is rarely complicated by immune-mediated leukoencephalopathy, but the precise pathomechanism is uncertain. A 72-year-old Japanese man treated with prednisolone for Sweet disease developed a subacute progression of meningitis, which was considered as neuro-Sweet disease. A treatment by methylprednisolone rapidly improved CSF findings with a remarkable decrease in lymphocyte numbers in the blood, but the patient's consciousness still worsened after the cessation of the treatment. The patient developed cryptococcal meningitis and MRI showed abnormal intensities predominantly in the cerebral deep white matter along with the recovery of lymphocyte numbers in the blood, which resulted in death. A postmortem examination of the brain revealed degenerative lesions, especially at the cerebral white matter and cortex adjacent to the leptomeninges abundantly infiltrated by Cryptococcus neoformans. In the affected cerebral deep white matter, perivascular infiltration of lymphocytes was prominent in coexistence with reactive astrocytes and vascular proliferation, but these findings were not observed in the subcortical and cortical lesions. Cryptococcus neoformans was not present within the brain parenchyma. This is the first report of a case suggesting that cryptococcal meningitis can accompany lymphocytic inflammation predominantly in cerebral deep white matter as a possible manifestation of immune reconstitution inflammatory syndrome.

  3. Aberrant white matter networks mediate cognitive impairment in patients with silent lacunar infarcts in basal ganglia territory

    PubMed Central

    Tang, Jinfu; Zhong, Suyu; Chen, Yaojing; Chen, Kewei; Zhang, Junying; Gong, Gaolang; Fleisher, Adam S; He, Yong; Zhang, Zhanjun

    2015-01-01

    Silent lacunar infarcts, which are present in over 20% of healthy elderly individuals, are associated with subtle deficits in cognitive functions. However, it remains largely unclear how these silent brain infarcts lead to cognitive deficits and even dementia. Here, we used diffusion tensor imaging tractography and graph theory to examine the topological organization of white matter networks in 27 patients with silent lacunar infarcts in the basal ganglia territory and 30 healthy controls. A whole-brain white matter network was constructed for each subject, where the graph nodes represented brain regions and the edges represented interregional white matter tracts. Compared with the controls, the patients exhibited a significant reduction in local efficiency and global efficiency. In addition, a total of eighteen brain regions showed significantly reduced nodal efficiency in patients. Intriguingly, nodal efficiency–behavior associations were significantly different between the two groups. The present findings provide new aspects into our understanding of silent infarcts that even small lesions in subcortical brain regions may affect large-scale cortical white matter network, as such may be the link between subcortical silent infarcts and the associated cognitive impairments. Our findings highlight the need for network-level neuroimaging assessment and more medical care for individuals with silent subcortical infarcts. PMID:25873426

  4. Selective white matter pathology induces a specific impairment in spatial working memory.

    PubMed

    Coltman, Robin; Spain, Aisling; Tsenkina, Yanina; Fowler, Jill H; Smith, Jessica; Scullion, Gillian; Allerhand, Mike; Scott, Fiona; Kalaria, Rajesh N; Ihara, Masafumi; Daumas, Stephanie; Deary, Ian J; Wood, Emma; McCulloch, James; Horsburgh, Karen

    2011-12-01

    The integrity of the white matter is critical in regulating efficient neuronal communication and maintaining cognitive function. Damage to brain white matter putatively contributes to age-related cognitive decline. There is a growing interest in animal models from which the mechanistic basis of white matter pathology in aging can be elucidated but to date there has been a lack of systematic behavior and pathology in the same mice. Anatomically widespread, diffuse white matter damage was induced, in 3 different cohorts of C57Bl/6J mice, by chronic hypoperfusion produced by bilateral carotid stenosis. A comprehensive assessment of spatial memory (spatial reference learning and memory; cohort 1) and serial spatial learning and memory (cohort 2) using the water maze, and spatial working memory (cohort 3) using the 8-arm radial arm maze, was conducted. In parallel, a systematic assessment of white matter components (myelin, axon, glia) was conducted using immunohistochemical markers (myelin-associated glycoprotein [MAG], degraded myelin basic protein [dMBP], anti-amyloid precursor protein [APP], anti-ionized calcium-binding adapter molecule [Iba-1]). Ischemic neuronal perikarya damage, assessed using histology (hematoxylin and eosin; H&E), was absent in all shams but was present in some hypoperfused mice (2/11 in cohort 1, 4/14 in cohort 2, and 17/24 in cohort 3). All animals with neuronal perikaryal damage were excluded from further study. Diffuse white matter damage occurred, throughout the brain, in all hypoperfused mice in each cohort and was essentially absent in sham-operated controls. There was a selective impairment in spatial working memory, with all other measures of spatial memory remaining intact, in hypoperfused mice with selective white matter damage. The results demonstrate that diffuse white matter pathology, in the absence of gray matter damage, induces a selective impairment of spatial working memory. This highlights the importance of assessing

  5. Breastfeeding and early white matter development: A cross-sectional study.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Piryatinsky, Irene; O'Muircheartaigh, Jonathan; Waskiewicz, Nicole; Lehman, Katie; Han, Michelle; Dirks, Holly

    2013-11-15

    Does breastfeeding alter early brain development? The prevailing consensus from large epidemiological studies posits that early exclusive breastfeeding is associated with improved measures of IQ and cognitive functioning in later childhood and adolescence. Prior morphometric brain imaging studies support these findings, revealing increased white matter and sub-cortical gray matter volume, and parietal lobe cortical thickness, associated with IQ, in adolescents who were breastfed as infants compared to those who were exclusively formula-fed. Yet it remains unknown when these structural differences first manifest and when developmental differences that predict later performance improvements can be detected. In this study, we used quiet magnetic resonance imaging (MRI) scans to compare measures of white matter microstructure (mcDESPOT measures of myelin water fraction) in 133 healthy children from 10 months through 4 years of age, who were either exclusively breastfed a minimum of 3 months; exclusively formula-fed; or received a mixture of breast milk and formula. We also examined the relationship between breastfeeding duration and white matter microstructure. Breastfed children exhibited increased white matter development in later maturing frontal and association brain regions. Positive relationships between white matter microstructure and breastfeeding duration are also exhibited in several brain regions, that are anatomically consistent with observed improvements in cognitive and behavioral performance measures. While the mechanisms underlying these structural differences remains unclear, our findings provide new insight into the earliest developmental advantages associated with breastfeeding, and support the hypothesis that breast milk constituents promote healthy neural growth and white matter development.

  6. Probing dark matter crests with white dwarfs and IMBHs

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, P.; Casanellas, J.; Schödel, R.; Davidson, E.; Cuadra, J.

    2016-06-01

    White dwarfs (WDs) are the most promising captors of dark matter (DM) particles in the crests that are expected to build up in the cores of dense stellar clusters. The DM particles could reach sufficient densities in WD cores to liberate energy through self-annihilation. The extinction associated with our Galactic Centre makes it impossible to detect the potential-associated luminosities, contrary to smaller stellar systems which are close enough to us and not heavily extincted, such as -Cen. We investigate the prospects of detection of DM-burning WDs in a stellar cluster harbouring an intermediate-mass black hole (IMBH), which leads to higher densities of DM at the centre. We calculate the capture rate and estimate the luminosity that a WD would emit depending on its distance to the centre of the cluster. Direct-summation N-body simulations of -Cen yield a non-negligible number of WDs in the range of radii of interest. We apply our assumption to published Hubble Space Telescope/Advanced Camera for Surveys observations of stars in the centre of -Cen and, although we are not able to identify any evident candidate, we proof that their bunching up at high luminosities would be unique. We predict that DM burning will lead to a truncation of the cooling sequence at the faint end. The detection of DM burning in future observations of dense stellar clusters could allow us to probe different models of DM distributions and characteristics. On the other hand, if DM-burning WDs really exist, their number and properties could give hints to the existence of IMBHs.

  7. Multivariate characterization of white matter heterogeneity in autism spectrum disorder.

    PubMed

    Dean, D C; Lange, N; Travers, B G; Prigge, M B; Matsunami, N; Kellett, K A; Freeman, A; Kane, K L; Adluru, N; Tromp, D P M; Destiche, D J; Samsin, D; Zielinski, B A; Fletcher, P T; Anderson, J S; Froehlich, A L; Leppert, M F; Bigler, E D; Lainhart, J E; Alexander, A L

    2017-01-01

    The complexity and heterogeneity of neuroimaging findings in individuals with autism spectrum disorder has suggested that many of the underlying alterations are subtle and involve many brain regions and networks. The ability to account for multivariate brain features and identify neuroimaging measures that can be used to characterize individual variation have thus become increasingly important for interpreting and understanding the neurobiological mechanisms of autism. In the present study, we utilize the Mahalanobis distance, a multidimensional counterpart of the Euclidean distance, as an informative index to characterize individual brain variation and deviation in autism. Longitudinal diffusion tensor imaging data from 149 participants (92 diagnosed with autism spectrum disorder and 57 typically developing controls) between 3.1 and 36.83 years of age were acquired over a roughly 10-year period and used to construct the Mahalanobis distance from regional measures of white matter microstructure. Mahalanobis distances were significantly greater and more variable in the autistic individuals as compared to control participants, demonstrating increased atypicalities and variation in the group of individuals diagnosed with autism spectrum disorder. Distributions of multivariate measures were also found to provide greater discrimination and more sensitive delineation between autistic and typically developing individuals than conventional univariate measures, while also being significantly associated with observed traits of the autism group. These results help substantiate autism as a truly heterogeneous neurodevelopmental disorder, while also suggesting that collectively considering neuroimaging measures from multiple brain regions provides improved insight into the diversity of brain measures in autism that is not observed when considering the same regions separately. Distinguishing multidimensional brain relationships may thus be informative for identifying

  8. Prefrontal cortex white matter tracts in prodromal Huntington disease

    PubMed Central

    Matsui, Joy T.; Vaidya, Jatin G.; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A.; Johnson, Hans J.; Paulsen, Jane S.

    2015-01-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. PMID:26179962

  9. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    PubMed

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.

  10. Frontal white matter changes and aggression in methamphetamine dependence.

    PubMed

    Lederer, Katharina; Fouche, Jean-Paul; Wilson, Don; Stein, Dan J; Uhlmann, Anne

    2016-02-01

    Chronic methamphetamine (MA) use can lead to white matter (WM) changes and increased levels of aggression. While previous studies have examined WM abnormalities relating to cognitive impairment, associations between WM integrity and aggression in MA dependence remain unclear. Diffusion Tensor Imaging (DTI) was used to investigate WM changes in 40 individuals with MA dependence and 40 matched healthy controls. A region of interest (ROI) approach using tract based spatial statistics (TBSS) in FSL was performed. We compared fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity (λ║) and perpendicular diffusivity (λ┴) in WM tracts of the frontal brain. A relationship of WM with aggression scores from the Buss & Perry Questionnaire was investigated. Mean scores for anger (p < 0.001), physical aggression (p = 0.032) and total aggression (p = 0.021) were significantly higher in the MA group relative to controls. ROI analysis showed increased MD (U = 439.5, p = 0.001) and λ┴ (U = 561.5, p = 0.021) values in the genu of the corpus callosum, and increased MD (U = 541.5, p = 0.012) values in the right cingulum in MA dependence. None of the WM changes were significantly associated with aggression scores. This study provides evidence of frontal WM changes and increased levels of aggression in individuals with MA dependence. The lack of significant associations between WM and aggressive behaviour may reflect methodological issues in measuring such behaviour, or may indicate that the neurobiology of aggression is not simply correlated with WM damage but is more complex.

  11. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  12. White matter hyperintensities predict amyloid increase in Alzheimer's disease.

    PubMed

    Grimmer, Timo; Faust, Maximilian; Auer, Florian; Alexopoulos, Panagiotis; Förstl, Hans; Henriksen, Gjermund; Perneczky, Robert; Sorg, Christian; Yousefi, Behrooz H; Drzezga, Alexander; Kurz, Alexander

    2012-12-01

    Impaired amyloid clearance probably contributes to increased amyloid deposition in sporadic Alzheimer's disease (AD). Diminished perivascular drainage due to cerebral small-vessel disease (CSVD) has been proposed as a cause of reduced amyloid clearance. White matter hyperintensities (WMHs) are considered to reflect CSVD and can be measured using fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Amyloid deposition can be determined in vivo using Pittsburgh compound B ([11C]PiB) positron emission tomography (PET). We aimed to elucidate the association between WMH and the progression of amyloid deposition in patients with AD. Twenty-two patients with probable AD underwent FLAIR-MRI and [11C]PiB-PET examinations at baseline (BL) and after a mean follow-up (FU) interval of 28 months. The relationship between BL-WMH and the progression of cerebral amyloid between BL and FU was examined using a regions-of-interest (ROI) approach. The region-specific variability of this relationship was analyzed using a voxel-based method. The longitudinal analysis revealed a statistically significant association between the amount of BL-WMH and the progression of amyloid load between BL and FU (p = 0.006, adjusted R2 = 0.375, standardized coefficient β = 0.384). The association was particularly observed in parieto-occipital regions and tended to be closer in regions adjacent to the brain surface. According to our knowledge, this is the first in vivo study in human being supporting the hypothesis that impaired amyloid clearance along perivascular drainage pathways may contribute to β-amyloid deposition in sporadic AD. The extent of WMH might be a relevant factor to be assessed in antiamyloid drug trials.

  13. White matter hyperintensities segmentation: a new semi-automated method.

    PubMed

    Iorio, Mariangela; Spalletta, Gianfranco; Chiapponi, Chiara; Luccichenti, Giacomo; Cacciari, Claudia; Orfei, Maria D; Caltagirone, Carlo; Piras, Fabrizio

    2013-01-01

    White matter hyperintensities (WMH) are brain areas of increased signal on T2-weighted or fluid-attenuated inverse recovery magnetic resonance imaging (MRI) scans. In this study we present a new semi-automated method to measure WMH load that is based on the segmentation of the intensity histogram of fluid-attenuated inversion recovery images. Thirty patients with mild cognitive impairment with variable WMH load were enrolled. The semi-automated WMH segmentation included removal of non-brain tissue, spatial normalization, removal of cerebellum and brain stem, spatial filtering, thresholding to segment probable WMH, manual editing for correction of false positives and negatives, generation of WMH map, and volumetric estimation of the WMH load. Accuracy was quantitatively evaluated by comparing semi-automated and manual WMH segmentations performed by two independent raters. Differences between the two procedures were assessed using Student's t-tests and similarity was evaluated using linear regression model and Dice similarity coefficient (DSC). The volumes of the manual and semi-automated segmentations did not statistically differ (t-value = -1.79, DF = 29, p = 0.839 for rater 1; t-value = 1.113, DF = 29, p = 0.2749 for rater 2), were highly correlated [R (2) = 0.921, F (1,29) = 155.54, p < 0.0001 for rater 1; R (2) = 0.935, F (1,29) = 402.709, p < 0.0001 for rater 2] and showed a very strong spatial similarity (mean DSC = 0.78, for rater 1 and 0.77 for rater 2). In conclusion, our semi-automated method to measure the load of WMH is highly reliable and could represent a good tool that could be easily implemented in routinely neuroimaging analyses to map clinical consequences of WMH.

  14. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities

    PubMed Central

    Kalheim, Lisa Flem; Selnes, Per; Bjørnerud, Atle; Coello, Christopher; Vegge, Kjetil; Fladby, Tormod

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and cause of dementia and is characterized by amyloid plaques and neurofibrillary tangles. AD has traditionally been considered to primarily affect gray matter, but multiple lines of evidence also indicate white matter (WM) pathology and associated small-vessel cerebrovascular disease. WM glucose delivery and metabolism may have implications for local tissue integrity, and [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) may be helpful to assess neuroglial and axonal function in WM. Hypothesizing that affection of oligodendroglia will be associated with loss of glucose uptake, we aimed to investigate glucose metabolism in magnetic resonance imaging (MRI) white matter hyperintensities (WMHs) and normal-appearing WM in patients with and without evidence of amyloid plaques. Subjects with mild cognitive impairment or subjective cognitive decline were included and dichotomized according to pathological (Aβ+) or normal (Aβ−) concentrations of cerebrospinal fluid amyloid-β 1–42. A total of 50 subjects were included, of whom 30 subjects were classified as Aβ(+) and 20 subjects as Aβ(−). All subjects were assessed with MRI and FDG-PET. FDG-PET images were corrected for effects of partial voluming and normalized to cerebellar WM, before determining WMH FDG-uptake. Although there were no significant differences between the groups in terms of age, WMH volume, number of individual WMHs, or WMH distribution, we found significantly lower (p = 0.021) FDG-uptake in WMHs in Aβ(+) subjects (mean = 0.662, SD = 0.113) compared to Aβ(−) subjects (mean = 0.596, SD = 0.073). There were no significant group differences in the FDG-uptake in normal-appearing WM. Similar results were obtained without correction for effects of partial voluming. Our findings add to the evidence for a link between Aβ dysmetabolism and WM pathology in AD. PMID:27917152

  15. Mechanical properties of gray and white matter brain tissue by indentation.

    PubMed

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C; Kuhl, Ellen

    2015-06-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.89 5kPa ± 0.592 kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389 kPa ± 0.289 kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders.

  16. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies.

    PubMed

    Narayana, Ponnada A; Herrera, Juan J; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L; Moeller, F Gerard

    2014-03-30

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.

  17. Caffeine, cognitive functioning, and white matter lesions in the elderly: establishing causality from epidemiological evidence.

    PubMed

    Ritchie, Karen; Artero, Sylvaine; Portet, Florence; Brickman, Adam; Muraskin, Jordan; Beanino, Ephrem; Ancelin, Marie-Laure; Carrière, Isabelle

    2010-01-01

    The present study examines the epidemiological evidence for a causal relationship between caffeine consumption and cognitive deterioration in the elderly. Using a population of 641 elderly persons, we examined cognitive functioning, caffeine consumption, magnetic resonance imaging volumetrics, and other factors known to affect cognitive performance. Our findings demonstrate the association between caffeine consumption and lower cognitive change over time to be statistically significant for women only, taking into account multiple confounders, to be dose-dependent and temporarily related (caffeine consumption precedes cognitive change). Mean log transformed white matter lesion/cranial volume ratios were found to be significantly lower in women consuming more than 3 units of caffeine per day after adjustment for age (-1.23 SD=0.06) than in women consuming 2-3 units (-1.04 SD=0.04) or one unit or less (-1.04 SD=0.07, -35% in cm3 compared to low drinkers). This observation is coherent with biological assumptions that caffeine through adenosine is linked to amyloid accumulation and subsequently white matter lesion formation. The significant relationship observed between caffeine intake in women and lower cognitive decline is highly likely to be a true causal relationship and not a spurious association.

  18. Mapping of ApoE4 related white matter damage using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Gajawelli, Niharika; Hwang, Darryl H.; Kriger, Stephen; Law, Meng; Chui, Helena; Weiner, Michael; Lepore, Natasha

    2014-04-01

    ApoliopoproteinE Ɛ4 (ApoE-Ɛ4) polymorphism is the most well known genetic risk factor for developing Alzheimers Disease. The exact mechanism through which ApoE 4 increases AD risk is not fully known, but may be related to decreased clearance and increased oligomerization of Aβ. By making measurements of white matter integrity via diffusion MR and correlating the metrics in a voxel-based statistical analysis with ApoE-Ɛ4 genotype (whilst controlling for vascular risk factor, gender, cognitive status and age) we are able to identify changes in white matter associated with carrying an ApoE Ɛ4 allele. We found potentially significant regions (Puncorrected < 0:05) near the hippocampus and the posterior cingulum that were independent of voxels that correlated with age or clinical dementia rating (CDR) status suggesting that ApoE may affect cognitive decline via a pathway in dependent of normal aging and acute insults that can be measured by CDR and Framingham Coronary Risk Score (FCRS).

  19. White matter impairment in the speech network of individuals with autism spectrum disorder☆

    PubMed Central

    Peeva, M.G.; Tourville, J.A.; Agam, Y.; Holland, B.; Manoach, D.S.; Guenther, F.H.

    2013-01-01

    Impairments in language and communication are core features of Autism Spectrum Disorder (ASD), and a substantial percentage of children with ASD do not develop speech. ASD is often characterized as a disorder of brain connectivity, and a number of studies have identified white matter impairments in affected individuals. The current study investigated white matter integrity in the speech network of high-functioning adults with ASD. Diffusion tensor imaging (DTI) scans were collected from 18 participants with ASD and 18 neurotypical participants. Probabilistic tractography was used to estimate the connection strength between ventral premotor cortex (vPMC), a cortical region responsible for speech motor planning, and five other cortical regions in the network of areas involved in speech production. We found a weaker connection between the left vPMC and the supplementary motor area in the ASD group. This pathway has been hypothesized to underlie the initiation of speech motor programs. Our results indicate that a key pathway in the speech production network is impaired in ASD, and that this impairment can occur even in the presence of normal language abilities. Therapies that result in normalization of this pathway may hold particular promise for improving speech output in ASD. PMID:24273708

  20. In vivo magnetic resonance imaging of the human limbic white matter

    PubMed Central

    Mori, Susumu; Aggarwal, Manisha

    2014-01-01

    The limbic system mediates memory, behavior, and emotional output in the human brain, and is implicated in the pathology of Alzheimer’s disease and a wide spectrum of related neurological disorders. In vivo magnetic resonance imaging (MRI) of structural components comprising the limbic system and their interconnections via white matter pathways in the human brain has helped define current understanding of the limbic model based on the classical circuit proposed by Papez. MRI techniques, including diffusion MR imaging, provide a non-invasive method to characterize white matter tracts of the limbic system, and investigate pathological changes that affect these pathways in clinical settings. This review focuses on delineation of the anatomy of major limbic tracts in the human brain, namely, the cingulum, the fornix and fimbria, and the stria terminalis, based on in vivo MRI contrasts. The detailed morphology and intricate trajectories of these pathways that can be identified using relaxometry-based and diffusion-weighted MRI provide an important anatomical reference for evaluation of clinical disorders commonly associated with limbic pathology. PMID:25505883

  1. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics

    PubMed Central

    Jin, Yan; Shi, Yonggang; Zhan, Liang; Gutman, Boris; de Zubicaray, Greig I.; McMahon, Katie L.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion – a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a point-wise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins. PMID:24821529

  2. Chronic Cocaine Administration Causes Extensive White Matter Damage in Brain: Diffusion Tensor Imaging and Immunohistochemistry Studies

    PubMed Central

    Narayana, Ponnada A.; Herrera, Juan J.; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L.; Moeller, F. Gerard

    2014-01-01

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100 mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein – 43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). Significant increase in the activity in the fine motor movements and decrease in the number of rearing events were observed in the cocaine treated animals. Reduced MBP and Nogo-A, and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and increased GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure. PMID:24507117

  3. White Matter Loss in a Mouse Model of Periventricular Leukomalacia Is Rescued by Trophic Factors

    PubMed Central

    Espinosa-Jeffrey, Araceli; Barajas, Socorro A. R.; Arrazola, Alfonso R.; Taniguchi, Alana; Zhao, Paul M.; Bokhoor, Payam; Holley, Sandra M.; Dejarme, Don P.; Chu, Brian; Cepeda, Carlos; Levine, Michael S.; Gressens, Pierre; Feria-Velasco, Alfredo; de Vellis, Jean

    2013-01-01

    Periventricular leukomalacia (PVL) is the most frequent cause of cerebral palsy and other intellectual disabilities, and currently there is no treatment. In PVL, glutamate excitotoxicity (GME) leads to abnormal oligodendrocytes (OLs), myelin deficiency, and ventriculomegaly. We have previously identified that the combination of transferrin and insulin growth factors (TSC1) promotes endogenous OL regeneration and remyelination in the postnatal and adult rodent brain. Here, we produced a periventricular white matter lesion with a single intracerebral injection of N-methyl-d-aspartate (NMDA). Comparing lesions produced by NMDA alone and those produced by NMDA + TSC1 we found that: NMDA affected survival and reduced migration of OL progenitors (OLPs). In contrast, mice injected with NMDA + TSC1 proliferated twice as much indicating that TSC1 supported regeneration of the OLP population after the insult. Olig2-mRNA expression showed 52% OLP survival in mice receiving a NMDA injection and increased to 78% when TSC1 + NMDA were injected simultaneously and ventricular size was reduced by TSC1. Furthermore, in striatal slices TSC1 reduced the inward currents induced by NMDA in medium-sized spiny neurons, demonstrating neuroprotection. Thus, white matter loss after excitotoxicity can be partially rescued as TSC1 conferred neuroprotection to preexisting OLP and regeneration via OLP proliferation. Furthermore, we showed that early TSC1 administration maximizes neuroprotection. PMID:24961618

  4. White matter alterations in adults with probable developmental coordination disorder: an MRI diffusion tensor imaging study.

    PubMed

    Williams, Jacqueline; Kashuk, Saman R; Wilson, Peter H; Thorpe, Graham; Egan, Gary F

    2017-01-18

    Movement skill difficulties in children [or developmental coordination disorder (DCD)] often persist into adulthood (in up to 70% of cases). The suggestion of white matter microstructure alterations in children with DCD raises the question of whether similar alterations are present in adults with probable DCD (pDCD). Twelve adults with pDCD and 11 adults without pDCD underwent diffusion tensor imaging. The results showed that the pDCD group had significantly lower fractional anisotropy in the corticospinal tract and superior longitudinal fasciculus and lower mean diffusivity in the internal capsule and inferior longitudinal fasciculus. This suggests reduced white matter integrity in parietofrontal and corticospinal tracts, with possible compensatory increases in white matter integrity along the visual ventral stream and front-occipital networks. These findings support recent neuroimaging studies in children with DCD and suggest persistent neurobiological alterations along white matter tracts that are known to support motor planning, cognition and their association.

  5. White matter hyperintensities are associated with visual search behavior independent of generalized slowing in aging

    PubMed Central

    Lockhart, Samuel N.; Roach, Alexandra E.; Luck, Steven J.; Geng, Joy; Beckett, Laurel; Carmichael, Owen; DeCarli, Charles

    2014-01-01

    A fundamental controversy is whether cognitive decline with advancing age can be entirely explained by decreased processing speed, or whether specific neural changes can elicit cognitive decline, independent of slowing. These hypotheses are anchored by studies of healthy older individuals where age is presumed the sole influence. Unfortunately, advancing age is also associated with asymptomatic brain white matter injury. We hypothesized that differences in white matter injury extent, manifest by MRI white matter hyperintensities (WMH), mediate differences in visual attentional control in healthy aging, beyond processing speed differences. We tested young and cognitively healthy older adults on search tasks indexing speed and attentional control. Increasing age was associated with generally slowed performance. WMH was also associated with slowed search times independent of processing speed differences. Consistent with evidence attributing reduced network connectivity to WMH, these results conclusively demonstrate that clinically silent white matter injury contributes to slower search performance indicative of compromised cognitive control, independent of generalized slowing of processing speed. PMID:24183716

  6. White matter maturation supports the development of reasoning ability through its influence on processing speed.

    PubMed

    Ferrer, Emilio; Whitaker, Kirstie J; Steele, Joel S; Green, Chloe T; Wendelken, Carter; Bunge, Silvia A

    2013-11-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning ability over development. In particular, we sought to understand whether previously reported relationships between white matter microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume) supports improved processing speed, which, in turn, supports improved reasoning ability.

  7. Selective effects of aging on brain white matter microstructure: a diffusion tensor imaging tractography study.

    PubMed

    Michielse, Stijn; Coupland, Nick; Camicioli, Richard; Carter, Rawle; Seres, Peter; Sabino, Jennifer; Malykhin, Nikolai

    2010-10-01

    We examined age-related changes in the cerebral white matter. Structural magnetic resonance images (MRIs) and diffusion tensor images (DTIs) were acquired from 69 healthy subjects aged 22-84 years. Quantitative DTI tractography was performed for nine different white matter tracts to determine tract volume, fractional anisotropy (FA), mean diffusivity (MD), axial, and radial diffusivities. We used automated and manual segmentation to determine volumes of gray matter (GM), white mater (WM), cerebrospinal fluid (CSF), and intracranial space. The results showed significant effects of aging on WM, GM, CSF volumes, and selective effects of aging on structural integrity of different white matter tracts. WM of the prefrontal region was the most vulnerable to aging, while temporal lobe connections, cingulum, and parieto-occipital commissural connections showed relative preservation with age. This study was cross-sectional, and therefore, additional longitudinal studies are needed to confirm our findings.

  8. Effects of cholinesterase inhibition on brain white matter volume in Alzheimer's disease.

    PubMed

    Venneri, Annalena; Lane, Roger

    2009-02-18

    Brain white matter volume changes were quantified by using voxel-based morphometry in 26 minimal-to-mild Alzheimer's disease patients receiving cholinesterase inhibitors over 20 weeks. Patients treated with rivastigmine, an inhibitor of acetylcholinesterase and butyrylcholinesterase, did not show those reductions in white matter volume that were observed in patients treated with acetylcholinesterase-selective agents, donepezil and galantamine. This is the first time that dual cholinesterase inhibition has been shown to influence white matter volume specifically. The findings are consistent with a thesis that dual cholinesterase inhibition may have neuroprotective potential. Attenuated loss of brain volumes and delayed/slower long-term clinical decline in patients treated with agents such as rivastigmine may be due to less extensive white matter damage and loss of corticosubcortical connectivity.

  9. Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging.

    PubMed

    Malykhin, Nikolai; Vahidy, Sana; Michielse, Stijn; Coupland, Nick; Camicioli, Richard; Seres, Peter; Carter, Rawle

    2011-11-01

    Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of frontal callosal fibers to normal aging. The present study extended this examination systematically to other prefrontal white matter regions. Structural magnetic resonance imaging and DTI datasets were acquired from 69 healthy subjects aged 22-84 years. The prefrontal white matter was parcellated into several anatomical sub-regions: medial and lateral orbitofrontal white matter, dorsolateral prefrontal white matter, and medial prefrontal white matter, using reliable DTI-tractography protocols. Tract-specific characteristics were calculated using Matlab. Regression models were used to determine the relationship between age and structural integrity of white matter tracts. The results of our study demonstrate regional age-related changes in the prefrontal white matter tracts of the human brain. This study was cross-sectional and therefore additional longitudinal studies are needed to confirm our findings.

  10. Alterations in white matter volume and integrity in obesity and type 2 diabetes.

    PubMed

    van Bloemendaal, Liselotte; Ijzerman, Richard G; Ten Kulve, Jennifer S; Barkhof, Frederik; Diamant, Michaela; Veltman, Dick J; van Duinkerken, Eelco

    2016-06-01

    Type 2 diabetes mellitus (T2DM) is characterized by obesity, hyperglycemia and insulin resistance. Both T2DM and obesity are associated with cerebral complications, including an increased risk of cognitive impairment and dementia, however the underlying mechanisms are largely unknown. In the current study, we aimed to determine the relative contributions of obesity and the presence of T2DM to altered white matter structure. We used diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) to measure white matter integrity and volume in obese T2DM patients without micro- or macrovascular complications, age- gender- and BMI-matched normoglycemic obese subjects and age- and gender-matched normoglycemic lean subjects. We found that obese T2DM patients compared with lean subjects had lower axial diffusivity (in the right corticospinal tract, right inferior fronto-occipital tract, right superior longitudinal fasciculus and right forceps major) and reduced white matter volume (in the right inferior parietal lobe and the left external capsule region). In normoglycemic obese compared with lean subjects axial diffusivity as well as white matter volume tended to be reduced, whereas there were no significant differences between normoglycemic obese subjects and T2DM patients. Decreased white matter integrity and volume were univariately related to higher age, being male, higher BMI, HbA1C and fasting glucose and insulin levels. However, multivariate analyses demonstrated that only BMI was independently related to white matter integrity, and age, gender and BMI to white matter volume loss. Our data indicate that obese T2DM patients have reduced white matter integrity and volume, but that this is largely explained by BMI, rather than T2DM per se.

  11. White Matter Abnormalities in Patients with Treatment-Resistant Genetic Generalized Epilepsies

    PubMed Central

    Szaflarski, Jerzy P.; Lee, Seongtaek; Allendorfer, Jane B.; Gaston, Tyler E.; Knowlton, Robert C.; Pati, Sandipan; Ver Hoef, Lawrence W.; Deutsch, Georg

    2016-01-01

    Background Genetic generalized epilepsies (GGEs) are associated with microstructural brain abnormalities that can be evaluated with diffusion tensor imaging (DTI). Available studies on GGEs have conflicting results. Our primary goal was to compare the white matter structure in a cohort of patients with video/EEG-confirmed GGEs to healthy controls (HCs). Our secondary goal was to assess the potential effect of age at GGE onset on the white matter structure. Material/Methods A convenience sample of 23 patients with well-characterized treatment-resistant GGEs (13 female) was compared to 23 HCs. All participants received MRI at 3T. DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), were compared between groups using Tract-Based Spatial Statistics (TBSS). Results After controlling for differences between groups, abnormalities in DTI parameters were observed in patients with GGEs, including decreases in functional anisotropy (FA) in the hemispheric (left>right) and brain stem white matter. The examination of the effect of age at GGE onset on the white matter integrity revealed a significant negative correlation in the left parietal white matter region FA (R=−0.504; p=0.017); similar trends were observed in the white matter underlying left motor cortex (R=−0.357; p=0.103) and left posterior limb of the internal capsule (R=−0.319; p=0.148). Conclusions Our study confirms the presence of widespread white matter abnormalities in patients with GGEs and provides evidence that the age at GGE onset may have an important effect on white matter integrity. PMID:27283395

  12. Associations of White Matter Microstructure with Clinical and Demographic Characteristics in Heavy Drinkers

    PubMed Central

    Monnig, Mollie A.; Yeo, Ronald A.; Tonigan, J. Scott; McCrady, Barbara S.; Thoma, Robert J.; Sabbineni, Amithrupa; Hutchison, Kent E.

    2015-01-01

    Damage to the brain’s white matter is a signature injury of alcohol use disorders (AUDs), yet understanding of risks associated with clinical and demographic characteristics is incomplete. This study investigated alcohol problem severity, recent drinking behavior, and demographic factors in relation to white matter microstructure in heavy drinkers. Magnetic resonance imaging (MRI) scans, including diffusion tensor imaging (DTI), were collected from 324 participants (mean age = 30.9 ± 9.1 years; 30% female) who reported five or more heavy drinking episodes in the past 30 days. Drinking history and alcohol problem severity were assessed. A common white matter factor was created from fractional anisotropy (FA) values of five white matter tracts: body of corpus callosum, fornix, external capsule, superior longitudinal fasciculus, and cingulate gyrus. Previous research has implicated these tracts in heavy drinking. Structural equation modeling (SEM) analyses tested the hypothesis that, after controlling for duration of alcohol exposure, clinical and behavioral measures of alcohol use severity would be associated with lower white matter factor scores. Potential interactions with smoking status, gender, age, treatment-seeking status, and depression or anxiety symptoms also were tested. Controlling for number of years drinking, greater alcohol problem severity and recent drinking frequency were significantly associated with lower white matter factor scores. The effect of drinking frequency differed significantly for men and women, such that higher drinking frequency was linked to lower white matter factor scores in women but not in men. In conclusion, alcohol problem severity was a significant predictor of lower white matter FA in heavy drinkers, after controlling for duration of alcohol exposure. In addition, more frequent drinking contributed to lower FA in women but not men, suggesting gender-specific vulnerability to alcohol neurotoxicity. PMID:26529515

  13. Axon-glia synapses are highly vulnerable to white matter injury in the developing brain.

    PubMed

    Shen, Yan; Liu, Xiao-Bo; Pleasure, David E; Deng, Wenbin

    2012-01-01

    The biology of cerebral white matter injury has been woefully understudied, in part because of the difficulty of reliably modeling this type of injury in rodents. Periventricular leukomalacia (PVL) is the predominant form of brain injury and the most common cause of cerebral palsy in premature infants. PVL is characterized by predominant white matter injury. No specific therapy for PVL is presently available, because the pathogenesis is not well understood. Here we report that two types of mouse PVL models have been created by hypoxia-ischemia with or without systemic coadministration of lipopolysaccharide (LPS). LPS coadministration exacerbated hypoxic-ischemic white matter injury and led to enhanced microglial activation and astrogliosis. Drug trials with the antiinflammatory agent minocycline, the antiexcitotoxic agent NBQX, and the antioxidant agent edaravone showed various degrees of protection in the two models, indicating that excitotoxic, oxidative, and inflammatory forms of injury are involved in the pathogenesis of injury to immature white matter. We then applied immunoelectron microscopy to reveal fine structural changes in the injured white matter and found that synapses between axons and oligodendroglial precursor cells (OPCs) are quickly and profoundly damaged. Hypoxia-ischemia caused a drastic decrease in the number of postsynaptic densities associated with the glutamatergic axon-OPC synapses defined by the expression of vesicular glutamate transporters, vGluT1 and vGluT2, on axon terminals that formed contacts with OPCs in the periventricular white matter, resulted in selective shrinkage of the postsynaptic OPCs contacted by vGluT2 labeled synapses, and led to excitotoxicity mediated by GluR2-lacking, Ca(2+) -permeable AMPA receptors. Overall, the present study provides novel mechanistic insights into the pathogenesis of PVL and reveals that axon-glia synapses are highly vulnerable to white matter injury in the developing brain. More broadly, the

  14. Associations of White Matter Microstructure with Clinical and Demographic Characteristics in Heavy Drinkers.

    PubMed

    Monnig, Mollie A; Yeo, Ronald A; Tonigan, J Scott; McCrady, Barbara S; Thoma, Robert J; Sabbineni, Amithrupa; Hutchison, Kent E

    2015-01-01

    Damage to the brain's white matter is a signature injury of alcohol use disorders (AUDs), yet understanding of risks associated with clinical and demographic characteristics is incomplete. This study investigated alcohol problem severity, recent drinking behavior, and demographic factors in relation to white matter microstructure in heavy drinkers. Magnetic resonance imaging (MRI) scans, including diffusion tensor imaging (DTI), were collected from 324 participants (mean age = 30.9 ± 9.1 years; 30% female) who reported five or more heavy drinking episodes in the past 30 days. Drinking history and alcohol problem severity were assessed. A common white matter factor was created from fractional anisotropy (FA) values of five white matter tracts: body of corpus callosum, fornix, external capsule, superior longitudinal fasciculus, and cingulate gyrus. Previous research has implicated these tracts in heavy drinking. Structural equation modeling (SEM) analyses tested the hypothesis that, after controlling for duration of alcohol exposure, clinical and behavioral measures of alcohol use severity would be associated with lower white matter factor scores. Potential interactions with smoking status, gender, age, treatment-seeking status, and depression or anxiety symptoms also were tested. Controlling for number of years drinking, greater alcohol problem severity and recent drinking frequency were significantly associated with lower white matter factor scores. The effect of drinking frequency differed significantly for men and women, such that higher drinking frequency was linked to lower white matter factor scores in women but not in men. In conclusion, alcohol problem severity was a significant predictor of lower white matter FA in heavy drinkers, after controlling for duration of alcohol exposure. In addition, more frequent drinking contributed to lower FA in women but not men, suggesting gender-specific vulnerability to alcohol neurotoxicity.

  15. Genetic underpinnings of white matter 'connectivity': heritability, risk, and heterogeneity in schizophrenia.

    PubMed

    Voineskos, Aristotle N

    2015-01-01

    Schizophrenia is a highly heritable disorder. Thus, the combination of genetics and brain imaging may be a useful strategy to investigate the effects of risk genes on anatomical connectivity, and for gene discovery, i.e. discovering the genetic correlates of white matter phenotypes. Following a database search, I review evidence for heritability of white matter phenotypes. I also review candidate gene investigations, examining association of putative risk variants with white matter phenotypes, as well as the recent flurry of research exploring relationships of genome-wide significant risk loci with white matter phenotypes. Finally, I review multivariate and polygene approaches, which constitute a new wave of imaging-genetics research, including large collaborative initiatives aiming to discover new genes that may predict aspects of white matter microstructure. The literature supports the heritability of white matter phenotypes. Loci in genes intimately implicated in oligodendrocyte and myelin development, growth and maintenance, and neurotrophic systems are associated with white matter microstructure. GWAS variants have not yet sufficiently been explored using DTI-based evaluation of white matter to draw conclusions, although micro-RNA 137 is promising due to its potential regulation of other GWAS schizophrenia genes. Many imaging-genetic studies only include healthy participants, which, while helping control for certain confounds, cannot address questions related to disease heterogeneity or symptom expression, and thus more studies should include participants with schizophrenia. With sufficiently large sample sizes, the future of this field lies in polygene strategies aimed at risk prediction and heterogeneity dissection of schizophrenia that can translate to personalized interventions.

  16. White matter integrity in small vessel disease is related to cognition

    PubMed Central

    Tuladhar, Anil M.; van Norden, Anouk G.W.; de Laat, Karlijn F.; Zwiers, Marcel P.; van Dijk, Ewoud J.; Norris, David G.; de Leeuw, Frank-Erik

    2015-01-01

    Cerebral small vessel disease, including white matter hyperintensities (WMH) and lacunes of presumed vascular origin, is common in elderly people and is related to cognitive impairment and dementia. One possible mechanism could be the disruption of white matter tracts (both within WMH and normal-appearing white matter) that connect distributed brain regions involved in cognitive functions. Here, we investigated the relation between microstructural integrity of the white matter and cognitive functions in patients with small vessel disease. The Radboud University Nijmegen Diffusion tensor and Magnetic resonance Cohort study is a prospective cohort study among 444 independently living, non-demented elderly with cerebral small vessel disease, aged between 5500 and 85 years. All subjects underwent magnetic resonance imaging and diffusion tensor imaging scanning and an extensive neuropsychological assessment. We showed that loss of microstructural integrity of the white matter at specific locations was related to specific cognitive disturbances, which was mainly located in the normal-appearing white matter (p < 0.05, FWE-corrected for multiple comparisons). The microstructural integrity in the genu and splenium showed the highest significant relation with global cognitive function and executive functions, in the cingulum bundle with verbal memory performance. Associations between diffusion tensor imaging parameters and most cognitive domains remained present after adjustment for WMH and lacunes. In conclusion, cognitive disturbances in subjects with cerebral small vessel disease are related to microstructural integrity of multiple white matter fibers (within WMH and normal-appearing white matter) connecting different cortical and subcortical regions. PMID:25737960

  17. A white matter stroke model in the mouse: Axonal damage, progenitor responses and MRI correlates

    PubMed Central

    Sozmen, Elif G.; Kolekar, Arunima; Havton, Leif A.; Carmichael, S. Thomas

    2015-01-01

    Subcortical white matter stroke is a common stroke subtype but has had limited pre-clinical modeling. Recapitulating this disease process in mice has been impeded by the relative inaccessibility of the sub-cortical white matter arterial supply to induce white matter ischemia in isolation. In this report, we detail a subcortical white matter stroke model developed in the mouse and its characterization with a comprehensive set of MRI, immunohistochemical, neuronal tract tracing and electron microscopic studies. Focal injection of the vasoconstrictor endothelin-1 into the subcortical white matter produces an infarct core that develops a maximal MRI signal by day 2, which is comparable in relative size and location to human subcortical stroke. Immunohistochemical studies indicate that oligodendrocyte apoptosis is maximal at day 1 and apoptotic cells extend away from the stroke core into the peri-infarct white matter. The amount of myelin loss exceeds axonal fiber loss in this peri-infarct region. Activation of microglia/macrophages takes place at 1 day after injection near injured axons. Neuronal tract tracing demonstrates that subcortical white matter stroke disconnects a large region of bilateral sensorimotor cortex. There is a robust glial response after stroke by BrdU pulse-labeling, and oligodendrocyte precursor cells are initiated to proliferate and differentiate within the first week of injury. These results demonstrate the utility of the endothelin-1 mediated subcortical stroke in the mouse to study post-stroke repair mechanisms, as the infarct core extends through the partially damaged peri-infarct white matter and induces an early glial progenitor response. PMID:19439360

  18. White Matter and Gray Matter Segmentation in 4D Computed Tomography.

    PubMed

    Manniesing, Rashindra; Oei, Marcel T H; Oostveen, Luuk J; Melendez, Jaime; Smit, Ewoud J; Platel, Bram; Sánchez, Clara I; Meijer, Frederick J A; Prokop, Mathias; van Ginneken, Bram

    2017-12-01

    Modern Computed Tomography (CT) scanners are capable of acquiring contrast dynamics of the whole brain, adding functional to anatomical information. Soft tissue segmentation is important for subsequent applications such as tissue dependent perfusion analysis and automated detection and quantification of cerebral pathology. In this work a method is presented to automatically segment white matter (WM) and gray matter (GM) in contrast- enhanced 4D CT images of the brain. The method starts with intracranial segmentation via atlas registration, followed by a refinement using a geodesic active contour with dominating advection term steered by image gradient information, from a 3D temporal average image optimally weighted according to the exposures of the individual time points of the 4D CT acquisition. Next, three groups of voxel features are extracted: intensity, contextual, and temporal. These are used to segment WM and GM with a support vector machine. Performance was assessed using cross validation in a leave-one-patient-out manner on 22 patients. Dice coefficients were 0.81 ± 0.04 and 0.79 ± 0.05, 95% Hausdorff distances were 3.86 ± 1.43 and 3.07 ± 1.72 mm, for WM and GM, respectively. Thus, WM and GM segmentation is feasible in 4D CT with good accuracy.

  19. REDUCED THALAMIC VOLUME IN PRETERM INFANTS IS ASSOCIATED WITH ABNORMAL WHITE MATTER METABOLISM INDEPENDENT OF INJURY

    PubMed Central

    Wisnowski, Jessica L.; Ceschin, Rafael C.; Choi, So Young; Schmithorst, Vincent J.; Painter, Michael J.; Nelson, Marvin D.; Blüml, Stefan; Panigrahy, Ashok

    2015-01-01

    Introduction Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Methods Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23–36 weeks) who underwent MR examinations under clinical indications were included in this study. Results Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and amongst the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. Conclusion These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. PMID:25666231

  20. Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI

    PubMed Central

    Liu, Chunlei; Murphy, Nicole E.; Li, Wei

    2012-01-01

    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987

  1. Ischemic tolerance in pre-myelinated white matter: the role of astrocyte glycogen in brain pathology.

    PubMed

    Fern, Robert

    2015-06-01

    In isolated white matter, ischemic tolerance changes dramatically in the period immediately before the onset of myelination. In the absence of an extrinsic energy source, postnatal day 0 to 2 (P0 to P2) white matter axons are here shown to maintain excitability for over twice as long as axons >P2, a differential that was dependent on glycogen metabolism. Prolonged withdrawal of extrinsic energy supply tended to spare axons in zones around astrocytes, which are shown to be the sole repository for glycogen particles in developing white matter. Analysis of mitochondrial volume fraction revealed that neither axons nor astrocytes had a low metabolic rate in neonatal white matter, while oligodendroglia at older ages had an elevated metabolism. The astrocyte population is established early in neural development, and exhibits reduced cell density as maturation progresses and white matter expands. The findings show that this event establishes the necessary conditions for ischemia sensitivity in white matter and indicates that astrocyte proximity may be significant for the survival of neuronal elements in conditions associated with compromised energy supply.

  2. Brain-peripheral cell crosstalk in white matter damage and repair.

    PubMed

    Hayakawa, Kazuhide; Lo, Eng H

    2016-05-01

    White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

  3. Josef Klingler's models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging.

    PubMed

    Agrawal, Abhishek; Kapfhammer, Josef P; Kress, Annetrudi; Wichers, Hermann; Deep, Aman; Feindel, William; Sonntag, Volker K H; Spetzler, Robert F; Preul, Mark C

    2011-08-01

    During the 1930s, white matter tracts began to assume relevance for neurosurgery, especially after Cajal's work. In many reviews of white matter neurobiology, the seminal contributions of Josef Klingler (1888-1963) and their neurological applications have been overlooked. In 1934 at the University of Basel under Eugen Ludwig, Klingler developed a new method of dissection based on a freezing technique for brain tissue that eloquently revealed the white matter tracts. Klingler worked with anatomists, surgeons, and other scientists, and his models and dissections of white matter tracts remain arguably the most elegant ever created. He stressed 3-dimensional anatomic relationships and laid the foundation for defining mesial temporal, limbic, insular, and thalamic fiber and functional relationships and contributed to the potential of stereotactic neurosurgery. Around 1947, Klingler was part of a Swiss-German group that independently performed the first stereotactic thalamotomies, basing their targeting and logic on Klingler's white matter studies, describing various applications of stereotaxy and showing Klingler's work integrated into a craniocerebral topographic system for targeting with external localization of eloquent brain structures and stimulation of deep thalamic nuclei. Klingler's work has received renewed interest because it is applicable for correlating the results of the fiber-mapping paradigms from diffusion tensor imaging to actual anatomic evidence. Although others have described white matter tracts, none have had as much practical impact on neuroscience as Klinger's work. More importantly, Josef Klingler was an encouraging mentor, influencing neurosurgeons, neuroscientists, and brain imaging for more than three quarters of a century.

  4. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    PubMed

    Hummel, Nadine; Hüfner, Katharina; Stephan, Thomas; Linn, Jennifer; Kremmyda, Olympia; Brandt, Thomas; Flanagin, Virginia L

    2014-01-01

    Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI) to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction). Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  5. Age-related abnormalities in white matter microstructure in autism spectrum disorders

    PubMed Central

    Kleinhans, Natalia M.; Pauley, Gregory; Richards, Todd; Neuhaus, Emily; Martin, Nathalie; Corrigan, Neva M.; Shaw, Dennis W.; Estes, Annette; Dager, Stephen R.

    2012-01-01

    Abnormalities in structural and functional connectivity have been reported in autism spectrum disorders (ASD) across a wide age range. However, developmental changes in white matter microstructure are poorly understood. We used a cross-sectional design to determine whether white matter abnormalities measured using diffusion tensor imaging (DTI) were present in adolescents and adults with ASD and whether age-related changes in white matter microstructure differed between ASD and typically developing (TD) individuals. Participants included 28 individuals with ASD and 33 TD controls matched on age and IQ and assessed at one time point. Widespread decreased fractional anisotropy (FA), and increased radial diffusivity (RaD) and mean diffusivity (MD) were observed in the ASD group compared to the TD group. In addition, significant group-by-age interactions were also observed in FA, RaD, and MD in all major tracts except the brain stem, indicating that age-related changes in white matter microstructure differed between the groups. We propose that white matter microstructural changes in ASD may reflect myelination and/or other structural differences including differences in axonal density/arborization. In addition, we suggest that white matter microstuctural impairments may be normalizing during young adulthood in ASD. Future longitudinal studies that include a wider range of ages and more extensive clinical characterization will be critical for further uncovering the neurodevelopmental processes unfolding during this dynamic time in development. PMID:22902768

  6. White matter hypoperfusion and damage in dementia: post-mortem assessment.

    PubMed

    Love, Seth; Miners, J Scott

    2015-01-01

    Neuroimaging has revealed a range of white matter abnormalities that are common in dementia, some that predict cognitive decline. The abnormalities may result from structural diseases of the cerebral vasculature, such as arteriolosclerosis and amyloid angiopathy, but can also be caused by nonstructural vascular abnormalities (eg, of vascular contractility or permeability), neurovascular instability or extracranial cardiac or vascular disease. Conventional histopathological assessment of the white matter has tended to conflate morphological vascular abnormalities with changes that reflect altered interstitial fluid dynamics or white matter ischemic damage, even though the latter may be of extracranial or nonstructural etiology. However, histopathology is being supplemented by biochemical approaches, including the measurement of proteins involved in the molecular responses to brain ischemia, myelin proteins differentially susceptible to ischemic damage, vessel-associated proteins that allow rapid measurement of microvessel density, markers of blood-brain barrier dysfunction and axonal injury, and mediators of white matter damage. By combining neuroimaging with histopathology and biochemical analysis, we can provide reproducible, quantitative data on the severity of white matter damage, and information on its etiology and pathogenesis. Together these have the potential to inform and improve treatment, particularly in forms of dementia to which white matter hypoperfusion makes a significant contribution.

  7. Mapping joint grey and white matter reductions in Alzheimer's disease using joint independent component analysis.

    PubMed

    Guo, Xiaojuan; Han, Yuan; Chen, Kewei; Wang, Yan; Yao, Li

    2012-12-07

    Alzheimer's disease (AD) is a neurodegenerative disease concomitant with grey and white matter damages. However, the interrelationship of volumetric changes between grey and white matter remains poorly understood in AD. Using joint independent component analysis, this study identified joint grey and white matter volume reductions based on structural magnetic resonance imaging data to construct the covariant networks in twelve AD patients and fourteen normal controls (NC). We found that three networks showed significant volume reductions in joint grey-white matter sources in AD patients, including (1) frontal/parietal/temporal-superior longitudinal fasciculus/corpus callosum, (2) temporal/parietal/occipital-frontal/occipital, and (3) temporal-precentral/postcentral. The corresponding expression scores distinguished AD patients from NC with 85.7%, 100% and 85.7% sensitivity for joint sources 1, 2 and 3, respectively; 75.0%, 66.7% and 75.0% specificity for joint sources 1, 2 and 3, respectively. Furthermore, the combined source of three significant joint sources best predicted the AD/NC group membership with 92.9% sensitivity and 83.3% specificity. Our findings revealed joint grey and white matter loss in AD patients, and these results can help elucidate the mechanism of grey and white matter reductions in the development of AD.

  8. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity.

    PubMed

    Mackey, Allyson P; Whitaker, Kirstie J; Bunge, Silvia A

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  9. Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test.

    PubMed

    Matejko, Anna A; Price, Gavin R; Mazzocco, Michèle M M; Ansari, Daniel

    2013-02-01

    Mathematical skills are of critical importance, both academically and in everyday life. Neuroimaging research has primarily focused on the relationship between mathematical skills and functional brain activity. Comparatively few studies have examined which white matter regions support mathematical abilities. The current study uses diffusion tensor imaging (DTI) to test whether individual differences in white matter predict performance on the math subtest of the Preliminary Scholastic Aptitude Test (PSAT). Grades 10 and 11 PSAT scores were obtained from 30 young adults (ages 17-18) with wide-ranging math achievement levels. Tract based spatial statistics was used to examine the correlation between PSAT math scores, fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). FA in left parietal white matter was positively correlated with math PSAT scores (specifically in the left superior longitudinal fasciculus, left superior corona radiata, and left corticospinal tract) after controlling for chronological age and same grade PSAT critical reading scores. Furthermore, RD, but not AD, was correlated with PSAT math scores in these white matter microstructures. The negative correlation with RD further suggests that participants with higher PSAT math scores have greater white matter integrity in this region. Individual differences in FA and RD may reflect variability in experience dependent plasticity over the course of learning and development. These results are the first to demonstrate that individual differences in white matter are associated with mathematical abilities on a nationally administered scholastic aptitude measure.

  10. Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease.

    PubMed

    Muñoz Maniega, Susana; Chappell, Francesca M; Valdés Hernández, Maria C; Armitage, Paul A; Makin, Stephen D; Heye, Anna K; Thrippleton, Michael J; Sakka, Eleni; Shuler, Kirsten; Dennis, Martin S; Wardlaw, Joanna M

    2017-02-01

    White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood-brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3-90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities ( P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age ( P < 0.001), all biomarkers varied with white matter hyperintensities burden ( P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension ( P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood-brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood-brain barrier leakage

  11. Neuropathological Correlates of Temporal Pole White Matter Hyperintensities in CADASIL

    PubMed Central

    Yamamoto, Yumi; Ihara, Masafumi; Tham, Carina; Low, Roger WC; Slade, Janet Y; Moss, Tim; Oakley, Arthur E; Polvikoski, Tuomo; Kalaria, Raj N

    2009-01-01

    Background and Purpose White matter (WM) hyperintensities upon magnetic resonance imaging (MRI) or leukoaraiosis is characteristic of stroke syndromes. Increased MRI signals in the anterior temporal pole are suggested to be diagnostic for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), with 90% sensitivity and 100% specificity. The structural correlates of these specific WM hyperintensities seen on T2-weighted and FLAIR sequences in the temporal pole of CADASIL are unclear. We assessed pathological changes in post-mortem tissue from the temporal pole to reveal the cause of CADASIL specific WM hyperintensities. Materials & Methods A combination of tinctorial and immunostaining approaches and in vitro imaging methods were used to quantify the extent of perivascular space (PVS), arteriosclerosis determined as the sclerotic index (SI), WM myelination as the myelin index (MI) and damage within the WM as accumulated degraded myelin basic protein (dMBP) in samples of the anterior temporal pole from 9 CADASIL and 8 sporadic subcortical ischaemic vascular dementia (SIVD) cases, and 5 similar age (young) and 5 older controls. Luxol fast blue (LFB) stained serial sections from a CADASIL case were also used to reconstruct the temporal pole, which was then compared to the MR images. Results LFB sections used to reconstruct the temporal pole revealed an abundance of enlarged PVS in the WM that topographically appeared as indistinct opaque regions. The mean and total areas of the PVS per WM area (%PVS) were significantly greater in CADASIL compared to the controls. The MI was severely reduced in CADASIL in relation to the SIVD and control sample that was consistent with increased immunoreactivity of dMBP, indicating myelin degeneration. Cerebral microvessels associated with the PVS exhibited a 4.5 fold greater number of basophilic (hyalinised) vessels and a 57% increase in the SI values in CADASIL subjects compared to young

  12. Sex-related difference in human white matter volumes studied: Inspection of the corpus callosum and other white matter by VBM

    PubMed Central

    Shiino, Akihiko; Chen, Yen-wei; Tanigaki, Kenji; Yamada, Atsushi; Vigers, Piers; Watanabe, Toshiyuki; Tooyama, Ikuo; Akiguchi, Ichiro

    2017-01-01

    It has been contended that any observed difference of the corpus callosum (CC) size between men and women is not sex-related but brain-size-related. A recent report, however, showed that the midsagittal CC area was significantly larger in women in 37 brain-size-matched pairs of normal young adults. Since this constituted strong evidence of sexual dimorphism and was obtained from publicly available data in OASIS, we examined volume differences within the CC and in other white matter using voxel-based morphometry (VBM). We created a three-dimensional region of interest of the CC and measured its volume. The VBM statistics were analyzed by permutation test and threshold-free cluster enhancement (TFCE) with the significance levels at FWER < 0.05. The CC volume was significantly larger in women in the same 37 brain-size-matched pairs. We found that the CC genu was the subregion showing the most significant sex-related difference. We also found that white matter in the bilateral anterior frontal regions and the left lateral white matter near to Broca’s area were larger in women, whereas there were no significant larger regions in men. Since we used brain-size-matched subjects, our results gave strong volumetric evidence of localized sexual dimorphism of white matter. PMID:28045130

  13. Sex-related difference in human white matter volumes studied: Inspection of the corpus callosum and other white matter by VBM

    NASA Astrophysics Data System (ADS)

    Shiino, Akihiko; Chen, Yen-Wei; Tanigaki, Kenji; Yamada, Atsushi; Vigers, Piers; Watanabe, Toshiyuki; Tooyama, Ikuo; Akiguchi, Ichiro

    2017-01-01

    It has been contended that any observed difference of the corpus callosum (CC) size between men and women is not sex-related but brain-size-related. A recent report, however, showed that the midsagittal CC area was significantly larger in women in 37 brain-size-matched pairs of normal young adults. Since this constituted strong evidence of sexual dimorphism and was obtained from publicly available data in OASIS, we examined volume differences within the CC and in other white matter using voxel-based morphometry (VBM). We created a three-dimensional region of interest of the CC and measured its volume. The VBM statistics were analyzed by permutation test and threshold-free cluster enhancement (TFCE) with the significance levels at FWER < 0.05. The CC volume was significantly larger in women in the same 37 brain-size-matched pairs. We found that the CC genu was the subregion showing the most significant sex-related difference. We also found that white matter in the bilateral anterior frontal regions and the left lateral white matter near to Broca’s area were larger in women, whereas there were no significant larger regions in men. Since we used brain-size-matched subjects, our results gave strong volumetric evidence of localized sexual dimorphism of white matter.

  14. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  15. Tract-based analysis of white matter degeneration in Alzheimer's disease.

    PubMed

    Lee, S-H; Coutu, J-P; Wilkens, P; Yendiki, A; Rosas, H D; Salat, D H

    2015-08-20

    Although much prior work has focused on the known cortical pathology that defines Alzheimer's disease (AD) histologically, recent work has additionally demonstrated substantial damage to the cerebral white matter in this condition. While there is large evidence of diffuse damage to the white matter in AD, it is unclear whether specific white matter tracts exhibit a more accelerated pattern of damage and whether the damage is associated with the classical neurodegenerative changes of AD. In this study, we investigated microstructural differences in the large fascicular bundles of the cerebral white matter of individuals with AD and mild cognitive impairment (MCI), using recently developed automated diffusion tractography procedures in the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset. Eighteen major fiber bundles in a total of 36 individuals with AD, 81 MCI and 60 control participants were examined with the TRActs Constrained by UnderLying Anatomy (TRACULA) procedure available as part of the FreeSurfer image processing software package. For each fiber bundle, the mean fractional anisotropy (FA), and mean, radial and axial diffusivities were calculated. Individuals with AD had increased diffusivities in both left and right cingulum-angular bundles compared to control participants (p<0.001). Individuals with MCI also had increased axial and mean diffusivities and increased FA in both cingulum-angular bundles compared to control participants (p<0.05) and decreased radial diffusivity compared to individuals with AD (p<0.05). We additionally examined how white matter deterioration relates to hippocampal volume, a traditional imaging measure of AD pathology, and found the strongest negative correlations in AD patients between hippocampal volume and the diffusivities of the cingulum-angular and cingulum-cingulate gyrus bundles and of the corticospinal tracts (p<0.05). However, statistically controlling for hippocampal volume did not remove all group

  16. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging

    PubMed Central

    Sullivan, Edith V.; Rohlfing, Torsten; Pfefferbaum, Adolf

    2009-01-01

    The integrity of white matter, as measured in vivo with diffusion tensor imaging (DTI), is disrupted in normal aging. A current consensus is that in adults advancing age affects anterior brain regions disproportionately more than posterior regions; however, the mainstay of studies supporting this anterior-posterior gradient is based primarily on measures of the corpus callosum. Using our quantitative fiber tracking approach, we assessed fiber tract integrity of samples of major white matter cortical, subcortical, interhemispheric, and cerebellar systems (11 bilateral and 2 callosal) on DTI data collected at 1.5 T magnet strength. Participants were 55 men (age 20-78 years) and 65 women (age 28-81 years), deemed healthy and cognitively intact following interview and behavioral testing. Fiber integrity was measured as orientational diffusion coherence (fractional anisotropy, FA) and magnitude of diffusion, which was quantified separately for longitudinal diffusivity (λL), an index of axonal length or number, and transverse diffusivity (λT), an index of myelin integrity. Aging effects were more evident in diffusivity than FA measures. Men and women, examined separately, showed similar age-related increases in longitudinal and transverse diffusivity in fibers of the internal and external capsules bilaterally and the fornix. FA was lower and diffusivity higher in anterior than posterior fibers of regional paired comparisons (genu versus splenium and frontal versus occipital forceps). Diffusivity with older age was generally greater or FA lower in the superior than inferior fiber systems (longitudinal fasciculi, cingulate bundles), with little to no evidence for age-related degradation in pontine or cerebellar systems. The most striking sex difference emerged for the corpus callosum, for which men showed significant decline in FA and increase in longitudinal and transverse diffusivity in the genu but not splenium. By contrast, in women the age effect was present in both

  17. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    PubMed Central

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  18. The effects of bilingualism on the white matter structure of the brain.

    PubMed

    Pliatsikas, Christos; Moschopoulou, Elisavet; Saddy, James Douglas

    2015-02-03

    Recent studies suggest that learning and using a second language (L2) can affect brain structure, including the structure of white matter (WM) tracts. This observation comes from research looking at early and older bilingual individuals who have been using both their first and second languages on an everyday basis for many years. This study investigated whether young, highly immersed late bilinguals would also show structural effects in the WM that can be attributed to everyday L2 use, irrespective of critical periods or the length of L2 learning. Our Tract-Based Spatial Statistics analysis revealed higher fractional anisotropy values for bilinguals vs. monolinguals in several WM tracts that have been linked to language processing and in a pattern closely resembling the results reported for older and early bilinguals. We propose that learning and actively using an L2 after childhood can have rapid dynamic effects on WM structure, which in turn may assist in preserving WM integrity in older age.

  19. Frontal white matter damage impairs response inhibition in children following traumatic brain injury.

    PubMed

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-05-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition.

  20. Constrained by Our Connections: White Matter's Key Role in Interindividual Variability in Visual Working Memory Capacity

    PubMed Central

    Golestani, Ali M.; Miles, Laura; Babb, James; Castellanos, F. Xavier; Malaspina, Dolores

    2014-01-01

    Visual working memory (VWM) plays an essential role in many perceptual and higher-order cognitive processes. Despite its reliance on a broad network of brain regions, VWM has a capacity limited to a few objects. This capacity varies substantially across individuals and relates closely to measures of overall cognitive function (Luck and Vogel, 2013). The mechanisms underlying these properties are not completely understood, although the amplitude of neural signal oscillations (Vogel and Machizawa, 2004) and brain activation in specific cortical regions (Todd and Marois, 2004) have been implicated. Variability in VWM performance may also reflect variability in white matter structural properties. However, data based primarily on diffusion tensor imaging approaches remain inconclusive. Here, we investigate the relationship between white matter and VWM capacity in human subjects using an advanced diffusion imaging technique, diffusion kurtosis imaging. Diffusion kurtosis imaging provides several novel quantitative white mater metrics, among them the axonal water fraction (faxon), an index of axonal density and caliber. Our results show that 59% of individual variability in VWM capacity may be explained by variations in faxon within a widely distributed network of white matter tracts. Increased faxon associates with increased VWM capacity. An additional 12% in VWM capacity variance may be explained by diffusion properties of the extra-axonal space. These data demonstrate, for the first time, the key role of white matter in limiting VWM capacity in the healthy adult brain and suggest that white matter may represent an important therapeutic target in disorders of impaired VWM and cognition. PMID:25378158

  1. Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter

    PubMed Central

    Ezzati, Mojgan; Bainbridge, Alan; Broad, Kevin D; Kawano, Go; Oliver-Taylor, Aaron; Rocha-Ferreira, Eridan; Alonso-Alconada, Daniel; Fierens, Igor; Rostami, Jamshid; Jane Hassell, K; Tachtsidis, Ilias; Gressens, Pierre; Hristova, Mariya; Bennett, Kate; Lebon, Sophie; Fleiss, Bobbi; Yellon, Derek; Hausenloy, Derek J; Golay, Xavier

    2015-01-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC – with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter. PMID:26661194

  2. White matter microstructure and the variable adult outcome of childhood attention deficit hyperactivity disorder.

    PubMed

    Shaw, Philip; Sudre, Gustavo; Wharton, Amy; Weingart, Daniel; Sharp, Wendy; Sarlls, Joelle

    2015-02-01

    Changes in cerebral cortical anatomy have been tied to the clinical course of attention deficit hyperactivity disorder (ADHD). We now ask if alterations in white matter tract microstructure are likewise linked with the adult outcome of childhood ADHD. Seventy-five young adults, 32 with ADHD persisting from childhood and 43 with symptom remission were contrasted against 74 never-affected comparison subjects. Using diffusion tensor imaging, we defined fractional anisotropy, a metric related to white matter microstructure, along with measures of diffusion perpendicular (radial) and parallel (axial) to the axon. Analyses were adjusted for head motion, age and sex, and controlled for multiple comparisons and medication history. Tract-based analyses showed that greater adult inattention, but not hyperactivity-impulsivity, was associated with significantly lower fractional anisotropy in the left uncinate (standardized β=-0.37, t=3.28, p=0.002) and inferior fronto-occipital fasciculi (standardized β=-0.37, t=3.29, p=0.002). The ADHD group with symptoms persisting into adulthood had significantly lower fractional anisotropy than the never-affected controls in these tracts, differences associated with medium to large effect sizes. By contrast, the ADHD group that remitted by adulthood did not differ significantly from controls. The anomalies were found in tracts that connect components of neural systems pertinent to ADHD, such as attention control (inferior fronto-occipital fasciculus) and emotion regulation and the processing of reward (the uncinate fasciculus). Change in radial rather than axial diffusivity was the primary driver of this effect, suggesting pathophysiological processes including altered myelination as future targets for pharmacological and behavioral interventions.

  3. Depressive symptoms and white matter dysfunction in retired NFL players with concussion history

    PubMed Central

    Strain, Jeremy; Didehbani, Nyaz; Cullum, C. Munro; Mansinghani, Sethesh; Conover, Heather; Kraut, Michael A.; Womack, Kyle B.

    2013-01-01

    Objective: To determine whether correlates of white matter integrity can provide general as well as specific insight into the chronic effects of head injury coupled with depression symptom expression in professional football players. Method: We studied 26 retired National Football League (NFL) athletes who underwent diffusion tensor imaging (DTI) scanning. Depressive symptom severity was measured using the Beck Depression Inventory II (BDI-II) including affective, cognitive, and somatic subfactor scores (Buckley 3-factor model). Fractional anisotropy (FA) maps were processed using tract-based spatial statistics from FSL. Correlations between FA and BDI-II scores were assessed using both voxel-wise and region of interest (ROI) techniques, with ROIs that corresponded to white matter tracts. Tracts demonstrating significant correlations were further evaluated using a receiver operating characteristic curve that utilized the mean FA to distinguish depressed from nondepressed subjects. Results: Voxel-wise analysis identified widely distributed voxels that negatively correlated with total BDI-II and cognitive and somatic subfactors, with voxels correlating with the affective component (p < 0.05 corrected) localized to frontal regions. Four tract ROIs negatively correlated (p < 0.01) with total BDI-II: forceps minor, right frontal aslant tract, right uncinate fasciculus, and left superior longitudinal fasciculus. FA of the forceps minor differentiated depressed from nondepressed athletes with 100% sensitivity and 95% specificity. Conclusion: Depressive symptoms in retired NFL athletes correlate negatively with FA using either an unbiased voxel-wise or an ROI-based, tract-wise approach. DTI is a promising biomarker for depression in this population. PMID:23709590

  4. Regional MRI Diffusion, White-Matter Hyperintensities, and Cognitive Function in Alzheimer's Disease and Vascular Dementia

    PubMed Central

    Scrascia, Federica; Quattrocchi, Carlo Cosimo; Errante, Yuri; Gangemi, Emma; Curcio, Giuseppe; Ursini, Francesca; Silvestrini, Mauro; Maggio, Paola; Beomonte Zobel, Bruno; Rossini, Paolo Maria; Pasqualetti, Patrizio; Falsetti, Lorenzo; Vernieri, Fabrizio

    2016-01-01

    Background and Purpose An increase in brain water diffusivity as measured using magnetic resonance imaging (MRI) has been recently reported in normal-appearing white matter (NAWM) in patients affected by cognitive impairment. However, it remains to be clarified if this reflects an overt neuronal tissue disruption that leads to degenerative or microvascular lesions. This question was addressed by comparing the regional MRI apparent diffusion coefficients (ADCs) of NAWM in patients affected by Alzheimer's disease (AD) or vascular dementia (VaD). The relationships of ADCs with the white-matter hyperintensity (WMH) burden, carotid atherosclerosis, and cognitive performance were also investigated. Methods Forty-nine AD and 31 VaD patients underwent brain MRI to assess the WMH volume and regional NAWM ADCs, neuropsychological evaluations, and carotid ultrasound to assess the plaque severity and intima-media thickness (IMT). Results Regional ADCs in NAWM did not differ between VaD and AD patients, while the WMH volume was greater in VaD than in AD patients. The ADC in the anterior corpus callosum was related to the WMH volume, while a greater carotid IMT was positively correlated with the temporal ADC and WMH volume. The memory performance was worse in patients with higher temporal ADCs. Constructional praxis scores were related to ADCs in the frontal, and occipital lobes, in the anterior and posterior corpus callosum as well as to the WMH volume. Abstract reasoning was related to frontal, parietal, and temporal ADCs. Conclusions Our data show that higher regional ADCs in NAWM are associated with microcirculatory impairment, as depicted by the WMH volume. Moreover, regional ADCs in NAWM are differently associated with the neuropsychological performances in memory, constructional praxia, and abstract reasoning domains. PMID:27074295

  5. Mapping white-matter functional organization at rest and during naturalistic visual perception.

    PubMed

    Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming

    2017-02-01

    Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts.

  6. Cortical Gray and Adjacent White Matter Demonstrate Synchronous Maturation in Very Preterm Infants.

    PubMed

    Smyser, Tara A; Smyser, Christopher D; Rogers, Cynthia E; Gillespie, Sarah K; Inder, Terrie E; Neil, Jeffrey J

    2016-08-01

    Spatial and functional gradients of development have been described for the maturation of cerebral gray and white matter using histological and radiological approaches. We evaluated these patterns in very preterm (VPT) infants using diffusion tensor imaging. Data were obtained from 3 groups: 1) 22 VPT infants without white matter injury (WMI), of whom all had serial MRI studies during the neonatal period, 2) 19 VPT infants with WMI, of whom 3 had serial MRI studies and 3) 12 healthy, term-born infants. Regions of interest were placed in the cortical gray and adjacent white matter in primary motor, primary visual, visual association, and prefrontal regions. From the MRI data at term-equivalent postmenstrual age, differences in mean diffusivity were found in all areas between VPT infants with WMI and the other 2 groups. In contrast, minimal differences in fractional anisotropy were found between the 3 groups. These findings suggest that cortical maturation is delayed in VPT infants with WMI when compared with term control infants and VPT infants without WMI. From the serial MRI data from VPT infants, synchronous development between gray and white matter was evident in all areas and all groups, with maturation in primary motor and sensory regions preceding that of association areas. This finding highlights the regionally varying but locally synchronous nature of the development of cortical gray matter and its adjacent white matter.

  7. Community influences on white racial attitudes: what matters and why?

    PubMed

    Taylor, Marylee C; Mateyka, Peter J

    2011-01-01

    Tracing the roots of racial attitudes in historical events and individual biographies has been a long-standing goal of race relations scholars. Recent years have seen a new development in racial attitude research: Local community context has entered the spotlight as a potential influence on racial views. The race composition of the locality has been the most common focus; evidence from earlier decades suggests that white Americans are more likely to hold anti-black attitudes if they live in areas where the African-American population is relatively large. However, an influential 2000 article argued that the socioeconomic composition of the white community is a more powerful influence on white attitudes: In low-socioeconomic status (SES) locales, “stress-inducing” deprivations and hardships in whites' own lives purportedly lead them to disparage blacks. The study reported here reassesses this “scapegoating” claim, using data from the 1998 to 2002 General Social Surveys linked to 2000 census information about communities. Across many dimensions of racial attitudes, there is pronounced influence of both local racial proportions and college completion rates among white residents. However, the economic dimension of SES exerts negligible influence on white racial attitudes, suggesting that local processes other than scapegoating must be at work.

  8. White matter structural network abnormalities underlie executive dysfunction in amyotrophic lateral sclerosis.

    PubMed

    Dimond, Dennis; Ishaque, Abdullah; Chenji, Sneha; Mah, Dennell; Chen, Zhang; Seres, Peter; Beaulieu, Christian; Kalra, Sanjay

    2017-03-01

    Research in amyotrophic lateral sclerosis (ALS) suggests that executive dysfunction, a prevalent cognitive feature of the disease, is associated with abnormal structural connectivity and white matter integrity. In this exploratory study, we investigated the white matter constructs of executive dysfunction, and attempted to detect structural abnormalities specific to cognitively impaired ALS patients. Eighteen ALS patients and 22 age and education matched healthy controls underwent magnetic resonance imaging on a 4.7 Tesla scanner and completed neuropsychometric testing. ALS patients were categorized into ALS cognitively impaired (ALSci, n = 9) and ALS cognitively competent (ALScc, n = 5) groups. Tract-based spatial statistics and connectomics were used to compare white matter integrity and structural connectivity of ALSci and ALScc patients. Executive function performance was correlated with white matter FA and network metrics within the ALS group. Executive function performance in the ALS group correlated with global and local network properties, as well as FA, in regions throughout the brain, with a high predilection for the frontal lobe. ALSci patients displayed altered local connectivity and structural integrity in these same frontal regions that correlated with executive dysfunction. Our results suggest that executive dysfunction in ALS is related to frontal network disconnectivity, which potentially mediates domain-specific, or generalized cognitive impairment, depending on the degree of global network disruption. Furthermore, reported co-localization of decreased network connectivity and diminished white matter integrity suggests white matter pathology underlies this topological disruption. We conclude that executive dysfunction in ALSci is associated with frontal and global network disconnectivity, underlined by diminished white matter integrity. Hum Brain Mapp 38:1249-1268, 2017. © 2016 Wiley Periodicals, Inc.

  9. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning.

    PubMed

    Jolles, Dietsje; Wassermann, Demian; Chokhani, Ritika; Richardson, Jennifer; Tenison, Caitlin; Bammer, Roland; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2016-04-01

    Plasticity of white matter tracts is thought to be essential for cognitive development and academic skill acquisition in children. However, a dearth of high-quality diffusion tensor imaging (DTI) data measuring longitudinal changes with learning, as well as methodological difficulties in multi-time point tract identification have limited our ability to investigate plasticity of specific white matter tracts. Here, we examine learning-related changes of white matter tracts innervating inferior parietal, prefrontal and temporal regions following an intense 2-month math tutoring program. DTI data were acquired from 18 third grade children, both before and after tutoring. A novel fiber tracking algorithm based on a White Matter Query Language (WMQL) was used to identify three sections of the superior longitudinal fasciculus (SLF) linking frontal and parietal (SLF-FP), parietal and temporal (SLF-PT) and frontal and temporal (SLF-FT) cortices, from which we created child-specific probabilistic maps. The SLF-FP, SLF-FT, and SLF-PT tracts identified with the WMQL method were highly reliable across the two time points and showed close correspondence to tracts previously described in adults. Notably, individual differences in behavioral gains after 2 months of tutoring were specifically correlated with plasticity in the left SLF-FT tract. Our results extend previous findings of individual differences in white matter integrity, and provide important new insights into white matter plasticity related to math learning in childhood. More generally, our quantitative approach will be useful for future studies examining longitudinal changes in white matter integrity associated with cognitive skill development.

  10. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study.

    PubMed

    Silk, Timothy J; Vance, Alasdair; Rinehart, Nicole; Bradshaw, John L; Cunnington, Ross

    2009-09-01

    Current evidence suggests that attention deficit hyperactivity disorder (ADHD) involves dysfunction in wide functional networks of brain areas associated with attention and cognition. This study examines the structural integrity of white-matter neural pathways, which underpin these functional networks, connecting fronto-striatal and fronto-parietal circuits, in children with ADHD. Fifteen right-handed 8 to 18-year-old males with ADHD-combined type and 15 right-handed, age, verbal, and performance IQ-matched, healthy males underwent diffusion tensor imaging. A recent method of tract-based spatial statistics was used to examine fractional anisotropy (FA) and mean diffusivity within major white-matter pathways throughout the whole-brain. White-matter abnormalities were found in several distinct clusters within left fronto-temporal regions and right parietal-occipital regions. Specifically, participants with ADHD showed greater FA in white-matter regions underlying inferior parietal, occipito-parietal, inferior frontal, and inferior temporal cortex. Secondly, eigenvalue analysis suggests that the difference in FA in ADHD may relate to a lesser degree of neural branching within key white-matter pathways. Tractography methods showed these regions to generally form part of white-matter pathways connecting prefrontal and parieto-occipital areas with the striatum and the cerebellum. Our findings demonstrate anomalous white-matter development in ADHD in distinct cortical regions that have previously been shown to be dysfunctional or hypoactive in fMRI studies of ADHD. These data add to an emerging picture of abnormal development within fronto-parietal cortical networks that may underpin the cognitive and attentional disturbances associated with ADHD.

  11. Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance

    PubMed Central

    Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.

    2009-01-01

    Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white matter-cognition relation reduces the magnitude of age-cognition relation. In this research, we tested the mediating role of white matter integrity, in the context of a task switching paradigm involving word categorization. Participants were 20 healthy, community-dwelling older adults (60–85 years), and 20 younger adults (18–27 years). From diffusion tensor imaging (DTI) tractography, we obtained fractional anisotropy (FA) as an index of white matter integrity in the genu and splenium of the corpus callosum and the superior longitudinal fasciculus (SLF). Mean FA values exhibited age-related decline consistent with a decrease in white matter integrity. From a model of reaction time distributions, we obtained independent estimates of the decisional and nondecisional (perceptual-motor) components of task performance. Age-related decline was evident in both components. Critically, age differences in task performance were mediated by FA in two regions: the central portion of the genu, and splenium-parietal fibers in the right hemisphere. This relation held only for the decisional component and was not evident in the nondecisional component. This result is the first demonstration that the integrity of specific white matter tracts is a mediator of age-related changes in cognitive performance. PMID:18564054

  12. Cognitive State following Stroke: The Predominant Role of Preexisting White Matter Lesions

    PubMed Central

    Kliper, Efrat; Ben Assayag, Einor; Tarrasch, Ricardo; Artzi, Moran; Korczyn, Amos D.; Shenhar-Tsarfaty, Shani; Aizenstein, Orna; Hallevi, Hen; Mike, Anat; Shopin, Ludmila; Bornstein, Natan M.; Bashat, Dafna Ben

    2014-01-01

    Background and purpose Stroke is a major cause of cognitive impairment and dementia in adults, however the role of the ischemic lesions themselves, on top of other risk factors known in the elderly, remains controversial. This study used structural equation modeling to determine the respective impact of the new ischemic lesions' volume, preexisting white matter lesions and white matter integrity on post stroke cognitive state. Methods Consecutive first ever mild to moderate stroke or transient ischemic attack patients recruited into the ongoing prospective TABASCO study underwent magnetic resonance imaging scans within seven days of stroke onset and were cognitively assessed one year after the event using a computerized neuropsychological battery. The volumes of both ischemic lesions and preexisting white matter lesions and the integrity of the normal appearing white matter tissue were measured and their contribution to cognitive state was assessed using structural equation modeling path analysis taking into account demographic parameters. Two models were hypothesized, differing by the role of ischemic lesions' volume. Results Structural equation modeling analysis of 142 patients confirmed the predominant role of white matter lesion volume (standardized path coefficient β = −0.231) and normal appearing white matter integrity (β = −0.176) on the global cognitive score, while ischemic lesions' volume showed no such effect (β = 0.038). The model excluding the ischemic lesion presented better fit to the data (comparative fit index 0.9 versus 0.092). Conclusions Mild to moderate stroke patients with preexisting white matter lesions are more vulnerable to cognitive impairment regardless of their new ischemic lesions. Thus, these patients can serve as a target group for studies on cognitive rehabilitation and neuro-protective therapies which may, in turn, slow their cognitive deterioration. PMID:25153800

  13. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence.

    PubMed

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.

  14. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    PubMed Central

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831

  15. White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms

    PubMed Central

    Paillère Martinot, M-L; Lemaitre, H; Artiges, E; Miranda, R; Goodman, R; Penttilä, J; Struve, M; Fadai, T; Kappel, V; Poustka, L; Conrod, P; Banaschewski, T; Barbot, A; Barker, G J; Büchel, C; Flor, H; Gallinat, J; Garavan, H; Heinz, A; Ittermann, B; Lawrence, C; Loth, E; Mann, K; Paus, T; Pausova, Z; Rietschel, M; Robbins, T W; Smolka, M N; Schumann, G; Martinot, J-L; L, Reed; S, Williams; A, Lourdusamy; S, Costafreda; A, Cattrell; C, Nymberg; L, Topper; L, Smith; S, Havatzias; K, Stueber; C, Mallik; TK, Clarke; D, Stacey; Wong C, Peng; H, Werts; S, Williams; C, Andrew; S, Desrivieres; S, Zewdie; I, Häke; N, Ivanov; A, Klär; J, Reuter; C, Palafox; C, Hohmann; C, Schilling; K, Lüdemann; A, Romanowski; A, Ströhle; E, Wolff; M, Rapp; R, Brühl; A, Ihlenfeld; B, Walaszek; F, Schubert; C, Connolly; J, Jones; E, Lalor; E, McCabe; A, Ní Shiothcháin; R, Whelan; R, Spanagel; F, Leonardi-Essmann; W, Sommer; S, Vollstaedt-Klein; F, Nees; S, Steiner; M, Buehler; E, Stolzenburg; C, Schmal; F, Schirmbeck; P, Gowland; N, Heym; C, Newman; T, Huebner; S, Ripke; E, Mennigen; K, Muller; V, Ziesch; C, Büchel; U, Bromberg; L, Lueken; J, Yacubian; J, Finsterbusch; N, Bordas; S, de Bournonville; Z, Bricaud; Briand F, Gollier; J, Massicotte; JB, Poline; H, Vulser; Y, Schwartz; C, Lalanne; V, Frouin; B, Thyreau; J, Dalley; A, Mar; N, Subramaniam; D, Theobald; N, Richmond; M, de Rover; A, Molander; E, Jordan; E, Robinson; L, Hipolata; M, Moreno; M, Arroyo; D, Stephens; T, Ripley; H, Crombag; Y, Pena; M, Lathrop; D, Zelenika; S, Heath; D, Lanzerath; B, Heinrichs; T, Spranger; B, Fuchs; C, Speiser; F, Resch; J, Haffner; P, Parzer; R, Brunner; A, Klaassen; I, Klaassen; P, Constant; X, Mignon; T, Thomsen; S, Zysset; A, Vestboe; J, Ireland; J, Rogers

    2014-01-01

    Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have early WM microstructural alterations and whether those alterations would be associated with differences in gray-matter (GM) volumes. Forty-two adolescents with three core manic symptoms and no psychiatric diagnosis, and 126 adolescents matched by age and sex, with no psychiatric diagnosis or symptoms, were identified after screening the IMAGEN database of 2223 young adolescents recruited from the general population. After image quality control, voxel-wise statistics were performed on the diffusion parameters using tract-based spatial statistics in 25 SBP adolescents and 77 controls, and on GM and WM images using voxel-based morphometry in 30 SBP adolescents and 106 controls. As compared with healthy controls, adolescents with SBP displayed lower FA values in a number of WM tracts, particularly in the corpus callosum, cingulum, bilateral superior and inferior longitudinal fasciculi, uncinate fasciculi and corticospinal tracts. Radial diffusivity was mainly higher in posterior parts of bilateral superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi and right cingulum. As compared with controls, SBP adolescents had lower GM volume in the left anterior cingulate region. This is the first study to investigate WM microstructure and GM morphometric variations in adolescents with SBP. The widespread FA alterations in association and projection tracts, associated with GM changes in regions involved in mood disorders, suggest altered structural connectivity in those adolescents. PMID:23628983

  16. Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum

    PubMed Central

    Lillo, Patricia; Mioshi, Eneida; Burrell, James R.; Kiernan, Matthew C.; Hodges, John R.; Hornberger, Michael

    2012-01-01

    There is increasing evidence that amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) lie on a clinical, pathological and genetic continuum with patients of one disease exhibiting features of the other. Nevertheless, to date, the underlying grey matter and white matter changes across the ALS-FTD disease continuum have not been explored. In this study fifty-three participants with ALS (n = 10), ALS-FTD (n = 10) and behavioural variant FTD (bvFTD; n = 15) as well as controls (n = 18), underwent detailed clinical assessment plus structural imaging using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis of magnetic resonance brain imaging to examine grey and white matter differences and commonalities across the continuum. Importantly, patient groups were matched for age, education, gender and disease duration. VBM and DTI results showed that changes in the ALS group were confined mainly to the motor cortex and anterior cingulate as well as their underlying white matter tracts. ALS-FTD and bvFTD showed widespread grey matter and white matter changes involving frontal and temporal lobes. Extensive prefrontal cortex changes emerged as a marker for bvFTD compared to other subtypes, while ALS-FTD could be distinguished from ALS by additional temporal lobe grey and white matter changes. Finally, ALS could be mainly distinguished from the other two groups by corticospinal tract degeneration. The present study shows for the first time that FTD and ALS overlap in anterior cingulate, motor cortex and related white matter tract changes across the whole continuum. Nevertheless, frontal and temporal atrophy as well as corticospinal tract degeneration emerged as marker for subtype classification, which will inform future diagnosis and target disease management across the continuum. PMID:22952843

  17. Long-term cerebral white and gray matter changes after preeclampsia

    PubMed Central

    Siepmann, Timo; Boardman, Henry; Bilderbeck, Amy; Griffanti, Ludovica; Kenworthy, Yvonne; Zwager, Charlotte; McKean, David; Francis, Jane; Neubauer, Stefan; Yu, Grace Z.; Lewandowski, Adam J.; Sverrisdottir, Yrsa Bergmann

    2017-01-01

    Objective: To determine whether changes in cerebral structure are present after preeclampsia that may explain increased cerebrovascular risk in these women. Methods: We conducted a case control study in women between 5 and 15 years after either a preeclamptic or normotensive pregnancy. Brain MRI was performed. Analysis of white matter structure was undertaken using voxel-based segmentation of fluid-attenuation inversion recovery sequences to assess white matter lesion volume and diffusion tensor imaging to measure microstructural integrity. Voxel-based analysis of gray matter volumes was performed with adjustment for skull size. Results: Thirty-four previously preeclamptic women (aged 42.8 ± 5.1 years) and 49 controls were included. Previously preeclamptic women had reduced cortical gray matter volume (523.2 ± 30.1 vs 544.4 ± 44.7 mL, p < 0.05) and, although both groups displayed white matter lesions, changes were more extensive in previously preeclamptic women. They displayed increased temporal lobe white matter disease (lesion volume: 23.2 ± 24.9 vs 10.9 ± 15.0 μL, p < 0.05) and altered microstructural integrity (radial diffusivity: 538 ± 19 vs 526 ± 18 × 10−6 mm2/s, p < 0.01), which also extended to occipital and parietal lobes. The degree of temporal lobe white matter change in previously preeclamptic women was independent of their current cardiovascular risk profile (p < 0.05) and increased with time from index pregnancy (p < 0.05). Conclusion: A history of preeclampsia is associated with temporal lobe white matter changes and reduced cortical volume in young women, which is out of proportion to their classic cardiovascular risk profile. The severity of changes is proportional to time since pregnancy, which would be consistent with continued accumulation of damage after pregnancy. PMID:28235810

  18. Tissue transglutaminase in marmoset experimental multiple sclerosis: discrepancy between white and grey matter.

    PubMed

    Espitia Pinzon, Nathaly; Stroo, Esther; 't Hart, Bert A; Bol, John G J M; Drukarch, Benjamin; Bauer, Jan; van Dam, Anne-Marie

    2014-01-01

    Infiltration of leukocytes is a major pathological event in white matter lesion formation in the brain of multiple sclerosis (MS) patients. In grey matter lesions, less infiltration of these cells occur, but microglial activation is present. Thus far, the interaction of β-integrins with extracellular matrix proteins, e.g. fibronectin, is considered to be of importance for the influx of immune cells. Recent in vitro studies indicate a possible role for the enzyme tissue Transglutaminase (TG2) in mediating cell adhesion and migration. In the present study we questioned whether TG2 is present in white and grey matter lesions observed in the marmoset model for MS. To this end, immunohistochemical studies were performed. We observed that TG2, expressed by infiltrating monocytes in white matter lesions co-expressed β1-integrin and is located in close apposition to deposited fibronectin. These data suggest an important role for TG2 in the adhesion and migration of infiltrating monocytes during white matter lesion formation. Moreover, in grey matter lesions, TG2 is mainly present in microglial cells together with some β1-integrin, whereas fibronectin is absent in these lesions. These data imply an alternative role for microglial-derived TG2 in grey matter lesions, e.g. cell proliferation. Further research should clarify the functional role of TG2 in monocytes or microglial cells in MS lesion formation.

  19. APOL1 renal-risk variants associate with reduced cerebral white matter lesion volume and increased gray matter volume.

    PubMed

    Freedman, Barry I; Gadegbeku, Crystal A; Bryan, R Nick; Palmer, Nicholette D; Hicks, Pamela J; Ma, Lijun; Rocco, Michael V; Smith, S Carrie; Xu, Jianzhao; Whitlow, Christopher T; Wagner, Benjamin C; Langefeld, Carl D; Hawfield, Amret T; Bates, Jeffrey T; Lerner, Alan J; Raj, Dominic S; Sadaghiani, Mohammad S; Toto, Robert D; Wright, Jackson T; Bowden, Donald W; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Pajewski, Nicholas M; Divers, Jasmin

    2016-08-01

    To assess apolipoprotein L1 gene (APOL1) renal-risk-variant effects on the brain, magnetic resonance imaging (MRI)-based cerebral volumes and cognitive function were assessed in 517 African American-Diabetes Heart Study (AA-DHS) Memory IN Diabetes (MIND) and 2568 hypertensive African American Systolic Blood Pressure Intervention Trial (SPRINT) participants without diabetes. Within these cohorts, 483 and 197 had cerebral MRI, respectively. AA-DHS participants were characterized as follows: 60.9% female, mean age of 58.6 years, diabetes duration 13.1 years, estimated glomerular filtration rate of 88.2 ml/min/1.73 m(2), and a median spot urine albumin to creatinine ratio of 10.0 mg/g. In additive genetic models adjusting for age, sex, ancestry, scanner, intracranial volume, body mass index, hemoglobin A1c, statins, nephropathy, smoking, hypertension, and cardiovascular disease, APOL1 renal-risk-variants were positively associated with gray matter volume (β = 3.4 × 10(-3)) and negatively associated with white matter lesion volume (β = -0.303) (an indicator of cerebral small vessel disease) and cerebrospinal fluid volume (β= -30707) (all significant), but not with white matter volume or cognitive function. Significant associations corresponding to adjusted effect sizes (β/SE) were observed with gray matter volume (0.16) and white matter lesion volume (-0.208), but not with cerebrospinal fluid volume (-0.251). Meta-analysis results with SPRINT Memory and Cognition in Decreased Hypertension (MIND) participants who had cerebral MRI were confirmatory. Thus, APOL1 renal-risk-variants are associated with larger gray matter volume and lower white matter lesion volume suggesting lower intracranial small vessel disease.

  20. Evaluation of cortical local field potential diffusion in stereotactic electro-encephalography recordings: A glimpse on white matter signal.

    PubMed

    Mercier, Manuel R; Bickel, Stephan; Megevand, Pierre; Groppe, David M; Schroeder, Charles E; Mehta, Ashesh D; Lado, Fred A

    2017-02-15

    While there is a strong interest in meso-scale field potential recording using intracranial electroencephalography with penetrating depth electrodes (i.e. stereotactic EEG or S-EEG) in humans, the signal recorded in the white matter remains ignored. White matter is generally considered electrically neutral and often included in the reference montage. Moreover, re-referencing electrophysiological data is a critical preprocessing choice that could drastically impact signal content and consequently the results of any given analysis. In the present stereotactic electroencephalography study, we first illustrate empirically the consequences of commonly used references (subdermal, white matter, global average, local montage) on inter-electrode signal correlation. Since most of these reference montages incorporate white matter signal, we next consider the difference between signals recorded in cortical gray matter and white matter. Our results reveal that electrode contacts located in the white matter record a mixture of activity, with part arising from the volume conduction (zero time delay) of activity from nearby gray matter. Furthermore, our analysis shows that white matter signal may be correlated with distant gray matter signal. While residual passive electrical spread from nearby matter may account for this relationship, our results suggest the possibility that this long distance correlation arises from the white matter fiber tracts themselves (i.e. activity from distant gray matter traveling along axonal fibers with time lag larger than zero); yet definitive conclusions about the origin of the white matter signal would require further experimental substantiation. By characterizing the properties of signals recorded in white matter and in gray matter, this study illustrates the importance of including anatomical prior knowledge when analyzing S-EEG data.

  1. Community Influences on White Racial Attitudes: What Matters and Why?

    PubMed Central

    Taylor, Marylee C.; Mateyka, Peter J.

    2014-01-01

    Tracing the roots of racial attitudes in historical events and individual biographies has been a longstanding goal of race relations scholars. Recent years have seen a new development in racial attitude research: Local community context has entered the spotlight as a potential influence on racial views. The race composition of the locality has been the most common focus; evidence from earlier decades suggests that white Americans are more likely to hold anti-black attitudes if they live in areas where the African American population is relatively large. However, an influential 2000 article argued that the socioeconomic composition of the white community is a more powerful influence on white attitudes: In low-SES locales, “stress-inducing” deprivations and hardships in whites’ own lives purportedly lead them to disparage blacks. The study reported here re-assesses this “scapegoating” claim, using data from the 1998–2002 General Social Surveys linked to 2000 census information about communities. Across many dimensions of racial attitudes, there is pronounced influence of both local racial proportions and college completion rates among white residents. However, the economic dimension of SES exerts negligible influence on white racial attitudes, suggesting that local processes other than scapegoating must be at work. PMID:21910274

  2. Distinct white matter injury associated with medial temporal lobe atrophy in Alzheimer's versus semantic dementia.

    PubMed

    Bejanin, Alexandre; Desgranges, Béatrice; La Joie, Renaud; Landeau, Brigitte; Perrotin, Audrey; Mézenge, Florence; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël

    2017-04-01

    This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc.

  3. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor

    PubMed Central

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C.; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K.; Lok, Josephine; Ihara, Masafumi

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAPcre/BDNFwt/fl) in which BDNF expression is downregulated specifically in GFAP+ astrocytes. Both wild-type (GFAPwt/BDNFwt/fl mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white

  4. Quantitative validation of a nonlinear histology-MRI coregistration method using Generalized Q-sampling Imaging in complex human cortical white matter.

    PubMed

    Gangolli, Mihika; Holleran, Laurena; Hee Kim, Joong; Stein, Thor D; Alvarez, Victor; McKee, Ann C; Brody, David L

    2017-03-29

    Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 x 500 μm spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter.

  5. Machine learning based compartment models with permeability for white matter microstructure imaging.

    PubMed

    Nedjati-Gilani, Gemma L; Schneider, Torben; Hall, Matt G; Cawley, Niamh; Hill, Ioana; Ciccarelli, Olga; Drobnjak, Ivana; Wheeler-Kingshott, Claudia A M Gandini; Alexander, Daniel C

    2017-04-15

    Some microstructure parameters, such as permeability, remain elusive because mathematical models that express their relationship to the MR signal accurately are intractable. Here, we propose to use computational models learned from simulations to estimate these parameters. We demonstrate the approach in an example which estimates water residence time in brain white matter. The residence time τi of water inside axons is a potentially important biomarker for white matter pathologies of the human central nervous system, as myelin damage is hypothesised to affect axonal permeability, and thus τi. We construct a computational model using Monte Carlo simulations and machine learning (specifically here a random forest regressor) in order to learn a mapping between features derived from diffusion weighted MR signals and ground truth microstructure parameters, including τi. We test our numerical model using simulated and in vivo human brain data. Simulation results show that estimated parameters have strong correlations with the ground truth parameters (R(2)={0.88,0.95,0.82,0.99}) for volume fraction, residence time, axon radius and diffusivity respectively), and provide a marked improvement over the most widely used Kärger model (R(2)={0.75,0.60,0.11,0.99}). The trained model also estimates sensible microstructure parameters from in vivo human brain data acquired from healthy controls, matching values found in literature, and provides better reproducibility than the Kärger model on both the voxel and ROI level. Finally, we acquire data from two Multiple Sclerosis (MS) patients and compare to the values in healthy subjects. We find that in the splenium of corpus callosum (CC-S) the estimate of the residence time is 0.57±0.05s for the healthy subjects, while in the MS patient with a lesion in CC-S it is 0.33±0.12s in the normal appearing white matter (NAWM) and 0.19±0.11s in the lesion. In the corticospinal tracts (CST) the estimate of the residence time is 0.52±0

  6. Dopamine transporter availability in clinically normal aging is associated with individual differences in white matter integrity.

    PubMed

    Rieckmann, Anna; Hedden, Trey; Younger, Alayna P; Sperling, Reisa A; Johnson, Keith A; Buckner, Randy L

    2016-02-01

    Aging-related differences in white matter integrity, the presence of amyloid plaques, and density of biomarkers indicative of dopamine functions can be detected and quantified with in vivo human imaging. The primary aim of the present study was to investigate whether these imaging-based measures constitute independent imaging biomarkers in older adults, which would speak to the hypothesis that the aging brain is characterized by multiple independent neurobiological cascades. We assessed MRI-based markers of white matter integrity and PET-based marker of dopamine transporter density and amyloid deposition in the same set of 53 clinically normal individuals (age 65-87). A multiple regression analysis demonstrated that dopamine transporter availability is predicted by white matter integrity, which was detectable even after controlling for chronological age. Further post-hoc exploration revealed that dopamine transporter availability was further associated with systolic blood pressure, mirroring the established association between cardiovascular health and white matter integrity. Dopamine transporter availability was not associated with the presence of amyloid burden. Neurobiological correlates of dopamine transporter measures in aging are therefore likely unrelated to Alzheimer's disease but are aligned with white matter integrity and cardiovascular risk. More generally, these results suggest that two common imaging markers of the aging brain that are typically investigated separately do not reflect independent neurobiological processes. Hum Brain Mapp 37:621-631, 2016. © 2015 Wiley Periodicals, Inc.

  7. Regional White Matter Damage Predicts Speech Fluency in Chronic Post-Stroke Aphasia

    PubMed Central

    Basilakos, Alexandra; Fillmore, Paul T.; Rorden, Chris; Guo, Dazhou; Bonilha, Leonardo; Fridriksson, Julius

    2014-01-01

    Recently, two different white matter regions that support speech fluency have been identified: the aslant tract and the anterior segment of the arcuate fasciculus (ASAF). The role of the ASAF was demonstrated in patients with post-stroke aphasia, while the role of the aslant tract shown in primary progressive aphasia. Regional white matter integrity appears to be crucial for speech production; however, the degree that each region exerts an independent influence on speech fluency is unclear. Furthermore, it is not yet defined if damage to both white matter regions influences speech in the context of the same neural mechanism (stroke-induced aphasia). This study assessed the relationship between speech fluency and quantitative integrity of the aslant region and the ASAF. It also explored the relationship between speech fluency and other white matter regions underlying classic cortical language areas such as the uncinate fasciculus and the inferior longitudinal fasciculus (ILF). Damage to these regions, except the ILF, was associated with speech fluency, suggesting synergistic association of these regions with speech fluency in post-stroke aphasia. These observations support the theory that speech fluency requires the complex, orchestrated activity between a network of pre-motor, secondary, and tertiary associative cortices, supported in turn by regional white matter integrity. PMID:25368572

  8. Microstructure and Cerebral Blood Flow within White Matter of the Human Brain: A TBSS Analysis

    PubMed Central

    Giezendanner, Stéphanie; Fisler, Melanie Sarah; Soravia, Leila Maria; Andreotti, Jennifer; Walther, Sebastian; Wiest, Roland; Dierks, Thomas; Federspiel, Andrea

    2016-01-01

    Background White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. Methods Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). Results CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. Conclusion The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation. PMID:26942763

  9. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  10. Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts.

    PubMed

    Malykhin, Nikolai; Concha, Luis; Seres, Peter; Beaulieu, Christian; Coupland, Nicholas J

    2008-11-30

    Diffusion tensor imaging (DTI) provides the opportunity to study white matter tracts in vivo. The goal was to estimate the reliability of DTI tractography for the analysis of limbic and paralimbic white matter. Normative data from 24 healthy subjects and reliability data from four healthy and four depressed subjects were acquired at 1.5 Tesla, using twice-refocused spin-echo, echoplanar DTI and Fluid-Attenuated Inversion Recovery (FLAIR) DTI sequences. Fiber tracking was performed using the Fiber Assignment by Continuous Tracking algorithm. Fractional Anisotropy (FA), trace Apparent Diffusion Coefficient and tract volumes were calculated. The inter-rater (and intra-rater) intraclass correlation coefficients for FA values were as follows: rostral cingulum 0.89 (0.87), dorsal cingulum 0.85 (0.90), parahippocampal cingulum 0.85 (0.95), uncinate fasciculus 0.85 (0.87), medial prefrontal white matter 0.97 (0.99), ventromedial prefrontal white matter 0.92 (0.93), crus of fornix 0.80 (0.81). The reported DTI protocol provides a reliable method to analyze limbic and paralimbic white matter tracts relevant to psychiatric disorders.

  11. Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan

    2014-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.

  12. Oxidative Stress Interferes With White Matter Renewal After Prolonged Cerebral Hypoperfusion in Mice

    PubMed Central

    Miyamoto, Nobukazu; Maki, Takakuni; Pham, Loc-Duyen D.; Hayakawa, Kazuhide; Seo, Ji Hae; Mandeville, Emiri T.; Mandeville, Joseph B.; Kim, Kyu-Won; Lo, Eng H.; Arai, Ken

    2013-01-01

    Background and Purpose White matter injury caused by cerebral hypoperfusion may contribute to the pathophysiology of vascular dementia and stroke, but the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that oxidative stress interferes with endogenous white matter repair by disrupting renewal processes mediated by oligodendrocyte precursor cells (OPCs). Methods In vitro, primary rat OPCs were exposed to sublethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Then, OPC proliferation/differentiation was assessed. In vivo, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. Then, reactive oxygen species production, myelin density, oligodendrocyte versus OPC counts, and cognitive function were evaluated. To block oxidative stress, OPCs and mice were treated with the radical scavenger edaravone. Results Prolonged chemical hypoxic stress suppressed OPC differentiation in vitro. Radical scavenging with edaravone ameliorated these effects. After 28 days of cerebral hypoperfusion in vivo, reactive oxygen species levels were increased in damaged white matter, along with the suppression of OPC-to-oligodendrocyte differentiation and loss of myelin staining. Concomitantly, mice showed functional deficits in working memory. Radical scavenging with edaravone rescued OPC differentiation, ameliorated myelin loss, and restored working memory function. Conclusions Our proof-of-concept study demonstrates that after prolonged cerebral hypoperfusion, oxidative stress interferes with white matter repair by disrupting OPC renewal mechanisms. Radical scavengers may provide a potential therapeutic approach for white matter injury in vascular dementia and stroke. PMID:24072001

  13. Brain white matter abnormality in a newborn infant with congenital adrenal hyperplasia.

    PubMed

    Kaga, Akimune; Saito-Hakoda, Akiko; Uematsu, Mitsugu; Kamimura, Miki; Kanno, Junko; Kure, Shigeo; Fujiwara, Ikuma

    2013-10-01

    Several studies have described brain white matter abnormalities on magnetic resonance imaging (MRI) in children and adults with congenital adrenal hyperplasia (CAH), while the brain MRI findings of newborn infants with CAH have not been clarified. We report a newborn boy with CAH who presented brain white matter abnormality on MRI. He was diagnosed as having salt-wasting CAH with a high 17-OHP level at neonatal screening and was initially treated with hydrocortisone at 8 days of age. On day 11 after birth, he had a generalized tonic seizure. No evidence of serum electrolyte abnormalities was observed. Brain MRI revealed white matter abnormalities that consisted of bilateral small diffuse hyperintensities on T1-weighted images with slightly low intensity on T2-weighted images in the watershed area. Several factors associated with brain white matter abnormalities in adults with CAH, such as increasing age, hypertension, diabetes and corticosteroid replacement, were not applicable. Although the cause of the phenomenon in this case is unclear, brain white matter abnormality could be observed in newborn infants with CAH as well as in adult patients.

  14. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging.

    PubMed

    Timmers, Inge; Zhang, Hui; Bastiani, Matteo; Jansma, Bernadette M; Roebroeck, Alard; Rubio-Gozalbo, M Estela

    2015-03-01

    White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) was used to estimate density and orientation dispersion of neurites in a group of eight patients (aged 16-21 years) and eight healthy controls (aged 15-20 years). Extensive white matter abnormalities were found: neurite density index (NDI) was lower in the patient group in bilateral anterior areas, and orientation dispersion index (ODI) was increased mainly in the left hemisphere. These specific regional profiles are in agreement with the cognitive profile observed in galactosemia, showing higher order cognitive impairments, and language and motor impairments, respectively. Less favourable white matter properties correlated positively with age and age at onset of diet, and negatively with behavioural outcome (e.g. visual working memory). To conclude, this study provides evidence of white matter pathology regarding density and dispersion of neurites in these patients. The results are discussed in light of suggested pathophysiological mechanisms.

  15. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    PubMed

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature.

  16. Unraveling the secrets of white matter--bridging the gap between cellular, animal and human imaging studies.

    PubMed

    Walhovd, K B; Johansen-Berg, H; Káradóttir, R T

    2014-09-12

    The CNS white matter makes up about half of the human brain, and with advances in human imaging it is increasingly becoming clear that changes in the white matter play a major role in shaping human behavior and learning. However, the mechanisms underlying these white matter changes remain poorly understood. Within this special issue of Neuroscience on white matter, recent advances in our knowledge of the function of white matter, from the molecular level to human imaging, are reviewed. Collaboration between fields is essential to understand the function of the white matter, but due to differences in methods and field-specific 'language', communication is often hindered. In this review, we try to address this hindrance by introducing the methods and providing a basic background to myelin biology and human imaging as a prelude to the other reviews within this special issue.

  17. Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study.

    PubMed

    Alcauter, Sarael; Barrios, Fernando A; Díaz, Rosalinda; Fernández-Ruiz, Juan

    2011-03-01

    Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder characterized by cerebellar ataxia and visual loss. It is caused by a CAG repeat expansion in the gene encoding the ataxin 7 protein. Visual loss is due to a progressive atrophy of photoreceptor cells that results in macular degeneration in more advanced stages. Initial semiautomatic measures in magnetic resonance imaging (MRI) studies on the brain stem have shown a diminished volume mainly in the cerebellum and pons, while T2 images have shown hyperintensities in transverse fibers at the pons. Neuropathological research, however, has shown more widespread brain damage including loss of myelinated fibers. In this study we decided to take advantage of recent MRI methodological advances to further explore the gray and white matter changes that occur in SCA7 patients. We studied nine genetically confirmed SCA7 patients and their matched controls using voxel based morphometry and tract-based spatial statistics. As expected, we found significant bilateral gray matter volume reductions (p<0.05, corrected for multiple comparisons) in patients' cerebellar cortex. However, we also found significant bilateral gray matter reductions in pre and postcentral gyrus, inferior and medial frontal, parietal inferior, parahippocampal and occipital cortices. The analysis also showed a decrement in fractional anisotropy (p<0.05, corrected) of SCA7 patients in the cerebellum's white matter, brainstem, cerebellar and cerebral peduncles, midbrain, anterior and posterior internal capsule, external/extreme capsule, corpus callosum, corona radiata, optical radiations, and the occipital, temporal and frontal lobe's white matter. These results confirm previous evidence of widespread damage beyond the cerebellum and the pons in SCA7 patients. They also confirmed previous results that had been only detectable through neuropathological analyses and, more importantly, identified new regions affected by the disease that

  18. Longer lithium exposure is associated with better white matter integrity in older adults with bipolar disorder

    PubMed Central

    Gildengers, Ariel G.; Butters, Meryl A.; Aizenstein, Howard J.; Marron, Megan M.; Emanuel, James; Anderson, Stewart J.; Weissfeld, Lisa A.; Becker, James T.; Lopez, Oscar L.; Mulsant, Benoit H.; Reynolds, Charles F.

    2014-01-01

    Background Bipolar Disorder (BD) is associated with cognitive dysfunction and structural brain abnormalities. In human and non-human studies, lithium has been related to neuroprotective and neurotrophic effects. We explored whether lithium treatment is related to better brain integrity and cognitive function in older adults with BD. Methods We examined cognitive and neuroimaging data in 58 individuals with BD mean (SD) age 64.5 (9.8) years and 21 mentally healthy comparators (“controls”) of similar age and education. Subjects received comprehensive neurocognitive assessment and structural brain imaging, examining total gray matter volume, overall white matter integrity (fractional anisotropy), and total white matter hyperintensity (WMH) burden. Results In comparison to controls, subjects with BD had worse overall cognitive performance, lower total gray matter volume, and lower white matter integrity. Among BD subjects, longer duration of lithium treatment was related to higher white matter integrity after controlling for age and vascular disease burden, but not with better cognitive performance. Conclusions Lithium treatment appears to be related to better brain integrity in older individuals with BD, in particular in those who take it long-term. While intriguing, these findings need to be confirmed in a larger sample. PMID:25257942

  19. White and Black Teachers' Job Satisfaction: Does Relational Demography Matter?

    ERIC Educational Resources Information Center

    Fairchild, Susan; Tobias, Robert; Corcoran, Sean; Djukic, Maja; Kovner, Christine; Noguera, Pedro

    2012-01-01

    Data on the impact of student, teacher, and principal racial and gender composition in urban schools on teacher work outcomes are limited. This study, a secondary data analysis of White and Black urban public school teachers using data taken from the restricted use 2003-04 Schools and Staffing Survey (SASS), examines the effects of relational…

  20. The Black-White Achievement Gap: Do State Policies Matter?

    ERIC Educational Resources Information Center

    Braun, Henry I.; Wang, Aubrey; Jenkins, Frank; Weinbaum, Elliot

    2006-01-01

    A longstanding issue in American education is the gap in academic achievement between majority and minority students. The goal of this study is to accumulate and evaluate evidence on the relationship between state education policies and changes in the Black-White achievement gap, while addressing some of the methodological issues that have led to…

  1. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

    PubMed

    Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang

    2016-04-01

    Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals.

  2. Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks.

    PubMed

    Mitra, Jhimli; Shen, Kai-kai; Ghose, Soumya; Bourgeat, Pierrick; Fripp, Jurgen; Salvado, Olivier; Pannek, Kerstin; Taylor, D Jamie; Mathias, Jane L; Rose, Stephen

    2016-04-01

    Identifying diffuse axonal injury (DAI) in patients with traumatic brain injury (TBI) presenting with normal appearing radiological MRI presents a significant challenge. Neuroimaging methods such as diffusion MRI and probabilistic tractography, which probe the connectivity of neural networks, show significant promise. We present a machine learning approach to classify TBI participants primarily with mild traumatic brain injury (mTBI) based on altered structural connectivity patterns derived through the network based statistical analysis of structural connectomes generated from TBI and age-matched control groups. In this approach, higher order diffusion models were used to map white matter connections between 116 cortical and subcortical regions. Tracts between these regions were generated using probabilistic tracking and mean fractional anisotropy (FA) measures along these connections were encoded in the connectivity matrices. Network-based statistical analysis of the connectivity matrices was performed to identify the network differences between a representative subset of the two groups. The affected network connections provided the feature vectors for principal component analysis and subsequent classification by random forest. The validity of the approach was tested using data acquired from a total of 179 TBI patients and 146 controls participants. The analysis revealed altered connectivity within a number of intra- and inter-hemispheric white matter pathways associated with DAI, in consensus with existing literature. A mean classification accuracy of 68.16%±1.81% and mean sensitivity of 80.0%±2.36% were achieved in correctly classifying the TBI patients evaluated on the subset of the participants that was not used for the statistical analysis, in a 10-fold cross-validation framework. These results highlight the potential for statistical machine learning approaches applied to structural connectomes to identify patients with diffusive axonal injury.

  3. Depressive symptoms related to low fractional anisotropy of white matter underlying the right ventral anterior cingulate in older adults with atherosclerotic vascular disease

    PubMed Central

    Bijanki, Kelly R.; Matsui, Joy T.; Mayberg, Helen S.; Magnotta, Vincent A.; Arndt, Stephan; Johnson, Hans J.; Nopoulos, Peg; Paradiso, Sergio; McCormick, Laurie M.; Fiedorowicz, Jess G.; Epping, Eric A.; Moser, David J.

    2015-01-01

    We sought to characterize the relationship between integrity of the white matter underlying the ventral anterior cingulate (vAC) and depressive symptoms in older adults with atherosclerotic vascular disease (AVD), a condition associated with preferential degeneration of the white matter. The vAC was defined as including white matter underlying ventral Brodmann Area 24 and Brodmann Area 25, corresponding with the “subcallosal” and “subgenual” cingulate respectively. This region of interest was chosen based on the preponderance of evidence that the white matter in the region plays a critical role in the manifestation of depressive symptoms. Participants had current unequivocal diagnoses of AVD and were between 55 and 90 years-old. Fractional anisotropy (FA) was used as an index of white matter integrity and organization. Whole-brain mean diffusivity (MD) was used as an index of global white matter lesion burden. Depressive symptoms were measured using the Symptom Checklist-90-Revised (SCL-90-R) Depression Scale. Depressive symptoms were significantly related to low FA in the right vAC (r = -0.356, df = 30, p = 0.045) but not the left vAC (r = 0.024, df = 30, p = 0.896) after controlling for total brain MD (a statistical control for global white matter lesion burden). Further, depressive symptoms were significantly related to low FA in the right vAC (r = -0.361, df = 31, p = 0.039), but not the left vAC (r = 0.259, df = 31, p = 0.145) when controlled for the contralateral vAC FA. The correlation coefficients for this follow-up analysis were found to be significantly different between left and right vAC (Z = 2.310, p = 0.021). Poor white matter health in the vAC may be a biological mechanism for depressive symptoms in older adults with vascular disease. Further studies may corroborate that the right vAC plays a unique role in depressive symptom manifestation in cases where the white matter is preferentially affected, as is the case in AVD. This could lead to

  4. Development of Tract-Specific White Matter Pathways During Early Reading Development in At-Risk Children and Typical Controls.

    PubMed

    Wang, Yingying; Mauer, Meaghan V; Raney, Talia; Peysakhovich, Barbara; Becker, Bryce L C; Sliva, Danielle D; Gaab, Nadine

    2016-04-25

    Developmental dyslexia is a neurodevelopmental disorder with a strong genetic basis. Previous studies observed white matter alterations in the left posterior brain regions in adults and school-age children with dyslexia. However, no study yet has examined the development of tract-specific white matter pathways from the pre-reading to the fluent reading stage in children at familial risk for dyslexia (FHD+) versus controls (FHD-). This study examined white matter integrity at pre-reading, beginning, and fluent reading stages cross-sectionally (n = 78) and longitudinally (n = 45) using an automated fiber-tract quantification method. Our findings depict white matter alterations and atypical lateralization of the arcuate fasciculus at the pre-reading stage in FHD+ versus FHD- children. Moreover, we demonstrate faster white matter development in subsequent good versus poor readers and a positive association between white matter maturation and reading development using a longitudinal design. Additionally, the combination of white matter maturation, familial risk, and psychometric measures best predicted later reading abilities. Furthermore, within FHD+ children, subsequent good readers exhibited faster white matter development in the right superior longitudinal fasciculus compared with subsequent poor readers, suggesting a compensatory mechanism. Overall, our findings highlight the importance of white matter pathway maturation in the development of typical and atypical reading skills.

  5. Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk.

    PubMed

    Kennedy, Kristen M; Raz, Naftali

    2009-11-10

    Even successful aging is associated with regional brain shrinkage and deterioration of the cerebral white matter. Aging also brings about an increase in vascular risk, and vascular impairment may be a potential mechanism behind the observed patterns of aging. The goals of this study were to characterize the normal age differences in white matter integrity in several brain regions across the adult life span and to assess the modifying effect of vascular risk on the observed pattern of regional white matter integrity. We estimated fractional anisotropy and diffusivity of white matter in nine cerebral regions of interest in 77 healthy adults (19-84 years old). There was a widespread reduction of white matter anisotropy with age, and prefrontal and occipital regions evidenced the greatest age-related differences. Diffusivity increased with age, and the magnitude of age differences increased beginning with the middle of the fifth decade. Vascular risk factors modified age differences in white matter integrity. Clinically diagnosed and treated arterial hypertension was associated with reduced white matter anisotropy and increased diffusivity beyond the effects of age. In the normotensive participants, elevation of arterial pulse pressure (a surrogate of arterial stiffness) was linked to deterioration of the white matter integrity in the frontal regions. Although the causal role of vascular risk in brain aging is unclear, the observed pattern of effects suggests that vascular risk may drive the expansion of age-related white matter damage from anterior to posterior regions.

  6. White matter in the older brain is more plastic than in the younger brain

    PubMed Central

    Yotsumoto, Yuko; Chang, Li-Hung; Ni, Rui; Pierce, Russell; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2014-01-01

    Visual perceptual learning (VPL) with younger subjects is associated with changes in functional activation of the early visual cortex. Although overall brain properties decline with age, it is unclear whether these declines are associated with visual perceptual learning. Here we use diffusion tensor imaging to test whether changes in white matter are involved in VPL for older adults. After training on a texture discrimination task for 3 daily sessions, both older and younger subjects show performance improvements. While the older subjects show significant changes in fractional anisotropy (FA) in the white matter beneath the early visual cortex after training, no significant change in FA is observed for younger subjects. These results suggest that the mechanism for VPL in older individuals is considerably different from that in younger individuals and that VPL of older individuals involves re-organization of white matter. PMID:25407566

  7. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia.

    PubMed

    Chen, Aiqing; Akinyemi, Rufus O; Hase, Yoshiki; Firbank, Michael J; Ndung'u, Michael N; Foster, Vincent; Craggs, Lucy J L; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J; Polvikoski, Tuomo M; Allan, Louise M; Oakley, Arthur E; O'Brien, John T; Horsburgh, Karen; Ihara, Masafumi; Kalaria, Raj N

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with

  8. White matter maturation is associated with the emergence of Theory of Mind in early childhood

    PubMed Central

    Grosse Wiesmann, Charlotte; Schreiber, Jan; Singer, Tania; Steinbeis, Nikolaus; Friederici, Angela D.

    2017-01-01

    The ability to attribute mental states to other individuals is crucial for human cognition. A milestone of this ability is reached around the age of 4, when children start understanding that others can have false beliefs about the world. The neural basis supporting this critical step is currently unknown. Here, we relate this behavioural change to the maturation of white matter structure in 3- and 4-year-old children. Tract-based spatial statistics and probabilistic tractography show that the developmental breakthrough in false belief understanding is associated with age-related changes in local white matter structure in temporoparietal regions, the precuneus and medial prefrontal cortex, and with increased dorsal white matter connectivity between temporoparietal and inferior frontal regions. These effects are independent of co-developing cognitive abilities. Our findings show that the emergence of mental state representation is related to the maturation of core belief processing regions and their connection to the prefrontal cortex. PMID:28322222

  9. Maturation of white matter is associated with the development of cognitive functions during childhood.

    PubMed

    Nagy, Zoltan; Westerberg, Helena; Klingberg, Torkel

    2004-09-01

    In the human brain, myelination of axons continues until early adulthood and is thought to be important for the development of cognitive functions during childhood. We used diffusion tensor MR imaging and calculated fractional anisotropy, an indicator of myelination and axonal thickness, in children aged between 8 and 18 years. Development of working memory capacity was positively correlated with fractional anisotropy in two regions in the left frontal lobe, including a region between the superior frontal and parietal cortices. Reading ability, on the other hand, was only correlated with fractional anisotropy in the left temporal lobe, in the same white matter region where adults with reading disability are known to have lower fractional anisotropy. Both the temporal and the frontal regions were also correlated with age. These results show that maturation of white matter is an important part of brain maturation during childhood, and that maturation of relatively restricted regions of white matter is correlated with development of specific cognitive functions.

  10. Associations between reaction time measures and white matter hyperintensities in very old age.

    PubMed

    Haynes, Becky I; Bunce, David; Kochan, Nicole A; Wen, Wei; Brodaty, Henry; Sachdev, Perminder S

    2017-02-01

    In old age, a relationship has been reported between intraindividual variability (IIV) in reaction time and white matter integrity as evidenced by white matter hyperintensities (WMH). However, it is unclear how far such associations are due to incipient neurodegenerative pathology in the samples investigated. The present study examined the relationship between IIV and WMH in older individuals (N=526) drawn from the Sydney Memory and Ageing Study. Using a complex reaction time (RT) task, greater IIV and mean-RT were related to a higher WMH burden in the frontal lobe. Critically, significant associations remained having taken future dementia into account suggesting that they were not explained by incipient dementia. Additionally, independent measures of executive function accounted for the association between RT metrics and WHM. The results are consistent with the view that frontally-supported cognitive processes are involved in IIV-WMH relations, and that RT measures are sensitive to compromise in white matter structures in non-demented older individuals.

  11. White matter maturation is associated with the emergence of Theory of Mind in early childhood.

    PubMed

    Grosse Wiesmann, Charlotte; Schreiber, Jan; Singer, Tania; Steinbeis, Nikolaus; Friederici, Angela D

    2017-03-21

    The ability to attribute mental states to other individuals is crucial for human cognition. A milestone of this ability is reached around the age of 4, when children start understanding that others can have false beliefs about the world. The neural basis supporting this critical step is currently unknown. Here, we relate this behavioural change to the maturation of white matter structure in 3- and 4-year-old children. Tract-based spatial statistics and probabilistic tractography show that the developmental breakthrough in false belief understanding is associated with age-related changes in local white matter structure in temporoparietal regions, the precuneus and medial prefrontal cortex, and with increased dorsal white matter connectivity between temporoparietal and inferior frontal regions. These effects are independent of co-developing cognitive abilities. Our findings show that the emergence of mental state representation is related to the maturation of core belief processing regions and their connection to the prefrontal cortex.

  12. 3D texture-based classification applied on brain white matter lesions on MR images

    NASA Astrophysics Data System (ADS)

    Leite, Mariana; Gobbi, David; Salluzi, Marina; Frayne, Richard; Lotufo, Roberto; Rittner, Letícia

    2016-03-01

    Lesions in the brain white matter are among the most frequently observed incidental findings on MR images. This paper presents a 3D texture-based classification to distinguish normal appearing white matter from white matter containing lesions, and compares it with the 2D approach. Texture analysis were based on 55 texture attributes extracted from gray-level histogram, gray-level co-occurrence matrix, run-length matrix and gradient. The results show that the 3D approach achieves an accuracy rate of 99.28%, against 97.41% of the 2D approach by using a support vector machine classifier. Furthermore, the most discriminating texture attributes on both 2D and 3D cases were obtained from the image histogram and co-occurrence matrix.

  13. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    PubMed Central

    Hayes, Jasmeet P.; Miller, Danielle R.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having

  14. Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure

    PubMed Central

    Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.

    2010-01-01

    Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622

  15. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia

    PubMed Central

    Chen, Aiqing; Akinyemi, Rufus O.; Hase, Yoshiki; Firbank, Michael J.; Ndung’u, Michael N.; Foster, Vincent; Craggs, Lucy J. L.; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J.; Polvikoski, Tuomo M.; Allan, Louise M.; Oakley, Arthur E.; O’Brien, John T.; Horsburgh, Karen; Ihara, Masafumi

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with

  16. 17β-estradiol replacement therapy protects myelin sheaths in the white matter of middle-aged female ovariectomized rats: a stereological study.

    PubMed

    Luo, Yanmin; Xiao, Qian; Chao, Fenglei; He, Qi; Lv, Fulin; Zhang, Lei; Gao, Yuan; Qiu, Xuan; Huang, Chunxia; Li, Yongde; Wang, Sanrong; Jiang, Rong; Gu, Hengwei; Tang, Yong

    2016-11-01

    Many studies have shown that estrogen replacement therapy (ERT) can improve cognitive function and affect the structure of the brain, including the white matter, in postmenopausal women. However, it is unclear whether ERT plays an important role in white matter remodeling in postmenopausal women. In the present study, middle-aged (9-12-month-old) female Sprague-Dawley rats were bilaterally ovariectomized (OVX) and randomly allocated to the vehicle treatment (OVX+Veh) group or the 17β-estradiol replacement (OVX+E) group. After 1 month of treatment, spatial learning and memory capacities were assessed using the Morris water maze task. Then, stereological methods were used to quantitatively evaluate white matter volume and myelinated fiber parameters of the white matter in the 2 groups of rats. The results revealed that the mean escape latency of the OVX+E rats in the Morris water maze task was significantly shorter than that of the OVX+Veh rats. The volume density of the myelinated fibers and the volume density and total volume of the myelin sheaths were significantly greater in the OVX+E rats than in the OVX+Veh rats. However, there were no significant differences in white matter volume or in the total length or volume of myelinated fibers in white matter between the 2 groups of rats. Our results showed that 1 month of ERT had significant beneficial effects on spatial learning capacity and on the myelin sheaths and myelinated fibers in the white matter of middle-aged OVX rats.

  17. Does White Matter Matter? Spatio-temporal Dynamics of Task Switching in Aging

    PubMed Central

    Gratton, Gabriele; Wee, Emily; Rykhlevskaia, Elena I.; Leaver, Echo E.; Fabiani, Monica

    2010-01-01

    Older adults often encounter difficulties in switching between tasks, perhaps because of age-related decreases in executive function. Executive function may largely depend on connections between brain areas—connections that may become structurally and functionally weaker in aging. Here we investigated functional and structural age-related changes in switching between a spatial and a verbal task. These tasks were chosen because they are expected to differentially use the two hemispheres. Brain measures included anatomical information about anterior corpus callosum size (CC; the major commissure linking the left and right hemisphere), and the event-related optical signal (EROS). Behavioral results indicated that older adults had greater task-switching difficulties, which, however, were largely restricted to switching to the spatial task and to individuals with smaller anterior CCs. The EROS data showed both general switching-related activity in the left middle frontal gyrus (with approximately 300-msec latency) and task-specific activity in the inferior frontal gyrus, lateralized to the left for the switch-to-verbal condition and to the right for the switch-to-spatial condition. This lateralization was most evident in younger adults. In older adults, activity in the switch-to-spatial condition was lateralized to the right hemisphere in individuals with large CC, and to the left in individuals with small CC. These data suggest that (a) task switching may involve both task-general and task-specific processes; and (b) white matter changes may underlie some of the age-related problems in switching. These effects are discussed in terms of the hypothesis that aging involves some degree of cortical disconnection, both functional and anatomical. PMID:18752402

  18. White matter growth as a mechanism of cognitive development in children.

    PubMed

    Mabbott, Donald J; Noseworthy, Michael; Bouffet, Eric; Laughlin, Suzanne; Rockel, Conrad

    2006-11-15

    We examined the functional role of white matter growth in cognitive development. Specifically, we used hierarchical regression analyses to test the unique contributions of age versus white matter integrity in accounting for the development of information processing speed. Diffusion tensor imaging was acquired for 17 children and adolescents (age range 6-17 years), with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) calculated for 10 anatomically defined fiber pathways and 12 regions of hemispheric white matter. Measures of speeded visual-spatial searching, rapid picture naming, reaction time in a sustained attention task, and intelligence were administered. Age-related increases were evident across tasks, as well as for white matter integrity in hemispheric white matter. ADC was related to few measures. FA within multiple hemispheric compartments predicted rapid picture naming and standard error of reaction time in sustained attention, though it did not contribute significantly to the models after controlling for age. Independent of intelligence, visual-spatial searching was related to FA in a number of hemispheric regions. A novel finding was that only right frontal-parietal regions contributed uniquely beyond the effect of age in accounting for performance: age did not contribute to visual-spatial searching when FA within these regions was first included in the models. Considering we found that both FA in right frontal-parietal regions and speed of visual-spatial searching increased with age, our findings are consistent with the growth of regional white matter organization as playing an important role in increased speed of visual searching with age.

  19. Intrauterine infection induces programmed cell death in rabbit periventricular white matter.

    PubMed

    Debillon, T; Gras-Leguen, C; Vérielle, V; Winer, N; Caillon, J; Rozé, J C; Gressens, P

    2000-06-01

    An association between chorioamnionitis and periventricular leukomalacia has been reported in human preterm infants. However, whether this link is causal has not been convincingly established, and the underlying molecular mechanisms remain unclear. The objective of this study was to establish a reproducible model of cerebral white matter disease in preterm rabbits after intrauterine infection. Escherichia coli was inoculated into both uterine horns of laparotomized pregnant rabbits when gestation was 80% complete. The fetuses were delivered by cesarean section and killed 12, 24, or 48 h after the inoculation. Programmed cell death in the white matter was evaluated by hematoxylin-eosin-saffron staining and in situ fragmented DNA labeling (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). In a first group of 14 pregnant rabbits not treated with antibiotics, all fetuses delivered 48 h after inoculation were stillborn, whereas fetuses extracted 12 or 24 h after inoculation were alive. No significant cell death was detected in the live fetuses compared with the control noninfected rabbits. In a second group of five pregnant rabbits treated with ceftriaxone initiated 24 h after the inoculation and continued until cesarean section was performed 48 h after inoculation, 13 fetuses were alive, but all showed evidence of extensive programmed cell death in the white matter by hematoxylin-eosin-saffron staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. White matter damage became histologically detectable only 48 h after inoculation. Three of the 13 brains displayed periventricular white matter cysts mimicking human cystic periventricular leukomalacia. The high reproducibility of white matter damage in our model should permit further studies aimed at unraveling the molecular mechanisms of periventricular leukomalacia.

  20. Serum S100B Protein is Specifically Related to White Matter Changes in Schizophrenia

    PubMed Central

    Milleit, Berko; Smesny, Stefan; Rothermundt, Matthias; Preul, Christoph; Schroeter, Matthias L.; von Eiff, Christof; Ponath, Gerald; Milleit, Christine; Sauer, Heinrich; Gaser, Christian

    2016-01-01

    Background: Schizophrenia can be conceptualized as a form of dysconnectivity between brain regions.To investigate the neurobiological foundation of dysconnectivity, one approach is to analyze white matter structures, such as the pathology of fiber tracks. S100B is considered a marker protein for glial cells, in particular oligodendrocytes and astroglia, that passes the blood brain barrier and is detectable in peripheral blood. Earlier Studies have consistently reported increased S100B levels in schizophrenia. In this study, we aim to investigate associations between S100B and structural white matter abnormalities. Methods: We analyzed data of 17 unmedicated schizophrenic patients (first and recurrent episode) and 22 controls. We used voxel based morphometry (VBM) to detect group differences of white matter structures as obtained from T1-weighted MR-images and considered S100B serum levels as a regressor in an age-corrected interaction analysis. Results: S100B was increased in both patient subgroups. Using VBM, we found clusters indicating significant differences of the association between S100B concentration and white matter. Involved anatomical structures are the posterior cingulate bundle and temporal white matter structures assigned to the superior longitudinal fasciculus. Conclusions: S100B-associated alterations of white matter are shown to be existent already at time of first manifestation of psychosis and are distinct from findings in recurrent episode patients. This suggests involvement of S100B in an ongoing and dynamic process associated with structural brain changes in schizophrenia. However, it remains elusive whether increased S100B serum concentrations in psychotic patients represent a protective response to a continuous pathogenic process or if elevated S100B levels are actively involved in promoting structural brain damage. PMID:27013967

  1. Age-related decline in oligodendrogenesis retards white matter repair in mice

    PubMed Central

    Miyamoto, Nobukazu; Pham, Loc-Duyen D.; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H.; Arai, Ken

    2013-01-01

    Background/Purpose Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask if compared to young brains, white matter regions in older brains may be more vulnerable in part due to decreased rates of compensatory oligodendrogenesis after injury. Methods A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells (OPCs) to sub-lethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Results Baseline myelin density in the corpus callosum was similar in 2-month and 8-month old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in CREB signaling may be involved because activating CREB with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of OPCs, alleviated myelin loss and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of OPCs. Conclusions An age-related decline in CREB-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate CREB signaling provide a potential therapeutic approach for treating white matter injury in aging brains. PMID:23881957

  2. Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults

    PubMed Central

    Braskie, Meredith N; Jahanshad, Neda; Stein, Jason L; Barysheva, Marina; Johnson, Kori; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Ringman, John M; Toga, Arthur W; Thompson, Paul M

    2012-01-01

    The NTRK1 gene (also known as TRKA) encodes a high affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importance of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower FA in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 Tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy – a common diffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test results reproducibility. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple comparisons corrected: false discovery rate critical p = 0.038 for NTRK1-T and 0.013 for rs4661063-A). In each half-sample, the NTRK1-T effect was replicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure. PMID:22539856

  3. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury.

    PubMed

    Armstrong, Regina C; Mierzwa, Amanda J; Sullivan, Genevieve M; Sanchez, Maria A

    2016-11-01

    Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. White matter pathology after TBI depends on the extent and distribution of axon damage, microhemorrhages and/or neuroinflammation. TAI occurs in a pattern of damaged axons dispersed among intact axons in white matter tracts. TAI accompanied by bleeding and/or inflammation produces focal regions of overt tissue destruction, resulting in loss of both axons and myelin. White matter regions with TAI may also exhibit demyelination of intact axons. Demyelinated axons that remain viable have the potential for remyelination and recovery of function. Indeed, animal models of TBI have demonstrated demyelination that is associated with evidence of remyelination, including oligodendrocyte progenitor cell proliferation, generation of new oligodendrocytes, and formation of thinner myelin. Changes in neuronal activity that accompany TBI may also involve myelin remodeling, which modifies conduction efficiency along intact myelinated fibers. Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.

  4. Effects of a Balanced Translocation between Chromosomes 1 and 11 Disrupting the DISC1 Locus on White Matter Integrity

    PubMed Central

    Whalley, Heather C.; Dimitrova, Rali; Sprooten, Emma; Dauvermann, Maria R.; Romaniuk, Liana; Duff, Barbara; Watson, Andrew R.; Moorhead, Bill; Bastin, Mark; Semple, Scott I.; Giles, Stephen; Hall, Jeremy; Thomson, Pippa; Roberts, Neil; Hughes, Zoe A.; Brandon, Nick J.; Dunlop, John; Whitcher, Brandon; Blackwood, Douglas H. R.; McIntosh, Andrew M.; Lawrie, Stephen M.

    2015-01-01

    Objective Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3). Method Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33). Results We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity. Conclusions We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis. PMID:26102360

  5. Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia.

    PubMed

    Barker, Rachel; Ashby, Emma L; Wellington, Dannielle; Barrow, Vivienne M; Palmer, Jennifer C; Kehoe, Patrick G; Esiri, Margaret M; Love, Seth

    2014-05-01

    Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer's d