Sample records for affected areas cover

  1. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  2. [Effect of different snow depth and area on the snow cover retrieval using remote sensing data].

    PubMed

    Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao

    2011-12-01

    For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.

  3. Areas of Indian Country Covered by the EPA Plan

    EPA Pesticide Factsheets

    Areas of Indian country covered by the EPA Plan for certification are those that are not covered by another EPA-approved certification plan.Most areas are NOT covered by an EPA-approved plan, so this new plan would apply to most locations.

  4. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  5. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Covered areas. 80.70 Section 80.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF...) Hopewell; (xvii) Richmond; (xviii) Chesapeake; (xix) Hampton; (xx) James City County; (xxi) Newport News...

  6. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Covered areas. 80.70 Section 80.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF...) Hopewell; (xvii) Richmond; (xviii) Chesapeake; (xix) Hampton; (xx) James City County; (xxi) Newport News...

  7. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Covered areas. 80.70 Section 80.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF...) Hopewell; (xvii) Richmond; (xviii) Chesapeake; (xix) Hampton; (xx) James City County; (xxi) Newport News...

  8. Increased plastic litter cover affects the foraging activity of the sandy intertidal gastropod Nassarius pullus.

    PubMed

    Aloy, Alexander B; Vallejo, Benjamin M; Juinio-Meñez, Marie Antonette

    2011-08-01

    This study analyzed the foraging behavior of the gastropod Nassarius pullus on garbage-impacted sandy shores of Talim Bay, Batangas, Philippines. The effect of different levels of plastic garbage cover on foraging efficiency was investigated. Controlled in situ baiting experiments were conducted to quantify aspects of foraging behavior as affected by the levels of plastic litter cover in the foraging area. The results of the study indicated that the gastropod's efficiency in locating and in moving towards a food item generally decreased as the level of plastic cover increased. Prolonged food searching time and increased self-burial in sand were highly correlated with increased plastic cover. The accuracy of orientation towards the actual position of the bait decreased significantly when the amount of plastic cover increased to 50%. These results are consistent with the significant decreases in the abundance of the gastropod observed during periods of deposition of large amounts of plastic and other debris on the shore. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Comparing Minnesota land cover/use area estimates using NRI and FIA data

    Treesearch

    Veronica C. Lessard; Mark H. Hansen; Mark D. Nelson

    2002-01-01

    Areas for land cover/use categories on non-Federal land in Minnesota were estimated from Forest Inventory and Analysis (FIA) data and National Resources Inventory (NRI) data. Six common land cover/use categories were defined, and the NRI and FIA land cover/use categories were assigned to them. Area estimates for these categories were calculated from the FIA and NRI...

  10. Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2016-10-01

    Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th

  11. Ice cover affects the growth of a stream-dwelling fish.

    PubMed

    Watz, Johan; Bergman, Eva; Piccolo, John J; Greenberg, Larry

    2016-05-01

    Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production.

  12. Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhao, Z.

    2018-04-01

    In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.

  13. Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey.

    PubMed

    Bozkaya, A Gonca; Balcik, Filiz Bektas; Goksel, Cigdem; Esbah, Hayriye

    2015-03-01

    Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.

  14. Diachronic analysis of salt-affected areas using remote sensing techniques: the case study of Biskra area, Algeria

    NASA Astrophysics Data System (ADS)

    Afrasinei, Gabriela M.; Melis, Maria T.; Buttau, Cristina; Bradd, John M.; Arras, Claudio; Ghiglieri, Giorgio

    2015-10-01

    In the Wadi Biskra arid and semi-arid area, sustainable development is limited by land degradation, such as secondary salinization of soils. As an important high quality date production region of Algeria, it needs continuous monitoring of desertification indicators, since the bio-physical setting defines it as highly exposed to climate-related risks. For this particular study, for which little ground truth data was possible to acquire, we set up an assessment of appropriate methods for the identification and change detection of salt-affected areas, involving image interpretation and processing techniques employing Landsat imagery. After a first phase consisting of a visual interpretation study of the land cover types, two automated classification approaches were proposed and applied for this specific study: decision tree classification and principal components analysis (PCA) of Knepper ratios. Five of the indices employed in the Decision Tree construction were set up within the current study, among which we propose a salinity index (SMI) for the extraction of highly saline areas. The results of the 1984 to 2014 diachronic analysis of salt - affected areas variation were supported by the interpreted land cover map for accuracy estimation. Connecting the outputs with auxiliary bio-physical and socio-economic data, comprehensive results are discussed, which were indispensable for the understanding of land degradation dynamics and vulnerability to desertification. One aspect that emerged was the fact that the expansion of agricultural land in the last three decades may have led and continue to contribute to a secondary salinization of soils. This study is part of the WADIS-MAR Demonstration Project, funded by the European Commission through the Sustainable Water Integrated Management (SWIM) Program (www.wadismar.eu).

  15. Land use/cover changes in European mountain areas: identifying links between global driving forces and local consequences

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Schröter, Dagmar; Glade, Thomas

    2013-04-01

    farming and illegal logging. This intensification of activities has mostly affected land on slopes in an area where over 40 % of the area is subject to landslides. Relatively, the prevailing land use/cover change process in both areas, as usually in most European mountain areas, is reforestation. Small-scale changes however were most important in terms of negative consequences. Therefore we think it is necessary to focus on the local scale when identifying possible future negative consequences of land use/cover change. Acknowledgement This work is a part of the CHANGES project (Changing hydro-meteorological risks - as Analysed by a New Generation of European Scientists), a Marie Curie Initial Training Network, funded by the European Community's 7'th Framework Programme FP7/2007-2013 under Grant Agreement No. 263953.

  16. Satellite based classification (haze, fog) and affected area estimation over Indo - Pak Sub-Continent

    NASA Astrophysics Data System (ADS)

    Ghauri, Badar; Zafar, Sumaira

    2016-07-01

    Northern Pakistan and bordering Indian Punjab experience intense smog and fog during fall and winters. Environmentalists have been raising their voices over the situation and demanded control over regional emissions to save the livelihood of millions of dwellers whose trade, commerce and agriculture is at stake because of long smog/ fog spells.. This paper estimates the area affected by haze, smog and fog during 2006- 2010. MODIS (geo-referenced MODIS subsets India1, 2 &3) of the area in Pakistan and India from 2006 to 2010 for the period October to February) were analyzed using state of the art software ENVI 4.2 and ArcGIS 10.2. This process resulted in area belonging to each class that is; haze, smog and fog. On the basis of density, haze and fog cover was determined. Variations in fog cover, its density and identification of location of fog initiation process were also determined using near real time (30 minutes) METEOSAT-7 IODC data where actually fog formation started and then extended to the area of favorable conditions. Haze has been noticed to intensify due to massive burning of agricultural waste (rice husk) in India and Pakistan towards the end of October each year. MODIS thermal anomalies/fire data (MYD 14) were also used to verify this activity on the ground, which results in hazy conditions at regional level during fall months. Haze-affected area during 2006 to 2010 in Pakistan ranged from 155,000 Km2 to 354,000 Km2 and in India it ranged from 333,000 Km2 to 846,000 Km2. Similarly winter fog cover during this period in Pakistan varied from 136,000 Km2 to 381,000 Km2 and in India it was estimated at 327,000 Km2 to 566,000 Km2. This phenomenon was more prominent in India than in Pakistan where and fog cover was at least twice than that was observed in Pakistan. It has been noted that area covered by fog, smog and haze doubled during the study period in the region. Atmospheric dimming during autumn/ fall also reduces the mixing height leading to greater

  17. Snow cover monitoring model and change over both time and space in pastoral area of northern China

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Li, Suju; Wang, Ping; Zhang, Wei; Nie, Juan; Wen, Qi

    2014-11-01

    Snow disaster is a natural phenomenon owning to widespread snowfall for a long time and usually affect people's life, property and economic. During the whole disaster management circle, snow disaster in pastoral area of northern china which including Xinjiang, Inner Mongolia, Qinghai, Tibet has been paid more attention. Thus do a good job in snow cover monitoring then found snow disaster in time can help the people in disaster area to take effective rescue measures, which always been the central and local government great important work. Remote sensing has been used widely in snow cover monitoring for its wide range, high efficiency, less conditions, more methods and large information. NOAA/AVHRR data has been used for wide range, plenty bands information and timely acquired and act as an import data of Snow Cover Monitoring Model (SCMM). SCMM including functions list below: First after NOAA/AVHRR data has been acquired, geometric calibration, radiometric calibration and other pre-processing work has been operated. Second after band operation, four threshold conditions are used to extract snow spectrum information among water, cloud and other features in NOAA/AVHRR image. Third snow cover information has been analyzed one by one and the maximum snow cover from about twenty images in a week has been selected. Then selected image has been mosaic which covered the pastoral area of China. At last both time and space analysis has been carried out through this operational model ,such as analysis on the difference between this week and the same period of last year , this week and last week in three level regional. SCMM have been run successfully for three years, and the results have been take into account as one of the three factors which led to risk warning of snow disaster and analysis results from it always play an important role in disaster reduction and relief.

  18. Estimation of the spatiotemporal dynamics of snow covered area by using cellular automata models

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Collados-Lara, Antonio-Juan; Pulido-Velazquez, David

    2017-07-01

    Given the need to consider the cryosphere in water resources management for mountainous regions, the purpose of this paper is to model the daily spatially distributed dynamics of snow covered area (SCA) by using calibrated cellular automata models. For the operational use of the calibrated model, the only data requirements are the altitude of each cell of the spatial discretization of the area of interest and precipitation and temperature indexes for the area of interest. For the calibration step, experimental snow covered area data are needed. Potential uses of the model are to estimate the snow covered area when satellite data are absent, or when they provide a temporal resolution different from the operational resolution, or when the satellite images are useless because they are covered by clouds or because there has been a sensor failure. Another interesting application is the simulation of SCA dynamics for the snow covered area under future climatic scenarios. The model is applied to the Sierra Nevada mountain range, in southern Spain, which is home to significant biodiversity, contains important water resources in its snowpack, and contains the most meridional ski resort in Europe.

  19. How Spatial Heterogeneity of Cover Affects Patterns of Shrub Encroachment into Mesic Grasslands

    PubMed Central

    Montané, Francesc; Casals, Pere; Dale, Mark R. T.

    2011-01-01

    We used a multi-method approach to analyze the spatial patterns of shrubs and cover types (plant species, litter or bare soil) in grassland-shrubland ecotones. This approach allows us to assess how fine-scale spatial heterogeneity of cover types affects the patterns of Cytisus balansae shrub encroachment into mesic mountain grasslands (Catalan Pyrenees, Spain). Spatial patterns and the spatial associations between juvenile shrubs and different cover types were assessed in mesic grasslands dominated by species with different palatabilities (palatable grass Festuca nigrescens and unpalatable grass Festuca eskia). A new index, called RISES (“Relative Index of Shrub Encroachment Susceptibility”), was proposed to calculate the chances of shrub encroachment into a given grassland, combining the magnitude of the spatial associations and the surface area for each cover type. Overall, juveniles showed positive associations with palatable F. nigrescens and negative associations with unpalatable F. eskia, although these associations shifted with shrub development stage. In F. eskia grasslands, bare soil showed a low scale of pattern and positive associations with juveniles. Although the highest RISES values were found in F. nigrescens plots, the number of juvenile Cytisus was similar in both types of grasslands. However, F. nigrescens grasslands showed the greatest number of juveniles in early development stage (i.e. height<10 cm) whereas F. eskia grasslands showed the greatest number of juveniles in late development stages (i.e. height>30 cm). We concluded that in F. eskia grasslands, where establishment may be constrained by the dominant cover type, the low scale of pattern on bare soil may result in higher chances of shrub establishment and survival. In contrast, although grasslands dominated by the palatable F. nigrescens may be more susceptible to shrub establishment; current grazing rates may reduce juvenile survival. PMID:22174858

  20. Public policies and communication affecting forest cover in the Amazon

    NASA Astrophysics Data System (ADS)

    Kawakami Savaget, E.; Batistella, M.; Aguiar, A. P. D.

    2014-12-01

    The research program Amazalert was based on information delivered by the IPCC through its 2007 report, which indicates forest degradation processes in the Amazonian region as a consequence of anthropogenic actions. Such processes affecting the structural and functional characteristics of ecosystems would harm environmental services that guarantee, for example, the regulation of climate and the provision of fresh water. A survey was organized, through a multidisciplinary perspective, on the main policies and programs that can affect forest cover in the Amazon. These rules and norms seek to regulate societal actions by defining a developmental model for the region. Although deforestation rates in the Brazilian Amazon have decreased significantly since 2004, some locations maintain high levels of deforestation. In 2013, for example, the municipalities of Monte Alegre, Óbidos, Alenquer, Oriximiná, Curuá and Almeirin, in the northern region of the state of Para, showed the highest rates of deforestation in the Amazon. Managers and stakeholders within these areas are being interviewed to provide insights on how policies are interpreted and applied locally. There is an understanding delay between discourses normalized by federal governmental institutions and claims of local societies. The possible lack of clarity in official discourses added to the absence of a local communicative dynamics cause the phenomenon of incomplete information. Conflicts often occur in local institutional arenas resulting in violence and complex social and historical dissonances, enhanced by other public policies idealized in different temporal and spatial conditions.

  1. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  2. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    PubMed

    Alig, Ralph J; Butler, Brett J

    2004-04-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.

  3. Land cover and topography affect the land transformation caused by wind facilities

    USGS Publications Warehouse

    Diffendorfer, Jay E.; Compton, Roger W.

    2014-01-01

    Land transformation (ha of surface disturbance/MW) associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only), sites (strings with roads connecting them, buried cables and other infrastructure), and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure). An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here.

  4. Land Cover and Topography Affect the Land Transformation Caused by Wind Facilities

    PubMed Central

    Diffendorfer, Jay E.; Compton, Roger W.

    2014-01-01

    Land transformation (ha of surface disturbance/MW) associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only), sites (strings with roads connecting them, buried cables and other infrastructure), and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure). An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here. PMID:24558449

  5. The effects of dust on Colorado mountain snow cover albedo and compositional links to dust-source areas

    NASA Astrophysics Data System (ADS)

    Goldstein, H. L.; Reynolds, R. L.; Landry, C.; Derry, J. E.; Kokaly, R. F.; Breit, G. N.

    2016-12-01

    Dust deposited on mountain snow cover (DOS) changes snow albedo, enhances absorption of solar radiation, and effectively increases rates of snow melt, leading to earlier-than-normal runoff and overall smaller late-season water supplies for tens of millions of people and industries in the American West. Visible-spectrum reflectance of DOS samples is on the order of 0.2 (80% absorption), in stark contrast to the high reflectivity of pure snow which approaches 1.0. Samples of DOS were collected from 12 high-elevation Colorado mountain sites near the end of spring from 2013 through 2016 prior to complete snow melt, when most dust layers had merged into one layer. These samples were analyzed to measure dust properties that affect snow albedo and to link DOS to dust-source areas. Dust mass loadings to snow during water year 2014 varied from 5 to 30 g/m2. Median particle sizes centered around 20 micrometers with more than 80% of the dust <63 micrometers. Dark minerals, carbonaceous matter, and iron oxides, including nano-sized hematite and goethite, together diminished reflectance according to their variable concentrations. Documenting variations in dust-particle masses, sizes, and compositions helps determine their influences on snow-melt and may be useful for modeling snow-melt effects from future dust. Furthermore, variations in dust components and particle sizes lead to new ways to recognize sources of dust by comparison with properties of fine-grained sediments in dust-source areas. Much of the DOS in the San Juan Mountains, Colorado can be linked to southern Colorado Plateau source areas by compositional similarities and satellite imagery. Understanding dust properties that affect snow albedo and recognizing the sources of dust deposited on snow cover may guide mitigation of dust emission that affects water resources of the Colorado River basin.

  6. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    PubMed

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Characteristics of chemical pollution of snow cover in Aktobe areas].

    PubMed

    Iskakov, A Zh

    2010-01-01

    The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.

  8. Development of large Area Covering Height Model

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.

    2014-04-01

    Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting

  9. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey).

    PubMed

    Aricak, Burak

    2015-07-01

    Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.

  10. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management.

    PubMed

    Smucker, Nathan J; Kuhn, Anne; Charpentier, Michael A; Cruz-Quinones, Carlos J; Elonen, Colleen M; Whorley, Sarah B; Jicha, Terri M; Serbst, Jonathan R; Hill, Brian H; Wehr, John D

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km(2)), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and <1-m resolution land cover data, and (3) to determine if predictive models and relationships between water quality and land cover differed when using these two land cover datasets. Increased concentrations of nutrients, anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 (-) and Cl(-) that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  11. LARGE AREA LAND COVER MAPPING THROUGH SCENE-BASED CLASSIFICATION COMPOSITING

    EPA Science Inventory

    Over the past decade, a number of initiatives have been undertaken to create definitive national and global data sets consisting of precision corrected Landsat MSS and TM scenes. One important application of these data is the derivation of large area land cover products spanning ...

  12. Sensitivity of the snowmelt runoff model to underestimates of remotely sensed snow covered area

    USDA-ARS?s Scientific Manuscript database

    Three methods for estimating snow covered area (SCA) from Terra MODIS data were used to derive conventional depletion curves for input to the Snowmelt Runoff Model (SRM). We compared the MOD10 binary and fractional snow cover products and a method for estimating sub-pixel snow cover using spectral m...

  13. [Estimation of spur dike-affected fish habitat area].

    PubMed

    Ray-Shyan, Wu; Yan-Ru, Chen; Yi-Liang, Ge

    2012-04-01

    Based on the HEC-RAS and River 2D modes, and taking 5% change rate of weighted usable area (WUA) as the threshold to define the spur dike- affected area of target fish species Acrossocheilus paradoxus in Fazi River in Taiwan, this paper studied the affected area of the fish habitat by spur dike, and, in combining with the references about the installations of spur dikes in Taiwan in recent 10 years, analyzed the relative importance of related affecting factors such as dike height, dike length (water block rate), average slope gradient of river way, single or double spur dike, and flow discharge. In spite of the length of the dike, the affected area in downstream was farther, and was about 2-6 times as large as that in upstream. The ratio of the affected area in downstream / upstream decreased with increasing slope gradient, but increased with increasing dike length and flow discharge. When the discharge was approximate to 10 years return periods, the ratio of the affected area would be close to a constant of 2. Building double spur dike would produce a better WUA than building single spur dike.

  14. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2014-07-01 2014-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  15. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2013-07-01 2013-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  16. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2011-07-01 2011-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  17. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2012-07-01 2012-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  18. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2010-07-01 2010-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  19. Multitemporal analysis of Landsat images to detect land use land cover changes for monitoring soil sealing in the Nola area (Naples, Italy)

    NASA Astrophysics Data System (ADS)

    De Giglio, Michaela; Allocca, Maria; Franci, Francesca

    2016-10-01

    Land Use Land Cover Changes (LULCC) data provide objective information to support environmental policy, urban planning purposes and sustainable land development. Understanding of past land use/cover practices and current landscape patterns is critical to assess the effects of LULCC on the Earth system. Within the framework of soil sealing in Italy, the present study aims to assess the LULCC of the Nola area (Naples metropolitan area, Italy), relating to a thirty year period from 1984 to 2015. The urban sprawl affects this area causing the impervious surface increase, the loss in rural areas and landscape fragmentation. Located near Vesuvio volcano and crossed by artificial filled rivers, the study area is subject to landslide, hydraulic and volcanic risks. Landsat time series has been processed by means of the supervised per-pixel classification in order to produce multitemporal Land Use Land Cover maps. Then, post-classification comparison approach has been applied to quantify the changes occurring between 1984 and 2015, also analyzing the intermediate variations in 1999, namely every fifteen years. The results confirm the urban sprawl. The increase of the built-up areas mainly causes the habitat fragmentation and the agricultural land conversion of the Nola area that is already damaged by unauthorized disposal of urban waste. Moreover, considering the local risk maps, it was verified that some of the new urban areas were built over known hazardous sites. In order to limit the soil sealing, urgent measures and sustainable urban planning are required.

  20. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fan, J.

    2015-12-01

    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  1. Solar energy development impacts on land cover change and protected areas.

    PubMed

    Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F

    2015-11-03

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  2. Solar Energy Development Impacts on Land-Cover Change and Protected Areas

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Murphy-Mariscal, M. L.; Wu, G. C.; Allen, M. F.

    2015-12-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE; i.e., ≥ 1 megawatt [MW]) development requires large quantities of space and land; however, studies quantifying the effect of USSE on land-cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type (photovoltaic [PV] vs. concentrating solar power [CSP]), area (km2), and capacity (MW) within the global solar hotspot of the state of California (USA). Additionally, we utilized the Carnegie Energy and Environmental Compatibility Model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Lastly, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrub- and scrublands, comprising 375 km2 of land-cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in compatible areas. The majority of incompatible USSE power plants are sited far from existing transmission infrastructure and all USSE installations average at most seven and five km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  3. Male Texas Horned Lizards increase daily movements and area covered in spring: A mate searching strategy?

    USGS Publications Warehouse

    Stark, Richard C.; Fox, S. F.; David, M.L.

    2005-01-01

    Texas Horned Lizards, Phrynosoma cornutum, were tracked using fluorescent powder to determine exact daily movements. Daily linear movements and daily space use were compared between adult males and females. Lizards that traveled the greatest linear distances also covered the largest areas. In Oklahoma, adults emerge from hibernation in late April and early May and mate soon afterward. Males traveled significantly greater distances (and covered significantly larger areas in a day) than females in May but not after May. We propose that males move more and cover more area than females early in the mating season to intercept receptive females. Copyright 2005 Society for the Study of Amphibians and Reptiles.

  4. Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Glade, Thomas; Boerboom, Luc

    2014-05-01

    The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied

  5. Solar energy development impacts on land cover change and protected areas

    PubMed Central

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Murphy-Mariscal, Michelle L.; Wu, Grace C.; Allen, Michael F.

    2015-01-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions. PMID:26483467

  6. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data

    NASA Astrophysics Data System (ADS)

    Zhang, Jixian; Zhengjun, Liu; Xiaoxia, Sun

    2009-12-01

    The eco-environment in the Three Gorges Reservoir Area (TGRA) in China has received much attention due to the construction of the Three Gorges Hydropower Station. Land use/land cover changes (LUCC) are a major cause of ecological environmental changes. In this paper, the spatial landscape dynamics from 1978 to 2005 in this area are monitored and recent changes are analyzed, using the Landsat TM (MSS) images of 1978, 1988, 1995, 2000 and 2005. Vegetation cover fractions for a vegetation cover analysis are retrieved from MODIS/Terra imagery from 2000 to 2006, being the period before and after the rising water level of the reservoir. Several analytical indices have been used to analyze spatial and temporal changes. Results indicate that cropland, woodland, and grassland areas reduced continuously over the past 30 years, while river and built-up area increased by 2.79% and 4.45% from 2000 to 2005, respectively. The built-up area increased at the cost of decreased cropland, woodland and grassland. The vegetation cover fraction increased slightly. We conclude that significant changes in land use/land cover have occurred in the Three Gorges Reservoir Area. The main cause is a continuous economic and urban/rural development, followed by environmental management policies after construction of the Three Gorges Dam.

  7. 24 CFR 203.43e - Eligibility of mortgages covering houses in federally impacted areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Eligibility of mortgages covering houses in federally impacted areas. 203.43e Section 203.43e Housing and Urban Development Regulations... Requirements and Underwriting Procedures Eligible Properties § 203.43e Eligibility of mortgages covering houses...

  8. 24 CFR 203.43e - Eligibility of mortgages covering houses in federally impacted areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Eligibility of mortgages covering houses in federally impacted areas. 203.43e Section 203.43e Housing and Urban Development Regulations... Requirements and Underwriting Procedures Eligible Properties § 203.43e Eligibility of mortgages covering houses...

  9. How is the chlorophyll count affected by burned and unburned marsh areas?

    NASA Astrophysics Data System (ADS)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  10. The Change in the area of various land covers on the Tibetan Plateau during 1957-2015

    NASA Astrophysics Data System (ADS)

    Cuo, Lan; Zhang, Yongxin

    2017-04-01

    With average elevation of 4000 m and area of 2.5×106 km2, Tibetan Plateau hosts various fragile ecosystems such as perennial alpine meadow, perennial alpine steppe, temperate evergreen needleleaf trees, temperate deciduous trees, temperate shrub grassland, and barely vegetated desert. Perennial alpine meadow and steppe are the two dominant vegetation types on the heartland of the plateau. MODIS Leaf Area Index (LAI) ranges from 0 to 2 in most part of the plateau. With climate change, these ecosystems are expected to undergo alteration. This study uses a dynamic vegetation model - Lund-Potsdam-Jena (LPJ) to investigate the change of the barely vegetated area and other vegetation types caused by climate change during 1957-2015 on the Tibetan Plateau. Model simulated foliage projective coverage (FPC) and plant functional types (PFTs) are selected for the investigation. The model is evaluated first using both field surveyed land cover map and MODIS LAI images. Long term trends of vegetation FPC is examined. Decadal variations of vegetated and barely vegetated land are compared. The impacts of extreme precipitation, air temperature and CO2 on the expansion and contraction of barely vegetated and vegetated areas are shown. The study will identify the dominant climate factors in affecting the desert area in the region.

  11. Evaluation of the satellite derived snow cover area - Runoff forecasting models for the inaccessible basins of western Himalayas

    NASA Technical Reports Server (NTRS)

    Dey, B.

    1985-01-01

    In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.

  12. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  13. Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M. (Principal Investigator)

    1980-01-01

    Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.

  14. Classification and area estimation of land covers in Kansas using ground-gathered and LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    May, G. A.; Holko, M. L.; Anderson, J. E.

    1983-01-01

    Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.

  15. Canopy cover and leaf area index relationships for wheat, triticale, and corn

    USDA-ARS?s Scientific Manuscript database

    The AquaCrop model requires canopy cover (CC) measurements to define crop growth and development. Some previously collected data sets that would be useful for calibrating and validating AquaCrop contain only leaf area index (LAI) data, but could be used if relationships were available relating LAI t...

  16. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP)more » for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical

  17. Vegetation Cover Affects Mammal Herbivory on Planted Oaks and Success of Reforesting Missouri River Bottomland Fields

    Treesearch

    Shannon Dugger; Daniel C. Dey; Joshua J. Millspaugh

    2004-01-01

    We are evaluating oak regeneration methods at Plowboy Bend and Smoky Waters Conservation Areas in the Missouri River floodplain by planting oak seedlings in different cover types (redtop grass vs. natural vegetation) on four 40- acre fields. After 1 year, survival of planted oaks was high; however, herbivory from rabbits was intense depending on cover type. Damage to...

  18. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  19. Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area)

    NASA Astrophysics Data System (ADS)

    Marko, K.; Zulkarnain, F.; Kusratmoko, E.

    2016-11-01

    Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.

  20. [Evaluation of pollution of an urban area by level of heavy metals in snow cover].

    PubMed

    Stepanova, N V; Khamitova, R Ia; Petrova, R S

    2003-01-01

    The goal of this study was to systematize various methodological approaches to evaluating the contamination of the snow cover with heavy metals (HM) by using Kazan, an industrial city with diversified industry, as an example. The findings suggest that it is necessary to characterize the contamination of the snow cover by the actual entrance of an element per area unit of the snow cover for a definite period of time rather than by the concentration of TM in the volume unit of snow water (mg/l), which minimizes the uncertainties with spatial and temporary snow cover variations. The index of the maximum allowable entrance, which is of practical value, may be used to objectively calibrate the pollution of the snow cover, by estimating the amount of a coming element and its toxicity.

  1. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare.

  2. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure

    PubMed Central

    Ferraro, Paul J.; Hanauer, Merlin M.

    2014-01-01

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397

  3. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  4. Development of the USGS national land-cover database over two decades

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Yang, Limin; Weng, Qihao

    2011-01-01

    Land-cover composition and change have profound impacts on terrestrial ecosystems. Land-cover and land-use (LCLU) conditions and their changes can affect social and physical environments by altering ecosystem conditions and services. Information about LCLU change is often used to produce landscape-based metrics and evaluate landscape conditions to monitor LCLU status and trends over a specific time interval (Loveland et al. 2002; Coppin et al. 2004; Lunetta et al. 2006). Continuous, accurate, and up-to-date land-cover data are important for natural resource and ecosystem management and are needed to support consistent monitoring of landscape attributes over time. Large-area land-cover information at regional, national, and global scales is critical for monitoring landscape variations over large areas.

  5. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2011-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn

  6. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2012-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn

  7. Effects of tourism and globalization on land cover and the influence on the quality of life of Paphos area in Cyprus

    NASA Astrophysics Data System (ADS)

    Italos, Chrysostomos; Akylas, Evangelos; Hadjimitsis, Diofantos G.

    2014-08-01

    Since 1960 most of the coastal area cites across the Mediterranean Sea concentrates people due mass immigration of people from the rural to urban areas. The extensive tourism development especially across the coastal areas, create demand of infrastructures and new work positions and intensive pressure to the environment. The new spirit of the globalization creates movability of people and goods around the word. The free transfer of people from countries with big population and low economical wealth, which are moved to areas where they can work. All the above generate demands of labor and Paphos is one of these areas where during the last decades was transformed from a small agriculture village in one excellent tourist destination. Across the coastal areas big tourist infrastructure was built and lot of different people travel from all areas around the word especially during the summer months. All these generate continuous changes to the environment, to the people and the society. The globalization of the universe commerce and the free transfer of goods and people modify the community stratification. The inflow of agricultures products from third countries reduces the local production and generates degradation and desertification of the rural areas. The periodical variation of the population of the area during the summer and winter periods affect to the environment. The increment demand of sources (water, energy and food) during the summer months pressurize the coastal strip area. By estimating a ratio of inflows by the outflows of goods, people and services of the study area and a ratio of the tourists by the local population, a general index can by arise which will clarify the effects on the environment on the study area. This paper presents the results obtained by this study by examining the effects of tourism on land cover and effects on quality of life for the Paphos area in Cyprus. The authors explores the potential of blending in the sustainability study the

  8. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03more » and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less

  9. Notice of Final Rulemaking: Regulation of Fuel and Fuel Additives: Reformulated Gasoline Requirements for the Atlanta Covered Area

    EPA Pesticide Factsheets

    This page summaries the final rule determining that the Atlanta metro area is no longer a federal reformulated gasoline (RFG) covered area and there is no requirement to use federal RFG in the Atlanta area.

  10. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  11. MODIS land cover uncertainty in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.

    2017-12-01

    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.

  12. Seasonal snow cover regime and historical change in Central Asia from 1986 to 2008

    NASA Astrophysics Data System (ADS)

    Zhou, Hang; Aizen, Elena; Aizen, Vladimir

    2017-01-01

    A series of statistics describing seasonal Snow Cover Extent and timing in Central Asia (CA) have been derived from AVHRR satellite images for the time period from 1986 to 2008. Analysis of long term mean snow cover statistics shows that the area weighted mean of long term Snow Covering Days (SCD) for the whole CA is 95.2 ± 65.7 days. High elevation mountainous areas above 3000 m in Altai, Tien Shan and Pamir, which account for about 2.8% of total area in CA, have SCD > 240 days. Deserts (Karakorum Desert, Taklamakan Desert, Kumtag Desert) and rain shadow areas of major mountains, accounting for 27.0% of total area in CA, have SCD in the range of 0-30 days. Factors affecting snow cover distribution have been analyzed using simple linear regression and segmented regression. For plain regions and windward regions, the SCD rate is + 5.9 days/100 m, while for leeward regions, the rate jumps from + 0.7 days/100 m to + 10.0 days/100 m at about 2335 m. Latitude affects the SCD, especially in plain regions with insignificant change of elevation, with rates of 9-10 days/degree from south to north. The Mann-Kendal test and the Theil-Sen regression methods have been applied to analyze the spatial heterogeneous trends of change of SCD, Snow Cover Onset Date (SCOD), and Snow Cover Melt Date (SCMD). Area weighed mean SCD in the whole CA does not exhibit significant trend of change from 1986 to 2008. Increase of SCD was observed in the northeastern Kazakh Steppe. Low elevation areas below 2000 m in Central Tien Shan and Eastern Tien Shan, as well as mid-elevation areas from 1000 m to 3000 m in Western Tien Shan, Pamiro-Alai and Western Pamir, also experienced increase of SCD, associated with both earlier SCOD and later SCMD. Decrease of SCD was observed in mountainous areas of Altai, Tien Shan and Pamir, and vast areas in plains surrounding the Aral Sea.

  13. Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration

    USGS Publications Warehouse

    Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.

    2001-01-01

    Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.

  14. Forest cover loss and urban area expansion in the Conterminous Unites States in the first decade of the third millennium

    NASA Astrophysics Data System (ADS)

    Huo, L. Z.; Boschetti, L.

    2016-12-01

    Remote sensing has been successfully used for global mapping of changes in forest cover, but further analysis is needed to characterize those changes - and in particular to classify the total loss of forest loss (Gross Forest Cover Loss, GFCL) based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest) (Kurtz et al., 2010). While natural forest disturbances (fires, insect outbreaks) and timber harvest generally involve a temporary change of land cover (vegetated to non-vegetated), they generally do not involve a change in land use, and it is expected that the forest cover loss is followed by recovery. Change of land use, such as the conversion of forest to agricultural or urban areas, is instead generally irreversible. The proper classification of forest cover loss is therefore necessary to properly model the long term effects of the disturbances on the carbon budget. The present study presents a spatial and temporal analysis of the forest cover loss due to urban expansion in the Conterminous United States. The Landsat-derived University of Maryland Global Forest Change product (Hansen et al, 2013) is used to identify all the areas of gross forest cover loss, which are subsequently classified into disturbance type (deforestation, stand-replacing natural disturbances, industrial forest clearcuts) using an object-oriented time series analysis (Huo and Boschetti, 2015). A further refinement of the classification is conducted to identify the areas of transition from forest land use to urban land use based on ancillary datasets such as the National Land Cover Database (Homer et al., 2015) and contextual image analysis techniques (analysis of object proximity, and detection of shapes). Results showed that over 4000 km2of forest were lost to urban area expansion in CONUS over the 2001 to 2010 period (1.8% of the gross forest cover loss). Most of the urban growth was concentrated in large urban areas: Atlanta, GA

  15. Determining Distributed Ablation over Dirty Ice Areas of Debris-covered Glaciers Using a UAV-SfM Approach

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.

    2017-12-01

    Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice

  16. Run for cover! What's covering your greenhouse and how is it affecting seedling growth?

    Treesearch

    Jeremy R. Pinto; Kas Dumroese; John D. Marshall

    2006-01-01

    Analysis of seedling growth characteristics between two greenhouse cover types, old fiberglass and new polycarbonate, shows significant differences in height and sturdiness coefficients in ponderosa pine (Pinus ponderosa) seedlings. Three rates of nitrogen (N) application (20, 40, and 60 mg) indicate that seedling growth will increase under both cover types, but may...

  17. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  18. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia

    2012-08-01

    In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.

  19. Affective Learning: Environmental Ethics and Human Ecology

    ERIC Educational Resources Information Center

    Gough, Noel P.

    1977-01-01

    This discussion of home economics as a discipline which should focus on its affective foundations, covers the following areas: Affective context of home economics education, the adequacy of the home economics value complex for coping with environmental problems, and toward an acceptable environmental ethic. (SH)

  20. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  1. Built-Up Area and Land Cover Extraction Using High Resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa

    NASA Astrophysics Data System (ADS)

    Fundisi, E.; Musakwa, W.

    2017-09-01

    Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  2. How well do route survey areas represent landscapes at larger spatial extents? An analysis of land cover composition along Breeding Bird Survey routes

    USGS Publications Warehouse

    Veech, Joseph A.; Pardieck, Keith L.; Ziolkowski, David

    2017-01-01

    The occurrence of birds in a survey unit is partly determined by the habitat present. Moreover, some bird species preferentially avoid some land cover types and are attracted to others. As such, land cover composition within the 400 m survey areas along a Breeding Bird Survey (BBS) route clearly influences the species available to be detected. Ideally, to extend survey results to the larger landscape, land cover composition within the survey area should be similar to that at larger spatial extents defining the landscape. Such representativeness helps minimize possible roadside effects (bias), here defined as differences in bird species composition and abundance along a roadside as compared to a larger surrounding landscape. We used land cover data from the 2011 National Land Cover Database to examine representativeness of land cover composition along routes. Using ArcGIS, the percentages of each of 15 land cover types within 400 m buffers along 2,696 U.S. BBS routes were calculated and compared to percentages in 2 km, 5 km, and 10 km buffers surrounding each route. This assessment revealed that aquatic cover types and highly urbanized land tend to be slightly underrepresented in the survey areas. Two anthropogenic cover types (pasture/hay and cropland) may be slightly overrepresented in the survey areas. Over all cover types, 92% of the 2,696 routes exhibited “good” representativeness, with <5 percentage points per cover type difference in proportional cover between the 400 m and 10 km buffers. This assessment further supports previous research indicating that any land-cover-based roadside bias in the bird data of the BBS is likely minimal.

  3. Mapping and measuring land-cover characteristics of New River Basin, Tennessee, using Landsat digital tapes

    USGS Publications Warehouse

    Hollyday, E.F.; Sauer, S.P.

    1976-01-01

    Land-cover information is needed to select subbasins within the New River basin, Tennessee, for the study of hydrologic processes and also is needed to transfer study results to other sites affected by coal mining. It was believed that data recorded by the first Earth Resources Technology Satellite (Landsat-1) could be processed to yield the needed land-cover information. This study demonstrates that digital computer processing of the spectral information contained in each picture element (pixel) of 1.1 acres (4,500 m2) can produce maps and tables of the areal extent of selected land-cover categories.The distribution of water, rock, agricultural areas, evergreens, bare earth, hardwoods, and uncategorized areas, is portrayed on a map of the entire New River basin (1:62,500 scale) and on 15 quadrangles (1:24,000 scale). Although some categories are a mixture of land-cover types, they portray the predominant component named. Tables quantify the area of each category and indicate that agriculture covers 5 percent of the basin, evergreens cover 7 percent, bare earth covers 6 percent, three categories of hardwoods cover 81 percent, and water, rock, and uncategorized areas each cover less than 1 percent of the basin.

  4. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  5.  A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012

    Treesearch

    Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt

    2016-01-01

    Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...

  6. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  7. Evaluation of DGVMs in tropical areas: linking patterns of vegetation cover, climate and fire to ecological processes

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ

  8. Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?

    PubMed

    Zhang, Tao; Yang, Xiaojun

    2013-01-01

    Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to

  9. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  10. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that

  11. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  12. The potential of cover crops for improving soil function

    NASA Astrophysics Data System (ADS)

    Stoate, Chris; Crotty, Felicity

    2017-04-01

    Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.

  13. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  14. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  15. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece.

    PubMed

    Mallinis, Giorgos; Koutsias, Nikos; Arianoutsou, Margarita

    2014-08-15

    The aims of this study were to map and analyze land use/land cover transitions and landscape changes in the Parnitha and Penteli mountains, which surround the Athens metropolitan area of Attica, Greece over a period of 62 years. In order to quantify the changes between land categories through time, we computed the transition matrices for three distinct periods (1945-1960, 1960-1996, and 1996-2007), on the basis of available aerial photographs used to create multi-temporal maps. We identified systematic and stationary transitions with multi-level intensity analysis. Forest areas in Parnitha remained the dominant class of land cover throughout the 62 years studied, while transitional woodlands and shrublands were the main classes involved in LULC transitions. Conversely, in Penteli, transitional woodlands, along with shrublands, dominated the study site. The annual rate of change was faster in the first and third time intervals, compared to the second (1960-1996) time interval, in both study areas. The category level analysis results indicated that in both sites annual crops avoided to gain while discontinuous urban fabric avoided to lose areas. At the transition level of analysis, similarities as well as distinct differences existed between the two areas. In both sites the gaining pattern of permanent crops with respect to annual crops and the gain of forest with respect to transitional woodland/shrublands were stationary across the three time intervals. Overall, we identified more systematic transitions and stationary processes in Penteli. We discussed these LULC changes and associated them with human interference (activity) and other major socio-economic developments that were simultaneously occurring in the area. The different patterns of change of the areas, despite their geographical proximity, throughout the period of analysis imply that site-specific studies are needed in order to comprehensively assess the driving forces and develop models of landscape

  16. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  17. 34 CFR 21.10 - Adversary adjudications covered by the Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Adversary adjudications covered by the Act. 21.10 Section 21.10 Education Office of the Secretary, Department of Education EQUAL ACCESS TO JUSTICE Which... Assistance for Local Educational Agencies in Areas Affected by Federal Activity) (20 U.S.C. 240(g)). (2...

  18. E-Area Low-Level Waste Facility Cover Overhang Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.; Flach, G. P.

    2016-05-18

    PORFLOW related analyses were performed with a focus on Slit and Engineered Trenches to evaluate the minimum required cover overhang size that would prevent any adverse impact on the ELLWF overall performance. Cover overhang is defined as the lateral distance that a low-infiltration cover extends beyond the edge of the trench unit in any direction. Analyses were carried out for H-3 (short half-life), I-129 (very long half-life), and Sr-90 (moderate half-life with intermediate K d) at different overhang sizes (5ft, 10ft, 20ft, 50ft, and infinite), cover timing (0yr, 10yr, 20yr, and 30yr), and scenarios (Intact and a limited Dynamic Compactionmore » Case). H-3, I-129 and Sr-90 are representative of nuclides that typically drive the sum-of-fractions for a trench disposal unit.« less

  19. Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA

    USGS Publications Warehouse

    Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.

    2001-01-01

    The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.

  20. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA

    USGS Publications Warehouse

    Preston, Todd M.; Kim, Kevin

    2016-01-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000 – 2015) development, the area and previous land cover of all well pads (pads) constructed during this time was determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990 ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121 ha have likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and- gas wells (i.e. stratigraphic test wells, water wells, injection wells, etc.), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  1. ACCURACY OF THE 1992 NATIONAL LAND COVER DATASET AREA ESTIMATES: AN ANALYSIS AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Abstract for poster presentation:

    Site-specific accuracy assessments evaluate fine-scale accuracy of land-use/land-cover(LULC) datasets but provide little insight into accuracy of area estimates of LULC

    classes derived from sampling units of varying size. Additiona...

  2. Low-cost computer classification of land cover in the Portland area, Oregon, by signature extension techniques

    USGS Publications Warehouse

    Gaydos, Leonard

    1978-01-01

    The cost of classifying 5,607 square kilometers (2,165 sq. mi.) in the Portland area was less than 8 cents per square kilometer ($0.0788, or $0.2041 per square mile). Besides saving in costs, this and other signature extension techniques may be useful in completing land use and land cover mapping in other large areas where multispectral and multitemporal Landsat data are available in digital form but other source materials are generally lacking.

  3. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post

  4. Affective brain areas and sleep disordered breathing

    PubMed Central

    Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.

    2014-01-01

    The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053

  5. Reduced Duration of Ice Cover in Swedish Lakes and Rivers

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Hallerback, S. A. M.; Stensen, K.; David, G.; Persson, M.

    2016-12-01

    The worlds freshwater systems are one of the most altered ecosystems on earth. Climate change introduces additional stresses on such systems, and this study presents an example of such change in an investigation of ice cover duration in Swedish lakes and rivers. In situ observations from over 750 lakes and rivers in Sweden were analyzed, with some records dating back to the beginning of the 18th century. Results show that ice duration significantly decreased over the last century. Change in ice duration is affected by later freeze as well as (more dominantly) earlier breakup dates. Additionally, since the late 1980's there has been an increase of extreme events, meaning years with extremely short duration of ice cover. The affect of temperature on the system was also examined. Using 113 years of temperature data, we empirically show how temperature changes affect the ice duration in lakes at different latitudes as well as dependent on lake area, volume and depth.

  6. Urban green land cover changes and their relation to climatic variables in an anthropogenically impacted area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.

    2017-10-01

    Urban green areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor urban vegetation phenological variations. This study quantitatively describes Normalized Difference Vegetation Index NDVI) /Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) temporal changes for Bucharest metropolitan region land cover in Romania from the perspective of vegetation phenology and its relation with climate changes and extreme climate events. The time series from 2000 to 2016 of the NOAA AVHRR and MODIS Terra/Aqua satellite data were analyzed to extract anomalies. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between NDVI/EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response. Training and validation were based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2000- 2016 was assessed to be of 87%, with a reasonable balance between change commission errors (19.3%), change omission errors (24.7%), and Kappa coefficient of 0.73. This paper demonstrates the potential of moderate - and high resolution, multispectral imagery to map and monitor the evolution of the physical urban green land cover under climate and anthropogenic pressure.

  7. Land-Cover and Imperviousness Data for Regional Areas near Denver, Colorado; Dallas-Fort Worth, Texas; and Milwaukee-Green Bay, Wisconsin - 2001

    USGS Publications Warehouse

    Falcone, James A.; Pearson, Daniel K.

    2006-01-01

    This report describes the processing and results of land-cover and impervious surface derivation for parts of three metropolitan areas being studied as part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program Effects of Urbanization on Stream Ecosystems (EUSE). The data were derived primarily from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery from the period 1999-2002, and are provided as 30-meter resolution raster datasets. Data were produced to a standard consistent with data being produced as part of the USGS National Land Cover Database 2001 (NLCD01) Program, and were derived in cooperation with, and assistance from, NLCD01 personnel. The data were intended as surrogates for NLCD01 data because of the EUSE Program's time-critical need for updated land-cover for parts of the United States that would not be available in time from the NLCD01 Program. Six datasets are described in this report: separate land-cover (15-class categorical data) and imperviousness (0-100 percent continuous data) raster datasets for parts of the general Denver, Colorado area (South Platte River Basin), Dallas-Fort Worth, Texas area (Trinity River Basin), and Milwaukee-Green Bay, Wisconsin area (Western Lake Michigan Drainages).

  8. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Reed, B.

    2005-01-01

    Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced

  9. Evaluation of multiband, multitemporal, and transformed LANDSAT MSS data for land cover area estimation. [North Central Missouri

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; May, G. A.; Kalcic, M. T. (Principal Investigator)

    1981-01-01

    Sample segments of ground-verified land cover data collected in conjunction with the USDA/ESS June Enumerative Survey were merged with LANDSAT data and served as a focus for unsupervised spectral class development and accuracy assessment. Multitemporal data sets were created from single-date LANDSAT MSS acquisitions from a nominal scene covering an eleven-county area in north central Missouri. Classification accuracies for the four land cover types predominant in the test site showed significant improvement in going from unitemporal to multitemporal data sets. Transformed LANDSAT data sets did not significantly improve classification accuracies. Regression estimators yielded mixed results for different land covers. Misregistration of two LANDSAT data sets by as much and one half pixels did not significantly alter overall classification accuracies. Existing algorithms for scene-to scene overlay proved adequate for multitemporal data analysis as long as statistical class development and accuracy assessment were restricted to field interior pixels.

  10. Testing the Enemies Hypothesis in Peach Orchards in Two Different Geographic Areas in Eastern China: The Role of Ground Cover Vegetation

    PubMed Central

    Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian

    2014-01-01

    Many studies have supported the enemies hypothesis, which suggests that natural enemies are more efficient at controlling arthropod pests in polyculture than in monoculture agro-ecosystems. However, we do not yet have evidence as to whether this hypothesis holds true in peach orchards over several geographic locations. In the two different geographic areas in eastern China (Xinchang a town in the Shanghai municipality, and Hudai, a town in Jiangsu Province) during a continuous three-year (2010–2012) investigation, we sampled arthropod pests and predators in Trifolium repens L. and in tree canopies of peach orchards with and without the ground cover plant T. repens. No significant differences were found in the abundances of the main groups of arthropod pests and predators in T. repens between Hudai and Xinchang. The abundance, richness, Simpson's index, Shannon-Wiener index, and Pielou evenness index of canopy predators in ground cover areas increased by 85.5, 27.5, 3.5, 16.7, and 7.9% in Xinchang, and by 87.0, 27.6, 3.5, 17.0 and 8.0% in Hudai compared to those in the controls, respectively. The average abundance of Lepidoptera, Coleoptera, Homoptera, true bugs and Acarina canopy pests in ground cover areas decreased by 9.2, 10.2, 17.2, 19.5 and 14.1% in Xinchang, and decreased by 9.5, 8.2, 16.8, 20.1 and 16.6% in Hudai compared to that in control areas, respectively. Our study also found a higher density of arthropod species resources in T. repens, as some omnivorous pests and predators residing in T. repens could move between the ground cover and the orchard canopy. In conclusion, ground cover in peach orchards supported the enemies hypothesis, as indicated by the fact that ground cover T. repens promoted the abundance and diversity of predators and reduced the number of arthropod pests in tree canopies in both geographical areas. PMID:24963719

  11. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Area characteristics and admission rates of people with schizophrenia and affective disorders in a German rural catchment area.

    PubMed

    Losert, C; Schmauß, M; Becker, T; Kilian, R

    2012-12-01

    Studies in urban areas identified environmental risk factors for mental illness, but little research on this topic has been performed in rural areas. Hospital admission rates were computed for 174 rural municipalities in the catchment area of the state psychiatric hospital in Günzburg in years 2006 to 2009 and combined with structural and socio-economic data. Relationships of overall and diagnosis-specific admission rates with municipality characteristics were analysed by means of negative binomial regression models. Admission rates of patients with a diagnosis of schizophrenia and affective disorder combined decrease with increasing population growth, population density, average income and green areas, while admission rates are positively correlated with commuter balance, income inequality, unemployment rates and traffic areas. Admission rates for schizophrenia are negatively related to population growth, average income and agricultural areas, but positively related to mobility index, income inequality and unemployment rate. Admission rates for affective disorders are negatively related to population growth, population density, average income and green areas, while higher admission rates are correlated with commuter balance, high income inequality, unemployment rate and traffic-related areas. Effects of wealth, economic inequality, population density and structural area characteristics influence psychiatric admission rates also in rural areas.

  13. Land cover mapping of the National Park Service northwest Alaska management area using Landsat multispectral and thematic mapper satellite data

    USGS Publications Warehouse

    Markon, C.J.; Wesser, Sara

    1998-01-01

    A land cover map of the National Park Service northwest Alaska management area was produced using digitally processed Landsat data. These and other environmental data were incorporated into a geographic information system to provide baseline information about the nature and extent of resources present in this northwest Alaskan environment.This report details the methodology, depicts vegetation profiles of the surrounding landscape, and describes the different vegetation types mapped. Portions of nine Landsat satellite (multispectral scanner and thematic mapper) scenes were used to produce a land cover map of the Cape Krusenstern National Monument and Noatak National Preserve and to update an existing land cover map of Kobuk Valley National Park Valley National Park. A Bayesian multivariate classifier was applied to the multispectral data sets, followed by the application of ancillary data (elevation, slope, aspect, soils, watersheds, and geology) to enhance the spectral separation of classes into more meaningful vegetation types. The resulting land cover map contains six major land cover categories (forest, shrub, herbaceous, sparse/barren, water, other) and 19 subclasses encompassing 7 million hectares. General narratives of the distribution of the subclasses throughout the project area are given along with vegetation profiles showing common relationships between topographic gradients and vegetation communities.

  14. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Fry, Joyce

    2009-01-01

    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  15. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Philadelphia. (f) The Chicago-Gary-Lake County, Illinois-Indiana-Wisconsin area, comprised of: (1) The...; and (8) Chambers. (i) The Milwaukee-Racine, Wisconsin area, comprised of the following Wisconsin...

  16. Digital cover photography for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient.

    PubMed

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-28

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAI(D)), which was compared with LAI estimated by the proposed digital photography method (LAI(M)). Results showed that the LAI(M) was able to estimate LAI(D) with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (f(f)) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.

  17. Digital Cover Photography for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient

    PubMed Central

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-01

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed digital photography method (LAIM). Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (ff) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions. PMID:25635411

  18. Information system for preserving culture heritage in areas affected by heavy industry and mining

    NASA Astrophysics Data System (ADS)

    Pacina, Jan; Kopecký, Jiří; Bedrníková, Lenka; Handrychová, Barbora; Švarcová, Martina; Holá, Markéta; Pončíková, Edita

    2014-05-01

    The natural development of the Ústí region (North-West Bohemia, the Czech Republic) has been affected by the human activity during the past hundred years. The heavy industrialization and the brown coal mining have completely changed the land-use in the region. The open-pit coal mines are completely destroying the surrounding landscape, including settlement, communications, hydrological network and the over-all natural development of the region. The other factor affecting the natural development of the landscape, land-use and settlement was the political situation in 1945 (end of the 2nd World War) when the borderland was depopulated. All these factors caused vanishing of more than two hundreds of colonies, villages and towns during this period of time. The task of this project is to prepare and offer for public use a comprehensive information system preserving the cultural heritage in the form of processed old maps, aerial imagery, land-use and georelief reconstructions, local studies, text and photo documents covering the extinct landscape and settlement. Wide range of various maps was used for this area - Müller's map of Bohemia (ca. 1720) followed by the 1st, 2nd and 3rd Military survey of Habsburg empire (1792, 1894, 1938), maps of Stabile cadaster (ca. 1840) and State map derived in the scale 1:5000 (1953, 1972, 1981). All the maps were processed, georeferenced, hand digitized and are further used as base layers for visualization and analysis. The historical aerial imagery was processed in standard ways of photogrammetry and is covering the year 1938, 1953 and the current state. The other important task covered by this project is the georelief reconstruction. We use the old maps and aerial imagery to reconstruct the complete time-line of the georelief development. This time-line is covering the period since 1938 until now. The derived digital terrain models and further on analyzed and printed on a 3D printer. Other reconstruction task are performed using

  19. Quantifying landscape pattern and assessing the land cover changes in Piatra Craiului National Park and Bucegi Natural Park, Romania, using satellite imagery and landscape metrics.

    PubMed

    Vorovencii, Iosif

    2015-11-01

    Protected areas of Romania have enjoyed particular importance after 1989, but, at the same time, they were subject to different anthropogenic and natural pressures which resulted in the occurrence of land cover changes. These changes have generally led to landscape degradation inside and at the borders of the protected areas. In this article, 12 landscape metrics were used in order to quantify landscape pattern and assess land cover changes in two protected areas, Piatra Craiului National Park (PCNP) and Bucegi Natural Park (BNP). The landscape metrics were obtained from land cover maps derived from Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) images from 1987, 1993, 2000, 2009 and 2010. Three land cover classes were analysed in PCNP and five land cover map classes in BNP. The results show a landscape fragmentation trend for both parks, affecting different types of land covers. Between 1987 and 2010, in PCNP fragmentation was, in principle, the result not only of anthropogenic activities such as forest cuttings and illegal logging but also of natural causes. In BNP, between 1987 and 2009, the fragmentation affected the pasture which resulted in the occurrence of bare land and rocky areas because of the erosion on the Bucegi Plateau.

  20. Effect of partial covering of the visitor viewing area window on positioning and orientation of zoo orangutans: A preference test.

    PubMed

    Bloomfield, Rachel C; Gillespie, Graeme R; Kerswell, Keven J; Butler, Kym L; Hemsworth, Paul H

    2015-01-01

    The window of the visitor viewing area adjacent to an animal platform in an orangutan enclosure was altered to produce three viewing treatments in a randomized controlled experiment. These treatments were window uncovered, left side of the window covered or right side of the window covered. Observations were conducted on the orangutans present on the platform, and on their location (left or right side), and orientation (towards or away from the window) while on the platform. The partial covering of the window had little effect on the proportion of time orangutans spent on the viewing platform, or on the direction they faced when on the platform. When the orangutans were facing towards the window, and the right side was uncovered, irrespective of whether the left side was covered, they spent about three quarters of the time on the right side, suggesting a preference for the right side of the platform. However, when the right side was covered and the left side uncovered, the animals facing towards the window spent only about a quarter of the time on the right side, that is, they spent more time on the uncovered side. The results suggest that the orangutans have a preference to position themselves to face the window of the visitor viewing area. © 2015 Wiley Periodicals, Inc.

  1. Relationships between Characteristics of Urban Green Land Cover and Mental Health in U.S. Metropolitan Areas.

    PubMed

    Tsai, Wei-Lun; McHale, Melissa R; Jennings, Viniece; Marquet, Oriol; Hipp, J Aaron; Leung, Yu-Fai; Floyd, Myron F

    2018-02-14

    Urbanization increases risk for depression and other mental disorders. A growing body of research indicates the natural environment confers numerous psychological benefits including alleviation of mental distress. This study examined land cover types and landscape metrics in relation to mental health for 276 U.S. counties within metropolitan areas having a population of 1 million or more. County Health Rankings and Behavioral Risk and Factor Surveillance System (BRFSS) provided a measure of mental health. The 2011 National Land Cover Database (NLCD) provided data on green land cover types, from which seven landscape metrics were generated to characterize landscape patterns. Spearman's rho correlation and stepwise logistic regression models, respectively, were employed to examine bivariate and multivariate relationships. Models were adjusted for county population and housing density, region, race, and income to account for potential confounding. Overall, individual measures of landscape patterns showed stronger associations with mental health than percent total cover alone. Greater edge contrast was associated with 3.81% lower odds of Frequent Mental Distress (FMD) (Adjusted Odd's Ratio (AOR) = 0.9619, 95% CI = 0.9371, 0.9860). Shrubland cohesion was associated with greater odds of FMD (AOR = 1.0751, 95% CI = 1.0196, 1.1379). In addition, distance between shrubland cover was associated with greater odds of FMD (AOR = 1.0027, 95% CI = 1.0016, 1.0041). Although effect sizes were small, findings suggest different types of landscape characteristics may have different roles in improving mental health.

  2. Land-cover mapping of Red Rock Canyon National Conservation Area and Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern, Clark County, Nevada

    USGS Publications Warehouse

    Smith, J. LaRue; Damar, Nancy A.; Charlet, David A.; Westenburg, Craig L.

    2014-01-01

    DigitalGlobe’s QuickBird satellite high-resolution multispectral imagery was classified by using Visual Learning Systems’ Feature Analyst feature extraction software to produce land-cover data sets for the Red Rock Canyon National Conservation Area and the Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern in Clark County, Nevada. Over 1,000 vegetation field samples were collected at the stand level. The field samples were classified to the National Vegetation Classification Standard, Version 2 hierarchy at the alliance level and above. Feature extraction models were developed for vegetation on the basis of the spectral and spatial characteristics of selected field samples by using the Feature Analyst hierarchical learning process. Individual model results were merged to create one data set for the Red Rock Canyon National Conservation Area and one for each of the Areas of Critical Environmental Concern. Field sample points and photographs were used to validate and update the data set after model results were merged. Non-vegetation data layers, such as roads and disturbed areas, were delineated from the imagery and added to the final data sets. The resulting land-cover data sets are significantly more detailed than previously were available, both in resolution and in vegetation classes.

  3. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    PubMed

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  4. Assessing the impact of urban land cover composition on CO2 flux

    NASA Astrophysics Data System (ADS)

    Becker, K.; Hinkle, C.

    2013-12-01

    Urbanization is an ever increasing trend in global land use change, and has been identified as a key driver of CO2 emissions. Therefore, understanding how urbanization affects CO2 flux across a range of climatic zones and development patterns is critical to projecting the impact of future land use on CO2 flux dynamics. A growing number of studies are applying the eddy covariance method to urban areas to quantify the CO2 flux dynamics of these systems. However, interpretation of eddy covariance data in these urban systems presents a challenge, particularly in areas with high heterogeneity due to a mixing of built and green space. Here we present a study aimed at establishing a relationship between land cover composition and CO2 flux for a heterogeneous urban area of Orlando, FL. CO2 flux has been measured at this site for > 4 years using an open path eddy covariance system. Land cover at this site was classified into built and green space, and relative weight of both land covers were calculated for each 30 min CO2 flux measurement using the Schuepp model and a source area based on +/- one standard deviation of wind direction. The results of this analysis established a relationship between built land cover and CO2 flux within the measured footprint of this urban area. These results, in combination with future projected land use data, will be a valuable resource for providing insight into the impact of future urbanization on CO2 flux dynamics in this region.

  5. The evaluation of alternate methodologies for land cover classification in an urbanizing area

    NASA Technical Reports Server (NTRS)

    Smekofski, R. M.

    1981-01-01

    The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.

  6. Assimilation of snow covered area information into hydrologic and land-surface models

    USGS Publications Warehouse

    Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H.

    2006-01-01

    This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Analysis of the pattern of potential woody cover in Texas savanna

    NASA Astrophysics Data System (ADS)

    Yang, Xuebin; Crews, Kelley A.; Yan, Bowei

    2016-10-01

    While woody plant encroachment has been observed worldwide in savannas and adversely affected the ecosystem structure and function, a thorough understanding of the nature of this phenomenon is urgently required for savanna management and restoration. Among others, potential woody cover (the maximum realizable woody cover that a given site can support), especially its variation over environment has huge implication on the encroachment management in particular, and on tree-grass interactions in general. This project was designed to explore the pattern of potential woody cover in Texas savanna, an ecosystem with a large rainfall gradient in west-east direction. Substantial random pixels were sampled across the study area from MODIS Vegetation Continuous Fields (VCF) tree cover layer (250 m). Since potential woody cover is suggested to be limited by water availability, a nonlinear 99th quantile regression was performed between the observed woody cover and mean annual precipitation (MAP) to model the pattern of potential woody cover. Research result suggests a segmented relationship between potential woody cover and MAP at MODIS scale. Potential biases as well as the practical and theoretical implications were discussed. Through this study, the hypothesis about the primary role of water availability in determining savanna woody cover was further confirmed in a relatively understudied US-located savanna.

  8. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    PubMed

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  9. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E. O. C.; Arai, Egidio; Simonetti, Dario; Achard, Frédéric

    2017-09-01

    Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the

  10. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon.

    PubMed

    Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E O C; Arai, Egidio; Simonetti, Dario; Achard, Frédéric

    2017-09-01

    Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase

  11. Land Use and Land Cover Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  12. Measuring and analyzing urban tree cover

    Treesearch

    David J. Nowak; Rowan A. Rowntree; E. Gregory McPherson; Susan M. Sisinni; Esther R. Kirkmann; Jack C. Stevens

    1996-01-01

    Measurement of city tree cover can aid in urban vegetation planning, management, and research by revealing characteristics of vegetation across a city. Urban tree cover in the United States ranges from 0.4% in Lancaster, California, to 55% in Baton Rouge, Louisiana. Two important factors that affect the amount of urban tree cover are the natural environment and land...

  13. Mapping Mountain Front Recharge Areas in Arid Watersheds Based on a Digital Elevation Model and Land Cover Types

    DOE PAGES

    Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.

    2014-06-01

    Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to

  14. Mapping Mountain Front Recharge Areas in Arid Watersheds Based on a Digital Elevation Model and Land Cover Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.

    Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to

  15. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).

    PubMed

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa

    2017-12-01

    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery

    PubMed Central

    Mtui, Devolent T.; Lepczyk, Christopher A.; Chen, Qi; Miura, Tomoaki; Cox, Linda J.

    2017-01-01

    Landscape change in and around protected areas is of concern worldwide given the potential impacts of such change on biodiversity. Given such impacts, we sought to understand the extent of changes in different land-cover types at two protected areas, Tarangire and Katavi National Parks in Tanzania, over the past 27 years. Using Maximum Likelihood classification procedures we derived eight land-cover classes from Landsat TM and ETM+ images, including: woody savannah, savannah, grassland, open and closed shrubland, swamp and water, and bare land. We determined the extent and direction of changes for all land-cover classes using a post-classification comparison technique. The results show declines in woody savannah and increases in barren land and swamps inside and outside Tarangire National Park and increases in woody savannah and savannah, and declines of shrubland and grassland inside and outside Katavi National Park. The decrease of woody savannah was partially due to its conversion into grassland and barren land, possibly caused by human encroachment by cultivation and livestock. Based upon these changes, we recommend management actions to prevent detrimental effects on wildlife populations. PMID:28957397

  17. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  18. Factors that Affect Poverty Areas in North Sumatera Using Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Nasution, D. H.; Bangun, P.; Sitepu, H. R.

    2018-04-01

    In Indonesia, especially North Sumatera, the problem of poverty is one of the fundamental problems that become the focus of government both central and local government. Although the poverty rate decreased but the fact is there are many people who are poor. Poverty happens covers several aspects such as education, health, demographics, and also structural and cultural. This research will discuss about several factors such as population density, Unemployment Rate, GDP per capita ADHK, ADHB GDP per capita, economic growth and life expectancy that affect poverty in Indonesia. To determine the factors that most influence and differentiate the level of poverty of the Regency/City North Sumatra used discriminant analysis method. Discriminant analysis is one multivariate analysis technique are used to classify the data into a group based on the dependent variable and independent variable. Using discriminant analysis, it is evident that the factor affecting poverty is Unemployment Rate.

  19. Hydropedology of a mildly-arid loess covered area, southern Israel

    NASA Astrophysics Data System (ADS)

    Yair, Aaron; Goldshleger, Naftali

    2016-04-01

    Extensive loess covered areas characterize the mildly arid areas of western Israel, where average annual rainfall is 280 mm. Hydrological data available point to a peculiar hydrological behavior of the ephemeral streams. The frequency of channel flow is very high. Four to eight flows are recorded annually. However, even in extreme rain events peak discharges are extremely low representing 0.002-0.005% of the rain amount received by the basin at peak flow. In addition, hydrographs are usually characterized by very steep rising and falling limbs, representative of saturated or nearly saturated areas, extending over a limited part of the watershed. Following this observation we advanced the hypothesis that storm channel runoff originated in the channel itself, with negligible contribution from the adjoining hillslopes. The study was based on two complementary approaches. The hydrological approach was based on the detailed analysis of rainfall-runoff relationships in a small watershed (11 km2). The second approach was based on the toposequence concept. According to this concept soil's properties are closely related to the position of a soil along a slope. Constituents and water lost by the upper part of the slope accumulate in its lower part, which is richer in clay and better leached. Several boreholes were dug along a hillslope 400 m long. Soil samples were collected for chemical and particle size analysis. In addition, samples for soil moisture data were taken following each major rain event. Chemical data obtained show no significant observable difference in the downslope direction. Similar results were also obtained for the particle size distribution and soil moisture content. However, particle size distribution in the active channel reveals very high clay content down to 60 cm. Data obtained lead to two main conclusions. 1. Data presented perfectly fit the concept of "Partial Area Contribution", in its narrow sense, as it presents an extreme case of hydrological

  20. Monitoring urban land cover change by updating the national land cover database impervious surface products

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.

    2009-01-01

    The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales.

  1. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    NASA Astrophysics Data System (ADS)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  2. Tree survival and growth on fescue-covered spoil banks

    Treesearch

    William T. Plass

    1968-01-01

    In spoil-bank revegetation the emphasis today is on site protection. Quick cover crops overplanted to trees or shrubs are recommended on many sites. In this study we tried to determine how an established fescue cover affects tree survival and growth. We found the ground cover did not affect survival but did reduce the height growth of sycamore and sweetgum. It had...

  3. Land-cover change detection

    USGS Publications Warehouse

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  4. Ecosystem services from converted land: the importance of tree cover in Amazonian pastures

    USGS Publications Warehouse

    Barrett, Kirsten; Valentim, Judson; Turner, B. L.

    2013-01-01

    Deforestation is responsible for a substantial fraction of global carbon emissions and changes in surface energy budgets that affect climate. Deforestation losses include wildlife and human habitat, and myriad forest products on which rural and urban societies depend for food, fiber, fuel, fresh water, medicine, and recreation. Ecosystem services gained in the transition from forests to pasture and croplands, however, are often ignored in assessments of the impact of land cover change. The role of converted lands in tropical areas in terms of carbon uptake and storage is largely unknown. Pastures represent the fastest-growing form of converted land use in the tropics, even in some areas of rapid urban expansion. Tree biomass stored in these areas spans a broad range, depending on tree cover. Trees in pasture increase carbon storage, provide shade for cattle, and increase productivity of forage material. As a result, increasing fractional tree cover can provide benefits land managers as well as important ecosystem services such as reducing conversion pressure on forests adjacent to pastures. This study presents an estimation of fractional tree cover in pasture in a dynamic region on the verge of large-scale land use change. An appropriate sampling interval is established for similar studies, one that balances the need for independent samples of sufficient number to characterize a pasture in terms of fractional tree cover. This information represents a useful policy tool for government organizations and NGOs interested in encouraging ecosystem services on converted lands. Using high spatial resolution remotely sensed imagery, fractional tree cover in pasture is quantified for the municipality of Rio Branco, Brazil. A semivariogram and devolving spatial resolution are employed to determine the coarsest sampling interval that may be used, minimizing effects of spatial autocorrelation. The coarsest sampling interval that minimizes spatial dependence was about 22 m. The

  5. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land

  6. Assessing uncertainties in land cover projections.

    PubMed

    Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A

    2017-02-01

    Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.

  7. Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050.

    Treesearch

    Ralph J. Alig; Brett J. Butler

    2004-01-01

    The United States has a diverse array of forest cover types on its 747 million acres of forest land. Forests in the United States have been shaped by many natural and human-caused forces, including climate, physiography, geology, soils, water, fire, land use changes, timber harvests, and other human interventions. The major purpose of this document is to describe area...

  8. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP)

    USGS Publications Warehouse

    Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.

    2007-01-01

    Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.

  9. The Impact of Anthropogenic Land Cover Change on Continental River Flow

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Ducharne, A.; Polcher, J.

    2006-12-01

    The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.

  10. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  11. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China.

    PubMed

    Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping

    2011-06-01

    This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation.

  12. A priori evaluation of two-stage cluster sampling for accuracy assessment of large-area land-cover maps

    USGS Publications Warehouse

    Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Wade, T.G.; Yang, L.

    2004-01-01

    Two-stage cluster sampling reduces the cost of collecting accuracy assessment reference data by constraining sample elements to fall within a limited number of geographic domains (clusters). However, because classification error is typically positively spatially correlated, within-cluster correlation may reduce the precision of the accuracy estimates. The detailed population information to quantify a priori the effect of within-cluster correlation on precision is typically unavailable. Consequently, a convenient, practical approach to evaluate the likely performance of a two-stage cluster sample is needed. We describe such an a priori evaluation protocol focusing on the spatial distribution of the sample by land-cover class across different cluster sizes and costs of different sampling options, including options not imposing clustering. This protocol also assesses the two-stage design's adequacy for estimating the precision of accuracy estimates for rare land-cover classes. We illustrate the approach using two large-area, regional accuracy assessments from the National Land-Cover Data (NLCD), and describe how the a priorievaluation was used as a decision-making tool when implementing the NLCD design.

  13. Land-cover change and avian diversity in the conterminous United States

    Treesearch

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Jeffrey G. Masek; Volker C. Radeloff

    2012-01-01

    Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land-cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American...

  14. Land Use/land Cover Changes in Semi-Arid Mountain Landscape in Southern India: a Geoinformatics Based Markov Chain Approach

    NASA Astrophysics Data System (ADS)

    Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.

    2017-05-01

    Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  15. Effect of Watershed Cover on Overland Flow from a Major Storm in Southwestern Wisconsin

    Treesearch

    Richard S. Sartz

    1969-01-01

    A runoff study in the Driftless Area showed that both total flow and peak rate of flow from a 3-hour, 4-inch rain were strongly affected by the watershed cover. Peak flows ranged from 2.42 inches per hour for alfalfa meadow to 0.010 inch per hour for undisturbed forested watersheds was surprisingly similar.

  16. Land cover mapping of the upper Kuskokwim Resource Managment Area using LANDSAT and a digital data base approach

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.

  17. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes

  18. Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000

    PubMed Central

    Bodart, Catherine; Brink, Andreas B; Donnay, François; Lupi, Andrea; Mayaux, Philippe; Achard, Frédéric

    2013-01-01

    Aim This study provides regional estimates of forest cover in dry African ecoregions and the changes in forest cover that occurred there between 1990 and 2000, using a systematic sample of medium-resolution satellite imagery which was processed consistently across the continent. Location The study area corresponds to the dry forests and woodlands of Africa between the humid forests and the semi-arid regions. This area covers the Sudanian and Zambezian ecoregions. Methods A systematic sample of 1600 Landsat satellite imagery subsets, each 20 km × 20 km in size, were analysed for two reference years: 1990 and 2000. At each sample site and for both years, dense tree cover, open tree cover, other wooded land and other vegetation cover were identified from the analysis of satellite imagery, which comprised multidate segmentation and automatic classification steps followed by visual control by national forestry experts. Results Land cover and land-cover changes were estimated at continental and ecoregion scales and compared with existing pan-continental, regional and local studies. The overall accuracy of our land-cover maps was estimated at 87%. Between 1990 and 2000, 3.3 million hectares (Mha) of dense tree cover, 5.8 Mha of open tree cover and 8.9 Mha of other wooded land were lost, with a further 3.9 Mha degraded from dense to open tree cover. These results are substantially lower than the 34 Mha of forest loss reported in the FAO's 2010 Global Forest Resources Assessment for the same period and area. Main conclusions Our method generates the first consistent and robust estimates of forest cover and change in dry Africa with known statistical precision at continental and ecoregion scales. These results reduce the uncertainty regarding vegetation cover and its dynamics in these previously poorly studied ecosystems and provide crucial information for both science and environmental policies. PMID:23935237

  19. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improvedmore » designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the

  20. Going beyond the green: senesced vegetation material predicts basal area and biomass in remote sensing of tree cover conditions in an African tropical dry forest (miombo woodland) landscape

    NASA Astrophysics Data System (ADS)

    Mayes, Marc; Mustard, John; Melillo, Jerry; Neill, Christopher; Nyadzi, Gerson

    2017-08-01

    In sub-Saharan Africa (SSA), tropical dry forests and savannas cover over 2.5 million km2 and support livelihoods for millions in fast-growing nations. Intensifying land use pressures have driven rapid changes in tree cover structure (basal area, biomass) that remain poorly characterized at regional scales. Here, we posed the hypothesis that tree cover structure related strongly to senesced and non-photosynthetic (NPV) vegetation features in a SSA tropical dry forest landscape, offering improved means for satellite remote sensing of tree cover structure compared to vegetation greenness-based methods. Across regrowth miombo woodland sites in Tanzania, we analyzed relationships among field data on tree structure, land cover, and satellite indices of green and NPV features based on spectral mixture analyses and normalized difference vegetation index calculated from Landsat 8 data. From satellite-field data relationships, we mapped regional basal area and biomass using NPV and greenness-based metrics, and compared map performances at landscape scales. Total canopy cover related significantly to stem basal area (r 2 = 0.815, p < 0.01) and biomass (r 2 = 0.635, p < 0.01), and NPV dominated ground cover (> 60%) at all sites. From these two conditions emerged a key inverse relationship: skyward exposure of NPV ground cover was high at sites with low tree basal area and biomass, and decreased with increasing stem basal area and biomass. This pattern scaled to Landsat NPV metrics, which showed strong inverse correlations to basal area (Pearson r = -0.85, p < 0.01) and biomass (r = -0.86, p < 0.01). Biomass estimates from Landsat NPV-based maps matched field data, and significantly differentiated landscape gradients in woody biomass that greenness metrics failed to track. The results suggest senesced vegetation metrics at Landsat scales are a promising means for improved monitoring of tree structure across disturbance and ecological gradients

  1. How Do Volcanoes Affect Human Life? Integrated Unit.

    ERIC Educational Resources Information Center

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  2. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  3. GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin

    NASA Technical Reports Server (NTRS)

    Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.

    2016-01-01

    The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.

  4. The Role of Vegetation Cover in Interactions between Climate and Erosion

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.

    2016-12-01

    Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes

  5. Snow cover monitoring over French Alps based on Spot-Vegetation S-10 products. Application to the Vercors area for the time period 1998-2008.

    NASA Astrophysics Data System (ADS)

    Bigot, S.; Dedieu, Jp.; Rome, S.

    2009-04-01

    Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric

  6. Developed land cover of Puerto Rico

    Treesearch

    William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez

    2008-01-01

    This map shows the distribution of developed land cover in Puerto Rico (Martinuzzi et al. 2007). Developed land cover refers to urban, built-up and non-vegetated areas that result from human activity. These typically include built structures, concrete, asphalt, and other infrastructure. The developed land cover was estimated using Landsat 7 ETM+ satellite images pan...

  7. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa.

    PubMed

    Aleman, Julie C; Blarquez, Olivier; Staver, Carla A

    2016-09-01

    Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub-Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R(2)  = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century. © 2016 John Wiley & Sons Ltd.

  8. Remote sensing techniques in monitoring areas affected by forest fire

    NASA Astrophysics Data System (ADS)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.

    2017-09-01

    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  9. Global assessment of rural-urban interface in Portugal related to land cover changes

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Parente, Joana; Pereira, Mário G.

    2018-06-01

    The rural-urban interface (RUI), known as the area where structures and other human developments meet or intermingle with wildland and rural area, is at present a central focus of wildfire policy and its mapping is crucial for wildfire management. In the Mediterranean Basin, humans cause the vast majority of fires and fire risk is particularly high in the proximity of infrastructure and of rural/wildland areas. RUI's extension changes under the pressure of environmental and anthropogenic factors, such as urban growth, fragmentation of rural areas, deforestation and, more in general, land use/land cover change (LULCC). As with other Mediterranean countries, Portugal has experienced significant LULCC in the last decades in response to migration, rural abandonment, ageing of population and trends associated with the high socioeconomic development. In the present study, we analyzed the LULCC occurring in this country in the 1990-2012 period with the main objective of investigating how these changes affected RUI's evolution. Moreover, we performed a qualitative and quantitative characterization of burnt areas within the RUI in relation to the observed changes. Obtained results disclose important LULCC and reveal their spatial distribution, which is far from uniform within the territory. A significant increase in artificial surfaces was registered near the main metropolitan communities of the northwest, littoral-central and southern regions, whilst the abandonment of agricultural land near the inland urban areas led to an increase in uncultivated semi-natural and forest areas. Within agricultural areas, heterogeneous patches suffered the greatest changes and were the main contributors to the increase in urban areas; moreover, this land cover class, together with forests, was highly affected by wildfires in terms of burnt area. Finally, from this analysis and during the investigated period, it appears that RUI increased in Portugal by more than two-thirds, while the total

  10. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    PubMed

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  11. Detailed geomorphological mapping of debris-covered and rock glaciers in the Hólar area, Tröllaskagi Peninsula (northern Iceland).

    NASA Astrophysics Data System (ADS)

    Tanarro, Luis M.; Palacios, David; Zamorano, Jose J.; Andres, Nuria

    2017-04-01

    Most studies conducted on rock and debris-covered glaciers only include simplified geomorphological maps representing main units (ridges, furrows, front, and thermokarst depressions). The aim of this study is to develop a detailed geomorphological mapping of the Hóladalsjökull debris-covered glacier (65°42' N; 18°57' W) and the Fremri-Grjótárdalur rock glacier (65°43' N 19° W), located near Hólar, a village in the central area of the Trolläskagi peninsula (northern Iceland). The mapping process has been conducted using standard stereo-photointerpretation of aerial photographs and stereo-plotting of a topographic map at 1:2000 scale. Also, landforms have been represented in different transects. Lastly, the geomorphological map has been designed using the elevation digital model, and a 3D pdf file has been generated, allowing for better viewing and understanding the different units and their modelling. The geomorphological mapping of the Hóladalsjökull debris-covered glacier and the Fremri-Grjótárdalur rock glacier represents the prominent walls of their valley heads and their summits, which form a flat highland at 1,200-1,330 metres above sea level, covered by blockfield and patterned ground features. Rockfall and slide landforms are common processes at the foot of these 100-170 metre-high cirque-walls. Debris-covered glaciers and rock glaciers are born right under these walls, building up a spoon-shaped hollow around glacial ice, surrounded by young moraine ridges at their fronts. The dominant features in the Hóladalsjökull debris-covered glacier are large longitudinal ridges and furrows, stretching over 1.5 km in length in the central and western areas. Medium-sized thermokarst depressions (between 15-40 metres in diameter), often running parallel to the furrows, dot the surface of the debris-covered glacier. Parallel alternate ridges and furrows can be seen near the snout. Ridges are rugged and fall around 30-40 metres, with over 30 degree slopes

  12. 44 CFR 206.40 - Designation of affected areas and eligible assistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Designation of affected areas and eligible assistance. 206.40 Section 206.40 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The...

  13. 44 CFR 206.40 - Designation of affected areas and eligible assistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Designation of affected areas and eligible assistance. 206.40 Section 206.40 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The...

  14. 44 CFR 206.40 - Designation of affected areas and eligible assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Designation of affected areas and eligible assistance. 206.40 Section 206.40 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The...

  15. 44 CFR 206.40 - Designation of affected areas and eligible assistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Designation of affected areas and eligible assistance. 206.40 Section 206.40 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The...

  16. 44 CFR 206.40 - Designation of affected areas and eligible assistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Designation of affected areas and eligible assistance. 206.40 Section 206.40 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The...

  17. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  18. USING CLASSIFICATION CONSISTENCY IN INTER-SCENE OVERLAP AREAS TO MODEL SPATIAL VARIATIONS IN LAND-COVER ACCURACY OVER LARGE GEOGRAPHIC REGIONS

    EPA Science Inventory

    During the last decade, a number of initiatives have been undertaken to create systematic national and global data sets of processed satellite imagery. An important application of these data is the derivation of large area (i.e. multi-scene) land cover products. Such products, ho...

  19. Influence of relief on permanent preservation areas.

    PubMed

    Dos Santos, Alexandre Rosa; Chimalli, Tessa; Peluzio, João Batista Esteves; da Silva, Aderbal Gomes; Dos Santos, Gleissy Mary Amaral Dino Alves; Lorenzon, Alexandre Simões; Teixeira, Thaisa Ribeiro; de Castro, Nero Lemos Martins; Soares Ribeiro, Carlos Antonio Alvares

    2016-01-15

    Many countries have environmental legislation to protecting natural resources on private property. In Brazil, the Brazilian Forestry Code determines specific areas to maintain with natural vegetation cover, known as areas of permanent preservation (APP). Currently, there are few studies that relate topographic variables on APP. In this context, we sought to evaluate the influence of relief on the conservation of areas of permanent preservation (APP) in the areas surrounding Caparaó National Park, Brazil. By using the chi-squared statistical test, we verified that the presence of forest cover is closely associated with altitude. The classes of APP in better conservation status are slopes in addition to hilltops and mountains, whereas APP streams and springs are among the areas most affected by human activities. The most deforested areas are located at altitudes below 1100.00 m and on slopes less than 45°. All orientations of the sides were significant for APP conservation status, with the southern, southeastern, and southwestern sides showing the lower degrees of impact. The methodology can be adjusted to environmental legislation to other countries.

  20. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area

    NASA Astrophysics Data System (ADS)

    Pleniou, Magdalini; Koutsias, Nikos

    2013-05-01

    The aim of our study was to explore the spectral properties of fire-scorched (burned) and non fire-scorched (vegetation) areas, as well as areas with different burn/vegetation ratios, using a multisource multiresolution satellite data set. A case study was undertaken following a very destructive wildfire that occurred in Parnitha, Greece, July 2007, for which we acquired satellite images from LANDSAT, ASTER, and IKONOS. Additionally, we created spatially degraded satellite data over a range of coarser resolutions using resampling techniques. The panchromatic (1 m) and multispectral component (4 m) of IKONOS were merged using the Gram-Schmidt spectral sharpening method. This very high-resolution imagery served as the basis to estimate the cover percentage of burned areas, bare land and vegetation at pixel level, by applying the maximum likelihood classification algorithm. Finally, multiple linear regression models were fit to estimate each land-cover fraction as a function of surface reflectance values of the original and the spatially degraded satellite images. The main findings of our research were: (a) the Near Infrared (NIR) and Short-wave Infrared (SWIR) are the most important channels to estimate the percentage of burned area, whereas the NIR and red channels are the most important to estimate the percentage of vegetation in fire-affected areas; (b) when the bi-spectral space consists only of NIR and SWIR, then the NIR ground reflectance value plays a more significant role in estimating the percent of burned areas, and the SWIR appears to be more important in estimating the percent of vegetation; and (c) semi-burned areas comprising 45-55% burned area and 45-55% vegetation are spectrally closer to burned areas in the NIR channel, whereas those areas are spectrally closer to vegetation in the SWIR channel. These findings, at least partially, are attributed to the fact that: (i) completely burned pixels present low variance in the NIR and high variance in the

  1. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    USGS Publications Warehouse

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  2. Landscape management in an area affected by surface brown coal mining

    NASA Astrophysics Data System (ADS)

    Vráblíková, J.; Wildová, E.; Vráblík, P.; Blažková, M.

    2017-10-01

    The contribution summarizes results of a project concentrated on landscape management of an area affected by brown coal mining located in northern Bohemia (The Most basin) focusing on restoration and reclamation processes. It describes in particular the shares of individual types of reclamations in the area of interest. A strategic document that also supports landscape restoration in anthropogenically burdened regions was written within the project called “Restart” and the second part of the contribution is focused on its chapters which address this issue.

  3. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingham, Alison N.; /Ohio State U.

    Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes inmore » an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial

  4. Land cover mapping at sub-pixel scales

    NASA Astrophysics Data System (ADS)

    Makido, Yasuyo Kato

    been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.

  5. Tracking Trends in Fractional Forest Cover Change using Long Term Data from AVHRR and MODIS

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; DiMiceli, C.; Sohlberg, R. A.; Hansen, M.; Carroll, M.; Kelly, M.; Townshend, J. R.

    2014-12-01

    Tree cover affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Accurate and long-term continuous observation of tree cover change is critical for the study of the gradual ecosystem change. Tree cover is most commonly inferred from categorical maps which may inadequately represent within-class heterogeneity for many analyses. Alternatively, Vegetation Continuous Fields data measures fractions or proportions of pixel area. Recent development in remote sensing data processing and cross sensor calibration techniques enabled the continuous, long-term observations such as Land Long-Term Data Records. Such data products and their surface reflectance data have enhanced the possibilities for long term Vegetation Continuous Fields data, thus enabling the estimation of long term trend of fractional forest cover change. In this presentation, we will summarize the progress in algorithm development including automation of training selection for deciduous and evergreen forest, the preliminary results, and its future applications to relate trends in fractional forest cover change and environmental change.

  6. Flood Disaster Analysis Using Landsat-8 and SPOT-6 Imagery for Determination of Flooded Areas in Sampang, Madura

    NASA Astrophysics Data System (ADS)

    Sukojo, B. M.; Alfiansyah, F.

    2017-12-01

    Based on data of disaster which is defaced by Badan Penanggulangan Bencana Daerah (BPBD) of Sampang that in the period of 2015 - 2017 as many as 25 cases from 31 cases of disaster caused by flood disaster or 80.65% from total disaster. Therefore, the purpose of this research is to create a map of flood vulnerability in Sampang. From the vulnerability map, we can know the area with the impacted flood level in Sampang so that from the map of flood affected areas can be known the extent of the affected area in each class. In this study, two Landsat-8 and SPOT 6 data were used. For Landsat-8 imagery used for land cover on district level disaster level vulnerability maps, while high-resolution SPOT-6 images were used for land cover making maps of flood affected areas Sampang district. With the flood affected areas in this study, it is expected to be used as a determinant of flood affected areas in Sampang district. Based on data processing and analysis it is found that the highest impacted area is located in Sampang district with 12 cases of 17 cases of total flood disaster in Sampang district based on data from BPBD Kabupaten Sampang in 2016. There are 4 classes of flood affected areas in Sampang district i.e. not affected by 9039,540 ha, low impact 46262.881 ha, medium impact 43012.431 ha and high impact of 14009,760 ha.

  7. Computation of discharge using the index-velocity method in tidally affected areas

    USGS Publications Warehouse

    Ruhl, Catherine A.; Simpson, Michael R.

    2005-01-01

    Computation of a discharge time-series in a tidally affected area is a two-step process. First, the cross-sectional area is computed on the basis of measured water levels and the mean cross-sectional velocity is computed on the basis of the measured index velocity. Then discharge is calculated as the product of the area and mean velocity. Daily mean discharge is computed as the daily average of the low-pass filtered discharge. The Sacramento-San Joaquin River Delta and San Francisco Bay, California, is an area that is strongly influenced by the tides, and therefore is used as an example of how this methodology is used.

  8. Through what mechanisms do protected areas affect environmental and social outcomes?

    PubMed Central

    Ferraro, Paul J.; Hanauer, Merlin M.

    2015-01-01

    To develop effective protected area policies, scholars and practitioners must better understand the mechanisms through which protected areas affect social and environmental outcomes. With strong evidence about mechanisms, the key elements of success can be strengthened, and the key elements of failure can be eliminated or repaired. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. This essay assesses what mechanisms have been hypothesized, what empirical evidence exists for their relative contributions and what advances have been made in the past decade for estimating mechanism causal effects from non-experimental data. The essay concludes with a proposed agenda for building an evidence base about protected area mechanisms. PMID:26460122

  9. Impact of land cover and land use change on runoff characteristics.

    PubMed

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  10. Land Cover Indicators for U.S. National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Channan, S.; Thomson, A. M.; Collins, K. M.; Sexton, J. O.; Torrens, P.; Emanuel, W. R.

    2014-12-01

    Land is a critical resource for human habitat and for the vast majority of human activities. Many natural resources are derived from terrestrial ecosystems or otherwise extracted from the landscape. Terrestrial biodiversity depends on land attributes as do people's perceptions of the value of land, including its value for recreation or tourism. Furthermore, land surface properties and processes affect weather and climate, and land cover change and land management affect emissions of greenhouse gases. Thus, land cover with its close association with climate is so pervasive that a land cover indicator is of fundamental importance to U.S. national climate assessments and related research. Moderate resolution remote sensing products (MODIS) were used to provide systematic data on annual distributions of land cover over the period 2001-2012. Selected Landsat observations and data products further characterize land cover at higher resolution. Here we will present the prototype for a suite of land cover indicators including land cover maps as well as charts depicting attributes such as composition by land cover class, statistical indicators of landscape characteristics, and tabular data summaries indispensable for communicating the status and trends of U.S. land cover at national, regional and state levels.

  11. Impact Assessment of Mikania Micrantha on Land Cover and Maxent Modeling to Predict its Potential Invasion Sites

    NASA Astrophysics Data System (ADS)

    Baidar, T.; Shrestha, A. B.; Ranjit, R.; Adhikari, R.; Ghimire, S.; Shrestha, N.

    2017-05-01

    Mikania micrantha is one of the major invasive alien plant species in tropical moist forest regions of Asia including Nepal. Recently, this weed is spreading at an alarming rate in Chitwan National Park (CNP) and threatening biodiversity. This paper aims to assess the impacts of Mikania micrantha on different land cover and to predict potential invasion sites in CNP using Maxent model. Primary data for this were presence point coordinates and perceived Mikania micrantha cover collected through systematic random sampling technique. Rapideye image, Shuttle Radar Topographic Mission data and bioclimatic variables were acquired as secondary data. Mikania micrantha distribution maps were prepared by overlaying the presence points on image classified by object based image analysis. The overall accuracy of classification was 90 % with Kappa coefficient 0.848. A table depicting the number of sample points in each land cover with respective Mikania micrantha coverage was extracted from the distribution maps to show the impact. The riverine forest was found to be the most affected land cover with 85.98 % presence points and sal forest was found to be very less affected with only 17.02 % presence points. Maxent modeling predicted the areas near the river valley as the potential invasion sites with statistically significant Area Under the Receiver Operating Curve (AUC) value of 0.969. Maximum temperature of warmest month and annual precipitation were identified as the predictor variables that contribute the most to Mikania micrantha's potential distribution.

  12. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    PubMed

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the

  13. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    PubMed

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.

  14. Methods for projecting large-scale area changes for U.S. land uses and land covers: the past and the future.

    Treesearch

    Ralph J. Alig

    2004-01-01

    Over the past 25 years, renewable resource assessments have addressed demand, supply, and inventory of various renewable resources in increasingly sophisticated fashion, including simulation and optimization analyses of area changes in land uses (e.g., urbanization) and land covers (e.g., plantations vs. naturally regenerated forests). This synthesis reviews related...

  15. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    NASA Astrophysics Data System (ADS)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  16. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    PubMed

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  17. Streamlining of medical relief to areas affected by the Great East Japan earthquake with the "area-based/line-linking support system".

    PubMed

    Yamanouchi, Satoshi; Ishii, Tadashi; Morino, Kazuma; Furukawa, Hajime; Hozawa, Atsushi; Ochi, Sae; Kushimoto, Shigeki

    2014-12-01

    When disasters that affect a wide area occur, external medical relief teams play a critical role in the affected areas by helping to alleviate the burden caused by surging numbers of individuals requiring health care. Despite this, no system has been established for managing deployed medical relief teams during the subacute phase following a disaster. After the Great East Japan Earthquake and tsunami, the Ishinomaki Medical Zone was the most severely-affected area. Approximately 6,000 people died or were missing, and the immediate evacuation of approximately 120,000 people to roughly 320 shelters was required. As many as 59 medical teams came to participate in relief activities. Daily coordination of activities and deployment locations became a significant burden to headquarters. The Area-based/Line-linking Support System (Area-Line System) was thus devised to resolve these issues for medical relief and coordinating activities. A retrospective analysis was performed to examine the effectiveness of the medical relief provided to evacuees using the Area-Line System with regards to the activities of the medical relief teams and the coordinating headquarters. The following were compared before and after establishment of the Area-Line System: (1) time required at the coordinating headquarters to collect and tabulate medical records from shelters visited; (2) time required at headquarters to determine deployment locations and activities of all medical relief teams; and (3) inter-area variation in number of patients per team. The time required to collect and tabulate medical records was reduced from approximately 300 to 70 minutes/day. The number of teams at headquarters required to sort through data was reduced from 60 to 14. The time required to determine deployment locations and activities of the medical relief teams was reduced from approximately 150 hours/month to approximately 40 hours/month. Immediately prior to establishment of the Area-Line System, the variation

  18. [Difference of Karst Carbon Sink Under Different Land Use and Land Cover Areas in Dry Season].

    PubMed

    Zhao, Rui-yi; Liang, Zuo-bing; Wang, Zun-bo; Yu, Zheng-liang; Jiang, Ze-li

    2015-05-01

    In order to identify the distinction of soil CO2 consumed by carbonate rock dissolution, Baishuwan spring, Lanhuagou spring and Hougou spring were selected as objects to monitor the hydrochemistry from November 2013 to May 2014. The results showed that the highest HCO3- concentration was observed in Baishuwan spring which is covered by pine forest, while the lowest HCO3- concentration was observed in Hougou spring which is mainly covered by cultivated land. In Baishuwan spring, HCO3- was mainly derived from carbonic acid dissolving carbonate rock and the molar ratio between Ca(2+) + Mg2+ and HCO3- was close to 0. 5; while the molar ratio between Ca(2+) + Mg2+ and HCO3- exceeded 0.5 because the carbonate rock in Lanhuagou spring and Hougou spring was mainly dissolved by nitric acid and sulfuric acid. Because of the input of litter and the fact that gas-permeability of soil was limited in Baishuwan spring catchment, most of soil CO2 was dissolved in infiltrated water and reacted with bedrock. However, in Lanhuagou spring catchment and Hougou spring catchment, porous soil made soil CO2 easier to return to the atmosphere in the form of soil respiration. Therefore, in order to accurately estimate karst carbon sink, it was required to clarify the distinction of CO2 consumption by carbonate rock dissolution under different land use and land cover areas.

  19. Land cover changes in central Sonora Mexico

    Treesearch

    Diego Valdez-Zamudio; Alejandro Castellanos-Villegas; Stuart Marsh

    2000-01-01

    Remote sensing techniques have been demonstrated to be very effective tools to help detect, analyze, and evaluate land cover changes in natural areas of the world. Changes in land cover can generally be attributed to either natural or anthropogenic forces. Multitemporal satellite imagery and airborne videography were used to detect, analyze, and evaluate land cover...

  20. INTEGRATING LANDSCAPE ASSESSMENT AND HYDROLOGIC MODELING FOR LAND COVER CHANGE ANALYSIS

    EPA Science Inventory

    This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...

  1. Multispectral LiDAR Data for Land Cover Classification of Urban Areas

    PubMed Central

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-01-01

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy. PMID:28445432

  2. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.

    PubMed

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-04-26

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  3. Modeling percent tree canopy cover: a pilot study

    Treesearch

    John W. Coulston; Gretchen G. Moisen; Barry T. Wilson; Mark V. Finco; Warren B. Cohen; C. Kenneth Brewer

    2012-01-01

    Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006,...

  4. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    EPA Science Inventory

    We used a gradient (divided into impervious cover categories), spatially-balanced, random design (1) to sample streams along an impervious cover gradient in a large coastal watershed, (2) to characterize relationships between water chemistry and land cover, and (3) to document di...

  5. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  6. Automated Burned Area Delineation Using IRS AWiFS satellite data

    NASA Astrophysics Data System (ADS)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi

  7. A Quantitative Method to Identify Lithology Beneath Cover

    NASA Astrophysics Data System (ADS)

    Gettings, M. E.

    2008-12-01

    Geophysical terranes (map areas of similar potential field data response) can be used in the estimation of geological map units beneath cover (bedrock, alluvium, or tectonic block). Potential field data over nearby bedrock terranes defines "candidate terranes". Geophysical anomaly dimensions, shapes, amplitudes, trends/structural grain, and fractal measures yield a vector of measures characterizing the terrane. To compare candidate terranes fields with those for covered areas, the effect of depth of cover must be taken into account. Gravity anomaly data yields depth estimates by which the aeromagnetic data of candidate terranes are then upward continued. Comparison of characteristics of the upward continued fields from the candidate terranes to those of covered areas rank the candidates. Because of signal loss in upward continuation and overlap of physical properties, the vectors of measures for the candidate terranes are usually not unique. Possibility theory offers a relatively objective and robust method that can be used to rank terrane types that includes uncertainty. The strategy is to prepare membership functions for each measure of each candidate terrane and the covered area, based on observed values and degree of knowledge, and then form the fuzzy-logical combination of these to estimate the possibility and its uncertainty for each candidate terrane. Membership functions include uncertainty by the degree of membership for various possibility values. With no other information, uncertainty is based on information content from survey specifications and geologic features dimensions. Geologic data can also be included, such as structural trends, proximity, and tectonic history. Little knowledge implies wide membership functions; perfect knowledge, a delta function. This and the combination rules in fuzzy logic yield a robust estimation method. An uncertain membership function of a characteristic contributes much less to the possibility than a precise one. The

  8. Intercomparison of Satellite-Derived Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan

    1999-01-01

    In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40

  9. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    PubMed

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  10. Correlated declines in Pacific arctic snow and sea ice cover

    USGS Publications Warehouse

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  11. Grouping of body areas affected in traffic accidents. A cohort study.

    PubMed

    León, Alba Luz; Ascuntar-Tello, Johana; Valderrama-Molina, Carlos Oliver; Giraldo, Nelson Darío; Constaín, Alfredo; Puerta, Andrés; Restrepo, Camilo; Jaimes, Fabián

    2018-03-01

    Traffic accidents are considered a public health problem and, according to the World Health Organization, currently is the eighth cause of death in the world. Specifically, pedestrians, cyclists and motorcyclists contribute half of the fatalities. Adequate clinical management in accordance with aggregation patterns of the body areas involved, as well as the characteristics of the accident, will help to reduce mortality and disability in this population. Secondary data analysis of a cohort of patients involved in traffic accidents and admitted to the emergency room (ER) of a high complexity hospital in Medellín, Colombia. They were over 15 years of age, had two or more injuries in different areas of the body and had a hospital stay of more than 24 h after admission. A cluster analysis was performed, using Ward's method and the linfinity similarity measure, to obtain clusters of body areas most commonly affected depending on the type of vehicle and the type of victim. Among 2445 patients with traffic accidents, 34% (n = 836) were admitted into the Intensive Care Unit (ICU) and the overall hospital mortality rate was 8% (n = 201). More than 50% of the patients were motorcycle riders but mortality was higher in pedestrian-car accidents (16%, n = 34). The clusters show efficient performance to separate the population depending on the severity of their injuries. Pedestrians had the highest mortality after having accidents with cars and they also had the highest number of body parts clustered, mainly on head and abdomen areas. Exploring the cluster patterns of injuries and body areas affected in traffic accidents allow to establish anatomical groups defined by the type of accident and the type of vehicle. This classification system will accelerate and prioritize ER-care for these population groups, helping to provide better health care services and to rationalize available resources.

  12. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  13. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  14. Land Use Cover Changes and Run Off Potention of Cipunten Agung Watershed Banten

    NASA Astrophysics Data System (ADS)

    Karima, A.; Kaswanto, R. L.

    2017-10-01

    The changes of landscape form such as Land Use Cover Changes (LUCC) of Cipunten Agung watershed could be identified periodically in 1995, 2005, and 2015. In general, land utilization in Cipunten Agung classified into protected region and cultivated region. In 2011, total of protected area is 885.80 ha or 22.54% of watershed area. Those conditions affected both positively to the community development and negatively to the water quantity condition in Cipunten Agung such as flooding, run off, and erosion. Therefore, the purpose of this research is to analyze LUCC impacts to run off potential in Cipunten Agung watershed. Supervised classification method and Soil Conservation Services (Qscs) approach were correlated to determine the figure out an optimal solution to reduce the rate of LUCC. Cipunten Agung watershed imagery was classified into five classes, namely water bodies, forest, cultivated tree, settlement and paddy field. The result shows that area of cultivation tree and paddy fields are larger than others in midstream, and settlement is denser in downstream, particularly at riparian landscapes. The LUCC into paddy field often occur at two period 1995 to 2005 and 2005 to 2015 with several area are 530.92 ha and 388.17 ha. The Qscs method calculation result for 1995 until 2015 was affected by land use cover composition in each year and it was defined by Curve Number (CN). High rainfall in 1995 was generating high run off potential volume. Nevertheless, curve number value was increase get near to 100, which indicate the potential of run off volume increases along with LUCC in each year, those are 70.95; 72.47; and 72.81.

  15. The Thermal Collector With Varied Glass Covers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collectionmore » area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.« less

  16. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  17. Estimation of Land Surface Temperature for the Quantitative Analysis of Land Cover of Lower Areas of Sindh to Assess the Impacts of Climate Variability

    NASA Astrophysics Data System (ADS)

    Qaisar, Maha

    2016-07-01

    Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded

  18. The Effects of Water Parameters on Monthly Seagrass Percentage Cover in Lawas, East Malaysia

    PubMed Central

    Ahmad-Kamil, E. I.; Ramli, R.; Jaaman, S. A.; Bali, J.; Al-Obaidi, J. R.

    2013-01-01

    Seagrass is a valuable marine ecosystem engineer. However, seagrass population is declining worldwide. The lack of seagrass research in Malaysia raises questions about the status of seagrasses in the country. The seagrasses in Lawas, which is part of the coral-mangrove-seagrass complex, have never been studied in detail. In this study, we examine whether monthly changes of seagrass population in Lawas occurred. Data on estimates of seagrass percentage cover and water physicochemical parameters (pH, turbidity, salinity, temperature, and dissolved oxygen) were measured at 84 sampling stations established within the study area from June 2009 to May 2010. Meteorological data such as total rainfall, air temperature, and Southern Oscillation Index were also investigated. Our results showed that (i) the monthly changes of seagrass percentage cover are significant, (ii) the changes correlated significantly with turbidity measurements, and (iii) weather changes affected the seagrass populations. Our study indicates seagrass percentage increased during the El-Nino period. These results suggest that natural disturbances such as weather changes affect seagrass populations. Evaluation of land usage and measurements of other water physicochemical parameters (such as heavy metal, pesticides, and nutrients) should be considered to assess the health of seagrass ecosystem at the study area. PMID:24163635

  19. The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards

    NASA Astrophysics Data System (ADS)

    Novelli, Antonio; Tarantino, Eufemia

    2015-06-01

    Plastic covering is a common practice in agricultural fields. From an agronomic point of view, plastic coverings offer many advantages against unfavourable growing conditions. This explains their widespread utilization with consequent positive impact on local economy. On the other hand, plasticulture raises both environmental and landscape issues. In the Apulia Region (Italy) the wide implementation of such practice generally relates to vineyard cultivation. Continuous vineyard protection has resulted in negative effects on the hydrogeological balance of soils, causing a deep modification of the traditional rural landscape and therefore affecting its quality. To guarantee both the protection of local economy as well as the preservation of local environment and landscape features, a detailed site mapping of the areas involved is necessary. Indeed, the quantification of this phenomenon is essential in the periodic updating of the existing land use database and in the development of local policies. In this study we evaluate the potential of the novel Thermal Infrared Sensor bands (TIRS) provided by the LANDSAT 8 mission in plasticulture discrimination. Using the evident anomaly retrieved in the study area on the Quality Assessment (QA) band, a fast procedure involving TIRS data was developed, proposing a new index (Plastic Surface Index- PSI) able to emphasize plasticulture. For the aim of this study, two different acquisition dates on a test area in the Apulia region (Italy) were analyzed, one in the growing season with high plastic covering density and one in the post-harvest period with low plastic cover density.

  20. Consequences of land use and land cover change

    USGS Publications Warehouse

    Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.

  1. Climate Impacts of Cover Crops

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  2. Land change in the Central Corn Belt Plains Ecoregion and hydrologic consequences in developed areas: 1939-2000

    USGS Publications Warehouse

    Karstensen, Krista; Shaver, David; Alexander, Randal; Over, Thomas; Soong, David T.

    2013-01-01

    This report emphasizes the importance of a multi-disciplinary understanding of how land use and land cover can affect regional hydrology by collaboratively investigating how increases in developed land area may affect stream discharge by evaluating land-cover change from 1939 to 2000, urban housing density data from 1940 to 2010, and changes in annual peak streamflow from water years 1945 to 2009. The results and methods crosscut two mission areas of the U.S. Geological Survey (Climate and Land Use, Water) and can be used to better assess developed land change and hydrologic consequences, which can be used to better assess future management and mitigation strategies.

  3. Dimer covering and percolation frustration.

    PubMed

    Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M

    2015-09-01

    Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.

  4. On the impact of snow cover on daytime pollution dispersion

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  5. Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover

    NASA Astrophysics Data System (ADS)

    Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.

    2012-12-01

    Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to

  6. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further

  7. Effects of broadleaf woodland cover on streamwater chemistry and risk assessments of streamwater acidification in acid-sensitive catchments in the UK.

    PubMed

    Gagkas, Z; Heal, K V; Stuart, N; Nisbet, T R

    2008-07-01

    Streamwater was sampled at high flows from 14 catchments with different (0-78%) percentages of broadleaf woodland cover in acid-sensitive areas in the UK to investigate whether woodland cover affects streamwater acidification. Significant positive correlations were found between broadleaf woodland cover and streamwater NO3 and Al concentrations. Streamwater NO3 concentrations exceeded non-marine SO4 in three catchments with broadleaf woodland cover>or=50% indicating that NO3 was the principal excess acidifying ion in the catchments dominated by woodland. Comparison of calculated streamwater critical loads with acid deposition totals showed that 11 of the study catchments were not subject to acidification by acidic deposition. Critical loads were exceeded in three catchments, two of which were due to high NO3 concentrations in drainage from areas with large proportions of broadleaved woodland. The results suggest that the current risk assessment methodology should protect acid-sensitive catchments from potential acidification associated with broadleaf woodland expansion.

  8. Improvement of Operational Streamflow Prediction with MODIS-derived Fractional Snow Covered Area Observations

    NASA Astrophysics Data System (ADS)

    Bender, S.; Burgess, A.; Goodale, C. E.; Mattmann, C. A.; Miller, W. P.; Painter, T. H.; Rittger, K. E.; Stokes, M.; Werner, K.

    2013-12-01

    Water managers in the western United States depend heavily on the timing and magnitude of snowmelt-driven runoff for municipal supply, irrigation, maintenance of environmental flows, and power generation. The Colorado Basin River Forecast Center (CBRFC) of the National Weather Service issues operational forecasts of snowmelt-driven streamflow for watersheds within the Colorado River Basin (CRB) and eastern Great Basin (EGB), across a wide variety of scales. Therefore, the CBRFC and its stakeholders consider snowpack observations to be highly valuable. Observations of fractional snow covered area (fSCA) from satellite-borne instrumentation can better inform both forecasters and water users with respect to subsequent snowmelt runoff, particularly when combined with observations from ground-based station networks and/or airborne platforms. As part of a multi-year collaborative effort, CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate observations of fSCA from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) into the operational CBRFC hydrologic forecasting and modeling process. In the first year of the collaboration, CBRFC and NASA/JPL integrated snow products into the forecasting and decision making processes of the CBRFC and showed preliminary improvement in operational streamflow forecasts. In late 2012, CBRFC and NASA/JPL began retrospective analysis of relationships between the MODIS Snow Covered Area and Grain size (MODSCAG) fSCA and streamflow patterns for several watersheds within the CRB and the EGB. During the 2013 snowmelt runoff season, CBRFC forecasters used MODIS-derived fSCA semi-quantitatively as a binary indicator of the presence or lack of snow. Indication of the presence or lack of snow by MODIS assisted CBRFC forecasters in determining the cause of divergence between modeled and recently observed streamflow. Several examples of improved forecasts from across the CRB and EGB, informed by

  9. Soil cover of gas-bearing areas

    NASA Astrophysics Data System (ADS)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  10. Impacts of Land use and Cover Change on Soil Hydraulic Properties, Rondonia, Brazil

    NASA Astrophysics Data System (ADS)

    Schultz, K. J.; McGlynn, B. L.; Elsenbeer, H.

    2004-05-01

    There is a great deal of concern in the scientific community and the popular media about the global impacts of tropical rainforest deforestation. Soil quality does not receive that same media coverage but is greatly affected by deforestation and is a major concern in the tropics, especially in areas undergoing rapid land use and land cover change. Deforestation can lead to changes in the hydrologic regime, loss of topsoil, increased sediment and nutrient loads in waterways, and decreased soil fertility. These impacts are often related to a soil's infiltration capacity and hydraulic conductivity (Ksat). Our research site, Rancho Grande, Rondonia, Brazil, lies in the heart of the most rapid tropical rainforest deforestation in the world. Two watersheds of similar size, comparable topographic relief, and same soil type, were tested for differences in hydraulic conductivity. The two watersheds are differentiated by land use and land cover; one in a primary forest and the other in an actively grazed pasture. We measured infiltration capacity at 13 locations in the primary forest watershed and at 24 locations in the actively grazed pasture. Approximately 150 measurements of Ksat were made at regular depth intervals in both watersheds. Our research focuses on assessing the impact of land use and land cover change (primary rainforest to pasture/grazing) on soil infiltration capacity and subsurface saturated hydraulic conductivity. Statistically significant differences in infiltration capacity and hydraulic conductivity were detected between the pasture and forest sites at depths of 0, 12.5, and 20 cm. Differences between the two sites at depths of 50 and 90cm were not significant. These results demonstrate that the affect of land cover and land use change on soil hydraulic conductivity was confined to shallower depths in the soil profile. Coupled with ongoing watershed runoff studies at Rancho Grande, this research will help clarify how land cover change affects soil

  11. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  12. Landsat continuity: Issues and opportunities for land cover monitoring

    USGS Publications Warehouse

    Wulder, M.A.; White, Joanne C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, Thomas R.; Woodcock, C.E.

    2008-01-01

    Initiated in 1972, the Landsat program has provided a continuous record of earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and indispensable for monitoring, management, and scientific activities. Recent technical problems with the two existing Landsat satellites, and delays in the development and launch of a successor, increase the likelihood that a gap in Landsat continuity may occur. In this communication, we identify the key features of the Landsat program that have resulted in the extensive use of Landsat data for large area land cover mapping and monitoring. We then augment this list of key features by examining the data needs of existing large area land cover monitoring programs. Subsequently, we use this list as a basis for reviewing the current constellation of earth observation satellites to identify potential alternative data sources for large area land cover applications. Notions of a virtual constellation of satellites to meet large area land cover mapping and monitoring needs are also presented. Finally, research priorities that would facilitate the integration of these alternative data sources into existing large area land cover monitoring programs are identified. Continuity of the Landsat program and the measurements provided are critical for scientific, environmental, economic, and social purposes. It is difficult to overstate the importance of Landsat; there are no other systems in orbit, or planned for launch in the short-term, that can duplicate or approach replication, of the measurements and information conferred by Landsat. While technical and political options are being pursued, there is no satellite image data stream poised to enter the National Satellite Land Remote Sensing Data Archive should system failures

  13. Dual Durameter Blow Molded Rocker Cover Design With Unique Isolation Strategy

    DOEpatents

    Freese, V, Charles Edwin

    2000-07-11

    The rocker arm cover on a diesel engine can be formed of a rigid molded plastic material to minimize the transmission of noise into the atmosphere. Sonic vibration of the cover can be reduced by reducing the cover material stiffness. The reduced stiffness of the cover material allows the roof area of the cover to be momentarily displaced away from the cylinder head in the presence of an acoustic wave, so that the roof area is not able to develop the restoring force that is necessary for vibrational motion.

  14. Managed Clearings: an Unaccounted Land-cover in Urbanizing Regions

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Madden, M.; Meentemeyer, R. K.

    2016-12-01

    Managed clearings (MC), such as lawns, public parks and grassy transportation medians, are a common and ecologically important land cover type in urbanizing regions, especially those characterized by sprawl. We hypothesize that MC is underrepresented in land cover classification schemes and data products such as NLCD (National Land Cover Database) data, which may impact environmental assessments and models of urban ecosystems. We visually interpreted and mapped fine scale land cover with special attention to MC using 2012 NAIP (National Agriculture Imagery Program) images and compared the output with NLCD data. Areas sampled were 50 randomly distributed 1*1km blocks of land in three cities of the Char-lanta mega-region (Atlanta, Charlotte, and Raleigh). We estimated the abundance of MC relative to other land cover types, and the proportion of land-cover types in NLCD data that are similar to MC. We also assessed if the designations of recreation, transportation, and utility in MC inform the problem differently than simply tallying MC as a whole. 610 ground points, collected using the Google Earth, were used to evaluate accuracy of NLCD data and visual interpretation for consistency. Overall accuracy of visual interpretation and NLCD data was 78% and 58%, respectively. NLCD data underestimated forest and MC by 14.4km2 and 6.4km2, respectively, while overestimated impervious surfaces by 10.2km2 compared to visual interpretation. MC was the second most dominant land cover after forest (40.5%) as it covered about 28% of the total area and about 13% higher than impervious surfaces. Results also suggested that recreation in MC constitutes up to 90% of area followed by transportation and utility. Due to the prevalence of MC in urbanizing regions, the addition of MC to the synthesis of land-cover data can help delineate realistic cover types and area proportions that could inform ecologic/hydrologic models, and allow for accurate prediction of ecological phenomena.

  15. Forest cover of Champaign County, Illinois in 1993

    Treesearch

    Jesus Danilo Chinea; Louis R. Iverson

    1997-01-01

    The forest cover of Champaign County, in east-central Illinois, was mapped from 1993 aerial photography and entered in a geographical information system database. One hundred and six forest patches cover 3,380 ha. These patches have a mean area of 32 ha, a mean perimeter of 4,851 m, a mean perimeter to area ratio of 237, a fractal dimension of 1.59, and a mean nearest...

  16. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean

  17. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    PubMed

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  18. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  19. Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆

    PubMed Central

    Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.

    2017-01-01

    strongly affected by fires, but less affected by wind disturbance in the 20th century. More broadly, an increase in growing stock and expanding forest areas since the mid-19th century have - along with climatic changes - contributed to an increasing frequency and size of disturbances in the Alps. Although many areas remain intensively managed, the extent, structure, and dynamics of the forests of the Alps reflect natural drivers more strongly today than at any time in the past millennium. PMID:28860675

  20. Changes of forest cover and disturbance regimes in the mountain forests of the Alps.

    PubMed

    Bebi, P; Seidl, R; Motta, R; Fuhr, M; Firm, D; Krumm, F; Conedera, M; Ginzler, C; Wohlgemuth, T; Kulakowski, D

    2017-03-15

    affected by fires, but less affected by wind disturbance in the 20th century. More broadly, an increase in growing stock and expanding forest areas since the mid-19th century have - along with climatic changes - contributed to an increasing frequency and size of disturbances in the Alps. Although many areas remain intensively managed, the extent, structure, and dynamics of the forests of the Alps reflect natural drivers more strongly today than at any time in the past millennium.

  1. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different

  2. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    NASA Astrophysics Data System (ADS)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  3. Development of 2010 national land cover database for the Nepal.

    PubMed

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash

    2015-01-15

    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fault-Slip Data Analysis and Cover Versus Basement Fracture Patterns - Implications for Subsurface Technical Processes in Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Kasch, N.; Kley, J.; Navabpour, P.; Siegburg, M.; Malz, A.

    2014-12-01

    Recent investigations in Thuringia, Central Germany, focus on the potential for carbon sequestration, groundwater supply and geothermal energy. We report on the results of an integrated fault-slip data analysis to characterize the geometries and kinematics of systematic fractures in contrasting basement and cover rock lithologies. The lithostratigraphy of the area comprises locally exposed crystalline rocks and intermittently overlying Permian volcanic and clastic sedimentary rocks, together referred to as basement. A Late Permian sequence of evaporites, carbonates and shale constitutes the transition to the continuous sedimentary cover of Triassic age. Major NW-SE-striking fault zones and minor NNE-SSW-striking faults affect this stratigraphic succession. These characteristic narrow deforming areas (< 3 km width) build a dense network of individual fault strands with a close juxtaposition to wider (> 15 km) non-deforming areas suggesting localized zones of mechanical weakness, which can be confirmed by the frequent reactivation of single fault strands. Along the major fault zones, the basement and cover contain dominant inclined to sub-vertical NW-SE-striking fractures. These fractures indicate successive normal, dextral strike-slip and reverse senses of slip, evidencing events of NNE-SSW extension and contraction. Another system of mostly sub-vertical NNW-SSE- and NE-SW-striking conjugate strike-slip faults mainly developed within the cover implies NNE-SSW contraction and WNW-ESE extension. Earthquake focal mechanisms and in-situ stress measurements reveal a NW-SE trend for the modern SHmax. Nevertheless, fractures and fault-slip indicators are rare in the non-deforming areas, which characterizes Thuringia as a dual domain of (1) large unfractured areas and (2) narrow zones of high potential for technical applications. Our data therefore provide a basis for estimation of slip and dilation tendency of the contrasting fractures in the basement and cover under the

  5. Linkages between Snow Cover Seasonality, Terrain, and Land Surface Phenology in the Highland Pastures of Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Henebry, Geoffrey; Tomaszewska, Monika; Kelgenbaeva, Kamilya

    2017-04-01

    In the highlands of Kyrgyzstan, vertical transhumance is the foundation of montane agropastoralism. Terrain attributes, such as elevation, slope, and aspect, affect snow cover seasonality, which is a key influence on the timing of plant growth and forage availability. Our study areas include the highland pastures in Central Tien Shan mountains, specifically in the rayons of Naryn and At-Bashy in Naryn oblast, and Alay and Chong-Alay rayons in Osh oblast. To explore the linkages between snow cover seasonality and land surface phenology as modulated by terrain and variations in thermal time, we use 16 years (2001-2016) of Landsat surface reflectance data at 30 m resolution with MODIS land surface temperature and snow cover products at 1 km and 500 m resolution, respectively, and two digital elevation models, SRTM and ASTER GDEM. We model snow cover seasonality using frost degree-days and land surface phenology using growing degree-days as quadratic functions of thermal time: a convex quadratic (CxQ) model for land surface phenology and a concave quadratic (CvQ) model for snow cover seasonality. From the fitted parameter coefficients, we calculated phenometrics, including "peak height" and "thermal time to peak" for the CxQ models and "trough depth" and "thermal time to trough" for the CvQ models. We explore how these phenometrics change as a function of elevation and slope-aspect interactions and due to interannual variability. Further, we examine how snow cover duration and timing affects the subsequent peak height and thermal time to peak in wetter, drier, and normal years.

  6. Eating habits and factors affecting food choice of adolescents living in rural areas.

    PubMed

    Bargiota, Alexandra; Pelekanou, Maria; Tsitouras, Andreas; Koukoulis, Georgios N

    2013-01-01

    To establish factors that affect food choices among adolescents living in rural areas and to identify their food choices. A random sample of adolescents living in a Greek rural area (n=382) aged 12-18 years were individually interviewed. Food consumption was assessed by a semi-quantitative food-frequency questionnaire and adherence to the Mediterranean diet was evaluated using the KIDMED questionnaire. Information was collected regarding self-perceived body size, dieting, dietary knowledge, parental control, meal and snack frequency, eating out of home, eating takeaways and precooked meals, eating from the school canteen. Body image concerns, dieting, education about food, parental control, maternal education level and eating with family and peers are factors that were found to affect food choices in this group of Greek adolescents. The adherence to the Mediterranean diet was low (KIDMED index was 4.5±2.7). Regular family meals at home were frequent in this group and 99% of the adolescents ate lunch daily at home. Eating out with peers and eating from the school canteen was related with higher consumption of 'junk type of food'. Girls and younger adolescents and those whose mothers had a higher education level seem to make healthier choices. Factors such as personal issues, family and peer pressure significantly affect food choices among adolescents living in a Greek rural area and highlight the importance of implementing multilevel strategies to promote healthy eating among adolescents.

  7. Development of deforestation and land cover database for Bhutan (1930-2014).

    PubMed

    Reddy, C Sudhakar; Satish, K V; Jha, C S; Diwakar, P G; Murthy, Y V N Krishna; Dadhwal, V K

    2016-12-01

    Bhutan is a mountainous country located in the Himalayan biodiversity hotspot. This study has quantified the total area under land cover types, estimated the rate of forest cover change, analyzed the changes across forest types, and modeled forest cover change hotpots in Bhutan. The topographical maps and satellite remote sensing images were analyzed to get the spatial patterns of forest and associated land cover changes over the past eight decades (1930-1977-1987-1995-2005-2014). Forest is the largest land cover in Bhutan and constitutes 68.3% of the total geographical area in 2014. Subtropical broad leaved hill forest is predominant type occupies 34.1% of forest area in Bhutan, followed by montane dry temperate (20.9%), montane wet temperate (18.9%), Himalayan moist temperate (10%), and tropical moist sal (8.1%) in 2014. The major forest cover loss is observed in subtropical broad leaved hill forest (64.5 km 2 ) and moist sal forest (9.9 km 2 ) from 1977 to 2014. The deforested areas have mainly been converted into agriculture and contributed for 60.9% of forest loss from 1930 to 2014. In spite of major decline of forest cover in time interval of 1930-1977, there is no net rate of deforestation is recorded in Bhutan since 1995. Forest cover change analysis has been carried out to evaluate the conservation effectiveness in "Protected Areas" of Bhutan. Hotspots that have undergone high transformation in forest cover for afforestation and deforestation were highlighted in the study for conservation prioritisation. Forest conservation policies in Bhutan are highly effective in controlling deforestation as compared to neighboring Asian countries and such service would help in mitigating climate change.

  8. All Conservation Opportunity Areas (ECO.RES.ALL_OP_AREAS)

    EPA Pesticide Factsheets

    The All_OP_Areas GIS layer are all the Conservation Opportunity Areas identified by MoRAP (produced for EPA Region 7). They designate areas with potential for forest, grassland and forest/grassland mosaic conservation. These are areas of natural or semi-natural forest land cover that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files.

  9. Going home after Hurricane Katrina: Determinants of return migration and changes in affected areas.

    PubMed

    Groen, Jeffrey A; Polivka, Anne E

    2010-11-01

    This article examines the decision of Hurricane Katrina evacuees to return to their pre-Katrina areas and documents how the composition of the Katrina-affected region changed over time. Using data from the Current Population Survey, we show that an evacuee's age, family income, and the severity of damage in an evacuee's county of origin are important determinants of whether an evacuee returned during the first year after the storm. Blacks were less likely to return than whites, but this difference is primarily related to the geographical pattern of storm damage rather than to race per se. The difference between the composition of evacuees who returned and the composition of evacuees who did not return is the primary force behind changes in the composition of the affected areas in the first two years after the storm. Katrina is associated with substantial shifts in the racial composition of the affected areas (namely, a decrease in the percentage of residents who are black) and an increasing presence of Hispanics. Katrina is also associated with an increase in the percentage of older residents, a decrease in the percentage of residents with low income/education, and an increase in the percentage of residents with high income/education.

  10. Suppressing geo-facts in landslide-affected areas

    NASA Astrophysics Data System (ADS)

    Sajinkumar, Ks; Pradeepkumar, Ap; Rani, Vr; Di Capua, Giuseppe

    2014-05-01

    The Western Ghats, the bold westerly escarpment of India and which borders the eastern portion of Kerala State (India), bears the testimony of frequent landslides, especially during the monsoon season, and they cause widespread damage to life and property. The natural hazards can turn into disasters in this hilly state, due to the high density of population (~800 per km2). The elements at landslide risk in any area include human population, livestock, land and its resources, environmental values, buildings and economic activities. The loss of lives is the most heart breaking side of the story and cannot be compensated in pecuniary terms. The role of the geoscientist comes into picture to protect the life and property from imminent landslides. But the unbiased role of a geoscientist is blocked by several societal issues like fear of disapproval by the public, political interference, false information propagated through the fourth estate and last but not the least the lack of confidence in her/himself as the profession is now mainly non-societal. This paper aims at looking into these issues in a landslide-prone area of the state. The deontological vs consequential ethical behaviours that characterise the responses by the official machinery and the common man conspire to create disastrous situations, which ultimately brings suffering to the common man, while straining the resources of the state through recurrent payment of damages, every year. The "moral vs monetary" values of society and its government is laid bare in Kerala, especially during landslide disasters and the state's social contract obligations sometimes become ambiguous. Another aspect that has to be addressed is the impact on the marginalized during landslide disasters in Kerala. Does the newly instituted 'Disaster Insurance' scheme adequately cover them? What is the ethical dimensions that such schemes address? The Kerala state is the most socially, educationally, and demographically advanced one in

  11. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    NASA Astrophysics Data System (ADS)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  12. SAR Coherence Change Detection of Urban Areas Affected by Disasters Using SENTINEL-1 Imagery

    NASA Astrophysics Data System (ADS)

    Washaya, P.; Balz, T.

    2018-04-01

    The study focuses on two study areas: San Juan in Puerto Rico, which was affected by Hurricane Maria in September 2017, and Sarpol Zahab in Iran, which was one of the towns affected by an earthquake in November 2017. In our study, we generate coherence images, and classify them into areas of `change' and `no-change'. A statistical analysis is made by converting the coherence results into point data, creating street blocks for the study areas and integrating the point data into the street blocks to calculate the standard deviation over the whole stack of images. Additionally, Landsat imagery is used to create land-use classes, convert them to polygons and integrate the polygon classes to the coherence maps to determine the average coherence loss per class for each disaster. Results show 65 % loss in coherence after the earthquake in Sarpol-e-Zahab and 75 % loss in Puerto Rico after the Hurricane. Land-use classes show coherence losses to below 0.5 for each disaster.

  13. Tree and impervious cover in the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2012-01-01

    Using aerial photograph interpretation of circa 2005 imagery, percent tree canopy and impervious surface cover in the conterminous United States are estimated at 34.2% (standard error (SE) = 0.2%) and 2.4% (SE = 0.1%), respectively. Within urban/community areas, percent tree cover (35.1%, SE = 0.4%) is similar to the national value, but percent impervious cover is...

  14. Comparison of U.S. Forest Land AreaEstimates From Forest Inventory and Analysis, National Resources Inventory, and Four Satellite Image-Derived Land Cover Data Sets

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard

    2005-01-01

    Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...

  15. Small area estimation in forests affected by wildfire in the Interior West

    Treesearch

    G. G. Moisen; J. A. Blackard; M. Finco

    2004-01-01

    Recent emphasis has been placed on estimating amount and characteristics of forests affected by wildfire in the Interior West. Data collected by FIA is intended for estimation over large geographic areas and is too sparse to construct sufficiently precise estimates within burn perimeters. This paper illustrates how recently built MODISbased maps of forest/nonforest and...

  16. Effects of Land Cover Change on Soil Greenhouse Gas Fluxes in Subtropical Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, C. N.; Lai, D. Y. F.

    2016-12-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Soil greenhouse gas (GHG) exchange plays an important role in governing future climate change. Yet, the effects of urbanization on soil GHG exchange remain uncertain and not well understood. This study aims to examine the effects of urbanization on GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter in Hong Kong based on closed chamber measurements for one full year. CO2 emission significantly varied among land covers (p<0.05), with the highest and lowest CO2 emissions being recorded in roadside planter and farmland, respectively. The N2O flux was highest in roadside planter whereas the lowest flux was recorded in urban forest, though the difference in N2O fluxes was only statistically significant at a level of 0.1. No significant difference of CH4 emission was found among all the land covers. Emission of CO2 increased markedly with soil organic matter content, while N2O flux increased markedly with total Kjeldahl nitrogen content. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  17. Improving Running Times for the Determination of Fractional Snow-Covered Area from Landsat TM/ETM+ via Utilization of the CUDA® Programming Paradigm

    NASA Astrophysics Data System (ADS)

    McGibbney, L. J.; Rittger, K.; Painter, T. H.; Selkowitz, D.; Mattmann, C. A.; Ramirez, P.

    2014-12-01

    As part of a JPL-USGS collaboration to expand distribution of essential climate variables (ECV) to include on-demand fractional snow cover we describe our experience and implementation of a shift towards the use of NVIDIA's CUDA® parallel computing platform and programming model. In particular the on-demand aspect of this work involves the improvement (via faster processing and a reduction in overall running times) for determination of fractional snow-covered area (fSCA) from Landsat TM/ETM+. Our observations indicate that processing tasks associated with remote sensing including the Snow Covered Area and Grain Size Model (SCAG) when applied to MODIS or LANDSAT TM/ETM+ are computationally intensive processes. We believe the shift to the CUDA programming paradigm represents a significant improvement in the ability to more quickly assert the outcomes of such activities. We use the TMSCAG model as our subject to highlight this argument. We do this by describing how we can ingest a LANDSAT surface reflectance image (typically provided in HDF format), perform spectral mixture analysis to produce land cover fractions including snow, vegetation and rock/soil whilst greatly reducing running time for such tasks. Within the scope of this work we first document the original workflow used to assert fSCA for Landsat TM and it's primary shortcomings. We then introduce the logic and justification behind the switch to the CUDA paradigm for running single as well as batch jobs on the GPU in order to achieve parallel processing. Finally we share lessons learned from the implementation of myriad of existing algorithms to a single set of code in a single target language as well as benefits this ultimately provides scientists at the USGS.

  18. Design of foundations with sliding joint at areas affected with underground mining

    NASA Astrophysics Data System (ADS)

    Matečková, P.; Šmiřáková, M.; Maňásek, P.

    2018-04-01

    Underground mining always influences also landscape on surface. If there are buildings on the surface they are affected with terrain deformation which comprises terrain inclination, curvature, shift and horizontal deformation. Ostrava – Karvina region is specific with underground mining very close to densely inhabited area. About 25 years ago there were mines even in the city of Ostrava. Recommendations and rules for design of building structures at areas affected with underground mining have been therefore analysed in long term. This paper is focused on deformation action caused by terrain horizontal deformation - expansion or compression. Through the friction between foundation structure and subsoil in footing bottom the foundation structure has to resist significant normal forces. The idea of sliding joint which eliminates the friction and decreases internal forces comes from the last century. Sliding joint made of asphalt belt has been analysed at Faculty of Civil Engineering, VSB – Technical University of Ostrava in long term. The influence of vertical and horizontal load and the effect of temperature in temperature controlled room have been examined. Testing, design and utilization of sliding joint is presented.

  19. Land cover trends dataset, 1973-2000

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Auch, Roger F.; Sohl, Terry L.; Drummond, Mark A.; Sleeter, Benjamin M.; Sorenson, Daniel G.; Kambly, Steven; Wilson, Tamara S.; Taylor, Janis L.; Sayler, Kristi L.; Stier, Michael P.; Barnes, Christopher A.; Methven, Steven C.; Loveland, Thomas R.; Headley, Rachel; Brooks, Mark S.

    2014-01-01

    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format.

  20. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  1. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  2. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  3. Carbon mapping of Argentine savannas: Using fractional tree cover to scale from field to region

    NASA Astrophysics Data System (ADS)

    González-Roglich, M.; Swenson, J. J.

    2015-12-01

    Programs which intend to maintain or enhance carbon (C) stocks in natural ecosystems are promising, but require detailed and spatially explicit C distribution models to monitor the effectiveness of management interventions. Savanna ecosystems are significant components of the global C cycle, covering about one fifth of the global land mass, but they have received less attention in C monitoring protocols. Our goal was to estimate C storage across a broad savanna ecosystem using field surveys and freely available satellite images. We first mapped tree canopies at 2.5 m resolution with a spatial subset of high resolution panchromatic images to then predict regional wall-to-wall tree percent cover using 30-m Landsat imagery and the Random Forests algorithms. We found that a model with summer and winter spectral indices from Landsat, climate and topography performed best. Using a linear relationship between C and % tree cover, we then predicted tree C stocks across the gradient of tree cover, explaining 87 % of the variability. The spatially explicit validation of the tree C model with field-measured C-stocks revealed an RMSE of 8.2 tC/ha which represented ~30% of the mean C stock for areas with tree cover, comparable to studies based on more advanced remote sensing methods, such as LiDAR and RADAR. Sample spatial distribution highly affected the performance of the RF models in predicting tree cover, raising concerns regarding the predictive capabilities of the model in areas for which training data is not present. The 50,000 km2 has ~41 Tg C, which could be released to the atmosphere if agricultural pressure intensifies in this semiarid savanna.

  4. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  5. 40 CFR 124.42 - Additional procedures for PSD permits affecting Class I areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Additional procedures for PSD permits... (CONTINUED) WATER PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.42 Additional procedures for PSD permits affecting Class I areas. (a) The Regional Administrator...

  6. 40 CFR 124.42 - Additional procedures for PSD permits affecting Class I areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Additional procedures for PSD permits... (CONTINUED) WATER PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.42 Additional procedures for PSD permits affecting Class I areas. (a) The Regional Administrator...

  7. 40 CFR 124.42 - Additional procedures for PSD permits affecting Class I areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Additional procedures for PSD permits... (CONTINUED) WATER PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.42 Additional procedures for PSD permits affecting Class I areas. (a) The Regional Administrator...

  8. 40 CFR 124.42 - Additional procedures for PSD permits affecting Class I areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Additional procedures for PSD permits... (CONTINUED) WATER PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.42 Additional procedures for PSD permits affecting Class I areas. (a) The Regional Administrator...

  9. 40 CFR 124.42 - Additional procedures for PSD permits affecting Class I areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Additional procedures for PSD permits... (CONTINUED) WATER PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.42 Additional procedures for PSD permits affecting Class I areas. (a) The Regional Administrator...

  10. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  11. Global spatial assessment of WUI and related land cover in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Parente, Joana; Pereira, Mário G.

    2017-04-01

    Forest fires as hazardous events are assuming an increasing importance all around the world, especially in relation to climate changes and to urban sprawl, which makes it difficult to outline a border between human infrastructures and wildland areas. This zone, known as the Wildland Urban Interface (WUI), is defined as the area where structures and other human development meet or intermingle with undeveloped wildland (USDA 2001). Its extension is influenced by anthropogenic features, since, as it was proved, the distance to roads and houses negatively influence the probability of forest fires ignitions, while the population density positively affects it. Land use is also a crucial feature to be considered in the analyses of the impact of forest fires, and each natural, semi-natural and artificial land cover can be affected in a different proportion. The aim of the present study is to investigate and mapping the wildland urban interface and its temporal dynamic in Portugal at global scale. Secondly, it aims at providing a quantitative characterization of forest fires occurred in the last few decades (1990 - 2012) in relation to the burned area and the land covers evolution. The National mapping burnt area dataset (by the Institute for the Conservation of Nature and Forests) provided the information allowing to precisely localize forest fires. The land cover classes were derived from the Corinne Land Cover, available for four periods (1990-2000-2006-2012). The following two classes were retained to outline the WUI: 1) artificial surfaces, as representative of the human development; 2) forest and semi-natural area, as representative of undeveloped wildland. First, we investigated the distribution of the burned areas among the different detailed land covers classes. Then, to map the WUI, we considered a buffer distance around artificial surfaces located in proximity of forests and semi-natural areas. The descriptive statistic carried out individually within each

  12. Effects of rock fragments on water dynamics in a fire-affected soil

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; García-Moreno, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    Rock fragments (RF) are common in the surface of Mediterranean semiarid soils, and have important effects on the soil physical (bulk density and porosity) and hydrological processes (infiltration, evaporation, splash erosion and runoff generation) (Poesen and Lavee, 1994; Rieke-Zapp et al., 2007). In some cases, RFs in Mediterranean areas have been shown to protect bare soils from erosion risk (Cerdà, 2001; Martínez-Zavala, Jordán, 2008; Zavala et al., 2010). Some of these effects are much more relevant when vegetation cover is low or has been reduced after land use change or other causes, as forest fires. Although very few studies exist, the interest on the hydrological effects of RFs in burned areas is increasing recently. After a forest fire, RFs may contribute significantly to soil recovery. In this research we have studied the effect of surface and embedded RFs on soil water control, infiltration and evaporation in calcareous fire-affected soils from a Mediterranean area (SW Spain). For this study, we selected an area with soils derived from limestone under holm oak forest, recently affected by a moderate severity forest fire. The proportion of RF cover showed a significant positive relation with soil water-holding capacity and infiltration rates, although infiltration rate reduced significantly when RF cover increased above a certain threshold. Soil evaporation rate decreased with increasing volumetric content of RFs and became stable with RF contents approximately above 30%. Evaporation also decreased with increasing RF cover. When RF cover increased above 50%, no significant differences were observed between burned and control vegetated plots. REFERENCES Poesen, J., Lavee, H. 1994. Rock fragments in top soils: significance and processes. Catena Supplement 23, 1-28. Cerdà, A. 2001. Effect of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52, 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x. Rieke

  13. Lake Michigan Diversion Accounting land cover change estimation by use of the National Land Cover Dataset and raingage network partitioning analysis

    USGS Publications Warehouse

    Sharpe, Jennifer B.; Soong, David T.

    2015-01-01

    This study used the National Land Cover Dataset (NLCD) and developed an automated process for determining the area of the three land cover types, thereby allowing faster updating of future models, and for evaluating land cover changes by use of historical NLCD datasets. The study also carried out a raingage partitioning analysis so that the segmentation of land cover and rainfall in each modeled unit is directly applicable to the HSPF modeling. Historical and existing impervious, grass, and forest land acreages partitioned by percentages covered by two sets of raingages for the Lake Michigan diversion SCAs, gaged basins, and ungaged basins are presented.

  14. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter--Exploratory study.

    PubMed

    Viippola, Viljami; Rantalainen, Anna-Lea; Yli-Pelkonen, Vesa; Tervo, Peatta; Setälä, Heikki

    2016-01-01

    While the potential of plants to uptake polycyclic aromatic hydrocarbons (PAHs) is widely acknowledged, empirical evidence of the effects of this process on local atmospheric PAH concentrations and human health is tenuous. We measured gaseous PAH concentrations using passive samplers in urban tree-covered areas and adjacent open, treeless areas in a near-road environment in Finland to gain information on the ability of urban vegetation to improve air quality. The ability of urban, mostly deciduous, vegetation to affect PAHs was season dependent: during summer, concentrations were significantly higher in tree-covered areas, while in the fall, concentrations in open areas exceeded those in tree-covered areas. During winter, concentrations in tree-covered areas were either lower or did not differ from those in open areas. Results of this study imply that the commonly believed notion that trees unequivocally improve air quality does not apply to PAHs studied here. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  16. 78 FR 44016 - Exclusion of Orphan Drugs for Certain Covered Entities Under 340B Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... request or upon a government-approved manufacturer audit request that directly pertains to the covered entity's compliance with section 340B(e) of the PHSA. Any HRSA audit of an affected covered entity will... approval, a manufacturer has the right to audit an affected covered entity's compliance with this section...

  17. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed

    Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and

  18. Operational monitoring of land-cover change using multitemporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation

  19. COVER Project and Earth resources research transition

    NASA Technical Reports Server (NTRS)

    Botkin, D. B.; Estes, J. E. (Principal Investigator)

    1986-01-01

    Results of research in the remote sensing of natural boreal forest vegetation (the COVER project) are summarized. The study objectives were to establish a baseline forest test site; develop transforms of LANDSAT MSS and TM data for forest composition, biomass, leaf area index, and net primary productivity; and perform tasks required for testing hypotheses regarding observed spectral responses to changes in leaf area index in aspen. In addition, the transfer and documentation of data collected in the COVER project (removed from the Johnson Space Center following the discontinuation of Earth resources research at that facility) is described.

  20. Recent land-use and land-cover changes and its driving factors in a fire-prone area of southwestern Turkey.

    PubMed

    Viedma, Olga; Moreno, José M; Güngöroglu, Cumhur; Cosgun, Ufuk; Kavgacı, Ali

    2017-07-15

    During the last decades, contrasted trends in forest fires among countries around the Mediterranean basin have been observed. In the northern/western countries, Land Use-Land Cover (LULC) changes led to more hazardous landscapes, with consequent increases in fires. This contrasted with fire trends in southern/eastern countries. The recent incidence of large fires in some of the latter prompted the question of whether they are now following the path of their neighbors decades earlier. In this study, we investigated recent LULC changes in southwestern Turkey, focusing on those that could affect fire, and the factors driving them. To this end, LULC maps at different time steps (1975, 1990, 2000 and 2010) were obtained from Landsat images, together with relevant socioeconomic data. Generalized linear mixed models (GLMMs) were applied to assess the effects of socioeconomic and geophysical factors on the dominant LULC changes over time. Over the whole period studied, the most important LULC changes were deforestation followed by afforestation. Deforestation was positively related to high livestock density and proximity to villages and increased forest interfaces with other LULC types. We found no evidence that LULC changes were making the landscape more hazardous as there was a net decrease in fuels biomass and the landscape became more fragmented over time. However, despite the area being heavily used and relatively fragmented, large fires can occur driven by severe weather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 40 CFR 63.7282 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing... cover? (a) This subpart applies to each new or existing affected source at your coke plant. The affected source is each coke oven battery. (b) This subpart covers emissions from pushing, soaking, quenching, and...

  2. 40 CFR 63.7282 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing... cover? (a) This subpart applies to each new or existing affected source at your coke plant. The affected source is each coke oven battery. (b) This subpart covers emissions from pushing, soaking, quenching, and...

  3. 40 CFR 63.7282 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing... cover? (a) This subpart applies to each new or existing affected source at your coke plant. The affected source is each coke oven battery. (b) This subpart covers emissions from pushing, soaking, quenching, and...

  4. 40 CFR 63.7282 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing... cover? (a) This subpart applies to each new or existing affected source at your coke plant. The affected source is each coke oven battery. (b) This subpart covers emissions from pushing, soaking, quenching, and...

  5. 40 CFR 63.7282 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing... cover? (a) This subpart applies to each new or existing affected source at your coke plant. The affected source is each coke oven battery. (b) This subpart covers emissions from pushing, soaking, quenching, and...

  6. Exploring the administrative mechanism of China's Paired Assistance to Disaster Affected Areas programme.

    PubMed

    Zhong, Kaibin; Lu, Xiaoli

    2017-10-31

    The Paired Assistance to Disaster Affected Areas (PADAA) programme is a mutual aid initiative with Chinese characteristics, which speeded up the process of restoring and reconstructing regions affected by the Wenchuan earthquake on 12 May 2008. The PADAA is an efficient instrument for catastrophe recovery, yet it remains a mysterious mechanism to many members of disaster management communities. This paper aims to lift the veil on it by assessing its origins and evolution. It draws on the multi-level moderated competition model to explain how the PADAA functions within the Chinese administrative system. The country's top-down political system allows the central authority to mandate provincial and local governments from more economically developed regions to assist devastated areas with post-disaster reconstruction. The practices of local accountability complement vertical control by giving leaders from donor regions strong incentives to accomplish assigned reconstruction tasks, resulting in intense competition between them. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  7. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    USGS Publications Warehouse

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  8. Tree and impervious cover change in U.S

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2012-01-01

    Paired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the...

  9. Land cover change monitoring within the east central Louisiana study site: A case for large area surveys with LANDSAT multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Burns, G. S.

    1983-01-01

    Results established for four digital procedures developed for characterizing the radiometric changes between multidate LANDSAT spectral data sets into meaningful measures of land cover/use dynamics are documented. Each technique's performance was contrasted against digitized land use change maps, which were produced from contemporaneous, retrospective aerophoto coverage, in a cell by cell comparison over a one half by one degree area in east central Louisiana as a standard for comparison. The four techniques identify from 10.5 to 13.0% loss in area of forestland in a five year period; however, they differ more by how accurately this amount of change is distributed, the need for ancillary ground truth, and amount of usable information that is extractable. All require some method of digitally co-registering the two data sets. All are capable of providing tabular statistics as well as map products. Two are capable of detecting changes and identifying their locations. The other two, in addition to this, provide information to qualify land cover conditions at each end of the study interval.

  10. Snow cover correlation between Mt. Villarrica and Mt. Lliama in Chile

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Cheol; Park, Sung-Hwan; Jung, Hyung-Sup

    2014-11-01

    The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, and all of the volcanoes are covered with snow at the top of mountain. Monitoring snow cover variations in these regions can give us a key parameter in order to understand the mechanisms of volcanic activity. In this study, we investigate on the volcanic activity and snow cover interaction from snow cover area mapping, snow-line extraction. The study areas cover Mt. Villarrica and Mt. Llaima, Chile. Both of them are most active volcanos in SVZ. Sixty Landsat TM and Landsat ETM+ images are used for observing snow cover variations of Mt. Villarrica and Mt. Llaima, spanning the 25 years from September 1986 to February 2011. Results show that snow cover area between volcanic activity and non-activity are largely changed from 42.84 km2 to 13.41 km2, temporarily decreased 79% at the Mt. Villarrica and from 28.98 km2 to 3.82 km2, temporarily decreased 87% at the Mt. Villarrica. The snow line elevation of snow cover retreated by approximately 260 m from 1,606m to 1,871 m at the Mt. Villarrica, approximately 266m from 1,741m to 2,007m at the Mt. Llaima. The results show that there are definitely correlations between snow cover and volcanic activity.

  11. Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof

    2016-10-01

    It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.

  12. Are there any changes in burden and management of communicable diseases in areas affected by Cyclone Nargis?

    PubMed Central

    2011-01-01

    Background This study aims to assess the situation of communicable diseases under national surveillance in the Cyclone Nargis-affected areas in Myanmar (Burma) before and after the incident. Methods Monthly data during 2007, 2008 and 2009 from the routine reporting system for disease surveillance of the Myanmar Ministry of Health (MMOH) were reviewed and compared with weekly reporting from the Early Warning and Rapid Response (EWAR) system. Data from some UN agencies, NGOs and Tri-Partite Core Group (TCG) periodic reviews were also extracted for comparisons with indicators from Sphere and the Inter-Agency Standing Committee. Results Compared to 2007 and 2009, large and atypical increases in diarrheal disease and especially dysentery cases occurred in 2008 following Cyclone Nargis. A seasonal increase in ARI reached levels higher than usual in the months of 2008 post-Nargis. The number of malaria cases post-Nargis also increased, but it was less clear if this reflected normal seasonal patterns or was specifically associated with the disaster event. There was no significant change in the occurrence of other communicable diseases in Nargis-affected areas. Except for a small decrease in mortality for diarrheal diseases and ARI in 2008 in Nargis-affected areas, population-based mortality rates for all other communicable diseases showed no significant change in 2008 in these areas, compared to 2007 and 2009. Tuberculosis control programs reached their targets of 70% case detection and 85% treatment success rates in 2007 and 2008. Vaccination coverage rates for DPT 3rd dose and measles remained at high though measles coverage still did not reach the Sphere target of 95% even by 2009. Sanitary latrine coverage in the Nargis-affected area dropped sharply to 50% in the months of 2008 following the incident but then rose to 72% in 2009. Conclusion While the incidence of diarrhea, dysentery and ARI increased post-Nargis in areas affected by the incident, the incidence rate for

  13. Predicting future land cover change and its impact on streamflow and sediment load in a trans-boundary river basin

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Hao; Ning, Shaowei; Hiroshi, Ishidaira

    2018-06-01

    Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM). In addition, future leaf area index (LAI) is simulated by ecological model (Biome-BGC) based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.

  14. Flow structure at an ice-covered river confluence

    NASA Astrophysics Data System (ADS)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas

    2017-04-01

    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio

  15. 12 CFR 712.1 - What does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false What does this part cover? 712.1 Section 712.1 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS CREDIT UNION SERVICE ORGANIZATIONS (CUSOs) § 712.1 What does this part cover? This part establishes when a Federal...

  16. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    NASA Astrophysics Data System (ADS)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  17. Annual global tree cover estimated by fusing optical and SAR satellite observations

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2017-12-01

    Tree cover defined structurally as the proportional, vertically projected area of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree cover provides a measurable attribute upon which forest cover may be defined. Changes in tree cover over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree cover have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-year temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both cover and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree cover dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-cover layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and

  18. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Fiorucci, P.; Holmes, T. P.

    2010-10-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  19. Vegetation Cover Analysis in Shaanxi Province of China Based on Grid Pixel Ternd Analysis and Stability Evaluation

    NASA Astrophysics Data System (ADS)

    Yue, H.; Liu, Y.

    2018-04-01

    As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.

  20. 42 CFR 37.7 - Transfer of affected miner to less dusty area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (1/0, 1/1, 1/2), category 2 (2/1, 2/2, 2/3), or category 3 (3/2, 3/3, 3/4) simple pneumoconioses, or... 42 Public Health 1 2011-10-01 2011-10-01 false Transfer of affected miner to less dusty area. 37.7 Section 37.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND...

  1. 42 CFR 37.7 - Transfer of affected miner to less dusty area.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (1/0, 1/1, 1/2), category 2 (2/1, 2/2, 2/3), or category 3 (3/2, 3/3, 3/4) simple pneumoconioses, or... 42 Public Health 1 2010-10-01 2010-10-01 false Transfer of affected miner to less dusty area. 37.7 Section 37.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND...

  2. Creating high-resolution time series land-cover classifications in rapidly changing forested areas with BULC-U in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Cardille, J. A.; Lee, J.

    2017-12-01

    With the opening of the Landsat archive, there is a dramatically increased potential for creating high-quality time series of land use/land-cover (LULC) classifications derived from remote sensing. Although LULC time series are appealing, their creation is typically challenging in two fundamental ways. First, there is a need to create maximally correct LULC maps for consideration at each time step; and second, there is a need to have the elements of the time series be consistent with each other, without pixels that flip improbably between covers due only to unavoidable, stray classification errors. We have developed the Bayesian Updating of Land Cover - Unsupervised (BULC-U) algorithm to address these challenges simultaneously, and introduce and apply it here for two related but distinct purposes. First, with minimal human intervention, we produced an internally consistent, high-accuracy LULC time series in rapidly changing Mato Grosso, Brazil for a time interval (1986-2000) in which cropland area more than doubled. The spatial and temporal resolution of the 59 LULC snapshots allows users to witness the establishment of towns and farms at the expense of forest. The new time series could be used by policy-makers and analysts to unravel important considerations for conservation and management, including the timing and location of past development, the rate and nature of changes in forest connectivity, the connection with road infrastructure, and more. The second application of BULC-U is to sharpen the well-known GlobCover 2009 classification from 300m to 30m, while improving accuracy measures for every class. The greatly improved resolution and accuracy permits a better representation of the true LULC proportions, the use of this map in models, and quantification of the potential impacts of changes. Given that there may easily be thousands and potentially millions of images available to harvest for an LULC time series, it is imperative to build useful algorithms

  3. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia.

    PubMed

    Karofeld, Edgar; Müür, Mari; Vellak, Kai

    2016-07-01

    Increasing human activity continues to threaten peatlands, and as the area of natural mires declines, our obligation is to restore their ecosystem functions. Several restoration strategies have been developed for restoration of extracted peatlands, including "The moss layer transfer method", which was initiated on the Tässi extracted peatland in central Estonia in May 2012. Three-year study shows that despite the fluctuating water table, rainfall events can compensate for the insufficient moisture for mosses. Total plant cover on the restoration area attained 70 %, of which ~60 % is comprised of target species-Sphagnum mosses. From restoration treatments, spreading of plant fragments had a significant positive effect on the cover of bryophyte and vascular plants. Higher water table combined with higher plant fragments spreading density and stripping of oxidised peat layer affected positively the cover of targeted Sphagnum species. The species composition in the restoration area became similar to that in the donor site in a natural bog. Based on results, it was concluded that the method approved for restoration in North America gives good results also in the restoration of extracted peatland towards re-establishment of bog vegetation under northern European conditions.

  4. Environmental Assessment of Alternate Training Area Jack Pine Flats Idaho Department of Lands Near Coolin, Idaho

    DTIC Science & Technology

    2009-05-01

    Affected Environment The ROI is within the Eastern Washington -Northern Idaho Interstate Air Quality Control Region. Of the six criteria pollutants...growth. Numerous openings (natural and man-made), wetlands, riparian areas, dry meadow, shrublands, and stands of deciduous trees distributed across... deciduous trees and shrubs or lodge pole pine) to provide food and cover for wintering snowshoe hare. • Denning Cover - generally mature and/or old

  5. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2007-10-01

    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.

  6. 12 CFR 721.1 - What does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false What does this part cover? 721.1 Section 721.1 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INCIDENTAL POWERS § 721.1 What does this part cover? This part authorizes a federal credit union (you) to engage in...

  7. 12 CFR 721.1 - What does this part cover?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false What does this part cover? 721.1 Section 721.1 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INCIDENTAL POWERS § 721.1 What does this part cover? This part authorizes a federal credit union (you) to engage in...

  8. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  9. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel

  10. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  11. Management of fire affected areas. Beyond the environmental question

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo

    2016-04-01

    Fire is considered a natural element of the ecosystems. With exception of the polar areas, fire visited with more or less frequency all the earth biomes, determining the ecosystems characteristics, to the point that several species are fire-dependent to survive and are very resilient to their impact. Fire was a fundamental element for human evolution, which allowed us to cook, manipulation of metals, hunt, protect from predators and clear fields for agriculture. In some extension, we are only humans because of fire. In the last millennium fire was used to shape the landscape as we know today. One good example of this is the Mediterranean environment, a landscape where the ecology is not understood without the presence of fire. Until the end of the first half of the last century, fire was used frequently by farmers to landscape management. However, due to rural abandonment, change of life styles, disconnection with rural environment and lack of understanding of fire role in the ecosystems. The perception of fire changed and nowadays is understood by the population as a threat to the ecosystems, rather than a tool that helped to manage the landscape and help us in our evolution. This change of vision promoted the idea that fire has negative impacts in the ecosystems and should be banned from the nature. Something that is impossible. All these perceptions facilitated the implementation of fire-suppression policies, which today are recognized by science as one of the causes of the occurrence of frequent high-severity wildfires, with important impacts on the ecosystems, economy and society. However, most of the ecosystems can regenerate sooner or later, depending of the fire severity and the ecosystem affected. Thus, fire is not an ecological, but social and economic problem, due to lives loss and the temporary destruction of ecosystems, which local communities depend on. In this context, when we are managing fire affected areas, it goes much beyond environmental

  12. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.

  13. Spatial Patterns of Forest Cover Loss in the Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Hansen, M.; Potapov, P.; Justice, C. O.

    2013-12-01

    Three groups of metrics of spatial patterns of forest cover loss were calculated for the Democratic Republic of Congo (DRC). While other studies had previously assessed landscape patterns in the Congo Basin, they had done so for small areas due to data limitations. The input data for this study, the Forets d;Afrique Central Evaluee par Teledetection(FACET), allowed the analysis to be performed at the national level. FACET is a landsat-scale dataset giving an unprecedented synoptic view of forest cover and forest cover loss for the DRC for three time periods: 2000, 2005 and 2010. The three groups of metrics evaluated the following spatial characteristics of forest cover loss for the same standard 1.5km unit of area: proportions of typologies of forest lost, forest fragmentation and proximity of forest loss patches from other land cover types. Results indicate that there are several different typologies of forest cover loss in the DRC, and offer quantitative explanations of these differences, providing a valuable locally-relevant tool for land use planning, available at the national level. Spatial patterns of forest cover loss highlight differences between areas of high primary forest loss due to agriculture conversion in frontier deforestation, such as in the east of the country, areas of equivalent primary and secondary forest loss emanating from the rural complex and areas of variable proportions of primary and secondary forest loss but important ecological repercussions of forest fragmentation due to isolated, but systematic forest perforations. Typologies of spatial patterns of forest cover loss are presented as well as their correlated drivers, and ecological, conservation and land use planning considerations are discussed.

  14. Land Cover Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data

    NASA Astrophysics Data System (ADS)

    Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.

    2018-04-01

    According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  15. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    USGS Publications Warehouse

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  16. Effects of decontamination work on riverine radiocaesium activity concentrations in Fukushima affected area

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.; Onda, Y.; Yoshimura, K.; Smith, H.; Brake, W.; Kubo, T.; Kuramoto, T.; Sato, T.; Onuma, S.

    2016-12-01

    Radionuclides such as Cs-134 and Cs-137 were widely distributed in the area affected by the accident at Fukushima Daiichi nuclear power plant. The radionuclides were deposited on the surface, absorbed by soil particles, and transported via river systems to Pacific Ocean due to rainfall events. In order to reduce air dose rate surrounding residential area, decontamination works have been conducted between 2013 and 2016 Fiscal Years. In paddy field and farmland contaminated by the fallout, 5 cm of surface soil was stripped, and then clean sands put on the surface. This work could reduce radiocaesium inventory, while the coverage of vegetation was significantly decreased. Therefore, runoff characteristics in the decontaminated area were different before and after the decontamination. Activity concentrations of particulate Cs-137 were measured in Abukuma river system and 8 small catchments located in coastal zone of Fukushima affected area. In all monitoring sites, Cs-137 concentrations have decreased over an entire monitoring period. Kuchibuto river, which is a tributary of Abukuma river showed significant effect of decontamination. In Yamakiya district, in the watershed of the tributary, the decontamination work had conducted from 2013 FY to December 2015. Particulate Cs-137 concentration at two monitoring sites located in the district showed around 30% of decline in the beginning of 2014 FY whereas the decline was not so significant at sites in lower reach of the tributary. Decontaminated paddy field and farmland can be judged as the important source of suspended sediments in the tributary.

  17. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1983

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  18. An evaluation of supervised classifiers for indirectly detecting salt-affected areas at irrigation scheme level

    NASA Astrophysics Data System (ADS)

    Muller, Sybrand Jacobus; van Niekerk, Adriaan

    2016-07-01

    Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.

  19. "Proximal Sensing" capabilities for snow cover monitoring

    NASA Astrophysics Data System (ADS)

    Valt, Mauro; Salvatori, Rosamaria; Plini, Paolo; Salzano, Roberto; Giusti, Marco; Montagnoli, Mauro; Sigismondi, Daniele; Cagnati, Anselmo

    2013-04-01

    The seasonal snow cover represents one of the most important land cover class in relation to environmental studies in mountain areas, especially considering its variation during time. Snow cover and its extension play a relevant role for the studies on the atmospheric dynamics and the evolution of climate. It is also important for the analysis and management of water resources and for the management of touristic activities in mountain areas. Recently, webcam images collected at daily or even hourly intervals are being used as tools to observe the snow covered areas; those images, properly processed, can be considered a very important environmental data source. Images captured by digital cameras become a useful tool at local scale providing images even when the cloud coverage makes impossible the observation by satellite sensors. When suitably processed these images can be used for scientific purposes, having a good resolution (at least 800x600x16 million colours) and a very good sampling frequency (hourly images taken through the whole year). Once stored in databases, those images represent therefore an important source of information for the study of recent climatic changes, to evaluate the available water resources and to analyse the daily surface evolution of the snow cover. The Snow-noSnow software has been specifically designed to automatically detect the extension of snow cover collected from webcam images with a very limited human intervention. The software was tested on images collected on Alps (ARPAV webcam network) and on Apennine in a pilot station properly equipped for this project by CNR-IIA. The results obtained through the use of Snow-noSnow are comparable to the one achieved by photo-interpretation and could be considered as better as the ones obtained using the image segmentation routine implemented into image processing commercial softwares. Additionally, Snow-noSnow operates in a semi-automatic way and has a reduced processing time. The analysis

  20. How 21st century droughts affect food and environmental security

    NASA Astrophysics Data System (ADS)

    Kogan, Felix

    The first 13th years of the 21st century has begun with a series of widespread, long and intensive droughts around the world. Extreme and severe-to-extreme intensity droughts covered 2-6% and 7-16% of the world land, respectively, affecting environment, economies and humans. These droughts reduced agricultural production, leading to food shortages, human health deterioration, poverty, regional disturbances, population migration and death. This presentation is a travelogue of the 21st century global and regional droughts during the warmest years of the past 100 years. These droughts were identified and monitored with the NOAA operational space technology, called Vegetation Health (VH), which has the longest period of observation and provide good data quality. The VH method was used for assessment of vegetation condition or health, including drought early detection and monitoring. The VH method is based on operational satellites data estimating both land surface greenness (NDVI) and thermal conditions. The 21st century droughts in the USA, Russia, Australia Argentina, Brazil, China, India and other principal grain producing countries were intensive, long, covered large areas and caused huge losses in agricultural production, which affected food and environmental security and led to food riots in some countries. This presentation investigate how droughts affect food and environmental security, if they can be detected earlier, how to monitor their area, intensity, duration and impacts and also their dynamics during the climate warming era with satellite-based vegetation health technology.

  1. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  2. Changes in vegetation cover and composition in the Swedish mountain region.

    PubMed

    Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan

    2016-08-01

    Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.

  3. EnviroAtlas - Minneapolis/St. Paul, MN - One Meter Resolution Urban Area Land Cover Map (MULC) (2010)

    EPA Pesticide Factsheets

    The Minneapolis-St. Paul, MN EnviroAtlas Meter-scale Urban Land Cover (MULC) data were generated from four-band (red, green, blue, and near infrared) aerial photography provided by the United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP). The NAIP imagery for the state of Minnesota was collected during the summer and fall of 2010. Lidar data and relevant ancillary datasets contributed to the classification. Eight land cover types were classified: water, impervious surface, soil and barren land, trees and forest, grass and herbaceous, agriculture, woody wetland, and emergent wetland. An accuracy assessment of 644 completely random and 62 stratified random photointerpreted reference points yielded an overall User's Accuracy of 83 percent. The boundary of this data layer is delineated by the US Census Bureau's 2010 Urban Statistical Area for Minneapolis-St. Paul, MN plus a 1-km buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associat

  4. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  5. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.

    PubMed

    Maya-Manzano, J M; Sadyś, M; Tormo-Molina, R; Fernández-Rodríguez, S; Oteros, J; Silva-Palacios, I; Gonzalo-Garijo, A

    2017-04-15

    Airborne bio-aerosol content (mainly pollen and spores) depends on the surrounding vegetation and weather conditions, particularly wind direction. In order to understand this issue, maps of the main land cover in influence areas of 10km in radius surrounding pollen traps were created. Atmospheric content of the most abundant 14 pollen types was analysed in relation to the predominant wind directions measured in three localities of SW of Iberian Peninsula, from March 2011 to March 2014. Three Hirst type traps were used for aerobiological monitoring. The surface area for each land cover category was calculated and wind direction analysis was approached by using circular statistics. This method could be helpful for estimating the potential risk of exposure to various pollen types. Thus, the main land cover was different for each monitoring location, being irrigated crops, pastures and hardwood forests the main categories among 11 types described. Comparison of the pollen content with the predominant winds and land cover shows that the atmospheric pollen concentration is related to some source areas identified in the inventory. The study found that some pollen types (e.g. Plantago, Fraxinus-Phillyrea, Alnus) come from local sources but other pollen types (e.g. Quercus) are mostly coming from longer distances. As main conclusions, airborne particle concentrations can be effectively split by addressing wind with circular statistics. By combining circular statistics and GIS method with aerobiological data, we have created a useful tool for understanding pollen origin. Some pollen loads can be explained by immediate surrounding landscape and observed wind patterns for most of the time. However, other factors like medium or long-distance transport or even pollen trap location within a city, may occasionally affect the pollen load recorded using an air sampler. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed Central

    Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and

  7. Study on resources and environmental data integration towards data warehouse construction covering trans-boundary area of China, Russia and Mongolia

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, J.; Gao, M.; Zhu, L.

    2014-02-01

    The trans-boundary area between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical area located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly covering more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this area can be accessed online.

  8. 45 CFR 1211.1-5 - Matters not covered.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Matters not covered. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not covered. Matters not within the definition... following are specific examples of excluded areas and are not intended as a complete listing of the matters...

  9. 45 CFR 1211.1-5 - Matters not covered.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Matters not covered. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not covered. Matters not within the definition... following are specific examples of excluded areas and are not intended as a complete listing of the matters...

  10. 45 CFR 1211.1-5 - Matters not covered.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Matters not covered. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not covered. Matters not within the definition... following are specific examples of excluded areas and are not intended as a complete listing of the matters...

  11. 45 CFR 1211.1-5 - Matters not covered.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Matters not covered. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not covered. Matters not within the definition... following are specific examples of excluded areas and are not intended as a complete listing of the matters...

  12. 45 CFR 1211.1-5 - Matters not covered.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Matters not covered. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not covered. Matters not within the definition... following are specific examples of excluded areas and are not intended as a complete listing of the matters...

  13. The Land Cover Dynamics and Conversion of Agricultural Land in Northwestern Bangladesh, 1973-2003.

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Seelan, S. K.; Rundquist, B. C.

    2006-05-01

    The importance of land cover information describing the nature and extent of land resources and changes over time is increasing; this is especially true in Bangladesh, where land cover is changing rapidly. This paper presents research into the land cover dynamics of northwestern Bangladesh for the period 1973-2003 using Landsat satellite images in combination with field survey data collected in January and February 2005. Land cover maps were produced for eight different years during the study period with an average 73 percent overall classification accuracy. The classification results and post-classification change analysis showed that agriculture is the dominant land cover (occupying 74.5 percent of the study area) and is being reduced at a rate of about 3,000 ha per year. In addition, 6.7 percent of the agricultural land is vulnerable to temporary water logging annually. Despite this loss of agricultural land, irrigated agriculture increased substantially until 2000, but has since declined because of diminishing water availability and uncontrolled extraction of groundwater driven by population pressures and the extended need for food. A good agreement (r = 0.73) was found between increases in irrigated land and the depletion of the shallow groundwater table, a factor affecting widely practiced small-scale irrigation in northwestern Bangladesh. Results quantified the land cover change patterns and the stresses placed on natural resources; additionally, they demonstrated an accurate and economical means to map and analyze changes in land cover over time at a regional scale, which can assist decision makers in land and natural resources management decisions.

  14. Optimal shortening of uniform covering arrays

    PubMed Central

    Rangel-Valdez, Nelson; Avila-George, Himer; Carrizalez-Turrubiates, Oscar

    2017-01-01

    Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v), is an N × k array over Zv={0,…,v-1} with the property that every N × t sub-array covers all t-tuples of Zvt at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR) problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N − δ) × (k − Δ) such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a) to produce smaller covering arrays from larger ones and (b) to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small) to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays. PMID:29267343

  15. Land Cover Analysis of Temperate Asia

    NASA Technical Reports Server (NTRS)

    Justice, Chris

    1998-01-01

    Satellite data from the advanced very high resolution radiometer (AVHRR) instrument were used to produce a general land cover distribution of temperate Asia (referred to hence as Central Asia) from 1982, starting with the NOAA-7 satellite, and continuing through 1991, ending with the NOAA-11 satellite. Emphasis was placed upon delineating the and and semi-arid zones of Central Asia (largely Mongolia and adjacent areas), mapping broad categories of aggregated land cover, and upon studying photosynthetic capacity increases in Central Asia from 1982 to 1991.

  16. Regional Climate Modeling over the Marmara Region, Turkey, with Improved Land Cover Data

    NASA Astrophysics Data System (ADS)

    Sertel, E.; Robock, A.

    2007-12-01

    Land surface controls the partitioning of available energy at the surface between sensible and latent heat,and controls partitioning of available water between evaporation and runoff. Current land cover data available within the regional climate models such as Regional Atmospheric Modeling System (RAMS), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Weather Research and Forecasting (WRF) was obtained from 1- km Advanced Very High Resolution Radiometer satellite images spanning April 1992 through March 1993 with an unsupervised classification technique. These data are not up-to-date and are not accurate for all regions and some land cover types such as urban areas. Here we introduce new, up-to-date and accurate land cover data for the Marmara Region, Turkey derived from Landsat Enhanced Thematic Mapper images into the WRF regional climate model. We used several image processing techniques to create accurate land cover data from Landsat images obtained between 2001 and 2005. First, all images were atmospherically and radiometrically corrected to minimize contamination effects of atmospheric particles and systematic errors. Then, geometric correction was performed for each image to eliminate geometric distortions and define images in a common coordinate system. Finally, unsupervised and supervised classification techniques were utilized to form the most accurate land cover data yet for the study area. Accuracy assessments of the classifications were performed using error matrix and kappa statistics to find the best classification results. Maximum likelihood classification method gave the most accurate results over the study area. We compared the new land cover data with the default WRF land cover data. WRF land cover data cannot represent urban areas in the cities of Istanbul, Izmit, and Bursa. As an example, both original satellite images and new land cover data showed the expansion of urban areas into the Istanbul metropolitan area, but in the WRF

  17. An evaluation of terrain-based downscaling of fractional snow covered area data sets based on LiDAR-derived snow data and orthoimagery

    NASA Astrophysics Data System (ADS)

    Cristea, Nicoleta C.; Breckheimer, Ian; Raleigh, Mark S.; HilleRisLambers, Janneke; Lundquist, Jessica D.

    2017-08-01

    Reliable maps of snow-covered areas at scales of meters to tens of meters, with daily temporal resolution, are essential to understanding snow heterogeneity, melt runoff, energy exchange, and ecological processes. Here we develop a parsimonious downscaling routine that can be applied to fractional snow covered area (fSCA) products from satellite platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) that provide daily ˜500 m data, to derive higher-resolution snow presence/absence grids. The method uses a composite index combining both the topographic position index (TPI) to represent accumulation effects and the diurnal anisotropic heat (DAH, sun exposure) index to represent ablation effects. The procedure is evaluated and calibrated using airborne-derived high-resolution data sets across the Tuolumne watershed, CA using 11 scenes in 2014 to downscale to 30 m resolution. The average matching F score was 0.83. We then tested our method's transferability in time and space by comparing against the Tuolumne watershed in water years 2013 and 2015, and over an entirely different site, Mt. Rainier, WA in 2009 and 2011, to assess applicability to other topographic and climatic conditions. For application to sites without validation data, we recommend equal weights for the TPI and DAH indices and close TPI neighborhoods (60 and 27 m for downscaling to 30 and 3 m, respectively), which worked well in both our study areas. The method is less effective in forested areas, which still requires site-specific treatment. We demonstrate that the procedure can even be applied to downscale to 3 m resolution, a very fine scale relevant to alpine ecohydrology research.

  18. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1984

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  19. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1987

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  20. Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-03-01

    The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.

  1. Ground cover in old-growth forests of the central hardwood region

    Treesearch

    Martin A. Spetich; Stephen R. Shifley; George R. Parker; Felix, Jr. Ponder

    1997-01-01

    Differences in ground cover (percent cover of litter, percent cover of vegetation and litter weight) in old-growth forests across this region are not well understood. We initiated a long-term study in a three-state region to enhance knowledge in this area. We present baseline results for ground cover and compare these data across productivity regions. Thirty 0.25-ac (0...

  2. Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, eastern Thuringia.

    PubMed

    Gatzweiler, R; Jahn, S; Neubert, G; Paul, M

    2001-01-01

    At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113,000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation.

  3. Estimating Accuracy of Land-Cover Composition From Two-Stage Clustering Sampling

    EPA Science Inventory

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), ...

  4. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco

    PubMed Central

    Medina, Regina Gabriela; Aráoz, Ezequiel

    2016-01-01

    Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs) to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae), which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas. PMID:27833796

  5. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco.

    PubMed

    Medina, Regina Gabriela; Ponssa, Maria Laura; Aráoz, Ezequiel

    2016-01-01

    Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs) to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae), which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas.

  6. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011

    USGS Publications Warehouse

    Jin, Suming; Yang, Limin; Zhu, Zhe; Homer, Collin G.

    2017-01-01

    Monitoring and mapping land cover changes are important ways to support evaluation of the status and transition of ecosystems. The Alaska National Land Cover Database (NLCD) 2001 was the first 30-m resolution baseline land cover product of the entire state derived from circa 2001 Landsat imagery and geospatial ancillary data. We developed a comprehensive approach named AKUP11 to update Alaska NLCD from 2001 to 2011 and provide a 10-year cyclical update of the state's land cover and land cover changes. Our method is designed to characterize the main land cover changes associated with different drivers, including the conversion of forests to shrub and grassland primarily as a result of wildland fire and forest harvest, the vegetation successional processes after disturbance, and changes of surface water extent and glacier ice/snow associated with weather and climate changes. For natural vegetated areas, a component named AKUP11-VEG was developed for updating the land cover that involves four major steps: 1) identify the disturbed and successional areas using Landsat images and ancillary datasets; 2) update the land cover status for these areas using a SKILL model (System of Knowledge-based Integrated-trajectory Land cover Labeling); 3) perform decision tree classification; and 4) develop a final land cover and land cover change product through the postprocessing modeling. For water and ice/snow areas, another component named AKUP11-WIS was developed for initial land cover change detection, removal of the terrain shadow effects, and exclusion of ephemeral snow changes using a 3-year MODIS snow extent dataset from 2010 to 2012. The overall approach was tested in three pilot study areas in Alaska, with each area consisting of four Landsat image footprints. The results from the pilot study show that the overall accuracy in detecting change and no-change is 90% and the overall accuracy of the updated land cover label for 2011 is 86%. The method provided a robust

  7. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation

  8. Plastic-covered agriculture forces the regional climate to change

    NASA Astrophysics Data System (ADS)

    Yang, D.; Chen, J.; Chen, X.; Cao, X.

    2016-12-01

    The practice of plastic-covered agriculture as a solution to moderate the dilemma of global food shortage, meanwhile, brings great pressure to the local environment. This research was conducted to reveal the impacts of plastic-covered agritulture on regional climate change by experimenting in a plastic greenhouse (PG) dominated area - Weifang district, Shandong province, China. Based on a new plastic greenhouse index (PGI) proposed in this study, we reconstructed the spatial distribution of PG across 1995-2015 in the study area. With that, land surface temperature (LST) dataset combined with surface evapotranspiration, surface reflectance and precipitation data, was applied to the probe of PG's climatic impacts. Results showed that PG, in the study area, has experienced a striking spatial expansion during the past 20 years, and more important, the expansion correlated strongly to the local climate change. It showed that the annual precipitation, in the study area, decreased during these years, which constrasts to a slightly increasing trend of the adjacent districts without PG construction. In addition, resulting from the greenhouse effect, PG area presented a harsher increase of surface temperature compared to the non-PG areas. Our study also telled that the evapotranspiration of PG area has been largely cutted down ascribing to the gas tightness of plastic materials, showing a decline around 40%. This indicates a way that the development of plastic-covered agriculture may contribute to the change of the local climate.

  9. Technology assessment of future intercity passenger transporation systems. Volume 2: Identification of issues affecting intercity transportation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers on major issues and trends that affect the future of intercity transportation are presented. Specific areas covered include: political, social, technological, institutional, and economic mechanisms, the workings of which determine how future intercity transporation technologies will evolve and be put into service; the major issues of intercity transportation from the point of view of reform, including candidate transporation technologies; and technical analysis of trends affecting the evolution of intercity transportation technologies.

  10. Peat soil properties and erodibility: what factors affect erosion and suspended sediment yields in peat extraction areas?

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Tapio; Marttila, Hannu; Kløve, Bjørn

    2014-05-01

    Peatland drainage and peat extraction operations change soil properties and expose bare peat to erosion forces, resulting in increased suspended sediment (SS) loads to downstream water bodies. SS yields from peat extraction areas are known to vary significantly between sites, but the contribution of peat properties and catchment characteristics to this variation is not well understood. In this study, we investigated peat erosion at 20 Finnish peat extraction sites by conducting in situ and laboratory measurements on peat erodibility and associated peat properties (degree of humification, peat type, bulk density, loss on ignition, porosity, moisture content, and shear strength), and by comparing the results with monitored long-term SS concentrations and loads at each catchment outlet. Here, we used a cohesive strength meter (CSM) to measure direct erosion thresholds for undisturbed soil cores collected from each study site. The results suggested that the degree of peat decomposition clearly affects peat erodibility and explains much of the variation in SS concentration between the study sites. According to CSM tests, critical shear stresses for particle entrainment were lowest (on average) in well-decomposed peat samples, while undecomposed, dry and fiber rich peat generally resisted erosion very well. Furthermore, the results indicated that two separate critical shear stresses often exist in moderately decomposed peat. In these cases, the well-decomposed parts of peat samples eroded first at relatively low shear stresses and remaining peat fibers prevented further erosion until a much higher shear stress was reached. In addition to peat soil properties, the study showed that the erosion of mineral subsoil may play a key role in runoff water SS concentration at peat extraction areas with drainage ditches extending into the mineral soil. The interactions between peat properties and peat erodibility found in this study as well as critical shear stress values obtained

  11. Near Road Tree Cover in the Portland, ME EnviroAtlas Community Area

    EPA Science Inventory

    Internationally, local air pollution from busy roadways is a significant issue for public health. Recent studies have shown that having tree cover between highly-traveled roads and people living, working, and going to school nearby can help to mitigate pollution and potentially r...

  12. Effects of post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment production in the interior western United States

    Treesearch

    Joseph W. Wagenbrenner; Lee H. MacDonald; Robert N. Coats; Peter R. Robichaud; Robert E. Brown

    2015-01-01

    Post-fire salvage logging adds another set of environmental effects to recently burned areas, and previous studies have reported varying impacts on vegetation, soil disturbance, and sediment production with limited data on the underlying processes. Our objectives were to determine how: (1) ground-based post-fire logging affects surface cover, soil water repellency,...

  13. Cell-cell contact area affects Notch signaling and Notch-dependent patterning

    PubMed Central

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A.; Goodyear, Richard J.; Richardson, Guy P.; Chen, Christopher S.; Sprinzak, David

    2017-01-01

    Summary During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from microns to tens of microns. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. PMID:28292428

  14. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    PubMed

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results

  16. An automated approach for mapping persistent ice and snow cover over high latitude regions

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  17. Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Hagensieker, Ron; Hochschild, Volker

    2016-08-01

    Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.

  18. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes.

    PubMed

    Dangles, Olivier; Rabatel, Antoine; Kraemer, Martin; Zeballos, Gabriel; Soruco, Alvaro; Jacobsen, Dean; Anthelme, Fabien

    2017-01-01

    While the impacts of climate change on individual species and communities have been well documented there is little evidence on climate-mediated changes for entire ecosystems. Pristine alpine environments can provide unique insights into natural, physical and ecological response to climate change yet broad scale and long-term studies on these potential 'ecosystem sentinels' are scarce. We addressed this issue by examining cover changes of 1689 high-elevation wetlands (temporarily or perennial water-saturated grounds) in the Bolivian Cordillera Real, a region that has experienced significant warming and glacier melting over the last 30 years. We combined high spatial resolution satellite images from PLEIADES with the long-term images archive from LANDSAT to 1) examine environmental factors (e.g., glacier cover, wetland and watershed size) that affected wetland cover changes, and 2) identify wetlands' features that affect their vulnerability (using habitat drying as a proxy) in the face of climate change. Over the (1984-2011) period, our data showed an increasing trend in the mean wetland total area and number, mainly related to the appearance of wet grassland patches during the wetter years. Wetland cover also showed high inter-annual variability and their area for a given year was positively correlated to precipitation intensities in the three months prior to the image date. Also, round wetlands located in highly glacierized catchments were less prone to drying, while relatively small wetlands with irregularly shaped contours suffered the highest rates of drying over the last three decades. High Andean wetlands can therefore be considered as ecosystem sentinels for climate change, as they seem sensitive to glacier melting. Beyond the specific focus of this study, our work illustrates how satellite-based monitoring of ecosystem sentinels can help filling the lack of information on the ecological consequences of current and changing climate conditions, a common and

  19. Planning of geological investigations in areas affected by anthropogenic sinkholes: the case of densely urbanised area northeast of Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Guarino, Paolo Maria; Santo, Antonio

    2013-04-01

    In the last years, many studies about sinkholes have been produced. These sudden phenomena can be generated from natural or artificial causes: the first ones are developed in soluble rocks like carbonate or sulphates, the second are linked to the presence of artificial caves or mines. In Italy both the typologies are widely present, but more often the anthropogenic sinkholes are cause of most damages and fatalities, because many ancient city center were built using the local rock, giving rise to complex and widespread networks of underground cavities, whose collapse brings about the formation of sinkholes. Examples are the Lazio, Toscana, Umbria, Campania, Puglia and Sicily regions, where important towns like Rome, Naples and Palermo are frequently affected by sinkholes. Identifying and analyzing natural and anthropogenic predisposing and triggering factors are essential steps for evaluating susceptibility to sinkholes; nevertheless, the susceptibility zoning must be considered the starting point towards further detailed studies. This study aims to provide a contribution to the definition of a more accurate planning of geological studies at the municipality scale, in order to mitigate the risk in densely urbanized areas affected by anthropogenic sinkholes. The considered study area includes the metropolitan area northeast of Naples (Italy), where sinkholes are very frequent because of the widespread presence of artificial caves dug in pyroclastic rocks. In a first phase, data and information relative to stratigraphic logs, presence and distribution of cavities and sinkholes phenomena were collected and organized in a GIS associated database. Thereafter, the processing of contour maps of tuff top surface and caves depth has been realized, as well as fully detailed cross sections, in order to recognize different characteristics and genesis of sinkholes. At the end, with reference to high susceptibility areas, a list of possible geological surveys and monitoring

  20. Effects of Cover Crops on Pratylenchus penetrans and the Nematode Community in Carrot Production

    PubMed Central

    Grabau, Zane J.; Zar Maung, Zin Thu; Noyes, D. Corey; Baas, Dean G.; Werling, Benjamin P.; Brainard, Daniel C.; Melakeberhan, Haddish

    2017-01-01

    Cover cropping is a common practice in U.S. Midwest carrot production for soil conservation, and may affect soil ecology and plant-parasitic nematodes—to which carrots are very susceptible. This study assessed the impact of cover crops—oats (Avena sativa), radish (Raphanus sativus) cv. Defender, rape (Brassica napus) cv. Dwarf Essex, and a mixture of oats and radish—on plant-parasitic nematodes and soil ecology based on the nematode community in Michigan carrot production systems. Research was conducted at two field sites where cover crops were grown in Fall 2014 preceding Summer 2015 carrot production. At Site 1, root-lesion (Pratylenchus penetrans) and stunt (Tylenchorhynchus sp.) nematodes were present at low population densities (less than 25 nematodes/100 cm3 soil), but were not significantly affected (P > 0.05) by cover crops. At Site 2, P. penetrans population densities were increased (P ≤ 0.05) by ‘Defender’ radish compared to other cover crops or fallow control during cover crop growth and midseason carrot production. At both sites, there were few short-term impacts of cover cropping on soil ecology based on the nematode community. At Site 1, only at carrot harvest, radish-oats mixture and ‘Dwarf Essex’ rape alone enriched the soil food web based on the enrichment index (P ≤ 0.05) while rape and radish increased structure index values. At Site 2, bacterivore abundance was increased by oats or radish cover crops compared to control, but only during carrot production. In general, cover crops did not affect the nematode community until nearly a year after cover crop growth suggesting that changes in the soil community following cover cropping may be gradual. PMID:28512383

  1. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies.

    PubMed

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.

  2. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    PubMed Central

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  3. Crown cover chart for oak savannas. Forest Service technical brief

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.R.; Johnson, P.S.; Houf, G.

    1994-07-01

    Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs. The crown cover chart can be used to estimate the crown cover of trees as a percent of total area. Potential applications of the chart include monitoring changes in savanna crown cover, determining needed reductions in crown cover, and defining the savanna state. in restoring savannas that have grown into closed canopy stands, one can use the chart to estimate initial crown cover before restoration work is begun and again aftermore » crown cover has been reduced.« less

  4. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler

    NASA Astrophysics Data System (ADS)

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  5. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.

    PubMed

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  6. Decadal land cover change dynamics in Bhutan.

    PubMed

    Gilani, Hammad; Shrestha, Him Lal; Murthy, M S R; Phuntso, Phuntso; Pradhan, Sudip; Bajracharya, Birendra; Shrestha, Basanta

    2015-01-15

    Land cover (LC) is one of the most important and easily detectable indicators of change in ecosystem services and livelihood support systems. This paper describes the decadal dynamics in LC changes at national and sub-national level in Bhutan derived by applying object-based image analysis (OBIA) techniques to 1990, 2000, and 2010 Landsat (30 m spatial resolution) data. Ten LC classes were defined in order to give a harmonized legend land cover classification system (LCCS). An accuracy of 83% was achieved for LC-2010 as determined from spot analysis using very high resolution satellite data from Google Earth Pro and limited field verification. At the national level, overall forest increased from 25,558 to 26,732 km(2) between 1990 and 2010, equivalent to an average annual growth rate of 59 km(2)/year (0.22%). There was an overall reduction in grassland, shrubland, and barren area, but the observations were highly dependent on time of acquisition of the satellite data and climatic conditions. The greatest change from non-forest to forest (277 km(2)) was in Bumthang district, followed by Wangdue Phodrang and Trashigang, with the least (1 km(2)) in Tsirang. Forest and scrub forest covers close to 75% of the land area of Bhutan, and just over half of the total area (51%) has some form of conservation status. This study indicates that numerous applications and analyses can be carried out to support improved land cover and land use (LCLU) management. It will be possible to replicate this study in the future as comparable new satellite data is scheduled to become available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluating the effectiveness of ground cover management in oak plantings and stands

    Treesearch

    J. W. Van Sambeek

    2005-01-01

    Ground cover management in hardwood plantings will affect early survival and growth of hardwood seedlings. Although less frequently researched, the management of ground covers in hardwood plantings can also alter the growth of saplings and pole-sized hardwood trees.

  8. GENERATING HIGH QUALITY IMPERVIOUS COVER DATA

    EPA Science Inventory

    Nonpoint source pollution (NPS) from urban/ suburban areas is rapidly increasing as the population increases in the United States. Research in recent years has consistently shown a strong relationship between the percentage of impervious cover in a drainage basin and the health...

  9. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  10. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  11. Scale-dependent factors affecting North American river otter distribution in the midwest

    USGS Publications Warehouse

    Jeffress, Mackenzie R.; Paukert, C.P.; Whittier, Joanna B.; Sandercock, B.K.; Gipson, P.S.

    2011-01-01

    The North American river otter (Lontra canadensis) is recovering from near extirpation throughout much of its range. Although reintroductions, trapping regulations and habitat improvements have led to the reestablishment of river otters in the Midwest, little is known about how their distribution is influenced by local- and landscape-scale habitat. We conducted river otter sign surveys from Jan. to Apr. in 2008 and 2009 in eastern Kansas to assess how local- and landscape-scale habitat factors affect river otter occupancy. We surveyed three to nine 400-m stretches of stream and reservoir shorelines for 110 sites and measured local-scale variables (e.g., stream order, land cover types) within a 100 m buffer of the survey site and landscape-scale variables (e.g., road density, land cover types) for Hydrological Unit Code 14 watersheds. We then used occupancy models that account for the probability of detection to estimate occupancy as a function of these covariates using Program PRESENCE. The best-fitting model indicated river otter occupancy increased with the proportion of woodland cover and decreased with the proportion of cropland and grassland cover at the local scale. Occupancy also increased with decreased shoreline diversity, waterbody density and stream density at the landscape scale. Occupancy was not affected by land cover or human disturbance at the landscape scale. Understanding the factors and scale important to river otter occurrence will be useful in identifying areas for management and continued restoration. ?? 2011, American Midland Naturalist.

  12. Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future.

    PubMed

    Pisano, L; Zumpano, V; Malek, Ž; Rosskopf, C M; Parise, M

    2017-12-01

    Land cover is one of the most important conditioning factors in landslide susceptibility analysis. Usually it is considered as a static factor, but it has proven to be dynamic, with changes occurring even in few decades. In this work the influence of land cover changes on landslide susceptibility are analyzed for the past and for future scenarios. For the application, an area representative of the hilly-low mountain sectors of the Italian Southern Apennines was chosen (Rivo basin, in Molise Region). With this purpose landslide inventories and land cover maps were produced for the years 1954, 1981 and 2007. Two alternative future scenarios were created for 2050, one which follows the past trend (2050-trend), and another one more extreme, foreseeing a decrease of forested and cultivated areas (2050-alternative). The landslide susceptibility analysis was performed using the Spatial Multi-Criteria Evaluation method for different time steps, investigating changes to susceptibility over time. The results show that environmental dynamics, such as land cover change, affect slope stability in time. In fact there is a decrease of susceptibility in the past and in the future 2050-trend scenario. This is due to the increase of forest or cultivated areas, that is probably determined by a better land management, water and soil control respect to other land cover types such as shrubland, pasture or bareland. Conversely the results revealed by the alternative scenario (2050-alternative), show how the decrease in forest and cultivated areas leads to an increase in landslide susceptibility. This can be related to the assumed worst climatic condition leading to a minor agricultural activity and lower extension of forested areas, possibly associated also to the effects of forest fires. The results suggest that conscious landscape management might contribute to determine a significant reduction in landslide susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011

    NASA Astrophysics Data System (ADS)

    Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili

    2013-01-01

    Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.

  14. Estimation of vegetation cover at subpixel resolution using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1986-01-01

    The present report summarizes the various approaches relevant to estimating canopy cover at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study Area database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent cover can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy cover algorithm, such as topography, leaf area, or shadows. The method involves deriving a probability density function for the percent canopy cover based on the joint probability density function of the observed radiances.

  15. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data

    NASA Astrophysics Data System (ADS)

    Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.

    2014-08-01

    This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.

  16. Accuracy Assessment of Lidar-Derived Digital Terrain Model (dtm) with Different Slope and Canopy Cover in Tropical Forest Region

    NASA Astrophysics Data System (ADS)

    Salleh, M. R. M.; Ismail, Z.; Rahman, M. Z. A.

    2015-10-01

    Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.

  17. Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska

    NASA Astrophysics Data System (ADS)

    Gusmeroli, A.; Grosse, G.

    2012-12-01

    Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.

  18. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  19. Mapping gully-affected areas in the region of Taroudannt, Morocco based on Object-Based Image Analysis (OBIA)

    NASA Astrophysics Data System (ADS)

    d'Oleire-Oltmanns, Sebastian; Marzolff, Irene; Tiede, Dirk; Blaschke, Thomas

    2015-04-01

    The need for area-wide landform mapping approaches, especially in terms of land degradation, can be ascribed to the fact that within area-wide landform mapping approaches, the (spatial) context of erosional landforms is considered by providing additional information on the physiography neighboring the distinct landform. This study presents an approach for the detection of gully-affected areas by applying object-based image analysis in the region of Taroudannt, Morocco, which is highly affected by gully erosion while simultaneously representing a major region of agro-industry with a high demand of arable land. Various sensors provide readily available high-resolution optical satellite data with a much better temporal resolution than 3D terrain data which lead to the development of an area-wide mapping approach to extract gully-affected areas using only optical satellite imagery. The classification rule-set was developed with a clear focus on virtual spatial independence within the software environment of eCognition Developer. This allows the incorporation of knowledge about the target objects under investigation. Only optical QuickBird-2 satellite data and freely-available OpenStreetMap (OSM) vector data were used as input data. The OSM vector data were incorporated in order to mask out plantations and residential areas. Optical input data are more readily available for a broad range of users compared to terrain data, which is considered to be a major advantage. The methodology additionally incorporates expert knowledge and freely-available vector data in a cyclic object-based image analysis approach. This connects the two fields of geomorphology and remote sensing. The classification results allow conclusions on the current distribution of gullies. The results of the classification were checked against manually delineated reference data incorporating expert knowledge based on several field campaigns in the area, resulting in an overall classification accuracy of 62

  20. 137Cs Radiological risk estimation of NSD facility at Karawang site by using RESRAD onsite application: effect of cover thickness

    NASA Astrophysics Data System (ADS)

    Setiawan, B.; Prihastuti, S.; Moersidik, S. S.

    2018-02-01

    The operational of near surface disposal facility during waste packages loading activity into the facility, or in a monitoring activity around disposal facility at Karawang area is predicted to give a radiological risk to radiation workers. The thickness of disposal facility cover system affected the number of radiological risk of workers. Due to this reason, a radiological risk estimation needs to be considered. RESRAD onsite code is applied for this purpose by analyse the individual accepted dose and radiological risk data of radiation workers. The obtained results and then are compared with radiation protection reference in accordance with national regulation. In this case, the data from the experimental result of Karawang clay as host of disposal facility such as Kd value of 137Cs was used. Results showed that the thickness of the cover layer of disposal facility affected to the radiological risk which accepted by workers in a near surface disposal facility.

  1. Comparison of LiDAR- and photointerpretation-based estimates of canopy cover

    Treesearch

    Demetrios Gatziolis

    2012-01-01

    An evaluation of the agreement between photointerpretation- and LiDARbased estimates of canopy cover was performed using 397 90 x 90 m reference areas in Oregon. It was determined that at low canopy cover levels LiDAR estimates tend to exceed those from photointerpretation and that this tendency reverses at high canopy cover levels. Characteristics of the airborne...

  2. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.

  3. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  4. Monitoring land use/land cover changes using CORINE land cover data: a case study of Silivri coastal zone in Metropolitan Istanbul.

    PubMed

    Yilmaz, Rüya

    2010-06-01

    The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.

  5. Forest cover changes due to hydrocarbon extraction disturbance in central Pennsylvania (2004–2010)

    USGS Publications Warehouse

    Roig-Silva, Coral; Slonecker, Terry; Milheim, Lesley; Ballew, Jesse R.; Winters, S. Gail

    2016-01-01

    The state of Pennsylvania has a long history of oil and gas extraction. In recent years with advances in technology such as hydraulic fracturing, hydrocarbon sources that were not profitable in the past are now being exploited. Here, we present an assessment of the cumulative impact of oil and gas extraction activities on the forests of 35 counties in Pennsylvania and their intersecting sub-watersheds between 2004 and 2010. The assessment categorizes counties and sub-watersheds based on the estimated amount of change to forest cover in the area. From the data collected we recognize that although forest cover has not been greatly impacted (with an average loss of percent forest coverage of 0.16% at the county level), landscape structure is affected. Increase in edge forest and decrease in interior forest is evident in many of the counties and sub-watersheds examined. These changes can have a detrimental effect on forest biodiversity and dynamics.

  6. Mapping Land Use/Land Cover in the Ambos Nogales Study Area

    USGS Publications Warehouse

    Norman, Laura M.; Wallace, Cynthia S.A.

    2008-01-01

    The Ambos Nogales watershed, which surrounds the twin cities of Nogales, Arizona, United States and Nogales, Sonora, Mexico, has a history of problems related to flooding. This paper describes the process of creating a high-resolution, binational land-cover dataset to be used in modeling the Ambos Nogales watershed. The Automated Geospatial Watershed Assessment tool will be used to model the Ambos Nogales watershed to identify focal points for planning efforts and to anticipate ramifications of implementing detention reservoirs at certain watershed planes.

  7. Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong

    NASA Astrophysics Data System (ADS)

    Ngar Wong, Chun; Lai, Derrick Yuk Fo

    2017-04-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (p<0.05), with the highest and lowest CO2 emissions being recorded in farmland and roadside planter, respectively. CH4 emission varied significantly among the land covers as well (p<0.05), with the highest and lowest CH4 emissions being recorded in farmland and urban forest, respectively. Farmland and urban forest showed the highest and lowest mean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  8. Large-area Mapping of Forest Cover and Biomass using ALOS PALSAR

    NASA Astrophysics Data System (ADS)

    Cartus, O.; Kellndorfer, J. M.; Walker, W. S.; Goetz, S. J.; Laporte, N.; Bishop, J.; Cormier, T.; Baccini, A.

    2011-12-01

    In the frame of a Pantropical mapping project, we aim at producing high-resolution forest cover maps from ALOS PALSAR. The ALOS data was obtained through the Americas ALOS Data Node (AADN) at ASF. For the forest cover classification, a pan-tropical network of calibrated reference data was generated from ancillary satellite data (ICESAT GLAS). These data are used to classify PALSAR swath data to be combined to continental forest probability maps. The maps are validated with withheld training data for testing, as well as through independent operator verification with very high-resolution image. In addition, we aim at developing robust algorithms for the mapping of forest biophysical parameters like stem volume or biomass using synergy of PALSAR, optical and Lidar data. Currently we are testing different approaches for the mapping of forest biophysical parameters. 1) For the showcase scenario of Mexico, where we have access to ~1400 PALSAR FBD images as well as the 30 m Landsat Vegetation Continuous Field product, VCF, we test a traditional ground-data based approach. The PALSAR HH/HV intensity data and VCF are used as predictor layers in RandomForest for predicting aboveground forest biomass. A network of 40000 in situ biomass plots is used for model development (for each PALSAR swath) as well as for validation. With this approach a first 30 m biomass map for entire Mexico was produced. An initial validation of the map resulted in an RMSE of 41 t/ha and an R2 of 0.42. Pronounced differences between different ecozones were observed. In some areas the retrieval reached an R2 of 0.6 (e.g. pine-oak forests) whereas, for instance, in dry woodlands, the retrieval accuracy was much lower (R2 of 0.1). A major limitation of the approach was also represented by the fact that for the development of models for each ALOS swath, in some cases too few sample plots were available. 2) Chile: At a forest site in Central Chile, dominated by plantations of pinus radiata, synergy of ALOS

  9. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    PubMed

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  10. A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide

    2015-04-01

    Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of

  11. Cadmium partition in river sediments from an area affected by mining activities.

    PubMed

    Vasile, Georgiana D; Vlădescu, Luminiţa

    2010-08-01

    In this paper, the cadmium distribution in Certej River sediments in an area seriously affected by intense mining activities has been studied. The main objective of this study was the evaluation of partition of this metal into different operational defined fractions by sequential extractions. Community Bureau of Reference (BCR) sequential extraction was used to isolate different fractions. The sediment quality was assessed both upstream and downstream the pollution input points, along the Certej River, in order to reveal a possible accumulation of cadmium in sediments and the seasonal changes in cadmium concentrations in BCR sediment phases. Our results reveal that most of the cadmium content is divided between both the soluble and iron and manganese hydrated oxide fractions. Based on total cadmium concentrations in sediments, the enrichment factors were estimated using aluminum as normalizing element and the regression curve Cd/Al corresponding to the geochemical background of the studied area.

  12. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to understand how soil microorganisms interact with cover crop-derived allelochemicals to suppress weed germination and growth following cover crop residue incorporation. We conducted a time series experiment by crossing sterilized and non-sterilized soil with four dif...

  13. Seasonal land-cover regions of the United States

    USGS Publications Warehouse

    Loveland, Thomas R.; Merchant, James W.; Brown, Jesslyn F.; Ohlen, Donald O.; Reed, Bradley C.; Olson, Paul; Hutchinson, John

    1995-01-01

    Global-change investigations have been hindered by deficiencies in the availability and quality of land-cover data. The U.S. Geological Survey and the University of Nebraska-Lincoln have collaborated on the development of a new approach to land-cover characterization that attempts to address requirements of the global-change research community and others interested in regional patterns of land cover. An experimental 1 -kilometer-resolution database of land-cover characteristics for the coterminous U.S. has been prepared to test and evaluate the approach. Using multidate Advanced Very High Resolution Radiometer (AVHRR) satellite data complemented by elevation, climate, ecoregions, and other digital spatial datasets, the authors define 152, seasonal land-cover regions. The regionalization is based on a taxonomy of areas with respect to data on land cover, seasonality or phenology, and relative levels of primary production. The resulting database consists of descriptions of the vegetation, land cover, and seasonal, spectral, and site characteristics for each region. These data are used in the construction of an illustrative 1:7,500,000-scaIe map of the seasonal land-cover regions as well as of smaller-scale maps portraying general land cover and seasonality. The seasonal land-cover characteristics database can also be tailored to provide a broad range of other landscape parameters useful in national and global-scale environmental modeling and assessment.

  14. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.

    PubMed

    Briber, Brittain M; Hutyra, Lucy R; Reinmann, Andrew B; Raciti, Steve M; Dearborn, Victoria K; Holden, Christopher E; Dunn, Allison L

    2015-01-01

    Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.

  15. Large Decadal Decline of the Arctic Multiyear Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.

  16. Large Decadal Decline of the Arctic Multiyear Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.

  17. Large area robust identification of snow cover from multitemporal COSMO-SkyMed images

    NASA Astrophysics Data System (ADS)

    Pettinato, S.; Santi, E.; Paloscia, S.; Aiazzi, B.; Baronti, S.; Palchetti, E.; Garzelli, A.

    2015-10-01

    This paper investigates the ability of the Information Theoretic Snow Detection Algorithm (ITSDA) in detecting changes due to snow cover between summer and winter seasons on large area images acquired by COSMO-SkyMed constellation. ITSDA is a method for change detection in multitemporal SAR images, which has been recently applied by the authors to a subset of Cosmo-SkyMed data. The proposed technique is based on a nonparametric approach in the framework of Shannon's information theory, and in particular it features the conditional probability of the local means between the two images taken at different times. Such an unsupervised approach does not require any preliminary despeckling procedure to be performed before the calculation of the change map. In the case of a low quantity of anomalous changes in relatively small-size images, a mean shift procedure can be utilized for refining the map. However, in the present investigation, the changes to be identified are pervasive in large size images. Consequently, for computational issues, the mean shift refinement has been omitted in the present work. However, a simplified implementation of mean shift procedure to save time will be possibly considered in future submissions. In any case, the present version of ITSDA method preserve its characteristics of flexibility and sensibility to backscattering changes, thanks to the possibility of setting up the number of quantization levels in the estimation of the conditional probability between the amplitude values at the two acquisition dates.

  18. Reconstructed Historical Land Cover and Biophysical Parameters for Studies of Land-Atmosphere Interactions within the Eastern United States

    NASA Technical Reports Server (NTRS)

    Steyaert, Louis T.; Knox, Robert G.

    2007-01-01

    The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment

  19. A landscape indicator approach to the identification and articulation of the consequences of land-cover change in the Mid-Atlantic Region, 1973-2001

    USGS Publications Warehouse

    Slonecker, E. Terrence; Milheim, Lesley E.; Claggett, Peter

    2009-01-01

    Landscape indicators, derived from land-use and land-cover data, hydrology, nitrate deposition, and elevation data, were used by Jones and others (2001a) to calculate the ecological consequences of land-cover change. Nitrate loading and physical bird habitat were modeled from 1973 and 1992 land-cover and other spatial data for the Mid-Atlantic region. Utilizing the same methods, this study extends the analysis another decade with the use of the 2001 National Land Cover Dataset. Land-cover statistics and trends are calculated for three time periods: 1973-1992, 1992-2001 and 1973-2001. In addition, high-resolution aerial photographs (1 meter or better ground-sample distance) were acquired and analyzed for thirteen pairs of adjacent USGS 7.5 minute quadrangle maps in areas where distinct positive or negative changes to nitrogen loading and bird habitat were previously calculated. During the entire 30 year period, the data show that there was extensive loss of agriculture and forest area and a major increase in urban land-cover classes. However, the majority of the conversion of other classes to urban occurred during the 1992-2001 period. During the 1973-1992 period, there was only moderate increase in urban area, while there was an inverse relationship between agricultural change and forest change. In general, forest gain and agricultural loss was found in areas of improving landscape indicators, and forest loss and agricultural gain was found to occur in areas of declining indicators related to habitat and nitrogen loadings, which was generally confirmed by the aerial photographic analysis. In terms of the specific model results, bird habitat, which is mainly related to the extent of forest cover, declined overall with forest extent, but was also affected more in the decline of habitat quality. Nitrate loading, which is mainly related to agricultural land cover actually improved from 1992-2001, and in the overall study, mainly due to the conversion of agriculture to

  20. Effect of land cover change on runoff curve number estimation in Iowa, 1832-2001

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Weirich, Frank H.; Cuffney, Thomas F.

    2011-01-01

    Within the first few decades of European-descended settlers arriving in Iowa, much of the land cover across the state was transformed from prairie and forest to farmland, patches of forest, and urbanized areas. Land cover change over the subsequent 126 years was minor in comparison. Between 1832 and 1859, the General Land Office conducted a survey of the State of Iowa to aid in the disbursement of land. In 1875, an illustrated atlas of the State of Iowa was published, and in 2001, the US Geological Survey National Land Cover Dataset was compiled. Using these three data resources for classifying land cover, the hydrologic impact of the land cover change at three points in time over a period of 132+ years is presented in terms of the effect on the area-weighted average curve number, a term commonly used to predict peak runoff from rainstorms. In the four watersheds studied, the area-weighted average curve number associated with the first 30 years of settlement increased from 61·4 to 77·8. State-wide mapped forest area over this same period decreased 19%. Over the next 126 years, the area-weighted average curve number decreased to 76·7, despite an additional forest area reduction of 60%. This suggests that degradation of aquatic resources (plants, fish, invertebrates, and habitat) arising from hydrologic alteration was likely to have been much higher during the 30 years of initial settlement than in the subsequent period of 126 years in which land cover changes resulted primarily from deforestation and urbanization. 

  1. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss

    USGS Publications Warehouse

    Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.

    2008-01-01

    Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.

  2. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl

    Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires ­contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously ­represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and ­temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).

  3. LAND COVER CHANGE AND LARGE SCALE HYDROLOGIC MODELING OF THE SAN PEDRO RIVER AND CATSKILL/DELAWARE BASINS

    EPA Science Inventory

    This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...

  4. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling

    NASA Astrophysics Data System (ADS)

    Siegal, Z.; Tsoar, H.; Karnieli, A.

    2013-06-01

    Luminescence dating of stable sand dunes in the large deserts of the world has shown several episodes of mobility during the last 30 k years. The logical explanation for the mobility of fixed dunes is severe drought. Though drought length can be estimated, the level of precipitation drop is unknown. The stabilized sand dunes of the northwestern Negev Desert, Israel have been under an unprecedented prolonged drought since 1995. This has resulted in a vast decrease of shrubs cover on the fixed sand dunes, which changes along the rainfall gradient. In the north, an average of 27% of the shrubs had wilted by 2009, and in the drier southern area, 68% of the shrubs had withered. This loss of shrubbery is not expected to induce dune remobilization because the existing bio-crust cover is not negatively affected by the drought. Eleven aerial photographs taken over the drier southern area from 1956 to 2005 show the change in shrub cover due to human impact and the recent severe drought.

  5. Land cover

    USGS Publications Warehouse

    Jorgenson, Janet C.; Joria, Peter C.; Douglas, David C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Documenting the distribution of land-cover types on the Arctic National Wildlife Refuge coastal plain is the foundation for impact assessment and mitigation of potential oil exploration and development. Vegetation maps facilitate wildlife studies by allowing biologists to quantify the availability of important wildlife habitats, investigate the relationships between animal locations and the distribution or juxtaposition of habitat types, and assess or extrapolate habitat characteristics across regional areas.To meet the needs of refuge managers and biologists, satellite imagery was chosen as the most cost-effective method for mapping the large, remote landscape of the 1002 Area.Objectives of our study were the following: 1) evaluate a vegetation classification scheme for use in mapping. 2) determine optimal methods for producing a satellite-based vegetation map that adequately met the needs of the wildlife research and management objectives; 3) produce a digital vegetation map for the Arctic Refuge coastal plain using Lands at-Thematic Mapper(TM) satellite imagery, existing geobotanical classifications, ground data, and aerial photographs, and 4) perform an accuracy assessment of the map.

  6. Cropland management dynamics as a driver of forest cover change in European Russia (Invited)

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Krylov, A.; Potapov, P.; Turubanova, S.; Hansen, M.; McCarty, J. L.

    2013-12-01

    well as area of windstorms damage significantly increased, especially in the Central regions. Fires predominantly affected pine forests and drained peatlands prone to summer droughts. Fire date and ignition analysis showed that forest fires are not related to extensive spring-time agricultural burning. References: Alcantara, C., T. Kuemmerle, A. V. Prishchepov & V. C. Radeloff. 2012. Mapping abandoned agriculture with multi-temporal MODIS satellite data. 334-347. Remote Sensing of Environment. Kuemmerle, T., O. Chaskovskyy, J. Knorn, V. C. Radeloff, I. Kruhlov, W. S. Keeton & P. Hostert. 2009. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 113, 1194-1207. Potapov, P., S. Turubanova, I. Zhuravleva, M. Hansen, A. Yaroshenko & A. Manisha. 2012. Forest Cover Change within the Russian European North after the Breakdown of Soviet Union (1990-2005) 1-11. International Journal of Forestry Research.

  7. Land cover characterization and land surface parameterization research

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.

    1997-01-01

    The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.

  8. Determinants of woody cover in African savannas

    USGS Publications Warehouse

    Sankaran, M.; Hanan, N.P.; Scholes, Robert J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le, Roux X.; Ludwig, F.; Ardo, J.; Banyikwa, F.; Bronn, A.; Bucini, G.; Caylor, K.K.; Coughenour, M.B.; Diouf, A.; Ekaya, W.; Feral, C.J.; February, E.C.; Frost, P.G.H.; Hiernaux, P.; Hrabar, H.; Metzger, K.L.; Prins, H.H.T.; Ringrose, S.; Sea, W.; Tews, J.; Worden, J.; Zambatis, N.

    2005-01-01

    Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties 1-3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ???650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ???650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation 6 may considerably affect their distribution and dynamics. ?? 2005 Nature Publishing Group.

  9. Spatial and temporal land cover changes in Terminos Lagoon Reserve, Mexico.

    PubMed

    Soto-Galera, Ernesto; Piera, Jaume; López, Pilar

    2010-06-01

    Terminos Lagoon ecosystem is the largest fluvial-lagoon estuarine system in the country and one of the most important reserves of coastal flora and fauna in Mexico. Since the seventies, part of the main infrastructure for country's oil extraction is located in this area. Its high biodiversity has motivated different type of studies including deforestation processes and land use planning. In this work we used satellite image analysis to determine land cover changes in the area from 1974 to 2001. Our results indicate that tropical forest and mangroves presented the most extensive losses in its coverage. In contrast, urban areas and induced grassland increased considerably. In 2001 more than half of the ecosystem area showed changes from its original land cover, and a third part of it was deteriorated. The main causes of deforestation were both the increase in grassland and the growth of urban areas. However, deforestation was attenuated by natural reforestation and plant canopy recovery. We conclude that the introduction of cattle and urban development were the main causes for the land cover changes; however, the oil industry activity located in the ecosystem, has promoted indirectly to urban growth and rancher boom.

  10. Tree Cover Mapping Tool—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2016-06-02

    The Tree Cover Mapping (TCM) tool was developed by scientists at the U.S. Geological Survey Earth Resources Observation and Science Center to allow a user to quickly map tree cover density over large areas using visual interpretation of high resolution imagery within a geographic information system interface. The TCM tool uses a systematic sample grid to produce maps of tree cover. The TCM tool allows the user to define sampling parameters to estimate tree cover within each sample unit. This mapping method generated the first on-farm tree cover maps of vast regions of Niger and Burkina Faso. The approach contributes to implementing integrated landscape management to scale up re-greening and restore degraded land in the drylands of Africa. The TCM tool is easy to operate, practical, and can be adapted to many other applications such as crop mapping, settlements mapping, or other features. This user manual provides step-by-step instructions for installing and using the tool, and creating tree cover maps. Familiarity with ArcMap tools and concepts is helpful for using the tool.

  11. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    NASA Astrophysics Data System (ADS)

    Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru

    2017-08-01

    The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be

  12. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.

  13. Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada

    USGS Publications Warehouse

    Rapalee, G.; Steyaert, L.T.; Hall, F.G.

    2001-01-01

    Mosses and lichens are important components of boreal landscapes [Vitt et al., 1994; Bubier et al., 1997]. They affect plant productivity and belowground carbon sequestration and alter the surface runoff and energy balance. We report the use of multiresolution satellite data to map moss and lichens over the BOREAS region at a 10 m, 30 m, and 1 km scales. Our moss and lichen classification at the 10 m scale is based on ground observations of associations among soil drainage classes, overstory composition, and cover type among four broad classes of ground cover (feather, sphagnum, and brown mosses and lichens). For our 30 m map, we used field observations of ground cover-overstory associations to map mosses and lichens in the BOREAS southern study area (SSA). To scale up to a 1 km (AVHRR) moss map of the BOREAS region, we used the TM SSA mosaics plus regional field data to identify AVHRR overstory-ground cover associations. We found that: 1) ground cover, overstory composition and density are highly correlated, permitting inference of moss and lichen cover from satellite-based land cover classifications; 2) our 1 km moss map reveals that mosses dominate the boreal landscape of central Canada, thereby a significant factor for water, energy, and carbon modeling; 3) TM and AVHRR moss cover maps are comparable; 4) satellite data resolution is important; particularly in detecting the smaller wetland features, lakes, and upland jack pine sites; and 5) distinct regional patterns of moss and lichen cover correspond to latitudinal and elevational gradients. Copyright 2001 by the American Geophysical Union.

  14. Satellite assessment of increasing tree cover 1982-2016

    NASA Astrophysics Data System (ADS)

    Song, X. P.; Hansen, M.

    2017-12-01

    The Earth's vegetation has undergone dramatic changes as we enter the Anthropocene. Recent studies have quantified global forest cover dynamics and resulting biogeochemical and biophysical impacts to the climate for the post-2000 time period. However, long-term gradual changes in undisturbed forests are less well quantified. We mapped annual tree cover using satellite data and quantified tree cover change during 1982-2016. The dataset was produced by combining optical observations from multiple satellite sensors, including the Advanced Very High Resolution Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper Plus and various very high spatial resolution sensors. Contrary to current understanding of forest area change, global tree cover increased by 7%. The overall net gain in tree cover is a result of net loss in the tropics overweighed by net gain in the subtropical, temperate and boreal zones. All mountain systems, regardless of climate domain, experienced increases in tree cover. Regional patterns of tree cover gain including eastern United States, eastern Europe and southern China, indicate profound influences of socioeconomic, political or land management changes in shaping long-term environmental change. Results provide the first comprehensive record of global tree cover dynamics over the past four decades and may be used to reduce uncertainties in the quantification of the global carbon cycle.

  15. Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987-2016) case study of Hamoun Wetland, Iran.

    PubMed

    Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús

    2018-05-23

    The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2  = 0.94) than fall and spring (R 2  = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun

  16. Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Xie, S.; Gong, J.; Huang, X.

    2018-04-01

    Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.

  17. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Continental land cover classification using meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.

    1983-01-01

    The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land cover and monitoring of vegetation dynamics over an extremely large area is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide cloud-free imagery for the whole continent. Virtually cloud-free images were obtainable even for equatorial areas. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land cover classification. The resultant land cover distributions correspond well to those of existing maps.

  19. Changes in Andes snow cover from MODIS data, 2000-2016

    NASA Astrophysics Data System (ADS)

    Saavedra, Freddy A.; Kampf, Stephanie K.; Fassnacht, Steven R.; Sibold, Jason S.

    2018-03-01

    The Andes span a length of 7000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP) as the fraction of time with snow cover for each year between 2000 and 2016 from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors (500 m, 8-day maximum snow cover extent). This analysis is conducted between 8 and 36° S due to high frequency of cloud (> 30 % of the time) south and north of this range. We ran Mann-Kendall and Theil-Sens analyses to identify areas with significant changes in SP and snowline (the line at lower elevation where SP = 20 %). We evaluated how these trends relate to temperature and precipitation from Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) and University of Delaware datasets and climate indices as El Niño-Southern Oscillation (ENSO), Southern Annular Mode (SAM), and Pacific Decadal Oscillation (PDO). Areas north of 29° S have limited snow cover, and few trends in snow persistence were detected. A large area (34 370 km2) with persistent snow cover between 29 and 36° S experienced a significant loss of snow cover (2-5 fewer days of snow year-1). Snow loss was more pronounced (62 % of the area with significant trends) on the east side of the Andes. We also found a significant increase in the elevation of the snowline at 10-30 m year-1 south of 29-30° S. Decreasing SP correlates with decreasing precipitation and increasing temperature, and the magnitudes of these correlations vary with latitude and elevation. ENSO climate indices better predicted SP conditions north of 31° S, whereas the SAM better predicted SP south of 31° S.

  20. Land-Cover Trends of the Central Basin and Range Ecoregion

    USGS Publications Warehouse

    Soulard, Christopher E.

    2006-01-01

    The U.S. Geological Survey (USGS) Land Cover Trends research project is focused on understanding the amounts, rates, trends, causes, and implications of contemporary land-use and land-cover (LU/LC) change in the United States. This project is supported by the USGS Geographic Analysis and Monitoring Program in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA). LU/LC change is a pervasive process that modifies landscape characteristics and affects a broad range of socioeconomic, biologic, and hydrologic systems. Understanding the impacts and feedbacks of LU/LC change on environmental systems requires an understanding of the rates, patterns, and driving forces of past, present, and future LU/LC change. The objectives of the Land Cover Trends project are to (1) determine and describe the amount, rates, and trends of contemporary LU/LC change by ecoregion for the period 1973-2000 for the conterminous United States, (2) document the causes, driving forces, and implications of change, and (3) synthesize individual ecoregion results into a national assessment of LU/LC change. The Land Cover Trends research team includes staff from the USGS National Center for Earth Resources Observation and Science (EROS), Rocky Mountain Geographic Science Center, Eastern Geographic Science Center, Mid-Continent Geographic Science Center, and the Western Geographic Science Center. Other partners include researchers at South Dakota State University, University of Southern Mississippi, and State University of New York College of Environmental Science and Forestry. This report presents an assessment of LU/LC change in the Central Basin and Range ecoregion for the period 1973-2000. The Central Basin and Range ecoregion is one of 84 Level-III ecoregions as defined by the Environmental Protection Agency. Ecoregions have served as a spatial framework for environmental resource management and to denote areas that contain

  1. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    NASA Astrophysics Data System (ADS)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  2. Detection of short-term changes in vegetation cover by use of LANDSAT imagery. [Arizona

    NASA Technical Reports Server (NTRS)

    Turner, R. M. (Principal Investigator); Wiseman, F. M.

    1975-01-01

    The author has identified the following significant results. By using a constant band 6 to band 5 radiance ratio of 1.25, the changing pattern of areas of relatively dense vegetation cover was detected for the semiarid region in the vicinity of Tucson, Arizona. Electronically produced binary thematic masks were used to map areas with dense vegetation. The foliar cover threshold represented by the ratio was not accurately determined but field measurements show that the threshold lies in the range of 10 to 25 percent foliage cover. Montana evergreen forests with constant dense cover were correctly shown to exceed the threshold on all dates. The summer active grassland exceeded the threshold in the summer unless rainfall was insufficient. Desert areas exceeded the threshold during the spring of 1973 following heavy rains; the same areas during the rainless spring of 1974 did not exceed threshold. Irrigated fields, parks, golf courses, and riparian communities were among the habitats most frequently surpassing the threshold.

  3. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2014-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.

  4. Long-term impacts of land cover changes on stream channel loss

    EPA Science Inventory

    Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed with large areas of...

  5. The current evolution of complex high mountain debris-covered glacier systems and its relation with ground ice nature and distribution: the case of Rognes and Pierre Ronde area (Mont-Blanc range, France).

    NASA Astrophysics Data System (ADS)

    Bosson, Jean-Baptiste; Lambiel, Christophe

    2014-05-01

    The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-covered glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated areas, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few ice outcrops in the upper slopes still witness the existence of former glaciers

  6. Guide for In-Place Treatment of Covered and Timber Bridges

    Treesearch

    Stan Lebow; Grant Kirker; Robert White; Terry Amburgey; H. Michael Barnes; Michael Sanders; Jeff Morrell

    2012-01-01

    Historic covered bridges and current timber bridges can be vulnerable to damage from biodeterioration or fire. This guide describes procedures for selecting and applying in-place treatments to prevent or arrest these forms of degradation. Vulnerable areas for biodeterioration in covered bridges include members contacting abutments, members near the ends of bridges...

  7. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    NASA Astrophysics Data System (ADS)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  8. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Pouliot, D.; Latifovic, R.; Olthof, I.

    2017-12-01

    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  9. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitt, Daniel Glenn; Birdsell, Kay Hanson; Jennings, Terry L.

    also indicate that other areas of the vadose zone are affected by waste disposal activities that have been ongoing at Area G since 1957, a period of nearly 60 years. In some areas, water content profiles indicate increases in water content to depths of tens of meters, especially in areas covered by asphalt and structures.« less

  10. Exploring diversity in ensemble classification: Applications in large area land cover mapping

    NASA Astrophysics Data System (ADS)

    Mellor, Andrew; Boukir, Samia

    2017-07-01

    Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area

  11. Woody vegetation cover monitoring with multi-temporal Landsat data and Random Forests: the case of the Northwest Province (South Africa)

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas; Petroulaki, Kyriaki

    2016-04-01

    Land degradation and desertification (LDD) are serious global threats to humans and the environment. Globally, 10-20% of drylands and 24% of the world's productive lands are potentially degraded, which affects 1.5 billion people and reduces GDP by €3.4 billion. In Africa, LDD processes affect up to a third of savannahs, leading to a decline in the ecosystem services provided to some of the continent's poorest and most vulnerable communities. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and has been identified as an indicator of LDD. According to some assessments, bush encroachment has rendered 1.1 million ha of South African savanna unusable, threatens another 27 million ha (~17% of the country), and has reduced the grazing capacity throughout the region by up to 50%. Mapping woody cover encroachment over large areas can only be effectively achieved using remote sensing data and techniques. The longest continuously operating Earth-observation program, the Landsat series, is now freely-available as an atmospherically corrected, cloud masked surface reflectance product. The availability and length of the Landsat archive is thus an unparalleled Earth-observation resource, particularly for long-term change detection and monitoring. Here, we map and monitor woody vegetation cover in the Northwest Province of South Africa, a mosaic of 12 Landsat scenes that expands over more than 100,000km2. We employ a multi-temporal approach with dry-season TM, ETM+ and OLI data from 15 epochs between 1989 to 2015. We use 0.5m-pixel colour aerial photography to collect >15,000 samples for training and validating a Random Forest model to map woody cover, grasses, crops, urban and bare areas. High classification accuracies are achieved, especially so for the two cover types indirectly

  12. Warming reduces the cover and diversity of biocrust-forming mosses and lichens, and increases the physiological stress of soil microbial communities in a semi-arid Pinus halepensis plantation

    PubMed Central

    Maestre, Fernando T.; Escolar, Cristina; Bardgett, Richard D.; Dungait, Jennifer A. J.; Gozalo, Beatriz; Ochoa, Victoria

    2015-01-01

    Soil communities dominated by lichens and mosses (biocrusts) play key roles in maintaining ecosystem structure and functioning in drylands worldwide. However, few studies have explicitly evaluated how climate change-induced impacts on biocrusts affect associated soil microbial communities. We report results from a field experiment conducted in a semiarid Pinus halepensis plantation, where we setup an experiment with two factors: cover of biocrusts (low [<15%] versus high [>50%]), and warming (control versus a ∼2°C temperature increase). Warming reduced the richness and cover (∼45%) of high biocrust cover areas 53 months after the onset of the experiment. This treatment did not change the ratios between the major microbial groups, as measured by phospholipid fatty acid analysis. Warming increased the physiological stress of the Gram negative bacterial community, as indicated by the cy17:0/16:1ω7 ratio. This response was modulated by the initial biocrust cover, as the increase in this ratio with warming was higher in areas with low cover. Our findings suggest that biocrusts can slow down the negative effects of warming on the physiological status of the Gram negative bacterial community. However, as warming will likely reduce the cover and diversity of biocrusts, these positive effects will be reduced under climate change. PMID:26379642

  13. Land use and land cover mapping: City of Palm Bay, Florida

    NASA Technical Reports Server (NTRS)

    Barile, D. D.; Pierce, R.

    1977-01-01

    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  14. Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2009-10-01

    Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.

  15. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis

    USDA-ARS?s Scientific Manuscript database

    Few studies have examined the factors that affect the impact of cover crops on nitrous oxide emissions. A meta-analysis of the data obtained from twenty-six peer reviewed articles was conducted using the natural log of the nitrous oxide flux with a cover crop divided by the nitrous oxide flux withou...

  16. 40 CFR 63.8682 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing What This Subpart Covers § 63.8682 What parts of my plant does this subpart cover? (a) This subpart applies to each new, reconstructed, or existing affected source at asphalt...

  17. 40 CFR 63.8682 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing What This Subpart Covers § 63.8682 What parts of my plant does this subpart cover? (a) This subpart applies to each new, reconstructed, or existing affected source at asphalt...

  18. 40 CFR 63.8682 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing What This Subpart Covers § 63.8682 What parts of my plant does this subpart cover? (a) This subpart applies to each new, reconstructed, or existing affected source at asphalt...

  19. 40 CFR 63.8682 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing What This Subpart Covers § 63.8682 What parts of my plant does this subpart cover? (a) This subpart applies to each new, reconstructed, or existing affected source at asphalt...

  20. 40 CFR 63.8682 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing What This Subpart Covers § 63.8682 What parts of my plant does this subpart cover? (a) This subpart applies to each new, reconstructed, or existing affected source at asphalt...

  1. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes

    PubMed Central

    Dangles, Olivier; Rabatel, Antoine; Kraemer, Martin; Zeballos, Gabriel; Soruco, Alvaro; Jacobsen, Dean; Anthelme, Fabien

    2017-01-01

    While the impacts of climate change on individual species and communities have been well documented there is little evidence on climate-mediated changes for entire ecosystems. Pristine alpine environments can provide unique insights into natural, physical and ecological response to climate change yet broad scale and long-term studies on these potential ‘ecosystem sentinels’ are scarce. We addressed this issue by examining cover changes of 1689 high-elevation wetlands (temporarily or perennial water-saturated grounds) in the Bolivian Cordillera Real, a region that has experienced significant warming and glacier melting over the last 30 years. We combined high spatial resolution satellite images from PLEIADES with the long-term images archive from LANDSAT to 1) examine environmental factors (e.g., glacier cover, wetland and watershed size) that affected wetland cover changes, and 2) identify wetlands’ features that affect their vulnerability (using habitat drying as a proxy) in the face of climate change. Over the (1984–2011) period, our data showed an increasing trend in the mean wetland total area and number, mainly related to the appearance of wet grassland patches during the wetter years. Wetland cover also showed high inter-annual variability and their area for a given year was positively correlated to precipitation intensities in the three months prior to the image date. Also, round wetlands located in highly glacierized catchments were less prone to drying, while relatively small wetlands with irregularly shaped contours suffered the highest rates of drying over the last three decades. High Andean wetlands can therefore be considered as ecosystem sentinels for climate change, as they seem sensitive to glacier melting. Beyond the specific focus of this study, our work illustrates how satellite-based monitoring of ecosystem sentinels can help filling the lack of information on the ecological consequences of current and changing climate conditions, a

  2. Climatological determinants of woody cover in Africa.

    PubMed

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  3. Impacts of Land Cover Changes on Climate over China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  4. Cover-Copy-Compare: A Method for Enhancing Evidence-Based Instruction

    ERIC Educational Resources Information Center

    Konrad, Moira; Joseph, Laurice M.

    2014-01-01

    Cover-copy-compare is a practical, low-cost, effective strategy for teachers to add to their repertoires of evidence-based practices. This article describes the cover-copy-compare strategy and how it can be applied to teach both self-management and basic academic skills. A variety of ways this strategy can be used across content areas are…

  5. Analysis of land cover/use changes using Landsat 5 TM data and indices.

    PubMed

    Ettehadi Osgouei, Paria; Kaya, Sinasi

    2017-04-01

    Urban expansion and unprecedented rural to urban transition, along with a huge population growth, are major driving forces altering land cover/use in metropolitan areas. Many of the land cover classes such as farmlands, wetlands, forests, and bare soils have been transformed during the past years into human settlements. Identification of the city growth trends and the impact of it on the vegetation cover of an area is essential for a better understanding of the sustainability of urban development processes, both planned and unplanned. Analyzing the causes and consequences of land use dynamics helps local government, urban planners, and managers for the betterment of future plans and minimizing the negative effects.This study determined temporal changes in vegetation cover and built-up area in Istanbul (Turkey) using the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and built-up area index (BUAI). The temporal data were based on Landsat 5 Thematic Mapper (TM) images acquired in June of 1984, 2002, 2007, 2009, and 2011. The NDVI was applied to all the Landsat images, and the resulting NDVI images were overlaid to generate an NDVI layer stack image. The same procedure was repeated using the SAVI and BUAI images. The layer stack images revealed those areas that had changed in terms of the different indices over the years. To determine temporal change trends, the values of 150 randomly selected control points were extracted from the same locations in the NDVI, SAVI, and BUAI layer stack images. The results obtained from these control points showed that vegetation cover decreased considerably because of a remarkable increase in the built-up area.

  6. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2013-11-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those

  7. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  8. A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.

    2012-06-01

    Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.

  9. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  10. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  11. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  12. Effects of land use/cover change and harvests on forest carbon dynamics in northern states of the United States from remote sensing and inventory data: 1992-2001

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2011-01-01

    We examined spatial patterns of changes in forest area and nonsoil carbon (C) dynamics affected by land use/cover change (LUC) and harvests in 24 northern states of the United States using an integrated methodology combining remote sensing and ground inventory data between 1992 and 2001. We used the Retrofit Change Product from the Multi-Resolution Land Characteristics...

  13. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers

    PubMed Central

    Briber, Brittain M.; Hutyra, Lucy R.; Reinmann, Andrew B.; Raciti, Steve M.; Dearborn, Victoria K.; Holden, Christopher E.; Dunn, Allison L.

    2015-01-01

    Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm2 yr-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha-1 yr-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important. PMID:26302444

  14. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  15. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    NASA Astrophysics Data System (ADS)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  16. Towards Seamless Validation of Land Cover Data

    NASA Astrophysics Data System (ADS)

    Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu

    2018-05-01

    This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.

  17. DETERMINATION OF ENVIRONMENTAL FACTORS AFFECTING DENGUE INCIDENCE IN SLEMAN DISTRICT, YOGYAKARTA, INDONESIA

    PubMed Central

    Kesetyaningsih, Tri Wulandari; Andarini, Sri; Sudarto; Pramoedyo, Henny

    2018-01-01

    Background: Dengue is a disease related to the environment that spreads rapidly. Prevention movement is considered ineffective; therefore, a more efficient early warning system is required. It is required strongly correlated variables to as predictor in early warning system. This study aims to identify the environmental conditions associated with dengue. Materials and methods: This ecological study was conducted on five sub-districts selected based on the trend of the incidence. Data land cover and elevation obtained using GIS. Climate data were obtained from Meteorology and Climatology and Geophysics Agency of Yogyakarta. Results: There were 1.150 dengue cases from 2008-2013 obtained from District Health Office. The spatial pattern is clustered in all sub-districts (Z-score < -2.58). There is a positive correlation between land cover and dengue (p 0.000; r 0.284) and a negative correlation between elevation areas and dengue (p 0.000; r - 0.127). Multiple Regression Test shows the effect of humidity (p 0.000) and rainfall (p 0.002) with a contribution of 13.5% - 27.4% (r2 0.135 – 0.274), while temperature has no effect in all sub-districts (p > 0.05). There is no effect of climate parameters in sporadic dengue areas (p > 0.05). Conclusion: It is concluded that dengue in Sleman is clustered and associated with the environment parameter, even though it does not have close correlation. High elevated and small building area is consistent with the lower dengue cases. Humidity and rainfall affect dengue, but temperature does not affect dengue. PMID:29619427

  18. Reach-scale effects of riparian forest cover on urban stream ecosystems

    USGS Publications Warehouse

    Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.

    2005-01-01

    We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.

  19. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    PubMed

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover

  20. Mapping snow cover using multi-source satellite data on big data platforms

    NASA Astrophysics Data System (ADS)

    Lhermitte, Stef

    2017-04-01

    Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow cover data provides an essential input for hydrological models to model the water contribution from remote mountain areas and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow cover typically observed over complex mountain areas. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow cover mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow cover areas from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow cover and of ii) differences in satellite viewing angles over complex mountain areas. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow cover.

  1. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam

    2017-04-01

    Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.

  2. 40 CFR 63.2132 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Yeast What This Subpart Covers § 63.2132 What parts of my plant does this subpart cover? (a) This... cerevisiae at a nutritional yeast manufacturing facility. (b) The affected source is the collection of equipment used in the manufacture of the nutritional yeast species Saccharomyces cerevisiae. This collection...

  3. 40 CFR 63.2132 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Yeast What This Subpart Covers § 63.2132 What parts of my plant does this subpart cover? (a) This... cerevisiae at a nutritional yeast manufacturing facility. (b) The affected source is the collection of equipment used in the manufacture of the nutritional yeast species Saccharomyces cerevisiae. This collection...

  4. 40 CFR 63.2132 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Yeast What This Subpart Covers § 63.2132 What parts of my plant does this subpart cover? (a) This... cerevisiae at a nutritional yeast manufacturing facility. (b) The affected source is the collection of equipment used in the manufacture of the nutritional yeast species Saccharomyces cerevisiae. This collection...

  5. São Paulo urban heat islands have a higher incidence of dengue than other urban areas.

    PubMed

    Araujo, Ricardo Vieira; Albertini, Marcos Roberto; Costa-da-Silva, André Luis; Suesdek, Lincoln; Franceschi, Nathália Cristina Soares; Bastos, Nancy Marçal; Katz, Gizelda; Cardoso, Vivian Ailt; Castro, Bronislawa Ciotek; Capurro, Margareth Lara; Allegro, Vera Lúcia Anacleto Cardoso

    2015-01-01

    Urban heat islands are characterized by high land surface temperature, low humidity, and poor vegetation, and considered to favor the transmission of the mosquito-borne dengue fever that is transmitted by the Aedes aegypti mosquito. We analyzed the recorded dengue incidence in Sao Paulo city, Brazil, in 2010-2011, in terms of multiple environmental and socioeconomic variables. Geographical information systems, thermal remote sensing images, and census data were used to classify city areas according to land surface temperature, vegetation cover, population density, socioeconomic status, and housing standards. Of the 7415 dengue cases, a majority (93.1%) mapped to areas with land surface temperature >28°C. The dengue incidence rate (cases per 100,000 inhabitants) was low (3.2 cases) in high vegetation cover areas, but high (72.3 cases) in low vegetation cover areas where the land surface temperature was 29±2°C. Interestingly, a multiple cluster analysis phenogram showed more dengue cases clustered in areas of land surface temperature >32°C, than in areas characterized as low socioeconomic zones, high population density areas, or slum-like areas. In laboratory experiments, A. aegypti mosquito larval development, blood feeding, and oviposition associated positively with temperatures of 28-32°C, indicating these temperatures to be favorable for dengue transmission. Thus, among all the variables studied, dengue incidence was most affected by the temperature. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  6. Impacts of urbanization and landscape patterns on the earthworm communities in residential areas in Beijing.

    PubMed

    Xie, Tian; Wang, Meie; Chen, Weiping; Uwizeyimana, Herman

    2018-06-01

    Earthworms play an important role in soil processes and functions. However, few studies have focused on their community patterns in perturbed systems, especially in an urban environment with a high turnover rate of land cover. In this study, we collected and identified the earthworms in the residential areas in metropolitan Beijing. We further investigated the effects of urban soil properties, urbanization and landscape patterns on the earthworm communities. The results showed that both the abundance and biomass of earthworms in residential areas in metropolitan was relatively low. The abundance of earthworms was negatively correlated with soil organic carbon (SOC) in this study. Soil moisture and pH could be considered as the most important edaphic variables that affected earthworm communities. The construction age of residential areas significantly influenced the earthworm abundance. Moreover, the earthworm community composition responded differently to urban landscape features at different scales. The percentage of impervious and green space surface, the amount of landscape cover types, patch density and landscape fragment significantly affected the earthworm assemblages. Our result discovered that the edaphic properties, urbanization as well as landscape patterns might be the potential factors that influenced the earthworm community patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Solid images generated from UAVs to analyze areas affected by rock falls

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Manconi, Andrea; Allasia, Paolo; Baldo, Marco

    2015-04-01

    The study of rock fall affected areas is usually based on the recognition of principal joints families and the localization of potential instable sectors. This requires the acquisition of field data, although as the areas are barely accessible and field inspections are often very dangerous. For this reason, remote sensing systems can be considered as suitable alternative. Recently, Unmanned Aerial Vehicles (UAVs) have been proposed as platform to acquire the necessary information. Indeed, mini UAVs (in particular in the multi-rotors configuration) provide versatility for the acquisition from different points of view a large number of high resolution optical images, which can be used to generate high resolution digital models relevant to the study area. By considering the recent development of powerful user-friendly software and algorithms to process images acquired from UAVs, there is now a need to establish robust methodologies and best-practice guidelines for correct use of 3D models generated in the context of rock fall scenarios. In this work, we show how multi-rotor UAVs can be used to survey areas by rock fall during real emergency contexts. We present two examples of application located in northwestern Italy: the San Germano rock fall (Piemonte region) and the Moneglia rock fall (Liguria region). We acquired data from both terrestrial LiDAR and UAV, in order to compare digital elevation models generated with different remote sensing approaches. We evaluate the volume of the rock falls, identify the areas potentially unstable, and recognize the main joints families. The use on is not so developed but probably this approach can be considered the better solution for a structural investigation of large rock walls. We propose a methodology that jointly considers the Structure from Motion (SfM) approach for the generation of 3D solid images, and a geotechnical analysis for the identification of joint families and potential failure planes.

  8. Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests

    Treesearch

    Benjamin C. Bright; Andrew T. Hudak; Robert E. Kennedy; Arjan J. H. Meddens

    2014-01-01

    Bark beetle-caused tree mortality affects important forest ecosystem processes. Remote sensing methodologies that quantify live and dead basal area (BA) in bark beetle-affected forests can provide valuable information to forest managers and researchers. We compared the utility of light detection and ranging (lidar) and the Landsat-based detection of trends in...

  9. Surface covering of downed logs: drivers of a neglected process in dead wood ecology.

    PubMed

    Dynesius, Mats; Gibb, Heloise; Hjältén, Joakim

    2010-10-07

    Many species use coarse woody debris (CWD) and are disadvantaged by the forestry-induced loss of this resource. A neglected process affecting CWD is the covering of the surfaces of downed logs caused by sinking into the ground (increasing soil contact, mostly covering the underside of the log), and dense overgrowth by ground vegetation. Such cover is likely to profoundly influence the quality and accessibility of CWD for wood-inhabiting organisms, but the factors affecting covering are largely unknown. In a five-year experiment we determined predictors of covering rate of fresh logs in boreal forests and clear-cuts. Logs with branches were little covered because they had low longitudinal ground contact. For branchless logs, longitudinal ground contact was most strongly related to estimated peat depth (positive relation). The strongest predictor for total cover of branchless logs was longitudinal ground contact. To evaluate the effect on cover of factors other than longitudinal ground contact, we separately analyzed data from only those log sections that were in contact with the ground. Four factors were prominent predictors of percentage cover of such log sections: estimated peat depth, canopy shade (both increasing cover), potential solar radiation calculated from slope and slope aspect, and diameter of the log (both reducing cover). Peat increased cover directly through its low resistance, which allowed logs to sink and soil contact to increase. High moisture and low temperatures in pole-ward facing slopes and under a canopy favor peat formation through lowered decomposition and enhanced growth of peat-forming mosses, which also proved to rapidly overgrow logs. We found that in some boreal forests, peat and fast-growing mosses can rapidly cover logs lying on the ground. When actively introducing CWD for conservation purposes, we recommend that such rapid covering is avoided, thereby most likely improving the CWD's longevity as habitat for many species.

  10. Effects of sediment cover on survival and development of white sturgeon embryos

    USGS Publications Warehouse

    Kock, T.J.; Congleton, J.L.; Anders, P.J.

    2006-01-01

    A simple, inexpensive apparatus (embryo incubation unit [EIU]) was developed and used to assess the relationship between sediment cover (Kootenai River sediments, 97% by weight in the 0.83-mm- to 1.0-mm-diameter range) and survival of white sturgeon Acipenser transmontanus embryos in the laboratory. An apparatus-testing trial assessed the effects of two sediment depths (5 and 20 mm), three EIU ventilation hole sizes (4.8, 6.8, and 9.5 mm) providing three levels of intrasediment flow, and EIU location (upstream or downstream in laboratory troughs) on embryo survival at two above-substrate flow velocities (0.05 and 0.15 m/s). A second trial assessed the effects of sediment cover duration (5-mm sediment cover for 4, 7, 9, 11, or 14 d, with a ventilation hole size of 9.5 mm and a flow velocity of 0.17 m/s) on mean embryo survival and larval length and weight. In the apparatus-testing trial, embryo survival was reduced (P < 0.0001) to 0-5% under sediment covers of either 5 or 20 mm in both the higher-flow and lower-flow troughs; survival in control EIUs without sediments exceeded 80%. Survival was not significantly affected by ventilation hole size but was weakly affected by EIU location. In the second trial, embryo survival was negatively correlated (P = 0.001) with increasing duration of sediment cover and was significantly higher for embryos covered for 4 d (50% survival) or 7 d (30% survival) than for those covered for 9, 11, or 14 d (15-20% survival). Sediment cover also delayed hatch timing (P < 0.0001) and decreased mean larval length (P < 0.0001). Our results suggest that sediment cover may be an important early life stage mortality factor in rivers where white sturgeon spawn over fine-sediment substrates. ?? Copyright by the American Fisheries Society 2006.

  11. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed

  12. Differences in joint morphology between the knee and ankle affect the repair of osteochondral defects in a rabbit model.

    PubMed

    Makitsubo, Manami; Adachi, Nobuo; Nakasa, Tomoyuki; Kato, Tomohiro; Shimizu, Ryo; Ochi, Mitsuo

    2016-10-04

    Although differences in the results of the bone marrow stimulation technique between the knee and ankle have been reported, a detailed mechanism for those differences has not been clarified. The purpose of this study was to examine whether morphological differences between the knee and ankle joint affect the results of drilling as treatment for osteochondral defects in a rabbit model. Osteochondral defects were created at the knee and ankle joint in the rabbit. In the knee, osteochondral defects were created at the medial femoral condyle (MFC) and patellar groove (PG). At the ankle, defects were created in the talus at either a covered or uncovered area by the tibial plafond. After creating the osteochondral defect, drilling was performed. At 4, 8, and 12 weeks after surgery, repair of the osteochondral defects were evaluated histologically. The proliferation of rabbit chondrocytes and proteoglycan release of cartilage tissue in response to IL-1β were analyzed in vitro in both joints. At 8 weeks after surgery, hyaline cartilage repair was observed in defects at the covered area of the talus and the MFC. At 12 weeks, hyaline cartilage with a normal thickness was observed for the defect at the covered area of the talus, but not for the defect at the MFC. At 12 weeks, subchondral bone formation progressed and a normal contour of subchondral bone was observed on CT in the defect at the covered area of the talus. No significant differences in chondrocyte proliferation rate and proteoglycan release were detected between the knee and ankle in vitro. Our results demonstrate that the covered areas of the talus show early and sufficient osteochondral repair compared to that of the knee and the uncovered areas of the talus. These results suggest that the congruent joint shows better subchondral repair prior to cartilage repair compared to that of the incongruent joint.

  13. Application of spectrometer cropscan MSR 16R and Landsat imagery for identification the spectral characteristics of land cover

    NASA Astrophysics Data System (ADS)

    Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee

    2013-09-01

    The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.

  14. Analysis of passive microwave signatures over snow-covered mountainous area

    NASA Astrophysics Data System (ADS)

    Kim, R. S.; Durand, M. T.

    2015-12-01

    Accurate knowledge of snow distribution over mountainous area is critical for climate studies and the passive microwave(PM) measurements have been widely used and invested in order to obtain information about snowpack properties. Understanding and analyzing the signatures for the explicit inversion of the remote sensing data from land surfaces is required for successful using of passive microwave sensors but this task is often ambiguous due to the large variability of physical conditions and object types. In this paper, we discuss the pattern of measured brightness temperatures and emissivities at vertical and horizontal polarization over the frequency range of 10.7 to 89 GHz of land surfaces under various snow and vegetation conditions. The Multiband polarimetric Scanning Radiometer(PSR) imagery is used over NASA Cold Land Processes Field Experiment(CLPX) study area with ground-based measurements of snow depth and snow properties. Classification of snow under various conditions in mountainous area is implemented based on different patterns of microwave signatures.

  15. An analysis of IGBP global land-cover characterization process

    USGS Publications Warehouse

    Loveland, Thomas R.; Zhu, Zhiliang; Ohlen, Donald O.; Brown, Jesslyn F.; Reed, Bradley C.; Yang, Limin

    1999-01-01

    The international Geosphere Biosphere Programme (IGBP) has called for the development of improved global land-cover data for use in increasingly sophisticated global environmental models. To meet this need, the staff of the U.S. Geological Survey and the University of Nebraska-Lincoln developed and applied a global land-cover characterization methodology using 1992-1993 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) and other spatial data. The methodology, based on unsupervised classification with extensive postclassification refinement, yielded a multi-layer database consisting of eight land-cover data sets, descriptive attributes, and source data. An independent IGBP accuracy assessment reports a global accuracy of 73.5 percent, and continental results vary from 63 percent to 83 percent. Although data quality, methodology, interpreter performance, and logistics affected the results, significant problems were associated with the relationship between AVHRR data and fine-scale, spectrally similar land-cover patterns in complex natural or disturbed landscapes.

  16. The influence of supraglacial debris cover variability on de-icing processes - examples from Svalbard

    NASA Astrophysics Data System (ADS)

    Lukas, Sven; Benn, Douglas I.; Boston, Clare M.; Hawkins, Jack; Lehane, Niall E.; Lovell, Harold; Rooke, Michael

    2014-05-01

    Extensive supraglacial debris covers are widespread near the margins of many cold-based and polythermal surging and non-surging glaciers in Svalbard. Despite their importance for current glacier dynamics and a detailed understanding of how they will affect the de-icing of ice-marginal areas, little work has been carried out to shed light on the sedimentary processes operating in these debris covers. We here present data from five different forelands in Svalbard. In all five cases, surfaces within the debris cover can be regarded as stable where debris cover thickness exceeds that of the active layer; vegetation development and absence of buried ice exposures at the surface support this conclusion, although test pits and geophysical investigations have revealed the presence of buried ice at greater depths (> 1-3 m). These findings imply that even seemingly stable surfaces at present will be subject to change by de-icing in the future. Factors and processes that contribute towards a switch from temporarily stable to unstable conditions have been identified as: 1. The proximity to englacial or supraglacial meltwater channels. These channels enlarge due to thermo-erosion, which can lead to the eventual collapse of tunnel roofs and the sudden generation of linear instabilities in the system. Along such channels, ablation is enhanced compared to adjacent debris-covered ice, and continued thermo-erosion continuously exposes new areas of buried ice at the surface. This works in conjunction with 2. Debris flows that occur on all sloping ground and transfer material from stable to less stable (sloping) locations within the debris cover and eventually into supraglacial channels, from where material is then removed from the system. Several generations of debris flows have been identified in all five debris covers, strongly suggesting that these processes are episodic and that the loci of these processes switch. This in turn indicates that transfer of material by debris flows

  17. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga.

    PubMed

    Ribeiro, Kelly; Sousa-Neto, Eráclito Rodrigues de; Carvalho, João Andrade de; Sousa Lima, José Romualdo de; Menezes, Rômulo Simões Cezar; Duarte-Neto, Paulo José; da Silva Guerra, Glauce; Ometto, Jean Pierre Henry Baulbaud

    2016-11-15

    The Caatinga biome covers an area of 844,453km(2) and has enormous endemic biodiversity, with unique characteristics that make it an exclusive Brazilian biome. It falls within the earth's tropical zone and is one of the several important ecoregions of Brazil. This biome undergoes natural lengthy periods of drought that cause losses in crop and livestock productivity, having a severe impact on the population. Due to the vulnerability of this ecosystem to climate change, livestock has emerged as the main livelihood of the rural population, being the precursor of the replacement of native vegetation by grazing areas. This study aimed to measure GHG emissions from two different soil covers: native forest (Caatinga) and pasture in the municipality of São João, Pernambuco State, in the years 2013 and 2014. GHG measurements were taken by using static chamber techniques in both soil covers. According to a previous search, so far, this is the first study measuring GHG emissions using the static chamber in the Caatinga biome. N2O emissions ranged from -1.0 to 4.2mgm(-2)d(-1) and -1.22 to 3.4mgm(-2)d(-1) in the pasture and Caatinga, respectively, and they did not significantly differ from each other. Emissions were significantly higher during dry seasons. Carbon dioxide ranged from -1.1 to 14.1 and 1.2 to 15.8gm(-2)d(-1) in the pasture and Caatinga, respectively. CO2 emissions were higher in the Caatinga in 2013, and they were significantly influenced by soil temperature, showing an inverse relation. Methane emission ranged from 6.6 to 6.8 and -6.0 to 4.8mgm(-2)d(-1) in the pasture and Caatinga, respectively, and was significantly higher only in the Caatinga in the rainy season of 2014. Soil gas fluxes seemed to be influenced by climatic and edaphic conditions as well as by soil cover in the Caatinga biome. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Improving automated disturbance maps using snow-covered landsat time series stacks

    Treesearch

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2012-01-01

    Snow-covered winter Landsat time series stacks are used to develop a nonforest mask to enhance automated disturbance maps produced by the Vegetation Change Tracker (VCT). This method exploits the enhanced spectral separability between forested and nonforested areas that occurs with sufficient snow cover. This method resulted in significant improvements in Vegetation...

  19. Large area mapping of land-cover change in Rondônia using multitemporal spectral mixture analysis and decision tree classifiers

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Numata, I.; Holmes, K.; Batista, G.; Krug, T.; Monteiro, A.; Powell, B.; Chadwick, O. A.

    2002-10-01

    We describe spatiotemporal variation in land cover over 80,000 km2 in central Rondônia. We use a multistage process to map primary forest, pasture, second growth, urban, rock/savanna, and water using 33 Landsat scenes acquired over three contiguous areas between 1975 and 1999. Accuracy of the 1999 classified maps was assessed as exceeding 85% based on digital airborne videography. Rondônia is highly fragmented, in which forests outside of restricted areas consist of numerous, small irregular patches. Pastures in Rondônia persist over many years and are not typically abandoned to second growth, which when present rarely remains unchanged longer than 8 years. Within the state, annual deforestation rates, pasture area, and ratio of second growth to cleared area varied spatially. Highest initial deforestation rates occurred in the southeast (Luiza), at over 2%, increasing to 3% by the late 1990s. In this area, the percentage of cleared land in second growth averaged 18% and few pastures were abandoned. In central Rondônia (Ji-Paraná), deforestation rates rose from 1.2% between 1978 and 1986 to a high of 4.2% in 1999. In the northwest (Ariquemes), initial deforestation rates were lowest at 0.5% but rose substantially in the late 1990s, peaking at 3% in 1998. The ratio of second growth to cleared area was more than double the ratio in Luiza and few pastures remained unchanged beyond 8 years. Land clearing was most intense close to the major highway, BR364, except in Ariquemes. Intense forest clearing extended at least 50 km along the margins of BR364 in Ji-Paraná and Luiza. Spatial differences in land use are hypothesized to result from a combination of economic factors and soil fertility.

  20. Modification of the Covered Areas Provision for Reformulated Gasoline - RE: Former Non-attainment Areas

    EPA Pesticide Factsheets

    This final rule will expand this provision to allow states to opt into the RFG program for areas which had been previously classified as marginal, moderate, serious, or severe for ozone, but were subsequently redesignated to attainment.

  1. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  2. Land cover associations of nesting territories of three sympatric buteos in shortgrass prairie

    USGS Publications Warehouse

    McConnell, S.; O'Connell, T. J.; Leslie, David M.

    2008-01-01

    Three species of Buteo hawks nest sympatrically in the southern Great Plains of the United States. Dietary overlap among them is broad and we tested the hypothesis these species partition their breeding habitat spatially. We compared land cover and topography around 224 nests of the three species breeding in shortgrass prairie in 2004 and 2005. Red-tailed Hawks (Buteo jamaicensis) nested almost exclusively in riparian timber surrounded by prairie (95% prairie land cover around nests) and disproportionately used areas with greater topographic relief within prairie landscapes. Swainson's Hawks (B. swainsoni) commonly nested in low-relief areas dominated by small-grain production agriculture but generally used habitats in proportion to availability. Most nest sites of Ferruginous Hawks (B. regalis) were in prairie (78% prairie land cover around nests), but some were in areas that were at least partially agricultural. Ferruginous Hawks had at least two times more sand sagebrush (Artemisia filifolia) around their nests than their two congeners. We conclude that sympatric breeding Buteos on the southern Great Plains spatially partitioned nest sites according to subtle differences in land cover and topography.

  3. High spatial resolution mapping of the Cerrado's land cover and land use types in the priority area for conservation Chapada da Contagem, Brazil.

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Davis, F. W.; Antunes Daldegan, G.; Nackoney, J.; Hess, L. L.

    2016-12-01

    The Brazilian savanna, Cerrado, is the second largest biome over South America and the most floristically diverse savanna in the world. This biome is considered a conservation hotspot in respect to its biodiversity importance and rapid transformation of its landscape. The Cerrado's natural vegetation has been severely transformed by agriculture and pasture activities. Currently it is the main agricultural frontier in Brazil and one of the most threatened Brazilian biomes. This scenario results in environmental impacts such as ecosystems fragmentation as well as losses in connectivity, biodiversity and gene flow, changes in the microclimate and energy, carbon and nutrients cycles, among others. The Priority Areas for Conservation is a governmental program from Brazil that identifies areas with high conservation priority. One of this program's recommendation is a natural vegetation map including their major ecosystem classes. This study aims to generate more precise information for the Cerrado's vegetation. The main objective of this study is to identify which ecosystems are being prioritized and/or threatened by land use, refining information for further protection. In order to test methods, the priority area for conservation Chapada da Contagem was selected as the study site. This area is ranked as "extremely high priority" by the government and is located in the Federal District and Goias State, Brazil. Satellites with finer spatial resolution may improve the classification of the Cerrado's vegetation. Remote sensing methods and two criteria were tested using RapidEye 3A imagery (5m spatial resolution) collected in 2014 in order to classify the Cerrado's major land cover types of this area, as well as its land use. One criterion considers the Cerrado's major terrestrial ecosystems, which are divided into forest, savanna and grassland. The other involves scaling it down to the major physiognomic groups of each ecosystem. Other sources of environmental dataset such

  4. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Satellite Snow-Cover Mapping: A Brief Review

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    1995-01-01

    Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow

  6. Impacts of Climate and Land-cover Changes on Water Resources in a Humid Subtropical Watershed: a Case Study from East Texas, USA

    NASA Astrophysics Data System (ADS)

    Heo, J.

    2015-12-01

    This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096

  7. Comparison of pesticide concentrations in streams at low flow in six metropolitan areas of the United States

    USGS Publications Warehouse

    Sprague, Lori A.; Nowell, Lisa H.

    2008-01-01

    To examine the effect of urban development on pesticide concentrations in streams under low-flow conditions, water samples were collected at stream sites along an urban land use gradient in six environmentally heterogeneous metropolitan areas of the United States. In all six metropolitan areas, total insecticide concentrations generally increased significantly as urban land cover in the basin increased, regardless of whether the background land cover in the basins was agricultural, forested, or shrub land. In contrast, the response of total herbicide concentrations to urbanization varied with the environmental setting. In the three metropolitan areas with predominantly forested background land cover (Raleigh-Durham, NC, USA; Atlanta, GA, USA; Portland, OR, USA), total herbicide concentrations increased significantly with increasing urban land cover. In contrast, total herbicide concentrations were not significantly related to urban land cover in the three remaining metropolitan areas, where total herbicide concentrations appeared to be strongly influenced by agricultural as well as urban sources (Milwaukee-Green Bay, WI, USA; Dallas-Fort Worth, TX, USA), or by factors not measured in the present study, such as water management (Denver, CO, USA). Pesticide concentrations rarely exceeded benchmarks for protection of aquatic life, although these low-flow concentrations are likely to be lower than at other times, such as during peak pesticide-use periods, storm events, or irrigation discharge. Normalization of pesticide concentrations by the pesticide toxicity index - an index of relative potential toxicity - for fish and cladocerans indicated that the pesticides detected at the highest concentrations (herbicides in five of the six metropolitan areas) were not necessarily the pesticides with the greatest potential to adversely affect aquatic life (typically insecticides such as carbaryl, chlorpyrifos, diazinon, and fipronil). ?? 2008 SETAC.

  8. A Changing Arctic Sea Ice Cover and the Partitioning of Solar Radiation

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.

    2010-12-01

    Certain recent changes in the Arctic sea ice cover are well established. There has been a reduction in sea ice extent, an overall thinning of the ice cover, reduced prevalence of perennial ice with accompanying increases in seasonal ice, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the ice, and transmission to the ocean. The physical changes in the ice cover result in less light reflected and more light absorbed in the ice and transmitted to the ocean. These changes directly affect the heat and mass balance of the ice as well as the amount of light available for photosynthesis within and beneath the ice cover. The central driver is that seasonal ice covers tend to have lower albedo than perennial ice throughout the melt season, permitting more light to penetrate into the ice and ocean. The enhanced light penetration increases the amount of internal melting of the ice and the heat content of the upper ocean. The physical changes in the ice cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the ice and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent ice conditions will be presented.

  9. Unusually Low Snow Cover in the U.S.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of snow cover produced by NASA's Terra satellite show that this year's snow line stayed farther north than normal. When combined with land surface temperature measurements, the observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. The above map shows snow cover over the continental United States from February 2002 and is based on data acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS). The amount of land covered by snow during this period was much lower than usual. With the exception of the western mountain ranges and the Great Lakes region, the country was mostly snow free. The solid red line marks the average location of the monthly snow extent; white areas are snow-covered ground. Snow was mapped at approximately 5 kilometer pixel resolution on a daily basis and then combined, or composited, every eight days. If a pixel was at least 50 percent snow covered during all of the eight-day periods that month, it was mapped as snow covered for the whole month. For more information, images, and animations, read: Terra Satellite Data Confirm Unusually Warm, Dry U.S. Winter Image by Robert Simmon, based on data from the MODIS Snow/Ice Global Mapping Project

  10. Declining urban and community tree cover in the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2018-01-01

    Paired aerial photographs were interpreted to assess recent changes (c. 2009–2014) in tree, impervious and other cover types within urban/community and urban land in all 50 United States and the District of Columbia. National results indicate that tree cover in urban/community areas of the United States is on the decline at a rate of about 175,000 acres per year, which...

  11. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.

    2015-05-01

    In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the

  12. Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health

    NASA Astrophysics Data System (ADS)

    Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.

    2002-12-01

    Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.

  13. Wet soil cover applicability and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, F.; Feenstra, S.; Hwang, D.

    1996-12-31

    As part of a focused feasibility study for the Tyson Superfund site, Daekyoo Hwang, then with ERM, developed a flooding/flushing option. It was not considered a viable option due to concerns over contaminated groundwater control. The concept, however, had several attractive features: control of VOC emissions; the downward movement of water prevents contamination of the overlying clean soil by the upward movement of contaminated soil vapor; and some natural attenuation of the contaminated lagoon area soils. The new concept employs a near saturated soil layer to prevent VOC emission and the downward movement of water to prevent contamination of surfacemore » soil. The wet soil cover became one of five alternatives submitted as part of the focused feasibility study. It was selected as the remedial option for the site by the USEPA. The study was reviewed by the public and they also were positive as to the use of a wet soil cover to control VOC emissions at the site. The wet soil cover is currently being designed by Smith Environmental.« less

  14. Open Skies aerial photography of selected areas in Central America affected by Hurricane Mitch

    USGS Publications Warehouse

    Molnia, Bruce; Hallam, Cheryl A.

    1999-01-01

    Between October 27 and November 1, 1998, Central America was devastated by Hurricane Mitch. Following a humanitarian relief effort, one of the first informational needs was complete aerial photographic coverage of the storm ravaged areas so that the governments of the affected countries, the U.S. agencies planning to provide assistance, and the international relief community could come to the aid of the residents of the devastated area. Between December 4 and 19, 1998 an Open Skies aircraft conducted five successful missions and obtained more than 5,000 high-resolution aerial photographs and more than 15,000 video images. The aerial data are being used by the Reconstruction Task Force and many others who are working to begin rebuilding and to help reduce the risk of future destruction.

  15. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    NASA Astrophysics Data System (ADS)

    Lehnert, Lukas; Wesche, Karsten; Trachte, Katja; Reudenbach, Christoph; Miehe, Georg; Bendix, Jörg

    2016-04-01

    The Tibetan Plateau has been entitled "Third-Pole-Environment" because of its outstanding importance for the climate and the hydrology in East and South-east Asia. Its climatological and hydrological influences are strongly affected by the local grassland vegetation which is supposed to be subject to ongoing degradation. On a local scale, numerous studies focused on grassland degradation of the Tibetan pastures. However, because methods and scales substantially differed among previous studies, the overall pattern of the degradation in the Tibetan Plateau is unknown. Consequently, a satellite based approach was selected to cope with the spatial limitations. Therefore, a MODIS-based vegetation cover product was developed which is fully validated against 600 in situ measurements covering a wide extent of the Tibetan Plateau. The vegetation cover as a proxy for grassland degradation is modelled with low error rates using support vector machine regressions. To identify the changes in the vegetation cover, the trends seen in the new vegetation cover product since the beginning of the new millennium were analysed. The drivers of the vegetation changes were identified by the analysis of trends of climatic variables (precipitation and 2 m air temperature) and land-use (livestock numbers) over the same time. The results reveal that - in contrast to the prevailing opinion - pasture degradation on the Tibetan Plateau is not a generally proceeding process because areas of positive and negative changes are almost equal in extent. The positive and negative vegetation changes have regionally different triggers: While, from 2000 on, the vegetation cover has increased in the north-eastern part of the Tibetan Plateau due to increasing precipitation, it has declined in the central and western parts due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but, contrarily to the assumptions of

  16. Snow Cover Distribution and Variation using MODIS in the Himalayas of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.

    2017-12-01

    Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute

  17. National Level Assessment of Mangrove Forest Cover in Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.

    2011-09-01

    Mangroves ecosystems consist of inter tidal flora and fauna found in the tropical and subtropical regions of the world. Mangroves forest is a collection of halophytic trees, shrubs, and other plants receiving inputs from regular tidal flushing and from freshwater streams and rivers. A global reduction of 25 % mangroves' area has been observed since 1980 and it is categorized as one of to the most threatened and vulnerable ecosystems of the world. Forest resources in Pakistan are being deteriorating both quantitatively and qualitatively due to anthropogenic activities, climatic v and loose institutional management. According to the FAO (2007), extent of forest cover of Pakistan in 2005 is 1,902,000 ha, which is 2.5% of its total land area. Annual change rate during 2000-2005 was -2.1% which is highest among all the countries in Asia. The Indus delta region contains the world's fifth-largest mangrove forest which provides a range of important ecosystem services, including coastal stabilisation, primary production and provision of nursery habitat for marine fish. Given their ecological importance in coastal settings, mangroves receive special attention in the assessment of conservation efforts and sustainable coastal developments. Coastline of Pakistan is 1050km long shared by the provinces, Sind (350km) and Baluchistan (700 km). The coastline, with typical arid subtropical climate, possesses five significant sites that are blessed with mangroves. In the Sindh province, mangroves are found in the Indus Delta and Sandspit. The Indus Delta is host to the most extensive mangroves areas and extends from Korangi Creek in the West to Sir Creek in the East, whereas Sandspit is a small locality in the West of Karachi city. In the Balochistan province, mangroves are located at three sites, Miani Hor, Kalmat Khor and Jiwani. Contemporary methods of Earth observation sciences are being incorporated as an integral part of environmental assessment related studies in coastal areas

  18. Local point sources that affect ground-water quality in the East Meadow area, Long Island, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    1994-01-01

    The extent and chemical characteristics of ground water affected by three local point sources--a stormwater basin, uncovered road-salt-storage piles, and an abandoned sewage-treatment plant--were delineated during a 3-year study of the chemical characteristics and migration of a body of reclaimed wastewater that was applied to the watertable aquifer during recharge experiments from October 1982 through January 1984 in East Meadow. The timing, magnitude, and chemical quality of recharge from these point sources is highly variable, and all sources have the potential to skew determinations of the quality of ambient ground-water and of the reclaimed-wastewater plume if they are not taken into account. Ground water affected by recharge from the stormwater basin is characterized by low concentrations of nitrate + nitrite (less than 5 mg/L [milligrams per liter] as N) and sulfate (less than 40 mg/L) and is almost entirely within the upper glacial aquifer. The plume derived from road-salt piles is narrow, has high concentrations of chloride (greater than 50 mg/L) and sodium (greater than 75 mg/L), and also is limited to the upper glacial aquifer. The sodium, in high concentrations, could react with aquifer material and exchange for sorbed cations such as calcium, potassium, and magnesium. Water affected by secondary-treated sewage from the abandoned treatment plant extends 152 feet below land surface into the upper part of the Magothy aquifer and longitudinally beyond the southern edge of the study area, 7,750 feet south of the recharge site. Ground water affected by secondary-treated sewage within the study area typically contains elevated concentrations of reactive chemical constituents, such as potassium and ammonium, and low concentrations of dissolved oxygen. Conservative or minimally reactive constituents such as chloride and sodium have been transported out of the study area in the upper glacial aquifer and the intermediate (transitional) zone but remain in the less

  19. Recent land cover changes and sensitivity of the model simulations to various land cover datasets for China

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Ma, Zhuguo; Mahmood, Rezaul; Zhao, Tianbao; Li, Zhenhua; Li, Yanping

    2017-08-01

    Reliable land cover data are important for improving numerical simulation by regional climate model, because the land surface properties directly affect climate simulation by partitioning of energy, water and momentum fluxes and by determining temperature and moisture at the interface between the land surface and atmosphere. China has experienced significant land cover change in recent decades and accurate representation of these changes is, hence, essential. In this study, we used a climate model to examine the changes experienced in the regional climate because of the different land cover data in recent decades. Three sets of experiments are performed using the same settings, except for the land use/cover (LC) data for the years 1990, 2000, 2009, and the model default LC data. Three warm season periods are selected, which represented a wet (1998), normal (2000) and a dry year (2011) for China in each set of experiment. The results show that all three sets of land cover experiments simulate a warm bias relative to the control with default LC data for near-surface temperature in summertime in most parts of China. It is especially noticeable in the southwest China and south of the Yangtze River, where significant changes of LC occurred. Deforestation in southwest China and to the south of Yangtze River in the experiment cases may have contributed to the negative precipitation bias relative to the control cases. Large LC changes in northwestern Tibetan Plateau for 2000 and 2009 datasets are also associated with changes in surface temperature, precipitation, and heat fluxes. Wind anomalies and energy budget changes are consistent with the precipitation and temperature changes.

  20. Earth observation data for assessment of nationwide land cover and long-term deforestation in Afghanistan

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, C.; Saranya, K. R. L.

    2017-08-01

    This study has generated a national level spatial database of land cover and changes in forest cover of Afghanistan for the 1975-1990, 1990-2005 and 2005-2014 periods. Using these results we have analysed the annual deforestation rates, spatial changes in forests, forest types and fragmentation classes over a period of 1975 to 2014 in Afghanistan. The land cover map of 2014 provides distribution of forest (dry evergreen, moist temperate, dry temperate, pine, sub alpine) and non-forest (grassland, scrub, agriculture, wetlands, barren land, snow and settlements) in Afghanistan. The largest land cover, barren land, contributes to 56% of geographical area of country. Forest is distributed mostly in eastern Afghanistan and constitutes an area of 1.02% of geographical area in 2014. The annual deforestation rate in Afghanistan's forests for the period from 1975 to 1990 estimated as 0.06% which was declined significantly from 2005 to 2014. The predominant forest type in Afghanistan is moist temperate which shows loss of 80 km2 of area during the last four decades of the study period. At national level, the percentage of large core forest area was calculated as 52.20% in 2014.