Science.gov

Sample records for affected cell morphology

  1. Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    PubMed Central

    Nielsen, Judith N.; Charlier, Caroline; Baltes, Nicholas J.; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, Kirsten

    2010-01-01

    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection. PMID:20585559

  2. Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components.

    PubMed

    Hanada, Shinichiro; Harada, Masaru; Kumemura, Hiroto; Omary, M Bishr; Kawaguchi, Takumi; Taniguchi, Eitaro; Koga, Hironori; Yoshida, Takafumi; Maeyama, Michiko; Baba, Shinji; Ueno, Takato; Sata, Michio

    2005-04-01

    Many neurodegenerative diseases are characterized by the presence of protein aggregates bundled with intermediate filaments (IFs) and similar structures, known as Mallory bodies (MBs), are observed in various liver diseases. IFs are anchored at desmosomes and hemidesmosomes, however, interactions with other intercellular junctions have not been determined. We investigated the effect of IF inclusions on junction-associated and cytosolic proteins in various cultured cells. We performed gene transfection of the green fluorescent protein (GFP)-tagged cytokeratin (CK) 18 mutant arg89cys (GFP-CK18 R89C) in cultured cells and observed CK aggregations as well as loss of IF networks. Among various junction-associated proteins, zonula occludens-1 and beta-catenin were colocalized with CK aggregates on immunofluorescent analyses. Similar results were obtained on immunostaining for cytosolic proteins, 14-3-3 zeta protein, glucose-6-phosphate dehydrogenase and DsRed. E-cadherin, a basolateral membrane protein in polarized epithelia, was present on both the apical and basolateral domains in GFP-CK18 R89C-transfected cells. Furthermore, cells containing CK aggregates were significantly larger than GFP-tagged wild type CK18 (GFP-WT CK18)-transfected or non-transfected cells (P < 0.01) and sometimes their morphology was significantly altered. Our data indicate that CK aggregates affect not only cell morphology but also the localization of various cytosolic components, which may affect the cellular function.

  3. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe.

  4. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    PubMed Central

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  5. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  6. Methyl jasmonate affects morphology, number and activity of endoplasmic reticulum bodies in Raphanus sativus root cells.

    PubMed

    Gotté, Maxime; Ghosh, Rajgourab; Bernard, Sophie; Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Hara-Nishimura, Ikuko; Driouich, Azeddine

    2015-01-01

    The endoplasmic reticulum (ER) bodies are ER-derived structures that are found in Brassicaceae species and thought to play a role in defense. Here, we have investigated the occurrence, distribution and function of ER bodies in root cells of Raphanus sativus using a combination of microscopic and biochemical methods. We have also assessed the response of ER bodies to methyl jasmonate (MeJA), a phytohormone that mediates plant defense against wounding and pathogens. Our results show that (i) ER bodies do occur in different root cell types from the root cap region to the differentiation zone; (ii) they do accumulate a PYK10-like protein similar to the major marker protein of ER bodies that is involved in defense in Arabidopsis thaliana; and (iii) treatment of root cells with MeJA causes a significant increase in the number of ER bodies and the activity of β-glucosidases. More importantly, MeJA was found to induce the formation of very long ER bodies that results from the fusion of small ones, a phenomenon that has not been reported in any other study so far. These findings demonstrate that MeJA impacts the number and morphology of functional ER bodies and stimulates ER body enzyme activities, probably to participate in defense responses of radish root. They also suggest that these structures may provide a defensive system specific to root cells.

  7. Clinorotation affects soybean seedling morphology.

    PubMed

    Hilaire, E; Guikema, J A; Brown, C S

    1995-01-01

    Although spaceflight does not appear to significantly affect seed germination, it can influence subsequent plant growth. On STS-3 and SL-2, decreased growth (measured as plant length, fresh weight and dry weight) was noted for pine, oat and mung bean. In the CHROMEX-01 and -02 experiments with Haplopappus and in the CHROMEX-03 experiment with Arabidopsis, enhanced root growth was noted in the space-grown plants. In the CHROMEX-04 experiment with wheat, both leaf fresh weight and leaf area were diminished in the space-grown plants but there was no difference in total plant height (CS Brown, HG Levine, and AD Krikorian, unpublished data). These data suggest that microgravity impacts growth by whole plant partitioning of assimilates. The objective of the present study was to determine the influence of clinorotation on the growth and morphology of soybean seedlings grown in the BRIC (Biological Research In Canister) flight hardware. This experiment provided baseline data for a spaceflight experiment (BRIC-03) flown on STS-63 (Feb. 3-11, 1995).

  8. Clinorotation affects soybean seedling morphology

    NASA Technical Reports Server (NTRS)

    Hilaire, Emmanuel; Guikema, James A.; Brown, Christopher S.

    1995-01-01

    Although spaceflight does not appear to significantly affect seed germination, it can influence subsequent plant growth. On STS-3 and SL-2, decreased growth (measured as plant length, fresh weight, and dry weight) was noted for pine, oat, and mung bean. In the CHROMEX-01 and 02 experiments with Haplopappus and in the CHROMEX-03 experiment with Arabidopsis, enhanced root growth was noted in the space-grown plants. In the CHROMEX-04 experiments with wheat, both leaf fresh weight and leaf area were diminished in the space-grown plants but there was no difference in total plant height (CS Brown, HG Levine, and AD Krikorian, unpublished data). These data suggest that microgravity impacts growth by whole plant partitioning of the assimilates. The objective of the present study was to determine the influence of clinorotation on the growth and the morphology of soybean seedlings grown in the Biological Research In Canister (BRIC) flight hardware. This experiment provided baseline data for a spaceflight experiment (BRIC-3) flown on STS-63 (February 3-11, 1995).

  9. Cortisol affects tight junction morphology between pavement cells of rainbow trout gills in single-seeded insert culture.

    PubMed

    Sandbichler, Adolf Michael; Farkas, Julia; Salvenmoser, Willi; Pelster, Bernd

    2011-12-01

    A primary culture system of rainbow trout gill pavement cells grown on permeable support (single-seeded insert, SSI) was used to examine histological and physiological changes induced by the addition of the corticosteroid hormone cortisol. Pavement cell epithelia were cultured under symmetrical conditions (L15 apical/L15 basolateral) and developed a high transepithelial resistance (TER, 6.84 ± 1.99 kΩ cm(2), mean ± SEM) with a low phenol red diffusion rate (PRD, 0.15 ± 0.03 μmol l(-1)/day). Addition of cortisol to the basolateral compartment increased TER twofold and reduced PRD threefold over a 5-day period. A similar increase in TER could be seen after 24 h apical freshwater (FW) in control cultures. In cortisol-treated cultures FW exposure did not change TER, but PRD increased significantly. Histochemical staining of the cytoskeleton of cells in SSI culture revealed a morphological partitioning into a single mucosal layer of polarized, polygonal cells featuring cortical F-actin rings which were comparable to F-actin rings of epithelial cells on the lamellar and filamental surface, and several unorganized serosal layers of cells with F-actin stress fibers. Addition of cortisol increased cell density by 18% and in the mucosal layer it led to smaller, less polygonal cells with increased height and increased cell contact area. In transmission electron microscopic images two pairs of cytoplasmatic electron-dense structures confining the zonula occludens apically and basally toward the zonula adhaerens were found. Addition of cortisol increased the distance between those paired structures, hence led to deeper tight junctions. The cortisol-induced increase in barrier properties, therefore, involves a structural fortification of the tight junctions which was not generally modified by a short 24-h apical freshwater stress. These results identify cortisol as a regulator of tight junction morphology between pavement cells of euryhaline fish such as the

  10. Factors affecting spermatozoa morphology in beef bulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate factors affecting sperm morphology of bulls (n=908) collected at 320 days of age. Bulls were a composite breed (50% Red Angus, 25% Charolais, and 25% Tarentaise) born from 2002 to 2008 to dams fed levels of feed during mid and late gestation that were expe...

  11. Recent Advances in Morphological Cell Image Analysis

    PubMed Central

    Chen, Shengyong; Zhao, Mingzhu; Wu, Guang; Yao, Chunyan; Zhang, Jianwei

    2012-01-01

    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed. PMID:22272215

  12. Clostridium botulinum type C hemagglutinin affects the morphology and viability of cultured mammalian cells via binding to the ganglioside GM3.

    PubMed

    Sugawara, Yo; Iwamori, Masao; Matsumura, Takuhiro; Yutani, Masahiro; Amatsu, Sho; Fujinaga, Yukako

    2015-09-01

    Botulinum neurotoxin is conventionally divided into seven serotypes, designated A-G, and is produced as large protein complexes through associations with non-toxic components, such as hemagglutinin (HA) and non-toxic non-HA. These non-toxic proteins dramatically enhance the oral toxicity of the toxin complex. HA is considered to have a role in toxin transport through the intestinal epithelium by carbohydrate binding and epithelial barrier-disrupting activity. Type A and B HAs disrupt E-cadherin-mediated cell adhesion, and, in turn, the intercellular epithelial barrier. Type C HA (HA/C) disrupts the barrier function by affecting cell morphology and viability, the mechanism of which remains unknown. In this study, we identified GM3 as the target molecule of HA/C. We found that sialic acid binding of HA is essential for the activity. It was abolished when cells were pre-treated with an inhibitor of ganglioside synthesis. Consistent with this, HA/C bound to a-series gangliosides in a glycan array. In parallel, we isolated clones resistant to HA/C activity from a susceptible mouse fibroblast strain. These cells lacked expression of ST-I, the enzyme that transfers sialic acid to lactosylceramide to yield GM3. These clones became sensitive to HA/C activity when GM3 was expressed by transfection with the ST-I gene. The sensitivity of fibroblasts to HA/C was reduced by expressing ganglioside synthesis genes whose products utilize GM3 as a substrate and consequently generate other a-series gangliosides, suggesting a GM3-specific mechanism. Our results demonstrate that HA/C affects cells in a GM3-dependent manner.

  13. nanoparticles but affecting morphology under broader view

    NASA Astrophysics Data System (ADS)

    Karkare, Manasi Manoj

    2014-07-01

    In this study, anatase titanium dioxide nanoparticles were successfully prepared by a sol-gel method using two different precursors, titanium isopropoxide and titanium butoxide. Hydrochloric acid or nitric acid was added to adjust the pH of the solution. The sols obtained were dried at 80 °C and calcined at 450 °C for 3 h. The nanostructures were characterised by scanning electron microscopy, FTIR and ultraviolet-visible spectroscopy. The phase transformations were investigated by an X-ray diffractometer. Highly crystalline anatase titania nanoparticles could be obtained through the controlled hydrolysis reaction rate. The sizes of synthesized particles were in the range 5-13 nm, i.e. 9 nm on an average and with a regular shape. The size of nanoparticles was not affected by the choice of precursor. The broad view of the samples prepared using titanium isopropoxide showed film-like structures, whereas the samples prepared using titanium butoxide showed spherical granules. A red shift of 0.13 eV was observed in the band gap in the case of non-spherical particles compared to spherical ones.

  14. Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death.

    PubMed

    Aloisi, Iris; Cai, Giampiero; Tumiatti, Vincenzo; Minarini, Anna; Del Duca, Stefano

    2015-10-01

    Polyamines (PAs) are small molecules necessary for pollen maturation and tube growth. Their role is often controversial, since they may act as pro-survival factors as well as factors promoting Programmed Cell Death (PCD). The aim of the present work was to evaluate the effect of exogenous PAs on the apical growth of pear (Pyrus communis) pollen tube and to understand if PAs and reactive oxygen species (ROS) are interconnected in the process of tip-growth. In the present study besides natural PAs, also aryl-substituted spermine and methoctramine (Met 6-8-6) analogs were tested. Among the natural PAs, Spm showed strongest effects on tube growth. Spm entered through the pollen tube tip, then diffused in the sub-apical region that underwent drastic morphological changes, showing enlarged tip. Analogs were mostly less efficient than natural PAs but BD23, an asymmetric synthetic PAs bearing a pyridine ring, showed similar effects. These effects were related to the ability of PAs to cause the decrease of ROS level in the apical zone, leading to cell death, counteracted by the caspase-3 inhibitor Ac-DEVD-CHO (DEVD). In conclusions, ROS are essential for pollen germination and a strict correlation between ROS regulation and PA concentration is reported. Moreover, an imbalance between ROS and PAs can be detrimental thereby driving pollen toward cell death.

  15. Disruption of the pdhB pyruvate dehydrogenase [corrected] gene affects colony morphology, in vitro growth and cell invasiveness of Mycoplasma agalactiae.

    PubMed

    Hegde, Shivanand; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2015-01-01

    The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae.

  16. Personality and morphological traits affect pigeon survival from raptor attacks

    PubMed Central

    Santos, Carlos D.; Cramer, Julia F.; Pârâu, Liviu G.; Miranda, Ana C.; Wikelski, Martin; Dechmann, Dina K. N.

    2015-01-01

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances. PMID:26489437

  17. Personality and morphological traits affect pigeon survival from raptor attacks.

    PubMed

    Santos, Carlos D; Cramer, Julia F; Pârâu, Liviu G; Miranda, Ana C; Wikelski, Martin; Dechmann, Dina K N

    2015-10-22

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances.

  18. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  19. Glutamate affects dendritic morphology of neurons grown on compliant substrates.

    PubMed

    Previtera, Michelle L; Firestein, Bonnie L

    2015-01-01

    Brain stiffness changes in response to injury or disease. As a secondary consequence, glutamate is released from neurons and astroglia. Two types of glutamate receptors, N-methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, sense mechanotransduction, leading to downstream signaling in neurons. Recently, our group reported that these two receptors affect dendrite morphology in hippocampal neurons grown on compliant substrates. Blocking receptor activity has distinct effects on dendrites, depending on whether neurons are grown on soft or stiff gels. In the current study, we examine whether exposure to glutamate itself alters stiffness-mediated changes to dendrites in hippocampal neurons. We find that glutamate augments changes seen when neurons are grown on soft gels of 300 or 600 Pa, but in contrast, glutamate attenuates changes seen when neurons are grown on stiff gels of 3,000 Pa. These results suggest that there is interplay between mechanosensing and glutamate receptor activation in determining dendrite morphology in neurons.

  20. Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions

    NASA Astrophysics Data System (ADS)

    Qian, Airong; Zhang, Wei; Weng, Yuanyuan; Tian, Zongcheng; Di, Shengmeng; Yang, Pengfei; Yin, Dachuan; Hu, Lifang; Wang, Zhe; Xu, Huiyun; Shang, Peng

    The aims of this study are to investigate the effects of gravitational environment produced by a superconducting magnet on osteoblast morphology, proliferation and adhesion. A superconducting magnet which can produce large gradient high magnetic field (LGHMF) and provide three apparent gravity levels (0g,1gand2g) was employed to simulate space gravity environment. The effects of LGHMF on osteoblast morphology, proliferation, adhesion and the gene expression of fibronectin and collagen I were detected by scanning electron microscopy, immunocytochemistry, adhesion assays and real time PCR, respectively, after exposure of osteoblasts to LGHMF for 24 h. Osteoblast morphology was affected by LGHMF (0g,1gand2g) and the most evident morphology alteration was observed at 0g condition. Proliferative abilities of MC3T3 and MG-63 cell were affected under LGHMF (0g,1gand2g) conditions compared to control condition. The adhesive abilities of MC3T3 and MG-63 cells to extracellular matrix (ECM) proteins (fibronectin, laminin, collagen IV) were also affected by LGHMF (0g,1gand2g), moreover, the effects of LGHMF on osteoblast adhesion to different ECM proteins were different. Fibronectin gene expression in MG63 cells under zero gravity condition was increased significantly compared to other conditions. Collagen I gene expression in MG-63 and MC3T3 cells was altered by both magnetic field and alerted gravity. The study indicates that the superconducting magnet which can produce LGHMF may be a novel ground-based space gravity simulator and can be used for biological experiment at cellular level.

  1. Morphological properties of mouse retinal ganglion cells.

    PubMed

    Coombs, J; van der List, D; Wang, G-Y; Chalupa, L M

    2006-06-19

    The mouse retina offers an increasingly valuable model for vision research given the possibilities for genetic manipulation. Here we assess how the structural properties of mouse retinal ganglion cells relate to the stratification pattern of the dendrites of these neurons within the inner plexiform layer. For this purpose, we used 14 morphological measures to classify mouse retinal ganglion cells parametrically into different clusters. Retinal ganglion cells were labeled in one of three ways: Lucifer Yellow injection, 'DiOlistics' or transgenic expression of yellow fluorescent protein. The resulting analysis of 182 cells revealed 10 clusters of monostratified cells, with dendrites confined to either On or Off sublaminae of the inner plexiform layer, and four clusters of bistratified cells, dendrites spanning the On and Off sublaminae. We also sought to establish how these parametrically identified retinal ganglion cell clusters relate to cell types identified previously on the basis of immunocytochemical staining and the expression of yellow fluorescent protein. Cells labeled with an antibody against melanopsin were found to be located within a single cluster, while those labeled with the SMI-32 antibody were in four different clusters. Yellow fluorescent protein expressing cells were distributed within 13 of the 14 clusters identified here, which demonstrates that yellow fluorescent protein expression is a useful method for labeling virtually the entire population of mouse retinal ganglion cells. Collectively, these findings provide a valuable baseline for future studies dealing with the effects of genetic mutations on the morphological development of these neurons.

  2. Twenty Four-Hour Exposure to a 0.12 THz Electromagnetic Field Does Not Affect the Genotoxicity, Morphological Changes, or Expression of Heat Shock Protein in HCE-T Cells

    PubMed Central

    Koyama, Shin; Narita, Eijiro; Shimizu, Yoko; Shiina, Takeo; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2016-01-01

    To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm2 for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye. PMID:27527204

  3. Plastic solar cell interface and morphological characterization

    NASA Astrophysics Data System (ADS)

    Guralnick, Brett W.

    Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer. The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology. Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and

  4. Morphology control of the perovskite films for efficient solar cells.

    PubMed

    Zheng, Lingling; Zhang, Danfei; Ma, Yingzhuang; Lu, Zelin; Chen, Zhijian; Wang, Shufeng; Xiao, Lixin; Gong, Qihuang

    2015-06-21

    In the past two years, the power conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells has significantly increased up to 20.1%. These state-of-the-art new devices surpass other third-generation solar cells to become the most promising rival to the silicon-based solar cells. Since the morphology of the perovskite film is one of the most crucial factors to affect the performance of the device, many approaches have been developed for its improvement. This review provides a systematical summary of the methods for morphology control. Introductions and discussions on the mechanisms and relevant hotspots are also given. Understanding the growth process of perovskite crystallites has great benefits for further efficiency improvement and enlightens us to exploit new technologies for large-scale, low-cost and high-performance perovskite solar cells.

  5. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  6. Cell Shape Dependent Regulation of Nuclear Morphology

    PubMed Central

    Chen, Bo; Co, Carlos; Ho, Chia-Chi

    2015-01-01

    Recent studies suggest that actin filaments are essential in how a cell controls its nuclear shape. However, little is known about the relative importance of membrane tension in determining nuclear morphology. In this study, we used adhesive micropatterned substrates to alter the cellular geometry (aspect ratio, size, and shape) that allowed direct membrane tension or without membrane lateral contact with the nucleus and investigate nuclear shape remodeling and orientation on a series of rectangular shapes. Here we showed that at low cell aspect ratios the orientation of the nucleus was regulated by actin filaments while cells with high aspect ratios can maintain nuclear shape and orientation even when actin polymerization was blocked. A model adenocarcinoma cell showed similar behavior in the regulation of nuclear shape in response to changes in cell shape but actin filaments were essential in maintaining cell shape. Our results highlight the two distinct mechanisms to regulate nuclear shape through cell shape control and the difference between fibroblasts and a model cancerous cell in cell adhesion and cell shape control. PMID:26210179

  7. Limb blastema cell: a stem cell for morphological regeneration.

    PubMed

    Tamura, Koji; Ohgo, Shiro; Yokoyama, Hitoshi

    2010-01-01

    The limb blastema cell, which is a major source of mesenchymal components in the limb regenerate, serves as a stem cell that possesses an undifferentiated state and multipotency. A remarkable property of the limb blastema cell can be seen in its capability for morphogenesis. Elucidation of the molecular basis for morphological regeneration is essential for success in organ regeneration in humans, and characterization of limb blastema cells will provide many insights into how to create three-dimensional morphology during the regeneration process. In this review, we deal with positional memory, a key trait of the limb blastema cell in regard to morphological regeneration, making reference to classic surgical experiments, comparative descriptions of limb and fin blastemas, and genetic/epigenetic regulation of gene transcription. Urodele amphibians, anuran amphibians, and teleosts are likely to share fundamental mechanisms for morphological regeneration, but there are several differences in the process of regeneration, including the epigenetic conditions. Accumulation of knowledge of the molecular mechanisms and epigenetic modifications of gene activation in morphological regeneration of the model organisms for which an overview is provided in this review will lead to successful stimulation of regenerative capacity in amniotes, which only have a limited capability for morphological regeneration.

  8. [Effects of infusion media on human red blood cell morphology].

    PubMed

    Burova, O O; Gusev, A A; Petrikov, S S; Gusev, S A; Basyreva, L Iu

    2006-01-01

    The effect of various infusion media on the structure of human red blood cells was evaluated in vitro and in vivo. The in vitro experiments used 10% sodium chloride (NaCl) solution, 10% glucose solution, 20% albumin solution, Rheopolyglucin, HyperHAES solution (18 g of NaCl in combination with 60 g of hydroxyethylstarch (HES), 200/0.5), Voluven (HES 130/0.4/9:1), and a combination of hypertensive NaCl solution and Rheopolyglucin. The morphofunctional response of red blood cells was studied in the clinical setting when 6% Voluven solution (HES 130/0.4/ 9:1) and hypertensive NaCl and glucose solutions were used. It was established that 10% NaCl solution caused considerable changes in the morphology of red blood cells both in the experiment and in patients with severe brain injury. The magnitude of structural changes increased as blood NaCl concentrations became higher. 10% glucose solution, Voluven, Rheopolyglucin, and albumin did not virtually affect the structure of red blood cells. Infusion of Voluven (500 ml of 6% solution for 40 minutes) induced no changes in the morphology of red blood cells in the clinical setting. Among the test solutions used to correct intracranial hypertension (HyperHAES, 10% NaCl, a combination of rheopolyglucin and 10% NaCl), HyperHAES exerted the least effect on the morphology of red blood cells.

  9. Factors Affecting the Acquisition of Plural Morphology in Jordanian Arabic

    ERIC Educational Resources Information Center

    Albirini, Abdulkafi

    2015-01-01

    This study investigates the development of plural morphology in Jordanian Arab children, and explores the role of the predictability, transparency, productivity, and frequency of different plural forms in determining the trajectory that children follow in acquiring this complex inflectional system. The study also re-examines the development of the…

  10. How Word Frequency Affects Morphological Processing in Monolinguals and Bilinguals

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Laine, Matti

    2003-01-01

    The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and…

  11. Photoperiod affects the diurnal rhythm of hippocampal neuronal morphology of Siberian hamsters.

    PubMed

    Ikeno, Tomoko; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    Individuals of many species can regulate their physiology, morphology, and behavior in response to annual changes of day length (photoperiod). In mammals, the photoperiodic signal is mediated by a change in the duration of melatonin, leading to alterations in gene expressions, neuronal circuits, and hormonal secretion. The hippocampus is one of the most plastic structures in the adult brain and hippocampal neuronal morphology displays photoperiod-induced differences. Because the hippocampus is important for emotional and cognitive behaviors, photoperiod-driven remodeling of hippocampal neurons is implicated in seasonal differences of affect, including seasonal affective disorder (SAD) in humans. Because neuronal architecture is also affected by the day-night cycle in several brain areas, we hypothesized that hippocampal neuronal morphology would display a diurnal rhythm and that day length would influence that rhythm. In the present study, we examined diurnal and seasonal differences in hippocampal neuronal morphology, as well as mRNA expression of the neurotrophic factors (i.e., brain-derived neurotrophic factor [Bdnf], tropomyosin receptor kinase B [trkB; a receptor for BDNF], and vascular endothelial growth factor [Vegf]) and a circadian clock gene, Bmal1, in the hippocampus of Siberian hamsters. Diurnal rhythms in total length of dendrites, the number of primary dendrites, dendritic complexity, and distance of the furthest intersection from the cell body were observed only in long-day animals; however, diurnal rhythms in the number of branch points and mean length of segments were observed only in short-day animals. Spine density of dendrites displayed diurnal rhythmicity with different peak times between the CA1 and DG subregions and between long and short days. These results indicate that photoperiod affects daily morphological changes of hippocampal neurons and the daily rhythm of spine density, suggesting the possibility that photoperiod-induced adjustments

  12. Isolated polycystic morphology: Does it affect the IVF treatment outcomes?

    PubMed

    Bezirganoglu, N; Seckin, K D; Baser, E; Karsli, M F; Yeral, M I; Cicek, M N

    2015-04-01

    The aim of the current study was to compare women who have normal ovarian ultrasonographic findings and women with ovulatory polycystic ovary (PCO), in terms of IVF treatment outcome. The study was conducted at a tertiary referral hospital and included 906 women who underwent IVF treatment. Of these, 224 of the women had PCO (24.7%) and 682 of the women had normal ovarian morphology (75.3%) at the time of ultrasonographic examination prior to IVF. The treatment outcomes were compared between the two groups. In the PCO group, the number of oocytes at the size of > 16 mm, the overall number of collected oocytes and the number of fertilised oocytes were found to be significantly higher. Furthermore, the rates of implantation, biochemical pregnancy and clinical pregnancy were significantly higher in the PCO group (p < 0.05). The detection of PCO morphology on baseline ultrasonography in IVF candidates may be associated with higher treatment success.

  13. Morphology Studies of Polymer Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Moon, Ji Sun

    Energy is a prerequisite for creating and sustaining life. The need for energy increases globally as the world's population and economy grow. However, conventional energy sources---fossil fuels---generate carbon dioxide and contribute to global warming, perhaps the most serious environmental problem of our time. Carbon dioxide-free energy is required to stop global warming. Polymer solar cells have been attracting a great deal of interest as a source of renewable energy with a great potential for low cost. Polymer bulk heterojunction (BHJ) solar cells have been greatly improved; the power conversion efficiency is already up to 9.2% making the future of the polymer solar cell very promising. This thesis is a study of the morphology of polymer:fullerene BHJ, one of the most critical and challenging parts of high efficiency polymer solar cells. To discover the morphology, cross-section as well as top-down transmission electron microscopy were used. The contrast was achieved by utilizing phase contrast microscopy. Thermal annealing, dependence of BHJ thickness, processing additives, solution sequential process and solution sequential process with the use of cosolvent that affects/controls the BHJ morphology are studied in detail.

  14. Clinorotation affects morphology and ethylene production in soybean seedlings

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1996-01-01

    The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

  15. Quantitative methods to characterize morphological properties of cell lines.

    PubMed

    Mancia, Annalaura; Elliott, John T; Halter, Michael; Bhadriraju, Kiran; Tona, Alessandro; Spurlin, Tighe A; Middlebrooks, Bobby L; Baatz, John E; Warr, Gregory W; Plant, Anne L

    2012-07-01

    Descriptive terms are often used to characterize cells in culture, but the use of nonquantitative and poorly defined terms can lead to ambiguities when comparing data from different laboratories. Although recently there has been a good deal of interest in unambiguous identification of cell lines via their genetic markers, it is also critical to have definitive, quantitative metrics to describe cell phenotypic characteristics. Quantitative metrics of cell phenotype will aid the comparison of data from experiments performed at different times and in different laboratories where influences such as the age of the population and differences in culture conditions or protocols can potentially affect cellular metabolic state and gene expression in the absence of changes in the genetic profile. Here, we present examples of robust methodologies for quantitatively assessing characteristics of cell morphology and cell-cell interactions, and of growth rates of cells within the population. We performed these analyses with endothelial cell lines derived from dolphin, bovine and human, and with a mouse fibroblast cell line. These metrics quantify some characteristics of these cells lines that clearly distinguish them from one another, and provide quantitative information on phenotypic changes in one of the cell lines over large number of passages.

  16. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    PubMed

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes.

  17. HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins.

    PubMed

    Puschmann, Till B; Zandén, Carl; Lebkuechner, Isabell; Philippot, Camille; de Pablo, Yolanda; Liu, Johan; Pekny, Milos

    2014-03-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a vascular-derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia-inducible proteins released by astrocytes in CNS injuries. It was suggested that HB-EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB-EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB-EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia-like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT-qPCR analysis demonstrated that HB-EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB-EGF-mediated astrocyte response. HB-EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de-differentiation of astrocytes.

  18. Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division

    PubMed Central

    Gao, Lihui; Zhao, Xiaowei; Liu, Jun; Norris, Steven J.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH and FliI in B. burgdorferi have not been reported. In this study, fliH and fliI transposon mutants were utilized to dissect the mechanism of the Borrelia type III secretion system. The fliH and fliI mutants exhibited rod-shaped or string-like morphology, greatly reduced motility, division defects (resulting in elongated organisms with incomplete division points), and noninfectivity in mice by needle inoculation. Mutants in fliH and fliI were incapable of translational motion in 1% methylcellulose or soft agar. Inactivation of either fliH or fliI resulted in the loss of the FliH-FliI complex from otherwise intact flagellar motors, as determined by cryo-electron tomography (cryo-ET). Flagellar assemblies were still present in the mutant cells, albeit in lower numbers than in wild-type cells and with truncated flagella. Genetic complementation of fliH and fliI mutants in trans restored their wild-type morphology, motility, and flagellar motor structure; however, full-length flagella and infectivity were not recovered in these complemented mutants. Based on these results, disruption of either fliH or fliI in B. burgdorferi results in a severe defect in flagellar structure and function and cell division but does not completely block the export and assembly of flagellar hook and filament proteins. PMID:25968649

  19. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes.

    PubMed

    Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Yi, Sun Shin; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2013-09-15

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the methimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating thyronine (T3) and thyroxine (T4) levels were significantly decreased compared to levels observed in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibrillary acidic protein immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibrillary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibrillary acidic protein tive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the morphology of astrocytes and microglia and that hypothyroidism during the onset of diabetes prominently reduces the processes of astrocytes and microglia.

  20. Habitat use affects morphological diversification in dragon lizards

    PubMed Central

    COLLAR, D C; SCHULTE, J A; O’MEARA, B C; LOSOS, J B

    2010-01-01

    Habitat use may lead to variation in diversity among evolutionary lineages because habitats differ in the variety of ways they allow for species to make a living. Here, we show that structural habitats contribute to differential diversification of limb and body form in dragon lizards (Agamidae). Based on phylogenetic analysis and ancestral state reconstructions for 90 species, we find that multiple lineages have independently adopted each of four habitat use types: rock-dwelling, terrestriality, semi-arboreality and arboreality. Given these reconstructions, we fit models of evolution to species’ morphological trait values and find that rock-dwelling and arboreality limit diversification relative to terrestriality and semi-arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model-averaged rate estimates are slowest for these habitat types. These results suggest that ground-dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification. PMID:20345808

  1. Fredericamycin A affects mitochondrial inheritance and morphology in Saccharomyces cerevisiae.

    PubMed

    Imamura, Yuko; Yukawa, Masashi; Kimura, Ken-ichi; Takahashi, Hidetoshi; Suzuki, Yoshihiro; Ojika, Makoto; Sakagami, Youji; Tsuchiya, Eiko

    2005-11-01

    Fredericamycin A (FMA) is an antibiotic product of Streptomyces griseus that exhibits modest antitumor activity in vivo and in vitro, but, its functions in vivo are poorly understood. We identified this compound as an inducer of G1 arrest in the yeast, Saccharomyces cerevisiae. FMA exhibits an IC50 of 24 nM towards the growth of a disruptant of multi-drug resistance genes, W303-MLC30, and its cytotoxicity is a function of the time of exposure as well as drug dose. Addition of 0.8 microM of FMA caused aggregation of mitochondria within 10 min of incubation and the drug induced petites at high frequency after 4 h of incubation. Rho(-) cells were about 20 times more resistant to FMA than isogenic rho(+) cells. Overexpression of topoisomerase I, a previously suggested target of the drug, did not alleviate the sensitivity of the cells to FMA or the aggregation of mitochondria. Our results suggest that mitochondria are the primary target site of FMA.

  2. Insights into Embryo Defenses of the Invasive Apple Snail Pomacea canaliculata: Egg Mass Ingestion Affects Rat Intestine Morphology and Growth

    PubMed Central

    Gimeno, Eduardo J.; Heras, Horacio

    2014-01-01

    Background The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Methodology/Principal Findings Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Conclusions/Significance Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to

  3. Brain morphology in children with nevoid basal cell carcinoma syndrome.

    PubMed

    Shiohama, Tadashi; Fujii, Katsunori; Miyashita, Toshiyuki; Mizuochi, Hiromi; Uchikawa, Hideki; Shimojo, Naoki

    2017-04-01

    Brain morphology is tightly regulated by diverse signaling pathways. Hedgehog signaling is a candidate pathway considered responsible for regulating brain morphology. Nevoid basal cell carcinoma syndrome (NBCCS), caused by a PTCH1 mutation in the hedgehog signaling pathway, occasionally exhibits macrocephaly and medulloblastoma. Although cerebellar enlargement occurs in ptch1 heterozygous-deficient mice, its impact on human brain development remains unknown. We investigated the brain morphological characteristics of children with NBCCS. We evaluated brain T1-weighted images from nine children with NBCCS and 15 age-matched normal control (NC) children (mean [standard deviation], 12.2 [2.8] vs. 11.6 [2.3] years old). The diameters of the cerebrum, corpus callosum, and brain stem and the cerebellar volume were compared using two-tailed t-tests with Welch's correction. The transverse diameters (150.4 [9.9] vs. 136.0 [5.5] mm, P = 0.002) and longitudinal diameters (165.4 [8.0] vs. 151.3 [8.7] mm, P = 0.0007) of the cerebrum, cross-sectional area of the cerebellar vermis (18.7 [2.6] vs. 11.8 [1.7] cm(2) , P = 0.0001), and total volume of the cerebellar hemispheres (185.1 [13.0] vs. 131.9 [10.4] cm(3) , P = 0.0001) were significantly larger in the children with NBCCS than in NC children. Thinning of the corpus callosum and ventricular enlargement were also confirmed in children with NBCCS. We demonstrate that, on examination of the brain morphology, an increase in the size of the cerebrum, cerebellum, and cerebral ventricles is revealed in children with NBCCS compared to NC children. This suggests that constitutively active hedgehog signaling affects human brain morphology and the PI3K/AKT and RAS/MAPK pathways.

  4. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  5. Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa

    PubMed Central

    Zhu, Xuexia; Wang, Jun; Lu, Yichun; Chen, Qinwen; Yang, Zhou

    2015-01-01

    The green alga Scenedesmus is known for its phenotypic plasticity in response to grazing risk. However, the benefits of colony formation induced by infochemicals from zooplankton should come with costs. That is, a tradeoff in benefit-to-cost ratios is likely under complex environmental conditions. In this study, we hypothesized that the coexistence of Scenedesmus and its competitors decreases the formation of anti-grazer colonies in Scenedesmus. Results demonstrated that the presence of a competitor Microcystis aeruginosa inhibited inducible defensive colony formation of Scenedesmus obliquus, and the established defensive colonies negatively affected the competitive ability of S. obliquus. The proportion of induced defensive colonies in cultures was dependent on the relative abundance of competitors. Under low competition intensity, large amount of eight-celled colonies were formed but at the cost of decreased competitive inhibition on M. aeruginosa. By contrast, defensive colony formation of S. obliquus slacked in the presence of high competition intensity to maintain a high displacement rate (competitive ability). In conclusion, S. obliquus exhibited different responses to potential grazing pressure under different intensities of competition, i.e., Scenedesmus morphological response to grazing infochemicals was affected by competition against Microcystis. PMID:26224387

  6. Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell

    PubMed Central

    Elbez, Remy; McNaughton, Brandon H.; Patel, Lalit; Pienta, Kenneth J.; Kopelman, Raoul

    2011-01-01

    Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing. PMID:22180784

  7. Fractal morphology of Beta vulgaris L. cell suspension culture permeabilized with Triton X-100®

    NASA Astrophysics Data System (ADS)

    Arenas-Ocampo, M.; Alamilla-Beltrán, L.; Vanegas-Espinoza, P. E.; Camacho-Díaz, B. H.; Campos-Mendiola, R.; Gutiérrez-López, G.; Jiménez-Aparicio, A.

    2012-02-01

    In this work, morphology of Beta vulgaris L. cells permeabilized with 0.7mM of Triton X-100® was evaluated using digital image processing and concepts of fractal dimension (perimeter- area relations). Important morphometric changes were found when the contact-time with chemical agent was increased. The size of cells decreased, the cells lost the roundness and their shape was more sinuous; this behaviour was a result of a probable shrinkage caused by the excess of exposure with the permeabilization agent. Morphology of B. vulgaris cells after permeabilization, exhibited a fractal nature since the slope of the ratio of the logarithm of the perimeter vs logarithm of the area was higher than unit. Fractal geometry of the cell morphology was affected as a result of the exposure to Triton X-100®. Those changes can be attributed to the loss of turgor and structure of the cell wall.

  8. COX assembly factor ccdc56 regulates mitochondrial morphology by affecting mitochondrial recruitment of Drp1.

    PubMed

    Ban-Ishihara, Reiko; Tomohiro-Takamiya, Shiho; Tani, Motohiro; Baudier, Jacques; Ishihara, Naotada; Kuge, Osamu

    2015-10-07

    Mitochondria are dynamic organelles that alter their morphology in response to cellular signaling and differentiation through balanced fusion and fission. In this study, we found that the mitochondrial inner membrane ATPase ATAD3A interacted with ccdc56/MITRAC12/COA3, a subunit of the cytochrome oxidase (COX)-assembly complex. Overproduction of ccdc56 in HeLa cells resulted in fragmented mitochondrial morphology, while mitochondria were highly elongated in ccdc56-repressed cells by the defective recruitment of the fission factor Drp1. We also found that mild and chronic inhibition of COX led to mitochondrial elongation, as seen in ccdc56-repressed cells. These results indicate that ccdc56 positively regulates mitochondrial fission via regulation of COX activity and the mitochondrial recruitment of Drp1, and thus, suggest a novel relationship between COX assembly and mitochondrial morphology.

  9. Biomechanics of larval morphology affect swimming: insights from the sand dollars Dendraster excentricus.

    PubMed

    Chan, Kit Yu Karen

    2012-10-01

    Most planktonic larvae of marine invertebrates are denser than sea water, and rely on swimming to locate food, navigate advective currents, and avoid predators. Therefore, swimming behaviors play important roles in larval survival and dispersal. Larval bodies are often complex and highly variable across developmental stages and environmental conditions. These complex morphologies reflect compromises among multiple evolutionary pressures, including maintaining the ability to swim. Here, I highlight metrics of swimming performance, their relationships with morphology, and the roles of behavior in modulating larval swimming within biomechanical limits. Sand dollars have a representative larval morphology using long ciliated projections for swimming and feeding. Observed larval sand dollars fell within a narrow range of key morphological parameters that maximized their abilities to maintain directed upward movement over the most diverse flow fields, outperforming hypothetical alternatives in a numerical model. Ontogenetic changes in larval morphology also led to different vertical movements in simulated flow fields, implying stage-dependent vertical distributions and lateral transport. These model outcomes suggest a tight coupling between larval morphology and swimming. Environmental stressors, such as changes in temperature and pH, can therefore affect larval swimming through short-term behavioral adjustments and long-term changes in morphology. Larval sand dollars reared under elevated pCO(2) conditions had significantly different morphology, but not swimming speeds or trajectories. Geometric morphometric analysis showed a pH-dependent, size-mediated change in shape, suggesting a coordinated morphological adjustment to maintain swimming performance under acidified conditions. Quantification of the biomechanics and behavioral aspects of swimming improves predictions of larval survival and dispersal under present-day and future environmental conditions.

  10. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    PubMed

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  11. Variations in cell morphology in the canine cruciate ligament complex.

    PubMed

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology.

  12. No evidence for external genital morphology affecting cryptic female choice and reproductive isolation in Drosophila.

    PubMed

    LeVasseur-Viens, Hélène; Polak, Michal; Moehring, Amanda J

    2015-07-01

    Genitalia are one of the most rapidly diverging morphological features in animals. The evolution of genital morphology is proposed to be driven by sexual selection via cryptic female choice, whereby a female selectively uptakes and uses a particular male's sperm on the basis of male genital morphology. The resulting shifts in genital morphology within a species can lead to divergence in genitalia between species, and consequently to reproductive isolation and speciation. Although this conceptual framework is supported by correlative data, there is little direct empirical evidence. Here, we used a microdissection laser to alter the morphology of the external male genitalia in Drosophila, a widely used genetic model for both genital shape and cryptic female choice. We evaluate the effect of precision alterations to lobe morphology on both interspecific and intraspecific mating, and demonstrate experimentally that the male genital lobes do not affect copulation duration or cryptic female choice, contrary to long-standing assumptions regarding the role of the lobes in this model system. Rather, we demonstrate that the lobes are essential for copulation to occur. Moreover, slight alterations to the lobes significantly reduced copulatory success only in competitive environments, identifying precopulatory sexual selection as a potential contributing force behind genital diversification.

  13. Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review

    NASA Astrophysics Data System (ADS)

    Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany

    2014-01-01

    Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.

  14. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    PubMed

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  15. Mitochondrial dynamics and morphology in beta-cells.

    PubMed

    Stiles, Linsey; Shirihai, Orian S

    2012-12-01

    Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.

  16. A novel mechanotactic 3D modeling of cell morphology

    NASA Astrophysics Data System (ADS)

    Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed

    2014-08-01

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.

  17. MORPHOLOGICAL ABERRATION OF ARTHROBACTER GLOBIFORMIS CELLS DUE TO BIOTIN DEFICIENCY.

    PubMed

    CHAN, E C

    1964-03-01

    Chan, E. C. S. (University of New Brunswick, Fredericton, New Brunswick, Canada). Morphological aberration of Arthrobacter globiformis cells due to biotin deficiency. J. Bacteriol. 87:641-651. 1964.-Morphological aberration of Arthrobacter globiformis strain 425 was shown to occur during growth in a chemically defined medium without added biotin. Such aberrant cells could revert back to normal coccoid forms upon inoculation into fresh medium supplemented with the vitamin. This abnormal cellular development occurred even when there was good growth (turbidity) or increase in total cell mass. Light photomicrographs of negative and cell-wall stains of the organism at different times of the morphological growth cycle are presented in support of these observations. The relationship between cellular aberration and the biochemical role of biotin is briefly discussed.

  18. Single-cell resolution of morphological changes in hemogenic endothelium.

    PubMed

    Bos, Frank L; Hawkins, John S; Zovein, Ann C

    2015-08-01

    Endothelial-to-hematopoietic transition (EHT) occurs within a population of hemogenic endothelial cells during embryogenesis, and leads to the formation of the adult hematopoietic system. Currently, the prospective identification of specific endothelial cells that will undergo EHT, and the cellular events enabling this transition, are not known. We set out to define precisely the morphological events of EHT, and to correlate cellular morphology with the expression of the transcription factors RUNX1 and SOX17. A novel strategy was developed to allow for correlation of immunofluorescence data with the ultrastructural resolution of scanning electron microscopy. The approach can identify single endothelial cells undergoing EHT, as identified by the ratio of RUNX1 to SOX17 immunofluorescence levels, and the morphological changes associated with the transition. Furthermore, this work details a new technical resource that is widely applicable for correlative analyses of single cells in their native tissue environments.

  19. Pregnancy persistently affects memory T cell populations.

    PubMed

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans.

  20. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    SciTech Connect

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  1. Effect of surface potential on epithelial cell adhesion, proliferation and morphology.

    PubMed

    Chang, Hsun-Yun; Kao, Wei-Lun; You, Yun-Wen; Chu, Yi-Hsuan; Chu, Kuo-Jui; Chen, Peng-Jen; Wu, Chen-Yi; Lee, Yu-Hsuan; Shyue, Jing-Jong

    2016-05-01

    Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior. However, how cells respond to incremental changes in surface potential remains unclear. By using binary self-assembled monolayer (SAM) modified Au surfaces that are similar in mechanical/chemical properties and provide a series of surface potentials, the effect of surface potential on the behavior of cells can be studied. In this work, the effect of surface potential on epithelial cells, including human embryonic kidney (HEK293T) and human hepatocellular carcinoma (HepG2), were examined. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in extracellular matrix composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area.

  2. Counting white blood cells using morphological granulometries

    NASA Astrophysics Data System (ADS)

    Theera-Umpon, Nipon; Gader, Paul D.

    2000-04-01

    We describe a modification of the mixture proportion estimation algorithm based on the granulometric mixing theorem. The modified algorithm is applied to the problem of counting different types of white blood cells in bone marrow images. In principle, the algorithm can be used to count the proportion of cells in each class without explicitly segmenting and classifying them. The direct application of the original algorithm does not converge well for more than two classes. The modified algorithm uses prior statistics to initially segment the mixed pattern spectrum and then applies the one-primitive estimation algorithm to each initial component. Applying the algorithm to one class at a time results in better convergence. The counts produced by the modified algorithm on six classes of cells--myeloblast, promyelocyte, myelocyte, metamyelocyte, band, and PolyMorphoNuclear--are very close to the human expert's numbers; the deviation of the algorithm counts is similar to the deviation of counts produced by human experts. The important technical contributions are that the modified algorithm uses prior statistics for each shape class in place or prior knowledge of the total number of objects in an image, and it allows for more than one primitive from each class.

  3. Naphthalene Acetic Acid Potassium Salt (NAA-K(+)) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    PubMed

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K(+)) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K(+) might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K(+) affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K(+) possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K(+) repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  4. Craniofacial Morphology Affects Bite Force in Patients with Painful Temporomandibular Disorders.

    PubMed

    Bavia, Paula Furlan; Vilanova, Larissa Soares Reis; Garcia, Renata Cunha Matheus Rodrigues

    2016-01-01

    Craniofacial morphology affects masticatory performance in healthy dentate subjects, but little is known about its effects in patients with painful temporomandibular disorders (TMDs). Forty-eight female patients (mean age of 28±5.8 years) with painful TMDs underwent lateral cephalometric radiography. Using Ricketts' cephalometric analysis and the Vert method, subjects were assigned to three groups according to their craniofacial morphology: brachyfacial (n=22), mesofacial (n=13), and dolichofacial (n=13). Research diagnostic criteria for TMD were used to confirm the TMD diagnosis for each patient. Pain intensity was reported by each patient based on a visual analog scale (VAS). Maximum bite force (MBF) was measured with pressure sensors placed on the first molar site. Masticatory performance (MP) was assessed by chewing a silicone-based artificial material and determining the resulting particle size by the sieve method. Chewing ability (CA) was evaluated for seven food types and analyzed by a VAS questionnaire. Data were analyzed by one-way ANOVA followed by a Tukey-Kramer test (p<0.05). MBF differed in each group, with brachyfacial patients having the highest MBF values. There was no difference in MP among the groups. The groups differed only in their ability to chew one of the seven evaluated food types. In summary, craniofacial morphology affects the MBF without impairing MP or CA in patients with painful TMDs.

  5. Boar pheromone androstenol may affect the ovarian morphology in cycling gilts by humoral pathway.

    PubMed

    Stefańczyk-Krzymowska, S; Wasowska, B; Jana, B

    2002-01-01

    Up to 1999 it was accepted that pheromones act exclusively by stimulation of dendritic receptors of olfactory neurons massed in the olfactory epithelium, but in 1999-2000, the presence of local humoral pathway for transfer of boar pheromone androstenol from the nasal cavity to the hypophysis and brain was demonstrated in gilts. The aim of the present study was to ascertain whether boar pheromone androstenol may affect by humoral pathway the ovarian morphology in gilts. This study demonstrated that intramuscular injections of androstenol in the follicular phase (17-20 day) of the estrous cycle in anosmatic gilts, in which the neural pathway for olfactory function was experimentally blocked, produced lack of the ovulation and changes in the morphology of ovaries. Histological analysis of the ovaries, collected seven days after androstenol injections, revealed the absence of corpora lutea and healthy follicles of a diameter over 6 mm as well as a significant decrease in the number of the follicles up to I mm in diameter (P<0.01). In androstenol-treated gilts, the number of atretic follicles from 1 mm to 6 mm in size was increased (P<0.01-P<0.001) and in one gilt cysts were found. The obtained results provided some evidence that in gilts in addition to acting by standard neural pathway, androstenol as a priming pheromone may affect the ovarian morphology by a humoral pathway.

  6. Factors Affecting the Morphology of Pb-Based Glass Frit Coated with Ag Material Prepared by Electroless Silver Plating

    NASA Astrophysics Data System (ADS)

    Huang, Bei; Gan, Weiping; Zhou, Jian; Li, Yingfen; Lin, Tao; Liu, Xiaogang

    2014-05-01

    Pb-based glass frit coated with nanosilver material for Si solar cell applications has been directly prepared by electroless silver plating. Activation of the glass frit was accomplished by using glycol, with the aim of reducing the silver ions to elemental silver on the surface of the glass frit. Electroless silver plating onto the glass frit was successfully realized using two kinds of electroless plating bath. However, the morphology of the composite powder greatly affected the modality, sheet resistance, series resistance, and photoelectric conversion efficiency of the conducting silver films. We found that the activation temperature affected the number and distribution of silver nanoparticles. Meanwhile, the average grain size of the silver particles and the silver content in the Pb-based glass frit coated with Ag material could be controlled by adjusting the pH value and loading capacity, respectively, during plating.

  7. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells.

    PubMed

    Haruk, Alexander M; Mativetsky, Jeffrey M

    2015-06-11

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  8. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  9. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells

    NASA Astrophysics Data System (ADS)

    Cheng, Dengfeng; Li, Xiao; Zhang, Guoxin; Shi, Hongcheng

    2014-04-01

    Forced oscillation of spherical and rod-shaped iron oxide magnetic nanoparticles (MNPs) via low-power and low-frequency alternating magnetic field (AMF) was firstly used to kill cancer cells in vitro. After being loaded by human cervical cancer cells line (HeLa) and then exposed to a 35-kHz AMF, MNPs mechanically damaged cell membranes and cytoplasm, decreasing the cell viability. It was found that the concentration and morphology of the MNPs significantly influenced the cell-killing efficiency of oscillating MNPs. In this preliminary study, when HeLa cells were pre-incubated with 100 μg/mL rod-shaped MNPs (rMNP, length of 200 ± 50 nm and diameter of 50 to 120 nm) for 20 h, MTT assay proved that the cell viability decreased by 30.9% after being exposed to AMF for 2 h, while the cell viability decreased by 11.7% if spherical MNPs (sMNP, diameter of 200 ± 50 nm) were used for investigation. Furthermore, the morphological effect of MNPs on cell viability was confirmed by trypan blue assay: 39.5% rMNP-loaded cells and 15.1% sMNP-loaded cells were stained after being exposed to AMF for 2 h. It was also interesting to find that killing tumor cells at either higher (500 μg/mL) or lower (20 μg/mL) concentration of MNPs was less efficient than that achieved at 100 μg/mL concentration. In conclusion, the relatively asymmetric morphological rod-shaped MNPs can kill cancer cells more effectively than spherical MNPs when being exposed to AMF by virtue of their mechanical oscillations.

  10. Morphologic changes in basal cells during repair of tracheal epithelium.

    PubMed Central

    Wang, C. Z.; Evans, M. J.; Cox, R. A.; Burke, A. S.; Zhu, Q.; Herndon, D. N.; Barrow, R. E.

    1992-01-01

    Basal cells are differentiated with respect to junctional adhesion mechanisms and play a role in attachment of columnar epithelium to the basal lamina. Although much is known about nonciliated and ciliated cell differentiation during the repair process after injury, little is known about the basal cell. We studied the morphology of basal cells and quantitated junctional adhesion structures during repair of tracheal epithelium exposed to toxic cotton smoke. Ten adult ewes were given a smoke injury to a portion of the upper cervical trachea and were killed at 4, 6, 8, 10, and 18 days after injury for morphometric studies. At 4 days, there was a stratified reparative epithelium over the basal lamina, which was two to four cells in depth. The basal cells were identified by their hemidesmosome (HD) attachment to the basal lamina. Basal cells were about 69% larger than controls and flattened rather than columnar. The amount of HD attachment was 192% greater than controls. In contrast, volume density of cytokeratin filaments had decreased about 47%. Basal cells had returned to normal numbers and size and a columnar shape by day 18. The amount of desmosome (D) and HD attachment and volume density of cytokeratins had also reached control levels by day 18. These data indicate that morphology of basal cells changes during the initial stages of reparative regeneration but returns to normal by 18 days. Morphologic changes appear to reflect changes in size of the cell associated with cell division rather than differentiation of recently divided basal cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1381564

  11. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    SciTech Connect

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  12. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin.

    PubMed

    Joves, Gerardo José; Inoue, Go; Nakashima, Syozi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    This study aimed to investigate an artificial caries-affected dentin (ACAD) model for in vitro bonding studies in comparison to natural caries-affected dentin (NCAD) of human teeth. ACAD was created over 7 days in a demineralizing solution. Mineral density (MD) at different depth levels (0-150 µm) was compared between NCAD and ACAD by transverse microradiography. Micro-tensile bond strengths (µTBS) of two two-step self-etch adhesives to sound dentin, NCAD and ACAD were evaluated. Caries-affected dentin type was not a significant factor when comparing MD at different lesion levels (p>0.05). Under SEM, the dentinal tubules appeared occluded with crystal logs 1-2 µm in thickness in the NCAD; whereas they remained open in the ACAD. The µTBS to caries-affected dentin was lower than sound dentin, but was not affected by the type of caries (p>0.05). In spite of their different morphologies, the ACAD model showed similar MD and µTBS compared to NCAD.

  13. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    PubMed

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.

  14. Tendon cell outgrowth rates and morphology associated with kevlar-49.

    PubMed

    Zimmerman, M; Gordon, K E

    1988-12-01

    A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.

  15. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants.

    PubMed

    Ossola, Alessandro; Nash, Michael A; Christie, Fiona J; Hahs, Amy K; Livesley, Stephen J

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size.

  16. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  17. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates.

    PubMed

    Mousavi, Seyed Jamaleddin; Doweidar, Mohamed Hamdy

    2015-01-01

    Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell's physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the

  18. Measurement of red blood cell mechanics during morphological changes.

    PubMed

    Park, YongKeun; Best, Catherine A; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Kuriabova, Tatiana; Henle, Mark L; Levine, Alex J; Popescu, Gabriel

    2010-04-13

    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell's morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane's shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery.

  19. Dynamic and reversible surface topography influences cell morphology.

    PubMed

    Kiang, Jennifer D; Wen, Jessica H; del Álamo, Juan C; Engler, Adam J

    2013-08-01

    Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness.

  20. Three-Dimensional Numerical Model of Cell Morphology during Migration in Multi-Signaling Substrates

    PubMed Central

    Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed

    2015-01-01

    Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell’s physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the

  1. Organic solar cells: an overview focusing on active layer morphology.

    PubMed

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  2. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  3. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  4. Variable cell morphology approach for individual-based modeling of microbial communities.

    PubMed

    Storck, Tomas; Picioreanu, Cristian; Virdis, Bernardino; Batstone, Damien J

    2014-05-06

    An individual-based, mass-spring modeling framework has been developed to investigate the effect of cell properties on the structure of biofilms and microbial aggregates through Lagrangian modeling. Key features that distinguish this model are variable cell morphology described by a collection of particles connected by springs and a mechanical representation of deformable intracellular, intercellular, and cell-substratum links. A first case study describes the colony formation of a rod-shaped species on a planar substratum. This case shows the importance of mechanical interactions in a community of growing and dividing rod-shaped cells (i.e., bacilli). Cell-substratum links promote formation of mounds as opposed to single-layer biofilms, whereas filial links affect the roundness of the biofilm. A second case study describes the formation of flocs and development of external filaments in a mixed-culture activated sludge community. It is shown by modeling that distinct cell-cell links, microbial morphology, and growth kinetics can lead to excessive filamentous proliferation and interfloc bridging, possible causes for detrimental sludge bulking. This methodology has been extended to more advanced microbial morphologies such as filament branching and proves to be a very powerful tool in determining how fundamental controlling mechanisms determine diverse microbial colony architectures.

  5. Variable Cell Morphology Approach for Individual-Based Modeling of Microbial Communities

    PubMed Central

    Storck, Tomas; Picioreanu, Cristian; Virdis, Bernardino; Batstone, Damien J.

    2014-01-01

    An individual-based, mass-spring modeling framework has been developed to investigate the effect of cell properties on the structure of biofilms and microbial aggregates through Lagrangian modeling. Key features that distinguish this model are variable cell morphology described by a collection of particles connected by springs and a mechanical representation of deformable intracellular, intercellular, and cell-substratum links. A first case study describes the colony formation of a rod-shaped species on a planar substratum. This case shows the importance of mechanical interactions in a community of growing and dividing rod-shaped cells (i.e., bacilli). Cell-substratum links promote formation of mounds as opposed to single-layer biofilms, whereas filial links affect the roundness of the biofilm. A second case study describes the formation of flocs and development of external filaments in a mixed-culture activated sludge community. It is shown by modeling that distinct cell-cell links, microbial morphology, and growth kinetics can lead to excessive filamentous proliferation and interfloc bridging, possible causes for detrimental sludge bulking. This methodology has been extended to more advanced microbial morphologies such as filament branching and proves to be a very powerful tool in determining how fundamental controlling mechanisms determine diverse microbial colony architectures. PMID:24806936

  6. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    PubMed Central

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  7. A spectral and morphologic method for white blood cell classification

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Chang, Li; Zhou, Mei; Li, Qingli; Liu, Hongying; Guo, Fangmin

    2016-10-01

    The identification of white blood cells is important as it provides an assay for diagnosis of various diseases. To overcome the complexity and inaccuracy of traditional methods based on light microscopy, we proposed a spectral and morphologic method based on hyperspectral blood images. We applied mathematical morphology-based methods to extract spatial information and supervised method is employed for spectral analysis. Experimental results show that white blood cells could be segmented and classified into five types with an overall accuracy of more than 90%. Moreover, the experiments including spectral features reached higher accuracy than the spatial-only cases, with a maximum improvement of nearly 20%. By combing both spatial and spectral features, the proposed method provides higher classification accuracy than traditional methods.

  8. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  9. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  10. Targeted cellular ablation based on the morphology of malignant cells.

    PubMed

    Ivey, Jill W; Latouche, Eduardo L; Sano, Michael B; Rossmeisl, John H; Davalos, Rafael V; Verbridge, Scott S

    2015-11-24

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  11. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  12. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  13. Fractal morphology of Beta vulgaris L. cell suspension culture permeabilized with Triton X-100®

    NASA Astrophysics Data System (ADS)

    Arenas-Ocampo, M.; Alamilla-Beltrán, L.; Vanegas-Espinoza, P.; Camacho-Díaz, B.; Campos-Mendiola, R.; Gutiérrez-López, G.; Jiménez-Aparicio, A.

    2012-02-01

    In this work, morphology of Beta vulgaris L. cells permeabilized with 0.7mM of Triton X-100® was evaluated using digital image processing and concepts of fractal dimension (perimeter- area relations). Important morphometric changes were found when the contact-time with chemical agent was increased. The size of cells decreased, the cells lost the roundness and their shape was more sinuous; this behaviour was a result of a probable shrinkage caused by the excess of exposure with the permeabilization agent. Morphology of B. vulgaris cells after permeabilization, exhibited a fractal nature since the slope of the ratio of the logarithm of the perimeter vs logarithm of the area was higher than unit. Fractal geometry of the cell morphology was affected as a result of the exposure to Triton X-100®. Those changes can be attributed to the loss of turgor and structure of the cell wall.

  14. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  15. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent.

    PubMed

    Matuana, Laurent M; Faruk, Omar; Diaz, Carlos A

    2009-12-01

    Poly(lactic acid) (PLA) was foamed with an endothermic chemical foaming agent (CFA) through an extrusion process. The effects of polymer melt flow index, CFA content, and processing speed on the cellular structures, void fraction, and cell-population density of foamed PLA were investigated. The apparent melt viscosity of PLA was measured to understand the effect of melt index on the cell morphology of foamed PLA samples. The void fraction was strongly dependent on the PLA melt index. It increased with increasing melt index, reaching a maximum value, after which it decreased. Melt index showed no significant effect on the cell-population density of foamed samples within the narrow range studied. A gas containment limit was observed in PLA foamed with CFA. Both the void fraction and cell-population density increased with an initial increase in CFA content, reached a maximum value, and then decreased as CFA content continued to increase. The processing speed also affected the morphology of PLA foams. The void fraction reached a maximum value as the extruder's screw speed increased to 40 rpm and a further increase in the processing speed tended to reduce the void fraction of foamed samples. By contrast, cell-population density increased one order of magnitude by increasing the screw speed from 20 to 120 rpm. The experimental results indicate that a homogeneous and finer cellular morphology could be successfully achieved in PLA foamed in an extrusion process with a proper combination of polymer melt flow index, CFA content, and processing speed.

  16. Correlating the morphological and light scattering properties of biological cells

    NASA Astrophysics Data System (ADS)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  17. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    PubMed

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  18. Morphological properties of mouse retinal ganglion cells during postnatal development.

    PubMed

    Coombs, Julie L; Van Der List, Deborah; Chalupa, Leo M

    2007-08-20

    Quantitative methods were used to assess dendritic stratification and other structural features of developing mouse retinal ganglion cells from birth to after eye opening. Cells were labeled by transgenic expression of yellow fluorescent protein, DiOlistics or diffusion of DiI, and subsequently imaged in three dimensions on a confocal microscope followed by morphometric analysis of 13 different structural properties. At postnatal day 1 (P1), the dendrites of all cells ramified across the vertical extent of the inner plexiform layer (IPL). By P3/4, dendrites were largely confined to different strata of the IPL. The stratification of dendrites initially reflected a retraction of widely ramifying dendritic processes, but for the most part this was due to the subsequent vertical expansion of the IPL. By P8, distinct cell classes could be recognized, although these had not yet attained adult-like properties. The structural features differentiating cell classes were found to follow three different developmental trends. The mean values of one set of morphological parameters were essentially unchanged throughout postnatal development; another set of measures showed a rapid rise with age to adult values; and a third set of measures first increased with age and later decreased, with the regressive events initiated around the time of eye opening. These findings suggest that the morphological development of retinal ganglion cells is regulated by diverse factors operating during different but overlapping time periods. Our results also suggest that dendritic stratification may be more highly specified in the developing mammalian retina than has been previously realized.

  19. G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility.

    PubMed

    Andreeva, Alexandra V; Kutuzov, Mikhail A; Voyno-Yasenetskaya, Tatyana A

    2008-08-01

    G alpha12 constitutes, along with G alpha13, one of the four families of alpha subunits of heterotrimeric G proteins. We found that the N terminus of G alpha12, but not those of other G alpha subunits, contains a predicted mitochondrial targeting sequence. Using confocal microscopy and cell fractionation, we demonstrated that up to 40% of endogenous G alpha12 in human umbilical vein endothelial cells colocalize with mitochondrial markers. N-terminal sequence of G alpha12 fused to GFP efficiently targeted the fusion protein to mitochondria. G alpha12 with mutated mitochondrial targeting sequence was still located in mitochondria, suggesting the existence of additional mechanisms for mitochondrial localization. Lysophosphatidic acid, one of the known stimuli transduced by G alpha12/13, inhibited mitochondrial motility, while depletion of endogenous G alpha12 increased mitochondrial motility. G alpha12Q229L variants uncoupled from RhoGEFs (but not fully functional activated G alpha12Q229L) induced transformation of the mitochondrial network into punctate mitochondria and resulted in a loss of mitochondrial membrane potential. All examined G alpha12Q229L variants reduced phosphorylation of Bcl-2 at Ser-70, while only mutants unable to bind RhoGEFs also decreased cellular levels of Bcl-2. These G alpha12 mutants were also more efficient Hsp90 interactors. These findings are the first demonstration of a heterotrimeric G protein alpha subunit specifically targeted to mitochondria and involved in the control of mitochondrial morphology and dynamics.

  20. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice.

    PubMed

    Chien, Wade W; Isgrig, Kevin; Roy, Soumen; Belyantseva, Inna A; Drummond, Meghan C; May, Lindsey A; Fitzgerald, Tracy S; Friedman, Thomas B; Cunningham, Lisa L

    2016-02-01

    Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy.

  1. Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum.

    PubMed

    Ulloa, Rita M; Raíces, Marcela; MacIntosh, Gustavo C; Maldonado, Sara; Téllez-Iñón, María T

    2002-07-01

    The effect of jasmonic acid (JA) on plant growth and on calcium-dependent protein kinase (CDPK) activity and expression was studied in non-photoperiodic potato plants, Solanum tuberosum L. var. Spunta, grown in vitro. Stem cuttings were grown for 45 days (long treatment, LT) in MS medium with increasing concentrations of JA. For short treatments (ST) adult plants grown in MS were transferred for 1, 4 and 20 h to JA containing media. During the LT, low concentrations of JA promoted cell expansion and shoot elongation while higher concentrations caused growth inhibition. Under these conditions, treated plants showed root shortening and tuber formation was not induced. Morphological and histochemical studies using light microscopy and TEM analysis of leaves from treated plants revealed that JA also affected subcellular organelles of mesophyll cells. Peroxisomes increased in size and number, and an autophagic process was triggered in response to high concentrations of the hormone. CDPK activity, determined in crude extracts of treated plants (LT), was inhibited (up to 80%). Plant growth and CDPK inhibition were reverted upon transfer of the plants to hormone-free medium. Soluble CDPK activity decreased in response to JA short treatment. Concomitantly, a decline in the steady state levels of StCDPK2 mRNA, a potato CDPK isoform that is expressed in leaves, was observed. These data suggest that the phytohormone down-regulated the expression and activity of the kinase.

  2. A Morphological identification cell cytotoxicity assay using cytoplasm-localized fluorescent probe (CLFP) to distinguish living and dead cells.

    PubMed

    Lai, Fangfang; Shen, Zhengwei; Wen, Hui; Chen, Jialing; Zhang, Xiang; Lin, Ping; Yin, Dali; Cui, Huaqing; Chen, Xiaoguang

    2017-01-08

    Cell cytotoxicity assays include cell activity assays and morphological identification assays. Currently, all frequently used cytotoxicity assays belong to cell activity assays but suffer from detection limitations. Morphological identification of cell death remains as the gold standard, although the method is difficult to scale up. At present there is no generally accepted morphological identification based cell cytotoxicity assay. In this study, we applied previous developed cell cytoplasm-localized fluorescent probe (CLFP) to display cell morphologies. Under fluorescence microscopy, the fluorescence morphology and intensity of living cells are distinct from dead cells. Based on these characters we extracted the images of living cells from series of samples via computational analysis. Thus, a novel cell morphological identification cytotoxicity assay (CLFP assay) is developed. The performance of the CLFP assay was similar to cell activity assay (MTT assay), but the accuracy of the CLFP assay was superior when measuring the cytotoxicity of active compounds.

  3. Cadmium induces direct morphological changes in mesangial cell culture.

    PubMed

    L'Azou, Béatrice; Dubus, Isabelle; Ohayon-Courtès, Céline; Labouyrie, Jean; Perez, Laurent; Pouvreau, Carole; Juvet, Ludivine; Cambar, Jean

    2002-10-15

    The cadmium produced by industrial and agricultural practice represents a major environmental pollutant which may induce severe damage, especially in the kidney where cadmium accumulates. While cadmium is known to severely impair renal tubular functions, glomerular structures are also potential targets. The present study investigated the effects of cadmium on glomerular mesangial cell cultures after short- and long-term exposures, requiring for each endpoint specific culture conditions. After 30 min exposure to 1 microM CdCl(2), used as non-lethal concentration, 0.14 ng/microg proteins of cadmium was internalized by the cells as evaluated by atomic emision spectrometry and induced a significant, cell surface reduction (8.9+/-1.9%). These morphological changes could be correlated to smooth muscle alpha-actin disorganization, without quantitative change in its protein expression level as evaluated by Western-blot and Northern-blot analysis (SMAmRNA/28sRNA, 1.78 CdCl(2) vs. 1.42 control). For longer exposure times, in complex medium, cadmium uptake was efficient (0.36 ng/microg proteins) and induced changes in the actin cytoskeleton with no loss of cell membrane integrity. This study suggests that cultured mesangial cells provide an alternative model to study the effect of cadmium, and underlines the importance of using well-defined conditions to study further intracellular mechanisms.

  4. Testicular structure and germ cells morphology in salamanders

    PubMed Central

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  5. Cell-Substrate Interactions Feedback to Direct Cell Migration along or against Morphological Polarization

    PubMed Central

    Kumar, Girish; Ho, Chia-Chi; Co, Carlos C.

    2015-01-01

    In response to external stimuli, cells polarize morphologically into teardrop shapes prior to moving in the direction of their blunt leading edge through lamellipodia extension and retraction of the rear tip. This textbook description of cell migration implies that the initial polarization sets the direction of cell migration. Using microfabrication techniques to control cell morphologies and the direction of migration without gradients, we demonstrate that after polarization, lamelipodia extension and attachment can feedback to change and even reverse the initial morphological polarization. Cells do indeed migrate faster in the direction of their morphologically polarization. However, feedback from subsequent lamellipodia extension and attachment can be so powerful as to induce cells to reverse and migrate against their initial polarization, albeit at a slower speed. Constitutively active mutants of RhoA show that RhoA stimulates cell motility when cells are guided either along or against their initial polarization. Cdc42 activation and inhibition, which results in loss of directional motility during chemotaxis, only reduces the speed of migration without altering the directionality of migration on the micropatterns. These results reveal significant differences between substrate directed cell migration and that induced by chemotactic gradients. PMID:26186588

  6. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  7. Mouse Stbd1 is N-myristoylated and affects ER-mitochondria association and mitochondrial morphology.

    PubMed

    Demetriadou, Anthi; Morales-Sanfrutos, Julia; Nearchou, Marianna; Baba, Otto; Kyriacou, Kyriacos; Tate, Edward W; Drousiotou, Anthi; Petrou, Petros P

    2017-03-01

    Starch binding domain-containing protein 1 (Stbd1) is a carbohydrate-binding protein that has been proposed to be a selective autophagy receptor for glycogen. Here, we show that mouse Stbd1 is a transmembrane endoplasmic reticulum (ER)-resident protein with the capacity to induce the formation of organized ER structures in HeLa cells. In addition to bulk ER, Stbd1 was found to localize to mitochondria-associated membranes (MAMs), which represent regions of close apposition between the ER and mitochondria. We demonstrate that N-myristoylation and binding of Stbd1 to glycogen act as major determinants of its subcellular targeting. Moreover, overexpression of non-myristoylated Stbd1 enhanced the association between ER and mitochondria, and further induced prominent mitochondrial fragmentation and clustering. Conversely, shRNA-mediated Stbd1 silencing resulted in an increase in the spacing between ER and mitochondria, and an altered morphology of the mitochondrial network, suggesting elevated fusion and interconnectivity of mitochondria. Our data unravel the molecular mechanism underlying Stbd1 subcellular targeting, support and expand its proposed function as a selective autophagy receptor for glycogen and uncover a new role for the protein in the physical association between ER and mitochondria.

  8. Mouse Stbd1 is N-myristoylated and affects ER–mitochondria association and mitochondrial morphology

    PubMed Central

    Demetriadou, Anthi; Morales-Sanfrutos, Julia; Nearchou, Marianna; Baba, Otto; Kyriacou, Kyriacos; Tate, Edward W.; Drousiotou, Anthi

    2017-01-01

    ABSTRACT Starch binding domain-containing protein 1 (Stbd1) is a carbohydrate-binding protein that has been proposed to be a selective autophagy receptor for glycogen. Here, we show that mouse Stbd1 is a transmembrane endoplasmic reticulum (ER)-resident protein with the capacity to induce the formation of organized ER structures in HeLa cells. In addition to bulk ER, Stbd1 was found to localize to mitochondria-associated membranes (MAMs), which represent regions of close apposition between the ER and mitochondria. We demonstrate that N-myristoylation and binding of Stbd1 to glycogen act as major determinants of its subcellular targeting. Moreover, overexpression of non-myristoylated Stbd1 enhanced the association between ER and mitochondria, and further induced prominent mitochondrial fragmentation and clustering. Conversely, shRNA-mediated Stbd1 silencing resulted in an increase in the spacing between ER and mitochondria, and an altered morphology of the mitochondrial network, suggesting elevated fusion and interconnectivity of mitochondria. Our data unravel the molecular mechanism underlying Stbd1 subcellular targeting, support and expand its proposed function as a selective autophagy receptor for glycogen and uncover a new role for the protein in the physical association between ER and mitochondria. PMID:28137759

  9. Morphology-dependent light trapping in thin-film organic solar cells.

    PubMed

    Grote, Richard R; Brown, Steven J; Driscoll, Jeffrey B; Osgood, Richard M; Schuller, Jon A

    2013-09-09

    The active layer materials used in organic photovoltaic (OPV) cells often self-assemble into highly ordered morphologies, resulting in significant optical anisotropies. However, the impact of these anisotropies on light trapping in nanophotonic OPV architectures has not been considered. In this paper, we show that optical anisotropies in a canonical OPV material, P3HT, strongly affect absorption enhancements in ultra-thin textured OPV cells. In particular we show that plasmonic and gap-mode solar cell architectures redistribute electromagnetic energy into the out-of-plane field component, independent of the active layer orientation. Using analytical and numerical calculations, we demonstrate how the absorption in these solar cell designs can be significantly increased by reorienting polymer domains such that strongly absorbing axes align with the direction of maximum field enhancement.

  10. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    PubMed

    Cremaschi, Paolo; Oliverio, Matteo; Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  11. Neuronize: a tool for building realistic neuronal cell morphologies

    PubMed Central

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  12. Isolation and characterization of a plasmid DNA from periodontopathogenic bacterium, Eikenella corrodens 1073, which affects pilus formation and colony morphology.

    PubMed

    Azakami, Hiroyuki; Akimichi, Hiromi; Usui, Masakatsu; Yumoto, Hiromichi; Ebisu, Shigeyuki; Kato, Akio

    2005-05-23

    Eikenella corrodens (Ec) is one of a group of periodontopathogenic bacteria. A plasmid DNA (8.7 kb) isolated from Ec 1073 was designated pMU1. Agarose gel electrophoresis and Southern analysis suggested that pMU1-like plasmids were carried in 2 Ec strains, including 1073, with higher hemagglutination (HA) activity than other strains. We determined the nucleotide sequence of this plasmid and identified 7 ORFs. A homology search revealed that 4 ORFs of pMU1 were homologous to ORFs in pJTPS1, found in a spontaneous avirulent mutant of the phytopathogenic bacterium, Ralstonia solanacearum. pJTPS1 is a putative hypovirulent plasmid, which is thought to control the virulence of R. solanacearum. We also found the ORF to be homologous to the recombinase specific to the type IV pilin gene. We introduced a part of pMU1 into the Ec 23834 strain, which has a pilus structure on its cell surface and forms corroding colonies on solid medium. No pilus structure was observed on the surface of transformants, most of which formed non-corroding colonies. When such transformants (or Ec 1073) were cured of pMU1 with acridine orange, they remained non-foliated and non-corroding. The results suggest that pMU1 might irreversibly affect pilus formation and colony morphology, and might be involved in the pathogenicity and virulence of Ec.

  13. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    PubMed

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses.

  14. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

    PubMed

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O; Rydén, Mikael; Horowitz, Mark C; Arner, Peter

    2014-06-03

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance.

  15. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    PubMed Central

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  16. Effect of solvent and cell composition on morphology and photovoltaic characteristics of polymer solar cells of poly(3-hexylthiophene)/indene-C60 bisadduct composites

    NASA Astrophysics Data System (ADS)

    Nagai, Masaru; Cui, Dong; Wei, Huang; Yamamoto, Hideki; Yoshida, Yuji

    2017-04-01

    This study investigated the solvent effect on the performance of polymer solar cells (PSCs) by focusing on the film morphology. PSCs consisting of poly(3-hexylthiophene) (P3HT) and the fullerene derivative indene-C60 bisadduct (ICBA) were fabricated using two different solvents, chlorobenzene (CB) and chloroform (CF). The short-circuit current density (J sc) changed depending on the solvent and cell composition. When the ratio of ICBA was higher than that of P3HT, a high J sc was obtained from the CB based cells. When the ratio of P3HT was higher than that of ICBA, the CF cells showed a higher J sc than the CB cells. The high-performance cells had a clear microphase-separated morphology while phase separation was limited in the low-performance cells. Solubility parameter analysis suggested that the cell composition changed the interaction parameter of the system and thereby affected the phase separation behavior.

  17. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  18. Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons

    PubMed Central

    Koch, J C; Bitow, F; Haack, J; d'Hedouville, Z; Zhang, J-N; Tönges, L; Michel, U; Oliveira, L M A; Jovin, T M; Liman, J; Tatenhorst, L; Bähr, M; Lingor, P

    2015-01-01

    Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered. PMID:26158517

  19. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    PubMed

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease.

  20. Morphological variability in tree root architecture indirectly affects coexistence among competitors in the understory.

    PubMed

    Aschehoug, Erik T; Callaway, Ragan M

    2014-07-01

    Interactions between plants can have strong effects on community structure and function. Variability in the morphological, developmental, physiological, and biochemical traits of plants can influence the outcome of plant interactions and thus have important ecological consequences. However, the ecological ramifications of trait variability in plants are poorly understood and have rarely been tested in the field. We experimentally tested the effects of morphological variation in root architecture of Quercus douglasii trees in the field on interactions between understory plants and community composition. Our results indicate that variability among Q. douglasii tree root systems initiates a striking reversal in the competitive effects of dominant understory grass species on a less common species. Trees with a deep-rooted morphology facilitated exotic annual grasses and these annual grasses, in turn, competitively excluded the native perennial bunchgrass, Stipapulchra. In contrast, Q. douglasii trees with shallow-rooted morphologies directly suppressed the growth of exotic annual grasses and indirectly released S. pulchra individuals from competition with these annual grasses. Morphological variation in the root architecture of Q. douglasii created substantial conditionality in the outcomes of competition among species which enhanced the potential for indirect interactions to sustain coexistence and increase community diversity.

  1. Common polymorphisms in WNT10A affect tooth morphology as well as hair shape.

    PubMed

    Kimura, Ryosuke; Watanabe, Chiaki; Kawaguchi, Akira; Kim, Yong-Il; Park, Soo-Byung; Maki, Koutaro; Ishida, Hajime; Yamaguchi, Tetsutaro

    2015-05-01

    Hair and teeth are appendages of ectodermal origin, and there are common molecular backgrounds involved in their formation. To date, it has been revealed that a non-synonymous polymorphism in EDAR has effects on the morphological variation in both hair and teeth. Previous association studies have confirmed that single-nucleotide polymorphisms (SNPs) in/near THADA, FRAS1, WNT10A, NAF1 and FGFR2 are associated with hair morphology. In this study, we thus examined whether these SNPs are also associated with dental characteristics. We measured metric dental traits including crown size and also evaluated non-metric dental traits using plaster casts obtained from subjects (272 Japanese and 226 Koreans). DNA samples were prepared from the subjects and genotyped for the hair morphology-associated SNPs. We observed a significant association of crown size with an SNP in WNT10A (rs7349332), but not with SNPs in other genes. Therefore, we further examined four SNPs within and around WNT10A, among which rs10177996 had the strongest association with dental traits. World distribution of the derived allele in rs10177996, which is associated with larger teeth, showed that Eurasians have a higher allele frequency than Africans. Together with previous studies on hair morphology, this study demonstrated that common variations in WNT10A have pleiotropic effects on the morphology of ectodermal appendages.

  2. Phenomena affecting morphology of microporous poly(acrylonitrile) prepared via phase separation from solution

    SciTech Connect

    Legasse, R.R.; Weagley, R.J.; Leslie, P.K.; Schneider, D.A.

    1990-01-01

    This paper is concerned with controlling the morphology of microporous polymers prepared via thermal demixing of solutions. 2 wt % solutions of poly(acrylonitrile) in maleic anhydride, a poor solvent, are first cooled to produce separated polymer-rich and solvent-rich phases. Removing the solvent by freeze drying then produces a microporous material having a density of 33 mg/cm{sup 3}, a void fraction of 97%, and a pore size of about 10 {mu}m. We find that the morphology cannot be explained by existing models, which focus on phase diagrams and kinetics of phase transformations during cooling of the solution. In conflict with those models, we find that two radically different morphologies can be produced even when the polymer concentration and cooling path are held strictly constant. A hypothesis that polymer degradation causes the different morphologies is not supported by GPC, {sup 13}C NMR, and FTIR experiments. Instead, we offer evidence that the different microporous morphologies are caused by different polymer conformations in solutions having the same concentration and temperature. 11 refs., 3 figs.

  3. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  4. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    PubMed

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-08-10

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection.

  5. Prenatal and lactation nicotine exposure affects morphology and function of brown adipose tissue in male rat offspring.

    PubMed

    Fan, Jie; Ping, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Liu, Han-Xiao; Zhang, Jing; Yan, You-E

    2016-01-01

    The aim of this study was to investigate the effects of prenatal and lactation nicotine exposure on the morphology and function of brown adipose tissue (BAT) in male rat offspring. We conducted a morphological assay and gene expression study of interscapular BAT (iBAT) in male rat offspring. The male offspring from nicotine-exposed dams exhibited higher body weight and iBAT weight. Hematoxylin and eosin staining and transmission electron microscopy showed that iBAT from nicotine-exposed male offspring presented a "whitening" phenotype characterized by lipid droplet accumulation and impaired mitochondria with a randomly oriented and fractured cristae. The expression of the iBAT structure and function-related genes all decreased in nicotine-exposed male offspring. These data indicate that prenatal and lactation nicotine exposure affects morphology and function of iBAT in male rat offspring.

  6. Morphological characterization of keratoconus-affected human corneas by SHG imaging and correlation analysis

    NASA Astrophysics Data System (ADS)

    Mercatelli, R.; Ratto, F.; Tatini, F.; Rossi, F.; Menabuoni, L.; Nicoletti, R.; Pini, R.; Pavone, Frederick; Cicchi, R.

    2016-03-01

    Keratoconus is an ophthalmic disease in which the cornea acquires an abnormal conical shape that prevents the correct focusing on the retina, causing visual impairment. The late diagnosis of keratoconus is among the principal causes of corneal transplantation surgery. In this study, we characterize the morphology of keratoconic corneas by means of the correlation of SHG images, finding that keratoconus can be diagnosed by analyzing the inclination of lamellae below Bowman's membrane. In addition, imaging performed with both sagittal and "en face" geometry demonstrated that this morphological features can be highlighted both ex vivo and in vivo.

  7. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  8. Spontaneous activity of morphologically identified ganglion cells in the developing ferret retina.

    PubMed

    Liets, Lauren C; Olshausen, Bruno A; Wang, Guo-Yong; Chalupa, Leo M

    2003-08-13

    Whole-cell patch-clamp recordings were made from morphologically identified ganglion cells in the intact retina of developing ferrets. As early as 3 d after birth, all ganglion cells exhibited bursts of spontaneous activity, with the interval between bursts gradually decreasing with maturity. By 2 weeks after birth, ganglion cells could be morphologically differentiated into three major classes (alpha, beta, and gamma), and at this time each cell class was characterized by a distinct pattern of spontaneous activity. Dual patch-clamp recordings from pairs of neighboring cells revealed that cells of all morphological classes burst in a coordinated manner, regardless of cell type. These observations suggest that a common mechanism underlies the bursting patterns exhibited by all ganglion cell classes, and that class-specific firing patterns emerge coincident with retinal ganglion cell morphological differentiation.

  9. Glufosinate does not affect floral morphology and pollen viability in glufosinate-resistant cotton (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine whether glufosinate treatments to glufosinate-resistant cotton caused changes in floral morphology, pollen viability, and seed set. Four glufosinate treatments were included: (1) glufosinate applied postemergence over the top (POST) at the four-leaf stage, (2) glu...

  10. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells.

    PubMed

    Domínguez, Fernando; Cejudo, Francisco J

    2006-08-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed.

  11. Scrapie Affects the Maturation Cycle and Immune Complex Trapping by Follicular Dendritic Cells in Mice

    PubMed Central

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrPd) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrPd accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrPd plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrPd accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrPd. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrPd accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  12. Striatal Neurons Expressing D1 and D2 Receptors are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice

    PubMed Central

    Gagnon, D.; Petryszyn, S.; Sanchez, M. G.; Bories, C.; Beaulieu, J. M.; De Koninck, Y.; Parent, A.; Parent, M.

    2017-01-01

    The loss of nigrostriatal dopamine neurons in Parkinson’s disease induces a reduction in the number of dendritic spines on medium spiny neurons (MSNs) of the striatum expressing D1 or D2 dopamine receptor. Consequences on MSNs expressing both receptors (D1/D2 MSNs) are currently unknown. We looked for changes induced by dopamine denervation in the density, regional distribution and morphological features of D1/D2 MSNs, by comparing 6-OHDA-lesioned double BAC transgenic mice (Drd1a-tdTomato/Drd2-EGFP) to sham-lesioned animals. D1/D2 MSNs are uniformly distributed throughout the dorsal striatum (1.9% of MSNs). In contrast, they are heterogeneously distributed and more numerous in the ventral striatum (14.6% in the shell and 7.3% in the core). Compared to D1 and D2 MSNs, D1/D2 MSNs are endowed with a smaller cell body and a less profusely arborized dendritic tree with less dendritic spines. The dendritic spine density of D1/D2 MSNs, but also of D1 and D2 MSNs, is significantly reduced in 6-OHDA-lesioned mice. In contrast to D1 and D2 MSNs, the extent of dendritic arborization of D1/D2 MSNs appears unaltered in 6-OHDA-lesioned mice. Our data indicate that D1/D2 MSNs in the mouse striatum form a distinct neuronal population that is affected differently by dopamine deafferentation that characterizes Parkinson’s disease. PMID:28128287

  13. Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens.

    PubMed

    Koronowicz, A A; Banks, P; Szymczyk, B; Leszczyńska, T; Master, A; Piasna, E; Szczepański, W; Domagała, D; Kopeć, A; Piątkowska, E; Laidler, P

    2016-10-01

    The objective of this research were to investigate the effect of a conjugated linoleic acid (CLA)-enriched diet on Isa Brown laying hen health status and to provide a comprehensive analysis of changes in blood parameters, liver morphology and selected hepatic gene expression. Hens were allocated to the control and experimental group (diet enriched with 0.75% CLA) for a total period of 4 m. At the end of the experiment half of the hens from each group were slaughtered for analyses. The remaining hens were transferred to an organic farm for the next 5 m and fed on the diet without CLA supplementation. The CLA-enriched diet resulted in significant changes in blood and serum parameters; specifically, haematocrit (HCT), mean corpuscular volume (MCV) and white blood cells (WBC) count were decreased compared to the control. The total cholesterol (TC) was not significantly affected while the triacylglycerol's (TG) concentration was elevated. The activity of alanine aminotransferase (ALT) was significantly increased in the CLA-supplemented group, while aspartate aminotransferase (AST) showed an increasing tendency. Liver biopsies showed pathological changes classified as non-alcoholic fatty liver disease (NAFLD). Additionally, the expression of hepatic genes involved in fatty acids synthesis (ME1, ACLY, ACC, FASN, SCD1), oxidation (CPT1α, PPARA), detoxification processes (Cytochrome P450, CYP, Flavin-containing monooxygenase, FMO3), oxidative stress (NOX4, XbP1) and inflammation (IL6, TNFα) were elevated. Cessation of CLA supplementation for 5 m of organic farming resulted in normalisation of blood and hepatic parameters to the levels observed in control hens. The results of this study indicate that dietary CLA triggers an integrated stress response in laying hens and activates mechanisms involved in liver detoxification.

  14. Factors Affecting Polymer Electrolyte Fuel Cells Performance and Reproducibility

    SciTech Connect

    Moller-Holst S.

    1998-11-01

    Development of fuel cells is often based on small-scale laboratory studies. Due to limited time and budgets, a minimum number of cells are usually prepared and tested, thus, conclusions about improved performance are often drawn from studies of a few cells. Generally, statistics showing the significance of an effect are seldom reported. In this work a simple PEM fuel cell electrode optimization experiment is used as an example to illustrate the importance of statistical evaluation of factors affecting cell performance. The use of fractional factorial design of experiments to reduce the number of cells that have to be studied is also addressed.

  15. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays.

    PubMed

    Noguchi, M; Kanari, Y; Yokoya, A; Narita, A; Fujii, K

    2015-09-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death.

  16. Morphological Spectrum of Basal Cell Carcinoma in Southern Karnataka

    PubMed Central

    Lobo, Flora Dorothy; Naik, Ramdas; Khadilkar, Urmila Niranjan; Kini, Hema; Kini, Ullal Anand

    2016-01-01

    Introduction Basal Cell Carcinoma (BCC) is the most common skin cancer worldwide, which appears over sun-exposed skin as slow-growing, locally invasive lesion that rarely metastasizes. Many phenotypic presentations are possible. BCCs are more common in males and tend to occur in older people. Majority is found on the head and neck. Many histopathological subtypes have been defined including nodular, micronodular, cystic, superficial, pigmented, adenoid, infiltrating, sclerosing, keratotic, infundibulocystic, metatypical, basosquamous and fibroepitheliomatous. Mixed patterns are common. Aim The aim was to study morphological spectrum of BCC in a tertiary care hospital in southern Karnataka. Materials and Methods This was a retrospective analysis of 100 cases of BCCs reported in the Department of Pathology over a 9-year period from 2006 to 2014. Results The mean age of presentation was 62 years. There was slight female preponderance (56%). The most common location was face (65%) and the most common presentation was ulceration (45%). Of the 100 BCCs, 50% were nodular, 13% infiltrating, 6% basosquamous, 4% superficial, 3% keratotic, 3% multinodular and 1% mixed. Conclusion BCC, besides being the commonest cutaneous cancer, is also known for its numerous histological patterns which are shown to have prognostic implications. This study reveals the frequency of the various histological patterns of BCC in southern Karnataka, where it has been rarely studied before. PMID:27504291

  17. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color.

    PubMed

    McCollum, S A; Leimberger, J D

    1997-02-01

    Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well.

  18. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  19. Dietary cholesterol concentration affects synaptic plasticity and dendrite spine morphology of rabbit hippocampal neurons.

    PubMed

    Wang, Desheng; Zheng, Wen

    2015-10-05

    Previous studies have shown dietary cholesterol can enhance learning but retard memory which may be partly due to increased cholesterol levels in hippocampus and reduced afterhyperpolarization (AHP) amplitude of hippocampal CA1 neurons. This study explored the dose-dependent effect of dietary cholesterol on synaptic plasticity of rabbit hippocampal CA1 neurons and spine morphology, the postsynaptic structures responsible for synaptic plasticity. Field potential recordings revealed a low concentration of dietary cholesterol increased long-term potentiation (LTP) expression while high concentrations produced a pronounced reduction in LTP expression. Dietary cholesterol facilitated basal synaptic transmission but did not influence presynaptic function. DiI staining showed dietary cholesterol induced alterations in dendrite spine morphology characterized by increased mushroom spine density and decreased thin spine density, two kinds of dendritic spines that may be linked to memory consolidation and learning acquisition. Dietary cholesterol also modulated the geometric measures of mushroom spines. Therefore, dietary cholesterol dose-dependently modulated both synaptic plasticity and dendrite spine morphologies of hippocampal CA1 neurons that could mediate learning and memory changes previously seen to result from feeding a cholesterol diet.

  20. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function

    PubMed Central

    Ambrosio, Javier R.; Valverde-Islas, Laura; Nava-Castro, Karen E.; Palacios- Arreola, M. Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge

    2015-01-01

    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells. PMID:26076446

  1. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function.

    PubMed

    Ambrosio, Javier R; Valverde-Islas, Laura; Nava-Castro, Karen E; Palacios-Arreola, M Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge

    2015-01-01

    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  2. KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells.

    PubMed

    Tanaka, Kousuke; Sugiura, Yoshimi; Ichishita, Ryohei; Mihara, Katsuyoshi; Oka, Toshihiko

    2011-07-15

    Mitochondria utilize diverse cytoskeleton-based mechanisms to control their functions and morphology. Here, we report a role for kinesin-like protein KLP6, a newly identified member of the kinesin family, in mitochondrial morphology and dynamics. An RNA interference screen using Caenorhabditis elegans led us to identify a C. elegans KLP-6 involved in maintaining mitochondrial morphology. We cloned a cDNA coding for a rat homolog of C. elegans KLP-6, which is an uncharacterized kinesin in vertebrates. A rat KLP6 mutant protein lacking the motor domain induced changes in mitochondrial morphology and significantly decreased mitochondrial motility in HeLa cells, but did not affect the morphology of other organelles. In addition, the KLP6 mutant inhibited transport of mitochondria during anterograde movement in differentiated neuro 2a cells. To date, two kinesins, KIF1Bα and kinesin heavy chain (KHC; also known as KIF5) have been shown to be involved in the distribution of mitochondria in neurons. Expression of the kinesin heavy chain/KIF5 mutant prevented mitochondria from entering into neurites, whereas both the KLP6 and KIF1Bα mutants decreased mitochondrial transport in axonal neurites. Furthermore, both KLP6 and KIF1Bα bind to KBP, a KIF1-binding protein required for axonal outgrowth and mitochondrial distribution. Thus, KLP6 is a newly identified kinesin family member that regulates mitochondrial morphology and transport.

  3. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.

    PubMed

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-19

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  4. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    NASA Astrophysics Data System (ADS)

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  5. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    PubMed Central

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-01-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells. PMID:26581407

  6. Postnatal treatment factors affecting craniofacial morphology of unilateral cleft lip and palate (UCLP) patients in a Japanese population.

    PubMed

    Alam, M K; Iida, J; Sato, Y; Kajii, Takashi S

    2013-12-01

    We have evaluated the craniofacial morphology of Japanese patients with unilateral cleft lip and palate (UCLP) and assessed the various postnatal factors that affect it. Lateral cephalograms of 140 subjects (mean (SD) aged 7 (2) years) with UCLP were taken before orthodontic treatment. Surgeons from Hokkaido University Hospital had done the primary operations. The craniofacial morphology was assessed by angular and linear cephalometric measurements. Cheiloplasty, palatoplasty, and preoperative orthopaedic treatment were chosen as postnatal factors. To compare the assessments of the postnatal factors, we made angular and linear cephalometric measurements for each subject and converted them into Z scores in relation to the mean (SD) of the two variables. Subjects treated by the modified Millard cheiloplasty had larger sella-nasion-point A (SNA) and nasion-point A-pogonion (NA-POG) measurements than subjects treated by the modified Millard with a vomer flap cheiloplasty. Two-stage palatoplasty showed consistently better craniofacial morphology than the other palatoplasty. Subjects who had preoperative orthopaedic treatment with a Hotz plate had significantly larger upper incisor/sella-nasion (U1-SN) measurements than who had no preoperative orthopaedic treatment or an active plate. We conclude that in subjects treated by a modified Millard type of cheiloplasty, a two-stage palatoplasty, and a Hotz plate there were fewer adverse effects on craniofacial morphology.

  7. Egestion of asbestos fibers in Tetrahymena results in early morphological abnormalities. A step in the induction of heterogeneous cell lines?

    PubMed

    Hjelm, K K

    1989-01-01

    In Tetrahymena populations exposed to crocidolite asbestos fibers, many cells develop morphological abnormalities within 1-2 hours. The abnormalities are mainly large or small protrusions or indentations, or flattened parts of the cell surface and most often located in the posterior part of the cell. They are formed repeatedly in all cells but are also continuously repaired so that the fraction of cells affected represents an equilibrium between these two processes. Their formation is connected with egestion of the large bundles of fibers formed by phagocytosis. Such effects of egestion of fibers do not seem to have been reported previously. Egestion of a bundle of fibers is much slower than for other types of undigestible residues. In contrast to normal exocytosis occurring invariably at the cytoproct, egestion of asbestos often occurs in the posterior part of the cell outside the cytoproct. To my knowledge this is the first reported case of either very slow or extra-cytoproctal egestion in Tetrahymena. Cells with large abnormalities have a greater tendency to develop into "early heterogeneous" cells than the average abnormal cell. Some of these give rise to hereditarily stable heterogeneous cell lines of Tetrahymena. The morphological abnormalities are probably caused by mechanical action of the crocidolite fibers resulting in local damage of the cytoskeletal elements responsible for normal cell shape. The heterogenous cell lines may arise when cellular structures carrying non-genic cytotactically inherited information are modified. The relevance of these ideas to the induction of cancer by asbestos is briefly discussed.

  8. Humidity affects the morphology of particles emitted from beclomethasone dipropionate pressurized metered dose inhalers.

    PubMed

    Ivey, James W; Bhambri, Pallavi; Church, Tanya K; Lewis, David A; McDermott, Mark T; Elbayomy, Shereen; Finlay, Warren H; Vehring, Reinhard

    2017-03-30

    The effects of propellant type, cosolvent content, and air humidity on the morphology and solid phase of the particles produced from solution pressurized metered dose inhalers containing the corticosteroid beclomethasone dipropionate were investigated. The active ingredient was dissolved in the HFA propellants 134a and 227ea with varying levels of the cosolvent ethanol and filled into pressurized metered dose inhalers. Inhalers were actuated into an evaporation chamber under controlled temperature and humidity conditions and sampled using a single nozzle, single stage inertial impactor. Particle morphology was assessed qualitatively using field emission scanning electron microscopy and focused ion beam-helium ion microscopy. Drug solid phase was assessed using Raman microscopy. The relative humidity of the air during inhaler actuation was found to have a strong effect on the particle morphology, with solid spheroidal particles produced in dry air and highly porous particles produced at higher humidity levels. Air humidification was found to have no effect on the solid phase of the drug particles, which was predominantly amorphous for all tested formulations. A critical level of air relative humidity was required to generate porous particles for each tested formulation. This critical relative humidity was found to depend on the amount of ethanol used in the inhaler, but not on the type of propellant utilized. The results indicate that under the right circumstances water vapor saturation followed by nucleated water condensation or ice deposition occurs during particle formation from evaporating propellant-cosolvent-BDP droplets. This finding reveals the importance of condensed water or ice as a templating agent for porosity when particle formation occurs at saturated conditions, with possible implications on the pharmacokinetics of solution pMDIs and potential applications in particle engineering for drug delivery.

  9. Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning.

    PubMed

    Leonard, Anthony P; Cameron, Robert B; Speiser, Jaime L; Wolf, Bethany J; Peterson, Yuri K; Schnellmann, Rick G; Beeson, Craig C; Rohrer, Bärbel

    2015-02-01

    Understanding the processes of mitochondrial dynamics (fission, fusion, biogenesis, and mitophagy) has been hampered by the lack of automated, deterministic methods to measure mitochondrial morphology from microscopic images. A method to quantify mitochondrial morphology and function is presented here using a commercially available automated high-content wide-field fluorescent microscopy platform and R programming-language-based semi-automated data analysis to achieve high throughput morphological categorization (puncta, rod, network, and large & round) and quantification of mitochondrial membrane potential. In conjunction with cellular respirometry to measure mitochondrial respiratory capacity, this method detected that increasing concentrations of toxicants known to directly or indirectly affect mitochondria (t-butyl hydroperoxide [TBHP], rotenone, antimycin A, oligomycin, ouabain, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone [FCCP]), decreased mitochondrial networked areas in cultured 661w cells to 0.60-0.80 at concentrations that inhibited respiratory capacity to 0.20-0.70 (fold change compared to vehicle). Concomitantly, mitochondrial swelling was increased from 1.4- to 2.3-fold of vehicle as indicated by changes in large & round areas in response to TBHP, oligomycin, or ouabain. Finally, the automated identification of mitochondrial location enabled accurate quantification of mitochondrial membrane potential by measuring intramitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence intensity. Administration of FCCP depolarized and administration of oligomycin hyperpolarized mitochondria, as evidenced by changes in intramitochondrial TMRM fluorescence intensities to 0.33- or 5.25-fold of vehicle control values, respectively. In summary, this high-content imaging method accurately quantified mitochondrial morphology and membrane potential in hundreds of thousands of cells on a per-cell basis, with sufficient throughput for pharmacological

  10. Cartography of cell morphology in tomato pericarp at the fruit scale.

    PubMed

    Legland, D; Devaux, M-F; Bouchet, B; Guillon, F; Lahaye, M

    2012-07-01

    In fleshy fruits, the variability of cell morphology at the fruit scale is largely unknown. It presents both a huge variability and a high level of organization. Better knowledge of cell morphology heterogeneity within the fruit is necessary to understand fruit development, to model fruit mechanical behaviour, or to investigate variations of physico-chemical measurements. A generic approach is proposed to build cartographies of cell morphology at the fruit scale, which depict regions corresponding to different cell morphologies. The approach is based on: (1) sampling the whole fruit at known positions; (2) imaging and quantifying local cell morphology; (3) pooling measurements to take biological variability into account and (4) projecting results in a morphology model of the whole fruit. The result is a synthetic representation of cell morphology variations within the whole fruit. The method was applied to the characterization of cell morphology in tomato pericarp. Two different imaging scales that provided complementary descriptions were used: 3D confocal microscopy and macroscopy. The approach is generic and can be adapted to other fruits or other products.

  11. Physical Explanation of Coupled Cell-Cell Rotational Behavior and Interfacial Morphology: A Particle Dynamics Model

    PubMed Central

    Leong, Fong Yew

    2013-01-01

    Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author’s knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin. PMID:24268142

  12. Physical explanation of coupled cell-cell rotational behavior and interfacial morphology: a particle dynamics model.

    PubMed

    Leong, Fong Yew

    2013-11-19

    Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author's knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin.

  13. Inflammatory cytokine release is affected by surface morphology and chemistry of titanium implants.

    PubMed

    Östberg, Anna-Karin; Dahlgren, Ulf; Sul, Young-Taeg; Johansson, Carina B

    2015-04-01

    To investigate in vitro cellular cytokine expression in relation to commercially pure titanium discs, comparing a native surface to a fluorinated oxide nanotube surface. Control samples pure titanium discs with a homogenous wave of the margins and grooves and an often smeared-out surface structure. Test samples pure titanium discs with a fluorinated titanium oxide chemistry and surface morphology with nanopore/tube geometry characterized by ordered structures of nanotubes with a diameter of ≈ 120 nm, a spacing of ≈ 30 nm, and a wall thickness of ≈ 10 nm. Cross-section view showed vertically aligned nanotubes with similar lengths of ≈ 700 nm. Peripheral blood mononuclear leucocytes were cultured for 1, 3, and 6 days according to standard procedures. BioPlex Pro™ assays were used for analysis and detection of cytokines. Selected inflammatory cytokines are reported. A pronounced difference in production of the inflammatogenic cytokines was observed. Leucocytes exposed to control coins produced significantly more TNF-α, IL-1ß, and IL-6 than the test nanotube coins. The effect on the TH2 cytokine IL-4 was less pronounced at day 6 compared to days 1 and 3, and slightly higher expressed on the control coins. The morphology and surface chemistry of the titanium surface have a profound impact on basic cytokine production in vitro. Within the limitations of the present study, it seems that the fluorinated oxide nanotube surface results in a lower inflammatory response compared to a rather flat surface that seems to favour inflammation.

  14. The preoptic-suprachiasmatic nuclei though morphologically heterogeneous are equally affected by streptozotocin diabetes.

    PubMed

    Bestetti, G; Hofer, R; Rossi, G L

    1987-01-01

    Pituitary and gonadal disorders consistent with abnormal LHRH and LH secretion occur in streptozotocin-diabetic rats. A key role in the synthesis and regulation of LHRH and in the phasic LH release is played by the preoptic-suprachiasmatic region which is mainly formed by the medial preoptic area, the sexually dimorphic nucleus of the medial preoptic area, and the suprachiasmatic nucleus. Therefore we have studied this region by morphology and morphometry in normal and streptozotocin-diabetic rats. In normal animals, the neurons of the above mentioned nuclei were morphologically and morphometrically dissimilar. Independent of their localization, reduced cytoplasmic and nuclear areas were observed in the neurons of diabetic animals. These lesions are consistent with hypotrophied neurons. Consequently, diabetes may impair both synthesis and regulation of LHRH and may therefore account for pituitary disorders, testicular atrophy, and lacking preovulatory LH peaks. The structural differences of the neurons of the three nuclei in normal animals underline their different physiological role. Yet, the similarity of the changes found in all three nuclei suggests a generalized hypofunction of the whole preoptic-suprachiasmatic region under diabetic condition.

  15. Effects of dinitrotoluenes on morphological cell transformation and intercellular communication in Syrian hamster embryo cells.

    PubMed

    Holen, I; Mikalsen, S O; Sanner, T

    1990-01-01

    The effects of four isomers of dinitrotoluene (DNT) and technical DNT (a mixture of DNT isomers and other compounds, with 2,4-DNT as the major constituent) were studied in two short-term in vitro assays. None of the isomers or technical DNT induced an increase in morphological transformation of Syrian hamster embryo (SHE) cells. Four DNT metabolites (2,4-diaminotoluene, 2-amino-4-nitrotoluene, 2-amino-6-nitrotoluene, and 2,4-dinitobenzoic acid), representing different stages in reduction or oxidation of DNT isomers, were also negative for induction of morphological transformation. The DNT isomers were tested in an intercellular communication assay based on dye transfer. 2,4-DNT, 2,6-DNT, and technical DNT inhibited intercellular communication in the SHE cell line BPNi at toxic concentrations. This may be reminiscent of in vivo data showing promoting activity of these compound. 2,3-DNT and 3,4-DNT did not inhibit communication.

  16. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells - Relevance to Capsular Opacification.

    PubMed

    Recek, Nina; Andjelić, Sofija; Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš

    2016-01-01

    Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation.

  17. Genistein affects proliferation and migration of bovine oviductal epithelial cells.

    PubMed

    García, Daniela C; Valdecantos, Pablo A; Miceli, Dora C; Roldán-Olarte, Mariela

    2017-03-08

    Genistein is one of the most abundant isoflavones in soybean. This molecule induces cell cycle arrest and apoptosis in different normal and cancer cells. Genistein has been of considerable interest due to its adverse effects on bovine reproduction, altering estrous cycle, implantation and fetal development and producing subfertility or infertility. The objective of this work was to study the effects of genistein on the expression of selected genes involved in the regulation of cell cycle and apoptosis. Primary cultures of bovine oviductal epithelial cells (BOEC) were treated with different genistein concentrations (0.2, 2 and 10μM) to analyze CYCLIN B1, BCL-2 and BAX gene expression by Real-time RT-PCR. Results showed that genistein down-regulated CYCLIN B1 expression, affecting cell cycle progression, and caused a decrease in the BCL-2/BAX ratio starting at 2μM of genistein. In addition, in order to determine if genistein affects BOEC migration, in vitro wound healing assays were performed. A significant reduction in cell migration after 12h of culture was observed at both 0.2 and 10μM genistein concentrations. Also, in the presence of genistein the percentage of mitotic cells decreased, although apoptotic cells percentages were not affected. These findings indicate that genistein has an inhibitory effect on BOEC proliferation and migration, suggesting that it could influence the normal physiology of the oviductal epithelium.

  18. Morphological cell transformation of Syrian hamster embryo (SHE) cells by the cyanotoxin, cylindrospermopsin.

    PubMed

    Maire, M-A; Bazin, E; Fessard, V; Rast, C; Humpage, A R; Vasseur, P

    2010-06-15

    Cylindrospermopsin (CYN) is a cyanotoxin which has been implicated in human intoxication and animal mortality. Genotoxic activity of this hepatotoxin is known but its carcinogenic activity remains to be elucidated. In this work, CYN was assessed for its cell-transforming activity using the Syrian hamster embryo (SHE) cell transformation assay. This in vitro assay is used to evaluate the carcinogenic potential of chemical, physical and biological agents in SHE cells, which are primary, normal, diploid, genetically stable and capable of metabolic activation. We demonstrated that CYN induced a significant increase in morphological cell transformation in SHE cells following a 7-day continuous treatment in the range of non-cytotoxic concentrations 1 x 10(-7)-1 x 10(-2) ng/mL.

  19. A Study of Parameters Affecting Fibroblast Morphology in Response to an Applied Mechanical Force

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.; Sawyer, Christine

    1994-01-01

    A precisely controlled stretch/relaxation regimen (20% elongation at 6.6 cycles/min) was applied to normal human fetal, neonatal and aged dermal fibroblasts cultured on flexible membranes. Culture conditions included poly (NH2) or collagen type I coated substrate membranes; control cultures were grown on the same pliable material in the absence of applied stretch. Direct observation and immunofluorescence analyses revealed a progressive change in cell body orientation limited to the stretched dermal fibroblast cultures. Monolayers gradually (over 4 days) acquired a symmetric, radial distribution equivalent to the biaxial array of the applied force. At high seeding density, alignment was inhibited in the fetal cell cultures. This cell strain required collagen type I coating for optimal attachment to the flexible membrane, preferring growth in three-dimensional cell 'balls' on the poly(NH2) coated substrate. Neonatal cells also required the collagen type I coating, but both neonatal and aged dermal fibroblasts aligned efficiently at all seeding densities examined. The randomly oriented neonatal cells on the unstretched control membranes spontaneously detached at confluence, as a single cell sheet. Their aligned counterparts did not detach until the applied stretch stimulus was removed. Low concentrations of cytochalasin D (62.5 ng/ml) disrupted the stretch-related alignment response. Rhodamine phalloidin staining visualized fewer actin stress fibers in stretched, aligned cells than in controls. Both intercellular interactions and cytoskeletal integrity mediate the response to mechanical strain. Normal rabbit corneal stroma fibroblasts (NRC) were also analyzed, and failed to orient under these conditions. This cell type may require a different regimen, or a longer time period, to demonstrate alignment behavior. Supported by NASA Space Biology RTOP 199-40-22 and the NASA-ARC Director's Discretionary Fund.

  20. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  1. Developmental Trenbolone Exposure Affects Adult Breeding Behavior, Fecundity and Morphology of Xenopus tropicalis

    EPA Science Inventory

    Trenbolone acetate is a synthetic androgen used as a growth promoter in the cattle industry. Its metabolite 17â-trenbolone (17â-T) has been detected downstream from cattle feedlots. It could be a concern to wildlife near these areas as previous studies show 17â-T exposure affects...

  2. Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology.

    PubMed

    Dingemanse, Niels J; Van der Plas, Fons; Wright, Jonathan; Réale, Denis; Schrama, Maarten; Roff, Derek A; Van der Zee, Els; Barber, Iain

    2009-04-07

    Predation plays a central role in evolutionary processes, but little is known about how predators affect the expression of heritable variation, restricting our ability to predict evolutionary effects of predation. We reared families of three-spined stickleback Gasterosteus aculeatus from two populations-one with a history of fish predation (predator sympatric) and one without (predator naive)-and experimentally manipulated experience of predators during ontogeny. For a suite of ecologically relevant behavioural ('personality') and morphological traits, we then estimated two key variance components, additive genetic variance (VA) and residual variance (VR), that jointly shape narrow-sense heritability (h2=VA/(VA+VR)). Both population and treatment differentially affected VA versus VR, hence h2, but only for certain traits. The predator-naive population generally had lower VA and h2 values than the predator-sympatric population for personality behaviours, but not morphological traits. Values of VR and h2 were increased for some, but decreased for other personality traits in the predator-exposed treatment. For some personality traits, VA and h2 values were affected by treatment in the predator-naive population, but not in the predator-sympatric population, implying that the latter harboured less genetic variation for behavioural plasticity. Replication and experimental manipulation of predation regime are now needed to confirm that these population differences were related to variation in predator-induced selection. Cross-environment genetic correlations (rA) were tight for most traits, suggesting that predator-induced selection can affect the evolution of the same trait expressed in the absence of predators. The treatment effects on variance components imply that predators can affect evolution, not only by acting directly as selective agents, but also by influencing the expression of heritable variation.

  3. Aminothiol WR-1065 protects endothelial cell morphology against alterations induced by lipopolysaccharide.

    PubMed

    Podolski, J L; Mooteri, S N; Drab-Weiss, E A; Onoda, J M; Saclarides, T J; Rubin, D B

    1998-12-01

    In septic patients, lipopolysaccharide (LPS) damages the vascular endothelium, which manifests as tissue edema and impaired healing. This pathology occurs when LPS distorts endothelial cell morphology partly by generating free radicals. A radioprotector that scavenges free radicals, the aminothiol WR-1065 ([N-2-mercaptoethyl]-1-3-diaminopropane) was found in a prior study to normalize the morphology of irradiated endothelial cells (Mooteri SN, Podolski JL, Drab EA, et al: Radiat Res 145:217-224, 1996). The aim of this study was to determine whether WR-1065 also normalized endothelial cell morphology following exposure to LPS. For this aim, portions of bovine aortic endothelial cell cultures were denuded and exposed to LPS at 1 ng/mL. After 30 min, the apical membrane expressed increased integrin receptor to fibronectin, alpha5beta1. After 5 h, the morphology of the cells at the leading edge was distorted, and cell-cell contact was lessened. Also, filamentous actin-containing stress fibers were dissipated; however, filamentous actin content per cell was unchanged. Treatment with 2 mM WR-1065 for 2 h prior to LPS exposure attenuated the increased expression of alpha5beta1 and promoted cell-cell contact in the migrating endothelial cells. WR-1065 also promoted the retention of stress fibers and actin cytoskeletal shape in cells treated with LPS. Thus, LPS distorted endothelial cell morphology after increasing apical membrane expression of alpha5beta1 and dissipating stress fibers, effects prevented by WR-1065.

  4. Cell flexibility affects the alignment of model myxobacteria.

    PubMed

    Janulevicius, Albertas; van Loosdrecht, Mark C M; Simone, Angelo; Picioreanu, Cristian

    2010-11-17

    Myxobacteria are social bacteria that exhibit a complex life cycle culminating in the development of multicellular fruiting bodies. The alignment of rod-shaped myxobacteria cells within populations is crucial for development to proceed. It has been suggested that myxobacteria align due to mechanical interactions between gliding cells and that cell flexibility facilitates reorientation of cells upon mechanical contact. However, these suggestions have not been based on experimental or theoretical evidence. Here we created a computational mass-spring model of a flexible rod-shaped cell that glides on a substratum periodically reversing direction. The model was formulated in terms of experimentally measurable mechanical parameters, such as engine force, bending stiffness, and drag coefficient. We investigated how cell flexibility and motility engine type affected the pattern of cell gliding and the alignment of a population of 500 mechanically interacting cells. It was found that a flexible cell powered by engine force at the rear of the cell, as suggested by the slime extrusion hypothesis for myxobacteria motility engine, would not be able to glide in the direction of its long axis. A population of rigid reversing cells could indeed align due to mechanical interactions between cells, but cell flexibility impaired the alignment.

  5. Adherent cell assay results affected by variable z-position mixing.

    PubMed

    Carramanzana, Nelson; Ross, Sandra; Biddlecombe, Gloria; Lin, Chi-Hwei; Johnson, Michael

    2010-04-01

    We demonstrate that modifying mixing dynamics after addition of organic solute into aqueous buffers dramatically affects cell morphology and protein expression. Variable z-position (VZP) or varying the height of aspiration and dispense positions during mixing eliminates artifactual effects. Here, we tested 4 adherent cell types and show effects of VZP on quantitative imaging, protein expression, viability, and morphology. The result: The quantitation of cytoplasmic fluorescence within the fields of interest of the phalloidin-actin stain assay improved by 47% and fluorescence variability emitted by cells expressing green fluorescence protein (GFP) fusion proteins decreased by 15%. Assays that perform measurement by averaged reading of the entire well are somewhat susceptible. For example, protein production decreased 8% on the hypoxia response element (HRE)-luciferase assay. VZP did not affect quantitative cell viability, deviate the half maximal effective dose concentration (EC(50)) values or alter expected curve patterns. VZP is a valuable systematic process for cellular assay workflows as it efficiently folds organic solute into the aqueous solution.

  6. Sublethal concentrations of carbapenems alter cell morphology and genomic expression of Klebsiella pneumoniae biofilms.

    PubMed

    Van Laar, Tricia A; Chen, Tsute; You, Tao; Leung, Kai P

    2015-03-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells.

  7. Proteins affecting thylakoid morphology - the key to understanding vesicle transport in chloroplasts?

    PubMed

    Lindquist, Emelie; Aronsson, Henrik

    2014-01-01

    We recently showed that a Rab protein, CPRabA5e (CP = chloroplast localized), is located in chloroplasts of Arabidopsis thaliana where it is involved in various processes, such as thylakoid biogenesis and vesicle transport. Using a yeast two-hybrid method, CPRabA5e was shown to interact with a number of chloroplast proteins, including the CURVATURE THYLAKOID 1A (CURT1A) protein and the light-harvesting chlorophyll a/b binding protein (LHCB1.5). CURT1A has recently been shown to modify thylakoid architecture by inducing membrane curvature in grana, whereas LHCB1.5 is a protein of PSII (Photosystem II) facilitating light capture. LHCB1.5 is imported to chloroplasts and transported to thylakoid membranes using the post-translational Signal Recognition Particle (SRP) pathway. With this information as starting point, we here discuss their subsequent protein-protein interactions, given by the literature and Interactome 3D. CURT1A itself and several of the proteins interacting with CURT1A and LHCB1.5 have relations to vesicle transport and thylakoid morphology, which are also characteristics of cprabA5e mutants. This highlights the previous hypothesis of an alternative thylakoid targeting pathway for LHC proteins using vesicles, in addition to the SRP pathway.

  8. Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate.

    PubMed

    Italiano, Francesca; Rinalducci, Sara; Agostiano, Angela; Zolla, Lello; De Leo, Francesca; Ceci, Luigi R; Trotta, Massimo

    2012-10-01

    The response of the carotenoidless Rhodobacter sphaeroides mutant R26 to chromate stress under photosynthetic conditions is investigated by biochemical and spectroscopic measurements, proteomic analysis and cell imaging. Cell cultures were found able to reduce chromate within 3-4 days. Chromate induces marked changes in the cellular dimension and morphology, as revealed by atomic force microscopy, along with compositional changes in the cell wall revealed by infrared spectroscopy. These effects are accompanied by significant changes in the level of several proteins: 15 proteins were found up-regulated and 15 down-regulated. The protein content found in chromate exposed cells is in good agreement with the biochemical, spectroscopic and microscopic results. Moreover at the present stage no specific chromate-reductase could be found in the soluble proteome, indicating that detoxification of the pollutant proceeds via aspecific reductants.

  9. Analyzing the roles of Rho GTPases in cancer cell migration with a live cell imaging 3D-morphology-based assay.

    PubMed

    Colomba, Audrey; Ridley, Anne J

    2014-01-01

    Rho GTPases are master regulators of cytoskeleton dynamics and therefore regulate cell motility. Rho GTPases, as well as their regulators and effectors, are often deregulated in cancers and thus contribute to tumor progression to metastasis. Cancer progression involves multiple steps, including invasion of the surrounding tissues. Several methods to investigate the invasion of tumors cells in 3D matrices in vitro have been developed. In this chapter we describe a 3D-based morphology assay that can be used for medium-throughput microscopy-based screening to identify regulators of cancer cell invasion. We use this method coupled to RNAi to investigate how Rho GTPases affect prostate cancer cell morphology in 3D Matrigel.

  10. 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts

    PubMed Central

    Manzoni, Elena F. M.; Pennarossa, Georgia; deEguileor, Magda; Tettamanti, Gianluca; Gandolfi, Fulvio; Brevini, Tiziana A. L.

    2016-01-01

    Phenotype definition is controlled by epigenetic regulations that allow cells to acquire their differentiated state. The process is reversible and attractive for therapeutic intervention and for the reactivation of hypermethylated pluripotency genes that facilitate transition to a higher plasticity state. We report the results obtained in human fibroblasts exposed to the epigenetic modifier 5-azacytidine (5-aza-CR), which increases adult cell plasticity and facilitates phenotype change. Although many aspects controlling its demethylating action have been widely investigated, the mechanisms underlying 5-aza-CR effects on cell plasticity are still poorly understood. Our experiments confirm decreased global methylation, but also demonstrate an increase of both Formylcytosine (5fC) and 5-Carboxylcytosine (5caC), indicating 5-aza-CR ability to activate a direct and active demethylating effect, possibly mediated via TET2 protein increased transcription. This was accompanied by transient upregulation of pluripotency markers and incremented histone expression, paralleled by changes in histone acetylating enzymes. Furthermore, adult fibroblasts reshaped into undifferentiated progenitor-like phenotype, with a sparse and open chromatin structure. Our findings indicate that 5-aza-CR induced somatic cell transition to a higher plasticity state is activated by multiple regulations that accompany the demethylating effect exerted by the modifier. PMID:27841324

  11. Bovine oviductal epithelial cells: long term culture characterization and impact of insulin on cell morphology.

    PubMed

    Palma-Vera, S; Einspanier, R; Schoen, J

    2014-09-01

    In vitro models that resemble cell function in vivo are needed to understand oviduct physiology. This study aimed to assess cell functions and insulin effects on bovine oviductal epithelial cells (BOECs) cultured in an air-liquid interface. BOECs (n=6) were grown in conditioned Ham's F12, DMEM or Ham's F12/DMEM with 10% fetal calf serum (FCS) for 3 weeks. After selecting the most suitable medium (Ham's F12), increasing insulin concentrations (1 ng/mL, 20 ng/mL and 5 μg/mL) were applied, and cell morphology and trans-epithelial electrical resistance (TEER; n=4) were evaluated after 3 and 6 weeks. Keratin immunohistochemistry and mRNA expression of oviductal glycoprotein 1 (OVGP1) and progesterone receptor (PGR) were conducted (n=4) to assess cell differentiation. BOECs grown without insulin supplementation or with 1 ng/mL of insulin displayed polarization and secretory activity. However, cells exhibited only 50% of the height of their in vivo counterparts. Cultures supplemented with 20 ng/mL insulin showed the highest quality, but the 5 μg/mL concentration induced massive growth. TEER correlated negatively with insulin concentration (r=-0.459; p=0.009). OVGP1 and PGR transcripts were still detectable after 3 and 6 weeks. Cellular localization of keratins closely resembled that of BOECs in vivo. Cultures showed heterogeneous expression of PGR and OVGP1 in response to estradiol (10 pg/mL). In summary, BOECs grown for long term in an air-liquid interface expressed markers of cell differentiation. Additionally, insulin supplementation (20 ng/mL) improved the cell morphology in vitro.

  12. Reciprocity in predator-prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology.

    PubMed

    Hammill, Edd; Beckerman, Andrew P

    2010-05-01

    A vast body of literature exists documenting the morphological, behavioural and life history changes that predators induce in prey. However, little attention has been paid to how these induced changes feed back and affect the predators' life history and morphology. Larvae of the phantom midge Chaoborus flavicans are intermediate predators in a food web with Daphnia pulex as the basal resource and planktivorous fish as the top predator. C. flavicans prey on D. pulex and are themselves prey for fish; as D. pulex induce morphological defences in the presence of C. flavicans this is an ideal system in which to evaluate the effects of defended prey and top predators on an intermediate consumer. We assessed the impact on C. flavicans life history and morphology of foraging on defended prey while also being exposed to the non-lethal presence of a top fish predator. We tested the basic hypothesis that the effects of defended prey will depend on the presence or absence of top predator predation risk. Feeding rate was significantly reduced and time to pupation was significantly increased by defended morph prey. Gut size, development time, fecundity, egg size and reproductive effort respond to fish chemical cues directly or significantly alter the relationship between a trait and body size. We found no significant interactions between prey morph and the non-lethal presence of a top predator, suggesting that the effects of these two biological factors were additive or singularly independent. Overall it appears that C. flavicans is able to substantially modify several aspects of its biology, and while some changes appear mere consequences of resource limitation others appear facultative in nature.

  13. Stability Limits of Capillary Bridges: How Contact Angle Hysteresis Affects Morphology Transitions of Liquid Microstructures.

    PubMed

    de Ruiter, Riëlle; Semprebon, Ciro; van Gorcum, Mathijs; Duits, Michèl H G; Brinkmann, Martin; Mugele, Frieder

    2015-06-12

    The equilibrium shape of a drop in contact with solid surfaces can undergo continuous or discontinuous transitions upon changes in either drop volume or surface energies. In many instances, such transitions involve the motion of the three-phase contact line and are thus sensitive to contact angle hysteresis. Using a combination of electrowetting-based experiments and numerical calculations, we demonstrate for a generic sphere-plate confinement geometry how contact angle hysteresis affects the mechanical stability of competing axisymmetric and nonaxisymmetric drop conformations and qualitatively changes the character of transitions between them.

  14. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation.

    PubMed

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells.

  15. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates.

    PubMed

    Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan

    2015-07-01

    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.

  16. Luminal epithelium in endometrial fragments affects their vascularization, growth and morphological development into endometriosis-like lesions in mice.

    PubMed

    Feng, Dilu; Menger, Michael D; Wang, Hongbo; Laschke, Matthias W

    2014-02-01

    In endometriosis research, endometriosis-like lesions are usually induced in rodents by transplantation of isolated endometrial tissue fragments to ectopic sites. In the present study, we investigated whether this approach is affected by the cellular composition of the grafts. For this purpose, endometrial tissue fragments covered with luminal epithelium (LE(+)) and without luminal epithelium (LE(-)) were transplanted from transgenic green-fluorescent-protein-positive (GFP(+)) donor mice into the dorsal skinfold chamber of GFP(-) wild-type recipient animals to analyze their vascularization, growth and morphology by means of repetitive intravital fluorescence microscopy, histology and immunohistochemistry during a 14-day observation period. LE(-) fragments developed into typical endometriosis-like lesions with cyst-like dilated endometrial glands and a well-vascularized endometrial stroma. In contrast, LE(+) fragments exhibited a polypoid morphology and a significantly reduced blood perfusion after engraftment, because the luminal epithelium prevented the vascular interconnection with the microvasculature of the surrounding host tissue. This was associated with a markedly decreased growth rate of LE(+) lesions compared with LE(-) lesions. In addition, we found that many GFP(+) microvessels grew outside the LE(-) lesions and developed interconnections to the host microvasculature, indicating that inosculation is an important mechanism in the vascularization process of endometriosis-like lesions. Our findings demonstrate that the luminal epithelium crucially affects the vascularization, growth and morphology of endometriosis-like lesions. Therefore, it is of major importance to standardize the cellular composition of endometrial grafts in order to increase the validity and reliability of pre-clinical rodent studies in endometriosis research.

  17. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    PubMed

    Mosaliganti, Kishore R; Noche, Ramil R; Xiong, Fengzhu; Swinburne, Ian A; Megason, Sean G

    2012-01-01

    The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available

  18. Glyphosate-based pesticides affect cell cycle regulation.

    PubMed

    Marc, Julie; Mulner-Lorillon, Odile; Bellé, Robert

    2004-04-01

    Cell-cycle dysregulation is a hallmark of tumor cells and human cancers. Failure in the cell-cycle checkpoints leads to genomic instability and subsequent development of cancers from the initial affected cell. A worldwide used product Roundup 3plus, based on glyphosate as the active herbicide, was suggested to be of human health concern since it induced cell cycle dysfunction as judged from analysis of the first cell division of sea urchin embryos, a recognized model for cell cycle studies. Several glyphosate-based pesticides from different manufacturers were assayed in comparison with Roundup 3plus for their ability to interfere with the cell cycle regulation. All the tested products, Amega, Cargly, Cosmic, and Roundup Biovert induced cell cycle dysfunction. The threshold concentration for induction of cell cycle dysfunction was evaluated for each product and suggests high risk by inhalation for people in the vicinity of the pesticide handling sprayed at 500 to 4000 times higher dose than the cell-cycle adverse concentration.

  19. Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.)

    PubMed Central

    Toppino, Laura; Barchi, Lorenzo; Lo Scalzo, Roberto; Palazzolo, Eristanna; Francese, Gianluca; Fibiani, Marta; D'Alessandro, Antonietta; Papa, Vincenza; Laudicina, Vito A.; Sabatino, Leo; Pulcini, Laura; Sala, Tea; Acciarri, Nazzareno; Portis, Ezio; Lanteri, Sergio; Mennella, Giuseppe; Rotino, Giuseppe L.

    2016-01-01

    Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines “305E40” × “67/3.” The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs. PMID:26973692

  20. Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.).

    PubMed

    Toppino, Laura; Barchi, Lorenzo; Lo Scalzo, Roberto; Palazzolo, Eristanna; Francese, Gianluca; Fibiani, Marta; D'Alessandro, Antonietta; Papa, Vincenza; Laudicina, Vito A; Sabatino, Leo; Pulcini, Laura; Sala, Tea; Acciarri, Nazzareno; Portis, Ezio; Lanteri, Sergio; Mennella, Giuseppe; Rotino, Giuseppe L

    2016-01-01

    Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines "305E40" × "67/3." The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs.

  1. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction.

    PubMed

    Fiorentino, Niccolo M; Epstein, Frederick H; Blemker, Silvia S

    2012-02-23

    Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.

  2. Caspofungin Affects Growth of Paracoccidioides brasiliensis in Both Morphological Phases ▿ †

    PubMed Central

    Rodríguez-Brito, Sabrina; Niño-Vega, Gustavo; San-Blas, Gioconda

    2010-01-01

    Five Paracoccidioides brasiliensis isolates were grown in the presence of caspofungin (0 to 1 μg/ml). Inhibition of the yeast phase ranged from 20 to 65%, while in the mycelial form it ranged from 75% to 82%. Such variability was loosely related to the amount of cell wall β-1,3-glucan. No association with point mutations in the β-1,3-glucan synthase was detected. Caspofungin induced physical changes and cytoplasmic deterioration in both fungal phases. PMID:20937789

  3. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase.

  4. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

    PubMed

    Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin

    2015-05-01

    The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal.

  5. [MORPHOLOGICAL FEATURES OF RAT MUCOUS MEMBRANE OF THE TONGUE EARLY AFFECTED BY ACRYLIC RESIN MONOMER].

    PubMed

    Davydenko, V; Nidzelskiy, M; Starchenko, I; Davydenko, A; Kuznetsov, V

    2016-03-01

    Base materials, made on the basis of various derivatives of acrylic and methacrylic acids, have been widely used in prosthetic dentistry. Free monomer, affecting the tissues of prosthetic bed and the whole body, is always found in dentures. Therefore, study of the effect of acrylic resins' monomer on mucous membrane of the tongue is crucial. Rat tongue is very similar to human tongue, and this fact has become the basis for selecting these animals to be involved into the experiment. The paper presents the findings related to the effect of "Ftoraks" base acrylic resin monomer on the state of rat mucous membrane of the tongue and its regeneration. The microscopy has found that the greatest changes in the mucous membrane of the tongue occur on day 3 and 7 day after applying the monomer and are of erosive and inflammatory nature. Regeneration of tongue epithelium slows down.

  6. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action.

    PubMed

    Cushnie, T P Tim; O'Driscoll, Noëlle H; Lamb, Andrew J

    2016-12-01

    Efforts to reduce the global burden of bacterial disease and contend with escalating bacterial resistance are spurring innovation in antibacterial drug and biocide development and related technologies such as photodynamic therapy and photochemical disinfection. Elucidation of the mechanism of action of these new agents and processes can greatly facilitate their development, but it is a complex endeavour. One strategy that has been popular for many years, and which is garnering increasing interest due to recent technological advances in microscopy and a deeper understanding of the molecular events involved, is the examination of treated bacteria for changes to their morphology and ultrastructure. In this review, we take a critical look at this approach. Variables affecting antibacterial-induced alterations are discussed first. These include characteristics of the test organism (e.g. cell wall structure) and incubation conditions (e.g. growth medium osmolarity). The main body of the review then describes the different alterations that can occur. Micrographs depicting these alterations are presented, together with information on agents that induce the change, and the sequence of molecular events that lead to the change. We close by highlighting those morphological and ultrastructural changes which are consistently induced by agents sharing the same mechanism (e.g. spheroplast formation by peptidoglycan synthesis inhibitors) and explaining how changes that are induced by multiple antibacterial classes (e.g. filamentation by DNA synthesis inhibitors, FtsZ disruptors, and other types of agent) can still yield useful mechanistic information. Lastly, recommendations are made regarding future study design and execution.

  7. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease.

    PubMed

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E J; de Klein, Annelies; Douben, Hannie; Korevaar, Sander S; Mensah, Fane K F; Dor, Frank J M F; IJzermans, Jan N M; Betjes, Michiel G H; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2012-10-01

    Mesenchymal stem cells are a potential therapeutic agent in renal disease and kidney transplantation. Autologous cell use in kidney transplantation is preferred to avoid anti-HLA reactivity; however, the influence of renal disease on mesenchymal stem cells is unknown. To investigate the feasibility of autologous cell therapy in patients with renal disease, we isolated these cells from subcutaneous adipose tissue of healthy controls and patients with renal disease and compared them phenotypically and functionally. The mesenchymal stem cells from both groups showed similar morphology and differentiation capacity, and were both over 90% positive for CD73, CD105, and CD166, and negative for CD31 and CD45. They demonstrated comparable population doubling times, rates of apoptosis, and were both capable of inhibiting allo-antigen- and anti-CD3/CD28-activated peripheral blood mononuclear cell proliferation. In response to immune activation they both increased the expression of pro-inflammatory and anti-inflammatory factors. These mesenchymal stem cells were genetically stable after extensive expansion and, importantly, were not affected by uremic serum. Thus, mesenchymal stem cells of patients with renal disease have similar characteristics and functionality as those from healthy controls. Hence, our results indicate the feasibility of their use in autologous cell therapy in patients with renal disease.

  8. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    PubMed

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  9. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    PubMed

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation.

  10. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    SciTech Connect

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; Chen, Jihua; Adhikari, Nirmal; Dubey, Ashish; Mitul, Abu Farzan; Mohammed, Lal; Qiao, Qiquan

    2015-01-01

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer and increased solubility of PC70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC70BM than PC60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC70

  11. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-01-01

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer and increasedmore » solubility of PC70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC70BM than PC60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC70BM and PC60BM based active layers was observed. Photo-CELIV experiment

  12. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  13. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  14. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including

  15. Changes, and the Relevance Thereof, in Mitochondrial Morphology during Differentiation into Endothelial Cells

    PubMed Central

    Shin, Ji Won; Park, So Hee; Kang, Yun Gyeong; Wu, Yanru; Choi, Hyun Ju

    2016-01-01

    The roles of mitochondria in various physiological functions of vascular endothelial cells have been investigated extensively. Morphological studies in relation to physiological functions have been performed. However, there have been few reports of morphological investigations related to stem cell differentiation. This was the first morphological study of mitochondria in relation to endothelial differentiation and focused on quantitative analysis of changes in mitochondrial morphology, number, area, and length during differentiation of human mesenchymal stem cells (hMSCs) into endothelial-like cells. To induce differentiation, we engaged vascular endothelial growth factors and flow-induced shear stress. Cells were classified according to the expression of von Willebrand factor as hMSCs, differentiating cells, and almost fully differentiated cells. Based on imaging analysis, we investigated changes in mitochondrial number, area, and length. In addition, mitochondrial networks were quantified on a single-mitochondrion basis by introducing a branch form factor. The data indicated that the mitochondrial number, area per cell, and length were decreased with differentiation. The mitochondrial morphology became simpler with progression of differentiation. These findings could be explained in view of energy level during differentiation; a higher level of energy is needed during differentiation, with larger numbers of mitochondria with branches. Application of this method to differentiation into other lineages will explain the energy levels required to control stem cell differentiation. PMID:27517609

  16. Effects of aging on mouse tongue epithelium focusing on cell proliferation rate and morphological aspects.

    PubMed

    Carrard, Vinicius Coelho; Pires, Aline Segatto; Badauy, Cristiano Macabu; Rados, Pantelis Varvaki; Lauxen, Isabel Silva; Sant'Ana Filho, Manoel

    2008-11-01

    The aim of this study was to investigate cell proliferation rate and certain morphological features of mouse epithelium as aging progresses. Tongue biopsies were performed on female mice (Mus domesticus domesticus) at 2, 8, 14 and 20 months of age as indicative of adolescence, adulthood, early senescence and senescence, respectively. Histological sections of tongue were stained with hematoxylin-eosin and subjected to silver staining for active nucleolar organizer region counting. Cell proliferation rate and epithelial thickness analysis were carried out. Analysis of variance detected no differences between the groups in terms of numbers of silver-stained dots associated with nucleolar proteins. There was an increase in mean epithelial thickness in adult animals, followed by a gradual reduction until senescence. Mean keratin thickness presented an increase at 8 and 20 months of age. This difference is probably related to puberty, growth or dietary habits. Aging has no influence on oral epithelial proliferation rate in mice. A gradual reduction in epithelial thickness is a feature of aging in mammals. A conspicuous increase in the keratin layer was observed in senescence as an adaptative response to the reduction in epithelial thickness. These results suggest that aging affects the oral epithelium maturation process through a mechanism that is not related to cell proliferation.

  17. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions

    PubMed Central

    Wessler, Timothy; Yang, Xiaofeng; Chen, Alex; Roach, Nathan; Elston, Timothy C.; Wang, Qi; Jacobson, Ken; Forest, M. Gregory

    2016-01-01

    Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model “learns” from the thin section transmission electron micrograph image (2D) or the “seed and growth” model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts. PMID:27015526

  18. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells.

    PubMed

    Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong

    2017-03-24

    This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.

  19. An innovative shape equation to quantify the morphological characteristics of parasitized red blood cells by Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Motevalli Haghi, Afsaneh; Faghihi, Shahab

    2013-04-01

    The morphology of red blood cells is affected significantly during maturation of malaria parasites, Plasmodium falciparum and Plasmodium vivax. A novel shape equation is presented that defines shape of parasitized red blood cells by P. falciparum (Pf-red blood cells) and P. vivax (Pv-red blood cells) at four stages of infection. The Giemsa-stained thin blood films are prepared using blood samples collected from healthy donors, patients having P. falciparum and P. vivax malaria. The diameter and thickness of healthy red blood cells plus Pf-red blood cells and Pv-red blood cells at each stage of infection are measured from their optical images using Olysia and Scanning Probe Image Processor softwares, respectively. Using diameters and thicknesses of parasitized red blood cells, a shape equation is fitted and relative two-dimensional shapes are plotted using MATHEMATICA. The shape of Pf-red blood cell drastically changes at ring stage as its thickness increases by 82%, while Pv-red blood cell remains biconcave (30% increase in thickness). By trophozoite and subsequent schizont stage, the Pf-red blood cell entirely loses its biconcave shape and becomes near spherical (diameter and thickness of ~8 µm). The Pv-red blood cell remains biconcave throughout the parasite development even though its volume increases. These results could have practical use for faster diagnosis, prediction, and treatment of human malaria and sickle-cell diseases.

  20. Dyrk1A Haploinsufficiency Affects Viability and Causes Developmental Delay and Abnormal Brain Morphology in Mice

    PubMed Central

    Fotaki, Vassiliki; Dierssen, Mara; Alcántara, Soledad; Martínez, Salvador; Martí, Eulàlia; Casas, Caty; Visa, Joana; Soriano, Eduardo; Estivill, Xavier; Arbonés, Maria L.

    2002-01-01

    DYRK1A is the human orthologue of the Drosophila minibrain (mnb) gene, which is involved in postembryonic neurogenesis in flies. Because of its mapping position on chromosome 21 and the neurobehavioral alterations shown by mice overexpressing this gene, involvement of DYRK1A in some of the neurological defects of Down syndrome patients has been suggested. To gain insight into its physiological role, we have generated mice deficient in Dyrk1A function by gene targeting. Dyrk1A−/− null mutants presented a general growth delay and died during midgestation. Mice heterozygous for the mutation (Dyrk1A+/−) showed decreased neonatal viability and a significant body size reduction from birth to adulthood. General neurobehavioral analysis revealed preweaning developmental delay of Dyrk1A+/− mice and specific alterations in adults. Brains of Dyrk1A+/− mice were decreased in size in a region-specific manner, although the cytoarchitecture and neuronal components in most areas were not altered. Cell counts showed increased neuronal densities in some brain regions and a specific decrease in the number of neurons in the superior colliculus, which exhibited a significant size reduction. These data provide evidence about the nonredundant, vital role of Dyrk1A and suggest a conserved mode of action that determines normal growth and brain size in both mice and flies. PMID:12192061

  1. Dietary inulin affects the morphology but not the sodium-dependent glucose and glutamine transport in the jejunum of broilers.

    PubMed

    Rehman, H; Rosenkranz, C; Böhm, J; Zentek, J

    2007-01-01

    Inulin, a prebiotic, is a fermentable oligosaccharide that may affect the intestinal mucosal architecture and the electrophysiological parameters. The effects of a diet with added inulin were tested on the jejunal morphology and electrogenic transport of Glc and Gln from the jejunal mucosa in broilers. Short-circuit current and transmucosal tissue resistance of jejunal flaps were measured in Ussing chambers. The feeding experiment was carried out in broilers (n = 40) using 1% inulin with an application period of 5 wk. The inulin-containing diet resulted in longer jejunal villi (P < 0.05) and deeper crypts (P < 0.01) than in control birds without affecting villus:crypt depth. Basal short-circuit current value remained unaffected by dietary treatment. Inulin supplementation did not modify the electrogenic transport of Glc and Gln in the jejunal mucosa. The basal value of transmucosal tissue resistance was significantly lower (P < 0.001) in the inulin-fed group compared with the control group. In conclusion, inulin supplementation affected the jejunal mucosal architecture but did not modify the electrogenic transport of Glc and amino acid under present experimental condition.

  2. The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands.

    PubMed

    Lin, Kevin B L; Freeman, Spencer A; Zabetian, Saba; Brugger, Hayley; Weber, Michele; Lei, Victor; Dang-Lawson, May; Tse, Kathy W K; Santamaria, Rene; Batista, Facundo D; Gold, Michael R

    2008-01-01

    B lymphocytes spread and extend membrane processes when searching for antigens and form immune synapses upon contacting cells that display antigens on their surface. Although these dynamic morphological changes facilitate B cell activation, the signaling pathways underlying these processes are not fully understood. We found that activation of the Rap GTPases was essential for these changes in B cell morphology. Rap activation was important for B cell receptor (BCR)- and lymphocyte-function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune-synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane-process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens but not soluble antigens. Thus by controlling B cell morphology and cytoskeletal organization, Rap might play a key role in the activation of B cells by particulate and cell-associated antigens.

  3. Morphology and expression status investigations of specific surface markers on B-cell chronic lymphocytic leukemia cells.

    PubMed

    Niu, Suli; Chan, Ryan; Berini, Pierre; Wang, Chen; Zou, Shan

    2013-11-01

    The morphology of cells and expression status of specific surface markers [cluster of differentiation (CD)], such as CD5, CD19, CD20, CD38, and CD45, have long been considered as the essential indicators for the diagnosis and prognosis of B-cell chronic lymphocytic leukemia (B-CLL). Clinically, it is difficult to simultaneously obtain cell morphology and distribution of surface markers with flow cytometry, especially for some surrogate markers such as CD38. Here, as an alternative and complementary prognostic method, fluorescence microscopy and image processing method are introduced to directly visualize the cells from patients and to quantitatively determine the expression status of surface markers. In this study, the morphological parameters of B-CLL cells were measured to establish the correlation between the cellular morphology and the surface marker expression. It was clear that the CD38+ and CD38- B-CLL cells from the same CD38+ patients had hardly any size differences; however, an increase in perimeter was observed for CD38- patients. Moreover, the expression level of the receptors on the cell was independent of the cell size. There was no evidence showing that the expression intensities of CD19 and CD38 were related to each other for the CD38+ B-CLL cells. On the same cells, CD5 was more selectively expressed on the cell membrane; however, the expression patterns suggested that the cell membrane of CD38- B-CLL cells contained the least expression level of CD19.

  4. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells.

    PubMed

    Ramanauskiene, Kristina; Raudonis, Raimondas; Majiene, Daiva

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80-130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM-200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  5. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  6. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  7. Sequences near the Active Site in Chimeric Penicillin Binding Proteins 5 and 6 Affect Uniform Morphology of Escherichia coli

    PubMed Central

    Ghosh, Anindya S.; Young, Kevin D.

    2003-01-01

    Penicillin binding protein (PBP) 5, a dd-carboxypeptidase that removes the terminal d-alanine from peptide side chains of peptidoglycan, plays an important role in creating and maintaining the uniform cell shape of Escherichia coli. PBP 6, a highly similar homologue, cannot substitute for PBP 5 in this respect. Previously, we localized the shape-maintaining characteristics of PBP 5 to the globular domain that contains the active site (domain I), where PBPs 5 and 6 share substantial identity. To identify the specific segment of domain I responsible for shape control, we created a set of hybrids and determined which ones complemented the aberrant morphology of a misshapen PBP mutant, E. coli CS703-1. Fusion proteins were constructed in which 47, 199 and 228 amino-terminal amino acids of one PBP were fused to the corresponding carboxy-terminal amino acids of the other. The morphological phenotype was reversed only by hybrid proteins containing PBP 5 residues 200 to 228, which are located next to the KTG motif of the active site. Because residues 220 to 228 were identical in these proteins, the morphological effect was determined by alterations in amino acids 200 to 219. To confirm the importance of this segment, we constructed mosaic proteins in which these 20 amino acids were grafted from PBP 5 into PBP 6 and vice versa. The PBP 6/5/6 mosaic complemented the aberrant morphology of CS703-1, whereas PBP 5/6/5 did not. Site-directed mutagenesis demonstrated that the Asp218 and Lys219 residues were important for shape maintenance by these mosaic PBPs, but the same mutations in wild-type PBP 5 did not eliminate its shape-promoting activity. Homologous enzymes from five other bacteria also complemented the phenotype of CS703-1. The overall conclusion is that creation of a bacterial cell of regular diameter and uniform contour apparently depends primarily on a slight alteration of the enzymatic activity or substrate accessibility at the active site of E. coli PBP 5. PMID

  8. Comparison of Morphological and Functional Endothelial Cell Changes after Cataract Surgery: Phacoemulsification Versus Manual Small-Incision Cataract Surgery

    PubMed Central

    Ganekal, Sunil; Nagarajappa, Ashwini

    2014-01-01

    Purpose: To compare the morphological (cell density, coefficient of variation and standard deviation) and functional (central corneal thickness) endothelial changes after phacoemulsification versus manual small-incision cataract surgery (MSICS). Design: Prospective randomized control study. Materials and Methods: In this prospective randomized control study, patients were randomly allocated to undergo phacoemulsification (Group 1, n = 100) or MSICS (Group 2, n = 100) using a random number Table. The patients underwent complete ophthalmic evaluation and specular microscopy preoperatively and at 1and 6 weeks postoperatively. Functional and morphological endothelial evaluation was Noncon ROBO PACHY SP-9000 specular microscope. Phacoemulsification was performed, the chop technique and MSICS, by the viscoexpression technique. Results: The mean difference in central corneal thickness at baseline and 1 week between Group 1 and Group 2 was statistically significant (P = 0.027). However, this difference at baseline when compared to 6 week and 1 week, 6 weeks was not statistically significant (P > 0.05). The difference in mean endothelial cell density between groups at 1 week and 6 weeks was statistically significant (P = 0.016). The mean coefficient of variation and mean standard deviation between groups were not statistically significant (P > 0.05, both comparisons). Conclusion: The central corneal thickness, coefficient of variation, and standard deviation were maintained in both groups indicating that the function and morphology of endothelial cells was not affected despite an initial reduction in endothelial cell number in MSICS. Thus, MSICS remains a safe option in the developing world. PMID:24669147

  9. Morphological responses of mitochondria-rich cells to hypersaline environment in the Australian mudskipper, Periophthalmus minutus.

    PubMed

    Itoki, Naoko; Sakamoto, Tatsuya; Hayashi, Masahiro; Takeda, Tatsusuke; Ishimatsu, Atsushi

    2012-07-01

    A population of the Australian mudskipper, Periophthalmus minutus, was found to inhabit mudflat that remained uncovered by tide for more than 20 days in some neap tides. During these prolonged emersion periods, P. minutus retreated into burrows containing little water, with a highest recorded salinity of 84 ± 7.4 psu (practical salinity unit). To explore the mechanical basis for this salinity tolerance in P. minutus, we determined the densities of mitochondria-rich cells (MRCs) in the inner and outer opercula and the pectoral fin skin, in comparison with P. takita, [corrected] from an adjacent lower intertidal habitat, and studied morphological responses of MRCs to exposure to freshwater (FW), and 100% (34-35 psu) and 200% seawater (SW). Periophthalmus minutus showed a higher density of MRCs in the inner operculum (3365 ± 821 cells mm(-2)) than in the pectoral fin skin (1428 ± 161) or the outer operculum (1100 ± 986), all of which were higher than the MRC densities in p. takita. [corrected]. No mortality occurred in 100% or 200% SW, but half of the fish died within four days in FW. Neither 200% SW nor FW exposure affected MRC density. Transfer to 200% SW doubled MRC size after 9-14 days with no change in the proportion of MRCs with apical pits or plasma sodium concentration. In contrast, transfer to FW resulted in a rapid closing of pits and a significant reduction in plasma sodium concentration. These results suggest that P. minutus has evolved morphological and physiological mechanisms to withstand hypersaline conditions that they may encounter in their habitat.

  10. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients.

    PubMed

    Pecorelli, Alessandra; Cervellati, Franco; Belmonte, Giuseppe; Montagner, Giulia; Waldon, PhiAnh; Hayek, Joussef; Gambari, Roberto; Valacchi, Giuseppe

    2016-01-01

    A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder.

  11. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Głombik, Katarzyna; Budziszewska, Bogusława; Kubera, Marta; Lasoń, Władysław; Popiołek-Barczyk, Katarzyna; Mika, Joanna; Wędzony, Krzysztof; Basta-Kaim, Agnieszka

    2015-01-01

    Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression) as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test), the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive) in 3-month-old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4) and beneficial (insulin-like growth factor-1 (IGF-1), brain derived neurotrophic factor (BDNF)) phenotypes in cultures of microglia obtained from the cortices of 1–2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like) disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats. Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood. PMID

  12. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle.

    PubMed

    Winter, Lilli; Kuznetsov, Andrey V; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-08-15

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.

  13. Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina

    PubMed Central

    Lee, Sammy C.S.; Meyer, Arndt; Schubert, Timm; Hüser, Laura; Dedek, Karin; Haverkamp, Silke

    2015-01-01

    Amacrine cells comprise ~30 morphological types in the mammalian retina. The synaptic connectivity and function of a few GABAergic wide-field amacrine cells have recently been studied, however, with the exception of the rod pathway-specific AII amacrine cell the connectivity of glycinergic small-field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small-field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A-type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. Taken together, the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway-specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A-type ganglion cells. PMID:25630271

  14. Late steps of parvoviral infection induce changes in cell morphology.

    PubMed

    Pakkanen, Kirsi; Nykky, Jonna; Vuento, Matti

    2008-11-01

    Previously, virus-induced non-filopodial extensions have not been encountered in connection with viral infections. Here, we report emergence of long extensions protruding from Norden laboratory feline kidney (NLFK) and A72 (canine fibroma) cells infected with canine parvovirus for 72 h. These extensions significantly differ in length and number from those appearing in control cells. The most striking feature in the extensions is the length, reaching up to 130 microm, almost twice the average length of a healthy NLFK cell. In A72 cells, the extensions were even longer, up to 200 microm. The results presented here also suggest that the events leading to the growth of these extensions start earlier in infection and abnormal extension growth is detectable already at 24-h post-infection (p.i.). These extensions may have a vital role in the cell-to-cell transmission of the virus.

  15. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    NASA Astrophysics Data System (ADS)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  16. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  17. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy.

    PubMed

    Groves, Chris; Reid, Obadiah G; Ginger, David S

    2010-05-18

    The use of organic photovoltaics (OPVs) could reduce production costs for solar cells because these materials are solution processable and can be manufactured by roll-to-roll printing. The nanoscale texture, or film morphology, of the donor/acceptor blends used in most OPVs is a critical variable that can dominate both the performance of new materials being optimized in the lab and efforts to move from laboratory-scale to factory-scale production. Although efficiencies of organic solar cells have improved significantly in recent years, progress in morphology optimization still occurs largely by trial and error, in part because much of our basic understanding of how nanoscale morphology affects the optoelectronic properties of these heterogeneous organic semiconductor films has to be inferred indirectly from macroscopic measurements. In this Account, we review the importance of nanoscale morphology in organic semiconductors and the use of electrical scanning probe microscopy techniques to directly probe the local optoelectronic properties of OPV devices. We have observed local heterogeneity of electronic properties and performance in a wide range of systems, including model polymer-fullerene blends such as poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), newer polyfluorene copolymer-PCBM blends, and even all polymer donor-acceptor blends. The observed heterogeneity in local photocurrent poses important questions, chiefly what information is contained and what is lost when using average values obtained from conventional measurements on macroscopic devices and bulk samples? We show that in many cases OPVs are best thought of as a collection of nanoscopic photodiodes connected in parallel, each with their own morphological and therefore electronic and optical properties. This local heterogeneity forces us to carefully consider the adequacy of describing OPVs solely by "average" properties such as the bulk carrier mobility

  18. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    PubMed

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-02

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing.

  19. A morphological study of the retinal ganglion cells of the Afghan pika (Ochotona rufescens).

    PubMed

    Akaishi, Y; Uchiyama, H; Ito, H; Shimizu, Y

    1995-03-01

    The distribution and morphology of the retinal ganglion cells was studied in a relative of the rabbit, the Afghan pika. The total number of retinal ganglion cells was approximately 170,000. The total number of optic nerve fibers was between 160,000 and 190,000, corresponding to the total number of retinal ganglion cells. Retinal ganglion cells were found to have a horizontal region of high-density. The maximum density was 5250 cells/mm2. This region was located in the central retina below the optic disc. This area contained numerous closely packed small ganglion cells, while the peripheral retina (especially in the dorsal periphery) contained large ganglion cells more loosely dispersed. The retinal ganglion cells labeled by horseradish peroxidase (HRP) were morphologically classified into three types based on dendritic length and ramification pattern.

  20. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Wenluan

    achieved by having a sparse mono-layer of Fe3O4 nanoparticles (NPs) that formed a polymer depletion zone excluding P3HT away from cathode interface. Convective outflow and surface energy ordering were hypothesized to promote the NPs toward the cathode interface. By proper tuning of the NPs volume fraction added to the films the distance between two NPs can be made to be smaller than the P3HT radius of gyration to form the polymer depletion zone. PCBM molecules can then fill the space left by P3HT and help build electron transport pathways improving electron collection at cathode. The addition of NPs does not affect the PCBM agglomerate morphology, but does decrease the degree of P3HT crystallinity, so a balance between this NP effect and P3HT crystallinity has to be reached to obtain optimum device performance. To assess this NP effect in industrialized device fabrication, the rod coating method was used for a preliminary study. It is found that, the NPs do not move upward and are kinetically trapped with random a distribution within the film. In addition, the P3HT crystallinity was also reduced by adding NPs, so the device performance actually is even lower. It is hyposized that the slower drying rate in rod coating compared to spin coating traps the NPs in the film perhaps due to les convective flow. Hence, further effort is needed to realize this NP effect in large scalable device fabrication. Considering the low cost of NPs and the simple process applied to achieve this improvement, it is remarkably beneficial to organic photovoltaic industry. Further study could combine light management by using colloid particles and this NP effect to further modify morphology to obtain better solar cells. It is believed that this NP effect could be broadly applicable to other organic electronic devices like light emitting diodes, and batteries for lighting and energy storage.

  1. Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control

    PubMed Central

    Kato, Ryuji; Matsumoto, Megumi; Sasaki, Hiroto; Joto, Risako; Okada, Mai; Ikeda, Yurika; Kanie, Kei; Suga, Mika; Kinehara, Masaki; Yanagihara, Kana; Liu, Yujung; Uchio-Yamada, Kozue; Fukuda, Takayuki; Kii, Hiroaki; Uozumi, Takayuki; Honda, Hiroyuki; Kiyota, Yasujiro; Furue, Miho K

    2016-01-01

    Given the difficulties inherent in maintaining human pluripotent stem cells (hPSCs) in a healthy state, hPSCs should be routinely characterized using several established standard criteria during expansion for research or therapeutic purposes. hPSC colony morphology is typically considered an important criterion, but it is not evaluated quantitatively. Thus, we designed an unbiased method to evaluate hPSC colony morphology. This method involves a combination of automated non-labelled live-cell imaging and the implementation of morphological colony analysis algorithms with multiple parameters. To validate the utility of the quantitative evaluation method, a parent cell line exhibiting typical embryonic stem cell (ESC)-like morphology and an aberrant hPSC subclone demonstrating unusual colony morphology were used as models. According to statistical colony classification based on morphological parameters, colonies containing readily discernible areas of differentiation constituted a major classification cluster and were distinguishable from typical ESC-like colonies; similar results were obtained via classification based on global gene expression profiles. Thus, the morphological features of hPSC colonies are closely associated with cellular characteristics. Our quantitative evaluation method provides a biological definition of ‘hPSC colony morphology’, permits the non-invasive monitoring of hPSC conditions and is particularly useful for detecting variations in hPSC heterogeneity. PMID:27667091

  2. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs.

    PubMed

    Reinertsen, Erik; Skinner, Michael; Wu, Benjamin; Tawil, Bill

    2014-11-01

    Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.

  3. The Absence of Pupylation (Prokaryotic Ubiquitin-Like Protein Modification) Affects Morphological and Physiological Differentiation in Streptomyces coelicolor

    PubMed Central

    Seghezzi, Nicolas; Duchateau, Magalie; Gominet, Myriam; Kofroňová, Olga; Benada, Oldřich; Mazodier, Philippe

    2015-01-01

    ABSTRACT Protein turnover is essential in all living organisms for the maintenance of normal cell physiology. In eukaryotes, most cellular protein turnover involves the ubiquitin-proteasome pathway, in which proteins tagged with ubiquitin are targeted to the proteasome for degradation. In contrast, most bacteria lack a proteasome but harbor proteases for protein turnover. However, some actinobacteria, such as mycobacteria, possess a proteasome in addition to these proteases. A prokaryotic ubiquitination-like tagging process in mycobacteria was described and was named pupylation: proteins are tagged with Pup (prokaryotic ubiquitin-like protein) and directed to the proteasome for degradation. We report pupylation in another actinobacterium, Streptomyces coelicolor. Both the morphology and life cycle of Streptomyces species are complex (formation of a substrate and aerial mycelium followed by sporulation), and these bacteria are prolific producers of secondary metabolites with important medicinal and agricultural applications. The genes encoding the pupylation system in S. coelicolor are expressed at various stages of development. We demonstrated that pupylation targets numerous proteins and identified 20 of them. Furthermore, we established that abolition of pupylation has substantial effects on morphological and metabolic differentiation and on resistance to oxidative stress. In contrast, in most cases, a proteasome-deficient mutant showed only modest perturbations under the same conditions. Thus, the phenotype of the pup mutant does not appear to be due solely to defective proteasomal degradation. Presumably, pupylation has roles in addition to directing proteins to the proteasome. IMPORTANCE Streptomyces spp. are filamentous and sporulating actinobacteria, remarkable for their morphological and metabolic differentiation. They produce numerous bioactive compounds, including antifungal, antibiotic, and antitumor compounds. There is therefore considerable interest in

  4. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  5. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae)

    PubMed Central

    Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899

  6. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size.

    PubMed

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen

    2015-03-05

    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  7. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder

    PubMed Central

    Roecklein, Kathryn A.; Wong, Patricia M.; Miller, Megan A.; Donofry, Shannon D.; Kamarck, Marissa L.; Brainard, George C.

    2013-01-01

    ROECKLEIN, K.A., WONG, P.M., MILLER, M.A., DONOFRY, S.D., KAMARCK, M.L., BRAINARD, G.C. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder…NEUROSCI BIOBEHAV REV x(x) XXX-XXX, 2012. In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1–2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. PMID:23286902

  8. Systematic morphological profiling of human gene and allele function via Cell Painting.

    PubMed

    Rohban, Mohammad Hossein; Singh, Shantanu; Wu, Xiaoyun; Berthet, Julia B; Bray, Mark-Anthony; Shrestha, Yashaswi; Varelas, Xaralabos; Boehm, Jesse S; Carpenter, Anne E

    2017-03-18

    We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consistent with known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based visualization methods to interpret the morphological changes for specific clusters. This unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of these two signaling pathways that critically regulate tumor initiation and progression. We make the images and raw data publicly available, providing an initial morphological map of major biological pathways for future study.

  9. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.

    PubMed

    Di Genova, Bruno M; da Silva, Richard C; da Cunha, Júlia P C; Gargantini, Pablo R; Mortara, Renato A; Tonelli, Renata R

    2016-11-19

    The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.

  10. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-05

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  11. Analysis of cancer cell morphology in fluorescence microscopy image exploiting shape descriptor

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Kim, Hye-Ryun; Kim, Sudong; Ryu, Gyu Ha; Kim, Myoung-Hee

    2016-04-01

    Cancer cell morphology is closely related to their phenotype and activity. These characteristics are important in drug-response prediction for personalized cancer therapeutics. We used multi-channel fluorescence microscopy images to analyze the morphology of highly cohesive cancer cells. First, we detected individual nuclei regions in single-channel images using advanced simple linear iterative clustering. The center points of the nuclei regions were used as seeds for the Voronoi diagram method to extract spatial arrangement features from cell images. Human cancer cell populations form irregularly shaped aggregates, making their detection more difficult. We overcame this problem by identifying individual cells using an image-based shape descriptor. Finally, we analyzed the correlation between cell agglutination and cell shape.

  12. Limits of Applicability of the Voronoi Tessellation Determined by Centers of Cell Nuclei to Epithelium Morphology.

    PubMed

    Kaliman, Sara; Jayachandran, Christina; Rehfeldt, Florian; Smith, Ana-Sunčana

    2016-01-01

    It is well accepted that cells in the tissue can be regarded as tiles tessellating space. A number of approaches were developed to find an appropriate mathematical description of such cell tiling. A particularly useful approach is the so called Voronoi tessellation, built from centers of mass of the cell nuclei (CMVT), which is commonly used for estimating the morphology of cells in epithelial tissues. However, a study providing a statistically sound analysis of this method's accuracy is not available in the literature. We addressed this issue here by comparing a number of morphological measures of the cells, including area, perimeter, and elongation obtained from such a tessellation with identical measures extracted from direct imaging acquired by staining the cell membranes. After analyzing the shapes of 15,000 MDCK II epithelial cells under several conditions, we find that CMVT reasonably well reproduces many of the morphological properties of the tissue with an error that is between 10 and 15%. Moreover, cross-correlations between different morphological measures are reproduced qualitatively correctly by this method. However, all of the properties including the cell perimeters, number of neighbors, and anisotropy measures often suffer from systematic or size dependent errors. These discrepancies originate from the polygonal nature of the tessellation which sets the limits of the applicability of CMVT.

  13. Comparison of the Cell-Wall Composition of Morphologically Distinct Actinomycetes

    PubMed Central

    Yamaguchi, Tatsuro

    1965-01-01

    Yamaguchi, Tatsuro (The University of Tokyo, Tokyo, Japan). Comparison of the cell-wall composition of morphologically distinct actinomycetes. J. Bacteriol. 89:444–453. 1965.—Cell-wall composition of various morphologically distinct actinomycetes was studied to determine the relationship, if any, between cell-wall composition and morphological criteria in actinomycete taxonomy. The methods used were similar to those of Cummins and Harris. At least five types of cell-wall composition were obtained; however, these were not always correlated with groupings by the conventional classification system. For instance, the sporangium-forming actinomycetes, Actinoplanaceae, had three types of cell-wall composition; the composition of cell walls of Promicromonospora, Micromonospora, and Microbispora was the same as, or similar to, that of Actinomyces, Actinoplanes, and Streptosporangium, respectively; Chainia, Actinopycnidium, Actinosporangium, and Microellobosporia had the same cell-wall composition as Streptomyces, whereas that of Streptoverticillium was slightly different. Possible implications of cell-wall composition and morphological differentiation of hyphae for the taxonomy and phylogeny of actinomycetes are also discussed. PMID:14255713

  14. Limits of Applicability of the Voronoi Tessellation Determined by Centers of Cell Nuclei to Epithelium Morphology

    PubMed Central

    Kaliman, Sara; Jayachandran, Christina; Rehfeldt, Florian; Smith, Ana-Sunčana

    2016-01-01

    It is well accepted that cells in the tissue can be regarded as tiles tessellating space. A number of approaches were developed to find an appropriate mathematical description of such cell tiling. A particularly useful approach is the so called Voronoi tessellation, built from centers of mass of the cell nuclei (CMVT), which is commonly used for estimating the morphology of cells in epithelial tissues. However, a study providing a statistically sound analysis of this method's accuracy is not available in the literature. We addressed this issue here by comparing a number of morphological measures of the cells, including area, perimeter, and elongation obtained from such a tessellation with identical measures extracted from direct imaging acquired by staining the cell membranes. After analyzing the shapes of 15,000 MDCK II epithelial cells under several conditions, we find that CMVT reasonably well reproduces many of the morphological properties of the tissue with an error that is between 10 and 15%. Moreover, cross-correlations between different morphological measures are reproduced qualitatively correctly by this method. However, all of the properties including the cell perimeters, number of neighbors, and anisotropy measures often suffer from systematic or size dependent errors. These discrepancies originate from the polygonal nature of the tessellation which sets the limits of the applicability of CMVT. PMID:27932987

  15. Morphological features (defects) in fuel cell membrane electrode assemblies

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Fowler, M. W.; Simon, L. C.; Grot, S.

    Reliability and durability issues in fuel cells are becoming more important as the technology and the industry matures. Although research in this area has increased, systematic failure analysis, such as a failure modes and effects analysis (FMEA), are very limited in the literature. This paper presents a categorization scheme of causes, modes, and effects related to fuel cell degradation and failure, with particular focus on the role of component quality, that can be used in FMEAs for polymer electrolyte membrane (PEM) fuel cells. The work also identifies component defects imparted on catalyst-coated membranes (CCM) by manufacturing and proposes mechanisms by which they can influence overall degradation and reliability. Six major defects have been identified on fresh CCM materials, i.e., cracks, orientation, delamination, electrolyte clusters, platinum clusters, and thickness variations.

  16. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.

  17. In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Egawa, Mariko; Tokunaga, Kyoya; Hosoi, Junichi; Iwanaga, Shinya; Ozeki, Yasuyuki

    2016-08-01

    Visualization of epidermal cells is important because the differentiation patterns of keratinocytes (KCs) are considered to be related to the functions and condition of skin. Optical microscopy has been widely used to investigate epidermal cells, but its applicability is still limited because of the need for sample fixation and staining. Here, we report our staining-free observation of epidermal cells in both tissue and culture by stimulated Raman scattering (SRS) microscopy that provides molecular vibrational contrast. SRS allowed us to observe a variety of cellular morphologies in skin tissue, including ladder-like structures in the spinous layer, enucleation of KCs in the granular layer, and three-dimensional cell column structures in the stratum corneum. We noticed that some cells in the spinous layer had a brighter signal in the cytoplasm than KCs. To examine the relevance of the observation of epidermal layers, we also observed cultured epidermal cells, including KCs at various differentiation stages, melanocytes, and Langerhans cell-like cells. Their SRS images also demonstrated various morphologies, suggesting that the morphological differences observed in tissue corresponded to the cell lineage. These results indicate the possible application of SRS microscopy to dermatological investigation of cell lineages and types in the epidermis by cellular-level analysis.

  18. Morphological alterations of Vero cell exposed to coplanar PCB 126 and noncoplanar PCB 153.

    PubMed

    Shen, Kaili; Shen, Chaofeng; Chen, Lei; Chen, Xincai; Chen, Yingxu

    2012-01-01

    Polychlorinated biphenyls (PCBs) are widespread, persistent environmental contaminants that display a complex spectrum of toxicological properties. Exposure to PCBs has been associated with morphological anomalies in cell cultures. However, most mechanistic studies of PCBs' toxic activity have been focused on coplanar congeners. It is of importance to determine whether PCB treatment would influence cell configuration and whether these changes would depend on the structural characteristics of PCBs. In this study, we investigated cell morphological alteration in Vero cell cultures after exposure to coplanar PCB 126 and noncoplanar PCB 153. The survival of Vero cells was measured through the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. Cytotoxicity results suggested that PCB congeners had a toxic, antiproliferative effect on Vero cells. Morphological studies described structural modifications and provided evidence that apoptosis might be the main cell death pathway in PCB 153-treated cells. The comparison between PCB 126 and PCB 153 indicated that the cell death mechanisms involved in coplanar or noncoplanar PCB congener exposure were different in Vero cells.

  19. Investigation of cell morphology for disease diagnostics via high content screening

    NASA Astrophysics Data System (ADS)

    Khatau, Shyam

    2013-03-01

    Ninety percent of all cancer-related deaths are caused by metastatic disease, i.e. the spreading of a subset of cells from a primary tumor in an organ to distal sites in other organs. Understanding this progression from localized to metastatic disease is essential for further developing effective therapeutic and treatment strategies. However, despite research efforts, no distinct genetic, epigenetic, or proteomic signature of cancer metastasis has been identified so far. Metastasis is a physical event: through invasion and migration through the dense, tortuous stromal matrix, intravasation, shear forces of blood flow, successful re-attachment to blood vessel walls, migration, the colonization of a distal site, and, finally, reactivation following dormancy, metastatic cells may share precise physical properties. Cell morphology is the most direct physical property that can be measured. In this work, we develop a high throughput cell phenotyping process and investigate the morphological signature of primary tumor cells and liver metastatic pancreatic cancer cells.

  20. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  1. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    PubMed

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds.

  2. Morphologic Plasticity and Periodicity: Porcine Cerebral Microvascular Cells in Culture

    DTIC Science & Technology

    1990-02-01

    The cells were subcultured no Bandeiraea Simplicifolia (BSA-1), Ulex europaeus ( UEA -1), earlier than 7 d by treatment with trypsin-EDTA. The Triticum...EP013, DdCUMENTATION ,AG,.) I FILE COPY! * lb. RESTRICTIVE MARKINGS 2 AA 967 -- 3. DISTRIBUTIONIAVAILAaITY OFROT _2 967 Approved for public release...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Naval Medical ResearchI (if applicable) I INaval Medical Command 6-. ADDRESS (Cty

  3. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  4. New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo

    PubMed Central

    Palombo, Marco; Ligneul, Clémence; Najac, Chloé; Le Douce, Juliette; Flament, Julien; Escartin, Carole; Hantraye, Philippe; Brouillet, Emmanuel; Bonvento, Gilles; Valette, Julien

    2016-01-01

    The brain is one of the most complex organs, and tools are lacking to assess its cellular morphology in vivo. Here we combine original diffusion-weighted magnetic resonance (MR) spectroscopy acquisition and novel modeling strategies to explore the possibility of quantifying brain cell morphology noninvasively. First, the diffusion of cell-specific metabolites is measured at ultra-long diffusion times in the rodent and primate brain in vivo to observe how cell long-range morphology constrains metabolite diffusion. Massive simulations of particles diffusing in synthetic cells parameterized by morphometric statistics are then iterated to fit experimental data. This method yields synthetic cells (tentatively neurons and astrocytes) that exhibit striking qualitative and quantitative similarities with histology (e.g., using Sholl analysis). With our approach, we measure major interspecies difference regarding astrocytes, whereas dendritic organization appears better conserved throughout species. This work suggests that the time dependence of metabolite diffusion coefficient allows distinguishing and quantitatively characterizing brain cell morphologies noninvasively. PMID:27226303

  5. MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis.

    PubMed

    Yamaoka, Shohei; Nakajima, Masaki; Fujimoto, Masaru; Tsutsumi, Nobuhiro

    2011-02-01

    Regulating the morphology and intracellular distribution of mitochondria is essential for embryo development in animals. However, the importance of such regulation is not clearly defined in plants. The evolutionarily conserved Miro proteins are known to be involved in the regulation of mitochondrial morphology and motility. We previously demonstrated that MIRO1, an Arabidopsis thaliana orthologue of the Miro protein, is required for embryogenesis. An insertional mutation in the MIRO1 gene causes arrest of embryonic cell division, leading to abortion of the embryo at an early stage. Here we investigated the role of MIRO1 in the regulation of mitochondrial behaviour in egg cells and early-stage embryos using GFP-labeled mitochondria. Two-photon laser scanning microscopy revealed that, in miro1 mutant egg cells, mitochondria are abnormally enlarged, although egg cell formation is nearly unaffected. After fertilization and subsequent zygotic cell division, the homozygous miro1 mutant two-celled embryo contained a significantly reduced number of mitochondria in its apical cell compared with the wild type, suggesting that the miro1 mutation inhibits proper intracellular distribution of mitochondria, leading to an arrest of embryonic cell division. Our findings suggest that proper mitochondrial morphology and intracellular distribution are maintained by MIRO1 and are vital for embryonic cell division.

  6. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    PubMed

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-02-24

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends upon the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology in order to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus sp. PCC 7942. The Min system has established functions in controlling cell division by regulating assembly of FtsZ, a tubulin-like protein required to define the bacterial division plane. We show that altering expression of two FtsZ-regulatory proteins, MinC and Cdv3, permits control over cell morphology by disrupting FtsZ localization and cell division, without preventing continued cell growth. By varying the expression of these proteins, we can tune the length of cyanobacterial cells across a broad dynamic range: anywhere from a ∼20% increased length relative to wildtype to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach towards decreasing harvesting and processing costs associated with mass cyanobacterial cultivation through altering morphology at the cellular level.Importance: We show that the cell length of a model cyanobacterial species can be programmed through the rational manipulation of expression of protein factors that suppress cell division. In some instances, we are able to increase the size of these cells to near millimeter lengths through this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore

  7. Genotype–environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes

    PubMed Central

    Aarts, Mark G. M.

    2014-01-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL–environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype–environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes. PMID:24474811

  8. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes.

    PubMed

    El-Soda, Mohamed; Boer, Martin P; Bagheri, Hedayat; Hanhart, Corrie J; Koornneef, Maarten; Aarts, Mark G M

    2014-02-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL-environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype-environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes.

  9. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  10. Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway.

    PubMed

    Xu, Y; Zhang, C; Wang, R; Govindarajan, S S; Barish, P A; Vernon, M M; Fu, C; Acharya, A P; Chen, L; Boykin, E; Yu, J; Pan, J; O'Donnell, J M; Ogle, W O

    2011-05-19

    Stress is an unavoidable life experience. It induces mood, cognitive dysfunction and plasticity changes in chronically stressed individuals. Among the various brain regions that have been studied, the hippocampus and amygdala have been observed to have different roles in controlling the limbic-hypothalamic-pituitary-adrenal axis (limbic-HPA axis). This study investigated how the stress hormone corticosterone (CORT) affects neuronal cells. The first aim is to test whether administration of CORT to hippocampal and amygdaloid cell lines induces different changes in the 5-HT receptor subtypes. The second goal is to determine whether stress induced morphological changes in these two cell lines were involved in the 5-HT receptor subtypes expression. We now show that 5-HT(7) receptor mRNA levels were significantly upregulated in HT-22 cells, but downregulated in AR-5 cells by exposure to a physiologically relevant level of CORT (50 μM) for 24 h, which was later confirmed by primary hippocampal and amygdaloid neuron cultures. Additionally, pretreatment of cells with 5-HT(7) antagonist SB-269970 or agonist LP-44 reversed CORT induced cell lesion in a dose-dependent manner. Moreover, CORT induced different changes in neurite length, number of neurites and soma size in HT-22 and AR-5 cells were also reversed by pretreatment with either SB-269970 or LP-44. The different effects of 5-HT(7) receptors on cell lines were observed in two members of the Rho family small GTPase expression: the Cdc-42 and RhoA. These observed results support the hypothesis that 5-HT may differentially modulate neuronal morphology in the hippocampus and amygdala depending on the expression levels of the 5-HT receptor subtypes during stress hormone insults.

  11. Morphology of retinal ganglion cells in the flying fox (Pteropus scapulatus): a lucifer yellow investigation.

    PubMed

    Dann, J F; Buhl, E H

    1990-11-15

    The morphology of retinal ganglion cells was determined in megachiroptera, commonly known as flying foxes. Retinal ganglion cells were intracellularly injected with the fluorescent dye Lucifer yellow in fixed retinae from adult little red flying foxes (Pteropus scapulatus) captured in their natural habitat. Ganglion cells closely resembled the three main classes of cat retinal ganglion cells, and therefore were classified into alpha-, beta-, and gamma-type cells. The size of the alpha- and beta-type somas and dendritic fields increased with increasing distance from the area centralis. However, this eccentricity dependence was not as pronounced as in the cat. The gamma-type cells were sub-divided into mono-, bi-, and diffusely stratified, in accordance with the ramification of their dendrites within the inner plexiform layer. The alpha- and beta-type cells were uni-stratified in either the sublamina of the inner plexiform layer closest to the ganglion cell layer or in that closest to the inner nuclear layer. These laminae correspond to those in the cat retina which contain the dendritic ramifications of ganglion cells whose central receptive fields respond best to onset of light (the "on-centre" cells), or to ganglion cells whose centres respond optimally to light being extinguished (the "off-centre" cells). Thus the flying fox retina contains a morphological correlate of the "on"/"off" dichotomy of alpha and beta cells in the cat retina. In general the flying fox retinal ganglion cells exhibit a degree of morphological complexity reminiscent of cat retinal cells and this may reflect similar functional properties.

  12. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  13. Elucidating the effect of the lead iodide complexation degree behind the morphology and performance of perovskite solar cells.

    PubMed

    Mastria, R; Colella, S; Qualtieri, A; Listorti, A; Gigli, G; Rizzo, A

    2017-03-17

    The inclusion of iodide additives in hybrid perovskite precursor solutions has been successfully exploited to improve the solar cell efficiency but their impact on perovskite formation, morphology and photovoltaic performance is still not clear. Here an extensive analysis of the effect of iodide additives in the solution-phase and during the perovskite film formation, as well as their effect on device performance is provided. The results demonstrate that in the solution-phase the additives promote the formation of lead poly-iodide species resulting in the disaggregation of the inorganic lead iodide framework and in the formation of smaller nuclei inducing the growth of uniform and smooth perovskite films. Most importantly, the complexation capability of different iodide additives does not only directly affect film morphology but also influences the density of defect states by varying the stoichiometry of precursors. These findings demonstrate that the fine control of the interactions of the chemical species in the solution-phase is essential for the precise control of the morphology at the nanoscale and the growth of the perovskite films with a reduced density of defect states. Therefore, the in-depth understanding of all the processes involved in the solution-phase is the first step for the development of a facile and reproducible approach for the fabrication of hybrid perovskite solar cells with enhanced photovoltaic performance.

  14. Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells.

    PubMed

    Croissant, Jonas G; Fatieiev, Yevhen; Omar, Haneen; Anjum, Dalaver H; Gurinov, Andrey; Lu, Jie; Tamanoi, Fuyuhiko; Zink, Jeffrey I; Khashab, Niveen M

    2016-07-04

    Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta-phenylene bridges, and we conducted a comparative structure-property relationship investigation with para-phenylene-bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials. We observed a much higher porosity and thermal stability of the para-based PMO which was likely due to a higher molecular periodicity. Additionally, the para isomer could generate multipodal NPs at very low stirring speed and upon this discovery we designed a phenylene-ethylene bridged PMO with a controlled Janus morphology. Unprecedentedly high payloads could be obtained from 40 to 110 wt % regardless of the organic bridge of PMOs. Finally, we demonstrate for the first time the co-delivery of two cargos by PMO NPs. Importantly, the cargo stability in PMOs did not require the capping of the pores, unlike pure silica, and the delivery could be autonomously triggered in cancer cells by acidic pH with nearly 70 % cell killing.

  15. Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS.

    PubMed

    Mellerick, Dervla M; Liu, Heather

    2004-09-05

    Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.

  16. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining.

    PubMed

    Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A

    2011-10-01

    Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections.

  17. Breaking the barriers of all-polymer solar cells: Solving electron transporter and morphology problems

    NASA Astrophysics Data System (ADS)

    Gavvalapalli, Nagarjuna

    All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not

  18. Continuous lateral gradients in film morphology for position sensitive detection and organic solar cell optimization

    NASA Astrophysics Data System (ADS)

    Campoy-Quiles, M.; Randon, V.; Mróz, M. M.; Jarzaguet, M.; Garriga, M.; Cabanillas-González, J.

    2013-07-01

    We present a method to fabricate binary organic donor and acceptor blends exhibiting a controlled lateral gradient in morphology. Upon combining photometry, ellipsometry and Xray maps together with photoinduced absorption measurements, we show how the gradual exposure to solvent vapor results in a varying degree of polymer crystallinity for the polythiophene/soluble fullerene system along one direction. These morphologically graded samples are characterized by a spectral photoresponse that depends on the specific location in the area of the device where the light beam impinges, a property that stands as proof-of-concept for position sensitive detection. Moreover, we demonstrate that the development of graded morphologies is an effective one-step method which allows for fast performance optimization of organic solar cells. Finally, the appropriateness of eight different solvents for morphology control via vapor annealing is evaluated in a time-effective way using the advanced method, which helps to identify boiling point and solubility as the key processing parameters.

  19. Evaluation of the effects of Cimicifugae Rhizoma on the morphology and viability of mesenchymal stem cells

    PubMed Central

    JEONG, SU-HYEON; LEE, JI-EUN; KIM, BO-BAE; KO, YOUNGKYUNG; PARK, JUN-BEOM

    2015-01-01

    Cimicifugae Rhizoma is a traditional herbal medicine used to treat various diseases in Korea, China and Japan. Cimicifugae Rhizoma is primarily derived from Cimicifuga heracleifolia Komarov or Cimicifuga foetida Linnaeus. Cimicifugae Rhizoma has been used as an anti-inflammatory, analgesic and antipyretic remedy. The present study was performed to evaluate the extracts of Cimicifugae Rhizoma on the morphology and viability of human stem cells derived from gingiva. Stem cells derived from gingiva were grown in the presence of Cimicifugae Rhizoma at final concentrations that ranged from 0.001 to 1,000 µg/ml. The morphology of the cells was viewed under an inverted microscope and the analysis of cell proliferation was performed using a Cell Counting kit-8 (CCK-8) assay on days 1, 3, 5 and 7. Under an optical microscope, the control cells exhibited a spindle-shaped, fibroblast-like morphology. The shapes of the cells in the groups treated with 0.001, 0.01, 0.1, 1 and 10 µg/ml Cimicifugae Rhizoma were similar to the shapes in the control group. Significant alterations in morphology were noted in the 100 and 1,000 µg/ml groups when compared with the control group. The cells in the 100 and 1,000 µg/ml groups were rounder, and fewer cells were present. The cultures that were grown in the presence of Cimicifugae Rhizoma at a concentration of 0.001 µg/ml on day 1 had an increased CCK-8 value. The cultures grown in the presence of Cimicifugae Rhizoma at a concentration of 10 µg/ml on day 7 had a reduced CCK-8 value. Within the limits of this study, Cimicifugae Rhizoma influenced the viability of stem cells derived from the gingiva, and its direct application onto oral tissues may have adverse effects at high concentrations. The concentration and application time of Cimicifugae Rhizoma should be meticulously controlled to obtain optimal results. PMID:26622366

  20. Automatic Robust Neurite Detection and Morphological Analysis of Neuronal Cell Cultures in High-content Screening

    PubMed Central

    Wu, Chaohong; Schulte, Joost; Sepp, Katharine J.; Littleton, J. Troy

    2011-01-01

    Cell-based high content screening (HCS) is becoming an important and increasingly favored approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology. Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutamine-mediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington’s Disease (HD) model. PMID:20405243

  1. Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases.

    PubMed

    Zuo, Lijian; Dong, Shiqi; De Marco, Nicholas; Hsieh, Yao-Tsung; Bae, Sang-Hoon; Sun, Pengyu; Yang, Yang

    2016-12-07

    Morphology is critical component to achieve high device performance hybrid perovskite solar cells. Here, we develop a vapor induced intermediate phase (VIP) strategy to manipulate the morphology of perovskite films. By exposing the perovskite precursor films to different saturated solvent vapor atmospheres, e.g., dimethylformamide and dimethylsufoxide, dramatic film morphological evolution occurs, associated with the formation of different intermediate phases. We observe that the crystallization kinetics is significantly altered due to the formation of these intermediate phases, yielding highly crystalline perovskite films with less defect states and high carrier lifetimes. The perovskite solar cells with the reconstructed films exhibits the highest power conversion efficiency (PCE) up to 19.2% under 1 sun AM 1.5G irradiance, which is among the highest planar heterojunction perovskite solar cells. Also, the perovskite solar cells with VIP processing shows less hysteresis behavior and a stabilized power output over 18%. Our work opens up a new direction for morphology control through intermediate phase formation, and paves the way toward further enhancing the device performances of perovskite solar cells.

  2. MicroRNAs affect dendritic cell function and phenotype

    PubMed Central

    Smyth, Lesley A; Boardman, Dominic A; Tung, Sim L; Lechler, Robert; Lombardi, Giovanna

    2015-01-01

    MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function. PMID:25244106

  3. Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells.

    PubMed

    Theofilas, Panos; Steinhäuser, Christian; Theis, Martin; Derouiche, Amin

    2017-03-30

    Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP(+) astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.

  4. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress.

    PubMed

    Feng, Jinsong; Lamour, Guillaume; Xue, Rui; Mirvakliki, Mehr Negar; Hatzikiriakos, Savvas G; Xu, Jie; Li, Hongbin; Wang, Shuo; Lu, Xiaonan

    2016-12-05

    Campylobacter jejuni is a microaerophilic pathogen and leading cause of human gastroenteritis. The presence of C. jejuni encased in biofilms found in meat and poultry processing facilities may be the major strategy for its survival and dissemination in aerobic environment. In this study, Staphylococcus aureus, Salmonella enterica, or Pseudomonas aeruginosa was mixed with C. jejuni F38011 as a culture to form dual-species biofilms. After 4days' exposure to aerobic stress, no viable C. jejuni cells could be detected from mono-species C. jejuni biofilm. In contrast, at least 4.7logCFU/cm(2) of viable C. jejuni cells existed in some dual-species biofilms. To elucidate the mechanism of protection mode, chemical, physical and morphological features of biofilms were characterized. Dual-species biofilms contained a higher level of extracellular polymeric substances with a more diversified chemical composition, especially for polysaccharides and proteins, than mono-species C. jejuni biofilm. Structure of dual-species biofilms was more compact and their surface was >8 times smoother than mono-species C. jejuni biofilm, as indicated by atomic force microscopy. Under desiccation stress, water content of dual-species biofilms decreased slowly and remained at higher levels for a longer time than mono-species C. jejuni biofilm. The surface of all biofilms was hydrophilic, but total surface energy of dual-species biofilms (ranging from 52.5 to 56.2mJ/m(2)) was lower than that of mono-species C. jejuni biofilm, leading to more resistance to wetting by polar liquids. This knowledge can aid in developing intervention strategies to decrease the survival and dispersal of C. jejuni into foods or environment.

  5. Cell proliferation in type C gastritis affecting the intact stomach

    PubMed Central

    Mac, D; Willis, P; Prescott, R; Lamonby, S; Lynch, D

    2000-01-01

    Aims—Type C gastritis caused by bile reflux has a characteristic appearance, similar to that seen in other forms of chemical gastritis, such as those associated with NSAIDs or alcohol. An increase in mucosal cell proliferation increases the likelihood of a neoplastic clone of epithelial cells emerging, particularly where there is chronic epithelial injury associated with bile reflux. It has been shown previously that type C gastritis is associated with increased cell proliferation in the postsurgical stomach. The aim of this study was to determine cell proliferation in type C gastritis caused by bile reflux affecting the intact stomach. Methods—Specimens from 15 patients with a histological diagnosis of type C gastritis on antral biopsy were obtained from the pathology archives between 1994 and 1997. A control group of nine normal antral biopsies was also selected and all underwent MIB-1 immunostaining. The gastric glands were divided into three zones (zone 1, gastric pit; zone 2, isthmus; and zone 3, gland base) and the numbers of positively staining nuclei for 500 epithelial cell nuclei were counted in each zone to determine the percentage labelling index (LI%). Results—Cell proliferation was significantly higher in all three zones of the gastric glands with type C gastritis compared with controls as follows: zone 1, median LI% in type C gastritis 64.7 (range, 7.8–99.2), controls 4.7 (range, 2.0–11.3); zone 2, median LI% in type C gastritis 94.7 (range, 28.8–98.7), controls 40.2 (range, 23.1–70.3); and zone 3, median LI% in type C gastritis 20.0 (range, 1.3–96.0), controls 2.6 (range, 0.9–8.7). Conclusions—Bile reflux is thought to act as a promoter of gastric carcinogenesis in the postsurgical stomach. The same may be true in the intact stomach. Key Words: cell proliferation • epithelial kinetics • chemical gastritis PMID:11064674

  6. The insecticide buprofezin induces morphological transformation and kinetochore-positive micronuclei in cultured Syrian hamster embryo cells in the absence of detectable DNA damage.

    PubMed

    Herrera, L A; Ostrosky-Wegman, P; Schiffmann, D; Chen, Q Y; Ziegler-Skylakakis, K; Andrae, U

    1993-11-01

    The insecticide buprofezin was examined for its genotoxicity in cultured Syrian hamster embryo cells in order to better understand the mechanisms underlying the genotoxicity of the compound in mammalian cells. Exposure to buprofezin concentrations of 12.5-100 microM did not significantly affect the colony-forming ability of the cells, but did result in increased frequencies of morphologically transformed colonies. Treatment with buprofezin did not cause a detectable induction of DNA repair synthesis, an indicator of DNA damage, but significantly increased the frequency of micronuclei. Immunostaining of the cells with antikinetochore antibody (CREST antibody) showed that essentially all of the buprofezin-induced micronuclei were kinetochore-positive. The results suggest that morphological transformation of Syrian hamster embryo cells by buprofezin results from an interaction of the compound or a metabolite of it with the mitotic apparatus rather than from DNA damage.

  7. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    PubMed Central

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  8. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    NASA Technical Reports Server (NTRS)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  9. Morphology, properties, and performance of electrodeposited n-CdSe in liquid junction solar cells

    SciTech Connect

    Tomkiewicz, M.; Ling, I.; Parsons, W.S.

    1982-09-01

    The authors describe the mechanisms for galvanostatic electrodeposition of CdSe in terms of competition between chemical reactions that lead to Se formation and electrochemical reduction of Se as polyselenide, at the interfaces between selenium and selenide. This mechanism leads to a cauliflower morphology for the resulting film. This morphology is ideal for a photoanode in the liquid junction solar cell configuration, and the authors describe the performance of such an electrode. In spite of the unique morphology, solid-state properties of the film can be evaluated and the methodology for these evaluations is presented. The performance of the liquid junction solar cells is limited by the dark current and the dielectric properties of the material. The authors also describe the effects of metal ions such as Zn/sup +2/, Ru/sup +3/, and Ga/sup +3/ on the various electrode properties.

  10. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we

  11. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation

    PubMed Central

    Schlicher, Robyn K.; Hutcheson, Joshua D.; Radhakrishna, Harish; Apkarian, Robert P.; Prausnitz, Mark R.

    2010-01-01

    Acoustic cavitation-mediated wounding (i.e., sonoporation) has great potential to improve medical and laboratory applications requiring intracellular uptake of exogenous molecules; however, the field lacks detailed understanding of cavitation-induced morphological changes in cells and their relative importance. Here, we present an in-depth study of the effects of acoustic cavitation on cells using electron and confocal microscopy coupled with quantitative flow cytometry. High resolution images of treated cells show that morphologically different types of blebs can occur after wounding conditions caused by ultrasound exposure as well as by mechanical shear and strong laser ablation. In addition, these treatments caused wound-induced non-lytic necrotic death resulting in cell bodies we call wound-derived perikarya (WD-P). However, only cells exposed to acoustic cavitation experienced ejection of intact nuclei and nearly instant lytic necrosis. Quantitative analysis by flow cytometry indicates that wound-derived perikarya are the dominant morphology of nonviable cells, except at the strongest wounding conditions, where nuclear ejection accounts for a significant portion of cell death after ultrasound exposure. PMID:20350691

  12. Influence of curvature on the morphology of brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 μm and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  13. Intratumoral morphologic and molecular heterogeneity of rhabdoid renal cell carcinoma: challenges for personalized therapy.

    PubMed

    Singh, Rajesh R; Murugan, Paari; Patel, Lalit R; Voicu, Horatiu; Yoo, Suk-Young; Majewski, Tadeusz; Mehrotra, Meenakshi; Wani, Khalida; Tannir, Nizar; Karam, Jose A; Jonasch, Eric; Wood, Christopher G; Creighton, Chad J; Medeiros, L Jeffrey; Broaddus, Russell R; Tamboli, Pheroze; Baggerly, Keith A; Aldape, Kenneth D; Czerniak, Bogdan; Luthra, Rajyalakshmi; Sircar, Kanishka

    2015-09-01

    Rhabdoid histology in clear-cell renal cell carcinoma is associated with a poor prognosis. The prognosis of patients with clear-cell renal cell carcinoma may also be influenced by molecular alterations. The aim of this study was to evaluate the association between histologic features and salient molecular changes in rhabdoid clear-cell renal cell carcinoma. We macrodissected the rhabdoid and clear-cell epithelioid components from 12 cases of rhabdoid clear-cell renal cell carcinoma. We assessed cancer-related mutations from eight cases using a clinical next-generation exome-sequencing platform. The transcriptome of rhabdoid clear-cell renal cell carcinoma (n=8) and non-rhabdoid clear-cell renal cell carcinoma (n=37) was assessed by RNA-seq and gene expression microarray. VHL (63%) showed identical mutations in all regions from the same tumor. BAP1 (38%) and PBRM1 (13%) mutations were identified in the rhabdoid but not in the epithelioid component and were mutually exclusive in 3/3 cases and 1 case, respectively. SETD2 (63%) mutations were discordant between different histologic regions in 2/5 cases, with mutations called only in the epithelioid and rhabdoid components, respectively. The transcriptome of rhabdoid clear-cell renal cell carcinoma was distinct from advanced-stage and high-grade clear-cell renal cell carcinoma. The diverse histologic components of rhabdoid clear-cell renal cell carcinoma, however, showed a similar transcriptomic program, including a similar prognostic gene expression signature. Rhabdoid clear-cell renal cell carcinoma is transcriptomically distinct and shows a high rate of SETD2 and BAP1 mutations and a low rate of PBRM1 mutations. Driver mutations in clear-cell renal cell carcinoma are often discordant across different morphologic regions, whereas the gene expression program is relatively stable. Molecular profiling of clear-cell renal cell carcinoma may improve by assessing for gene expression and sampling tumor foci from different

  14. Intratumoral Morphologic and Molecular Heterogeneity of Rhabdoid Renal Cell Carcinoma: Challenges for Personalized Therapy

    PubMed Central

    Singh, Rajesh R.; Murugan, Paari; Patel, Lalit R.; Voicu, Horatiu; Yoo, Suk-Young; Majewski, Tadeusz; Mehrotra, Meenakshi; Wani, Khalida; Tannir, Nizar; Karam, Jose A.; Jonasch, Eric; Wood, Christopher G.; Creighton, Chad J.; Medeiros, L. Jeffrey; Broaddus, Russell R.; Tamboli, Pheroze; Baggerly, Keith A.; Aldape, Kenneth D.; Czerniak, Bogdan; Luthra, Rajyalakshmi; Sircar, Kanishka

    2015-01-01

    Rhabdoid histology in clear cell renal cell carcinoma is associated with a poor prognosis. The prognosis of patients with clear cell renal cell carcinoma may also be influenced by molecular alterations. The aim of this study was to evaluate the association between histologic features and salient molecular changes in rhabdoid clear cell renal cell carcinoma. We macrodissected the rhabdoid and clear cell epithelioid components from 12 cases of rhabdoid clear cell renal cell carcinoma. We assessed cancer related mutations from 8 cases using a clinical next generation exome sequencing platform. The transcriptome of rhabdoid clear cell renal cell carcinoma (n=8) and non-rhabdoid clear cell renal cell carcinoma (n=37) was assessed by RNA-seq and gene expression microarray. VHL (63%) showed identical mutations in all regions from the same tumor. BAP1 (38%) and PBRM1 (13%) mutations were identified in the rhabdoid but not the epithelioid component and were mutually exclusive in 3/3 cases and 1 case, respectively. SETD2 (63%) mutations were discordant between different histologic regions in 2/5 cases, with mutations called only in the epithelioid and rhabdoid components, respectively. The transcriptome of rhabdoid clear cell renal cell carcinoma was distinct from advanced stage and high grade clear cell renal cell carcinoma. The diverse histologic components of rhabdoid clear cell renal cell carcinoma, however, showed a similar transcriptomic program, including a similar prognostic gene expression signature. Rhabdoid clear cell renal cell carcinoma is transcriptomically distinct and shows a high rate of SETD2 and BAP1 mutations and a low rate of PBRM1 mutations. Driver mutations in clear cell renal cell carcinoma are often discordant across different morphologic regions whereas the gene expression program is relatively stable. Molecular profiling of clear cell renal cell carcinoma may improve by assessing for gene expression and sampling tumor foci from different histologic

  15. Endogenous subclinical hyperthyroidism affects quality of life and cardiac morphology and function in young and middle-aged patients.

    PubMed

    Biondi, B; Palmieri, E A; Fazio, S; Cosco, C; Nocera, M; Saccà, L; Filetti, S; Lombardi, G; Perticone, F

    2000-12-01

    To determine the clinical impact of endogenous subclinical hyperthyroidism, specific symptoms and signs of thyroid hormone excess and quality of life were assessed in 23 patients (3 males and 20 females; mean age, 43 +/- 9 yr) and 23 age-, sex-, and lifestyle-matched normal subjects by using the Symptoms Rating Scale and the Short Form 36 Health Survey questionnaires. Because the heart is one of the main target organs of the thyroid hormone, cardiac morphology and function were also investigated by means of standard 12-lead electrocardiogram (ECG), 24-h Holter ECG, and complete Doppler echocardiography. Stable endogenous subclinical hyperthyroidism had been diagnosed in all patients at least 6 months before the study (TSH, 0.15 +/- 0.1 mU/L; free T(3), 6.9 +/- 1.1, pmol/L; free T(4), 17.2 +/- 2.3, pmol/L). Fifteen patients were affected by multinodular goiter, and eight patients by autonomously functioning thyroid nodule. The mean Symptoms Rating Scale score (9. 8 +/- 5.5 vs. 4.3 +/- 2.2, P: < 0.001) and both the mental (36.1 +/- 9.5 vs. 50.0 +/- 8.5, P: < 0.001) and physical (42.6 +/- 8.0 vs. 55. 6 +/- 4.1, P: < 0.001) component scores of Short Form 36 Health Survey documented a significant prevalence of specific symptoms and signs of thyroid hormone excess and notable impairment of quality of life in patients. Holter ECG showed a higher prevalence of atrial premature beats in endogenous subclinical hyperthyroid patients than in the controls, but the difference was not statistically significant, although the average heart rate was significantly increased in the patients (P: < 0.001). An increase of left ventricular mass (162 +/- 24 vs. 132 +/- 22 g, P: < 0.001) due to the increase of septal (P: = 0.025) and posterior wall (P: = 0.004) thickness was observed in patients. Systolic function was enhanced in patients as shown by the significant increase of both fractional shortening (P: = 0.005) and mean velocity of heart rate-adjusted circumferential fiber shortening

  16. Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation.

    PubMed

    Dyke, Christopher A; Stewart, Michael P; Tour, James M

    2005-03-30

    In this report, procedures are discussed for the enrichment of single-walled carbon nanotube (SWNT) types by simple filtration of the functionalized SWNTs through silica gel. This separation uses nanotube sidewall functionalization employing two different strategies. In the first approach, a crude mixture of metallic and semiconducting SWNTs was heavily functionalized with 4-tert-butylphenyl addends to impart solubility to the entire sample of SWNTs. Two major polarity fractions were rapidly filtered through silica gel, with the solvent being removed in vacuo, heated to 700 degrees C to remove the addends, and analyzed spectroscopically. The second approach uses two different aryldiazonium salts (one with a polar grafting group and one nonpolar), appended selectively onto the different SWNTs by means of titration and monitoring by UV analysis throughout the functionalization process. The different addends accentuate the polarity differences between the band-gap-based types permitting their partial separation on silica gel. Thermal treatment regenerated pristine SWNTs in enriched fractions. The processed samples were analyzed and characterized by Raman spectroscopy. A controlled functionalization method using 4-fluorophenyl and 4-iodophenyl addends was performed, and XPS analyses yielded data on the degree of functionalization needed to affect the van Hove singularities in the UV/vis/NIR spectra. Finally, we demonstrate that relative peak intensity changes in Raman spectra can be caused by morphological changes in SWNT bundling based on differing flocculation or deposition methods. Therefore a misleading impression of separations can result, underscoring the care needed in assessing efficacies in SWNT enrichment and the prerequisite use of multiple excitation wavelengths and similar flocculation or deposition methods in comparative analyses.

  17. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    SciTech Connect

    Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet; Taylor, Douglas D.

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  18. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    DTIC Science & Technology

    2015-12-01

    properties of nanofiber composite anion-exchange membranes for alkaline fuel cells. A new membrane fabrication strategy, utilizing polymer fiber...electrospinning, will be employed to make hydroxide-conducting membranes with an entirely new morphology, where one electrospun polymer provides pathways...for ion conductivity and the second electrospun polymer restricts ionomer swelling and imparts mechanical strength to the membrane. The functional

  19. [Cultivation and morphological characteristics of rat adipose tissue-derived vascular endothelial cells in vitro].

    PubMed

    Lin, Yunfeng; Chen, Xizhe; Tian, Weidong; Yan, Zhengbin; Zheng, Xiaohui

    2006-08-01

    The subcutaneous adipose tissue from the inguen of four Sprague-Dawley rats was obtained, then digested with one volume of collagenase type I and cultured with BGJb medium. The obtained adipose stromal cells were induced in human endothelial-SFM for 7 d. The cells were observed under inverted microscope every day and identified by transmission electron microscope and immunocytochemical staining with factor VIII antigen. The results showed the induced cells uniformly had characteristic cobblestone morphology of endothelial cells. Factor VIII antigen staining was positive in cytoplasm. Under transmission electron microscope, the cells displayed many finger like microvilli and numerous lysosomes, mitochondria, a few coarse endoplasmic reticulum and Weibel-Palade bodies. The characteristics of the rat adipose tissue-derived endothelial cells were consistent with those of vascular endothelial cells derived from other tissues. It seems that subcutaneous adipose tissue may represent a new alternative source of endogenous vascular endothelial cells.

  20. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research.

  1. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    PubMed

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  2. Differentiation state affects morphine induced cell regulation in neuroblastoma cultured cells.

    PubMed

    Fiore, Giovina; Ghelardini, Carla; Bruni, Giancarlo; Guarna, Massimo; Bianchi, Enrica

    2013-10-25

    Neuroblastoma (NB) is the most common extracranial solid cancer in childhood and the most common cancer in infancy. Our purpose was to investigate in vitro how cancer cell survival occurs in presence of morphine in undifferentiated and differentiated SHSY-5Y human neuroblastoma cultured cell line. Exposure of differentiated cells to morphine dose-dependently induced apoptosis in these cells through c-Jun N-terminal kinase (JNK)/caspase pathway. Otherwise, morphine induced activation for mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, caused positive regulation of cell survival in undifferentiated cells. Therefore, cell differentiation state bimodally affects the cellular regulation activity triggered by morphine in isolated cultured neuroblastoma cells raising concerns about the application of morphine to this type of cancer patients.

  3. Filopodial morphology correlates to the capture efficiency of primary T-cells on nanohole arrays.

    PubMed

    Kim, Dong-Joo; Kim, Gil-Sung; Seol, Jin-Kyeong; Hyung, Jung-Hwan; Park, No-Won; Lee, Mi-Ri; Lee, Myung Kyu; Fan, Rong; Lee, Sang-Kwon

    2014-06-01

    Nanostructured surfaces emerge as a new class of material for capture and separation of cell populations including primary immune cells and disseminating rare tumor cells, but the underlying mechanism remains elusive. Although it has been speculated that nanoscale topological structures on cell surface are involved in the cell capture process, there are no studies that systematically analyze the relation between cell surface structures and the capture efficiency. Here we report on the first mechanistic study by quantifying the morphological parameters of cell surface nanoprotrusions, including filopodia, lamellipodia, and microvilli in the early stage of cell capture (< 20 min) in correlation to the efficiency of separating primary T lymphocytes. This was conducted by using a set of nanohole arrays (NHAs) with varying hole and pitch sizes. Our results showed that the formation of filopodia (e.g., width of filopodia and the average number of the filopodial filaments per cell) depends on the feature size of the nanostructures and the cell separation efficiency is strongly correlated to the number of filopodial fibers, suggesting a possible role of early stage mechanosensing and cell spreading in determining the efficiency of cell capture. In contrast, the length of filopodial filaments was less significantly correlated to the cell capture efficiency and the nanostructure dimensions of the NHAs. This is the first mechanistic study on nanostructure-based immune cell capture and provides new insights to not only the biology of cell-nanomaterial interaction but also the design of new rare cell capture technologies with improved efficiency and specificity.

  4. Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization

    PubMed Central

    1983-01-01

    The organization of intermediate filaments in cultured epithelial cells was rapidly and radically affected by intracellularly injected monoclonal antikeratin filament antibodies. Different antibodies had different effects, ranging from an apparent splaying apart of keratin filament bundles to the complete disruption of the keratin filament network. Antibodies were detectable within cells for more than four days after injection. The antibody-induced disruption of keratin filament organization had no light-microscopically discernible effect on microfilament or microtubule organization, cellular morphology, mitosis, the integrity of epithelial sheets, mitotic rate, or cellular reintegration after mitosis. Cell-to-cell adhesion junctions survived keratin filament disruption. However, antibody injected into a keratinocyte-derived cell line, rich in desmosomes, brought on a superfasciculation of keratin filament bundles, which appeared to pull desmosomal junctions together, suggesting that desmosomes can move in the plane of the plasma membrane and may only be 'fixed' by their anchoring to the cytoplasmic filament network. Our observations suggest that keratin filaments are not involved in the establishment or maintenance of cell shape in cultured cells. PMID:6187752

  5. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    PubMed

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only.

  6. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.

    PubMed

    Yoder, Elizabeth J

    2002-04-15

    Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology.

  7. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational.

  8. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    PubMed

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

  9. The relationship of fibroblast translocations to cell morphology and stress fibre density.

    PubMed

    Lewis, L; Verna, J M; Levinstone, D; Sher, S; Marek, L; Bell, E

    1982-02-01

    Translocation of human fibroblasts in culture was studied using techniques of time-lapse cinemicrography, indirect immunofluorescence, and computer analysis. An inverse relationship between the velocity of cells during the last hour of life and the density of stress fibers seen by immune staining was demonstrated. Translocating cells generally assumed one of two interconvertible morphologies: a triangular tailed shape or tailed fibroblast (TF), and a tailless form that resembled a half-moon, which we call a half-moon fibroblast (HMF). The tail of TFs formed only on regions of substrate that had been previously traversed by cells. The half-moon morphology developed either on previously used or on virgin substrate. Cells adopted the HMF rather than the TF morphology with a four-fold greater frequency. HMFs translocated slightly faster than TFs. The foregoing observation suggest that the fibroblast tail is not an organelle essential for translocation. Since our technique allowed us to distinguish between cells which were cycling and those which had left cycle, we compared their velocities and found them to be similar. Also the average velocities of cells of different population-doubling levels (10th, 30th, 40th) were approximately equal.

  10. Retinal ganglion cells in the eastern newt Notophthalmus viridescens: topography, morphology, and diversity.

    PubMed

    Pushchin, Igor I; Karetin, Yuriy A

    2009-10-20

    The topography and morphology of retinal ganglion cells (RGCs) in the eastern newt were studied. Cells were retrogradely labeled with tetramethylrhodamine-conjugated dextran amines or horseradish peroxidase and examined in retinal wholemounts. Their total number was 18,025 +/- 3,602 (mean +/- SEM). The spatial density of RGCs varied from 2,100 cells/mm(2) in the retinal periphery to 4,500 cells/mm(2) in the dorsotemporal retina. No prominent retinal specializations were found. The spatial resolution estimated from the spatial density of RGCs varied from 1.4 cycles per degree in the periphery to 1.95 cycles per degree in the region of the peak RGC density. A sample of 68 cells was camera lucida drawn and subjected to quantitative analysis. A total of 21 parameters related to RGC morphology and stratification in the retina were estimated. Partitionings obtained by using different clustering algorithms combined with automatic variable weighting and dimensionality reduction techniques were compared, and an effective solution was found by using silhouette analysis. A total of seven clusters were identified and associated with potential cell types. Kruskal-Wallis ANOVA-on-Ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in one or more of the clustering variables. The average silhouette values of the clusters were reasonably high, ranging from 0.52 to 0.79. Cells assigned to the same cluster displayed similar morphology and stratification in the retina. The advantages and limitations of the methodology adopted are discussed. The present classification is compared with known morphological and physiological RGC classifications in other salamanders.

  11. Kinetoplast morphology and segregation pattern as a marker for cell cycle progression in Leishmania donovani.

    PubMed

    Minocha, Neha; Kumar, Devanand; Rajanala, Kalpana; Saha, Swati

    2011-01-01

    Trypanosomatids are typified by uniquely configured mitochondrial DNA--the kinetoplast. The replication timing of kinetoplast DNA (kDNA) is closely linked to nuclear S phase, but nuclear and kinetoplast compartments display staggered timing of segregation, post-replication. Kinetoplast division is completed before nuclear division in Trypanosoma species while nuclear division is completed first in Crithidia species. Leishmania donovani is the causative agent of visceral leishmaniasis, a form of leishmanial infection that is often fatal. Cell cycle related studies in Leishmania are hampered by difficulties in synchronizing these cells. This report examines the replication/segregation pattern and morphology of the kinetoplast in L. donovani with the aim of determining if these traits can be used to assign cell cycle stage to individual cells. By labeling replicating cells with bromodeoxyuridine after synchronization with hydroxyurea, we find that although both nuclear and kDNA initiate replication in early S phase, nuclear division precedes kinetoplast segregation in 80% of the cells. The kinetoplast is roundish/short rod-like in G1 and in early to mid-S phase, but prominently elongated/bilobed in late S phase and early G2/M. These morphological traits and segregation pattern of the kinetoplast can be used as a marker for cell cycle stage in a population of asynchronously growing L. donovani promastigotes, in place of cell synchronization procedures or instead of using antibody staining for cell cycle stage marker proteins.

  12. Morphological analysis of nuclear separation and cell division during the life cycle of Escherichia coli.

    PubMed Central

    Woldringh, C L

    1976-01-01

    Quantitative electron microscope observations were performed on Escherichia coli B/r after balanced growth with doubling times (tau) of 32 and 60 min. The experimental approach allowed the timing of morphological events during the cell cycle by classifying serially sectioned cells according to length. Visible separation of the nucleoplasm was found to coincide with the time of termination of chromosome replication as predicted by the Cooper-Helmstetter model. The duration of the process of constrictive cell division (10 min) appeared to be independent of the growth rate for tau equals 60 min or less but to increase with increase doubling time in more slowly growing cells. Physiological division, i.e., compartmentalization prior to physical separation of the cells, was only observed to occur in the last minute of the cell cycle. The morphological results indicate that cell elongation continues during the division process in cells with tau equals 32 min, but fails to continue in cells with tau equals 60 min. Images PMID:1107308

  13. Systematic high-content genome-wide RNAi screens of endothelial cell migration and morphology

    PubMed Central

    Williams, Steven P.; Gould, Cathryn M.; Nowell, Cameron J.; Karnezis, Tara; Achen, Marc G.; Simpson, Kaylene J.; Stacker, Steven A.

    2017-01-01

    Many cell types undergo migration during embryogenesis and disease. Endothelial cells line blood vessels and lymphatics, which migrate during development as part of angiogenesis, lymphangiogenesis and other types of vessel remodelling. These processes are also important in wound healing, cancer metastasis and cardiovascular conditions. However, the molecular control of endothelial cell migration is poorly understood. Here, we present a dataset containing siRNA screens that identify known and novel components of signalling pathways regulating migration of lymphatic endothelial cells. These components are compared to signalling in blood vascular endothelial cells. Further, using high-content microscopy, we captured a dataset of images of migrating cells following transfection with a genome-wide siRNA library. These datasets are suitable for the identification and analysis of genes involved in endothelial cell migration and morphology, and for computational approaches to identify signalling networks controlling the migratory response and integration of cell morphology, gene function and cell signaling. This may facilitate identification of protein targets for therapeutically modulating angiogenesis and lymphangiogenesis in the context of human disease. PMID:28248931

  14. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    PubMed

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  15. Morphological Study: Ultrastructural Aspects of Articular Cartilage and Subchondral Bone in Patients Affected by Post-Traumatic Shoulder Instability.

    PubMed

    Baudi, Paolo; Catani, Fabio; Rebuzzi, Manuela; Ferretti, Marzia; Smargiassi, Alberto; Campochiaro, Gabriele; Serafini, Fabio; Palumbo, Carla

    2016-12-16

    Post-traumatic shoulder instability is a frequent condition in active population, representing one of most disabling pathologies, due to altered balance involving joints. No data are so far available on early ultrastructural osteo-chondral damages, associated with the onset of invalidating pathologies, like osteoarthritis-OA. Biopsies of glenoid articular cartilage and sub-chondral bone were taken from 10 adult patients underwent arthroscopic stabilization. Observations were performed under Transmission Electron Microscopy-TEM in tangential, arcuate and radial layers of the articular cartilage and in the sub-chondral bone. In tangential and arcuate layers chondrocytes display normal and very well preserved ultrastructure, probably due to the synovial liquid supply; otherwise, throughout the radial layer (un-calcified and calcified) chondrocytes show various degrees of degeneration; occasionally, in the radial layer evidences of apoptosis/autophagy were also observed. Concerning sub-chondral bone, osteocytes next to the calcified cartilage also show signs of degeneration, while osteocytes farther from the osteo-chondral border display normal ultrastructure, probably due to the bone vascular supply. The ultrastructural features of the osteo-chondral complex are not age-dependent. This study represents the first complete ultrastructural investigation of the articular osteo-chondral complex in shoulder instability, evaluating the state of preservation/viability of both chondrocytes and osteocytes throughout the successive layers of articular cartilage and sub-chondral bone. Preliminary observations here collected represent the morphological basis for further deepening of pathogenesis related to shoulder instability, enhancing the relationship between cell shape and microenvironment; in particular, they could be useful in understanding if the early surgical treatment in shoulder instability could avoid the onset of OA. Anat Rec, 300:12-15, 2017. © 2016 Wiley

  16. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue

    PubMed Central

    HA, DONG-HO; YONG, CHUL SOON; KIM, JONG OH; JEONG, JEE-HEON; PARK, JUN-BEOM

    2016-01-01

    Tacrolimus is a 23-membered macrolide lactone with potent immunosuppressive activity that is effective in the prophylaxis of organ rejection following kidney, heart and liver transplantation. Tacrolimus also exerts a variety of actions on bone metabolism. The aim of the present study was to evaluate the effects of different concentrations of tacrolimus on the morphology and viability of human stem cells derived from the gingiva. Gingival-derived stem cells were grown in the presence of tacrolimus at final concentrations ranging from 0.001 to 100 µg/ml. The morphology of the cells was viewed under an inverted microscope and the cell viability was analyzed using Cell Counting kit-8 (CCK-8) on days 1, 3, 5 and 7. Alizarin Red S staining was used to assess mineralization of treated cells. The control group showed spindle-shaped, fibroblast-like morphology and the shapes of the cells in 0.001, 0.01, 0.1, 1 and 10 µg/ml tacrolimus were similar to those of the control group. All groups except the 100 µg/ml group showed increased cell proliferation over time. Cultures grown in the presence of tacrolimus at 0.001, 0.01, 0.1, 1 and 10 µg/ml were not identified to be significantly different compared with the control at days 1, 3 and 5 using the CCK-8 assays. Increased mineralized deposits were noted with increased incubation time. Treatment with tacrolimus from 0.001 to 1 µg/ml led to an increase in mineralization compared with the control group. Within the limits of this study, tacrolimus at the tested concentrations (ranging from 0.001 to 10 µg/ml) did not result in differences in the viability of stem cells derived from gingiva; however it did enhance osteogenic differentiation of the stem cells. PMID:27177273

  17. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence.

    PubMed

    Navarro-Arias, María J; Defosse, Tatiana A; Dementhon, Karine; Csonka, Katalin; Mellado-Mojica, Erika; Dias Valério, Aline; González-Hernández, Roberto J; Courdavault, Vincent; Clastre, Marc; Hernández, Nahúm V; Pérez-García, Luis A; Singh, Dhirendra K; Vizler, Csaba; Gácser, Attila; Almeida, Ricardo S; Noël, Thierry; López, Mercedes G; Papon, Nicolas; Mora-Montes, Héctor M

    2016-01-01

    The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O

  18. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    PubMed Central

    Navarro-Arias, María J.; Defosse, Tatiana A.; Dementhon, Karine; Csonka, Katalin; Mellado-Mojica, Erika; Dias Valério, Aline; González-Hernández, Roberto J.; Courdavault, Vincent; Clastre, Marc; Hernández, Nahúm V.; Pérez-García, Luis A.; Singh, Dhirendra K.; Vizler, Csaba; Gácser, Attila; Almeida, Ricardo S.; Noël, Thierry; López, Mercedes G.; Papon, Nicolas; Mora-Montes, Héctor M.

    2016-01-01

    The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O

  19. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture.

    PubMed

    Valente, Andrew J; Maddalena, Lucas A; Robb, Ellen L; Moradi, Fereshteh; Stuart, Jeffrey A

    2017-03-14

    Mitochondria exist in a dynamic cycle of fusion and fission whose balance directly influences the morphology of the 'mitochondrial network', a term that encompasses the branched, reticular structure of fused mitochondria as well as the separate, punctate individual organelles within a eukaryotic cell. Over the past decade, the significance of the mitochondrial network has been increasingly appreciated, motivating the development of various approaches to analyze it. Here, we describe the Mitochondrial Network Analysis (MiNA) toolset, a relatively simple pair of macros making use of existing ImageJ plug-ins, allowing for semi-automated analysis of mitochondrial networks in cultured mammalian cells. MiNA is freely available at https://github.com/ScienceToolkit/MiNA. The tool incorporates optional preprocessing steps to enhance the quality of images before converting the images to binary and producing a morphological skeleton for calculating nine parameters to quantitatively capture the morphology of the mitochondrial network. The efficacy of the macro toolset is demonstrated using a sample set of images from SH-SY5Y, C2C12, and mouse embryo fibroblast (MEF) cell cultures treated under different conditions and exhibiting hyperfused, fused, and fragmented mitochondrial network morphologies.

  20. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  1. Morphological features of IFN-γ–stimulated mesenchymal stromal cells predict overall immunosuppressive capacity

    PubMed Central

    Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong

    2017-01-01

    Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659

  2. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-08

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  3. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  4. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells.

    PubMed

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-04-21

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  5. Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment

    PubMed Central

    Kim, Il Ku; Jo, Jun Hyung; Yun, Jung-Ho

    2016-01-01

    This paper focuses on nano-morphology-controlled small-molecule organic solar cells without solvent treatment for high power-conversion efficiencies (PCEs). The maximum high PCE reaches up to 7.22% with a bulk-heterojunction (BHJ) thickness of 320 nm. This high efficiency was obtained by eliminating solvent additives such as 1,8-diiodooctane (DIO) to find an alternative way to control the domain sizes in the BHJ layer. Furthermore, the generalized transfer matrix method (GTMM) analysis has been applied to confirm the effects of applying a different thickness of BHJs for organic solar cells from 100 to 320 nm, respectively. Finally, the study showed an alternative way to achieve high PCE organic solar cells without additive solvent treatments to control the morphology of the bulk-heterojunction.

  6. How well can morphology assess cell death modality? A proteomics study

    PubMed Central

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2016-01-01

    While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363

  7. Hsp90 mediates the crosstalk between galactose metabolism and cell morphology pathways in yeast.

    PubMed

    Gopinath, Rajaneesh Karimpurath; Leu, Jun-Yi

    2017-02-01

    Galactose metabolism in the yeast Saccharomyces cerevisiae is carried out by a specialized GAL pathway consisting of structural and regulatory proteins. It is known that cells with unbalanced Gal proteins accumulate toxic metabolic intermediates and exhibit severe growth defects. Recently, we found that the molecular chaperone Hsp90 controls the abundance of multiple Gal proteins, possibly to prevent these defects. Hsp90 regulates various cellular processes including cell morphology in response to environmental cues. Yeast cells are known to resort to filamentous growth upon exposure to galactose or other environmental stresses. Our previous and current findings support the "Hsp90 titration model" of Hsp90 buffering, which links the cell morphology and galactose pathways. Our results suggest that, when a large proportion of Hsp90 molecules are used to help Gal proteins, the Hsp90 client proteins in cell morphology pathways are left unattended, leading to filamentous growth. It remains unclear whether this phenomenon serves any biological function or simply reflects a cellular constraint. Nonetheless, it provides an alternative explanation why the GAL pathway is degenerated in some yeast species.

  8. A two-stage morphological classifier of foci occurring in cell transformation assays

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Urani, Chiara; Bussinelli, Luca

    2009-02-01

    Cell Transformation Assays (CTA) rely on the detection of phenotypic changes, namely foci, induced by chemicals (e.g., xenobiotics or candidate drugs) in mammalian cells such as C3H10T1/2 mouse fibroblasts. A focus is a cell colony and as such is made visible by standardized techniques of light microscopy. Foci exhibit a variety of morphological features, by which three "Types" have been defined. Types II and III consist of cells having undergone neoplastic transformation. The assignment of a focus to a Type is based on the evaluation of phenotypic features by a trained human expert. An automated, two-stage morphological classifier of foci is described herewith. Morphological descriptors are extracted from light microscope images by the "spectrum enhancement" algorithm, which separates structure from texture. Said descriptors are submitted to a classifier, the first stage of which is trained to discriminate transformed cells from normal ones and the 2nd stage to discriminate Type III from Type II. The classifier operating in recognition mode (on images not used for training) is satisfactory in terms of confusion matrix entries. The whole procedure is aimed at removing subjectivity from the scoring and classification of foci and thus make CTA a more powerful tool in carcinogenesis studies.

  9. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro.

    PubMed

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions-which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance.

  10. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  11. Putative role of border cells in generating spontaneous morphological activity within Kölliker's organ.

    PubMed

    Dayaratne, M W Nishani; Vlajkovic, Srdjan M; Lipski, Janusz; Thorne, Peter R

    2015-12-01

    Kölliker's organ is a transient epithelial structure, comprising a major part of the organ of Corti during pre-hearing stages of development. The auditory system is spontaneously active during development, which serves to retain and refine neural connections. Kölliker's organ is considered a key candidate for generating such spontaneous activity, most likely through purinergic (P2 receptor) signalling and inner hair cell (IHC) activation. Associated with the spontaneous neural activity, ATP released locally by epithelial cells induces rhythmic morphological changes within Kölliker's organ, the purpose of which is not understood. These changes are accompanied by a shift in cellular refractive index, allowing optical detection of this activity in real-time. Using this principle, we investigated the origin of spontaneous morphological activity within Kölliker's organ. Apical turns of Wistar rat cochleae (P9-11) were dissected, and the purinergic involvement was studied following acute tissue exposure to a P2 receptor agonist (ATPγS) and antagonist (suramin). ATPγS induced a sustained darkening throughout Kölliker's organ, reversed by suramin. This effect was most pronounced in the region closest to the inner hair cells, which also displayed the highest frequency of intrinsic morphological events. Additionally, suramin alone induced swelling of this region, suggesting a tight regulation of cell volume by ATP-mediated mechanisms. Histological analysis of cochlear tissues demonstrates the most profound volume changes in the border cell region immediately adjacent to the IHCs. Together, these results underline the role of purinergic signalling in initiating morphological events within Kölliker's organ, and suggest a key involvement of border cells surrounding IHCs in regulating this spontaneous activity.

  12. DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma

    SciTech Connect

    Kim, Tai Young; Lee, Jung Weon; Kim, Hwang-Phill; Jong, Hyun-Soon; Kim, Tae-You; Jung, Mira; Bang, Yung-Jue; E-mail: bangyj@plaza.snu.ac.kr

    2007-03-30

    DLC-1 (deleted in liver cancer-1) is a tumor suppressor gene for hepatocellular carcinoma and other cancers. To characterize its functions, we constructed recombinant adenovirus encoding the wild-type DLC-1 and examined its effects on behaviors of a hepatocellular carcinoma cell line (SNU-368), which does not express DLC-1. Here, we found that restoration of DLC-1 expression in the SNU-368 cells caused an inhibition of cell proliferation with an increase of a subG1 population. Furthermore, DLC-1 overexpression induced disassembly of stress fibers and extensive membrane protrusions around cells on laminin-1. DLC-1 overexpression also inhibited cell migration and dephosphorylated focal adhesion proteins such as focal adhesion kinase (FAK), Cas (p130Cas; Crk-associated substrate), and paxillin. These observations suggest that DLC-1 plays important roles in signal transduction pathway regulating cell proliferation, cell morphology, and cell migration by affecting Rho family GTPases and focal adhesion proteins.

  13. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  14. Disruption of the NADPH-dependent glutamate dehydrogenase affects the morphology of two industrial strains of Penicillium chrysogenum.

    PubMed

    Thykaer, Jette; Rueksomtawin, Kanchana; Noorman, Henk; Nielsen, Jens

    2009-02-23

    New morphological aspects of Penicillium chrysogenum were found during physiological characterisation of two NADPH-dependent glutamate dehydrogenase mutant strains. A morphological characterisation of the previously constructed strains, together with the two beta-lactam producing industrial recipient strains, was conducted. The reference strains showed a compact structure with highly branched hyphal elements whereas the morphology of the DeltagdhA strains consisting of long elongated hyphal elements with few branches. On solid medium, the hyphal growth unit (length) increased from an average of 47 microm tip(-1) in the reference strains to 117 microm tip(-1) in the DeltagdhA strains and in submerged cultures a decrease of 18% in branching frequency was measured due to the gdhA deletion. P. chrysogenum Wis 54-1255, the ancestor of most production strains was also characterised and this strain showed morphology similar to the industrial strains. Interestingly, the constructed strains showed morphology similar to wild type Aspergillus nidulans another species carrying the penicillin biosynthetic cluster. Thus, the results showed that elimination of glutamate dehydrogenase activity in high producing strains of P. chrysogenum has a radical impact on morphology.

  15. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  16. Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Netti, Paolo A.; Coppola, Giuseppe; Ferraro, Pietro

    2013-04-01

    We report the investigation of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps (QPMs) of biological cells by digital holographic microscopy (DHM), with the aim to analyze the 3D positions and 3D morphology together. We consider as test case for our tool the in vitro bull sperm head morphometry analysis. Extraction and measurement of various morphological parameters are performed by using two methods: the anisotropic diffusion filter, that is based on the Gaussian diffusivity function which allows more accuracy of the edge position, and the simple thresholding filter. In particular we consider the calculation of area, ellipticity, perimeter, major axis, minor axis and shape factor as a morphological parameter, instead, for the estimation of 3D position, we compute the centroid, the weighted centroid and the maximum phase values. A statistical analysis on a data set composed by N = 14 holograms relative to bovine spermatozoa and its reference holograms is reported.

  17. Endosulfan affects GnRH cells in sexually differentiated juveniles of the perciform Cichlasoma dimerus.

    PubMed

    Piazza, Yanina; Pandolfi, Matías; Da Cuña, Rodrigo; Genovese, Griselda; Lo Nostro, Fabiana

    2015-06-01

    Endosulfan (ES) is an organochlorine pesticide widely used in agriculture despite its high toxicity towards non-target organisms such as fish. It has been demonstrated that ES can cause negative effects on aquatic animals, including disruption of hormonal systems. However, the alterations produced by this pesticide on the reproductive axis of fish prior to sexual maturity, as well as possible modes of action have hardly been studied. This study aimed at assessing the effect of waterborne exposure to the pesticide ES on the reproductive axis during sexual differentiation of juveniles of the South American freshwater cichlid fish Cichlasoma dimerus. No mortality was observed due to ES subchronic exposure (90 days post-fertilization). Exposure to ES did not affect body weight nor morphometric parameters, indicating that larvae nutritional state was not affected. Timing of sexual differentiation, gonadal morphology and sex ratio were likewise not altered by ES. However, ES acted as an endocrine disrupting chemical in this species as the morphometry of gonadotropin-releasing hormones (GnRH) producing cells was altered. Exposure to ES altered nuclear area, cell area and nucleus/cytoplasm ratio of GnRH II neurons, and cell and nuclear area and diameter of GnRH III neurons. Interestingly, in our previous study, exposure before sex differentiation (30 day exposure) caused no alteration to GnRH II and III, and did alter GnRH I and FSH cells. These alterations could lead to changes in circulating hormone levels, especially when fish are exposed for prolonged periods, ultimately impairing reproductive fitness. C. dimerus juveniles can be an interesting biological model to perform toxicological studies with the intent to assess early disruption endpoints in the reproductive axis during development.

  18. Morphological and biochemical characterization of mitochondria in Torpedo red blood cells.

    PubMed

    Pica, A; Scacco, S; Papa, F; De Nitto, E; Papa, S

    2001-02-01

    A study is presented on the morphology and respiratory functions of mitochondria from Torpedo marmorata red blood cells. In vivo staining of red blood cells and transmission electron microscopy showed the existence of a considerable number of vital and orthodox mitochondria which decreased from young erythroblasts to mature erythrocytes from 60-50 to 30-20 per cell. In erythrocytes mitochondria exhibited a canonical, functional respiratory chain. The content and activity of cytochromes in erythrocytes were, however, significantly lower as compared to mammalian tissues.

  19. Supervised classification of etoposide-treated in vitro adherent cells based on noninvasive imaging morphology.

    PubMed

    Mölder, Anna Leida; Persson, Johan; El-Schich, Zahra; Czanner, Silvester; Gjörloff-Wingren, Anette

    2017-04-01

    Single-cell studies using noninvasive imaging is a challenging, yet appealing way to study cellular characteristics over extended periods of time, for instance to follow cell interactions and the behavior of different cell types within the same sample. In some cases, e.g., transplantation culturing, real-time cellular monitoring, stem cell studies, in vivo studies, and embryo growth studies, it is also crucial to keep the sample intact and invasive imaging using fluorophores or dyes is not an option. Computerized methods are needed to improve throughput of image-based analysis and for use with noninvasive microscopy such methods are poorly developed. By combining a set of well-documented image analysis and classification tools with noninvasive microscopy, we demonstrate the ability for long-term image-based analysis of morphological changes in single cells as induced by a toxin, and show how these changes can be used to indicate changes in biological function. In this study, adherent cell cultures of DU-145 treated with low-concentration (LC) etoposide were imaged during 3 days. Single cells were identified by image segmentation and subsequently classified on image features, extracted for each cell. In parallel with image analysis, an MTS assay was performed to allow comparison between metabolic activity and morphological changes after long-term low-level drug response. Results show a decrease in proliferation rate for LC etoposide, accompanied by changes in cell morphology, primarily leading to an increase in cell area and textural changes. It is shown that changes detected by image analysis are already visible on day 1 for [Formula: see text] etoposide, whereas effects on MTS and viability are detected only on day 3 for [Formula: see text] etoposide concentration, leading to the conclusion that the morphological changes observed occur before and at lower concentrations than a reduction in cell metabolic activity or viability. Three classifiers are compared and we

  20. Immunohistowax processing, a new fixation and embedding method for light microscopy, which preserves antigen immunoreactivity and morphological structures: visualisation of dendritic cells in peripheral organs

    PubMed Central

    Pajak, B.; De Smedt, T.; Moulin, V.; De Trez, C.; Maldonado-Lopez, R.; Vansanten, G.; Briend, E.; Urbain, J.; Leo, O.; Moser, M.

    2000-01-01

    Aims—To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. Methods—This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. Results—Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessels. Conclusions—These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur. Key Words: dendritic cell • Escherichia coli • immunohistochemistry PMID:10961175

  1. Factors affecting the cryosurvival of mouse two-cell embryos.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.

    PubMed

    Dhimolea, Eugen; Soto, Ana M; Sonnenschein, Carlos

    2012-11-01

    Collagen-based gels have been widely used to determine the factors that regulate branching morphogenesis in the mammary gland. The patterns of biomechanical gradients and collagen reorganization influence the shape and orientation of epithelial structures in three-dimensional (3D) conditions. We explored in greater detail whether collagen type I fibers with distinct biomechanical and fiber-assembling properties, isolated from either bovine or rat tail tendon, differentially affected the epithelial phenotype in a tissue culture model of the human breast. Rat tail collagen fibers were densely packed into significantly longer and thicker bundles compared to those of the bovine type (average fascicle length 7.35 and 2.29 μm, respectively; p = 0.0001), indicating increased fiber alignment and biomechanical enablement in the former. MCF10A epithelial cells formed elaborated branched tubular structures in bovine but only nonbranched ducts and acini in rat tail collagen matrices. Ductal branching in bovine collagen was associated with interactions between neighboring structures mediated through packed collagen fibers; these fiber-mediated interactions were absent in rat tail collagen gels. Normal breast fibroblasts increased the final size and number of ducts only in rat tail collagen gels while not affecting branching. Our results suggest that the species of origin of collagen used in organotypic cultures may influence epithelial differentiation into alveolar or ductal structures and the patterns of epithelial branching. These observations underscore the importance of considering the species of origin and fiber alignment properties of collagen when engineering branching organs in 3D matrices and interpreting their role in the tissue phenotype.

  3. Morphological characteristics of blood cells in monitor lizards: is erythrocyte size linked to actual body size?

    PubMed

    Frýdlová, Petra; Hnízdo, Jan; Chylíková, Lenka; Simková, Olga; Cikánová, Veronika; Velenský, Petr; Frynta, Daniel

    2013-04-01

    Blood cell morphology and count are not uniform across species. Recently, between-species comparisons revealed that the size of red blood cells is associated with body size in some lizard taxa, and this finding was interpreted in the context of the metabolic theory. In the present study, we examined the numbers and the size of blood cells in 2 species of monitor lizards, the mangrove-dwelling monitor (Varanus indicus) and the savannah monitor (V. exanthematicus), and we compared these traits in individuals of different body size. The results revealed that during the course of ontogeny, the size of red blood cells increases with body mass. Because the mass-specific metabolic rate decreases with body size and the cell volume-to-surface ratio decreases with the cell size, changes in the erythrocyte size might be the result of oxygen transport adjustment.

  4. Retinal ganglion cells in the Pacific redfin, Tribolodon brandtii dybowski, 1872: morphology and diversity.

    PubMed

    Pushchin, Igor; Karetin, Yuriy

    2014-04-15

    We studied the morphology and diversity of retinal ganglion cells in the Pacific redfin, Tribolodon brandtii. These cells were retrogradely labeled with horseradish peroxidase and examined in retinal whole mounts. A sample of 203 cells was drawn with a camera lucida. A total of 19 structural parameters were estimated for each cell, and a variety of clustering algorithms were used to classify the cells. The optimal solution was determined by using silhouette analysis. It was based on three variables associated with dendritic field size and dendrite stratification in the retina. Kruskal-Wallis ANOVA-on-ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in two or more of the original variables. In total, eight cell types were discovered. The advantages and drawbacks of the methodology adopted are discussed. The present classification is compared with classifications proposed for other teleosts.

  5. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    SciTech Connect

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N.

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  6. Distinct Morphology of Human T-Cell Leukemia Virus Type 1-Like Particles

    PubMed Central

    Maldonado, José O.; Cao, Sheng; Zhang, Wei; Mansky, Louis M.

    2016-01-01

    The Gag polyprotein is the main retroviral structural protein and is essential for the assembly and release of virus particles. In this study, we have analyzed the morphology and Gag stoichiometry of human T-cell leukemia virus type 1 (HTLV-1)-like particles and authentic, mature HTLV-1 particles by using cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission electron microscopy (STEM). HTLV-1-like particles mimicked the morphology of immature authentic HTLV-1 virions. Importantly, we have observed for the first time that the morphology of these virus-like particles (VLPs) has the unique local feature of a flat Gag lattice that does not follow the curvature of the viral membrane, resulting in an enlarged distance between the Gag lattice and the viral membrane. Other morphological features that have been previously observed with other retroviruses include: (1) a Gag lattice with multiple discontinuities; (2) membrane regions associated with the Gag lattice that exhibited a string of bead-like densities at the inner leaflet; and (3) an arrangement of the Gag lattice resembling a railroad track. Measurement of the average size and mass of VLPs and authentic HTLV-1 particles suggested a consistent range of size and Gag copy numbers in these two groups of particles. The unique local flat Gag lattice morphological feature observed suggests that HTLV-1 Gag could be arranged in a lattice structure that is distinct from that of other retroviruses characterized to date. PMID:27187442

  7. Systematic morphological profiling of human gene and allele function via Cell Painting

    PubMed Central

    Rohban, Mohammad Hossein; Singh, Shantanu; Wu, Xiaoyun; Berthet, Julia B; Bray, Mark-Anthony; Shrestha, Yashaswi; Varelas, Xaralabos; Boehm, Jesse S; Carpenter, Anne E

    2017-01-01

    We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consistent with known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based visualization methods to interpret the morphological changes for specific clusters. This unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of these two signaling pathways that critically regulate tumor initiation and progression. We make the images and raw data publicly available, providing an initial morphological map of major biological pathways for future study. DOI: http://dx.doi.org/10.7554/eLife.24060.001 PMID:28315521

  8. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells

    PubMed Central

    Choi, Ji Sun; Harley, Brendan A. C.

    2017-01-01

    Hematopoiesis is the physiological process where hematopoietic stem cells (HSCs) continuously generate the body’s complement of blood and immune cells within unique regions of the bone marrow termed niches. Although previous investigations have revealed gradients in cellular and extracellular matrix (ECM) content across the marrow, and matrix elasticity and ligand type are believed to be strong regulators of stem cell fate, the impact of biophysical signals on HSC response is poorly understood. Using marrow-inspired ECM ligand–coated polyacrylamide substrates that present defined stiffness and matrix ligand cues, we demonstrate that the interplay between integrin engagement and myosin II activation processes affects the morphology, proliferation, and myeloid lineage specification of primary murine HSCs within 24 hours ex vivo. Notably, the impact of discrete biophysical signals on HSC fate decisions appears to be correlated to known microenvironmental transitions across the marrow. The combination of fibronectin and marrow matrix-associated stiffness was sufficient to maintain hematopoietic progenitor populations, whereas collagen and laminin enhanced proliferation and myeloid differentiation, respectively. Inhibiting myosin II–mediated contraction or adhesion to fibronectin via specific integrins (α5β1 and ανβ3) selectively abrogated the impact of the matrix environment on HSC fate decisions. Together, these findings indicate that adhesive interactions and matrix biophysical properties are critical design considerations in the development of biomaterials to direct HSC behavior in vitro. PMID:28070554

  9. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Adhikari, Nirmal; Khatiwada, Devendra; Dubey, Ashish; Qiao, Qiquan

    2015-01-01

    Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor-acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor-acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.

  10. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  11. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    PubMed

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  12. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  13. Cytopathic Changes in Rat Microglial Cells Induced by Pathogenic Acanthamoeba culbertsoni: Morphology and Cytokine Release

    PubMed Central

    Shin, Ho-Joon; Cho, Myung-Soo; Jung, Suk-Yul; Kim, Hyung-Il; Park, Sun; Seo, Jang-Hoon; Yoo, Jung-Chil; Im, Kyung-Il

    2001-01-01

    To determine whether pathogenic Acanthamoeba culbertsoni trophozoites and lysate can induce cytopathic changes in primary-culture microglial cells, morphological changes were observed by transmission electron microscopy (TEM). In addition, the secretion of two kinds of cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), from microglial cells was observed. Trophozoites of pathogenic A. culbertsoni made contact with microglial cells and produced digipodia. TEM revealed that microglial cells cocultured with amoebic trophozoites underwent a necrotic process, accompanied by lysis of the cell membrane. TEM of microglial cells cocultured with amoebic lysate showed that the membranes of the small cytoplasmic vacuoles as well as the cell membrane were lysed. The amounts of TNF-α secreted from microglial cells cocultured with A. culbertsoni trophozoites or lysate increased at 6 h of incubation. The amounts of IL-1β secreted from microglial cells cocultured with A. culbertsoni trophozoites at 6 h of incubation was similar to those secreted from the control group, but the amounts decreased during cultivation with A. culbertsoni lysate. These results suggest that pathogenic A. culbertsoni induces the cytopathic effects in primary-culture rat microglial cells, with the effects characterized by necrosis of microglial cells and changes in levels of secretion of TNF-α and IL-1β from microglial cells. PMID:11427438

  14. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    SciTech Connect

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T.; Lorenz, Katrin; Lee, Eva H.; Barcellos-Hoff, Mary Helen; Petersen, Ole W.; Gray, Joe W.; Bissell, MinaJ.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.

  15. Aggregate formation affects ultrasonic disruption of microalgal cells.

    PubMed

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency.

  16. An Essential Tyrosine Phosphatase Homolog Regulates Cell Separation, Outer Membrane Integrity, and Morphology in Caulobacter crescentus ▿ †

    PubMed Central

    Shapland, Elaine B.; Reisinger, Sarah J.; Bajwa, Amrita K.; Ryan, Kathleen R.

    2011-01-01

    Although reversible phosphorylation on tyrosine residues regulates the activity of many eukaryotic proteins, there are few examples of this type of regulation in bacteria. We have identified the first essential tyrosine phosphatase homolog in a bacterium, Caulobacter crescentusCtpA. ctpAmutants with altered active-site residues are nonviable, and depletion of CtpA yields chains of cells with blebbed outer membranes, linked by unresolved peptidoglycan. CtpA overexpression reduces cell curvature in a manner similar to deleting the intermediate filament protein crescentin, but it does not disrupt crescentin localization or membrane attachment. Although it has no obvious signal sequence or transmembrane-spanning domains, CtpA associates with the Caulobacterinner membrane. Immunolocalization experiments suggest that CtpA accumulates at the division site during the last quarter of the cell cycle. We propose that CtpA dephosphorylates one or more proteins involved in peptidoglycan biosynthesis or remodeling, which in turn affect cell separation, cell envelope integrity, and vibrioid morphology. PMID:21705597

  17. Mechanical and Electrical Behavior of Organic Solar Cells Probed Through Detailed Morphological Control

    NASA Astrophysics Data System (ADS)

    Awartani, Omar Marwan

    One of the main advantages of organic solar cells is their potential to be used in flexible or even stretchable applications. Most research in the field of organic solar cells is focused on materials synthesis, device physics, and the relationship between morphology and the optoelectronic performance. In order for this technology to be commercially competitive, especially for flexible applications, a more complete picture that explores the mechanical properties of organic materials and how they relate to their optoelectronic properties is necessary. This thesis consists of two main research tracks: The first track focuses mainly on the effect of morphology on the mechanical, electrical and optical performance of organic solar cells controlled through varying processing conditions. Two mechanical properties are investigated including the elastic modulus and crack onset strain of P3HT, PCBM and blend (BHJ) films. The second track utilizes the high achievable ductility of organic semiconducting films that is investigated in the first track of the thesis, to create novel solar cell device architectures and to gain insight into the performance and recombination losses of organic solar cells. Processing ductile BHJ films is used to create organic solar cells with controlled level of polarization with both opaque and semi-transparent architectures. Moreover, using the strain-alignment method the efficiency of low and high order P3HT aggregates is probed within the same film to show similar internal quantum efficiency for the two different morphological P3HT domains. This selective probing technique provides significant insight into performance loss mechanisms in organic solar cells.

  18. Toker cells of the breast. Morphological and immunohistochemical characterization of 40 cases.

    PubMed

    Di Tommaso, Luca; Franchi, Giada; Destro, Annarita; Broglia, Fabiana; Minuti, Francesco; Rahal, Daoud; Roncalli, Massimo

    2008-09-01

    Toker cells are epithelial cells with clear cytoplasm usually free of cytologic atypia localized within the nipple epidermis. Rarely, they can be so numerous and atypical as to require a careful distinction from malignant cells of Paget's disease. The purpose of this paper was to better define the prevalence of these atypical Toker cells and to investigate phenotypic markers that can be helpful in the differential diagnosis with Paget's disease. Forty cases containing Toker cells were identified in the nipples of 390 patients (10.2%) who underwent complete breast mastectomy. In 24 cases (60%), Toker cells were cytologically bland and benign, disappearing after a few consecutive sections ("normal Toker cells"). In 11 cases (27.5%), Toker cells were more numerous and persistent on serial sections, still retaining bland cytologic features ("hyperplastic Toker cells"). In 5 cases (12.5%), hyperplastic Toker cells also became cytologically atypical ("hyperplastic and atypical Toker cells"). On immunohistochemistry, Toker cells were positive for estrogen (25/25) and progesterone (20/23) receptors, and negative for CD138 (18/19) and p53 (14/14); some hyperplastic and atypical Toker cells (4 cases) and hyperplastic Toker cells (1 case) showed faint immunoreactivity for HER2/NEU. For comparison, Paget's disease were negative for estrogen (6/10) and progesterone (7/10) receptors, and positive for CD138 (7/10), p53 (6/10), and HER2/NEU (9/10). Both Toker cells and Paget's disease stained positive for cytokeratin 7 and epithelial membrane antigen, and negative for p63. In conclusion, Toker cells are detectable in 10% of the nipples and are usually cytologically bland, but in 10% of the cases they can be morphologically atypical. The combined use of CD138/p53 is very helpful in distinguishing these atypical Toker cells from those of Paget's disease.

  19. Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration

    SciTech Connect

    Trewyn, B.; Nieweg, J.; Zhao, Y,; Lin, V.

    2007-11-24

    Two MCM-41 type, fluorescein-labeled mesoporous silica nanomaterials (MSNs) consisting of spherical and tube-shaped particles were synthesized and characterized. Both materials have hexagonally arranged mesopores with high surface area (>950 m{sup 2}/g) and a narrow distribution of pore diameters. The cellular uptake efficiency and kinetics of both MSNs were measured in a cancer cell line (CHO) and a noncancerous cell line (fibroblasts) by flow cytometry and fluorescence confocal microscopy. The correlation between the particle morphology and aggregation of MSNs to the effectiveness of cellular uptake was investigated. We envision that our study on the morphology dependent endocytosis of MSNs would lead to future developments of efficient transmembrane nanodevices for intracellular sensing and gene/drug delivery.

  20. Glioma grading using cell nuclei morphologic features in digital pathology images

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-03-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.

  1. Glioma Grading Using Cell Nuclei Morphologic Features in Digital Pathology Images

    PubMed Central

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-01-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients’ images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold cross-validation confirms the efficacy of the proposed method. PMID:27942094

  2. Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder.

    PubMed

    Lavoie, Brigitte; Balemba, Onesmo B; Nelson, Mark T; Ward, Sean M; Mawe, Gary M

    2007-03-01

    Gallbladder smooth muscle (GBSM) exhibits spontaneous rhythmic electrical activity, but the origin and propagation of this activity are not understood. We used morphological and physiological approaches to determine whether interstitial cells of Cajal (ICC) are present in the guinea pig extrahepatic biliary tree. Light microscopic studies involving Kit tyrosine kinase immunohistochemistry and laser confocal imaging of Ca(2+) transients revealed ICC-like cells in the gallbladder. One type of ICC-like cell had elongated cell bodies with one or two primary processes and was observed mainly along GBSM bundles and nerve fibres. The other type comprised multipolar cells that were located at the origin and intersection of muscle bundles. Electron microscopy revealed ICC-like cells that were rich in mitochondria, caveolae and smooth endoplasmic reticulum and formed close appositions between themselves and with GBSM cells. Rhythmic Ca(2+) flashes, which represent Ca(2+) influx during action potentials, were synchronized in any given GBSM bundle and associated ICC-like cells. Gap junction uncouplers (1-octanol, carbenoxolone, 18beta-glycyrrhetinic acid and connexin mimetic peptide) eliminated or greatly reduced Ca(2+) flashes in GBSM, but they persisted in ICC-like cells, whereas the Kit tyrosine kinase inhibitor, imanitib mesylate, eliminated or reduced action potentials and Ca(2+) flashes in both cell types, as well as associated tissue contractions. This study provides morphological and physiological evidence for the existence of ICC-like cells in the gallbladder and presents data supporting electrical coupling between ICC-like and GBSM cells. The results support a role for ICC-like cells in the generation and propagation of spontaneous rhythmicity, and hence, the excitability of gallbladder.

  3. Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes.

    PubMed

    Sakamoto, T; Yokota, S; Ando, M

    2000-05-01

    Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.

  4. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    PubMed

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation.

  5. Morphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside

    SciTech Connect

    Ponzoni, M.; Lanciotti, M.; Melodia, A.; Casalaro, A.; Cornaglia-Ferraris, P. )

    1989-03-01

    The effects of cytosine-arabinoside (ARA-C) on the growth and phenotypic expression of a new human neuroblastoma (NB) cell line (GI-ME-N) have been extensively tested. Low doses of ARA-C allowing more than 90% cell viability induce morphological differentiation and growth inhibition. Differentiated cells were larger and flattened with elongated dendritic processes; such cells appeared within 48 hours after a dose of ARA-C as low as 0.1 {mu}g/ml. The new morphological aspect reached the maximum expression after 5-6 days of culture being independent from the addition of extra drug to the culture. A decrease in ({sup 3}H)thymidine incorporation was also observed within 24 hours and the cell growth was completely inhibited on the sixth day. Moreover, ARA-C strongly inhibited anchorage-independent growth in soft agar assay. Membrane immunofluorescence showed several dramatic changes in NB-specific antigen expression after 5 days of treatment with ARA-C. At the same time ARA-C also modulated cytoskeletal proteins and slightly increased catecholamine expression. These findings suggest that noncytotoxic doses of ARA-C do promote the differentiation of GI-ME-N neuroblastoma cells associated with reduced expression of the malignant phenotype.

  6. A new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology.

    PubMed

    Hodneland Nilsson, Linn Iren; Nitschke Pettersen, Ina Katrine; Nikolaisen, Julie; Micklem, David; Avsnes Dale, Hege; Vatne Røsland, Gro; Lorens, James; Tronstad, Karl Johan

    2015-11-24

    Changes in mitochondrial amount and shape are intimately linked to maintenance of cell homeostasis via adaptation of vital functions. Here, we developed a new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. This was achieved by making a genetic reporter construct where a master regulator of mitochondrial biogenesis, nuclear respiratory factor 1 (NRF-1), controls expression of mitochondria targeted green fluorescent protein (mitoGFP). HeLa cells with the reporter construct demonstrated inducible expression of mitoGFP upon activation of AMP-dependent protein kinase (AMPK) with AICAR. We established stable reporter cells where the mitoGFP reporter activity corresponded with mitochondrial biogenesis both in magnitude and kinetics, as confirmed by biochemical markers and confocal microscopy. Quantitative 3D image analysis confirmed accordant increase in mitochondrial biomass, in addition to filament/network promoting and protecting effects on mitochondrial morphology, after treatment with AICAR. The level of mitoGFP reversed upon removal of AICAR, in parallel with decrease in mtDNA. In summary, we here present a new GFP-based genetic reporter strategy to study mitochondrial regulation and dynamics in living cells. This combinatorial reporter concept can readily be transferred to other cell models and contexts to address specific physiological mechanisms.

  7. Primary Esophageal Extranasal NK/T Cell Lymphoma With Biphasic Morphology

    PubMed Central

    Ye, Zi-Yin; Cao, Qing-Hua; Liu, Fang; Lu, Xiao-Fang; Li, Shu-Rong; Li, Chang-Zhao; Chen, Shao-Hong

    2015-01-01

    Abstract We report a case of esophageal extranasal NK/T cell lymphoma with biphasic morphologic features revealed by a deep large piecemeal biopsy. A 40-year-old man present with pharyngalgia, dysphagia, recurrent fever, and 5-kg weight loss for 8 months. Endoscopy demonstrated progressing longitudinal ulcers and mucosal bridges along the esophagus. The first and second biopsies obtained superficial mucosa with scattered bland-looking small lymphocytes. A subsequent large piecemeal snare abscission for biopsy showed atypical lymphoid cells infiltrating into the deep lamina propria and muscularis mucosae, whereas the superficial lamina propria was highly edematous with scant small lymphocytes. Immunohistochemical studies confirmed that both underlying atypical cells and superficial small lymphocytes were neoplastic, sharing an identical immunophenotype: positive for CD2, CD3, CD43, CD8, CD56, TIA-1 and granzyme B. Epstein-Barr virus–encoded small RNAs were found in both cells. The histologic findings were diagnostic of primary esophageal extranasal NK/T cell lymphoma. However, the patient developed bone marrow depression during chemotherapy and died of massive cerebral hemorrhage after the first cycle of chemotherapy. Primary esophageal extranodal NK/T cell lymphoma nasal type is extremely rare. We show the biphasic morphology of this disease, which highlights the importance of deep biopsy for accurate diagnosis. PMID:26181557

  8. Comparisons of cell culture medium using distribution of morphological features in microdevice.

    PubMed

    Sasaki, Hiroto; Enomoto, Junko; Ikeda, Yurika; Honda, Hiroyuki; Fukuda, Junji; Kato, Ryuji

    2016-01-01

    As the number of available cell types grows, it becomes necessary to develop more effective ways to optimize the cell-culture medium for each cell line and culture condition. However, because of the vast number of parameters that must be decided, such as the combination of components, optimization is both laborious and costly. Microdevices are a cost-effective way to perform such evaluations because they use only a small volume of media and enable high-throughput analyses. However, assays performed in microdevices are themselves minimized, and each assay unit (well/chamber) commonly contains an insufficient number of cells for comprehensive evaluations such as gene-expression or flow-cytometry analyses. To address this issue, we introduced image-based analysis in conjunction with microdevice assays; this approach allows quantification of every cell in each assay unit. To quantitatively profile differences in cellular behaviors in a microdevice under different culture media conditions, we developed a non-staining image-based analysis method that utilizes cellular morphology. Our approach combines the structural advantages of microdevices, which can increase the stability of images, and the quantitative advantages of an image-based cell evaluation technique that utilizes time-course population change in several morphological features. Our results demonstrate that cellular changes due to small alterations in the concentration of serum in medium or differences in the basal medium can be profiled using only microscopic images.

  9. Accelerated Wound Closure - Differently Organized Nanofibers Affect Cell Migration and Hence the Closure of Artificial Wounds in a Cell Based In Vitro Model

    PubMed Central

    2017-01-01

    Nanofiber meshes holds great promise in wound healing applications by mimicking the topography of extracellular matrix, hence providing guidance for crucial cells involved in the regenerative processes. Here we explored the influence of nanofiber alignment on fibroblast behavior in a novel in vitro wound model. The model included electrospun poly-ε-caprolactone scaffolds with different nanofiber orientation. Fibroblasts were cultured to confluency for 24h before custom-made inserts were removed, creating cell-free zones serving as artificial wounds. Cell migration into these wounds was evaluated at 0-, 48- and 96h. Cell morphological analysis was performed using nuclei- and cytoskeleton stainings. Cell viability was assessed using a biochemical assay. This study demonstrates a novel in vitro wound assay, for exploring of the impact of nanofibers on wound healing. Additionally we show that it’s possible to affect the process of wound closure in a spatial manner using nanotopographies, resulting in faster closure on aligned fiber substrates. PMID:28060880

  10. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGES

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  11. A direct evidence of morphological degradation on a nanometer scale in polymer solar cells.

    PubMed

    Schaffer, Christoph J; Palumbiny, Claudia M; Niedermeier, Martin A; Jendrzejewski, Christian; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2013-12-10

    In situ measurement of a polymer solar cell using micro grazing incidence small angle X-ray scattering (μGISAXS) and current-voltage tracking is demonstrated. While measuring electric characteristics under illumination, morphological changes are probed by μGISAXS. The X-ray beam (green) impinges on the photo active layer with a shallow angle and scatters on a 2d detector. Degradation is explained by the ongoing nanomorphological changes observed.

  12. Retinoic acid improves morphology of cultured peritoneal mesothelial cells from patients undergoing dialysis.

    PubMed

    Retana, Carmen; Sanchez, Elsa I; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor-β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in

  13. Distribution and morphology of retinal ganglion cells in the Japanese quail.

    PubMed

    Ikushima, M; Watanabe, M; Ito, H

    1986-06-25

    A ganglion cell density map was produced from the Nissl-stained retinal whole mount of the Japanese quail. Ganglion cell density diminished nearly concentrically from the central area toward the retinal periphery. The mean soma area of ganglion cells in isodensity zones increased as the cell density decreased. The histograms of soma areas in each zone indicated that a population of small-sized ganglion cells persists into the peripheral retina. The total number of ganglion cells was estimated at about 2.0 million. Electron microscopic examination of the optic nerve revealed thin unmyelinated axons to comprise 69% of the total fiber count (about 2.0 million). Since there was no discrepancy between both the total numbers of neurons in the ganglion cell layer and optic nerve fibers, it is inferred that displaced amacrine cells are few, if any. The spectrum in optic nerve fiber diameter showed a unimodal skewed distribution quite similar to the histogram of soma areas of ganglion cells in the whole retina. This suggests a close correlation between soma areas and axon diameters. Retinal ganglion cells filled from the optic nerve with horseradish peroxidase were classified into 7 types according to such morphological characteristics as size, shape and location of the soma, as well as dendritic arborization pattern. Taking into account areal ranges of somata of each cell type, it can be assumed that most of the ganglion cells in the whole retinal ganglion cell layer are composed of type I, II and III cells, and that the population of uniformly small-sized ganglion cells corresponds to type I cells and is an origin of unmyelinated axons in the optic nerve.

  14. Morphology and chirality control self-assembly of sickle hemoglobin inside red blood cells

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Lei, Huan; Caswell, Bruce; Karniadakis, George

    2012-02-01

    Sickle cells exhibit abnormal morphology and membrane mechanics in the deoxygenated state due to the polymerization of the interior sickle hemoglobin (HbS). In this study, the dynamics of self-assembly behavior of HbS in solution and corresponding induced cell morphologies have been investigated by dissipative particle dynamics approach. A coarse-grained HbS model, which contains hydrophilic and hydrophobic particles, is constructed to match the structural properties and physical description (including crowding effects) of HbS. The hydrophobic interactions are shown to be necessary with chirality being the main driver for the formation of HbS fibers. In the absence of chain chirality, only the self-assembled small aggregates are observed whereas self-assembled elongated step-like bundle microstructures appear when we consider the chain chirality. Several typical cell morphologies (sickle, granular, elongated shapes), induced by the growth of HbS fibers, are revealed and their deviations from the biconcave shape are quantified by the asphericity and elliptical shape factors.

  15. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation.

  16. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    PubMed

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the

  17. Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis

    PubMed Central

    Singh, Shatrunjai P.; He, Xiaoping; McNamara, James O.; Danzer, Steve C.

    2013-01-01

    Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine’s scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either one day or one month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident one day after the last seizure, the magnitude of which had diminished by one month. Further, there was an increase in the thickness of the granule cell layer one day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density and axon proximal area, but do not produce striking rearrangements of granule cell structure. PMID:23893783

  18. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  19. Morphological Changes in CHO and VERO Cells Treated with T-2 Mycotoxin. Correlation with Inhibition of Protein Synthesis

    DTIC Science & Technology

    1984-08-21

    Changes in CHO and VERO Cells Treated with T-2 Mycotoxin . Correlation with Publication Inhibition of Protein Synthesis 6. PERFORMING ORG. REPORT...Chinese hamster ovary (CHO) and African green monkey kidney (VERO) cells to T-2 mycotoxin resulted in several morphological changes which appeared to be...Data Entered) . . . .. 0 Morphological Changes in CHO and VERO Cells Treated with T-2 • Mycotoxin . Correlation with Inhibition of Protein Synthesis

  20. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men.

    PubMed

    Larsen, Mads S; Vissing, Kristian; Thams, Line; Sieljacks, Peter; Dalgas, Ulrik; Nellemann, Birgitte; Christensen, Britt

    2014-10-01

    The aim was to investigate the ability of an erythropoiesis-stimulating agent (ESA), alone or in combination with endurance training, to induce changes in human skeletal muscle fibre and vascular morphology. In a comparative study, 36 healthy untrained men were randomly dispersed into the following four groups: sedentary-placebo (SP, n = 9); sedentary-ESA (SE, n = 9); training-placebo (TP, n = 10); or training-ESA (TE, n = 8). The ESA or placebo was injected once weekly. Training consisted of progressive bicycling three times per week for 10 weeks. Before and after the intervention period, muscle biopsies and magnetic resonance images were collected from the thigh muscles, blood was collected, body composition measured and endurance exercise performance evaluated. The ESA treatment (SE and TE) led to elevated haematocrit, and both ESA treatment and training (SE, TP and TE) increased maximal O2 uptake. With regard to skeletal muscle morphology, TP alone exhibited increases in whole-muscle cross-sectional area and fibre diameter of all fibre types. Also exclusively for TP was an increase in type IIa fibres and a corresponding decrease in type IIx fibres. Furthermore, an overall training effect (TP and TE) was statistically demonstrated in whole-muscle cross-sectional area, muscle fibre diameter and type IIa and type IIx fibre distribution. With regard to muscle vascular morphology, TP and TE both promoted a rise in capillary to muscle fibre ratio, with no differences between the two groups. There were no effects of ESA treatment on any of the muscle morphological parameters. Despite the haematopoietic effects of ESA, we provide novel evidence that endurance training rather than ESA treatment induces adaptational changes in angiogenesis and muscle morphology.

  1. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    PubMed Central

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  2. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    PubMed

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  3. From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh Tuan; Sathe, Sharvari R.; Yim, Evelyn K. F.

    2016-05-01

    Topography, among other physical factors such as substrate stiffness and extracellular forces, is known to have a great influence on cell behaviours. Optimization of topographical features, in particular topographical dimensions ranging from nanoscale to microscale, is the key strategy to obtain the best cellular performance for various applications in tissue engineering and regenerative medicine. In this review, we provide a comprehensive survey on the significance of sizes of topography and their impacts on cell adhesion, morphology and alignment, and neurite guidance. Also recent works mimicking the hierarchical structure of natural extracellular matrix by combining both nanoscale and microscale topographies are highlighted.

  4. Assessing epithelial cell nuclear morphology by using azimuthal light scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Chung-Chieh; Lau, Condon; Tunnell, James W.; Hunter, Martin; Kalashnikov, Maxim; Fang-Yen, Christopher; Fulghum, Stephen F.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2006-11-01

    We describe azimuthal light scattering spectroscopy (ϕ/LSS), a novel technique for assessing epithelial-cell nuclear morphology. The difference between the spectra measured at azimuthal angles ϕ=0° and ϕ=90° preferentially isolates the single backscattering contribution due to large (˜10 μm) structures such as epithelial cell nuclei by discriminating against scattering from smaller organelles and diffusive background. We demonstrate the feasibility of using ϕ/LSS for cancer detection by showing that spectra from cancerous colon tissue exhibit significantly greater azimuthal asymmetry than spectra from normal colonic tissues.

  5. [In vitro modification of the morphology and the growth of cells infected with scrapie (author's transl)].

    PubMed

    Markovits, P; Dormont, D; Maunoury, R; Delamarche, C; Delpech, A; Dianoux, L; Latarjet, R

    1982-02-15

    Seven cell lines originated either in brains or in neuroblastomas of Mice, were infected with Scrapie. After 12 to 16 in vitro passages, 6 lines out of 7 showed changes of their morphology, and of their growth, resembling those occurring in the course of a malignant transformation. The Scrapie infected cells acquired the capacity to form 2 to 4 times more colonies in liquid medium than the controls, and to develop large tridimensional colonies in semisolid medium. The role of Scrapie in these changes is discussed.

  6. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  7. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon.

    PubMed

    Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador

    2016-07-01

    In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

  8. Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using Bioaerosol Mass Spectrometry.

    PubMed

    Tobias, Herbert J; Pitesky, Maurice E; Fergenson, David P; Steele, Paul T; Horn, Joanne; Frank, Matthias; Gard, Eric E

    2006-10-01

    Bioaerosol Mass Spectrometry (BAMS), a real-time single cell analytical technique, was used to follow the biochemical and morphological changes within a group of Bacillus atrophaeus cells by measuring individual cells during the process of sporulation. A mutant of B. atrophaeus that lacks the ability to produce dipicolinic acid (DPA) was also analyzed. Single cell aerodynamic sizing was used to follow gross morphological changes, and chemical analysis of single cells by mass spectrometry was used to follow some biochemical changes of B. atrophaeus cells during endospore formation.

  9. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I.-Ping; Camargo, Eddie; Tzen, Jason T. C.; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-10-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates.

  10. Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies

    PubMed Central

    Ramakrishnan, N.; Radhakrishnan, Ravi

    2016-01-01

    An intriguing question in cell biology is “how do cells regulate their shape?” It is commonly believed that the observed cellular morphologies are a result of the complex interaction among the lipid molecules (constituting the cell membrane), and with a number of other macromolecules, such as proteins. It is also believed that the common biophysical processes essential for the functioning of a cell also play an important role in cellular morphogenesis. At the cellular scale—where typical dimensions are in the order of micrometers—the effects arising from the molecular scale can either be modeled as equilibrium or non-equilibrium processes. In this chapter, we discuss the dynamically triangulated Monte Carlo technique to model and simulate membrane morphologies at the cellular scale, which in turn can be used to investigate several questions related to shape regulation in cells. In particular, we focus on two specific problems within the framework of isotropic and anisotropic elasticity theories: namely, (i) the origin of complex, physiologically relevant, membrane shapes due to the interaction of the membrane with curvature remodeling proteins, and (ii) the genesis of steady state cellular shapes due to the action of non-equilibrium forces that are generated by the fission and fusion of transport vesicles and by the binding and unbinding of proteins from the parent membrane. PMID:27087801

  11. Cystic Renal Oncocytoma and Tubulocystic Renal Cell Carcinoma: Morphologic and Immunohistochemical Comparative Study.

    PubMed

    Skenderi, Faruk; Ulamec, Monika; Vranic, Semir; Bilalovic, Nurija; Peckova, Kvetoslava; Rotterova, Pavla; Kokoskova, Bohuslava; Trpkov, Kiril; Vesela, Pavla; Hora, Milan; Kalusova, Kristyna; Sperga, Maris; Perez Montiel, Delia; Alvarado Cabrero, Isabel; Bulimbasic, Stela; Branzovsky, Jindrich; Michal, Michal; Hes, Ondrej

    2016-02-01

    Renal oncocytoma (RO) may present with a tubulocystic growth in 3% to 7% of cases, and in such cases its morphology may significantly overlap with tubulocystic renal cell carcinoma (TCRCC). We compared the morphologic and immunohistochemical characteristics of these tumors, aiming to clarify the differential diagnostic criteria, which facilitate the discrimination of RO from TCRCC. Twenty-four cystic ROs and 15 TCRCCs were selected and analyzed for: architectural growth patterns, stromal features, cytomorphology, ISUP nucleolar grade, necrosis, and mitotic activity. Immunohistochemical panel included various cytokeratins (AE1-AE3, OSCAR, CAM5.2, CK7), vimentin, CD10, CD117, AMACR, CA-IX, antimitochondrial antigen (MIA), EMA, and Ki-67. The presence of at least focal solid growth and islands of tumor cells interspersed with loose stroma, lower ISUP nucleolar grade, absence of necrosis, and absence of mitotic figures were strongly suggestive of a cystic RO. In contrast, the absence of solid and island growth patterns and presence of more compact, fibrous stroma, accompanied by higher ISUP nucleolar grade, focal necrosis, and mitotic figures were all associated with TCRCC. TCRCC marked more frequently for vimentin, CD10, AMACR, and CK7 and had a higher proliferative index by Ki-67 (>15%). CD117 was negative in 14/15 cases. One case was weakly CD117 reactive with cytoplasmic positivity. All cystic RO cases were strongly positive for CD117. The remaining markers (AE1-AE3, CAM5.2, OSCAR, CA-IX, MIA, EMA) were of limited utility. Presence of tumor cell islands and solid growth areas and the type of stroma may be major morphologic criteria in differentiating cystic RO from TCRCC. In difficult cases, or when a limited tissue precludes full morphologic assessment, immunohistochemical pattern of vimentin, CD10, CD117, AMACR, CK7, and Ki-67 could help in establishing the correct diagnosis.

  12. Modulation of GLO1 Expression Affects Malignant Properties of Cells.

    PubMed

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y A; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-12-18

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  13. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    PubMed Central

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y. A.; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-01-01

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. PMID:27999356

  14. Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage.

    PubMed

    Henrich-Noack, Petra; Voigt, Nadine; Prilloff, Sylvia; Fedorov, Anton; Sabel, Bernhard A

    2013-05-24

    Traumatic optic nerve injury leads to retrograde death of retinal ganglion cells (RGCs), but transcorneal electrical stimulation (TES) can increase the cell survival rate. To understand the mechanisms and to further define the TES-induced effects we monitored in living animals RGC morphology and survival after optic nerve crush (ONC) in real time by using in vivo confocal neuroimaging (ICON) of the retina. ONC was performed in rats and ICON was performed before crush and on post-lesion days 3, 7 and 15 which allowed us to repeatedly record RGC number and size. TES or sham-stimulation were performed immediately after the crush and on post-injury day 11. Three days after ONC we detected a higher percentage of surviving RGCs in the TES group as compared to sham-treated controls. However, the difference was below significance level on day 7 and disappeared completely by day 15. The death rate was more variable amongst the TES-treated rats than in the control group. Morphological analysis revealed that average cell size changed significantly in the control group but not in stimulated animals and the morphological alterations of surviving neurons were smaller in TES-treated compared to control cells. In conclusion, TES delays post-traumatic cell death significantly. Moreover, we found "responder animals" which also benefited in the long-term from the treatment. Our in vivo cellular imaging results provide evidence that TES reduces ONC-associated neuronal swelling and shrinkage especially in RGCs which survived long-term. Further studies are now needed to determine the differences of responders vs. non-responders.

  15. [Morphological features of papillary thyroid carcinoma with a focal tall-cell component].

    PubMed

    Abrosimov, A Iu; Kozhushnaia, S M

    2012-01-01

    The morphological features of papillary thyroid macro- and microcarcinomas of classical structure with the focal presence or absence of a tall-cell component were comparatively studied. Histological specimens of 55 neoplasms were examined in 53 patients. A trend was seen for the higher rate of regional metastasis in a group of tall-cell tumors. Additional studies of groups of patients matched for sex, age, and extrathyroid tumor extension are required to make a final conclusion on the metastatic potential and prognostic features of tumors with a tall-cell component. To solve this task, it is expedient to separate neoplasms with a focal tall-cell component from the bulk of classical papillary carcinomas.

  16. Zinc air refuelable battery: alternative zinc fuel morphologies and cell behavior

    SciTech Connect

    Cooper, J.F.; Krueger, R.

    1997-01-01

    Multicell zinc/air batteries have been tested previously in the laboratory and as part of the propulsion system of an electric bus; cut zinc wire was used as the anode material. This battery is refueled by a hydraulic transport of 0.5-1 mm zinc particles into hoppers above each cell. We report an investigation concerning alternative zinc fuel morphologies, and energy losses associated with refueling and with overnight or prolonged standby. Three types of fuel pellets were fabricated, tested and compared with results for cut wire: spheres produced in a fluidized bed electrolysis cell; elongated particles produced by gas-atomization; and pellets produced by chopping 1 mm porous plates made of compacted zinc fines. Relative sizes of the particles and cell gap dimensions are critical. All three types transported within the cell 1553 and showed acceptable discharge characteristics, but a fluidized bed approach appears especially attractive for owner/user recovery operations.

  17. Principles of connectivity among morphologically defined cell types in adult neocortex.

    PubMed

    Jiang, Xiaolong; Shen, Shan; Cadwell, Cathryn R; Berens, Philipp; Sinz, Fabian; Ecker, Alexander S; Patel, Saumil; Tolias, Andreas S

    2015-11-27

    Since the work of Ramón y Cajal in the late 19th and early 20th centuries, neuroscientists have speculated that a complete understanding of neuronal cell types and their connections is key to explaining complex brain functions. However, a complete census of the constituent cell types and their wiring diagram in mature neocortex remains elusive. By combining octuple whole-cell recordings with an optimized avidin-biotin-peroxidase staining technique, we carried out a morphological and electrophysiological census of neuronal types in layers 1, 2/3, and 5 of mature neocortex and mapped the connectivity between more than 11,000 pairs of identified neurons. We categorized 15 types of interneurons, and each exhibited a characteristic pattern of connectivity with other interneuron types and pyramidal cells. The essential connectivity structure of the neocortical microcircuit could be captured by only a few connectivity motifs.

  18. Morphologic and cytochemical characteristics of green turtle (Chelonia mydas) blood cells

    USGS Publications Warehouse

    Work, T.M.; Raskin, R.E.; Balazs, G.H.; Whittaker, S.D.

    1998-01-01

    Objective - To identify and characterize blood cells from free-ranging Hawaiian green turtles, Chelonia mydas. Sample Population - 26 green turtles from Puako on the island of Hawaii and Kaneohe Bay on the island of Oahu. Procedure - Blood was examined, using light and electron microscopy and cytochemical stains that included benzidine peroxidase, chloroacetate esterase, alpha naphthyl butyrate esterase, acid phosphatase, Sudan black B, periodic acid-Schiff, and toluidine blue. Results - 6 types of WBC were identified: lymphocytes, monocytes, thrombocytes, heterophils, basophils, and eosinophils (small and large). Morphologic characteristics of mononuclear cells and most granulocytes were similar to those of cells from other reptiles except that green turtles have both large and small eosinophils. Conclusions - Our classification of green turtle blood cells clarifies imporoper nomenclature reported previously and provides a reference for future hematologic studies in this species.

  19. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells – Relevance to Capsular Opacification

    PubMed Central

    Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš

    2016-01-01

    Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation. PMID:27832099

  20. A morphological classification of retinal ganglion cells in the Japanese catshark Scyliorhinus torazame.

    PubMed

    Muguruma, Kaori; Stell, William K; Yamamoto, Naoyuki

    2014-01-01

    Retinal ganglion cells (GCs) in the Japanese catshark Scyliorhinus torazame were labeled retrogradely with biotinylated dextran amine (BDA3000). First the labeled cells were classified into 5 morphological types (types I-III: small GCs; types IV and V: large GCs) according to the size of the soma and the dendritic arborization pattern as seen in retinal wholemounts. Type I cells were stellate, with dendrites radiating in different directions. Type II cells had bipolar dendritic trees, with 2 primary dendrites extending in opposite directions. Type III cells had a single thick primary dendrite. Type IV cells were stellate, with dendrites covering a large area centered on the cell body. Type V cells were asymmetric, with most dendrites extending opposite to the axon as a large, fan-shaped dendritic field. Subsequently a wholemount was cross-sectioned, and we classified cells further into multiple subtypes according to the level of dendritic arborization within the inner plexiform layer. The present results suggest the existence of many types of GCs in elasmobranchs in addition to the 3 types of large GCs that have been characterized previously. Some of the newly described GC subtypes in the catshark retina appear to be similar to some of those reported in actinopterygians.

  1. Target morphology and cell memory: a model of regenerative pattern formation

    PubMed Central

    Bessonov, Nikolai; Levin, Michael; Morozova, Nadya; Reinberg, Natalia; Tosenberger, Alen; Volpert, Vitaly

    2015-01-01

    Despite the growing body of work on molecular components required for regenerative repair, we still lack a deep understanding of the ability of some animal species to regenerate their appropriate complex anatomical structure following damage. A key question is how regenerating systems know when to stop growth and remodeling – what mechanisms implement recognition of correct morphology that signals a stop condition? In this work, we review two conceptual models of pattern regeneration that implement a kind of pattern memory. In the first one, all cells communicate with each other and keep the value of the total signal received from the other cells. If a part of the pattern is amputated, the signal distribution changes. The difference fromthe original signal distribution stimulates cell proliferation and leads to pattern regeneration, in effect implementing an error minimization process that uses signaling memory to achieve pattern correction. In the second model, we consider a more complex pattern organization with different cell types. Each tissue contains a central (coordinator) cell that controls the tissue and communicates with the other central cells. Each of them keeps memory about the signals received from other central cells. The values of these signals depend on the mutual cell location, and the memory allows regeneration of the structure when it is modified. The purpose of these models is to suggest possible mechanisms of pattern regeneration operating on the basis of cell memory which are compatible with diverse molecular implementation mechanisms within specific organisms. PMID:26889161

  2. Morphologic maturation of tachykinin peptide-expressing cells in the postnatal rabbit retina.

    PubMed

    Casini, G; Trasarti, L; Andolfi, L; Bagnoli, P

    1997-04-18

    Tachykinin (TK) peptides, which include substance P, neurokinin A, two neurokinin A-related peptides and neurokinin B, are widely present in the nervous system, including the retina, where they act as neurotransmitters/modulators as well as growth factors. In the present study, we investigated the maturation of TK-immunoreactive (IR) cells in the rabbit retina with the aim of further contributing to the knowledge of the development of transmitter-identified retinal cell populations. In the adult retina, the pattern of TK immunostaining is consistent with the presence of TK peptides in amacrine, displaced amacrine, interplexiform and ganglion cells. In the newborn retina, intensely immunostained TK-IR somata are located in the ganglion cell layer (GCL) and in the inner nuclear layer (INL) adjacent to the inner plexiform layer (IPL). They are characterized by an oval-shaped cell body originating a single process without ramifications. TK-IR processes are occasionally observed in the IPL and in the outer plexiform layer (OPL). Long TK-IR fiber bundles are observed in the ganglion cell axon layer. TK-IR profiles resembling small somata are rarely observed in the INL adjacent to the OPL. At postnatal day (PND) 2, some TK-IR cells display more complex morphologic features, including processes with secondary ramifications. Long TK-IR processes in the IPL are often seen to terminate with growth cones. Between PND 6 and PND 11 (eye opening), there is a dramatic increase in the number of immunolabeled processes with growth cones both in the IPL and in the OPL and the mature lamination of TK-IR fibers in laminae 1, 3 and 5 of the IPL is established. TK-IR cells attain mature morphological characteristics and the rare, putative TK-IR somata in the distal INL are no longer observed. After eye opening, growth cones are not present and the pattern typical of the adult is reached. These observations indicate that the development of TK-IR cells can be divided into an early phase

  3. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  4. Critical factors affecting cell encapsulation in superporous hydrogels.

    PubMed

    Desai, Esha S; Tang, Mary Y; Ross, Amy E; Gemeinhart, Richard A

    2012-04-01

    We recently showed that superporous hydrogel (SPH) scaffolds promote long-term stem cell viability and cell driven mineralization when cells were seeded within the pores of pre-fabricated SPH scaffolds. The possibility of cell encapsulation within the SPH matrix during its fabrication was further explored in this study. The impact of each chemical component used in SPH fabrication and each step of the fabrication process on cell viability was systematically examined. Ammonium persulfate, an initiator, and sodium bicarbonate, the gas-generating compound, were the two components having significant toxicity toward encapsulated cells at the concentrations necessary for SPH fabrication. Cell survival rates were 55.7% ± 19.3% and 88.8% ± 9.4% after 10 min exposure to ammonium persulfate and sodium bicarbonate solutions, respectively. In addition, solution pH change via the addition of sodium bicarbonate had significant toxicity toward encapsulated cells with cell survival of only 50.3% ± 2.5%. Despite toxicity of chemical components and the SPH fabrication method, cells still exhibited significant overall survival rates within SPHs of 81.2% ± 6.8% and 67.0% ± 0.9%, respectively, 48 and 72 h after encapsulation. This method of cell encapsulation holds promise for use in vitro and in vivo as a scaffold material for both hydrogel matrix encapsulation and cell seeding within the pores.

  5. Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance

    PubMed Central

    Touchon, Justin C.; Wojdak, Jeremy M.

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles’ tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation

  6. Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex

    PubMed Central

    Loucif, Alexandre J. C.; Schubert, Dirk; Möck, Martin

    2016-01-01

    Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the outcome of cortical columnar signal processing to distant target areas. At the same time they contribute to local tactile information processing by emitting recurrent axonal collaterals into the columnar microcircuitry. It is, however, not known how exactly the two types of pyramidal cells, called slender-tufted and thick-tufted, contribute to the local circuitry. Here, we investigated in the rat barrel cortex the detailed quantitative morphology of biocytin-filled layer Vb pyramidal cells in vitro, which were characterized for their intrinsic electrophysiology with special emphasis on their action potential firing pattern. Since we stained the same slices for cytochrome oxidase, we could also perform layer- and column-related analyses. Our results suggest that in layer Vb the unambiguous action potential firing patterns "regular spiking (RS)" and "repetitive burst spiking (RB)" (previously called intrinsically burst spiking) correlate well with a distinct morphology. RS pyramidal cells are somatodendritically of the slender-tufted type and possess numerous local intralaminar and intracolumnar axonal collaterals, mostly reaching layer I. By contrast, their transcolumnar projections are less well developed. The RB pyramidal cells are somatodendritically of the thick-tufted type and show only relatively sparse local axonal collaterals, which are preferentially emitted as long horizontal or oblique infragranular collaterals. However, contrary to many previous slice studies, a substantial number of these neurons also showed axonal collaterals reaching layer I. Thus, electrophysiologically defined pyramidal cells of layer Vb show an input and output pattern which suggests RS cells to be more "locally segregating" signal processors whereas RB cells seem to act more on a "global integrative" scale. PMID:27706253

  7. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite.

    PubMed

    Sharma, Rajeev Kumar; Agarwal, Meenakshi; Balani, Kantesh

    2016-05-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn(2+) and H2O2 is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28-35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0-2.5 μg/ml) or when incorporated (5-20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H2O2 production, (ii) Zn(2+) release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H2O2 in the absence of light, maximum Zn(2+) release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5-20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite.

  8. The interface morphology of a spherical crystal in the undercooled melt affected by a far-field uniform flow

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Wang, Y. L.; Zhang, H.; Wu, L. Y.; Wang, Z. D.

    2011-05-01

    The effect of the convective flow caused by the far-field uniform flow on the interface morphology of a spherical crystal is studied by using the matched asymptotic expansion method. For the case that the far-field uniform flow is far less than the characteristic velocity of the interface, we obtain the uniformly valid asymptotic solution of the spherical crystal in the entire melt region. The analytical results show that the far-field uniform flow has significant effect on the interface morphology of the spherical crystal. The convection flow makes the interface of the growing spherical crystal enhance growth velocity in the upstream direction of the far-field uniform flow, inhibit growth in the downstream direction and decrease growth velocity on the two sides of the spherical crystal. The drag effect of the far-field uniform flow makes the interface morphology of the spherical crystal evolve into a pearlike oval shape. Our analytical result is consistent with the experimental and simulation results.

  9. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  10. Aging affects initiation and continuation of T cell proliferation.

    PubMed

    Jiang, Jiu; Gross, Diara; Elbaum, Philip; Murasko, Donna M

    2007-04-01

    Aging is associated with a decline in immune responses, particularly within the T cell compartment. While the expansion of specific T cells in response to virus infections is consistently decreased in aged mice, the differences in T cell activation between young and aged mice as demonstrated in each round of proliferation remain poorly defined. In the present study, we utilized the T cell mitogen, ConA, to explore if fewer T cells of aged mice initiate proliferation upon mitogen stimulation or if similar numbers of T cells of aged mice begin proliferation but undergo fewer rounds of division. We also examined whether these age-associated changes in proliferation are reflected by differences in T cell activation by comparing activation markers (CD25, CD69, CD44, and CD62L) on T cells of young and aged mice at each round of proliferation. Not only was the kinetics of the expression of these markers greatly different between young and aged mice on the entire CD8 T cell population, but also at each round of proliferation. Our results demonstrate that a larger percentage of CD8 T cells of aged mice do not proliferate at all upon stimulation. Of the CD8 T cells of aged mice that do proliferate, a larger percentage start later and stop sooner. These results suggest that multiple levels of alteration may need to be considered when trying to maximize the immune response of aged individuals.

  11. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    SciTech Connect

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  12. Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Klages, Merle; Scholta, Joachim; Jörissen, Ludwig; Morawietz, Tobias; Hiesgen, Renate; Kramer, Dominik; Zeis, Roswitha

    2014-06-01

    The electrode morphology influences the properties and performance of polymer electrolyte membrane fuel cells (PEMFC). Here we report our studies of two different electrodes for high-temperature PEMFC prepared by spraying and coating and their impact on the fuel cell performance. Differences in 3D microstructure and adhesion between catalyst layer and gas diffusion layer (GDL) of the electrodes were studied with X-ray microtomography. Scanning electrode microscope investigations show hairline cracks between agglomerates on the surface of the sprayed electrode, whereas the coated electrode shows a network of shrinkage cracks in the catalyst layer. The distribution of the electrode binder polytetrafluoroethylene (PTFE) is related to the locally resolved conductivity, which was determined by scanning the electrode surfaces with a conductive atomic force microscopy (AFM) tip. The macrostructures of the sprayed and coated electrodes are different but contain similar pore structures. The coated electrode has a higher PTFE concentration on the top region, which tends to form a nonconductive and less wettable "skin" on the electrode surface and delays the start-up of the fuel cell. In contrast to low-temperature PEMFC, the electrode morphology has only a minor impact on the steady-state cell performance of high-temperature PEMFC.

  13. Estimation and extraction of B-cell linear epitopes predicted by mathematical morphology approaches.

    PubMed

    Chang, Hao-Teng; Liu, Chih-Hong; Pai, Tun-Wen

    2008-01-01

    B-cell epitope prediction facilitates the design and synthesis of short peptides for various immunological applications. Several algorithms have been developed to predict B-cell linear epitopes (LEs) from primary sequences of antigens, providing important information for immunobiological experiments and antibody design. This paper describes two robust methods, LE prediction with/without local peak extraction (LEP-LP and LEP-NLP), based on antigenicity scale and mathematical morphology for the prediction of B-cell LEs. Previous studies revealed that LEs could occur in regions with low-to-moderate but not globally high antigenicity scales. Hence, we developed a method adopting mathematical morphology to extract local peaks from a linear combination of the propensity scales of physico-chemical characteristics at each antigen residue. Comparison among LEP-LP/LEP-NLP, BepiPred and BEPITOPE revealed that our algorithms performed better in retrieving epitopes with low-to-moderate antigenicity and achieved comparable performance according to receiver operation characteristics (ROC) curve analysis. Of the identified LEs, over 30% were unable to be predicted by BepiPred and BEPITOPE employing an average threshold of antigenicity index or default settings. Our LEP-LP method provides a bioinformatics approach for predicting B-cell LEs with low- to-moderate antigenicity. The web-based server was established at http://biotools.cs.ntou.edu.tw/lepd_antigenicity. php for free use.

  14. Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology

    NASA Astrophysics Data System (ADS)

    Cardinaletti, Ilaria; Kesters, Jurgen; Bertho, Sabine; Conings, Bert; Piersimoni, Fortunato; D'Haen, Jan; Lutsen, Laurence; Nesladek, Milos; Van Mele, Bruno; Van Assche, Guy; Vandewal, Koen; Salleo, Alberto; Vanderzande, Dirk; Maes, Wouter; Manca, Jean V.

    2014-01-01

    When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups.

  15. Dendritic Morphology of Caudal Periaqueductal Gray Projecting Retinal Ganglion Cells in Mongolian Gerbil (Meriones unguiculatus)

    PubMed Central

    Ren, Chaoran; Pu, Mingliang; Cui, Qi; So, Kwok-Fai

    2014-01-01

    In this study we investigated the morphological features of the caudal periaqueductal gray (cPAG)-projecting retinal ganglion cells (RGCs) in Mongolian gerbils using retrograde labeling, in vitro intracellular injection, confocal microscopy and three-dimensional reconstruction approaches. cPAG-projecting RGCs exhibit small somata (10–17 µm) and irregular dendritic fields (201–298 µm). Sizes of somata and dendritic fields do not show obvious variation at different distance from the optic disk (eccentricity). Dendrites are moderately branched. Morphological analysis (n = 23) reveals that cPAG-projecting RGCs ramified in sublamina a and b in the inner plexiform layer. These cells exhibit different stratification patterns based on the thickness of dendritic bands in sublaminas a and b: majority of analyzed cells (16 out of 23) have two bands of arborizations share similar thickness. The rest of analyzed cells (7 out of 23) exhibit thinner band in sublamina a than in sublamina b. Together, the present study suggests that cPAG of Mongolian gerbil could receive direct retinal inputs from two types of bistratified RGCs. Furthermore, a small subset of melanopsin-expressing RGCs (total 41 in 6 animals) is shown to innervate the rostral PAG (rPAG). Functional characteristics of these non-visual center projecting RGCs remain to be determined. PMID:25054882

  16. Consecutive Morphology Controlling Operations for Highly Reproducible Mesostructured Perovskite Solar Cells.

    PubMed

    Wu, Yongzhen; Chen, Wei; Yue, Youfeng; Liu, Jian; Bi, Enbing; Yang, Xudong; Islam, Ashraful; Han, Liyuan

    2015-09-23

    Perovskite solar cells have shown high photovoltaic performance but suffer from low reproducibility, which is mainly caused by low uniformity of the active perovskite layer in the devices. The nonuniform perovskites further limit the fabrication of large size solar cells. In this work, we control the morphology of CH3NH3PbI3 on a mesoporous TiO2 substrate by employing consecutive antisolvent dripping and solvent-vapor fumigation during spin coating of the precursor solution. The solvent-vapor treatment is found to enhance the perovskite pore filling and increase the uniformity of CH3NH3PbI3 in the porous scaffold layer but slightly decrease the uniformity of the perovskite capping layer. An additional antisolvent dripping is employed to recover the uniform perovskite capping layer. Such consecutive morphology controlling operations lead to highly uniform perovskite in both porous and capping layers. By using the optimized perovskite deposition procedure, the reproducibility of mesostructured solar cells was greatly improved such that a total of 40 devices showed an average efficiency of 15.3% with a very small standard deviation of 0.32. Moreover, a high efficiency of 14.9% was achieved on a large-size cell with a working area of 1.02 cm(2).

  17. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    PubMed

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production.

  18. Whole-cell patch-clamp recordings from morphologically- and neurochemically-identified hippocampal interneurons.

    PubMed

    Booker, Sam A; Song, Jie; Vida, Imre

    2014-09-30

    GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.

  19. Morphological characterization of retinal bipolar cells in the marine teleost Rhinecanthus aculeatus.

    PubMed

    Pignatelli, Vincenzo; Marshall, Justin

    2010-08-01

    The marine teleost Rhinecanthus aculeatus (Balistidae) has recently been shown to possess trichromatic color vision supported by a retinal combination of double and single cones. Double cones are composed of two members with different spectral sensitivity. It is not known whether a correlation exists between the chromatic wiring of double cones to the inner retina and trichromacy, nor how unmixed, chromatic information is extracted from the two members of the couple. In mammalians, bipolar cells determine color segregation by means of the midget system, central to trichromatic color vision; however, midget bipolar cells have never been described in teleosts. On the basis of its likely importance in transferring chromatic photoreceptor signals to the inner retina, we have morphologically characterized the retinal bipolar cell types of R. aculeatus using DiOlistic staining techniques to verify if an anatomical specialization of this group of cells is required to support trichromatic color vision. Thirteen cell types are described: eight putative OFF types and five putative ON types. Of these, four had axonal boutons ramifying in both sublayers (ON and OFF) of the inner plexiform layer, six had terminals restricted to the OFF layer, and three cell types had terminals restricted to the ON layer. Dendritic arbors of bipolar cells had narrower diameters (5-40 microm) in comparison to bipolar cells of other teleost species; this supports the idea that a low degree of photoreceptor to bipolar convergence is correlated with trichromacy in this retina and possibly with the function of double cones as color receptors.

  20. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  1. Morphology and dynamic scaling analysis of cell colonies with linear growth fronts

    NASA Astrophysics Data System (ADS)

    Huergo, M. A. C.; Pasquale, M. A.; Bolzán, A. E.; Arvia, A. J.; González, P. H.

    2010-09-01

    The growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension DF=1.25±0.05 . The colony fronts shift at 0.22±0.02μmmin-1 average constant linear velocity and their roughness (w) increases with time (t) . Dynamic scaling analysis of experimental and overhang-corrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value lo , a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent β=0.33±0.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent αs=0.50±0.05 is obtained. For l>200μm , this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.

  2. Nanopattern-induced changes in morphology and motility of smooth muscle cells.

    PubMed

    Yim, Evelyn K F; Reano, Ron M; Pang, Stella W; Yee, Albert F; Chen, Christopher S; Leong, Kam W

    2005-09-01

    Cells are known to be surrounded by nanoscale topography in their natural extracellular environment. The cell behavior, including morphology, proliferation, and motility of bovine pulmonary artery smooth muscle cells (SMC) were studied on poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) surfaces comprising nanopatterned gratings with 350 nm linewidth, 700 nm pitch, and 350 nm depth. More than 90% of the cells aligned to the gratings, and were significantly elongated compared to the SMC cultured on non-patterned surfaces. The nuclei were also elongated and aligned. Proliferation of the cells was significantly reduced on the nanopatterned surfaces. The polarization of microtubule organizing centers (MTOC), which are associated with cell migration, of SMC cultured on nanopatterned surfaces showed a preference towards the axis of cell alignment in an in vitro wound healing assay. In contrast, the MTOC of SMC on non-patterned surfaces preferentially polarized towards the wound edge. It is proposed that this nanoimprinting technology will provide a valuable platform for studies in cell-substrate interactions and for development of medical devices with nanoscale features.

  3. Physiological and morphological characterization of ganglion cells in the salamander retina

    PubMed Central

    Wang, Jing; Jacoby, Roy; Wu, Samuel M.

    2016-01-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON–OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON–OFF RGCs. Dendritic field diameters of RGCs ranged 102–490 µm: narrow field (<200 µm, 31% of RGCs), medium field (200–300 µm, 45%) and wide field (>300 µm, 24%). Dendritic ramification patterns of RGCs agree with the sub-lamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON–OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645

  4. Physiological and morphological characterization of ganglion cells in the salamander retina.

    PubMed

    Wang, Jing; Jacoby, Roy; Wu, Samuel M

    2016-02-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON-OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON-OFF RGCs. Dendritic field diameters of RGCs ranged 102-490 μm: narrow field (<200 μm, 31% of RGCs), medium field (200-300 μm, 45%) and wide field (>300 μm, 24%). Dendritic ramification patterns of RGCs agree with the sublamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON-OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification.

  5. Morphology and Immunoreactivity of Retrogradely Double-Labeled Ganglion Cells in the Mouse Retina

    PubMed Central

    Wu, Samuel M.

    2011-01-01

    Purpose. To examine the specificity and reliability of a retrograde double-labeling technique that was recently established for identification of retinal ganglion cells (GCs) and to characterize the morphology of displaced (d)GCs (dGs). Methods. A mixture of the gap-junction–impermeable dye Lucifer yellow (LY) and the permeable dye neurobiotin (NB) was applied to the optic nerve stump for retrograde labeling of GCs and the cells coupled with them. A confocal microscope was adopted for morphologic observation. Results. GCs were identified by LY labeling, and they were all clearly labeled by NB. Cells coupled to GCs contained a weak NB signal but no LY. LY and NB revealed axon bundles, somas and dendrites of GCs. The retrogradely identified GCs numbered approximately 50,000 per retina, and they constituted 44% of the total neurons in the ganglion cell layer (GCL). Somas of retrogradely identified dGs were usually negative for glycine, ChAT (choline acetyltransferase), bNOS (brain-type nitric oxidase), GAD (glutamate decarboxylase), and glial markers, and occasionally, they were weakly GABA-positive. dGs averaged 760 per retina and composed 1.7% of total GCs. Sixteen morphologic subtypes of dGs were encountered, three of which were distinct from known GCs. dGs sent dendrites to either sublaminas of the IPL, mostly sublamina a. Conclusions. The retrograde labeling is reliable for identification of GCs. dGs participate in ON and OFF light pathways but favor the OFF pathway. ChAT, bNOS, glycine, and GAD remain reliable AC markers in the GCL. GCs may couple to GABAergic ACs, and the gap junctions likely pass NB and GABA. PMID:21482641

  6. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  7. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism.

    PubMed

    Welty, Nathan E; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J; Igyártó, Botond Z; Kaplan, Daniel H

    2013-09-23

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103(+) subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103(+)CD11b(+) LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC-T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβ(fl/fl) mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103(+)CD11b(+) DCs. huLangerin-DTA x BatF3(-/-) mice lacked both CD103(+) LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103(+) LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms.

  8. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  9. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.

    PubMed

    Cao, Xuan; Moeendarbary, Emad; Isermann, Philipp; Davidson, Patricia M; Wang, Xiao; Chen, Michelle B; Burkart, Anya K; Lammerding, Jan; Kamm, Roger D; Shenoy, Vivek B

    2016-10-04

    It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking. Here, we developed a universal chemomechanical model that describes nuclear strains and shapes and predicts thresholds for the rupture of the nuclear envelope and for nuclear plastic deformation during transmigration through small constrictions. The model includes actin contraction and cytosolic back pressure that squeeze the nucleus through constrictions and overcome the mechanical resistance from deformation of the nucleus and the constrictions. The nucleus is treated as an elastic shell encompassing a poroelastic material representing the nuclear envelope and inner nucleoplasm, respectively. Tuning the chemomechanical parameters of different components such as cell contractility and nuclear and matrix stiffnesses, our model predicts the lower bounds of constriction size for successful transmigration. Furthermore, treating the chromatin as a plastic material, our model faithfully reproduced the experimentally observed irreversible nuclear deformations after transmigration in lamin-A/C-deficient cells, whereas the wild-type cells show much less plastic deformation. Along with making testable predictions, which are in accord with our experiments and existing literature, our work provides a realistic framework to assess the biophysical modulators of nuclear deformation during cell transmigration.

  10. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  11. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.

    PubMed

    Qin, Peng; Xu, Lin; Zhong, Wenjing; Yu, Alfred C H

    2012-06-01

    The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells.

  12. Dynamics and morphology characteristics of cell colonies with radially spreading growth fronts

    NASA Astrophysics Data System (ADS)

    Huergo, M. A. C.; Pasquale, M. A.; González, P. H.; Bolzán, A. E.; Arvia, A. J.

    2011-08-01

    The dynamics of two-dimensional (2D) radially spreading growth fronts of Vero cell colonies was investigated utilizing two types of colonies, namely type I starting from clusters with a small number of cells, which initially exhibited arbitrary-shaped rough growth fronts and progressively approached quasicircular ones as the cell population increased; and type II colonies, starting from a relatively large circular three-dimensional (3D) cell cluster. For large cell population colonies, the fractal dimension of the fronts was DF=1.20±0.05. For low cell populations, the mean colony radius increased exponentially with time, but for large ones the constant radial front velocity 0.20±0.02 μm min-1 was reached. Colony spreading was accompanied by changes in both cell morphology and average size, and by the formation of very large cells, some of them multinuclear. Therefore the heterogeneity of colonies increased and local driving forces that set in began to influence the 2D growth front kinetics. The retardation effect related to the exponential to constant radial front velocity transition was assigned to a number of possible interferences including the cell duplication and 3D growth in the bulk of the colony. The dynamic scaling analysis of overhang-corrected rough colony fronts, after arc-radius coordinate system transformation, resulted in roughness exponent α = 0.50±0.05 and growth exponent β = 0.32±0.04, for arc lengths greater than 100 μm. This set of scaling exponents agreed with that predicted by the Kardar, Parisi, and Zhang continuous equation. For arc lengths shorter than 2-3 cell diameters, the value α = 0.85±0.05 would be related to a cell front roughening caused by temporarily membrane deformations occasionally interfered by cell proliferation.

  13. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  14. Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells.

    PubMed

    Gerstenberger, John P; Occhipinti, Patricia; Gladfelter, Amy S

    2012-03-01

    In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influence the adjacent cytoplasm, we tested whether local mitochondrial morphology and membrane potential in A. gossypii are associated with the division state of a nearby nucleus. We found that mitochondria exhibit substantial heterogeneity in both morphology and membrane potential within a single multinucleated cell. Notably, differences in mitochondrial morphology or potential are not associated with a specific nuclear division state. Heterokaryon mutants with a mixture of nuclei with deletions of and wild type for the mitochondrial fusion/fission genes DNM1 and FZO1 exhibit altered mitochondrial morphology and severe growth and sporulation defects. This dominant effect suggests that the gene products may be required locally near their expression site rather than diffusing widely in the cell. Our results demonstrate that mitochondrial dynamics are essential in these large syncytial cells, yet morphology and membrane potential are independent of nuclear cycle state.

  15. Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats

    PubMed Central

    Carvalho, A. F.; Reyes, B. A. S.; Ramalhosa, F.; Sousa, N.

    2014-01-01

    Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37–40) and adult (P55–60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi–Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development

  16. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  17. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  18. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  19. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  20. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    SciTech Connect

    Thomas, Ajith; Elsa Tom, Anju; Ison, V. V. E-mail: praveen@materials.iisc.ernet.in; Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C. E-mail: praveen@materials.iisc.ernet.in; Vinayakan, R.

    2014-03-14

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility.

  1. Metre-long cell-laden microfibres exhibit tissue morphologies and functions

    NASA Astrophysics Data System (ADS)

    Onoe, Hiroaki; Okitsu, Teru; Itou, Akane; Kato-Negishi, Midori; Gojo, Riho; Kiriya, Daisuke; Sato, Koji; Miura, Shigenori; Iwanaga, Shintaroh; Kuribayashi-Shigetomi, Kaori; Matsunaga, Yukiko T.; Shimoyama, Yuto; Takeuchi, Shoji

    2013-06-01

    Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core-shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem cells can be fabricated, and that the microfibres reconstitute intrinsic morphologies and functions of living tissues. We also show that these functional fibres can be assembled, by weaving and reeling, into macroscopic cellular structures with various spatial patterns. Moreover, fibres encapsulating primary pancreatic islet cells and transplanted through a microcatheter into the subrenal capsular space of diabetic mice normalized blood glucose concentrations for about two weeks. These microfibres may find use as templates for the reconstruction of fibre-shaped functional tissues that mimic muscle fibres, blood vessels or nerve networks in vivo.

  2. Improved morphology control using a modified two-step method for efficient perovskite solar cells.

    PubMed

    Bi, Dongqin; El-Zohry, Ahmed M; Hagfeldt, Anders; Boschloo, Gerrit

    2014-11-12

    A two-step wet chemical synthesis method for methylammonium lead(II) triiodide (CH3NH3PbI3) perovskite is further developed for the preparation of highly reproducible solar cells, with the following structure: fluorine-doped tin oxide (FTO)/TiO2 (compact)/TiO2 (mesoporous)/CH3NH3PbI3/spiro-OMeTAD/Ag. The morphology of the perovskite layer could be controlled by careful variation of the processing conditions. Specifically, by modifying the drying process and inclusion of a dichloromethane treatment, more uniform films could be prepared, with longer emission lifetime in the perovskite material and longer electron lifetime in solar cell devices, as well as faster electron transport and enhanced charge collection at the selective contacts. Solar cell efficiencies up to 13.5% were obtained.

  3. The cloning of growth associated protein 43 of Gekko japonicus and its effect on cell morphology.

    PubMed

    Feng, Xiao; Zhou, Youlang; Liu, Mei; Gu, Xingxing; Wang, Yongjun; Ding, Fei; Gu, Xiaosong; Liu, Yan

    2012-07-01

    The growth-associated protein 43 (GAP-43) gene of Gekko japonicus was obtained from a brain and spinal cord cDNA library. The results of northern blot analysis showed the gecko GAP-43 gene transcript is 1.7 kb in length, and it was abundantly expressed in tissues of brain, spinal cord and ovary. Gecko GAP-43 promoted the outgrowth of Gsn3 cells and PC12 cell in vitro, and phosphorylation at serine 42 modulated the effect of GAP-43 on cell spreading and morphology. The change in GAP-43 expression in the spinal cord after tail amputation was examined by reverse transcription polymerase chain reaction (RT-PCR). The level of GAP-43 in the spinal cord was increased during the time course we examined, indicating a possible correlation between GAP-43 expression and the spinal cord injury and regeneration.

  4. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming.

    PubMed

    No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon

    2015-01-01

    Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.

  5. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages

    PubMed Central

    Holm, Angelika; Magnusson, Karl-Eric; Vikström, Elena

    2016-01-01

    Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations. PMID:27047801

  6. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming.

    PubMed

    Li, Heng-Hong; Wang, Yi-Wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D; Fornace, Albert J

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis,