Science.gov

Sample records for affected community structure

  1. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  2. Prey community structure affects how predators select for Mullerian mimicry.

    PubMed

    Ihalainen, Eira; Rowland, Hannah M; Speed, Michael P; Ruxton, Graeme D; Mappes, Johanna

    2012-06-01

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.

  3. Linking Geology and Microbiology: Inactive Pockmarks Affect Sediment Microbial Community Structure

    PubMed Central

    Haverkamp, Thomas H. A.; Hammer, Øyvind; Jakobsen, Kjetill S.

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment. PMID:24475066

  4. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  5. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    PubMed

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes. PMID:24810324

  6. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria

    PubMed Central

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol−1) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields. PMID:25750640

  7. Diversity and structure of AMF communities as affected by tillage in a temperate soil.

    PubMed

    Jansa, J; Mozafar, A; Anken, T; Ruh, R; Sanders, I R; Frossard, E

    2002-10-01

    Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed.

  8. Diversity and structure of AMF communities as affected by tillage in a temperate soil.

    PubMed

    Jansa, J; Mozafar, A; Anken, T; Ruh, R; Sanders, I R; Frossard, E

    2002-10-01

    Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed. PMID:12375133

  9. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  10. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  11. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  12. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef

    PubMed Central

    Burkepile, Deron E.; Hay, Mark E.

    2008-01-01

    Consumer effects on prey are well known for cascading through food webs and producing dramatic top-down effects on community structure and ecosystem function. Bottom-up effects of prey (primary producer) biodiversity are also well known. However, the role of consumer diversity in affecting community structure or ecosystem function is not well understood. Here, we show that herbivore species richness can be critical for maintaining the structure and function of coral reefs. In two experiments over 2 years, we constructed large cages enclosing single herbivore species, equal densities of mixed species of herbivores, or excluding herbivores and assessed effects on both seaweeds and corals. When compared with single-herbivore treatments, mixed-herbivore treatments lowered macroalgal abundance by 54–76%, enhanced cover of crustose coralline algae (preferred recruitment sites for corals) by 52–64%, increased coral cover by 22%, and prevented coral mortality. Complementary feeding by herbivorous fishes drove the herbivore richness effects, because macroalgae were unable to effectively deter fishes with different feeding strategies. Maintaining herbivore species richness appears critical for preserving coral reefs, because complementary feeding by diverse herbivores produces positive, but indirect, effects on corals, the foundation species for the ecosystem. PMID:18845686

  13. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior.

  14. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  15. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    PubMed Central

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  16. [Community structure characteristics of phytoplankton and related affecting factors in Hengshan Reservoir, Zhejiang, China].

    PubMed

    Yang, Liang-Jie; Yu, Peng-Fei; Zhu, Jun-Quan; Xu, Zhen; Lü, Guang-Han; Jin, Chun-Hua

    2014-02-01

    In order to reveal the community structure characteristics of phytoplankton and the relationships with environmental factors in Hengshan Reservoir, the phytoplankton species composition, abundance, biomass and 12 environmental factors at 4 sampling sites were analyzed from March 2011 to February 2012. A total of 246 phytoplankton species were identified, which belong to 78 genera and 7 phyla. The dominant species were Melosira varians, M. granulate, Cyclotella meneghiniana, Asterianella formosa, Synedra acus, Achnanthes exigua, Ankistrodesmus falcatus, Oscillatoria lacustris, Cryptomonas erosa, Chroomonas acuta, Phormidium tenue and Microcystis aeruginosa, etc. Seasonal variations of species were obvious. The annual abundance and biomass of the phytoplankton were 0.51 x 10(5)-14.22 x 10(5) ind x L(-1) and 0.07-1.27 mg x L(-1), respectively. The values of the Margelef index, Pielou index and Shannon index of the phytoplankton community were 1.10-3.33, 0.26-0.81 and 0.51-2.38, respectively. The phytoplankton community structure was of Bacillariophyta-Cryptophyta type in spring and winter, of Chlorophyta-Cyanophyta type in summer, and of Bacillariophyta type in autumn. Canonical correlation analysis (CCA) showed that temperature, transparency, chemical oxygen demand and pH had the closest relationships with the phytoplankton community structure in the reservoir. Water quality evaluation showed that Hengshan Reservoir was in a secondary pollution with a meso-trophic level.

  17. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  18. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  19. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  20. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  1. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed Central

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  2. Manure Refinement Affects Apple Rhizosphere Bacterial Community Structure: A Study in Sandy Soil

    PubMed Central

    Zhang, Qiang; Sun, Jian; Liu, Songzhong; Wei, Qinping

    2013-01-01

    We used DNA-based pyrosequencing to characterize the bacterial community structure of the sandy soil of an apple orchard with different manure ratios. Five manure percentages (5%, 10%, 15%, 20% and 25%) were examined. More than 10,000 valid reads were obtained for each replicate. The communities were composed of five dominant groups (Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Bacteroidetes), of which Proteobacteria content gradually decreased from 41.38% to 37.29% as manure ratio increased from 0% to 25%, respectively. Redundancy analysis showed that 37 classes were highly correlated with manure ratio, 18 of which were positively correlated. Clustering revealed that the rhizosphere samples were grouped into three components: low manure (control, 5%) treatment, medium manure (10%, 15%) treatment and high manure (20%, 25%) treatment. Venn analysis of species types of these three groups revealed that the bacteria community difference was primarily reflected by quantity ratio rather than species variety. Although greater manure content led to higher soil organic matter content, the medium manure improved soil showed the highest urease activity and saccharase activity, while 5% to 20% manure ratio improvement also resulted in higher bacteria diversity than control and 25% manure ratio treatment. Our experimental results suggest that the use of a proper manure ratio results in significantly higher soil enzyme activity and different bacteria community patterns, whereas the use of excessive manure amounts has negative effect on soil quality. PMID:24155909

  3. Manure refinement affects apple rhizosphere bacterial community structure: a study in sandy soil.

    PubMed

    Zhang, Qiang; Sun, Jian; Liu, Songzhong; Wei, Qinping

    2013-01-01

    We used DNA-based pyrosequencing to characterize the bacterial community structure of the sandy soil of an apple orchard with different manure ratios. Five manure percentages (5%, 10%, 15%, 20% and 25%) were examined. More than 10,000 valid reads were obtained for each replicate. The communities were composed of five dominant groups (Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Bacteroidetes), of which Proteobacteria content gradually decreased from 41.38% to 37.29% as manure ratio increased from 0% to 25%, respectively. Redundancy analysis showed that 37 classes were highly correlated with manure ratio, 18 of which were positively correlated. Clustering revealed that the rhizosphere samples were grouped into three components: low manure (control, 5%) treatment, medium manure (10%, 15%) treatment and high manure (20%, 25%) treatment. Venn analysis of species types of these three groups revealed that the bacteria community difference was primarily reflected by quantity ratio rather than species variety. Although greater manure content led to higher soil organic matter content, the medium manure improved soil showed the highest urease activity and saccharase activity, while 5% to 20% manure ratio improvement also resulted in higher bacteria diversity than control and 25% manure ratio treatment. Our experimental results suggest that the use of a proper manure ratio results in significantly higher soil enzyme activity and different bacteria community patterns, whereas the use of excessive manure amounts has negative effect on soil quality.

  4. Land management practices interactively affect wetland beetle ecological and phylogenetic community structure.

    PubMed

    Kelly, Sandor L; Song, Hojun; Jenkins, David G

    2015-06-01

    Management practices can disturb ecological communities in grazing lands, which represent one-quarter of land surface. But three knowledge gaps exist regarding disturbances: disturbances potentially interact but are most often studied singly; experiments with multiple ecosystems as treatment units are rare; and relatively new metrics of phylogenetic community structure have not been widely applied. We addressed all three of these needs with a factorial experiment; 40 seasonal wetlands embedded in a Florida ranch were treated with pasture intensification, cattle exclosure, and prescribed fire. Treatment responses were evaluated through four years for aquatic beetle (Coleoptera: Adephaga) assemblages using classic ecological metrics (species richness, diversity) and phylogenetic community structure (PCS) metrics. Adephagan assemblages consisted of 23 genera representing three families in a well-resolved phylogeny. Prescribed fire significantly reduced diversity one year post-fire, followed by a delayed pasture X fire interaction. Cattle exclosure significantly reduced one PCS metric after one year and a delayed pasture x fence x fire interaction was detected with another PCs metric. Overall, effects of long-term pasture intensification were modified by cattle exclosure and prescribed fire. Also, PCS metrics revealed effects otherwise undetected by classic ecological metrics. Management strategies (e.g., "flash grazing," prescribed fires) in seasonal wetlands may successfully balance economic gains from high forage quality with ecological benefits of high wetland diversity in otherwise simplified grazing lands. Effects are likely taxon specific; multiple taxa should be similarly evaluated.

  5. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.

    PubMed

    Koide, Roger T; Fernandez, Christopher; Malcolm, Glenna

    2014-01-01

    There is a growing interest amongst community ecologists in functional traits. Response traits determine membership in communities. Effect traits influence ecosystem function. One goal of community ecology is to predict the effect of environmental change on ecosystem function. Environmental change can directly and indirectly affect ecosystem function. Indirect effects are mediated through shifts in community structure. It is difficult to predict how environmental change will affect ecosystem function via the indirect route when the change in effect trait distribution is not predictable from the change in response trait distribution. When response traits function as effect traits, however, it becomes possible to predict the indirect effect of environmental change on ecosystem function. Here we illustrate four examples in which key attributes of ectomycorrhizal fungi function as both response and effect traits. While plant ecologists have discussed response and effect traits in the context of community structuring and ecosystem function, this approach has not been applied to ectomycorrhizal fungi. This is unfortunate because of the large effects of ectomycorrhizal fungi on ecosystem function. We hope to stimulate further research in this area in the hope of better predicting the ecosystem- and landscape-level effects of the fungi as influenced by changing environmental conditions.

  6. Structure and Function of Subsurface Microbial Communities Affecting Radionuclide Transport and Bio-immobilization

    SciTech Connect

    Kerkhof, Lee

    2013-10-23

    The goal of this research project was to employ a multi-disciplinary team to investigate the DOE-ERSP Field Research Center at Oak Ridge, TN (ORFRC), which contains well-defined subsurface contaminant plumes with contrasting pH and redox conditions. Part of the team would pursue cultivation-independent characterization of the microbial groups catalyzing relevant biogeochemical reactions to gain an understanding of the physiological mechanisms controlling radionuclide immobilization. Other team members would focus on cultivation and physiological characterization of model microorganisms from the site using single cell sorting methods. In order to understand and predict the in situ function of microbial communities, the PIs hope to develop new strategies for cultivation and to couple phylogenetic structure with microbial community function. Specific objectives by the Rutgers group was to discern the active bacteria at the Oak Ridge Research Field Challenge Site: 1. by applying stable isotope probing techniques to enrichment cultures developed from Florida State University; 2. by fingerprinting intact rRNA from groundwater samples obtained along the various flow pathways at ORFRC; and 3. by identifying functional genes for N and S cycling along the flowpaths to aid in detection of active bacteria.

  7. [Monthly changes and related affecting factors in community structure and diversity of the crab assemblages in central Jiaozhou Bay, China].

    PubMed

    Pang, Zhi-Wei; Xu, Bin-Duo; Ji, Yu-Peng; Ren, Yi-Ping

    2014-02-01

    Based on the monthly bottom trawl surveys in the central area of Jiaozhou Bay from September 2008 to August 2009, monthly changes and related affecting factors in community structure and diversity of the crab assemblages were examined using index of relative importance, ecological diversity indices, multivariate statistical analysis. In total, 18 crab species were caught and they belonged to 11 families, 17 genera. The relative abundance of crab varied dramatically among months, which was high in June, July and August. The dominant species composition of crab assemblage was observed to vary over months dramatically. The dominant species for the whole year was Charybdis bimaculata, and the dominant species in different specific months were C. bimaculata, C. japonica, Portunus trituberculatus, Raphidopus ciliatus and Eucrate crenata. The ranges across months of the Margalef' s species richness index (D), Shannon diversity index (H) and Pielou's evenness index (J) of the crab community structure were 0.54-2.86, 0.06-2.59 and 0.03-0.97, respectively. The diversity indices in winter months were the highest, and the diversity indices in autumn months were higher than in the spring and autumn months. MDS and CLUSTER analyses revealed that three groups/clusters, which were Group I (from May to October), Group, II (April, November and December) and Group III (January, February and March), were identi- fied for crab community during all the year in the central area of Jiaozhou Bay. ANOSIM analysis in community structure indicated that there were extremely significant differences among the groups, significant differences between Group I and Group II or between Group I and Group III, and no significant differences between Group II and Group III. Typifying species in the within-group included C. bimaculata, P. trituberculatus, C. japonica, E. crenata and R. ciliatus, and discriminating species between groups included C. bimaculata, C. japonica and P. trituberculatus. These

  8. Factors affecting the helminth community structure of adult collared peccaries in southern Texas.

    PubMed

    Corn, J L; Pence, D B; Warren, R J

    1985-07-01

    Four species of nematodes (Gongylonema pulchrum, Parabronema pecariae, Texicospirura turki, and Physocephalus sexalatus) and one species of cestode (Moniezia sp.) comprised the helminth fauna of adult collared peccaries (Tayassu tajacu) from the plains in southern Texas. The community structure of the helminth fauna of peccaries from this region was basically dissimilar to that from the more humid Gulf coastal prairies of southern Texas in composition (by the conspicuous absence of certain species) and relative abundance of shared species. The distributions of each of the three common species of helminths (G. pulchrum, T. turki, and P. sexalatus) were overdispersed. The effects of selected habitat variables operating across host subpopulations (delineated by condition and sex) and of the extrinsic variable of season on the dispersion patterns of the three common species of helminths were examined. The hypothesis that heterogeneity within the host population, rather than across the collective host population, is the main factor generating overdispersion in natural parasite populations was not confirmed for the three common species of helminths. Overdispersion in P. sexalatus resulted from seasonal changes across the collective host population, with the greatest abundances occurring during the cool season. Aggregated abundances of G. pulchrum resulted from variation generated across host sex subpopulations, while the dispersion patterns of T. turki appeared to be unaffected by the habitat variables examined in this study.

  9. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia.

    PubMed

    Wagner, Dirk; Kobabe, Svenja; Liebner, Susanne

    2009-01-01

    Arctic permafrost environments store large amounts of organic carbon. As a result of global warming, intensified permafrost degradation and release of significant quantities of the currently conserved organic matter is predicted for high latitudes. To improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, the present study investigates structure and carbon turnover of the bacterial community in a permafrost-affected soil of the Lena Delta (72 degrees 22'N, 126 degrees 28'E) in northeastern Siberia. 16S rRNA gene clone libraries revealed the presence of all major soil bacterial groups and of the canditate divisions OD1 and OP11. A shift within the bacterial community was observed along the soil profile indicated by the absence of Alphaproteobacteria and Betaproteobacteria and a simultaneous increase in abundance and diversity of fermenting bacteria like Firmicutes and Actinobacteria near the permafrost table. BIOLOG EcoPlates were used to describe the spectrum of utilized carbon sources of the bacterial community in different horizons under in situ temperature conditions in the presence and absence of oxygen. The results revealed distinct qualitative differences in the substrates used and the turnover rates under oxic and anoxic conditions. It can be concluded that constantly negative redox potentials as characteristic for the near permafrost table horizons of the investigated soil did effectively shape the structure of the indigenous bacterial community limiting its phylum-level diversity and carbon turnover capacity.

  10. Structural issues affecting creation of a community action and advocacy board

    PubMed Central

    Weeks, M. R.; Abbott, M.; Hilario, H.; Radda, K.; Medina, Z.; Prince, M.; Li, J.; Kaplan, C.

    2013-01-01

    The most effective woman-initiated method to prevent HIV/sexually transmitted infections is the female condom (FC). Yet, FCs are often difficult to find and denigrated or ignored by community health and service providers. Evidence increasingly supports the need to develop and test theoretically driven, multilevel interventions using a community-empowerment framework to promote FCs in a sustained way. We conducted a study in a midsized northeastern US city (2009–2013) designed to create, mobilize and build capacity of a community group to develop and implement multilevel interventions to increase availability, accessibility and support for FCs in their city. The Community Action and Advocacy Board (CAAB) designed and piloted interventions concurrently targeting community, organizational and individual levels. Ethnographic observation of the CAAB training and intervention planning and pilot implementation sessions documented the process, preliminary successes, challenges and limitations of this model. The CAAB demonstrated ability to conceptualize, plan and initiate multilevel community change. However, challenges in group decision-making and limitations in members’ availability or personal capacity constrained CAAB processes and intervention implementation. Lessons from this experience could inform similar efforts to mobilize, engage and build capacity of community coalitions to increase access to and support for FCs and other novel effective prevention options for at-risk women. PMID:23660461

  11. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  12. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  13. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    PubMed

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild.

  14. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.

  15. Structure and function of subsurface microbial communities affecting radionuclide transport and bio-immobilization

    SciTech Connect

    Stucki, Joseph William

    2013-05-13

    The purpose of this study was to provide comparative information regarding the changes in clay structure that occur due to biotic or abiotic reduction, as probed by variable-temperature Mössbauer spectroscopy.

  16. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  17. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

    PubMed

    Pendleton, Richard M; Hoeinghaus, David J; Gomes, Luiz C; Agostinho, Angelo A

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  18. Parasites alter community structure.

    PubMed

    Wood, Chelsea L; Byers, James E; Cottingham, Kathryn L; Altman, Irit; Donahue, Megan J; Blakeslee, April M H

    2007-05-29

    Parasites often play an important role in modifying the physiology and behavior of their hosts and may, consequently, mediate the influence hosts have on other components of an ecological community. Along the northern Atlantic coast of North America, the dominant herbivorous snail Littorina littorea structures rocky intertidal communities through strong grazing pressure and is frequently parasitized by the digenean trematode Cryptocotyle lingua. We hypothesized that the effects of parasitism on host physiology would induce behavioral changes in L. littorea, which in turn would modulate L. littorea's influence on intertidal community composition. Specifically, we hypothesized that C. lingua infection would alter the grazing rate of L. littorea and, consequently, macroalgal communities would develop differently in the presence of infected versus uninfected snails. Our results show that uninfected snails consumed 40% more ephemeral macroalgal biomass than infected snails in the laboratory, probably because the digestive system of infected snails is compromised by C. lingua infection. In the field, this weaker grazing by infected snails resulted in significantly greater expansion of ephemeral macroalgal cover relative to grazing by uninfected snails. By decreasing the per-capita grazing rate of the dominant herbivore, C. lingua indirectly affects the composition of the macroalgal community and may in turn affect other species that depend on macroalgae for resources or habitat structure. In light of the abundance of parasites across systems, we suggest that, through trait-mediated indirect effects, parasites may be a common determinant of structure in ecological communities. PMID:17517667

  19. Factors Affecting Trophic Control of Community Structure and Ecosystem Functioning in Experimental Mesocosms of Seagrass (Zostera marina L.)

    NASA Astrophysics Data System (ADS)

    Lefcheck, J.; Duffy, J.

    2008-12-01

    Nutrient loading of coastal and estuarine waters threatens seagrass communities by promoting the growth of micro- and macroalgae, which then reduce the availability of light and nutrients. However, populations of invertebrate mesograzers are able to mitigate the negative impact of eutrophication through top-down control. We performed a factorial mesocosm experiment to examine the interactive relationships between light, nutrients, and mesograzer presence in structuring experimental ecosystems of eelgrass (Zostera marina). We found that mesograzer presence strongly reduced epiphytic algal biomass in every case, which remains consistent with previous mesocosm studies. We also observed a synergistic light-by-nutrient interaction that enhanced both epiphyte biomass and mesograzer abundance. The timing of this relationship is suggestive of weaker bottom-up control. Unlike previous studies, we found that light alone rarely affected either epiphyte biomass or mesograzer abundance. We believe that this result may be due to a combination of macroalgal shading and persistent grazing. Further processing of primary and secondary producer biomasses and elemental ratios, as well as the completion of feeding assays to gauge mesograzer feeding rates on different types of algae, will serve to reinforce these conclusions and to better define the relationship between these factors.

  20. Natural and anthropogenic factors affecting the structure of the benthic macroinvertebrate community in an effluent-dominated reach of the Santa Cruz River, AZ

    USGS Publications Warehouse

    Boyle, T.P.; Fraleigh, H.D.

    2003-01-01

    This study provides an assessment of the ecological conditions of a 46-km effluent-dominated stream section of the Santa Cruz River in the vicinity of the International Waste Water Treatment Plant, Nogales, AZ. We associated changes in the structure of the macroinvertebrate community to natural and anthropogenic chemical and physical variables using multivariate analysis. The analysis shows that biological criteria for effluent-dominated streams can be established using macroinvertebrate community attributes only with an understanding of the contribution of three classes of variables on the community structure: (1) low flow hydrological discharge as affected by groundwater withdrawals, treatment plant discharge, and subsurface geomorphology; (2) chemical composition of the treatment plant discharge and natural dilution; and (3) naturally produced floods resulting from seasonality of precipitation. ?? 2003 Elsevier Science Ltd. All rights reserved.

  1. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  2. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  3. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. PMID:26032670

  4. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome

    SciTech Connect

    Hodkinson, Brendan P; Gottel, Neil R; Schadt, Christopher Warren; Lutzoni, Francois

    2011-01-01

    Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e. green algal vs. cyanobacterial), mycobiont-types and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles.

  5. How does the proliferation of the coral-killing sponge Terpios hoshinota affect benthic community structure on coral reefs?

    NASA Astrophysics Data System (ADS)

    Elliott, Jennifer; Patterson, Mark; Summers, Natalie; Miternique, Céline; Montocchio, Emma; Vitry, Eugene

    2016-09-01

    Terpios hoshinota is an encrusting sponge and a fierce space competitor. It kills stony corals by overgrowing them and can impact reefs on the square kilometer scale. We investigated an outbreak of T. hoshinota in 2014 at the island of Mauritius to determine its impacts on coral community structure. Surveys were conducted at the putative outbreak center, an adjacent area, and around the island to determine the extent of spread of the sponge and which organisms it impacted. In addition, quadrats were monitored for 5 months (July-December) to measure the spreading rates of T. hoshinota and Acropora austera in areas both with and without T. hoshinota. The photosynthetic capabilities of T. hoshinota and A. austera were also measured. Terpios hoshinota was well established, covering 13% of an estimated 416 m2 of available hard coral substrate at the putative outbreak center, and 10% of an estimated 588 m2 of available hard coral substrate at the adjacent area. The sponge was observed at only one other site around Mauritius. Terpios hoshinota and A. austera increased their planar areas by 26.9 and 13.9%, respectively, over five months. No new colonies of T. hoshinota were recorded in adjacent sponge-free control areas, suggesting that sponge recruitment is very low during austral winter and spring. The sponge was observed to overgrow five stony corals; however, it showed a preference for branching corals, especially A. austera. This is the first time that a statistically significant coral substrate preference by T. hoshinota has been reported. Terpios hoshinota also had a significantly higher photosynthetic capacity than A. austera at irradiance >500 μmol photons m-2 s-1, a possible explanation for its high spreading rate. We discuss the long-term implications of the proliferation of T. hoshinota on community structure and dynamics of our study site.

  6. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth.

    PubMed

    Chihaoui, Saif-Allah; Trabelsi, Darine; Jdey, Ahmed; Mhadhbi, Haythem; Mhamdi, Ridha

    2015-08-01

    Agrobacterium sp. 10C2 is a nonpathogenic and non-symbiotic nodule-endophyte strain isolated from root nodules of Phaseolus vulgaris. The effect of this strain on nodulation, plant growth and rhizosphere bacterial communities of P. vulgaris is investigated under seminatural conditions. Inoculation with strain 10C2 induced an increase in nodule number (+54 %) and plant biomass (+16 %). Grains also showed a significant increase in phosphorus (+53 %), polyphenols (+217 %), flavonoids (+62 %) and total antioxidant capacity (+82 %). The effect of strain 10C2 on bacterial communities was monitored using terminal restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. When the initial soil was inoculated with strain 10C2 and left 15 days, the Agrobacterium strain did not affect TRF richness but changed structure. When common bean was sown in these soils and cultivated during 75 days, both TRF richness and structure were affected by strain 10C2. TRF richness increased in the rhizosphere soil, while it decreased in the bulk soil (root free). The taxonomic assignation of TRFs induced by strain 10C2 in the bean rhizosphere revealed the presence of four phyla (Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria) with a relative preponderance of Firmicutes, represented mainly by Bacillus species. Some of these taxa (i.e., Bacillus licheniformis, Bacillus pumilus, Bacillus senegalensis, Bacillus subtilis, Bacillus firmus and Paenibacillus koreensis) are particularly known for their plant growth-promoting potentialities. These results suggest that the beneficial effects of strain 10C2 observed on plant growth and grain quality are explained at least in part by the indirect effect through the promotion of beneficial microorganisms.

  7. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    and soil organic matter levels. Correlations between soil organic matter and total PLFA contents showed highly positive correlations at all sites (with R-values between 0.72 and 0.88). To find out whether sewage sludge through its metal impurities could impose stress on the microbial biomass, we compared the correlations between all different fertilisers used and PLFAs. The slopes of these comparisons revealed that sludge did not differ from other fertiliser treatments, which means that our results contrast earlier reports on negative effects of metals in sludge on soil microbes. The microbial community structure, studied with principal component analysis of individual PLFAs, was strongly affected by changes in soil pH, and at those sites where sewage sludge had caused a low pH, Gram-positive bacteria were more dominant than in the other treatments. However, differences in community structure were larger between sites than between the treatments investigated in this study, thus indicating that the original soil properties were more important for the microbial community structure than the fertiliser treatments.

  8. Surface-attached and suspended bacterial community structure as affected by C/N ratios: relationship between bacteria and fish production.

    PubMed

    Yu, Ermeng; Xie, Jun; Wang, Jinlin; Ako, Harry; Wang, Guangjun; Chen, Zhanghe; Liu, Yongfeng

    2016-07-01

    Bacteria play crucial roles in the combined system of substrate addition and C/N control, which has been demonstrated to improve aquaculture production. However, the complexity of surface-attached bacteria on substrates and suspended bacteria in the water column hamper further application of this system. This study firstly applied this combined system into the culture of grass carp, and then explored the relationship between microbial complexes from surface-attached and suspended bacteria in this system and the production of grass carp. In addition, this study investigated bacterial community structures as affected by four C/N ratios using Illumina sequencing technology. The results demonstrated that the weight gain rate and specific growth rate of grass carp in the CN20 group (C/N ratio 20:1) were the highest (P < 0.05), and dietary supplementation of the microbial complex had positive effects on the growth of grass carp (P < 0.05). Sequencing data revealed that, (1) the proportions of Verrucomicrobiae and Rhodobacter (surface-attached), sediminibacterium (suspended), and emticicia (surface-attached and suspended) were much higher in the CN20 group compared with those in the other groups (P < 0.05); (2) Rhodobacter, Flavobacterium, Acinetobacter, Pseudomonas, Planctomyces, and Cloacibacterium might be important for the microbial colonization on substrates; (3) as the C/N ratio increased, proportions of Hydrogenophaga (surface-attached and suspended), Zoogloea, and Flectobacillus (suspended) increased, but proportions of Bacillus, Clavibacter, and Cellvibro (surface-attached and suspended) decreased. In summary, a combined system of substrate addition and C/N control increased the production of grass carp, and Verrucomicrobiae and Rhodobacter in the surface-attached bacterial community were potential probiotic bacteria that contributed to the enhanced growth of grass carp.

  9. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site. PMID:27138048

  10. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

  11. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen. PMID:25391237

  12. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  13. Individual Difference Variables, Affective Differentiation, and the Structures of Affect

    PubMed Central

    Terracciano, Antonio; McCrae, Robert R.; Hagemann, Dirk; Costa, Paul T.

    2008-01-01

    Methodological arguments are usually invoked to explain variations in the structure of affect. Using self-rated affect from Italian samples (N = 600), we show that individual difference variables related to affective differentiation can moderate the observed structure. Indices of circumplexity (Browne, 1992) and congruence coefficients to the hypothesized target were used to quantify the observed structures. Results did not support the circumplex model as a universal structure. A circular structure with axes of activation and valence was approximated only among more affectively differentiated groups: students and respondents with high scores on Openness to Feelings and measures of negative emotionality. A different structure, with unipolar Positive Affect and Negative Affect factors, was observed among adults and respondents with low Openness to Feelings and negative emotionality. The observed structure of affect will depend in part on the nature of the sample studied. PMID:12932207

  14. Do alterations in mesofauna community affect earthworms?

    PubMed

    Uvarov, Alexei V; Karaban, Kamil

    2015-11-01

    Interactions between the saprotrophic animal groups that strongly control soil microbial activities and the functioning of detrital food webs, such as earthworms and mesofauna, are not well understood. Earthworm trophic and engineering activities strongly affect mesofauna abundance and diversity through various direct and indirect pathways. In contrast, mesofauna effects on earthworm populations are less evident; however, their importance may be high, considering the keystone significance of earthworms for the functioning of the soil system. We studied effects of a diverse mesofauna community of a deciduous forest on two earthworm species representing epigeic (Lumbricus rubellus) and endogeic (Aporrectodea caliginosa) ecological groups. In microcosms, the density of total mesofauna or its separate groups (enchytraeids, collembolans, gamasid mites) was manipulated (increased) and responses of earthworms and soil systems were recorded. A rise in mesofauna density resulted in a decrease of biomass and an increased mortality in L. rubellus, presumably due to competition with mesofauna for litter resources. In contrast, similar mesofauna manipulations promoted reproduction of A. caliginosa, suggesting a facilitated exploitation of litter resources due to increased mesofauna activities. Changes of microcosm respiration rates, litter organic matter content and microbial activities across the manipulation treatments indicate that mesofauna modify responses of soil systems in the presence of earthworms. However, similar mesofauna manipulations could induce different responses in soil systems with either epigeic or endogeic lumbricids, which suggests that earthworm/mesofauna interactions are species-specific. Thus, mesofauna impacts should be treated as a factor affecting the engineering activities of epigeic and endogeic earthworms in the soil.

  15. Do alterations in mesofauna community affect earthworms?

    PubMed

    Uvarov, Alexei V; Karaban, Kamil

    2015-11-01

    Interactions between the saprotrophic animal groups that strongly control soil microbial activities and the functioning of detrital food webs, such as earthworms and mesofauna, are not well understood. Earthworm trophic and engineering activities strongly affect mesofauna abundance and diversity through various direct and indirect pathways. In contrast, mesofauna effects on earthworm populations are less evident; however, their importance may be high, considering the keystone significance of earthworms for the functioning of the soil system. We studied effects of a diverse mesofauna community of a deciduous forest on two earthworm species representing epigeic (Lumbricus rubellus) and endogeic (Aporrectodea caliginosa) ecological groups. In microcosms, the density of total mesofauna or its separate groups (enchytraeids, collembolans, gamasid mites) was manipulated (increased) and responses of earthworms and soil systems were recorded. A rise in mesofauna density resulted in a decrease of biomass and an increased mortality in L. rubellus, presumably due to competition with mesofauna for litter resources. In contrast, similar mesofauna manipulations promoted reproduction of A. caliginosa, suggesting a facilitated exploitation of litter resources due to increased mesofauna activities. Changes of microcosm respiration rates, litter organic matter content and microbial activities across the manipulation treatments indicate that mesofauna modify responses of soil systems in the presence of earthworms. However, similar mesofauna manipulations could induce different responses in soil systems with either epigeic or endogeic lumbricids, which suggests that earthworm/mesofauna interactions are species-specific. Thus, mesofauna impacts should be treated as a factor affecting the engineering activities of epigeic and endogeic earthworms in the soil. PMID:26188519

  16. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  17. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  18. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    ERIC Educational Resources Information Center

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  19. Voluntary Associations and Community Structure.

    ERIC Educational Resources Information Center

    Dillman, Don A.; And Others

    This study examined overlapping membership of voluntary associations as the basis of a statistical technique for analyzing community structure. An underlying assumption was that organizations select certain membership linkages in preference to others within a community. Thus one would expect to find points of integration and cleavage among…

  20. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes

    PubMed Central

    Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  1. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  2. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  3. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  4. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  5. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  6. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly.

    PubMed

    Benesh, Daniel P; Kalbe, Martin

    2016-07-01

    Non-random species associations occur in naturally sampled parasite communities. The processes resulting in predictable community structure (e.g. particular host behaviours, cross-immunity, interspecific competition) could be affected by traits that vary within a parasite species, like growth or antigenicity. We experimentally infected three-spined sticklebacks with a large tapeworm (Schistocephalus solidus) that impacts the energy needs, foraging behaviour and immune reactions of its host. The tapeworms came from two populations, characterized by high or low growth in sticklebacks. Our goal was to evaluate how this parasite, and variation in its growth, affects the acquisition of other parasites. Fish infected with S. solidus were placed into cages in a lake to expose them to the natural parasite community. We also performed a laboratory experiment in which infected fish were exposed to a fixed dose of a common trematode parasite. In the field experiment, infection with S. solidus affected the abundance of four parasite species, relative to controls. For two of the four species, changes occurred only in fish harbouring the high-growth S. solidus; one species increased in abundance and the other decreased. These changes did not appear to be directly linked to S. solidus growth though. The parasite exhibiting elevated abundance was the same trematode used in the laboratory infection. In that experiment, we found a similar infection pattern, suggesting that S. solidus affects the physiological susceptibility of fish to this trematode. Associations between S. solidus and other parasites occur and vary in direction. However, some of these associations were contingent on the S. solidus population, suggesting that intraspecific variability can affect the assembly of parasite communities. PMID:27061288

  7. Dynamics and control of diseases in networks with community structure.

    PubMed

    Salathé, Marcel; Jones, James H

    2010-04-08

    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  8. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  9. Detection of community structure in networks based on community coefficients

    NASA Astrophysics Data System (ADS)

    Lu, Hu; Wei, Hui

    2012-12-01

    Determining community structure in networks is fundamental to the analysis of the structural and functional properties of those networks, including social networks, computer networks, and biological networks. Modularity function Q, which was proposed by Newman and Girvan, was once the most widely used criterion for evaluating the partition of a network into communities. However, modularity Q is subject to a serious resolution limit. In this paper, we propose a new function for evaluating the partition of a network into communities. This is called community coefficient C. Using community coefficient C, we can automatically identify the ideal number of communities in the network, without any prior knowledge. We demonstrate that community coefficient C is superior to the modularity Q and does not have a resolution limit. We also compared the two widely used community structure partitioning methods, the hierarchical partitioning algorithm and the normalized cuts (Ncut) spectral partitioning algorithm. We tested these methods on computer-generated networks and real-world networks whose community structures were already known. The Ncut algorithm and community coefficient C were found to produce better results than hierarchical algorithms. Unlike several other community detection methods, the proposed method effectively partitioned the networks into different community structures and indicated the correct number of communities.

  10. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  11. Virality Prediction and Community Structure in Social Networks

    PubMed Central

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  12. Virality Prediction and Community Structure in Social Networks

    NASA Astrophysics Data System (ADS)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  13. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  14. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  15. Offspring size in a resident species affects community assembly.

    PubMed

    Davis, Kurt; Marshall, Dustin J

    2014-03-01

    Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur.

  16. Offspring size in a resident species affects community assembly.

    PubMed

    Davis, Kurt; Marshall, Dustin J

    2014-03-01

    Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur. PMID:26046291

  17. Affective State and Community Integration after Traumatic Brain Injury

    PubMed Central

    Juengst, Shannon B.; Arenth, Patricia M.; Raina, Ketki D.; McCue, Michael; Skidmore, Elizabeth R.

    2014-01-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. Additionally, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state, contributes to frequency of participation and satisfaction with participation after TBI among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild to severe TBI participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β=.401, p=.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61=13.63, p<.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after TBI and incorporating a subjective measure of participation when considering community integration outcomes. PMID:25133618

  18. Affective state and community integration after traumatic brain injury.

    PubMed

    Juengst, Shannon B; Arenth, Patricia M; Raina, Ketki D; McCue, Michael; Skidmore, Elizabeth R

    2014-12-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. In addition, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state contributes to frequency of participation and satisfaction with participation after traumatic brain injury among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild-to-severe traumatic brain injury participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β = 0.401, P = 0.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61 = 13.63, P < 0.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after traumatic brain injury and incorporating a subjective measure of participation when considering community integration outcomes.

  19. Community detection in networks: Structural communities versus ground truth

    NASA Astrophysics Data System (ADS)

    Hric, Darko; Darst, Richard K.; Fortunato, Santo

    2014-12-01

    Algorithms to find communities in networks rely just on structural information and search for cohesive subsets of nodes. On the other hand, most scholars implicitly or explicitly assume that structural communities represent groups of nodes with similar (nontopological) properties or functions. This hypothesis could not be verified, so far, because of the lack of network datasets with information on the classification of the nodes. We show that traditional community detection methods fail to find the metadata groups in many large networks. Our results show that there is a marked separation between structural communities and metadata groups, in line with recent findings. That means that either our current modeling of community structure has to be substantially modified, or that metadata groups may not be recoverable from topology alone.

  20. STRUCTURAL AND AFFECTIVE ASPECTS OF CLASSROOM CLIMATE.

    ERIC Educational Resources Information Center

    WALBERG, HERBERT J.

    USING THE CLASSROOM AS THE UNIT OF ANALYSIS A 25 PERCENT RANDOM SAMPLE OF STUDENTS IN 72 CLASSES FROM ALL PARTS OF THE COUNTRY TOOK THE CLASSROOM CLIMATE QUESTIONNAIRE IN ORDER TO INVESTIGATE THE RELATIONSHIP BETWEEN STRUCTURAL (ORGANIZATIONAL) AND AFFECTIVE (PERSONAL INTERACTION BETWEEN GROUP MEMBERS) DIMENSIONS OF GROUP CLIMATE. REGRESSION AND…

  1. Does distance from the sea affect a soil microarthropod community?

    NASA Astrophysics Data System (ADS)

    Wasserstrom, Haggai; Steinberger, Yosef

    2016-10-01

    Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0-10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.

  2. SAMPLING EFFORT AFFECTS MULTIVARIATE COMPARISONS OF STREAM COMMUNITIES

    EPA Science Inventory

    The estimation of ecological trends and patterns is often dependent on the size of individual samples from each site (sample size) or spatial scale in general. Multivariate analysis is widely used for determining patterns of community structure, inferring species-environment rela...

  3. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  4. Warming alters community size structure and ecosystem functioning.

    PubMed

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M; Perkins, Daniel M; Trimmer, Mark; Woodward, Guy

    2012-08-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization.

  5. Warming alters community size structure and ecosystem functioning.

    PubMed

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M; Perkins, Daniel M; Trimmer, Mark; Woodward, Guy

    2012-08-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185

  6. Role of community health nurse in earthquake affected areas.

    PubMed

    Gulzar, Saleema Aziz; Faheem, Zahid Ali; Somani, Rozina Karim

    2012-10-01

    The role of Community Health Nurses (CHNs) outside the traditional hospital setting is meant to provide and promote the health care needs of the community. Such nurses can play a substantial role in the community setting including emergencies like disasters. This became evident after the earthquake of October 8, 2005 in Pakistan. The objective was to address the issues, faced by primary healthcare providers working in earthquake-affected areas focusing on participatory approach. The experience of the interventions done by CHN by a guided frame work (assessment, planning, implementation and evaluation components) is described. Issues identified by CHN included: lack of training of health care providers, lack of collaboration, communication between the medical and management staff due to poor infrastructure of the healthcare facilities. The interventions were carried out, utilizing existing resources. Efforts were directed to build capacity of health care providers at grass root level to fill in gaps of health care delivery system for sustainable change. Overall, working in the earthquake affected areas is challenging. Health leadership should foresee role of CHN in emergencies where quality healthcare interventions are essential.

  7. Sexual selection affects local extinction and turnover in bird communities

    USGS Publications Warehouse

    Doherty, P.F.; Sorci, G.; Royle, J. Andrew; Hines, J.E.; Nichols, J.D.; Boulinier, T.

    2003-01-01

    Predicting extinction risks has become a central goal for conservation and evolutionary biologists interested in population and community dynamics. Several factors have been put forward to explain risks of extinction, including ecological and life history characteristics of individuals. For instance, factors that affect the balance between natality and mortality can have profound effects on population persistence. Sexual selection has been identified as one such factor. Populations under strong sexual selection experience a number of costs ranging from increased predation and parasitism to enhanced sensitivity to environmental and demographic stochasticity. These findings have led to the prediction that local extinction rates should be higher for species/populations with intense sexual selection. We tested this prediction by analyzing the dynamics of natural bird communities at a continental scale over a period of 21 years (1975-1996), using relevant statistical tools. In agreement with the theoretical prediction, we found that sexual selection increased risks of local extinction (dichromatic birds had on average a 23% higher local extinction rate than monochromatic species). However, despite higher local extinction probabilities, the number of dichromatic species did not decrease over the period considered in this study. This pattern was caused by higher local turnover rates of dichromatic species, resulting in relatively stable communities for both groups of species. Our results suggest that these communities function as metacommunities, with frequent local extinctions followed by colonization. Anthropogenic factors impeding dispersal might therefore have a significant impact on the global persistence of sexually selected species.

  8. How membrane surface affects protein structure.

    PubMed

    Bychkova, V E; Basova, L V; Balobanov, V A

    2014-12-01

    The immediate environment of the negatively charged membrane surface is characterized by decreased dielectric constant and pH value. These conditions can be modeled by water-alcohol mixtures at moderately low pH. Several globular proteins were investigated under these conditions, and their conformational behavior in the presence of phospholipid membranes was determined, as well as under conditions modeling the immediate environment of the membrane surface. These proteins underwent conformational transitions from the native to a molten globule-like state. Increased flexibility of the protein structure facilitated protein functioning. Our experimental data allow understanding forces that affect the structure of a protein functioning near the membrane surface (in other words, in the membrane field). Similar conformational states are widely reported in the literature. This indicates that the negatively charged membrane surface can serve as a moderately denaturing agent in the cell. We conclude that the effect of the membrane field on the protein structure must be taken into account.

  9. Efficiently inferring community structure in bipartite networks

    NASA Astrophysics Data System (ADS)

    Larremore, Daniel B.; Clauset, Aaron; Jacobs, Abigail Z.

    2014-07-01

    Bipartite networks are a common type of network data in which there are two types of vertices, and only vertices of different types can be connected. While bipartite networks exhibit community structure like their unipartite counterparts, existing approaches to bipartite community detection have drawbacks, including implicit parameter choices, loss of information through one-mode projections, and lack of interpretability. Here we solve the community detection problem for bipartite networks by formulating a bipartite stochastic block model, which explicitly includes vertex type information and may be trivially extended to k-partite networks. This bipartite stochastic block model yields a projection-free and statistically principled method for community detection that makes clear assumptions and parameter choices and yields interpretable results. We demonstrate this model's ability to efficiently and accurately find community structure in synthetic bipartite networks with known structure and in real-world bipartite networks with unknown structure, and we characterize its performance in practical contexts.

  10. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  11. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  12. The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus

    PubMed Central

    Song, Fang; Pan, Zhiyong; Bai, Fuxi; An, Jianyong; Liu, Jihong; Guo, Wenwu; Bisseling, Ton; Deng, Xiuxin; Xiao, Shunyuan

    2015-01-01

    Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure. Over 7,40,000 effective sequences were obtained from 77 citrus root samples. These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots. The citrus AMF community structure is significantly affected by habitats and host genotypes. Interestingly, our data suggests that the genotype of the scion exerts a greater impact on the AMF community structure than that of the rootstock where the physical root-AMF association occurs. This study not only provides a comprehensive assessment for the community composition of the AMF in citrus roots under different conditions, but also sheds novel insights into how the AMF community might be indirectly influenced by the spatially separated yet metabolically connected partner—the scion—of the grafted citrus tree. PMID:26648932

  13. The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus.

    PubMed

    Song, Fang; Pan, Zhiyong; Bai, Fuxi; An, Jianyong; Liu, Jihong; Guo, Wenwu; Bisseling, Ton; Deng, Xiuxin; Xiao, Shunyuan

    2015-01-01

    Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure. Over 7,40,000 effective sequences were obtained from 77 citrus root samples. These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots. The citrus AMF community structure is significantly affected by habitats and host genotypes. Interestingly, our data suggests that the genotype of the scion exerts a greater impact on the AMF community structure than that of the rootstock where the physical root-AMF association occurs. This study not only provides a comprehensive assessment for the community composition of the AMF in citrus roots under different conditions, but also sheds novel insights into how the AMF community might be indirectly influenced by the spatially separated yet metabolically connected partner-the scion-of the grafted citrus tree.

  14. Climate and species richness predict the phylogenetic structure of African mammal communities.

    PubMed

    Kamilar, Jason M; Beaudrot, Lydia; Reed, Kaye E

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.

  15. Climate and Species Richness Predict the Phylogenetic Structure of African Mammal Communities

    PubMed Central

    Kamilar, Jason M.; Beaudrot, Lydia; Reed, Kaye E.

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change. PMID:25875361

  16. Community structure in the phonological network.

    PubMed

    Siew, Cynthia S Q

    2013-01-01

    Community structure, which refers to the presence of densely connected groups within a larger network, is a common feature of several real-world networks from a variety of domains such as the human brain, social networks of hunter-gatherers and business organizations, and the World Wide Web (Porter et al., 2009). Using a community detection technique known as the Louvain optimization method, 17 communities were extracted from the giant component of the phonological network described in Vitevitch (2008). Additional analyses comparing the lexical and phonological characteristics of words in these communities against words in randomly generated communities revealed several novel discoveries. Larger communities tend to consist of short, frequent words of high degree and low age of acquisition ratings, and smaller communities tend to consist of longer, less frequent words of low degree and high age of acquisition ratings. Real communities also contained fewer different phonological segments compared to random communities, although the number of occurrences of phonological segments found in real communities was much higher than that of the same phonological segments in random communities. Interestingly, the observation that relatively few biphones occur very frequently and a large number of biphones occur rarely within communities mirrors the pattern of the overall frequency of words in a language (Zipf, 1935). The present findings have important implications for understanding the dynamics of activation spread among words in the phonological network that are relevant to lexical processing, as well as understanding the mechanisms that underlie language acquisition and the evolution of language.

  17. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  18. Community-based therapeutic care in HIV-affected populations.

    PubMed

    Sadler, Kate; Bahwere, Paluku; Guerrero, Saul; Collins, Steve

    2006-01-01

    Community-based therapeutic care (CTC) is a community-based model for delivering care to malnourished people. CTC aims to treat the majority of severely malnourished people at home, rather than in therapeutic feeding centres. This paper describes the potential of the CTC approach to provide effective care and support for people living with HIV and AIDS (PLWHA). CTC includes many of the components of a home-based care model for PLWHA. It provides outpatient treatment for common complications of HIV and AIDS, such as acute malnutrition and simple infections, and an energy-dense ready-to-use food that could be made with the appropriate balance of micronutrients for the HIV-infected patient. Through the de-centralisation of outpatient treatment sites, CTC improves accessibility by moving treatment closer to people's homes and helps to promote the sustainability of care by building on the capacity of existing health infrastructure and staff. The CTC model contains many features that are appropriate for the care and support of HIV-affected people and, in its present form, can provide effective physical care for many HIV-affected individuals. We are currently working to adapt the CTC model to make it more suitable for the support of PLWHA in the longer term. PMID:16216293

  19. Temporary and permanent wetland macroinvertebrate communities: Phylogenetic structure through time

    NASA Astrophysics Data System (ADS)

    Silver, Carly A.; Vamosi, Steven M.; Bayley, Suzanne E.

    2012-02-01

    Water permanence has been previously identified as an important factor affecting macroinvertebrate diversity and abundance in wetlands. Here, we repeatedly sampled the macroinvertebrate communities in 16 permanent and 14 temporary wetlands in Alberta, Canada. Temporary wetlands were predicted to have more closely related taxa and reduced species richness due to the specialized adaptations required to survive in a temporary habitat. We analyzed the species richness (SR) and phylogenetic structure of communities, focusing on three measures of relatedness: Phylogenetic Distance (PD), Net Related Index (NRI) and Nearest Taxon Index (NTI). We also examined the influence of taxonomic scale on resulting phylogenetic structure. Overall, taxa were more diverse and abundant in permanent wetlands. As expected, PD and SR were greatest in permanent wetlands. NTI and NRI metrics suggest permanent wetland communities are primarily structured by biotic interactions, such as competition and predation. Conversely, temporary wetland communities appear to be affected more by environmental filtering, with fewer groups being able to survive and reproduce in the relatively limited time that these environments contain water. Insect and dipteran assemblages differed from the patterns found when examining all taxa together for communities for both permanent and temporary wetlands, tending to become more phylogenetically clustered as the season progressed. Conversely, lophotrochozoan and gastropod assemblages closely matched the patterns observed for full communities in permanent wetlands, suggesting a role for biotic interactions. Given the contrasting patterns observed for permanent and temporary wetlands, macroinvertebrate diversity at the landscape level may be best conserved by maintaining both habitat types.

  20. Apple orchard pest control strategies affect bird communities in southeastern France.

    PubMed

    Bouvier, Jean-Charles; Ricci, Benoît; Agerberg, Julia; Lavigne, Claire

    2011-01-01

    Birds are regarded as appropriate biological indicators of how changes in agricultural practices affect the environment. They are also involved in the biocontrol of pests. In the present study, we provide an assessment of the impact of pest control strategies on bird communities in apple orchards in southeastern France. We compared the structure (abundance, species richness, and diversity) of breeding bird communities in 15 orchards under conventional or organic pest control over a three-year period (2003-2005). Pest control strategies and their evolution over time were characterized by analyzing farmers' treatment schedules. The landscape surrounding the orchards was characterized using a Geographic Information System. We observed 30 bird species overall. Bird abundance, species richness, and diversity were all affected by pest control strategies, and were highest in organic orchards and lowest in conventional orchards during the three study years. The pest control strategy affected insectivores more than granivores. We further observed a tendency for bird communities in integrated pest management orchards to change over time and become increasingly different from communities in organic orchards, which also corresponded to changes in treatment schedules. These findings indicate that within-orchard bird communities may respond quickly to changes in pesticide use and may, in turn, influence biocontrol of pests by birds.

  1. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions.

  2. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions. PMID:27551386

  3. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    containing more plant species but little influenced by earthworms. Overall shoot biomass was decreased, root biomass increased in plant communities with more plant species. Earthworms decreased total shoot biomass in mesocosms with more plant species but did not affect biomass production of individual functional groups. Plant nitrogen concentrations across three focus species were 18% higher when earthworms were present; composition of plant communities did not affect plant quality. Conclusions Given the important role that both herbivores and earthworms play in structuring plant communities the implications of belowground-aboveground linkages should more broadly be considered when investigating global change effects on ecosystems. PMID:23668239

  4. Spatial structuring of bacterial communities within individual Ginkgo biloba trees.

    PubMed

    Leff, Jonathan W; Del Tredici, Peter; Friedman, William E; Fierer, Noah

    2015-07-01

    Plant-associated microorganisms affect the health of their hosts in diverse ways, yet the distribution of these organisms within individual plants remains poorly understood. To address this knowledge gap, we assessed the spatial variability in bacterial community diversity and composition found on and in aboveground tissues of individual Ginkgo biloba trees. We sampled bacterial communities from > 100 locations per tree, including leaf, branch and trunk samples and used high-throughput sequencing of the 16S rRNA gene to determine the diversity and composition of these communities. Bacterial community structure differed strongly between bark and leaf samples, with bark samples harbouring much greater bacterial diversity and a community composition distinct from leaves. Within sample types, we observed clear spatial patterns in bacterial diversity and community composition that corresponded to the samples' proximity to the exterior of the tree. The composition of the bacterial communities found on trees is highly variable, but this variability is predictable and dependent on sampling location. Moreover, this work highlights the importance of carefully considering plant spatial structure when characterizing the microbial communities associated with plants and their impacts on plant hosts.

  5. Community structure revealed by phase locking.

    PubMed

    Zhou, Ming-Yang; Zhuo, Zhao; Cai, Shi-min; Fu, Zhongqian

    2014-09-01

    Community structure can naturally emerge in paths to synchronization, and scratching it from the paths is a tough issue that accounts for the diverse dynamics of synchronization. In this paper, with assumption that the synchronization on complex networks is made up of local and collective processes, we proposed a scheme to lock the local synchronization (phase locking) at a stable state, meanwhile, suppress the collective synchronization based on Kuramoto model. Through this scheme, the network dynamics only contains the local synchronization, which suggests that the nodes in the same community synchronize together and these synchronization clusters well reveal the community structure of network. Furthermore, by analyzing the paths to synchronization, the relations or overlaps among different communities are also obtained. Thus, the community detection based on the scheme is performed on five real networks and the observed community structures are much more apparent than modularity-based fast algorithm. Our results not only provide a deep insight to understand the synchronization dynamics on complex network but also enlarge the research scope of community detection.

  6. Do unpaved, low-traffic roads affect bird communities?

    NASA Astrophysics Data System (ADS)

    Mammides, Christos; Kounnamas, Constantinos; Goodale, Eben; Kadis, Costas

    2016-02-01

    Unpaved, low traffic roads are often assumed to have minimal effects on biodiversity. To explore this assertion, we sampled the bird communities in fifteen randomly selected sites in Pafos Forest, Cyprus and used multiple regression to quantify the effects of such roads on the total species richness. Moreover, we classified birds according to their migratory status and their global population trends, and tested each category separately. Besides the total length of unpaved roads, we also tested: a. the site's habitat diversity, b. the coefficient of variation in habitat (patch) size, c. the distance to the nearest agricultural field, and d. the human population size of the nearest village. We measured our variables at six different distances from the bird point-count locations. We found a strong negative relationship between the total bird richness and the total length of unpaved roads. The human population size of the nearest village also had a negative effect. Habitat diversity was positively related to species richness. When the categories were tested, we found that the passage migrants were influenced more by the road network while resident breeders were influenced by habitat diversity. Species with increasing and stable populations were only marginally affected by the variables tested, but the effect of road networks on species with decreasing populations was large. We conclude that unpaved and sporadically used roads can have detrimental effects on the bird communities, especially on vulnerable species. We propose that actions are taken to limit the extent of road networks within protected areas, especially in sites designated for their rich avifauna, such as Pafos Forest, where several of the affected species are species of European and global importance.

  7. Developing Hierarchical Structures Integrating Cognition and Affect.

    ERIC Educational Resources Information Center

    Hurst, Barbara Martin

    Several categories of the affective domain are important to the schooling process. Schools are delegated the responsibility of helping students to clarify their esthetic, instrumental, and moral values. Three areas of affect are related to student achievement: subject-related affect, school-related affect, and academic self concept. In addition,…

  8. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities

    PubMed Central

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities. PMID:26560705

  9. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    PubMed

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities. PMID:26560705

  10. Finding local community structure in networks

    NASA Astrophysics Data System (ADS)

    Clauset, Aaron

    2005-08-01

    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(k2d) for general graphs when d is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time consuming, the running time is linear, O(k) . We show that on computer-generated graphs the average behavior of this technique approximates that of algorithms that require global knowledge. As an application, we use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer.

  11. Structure, Relationships, and Community Responsibility.

    ERIC Educational Resources Information Center

    DiTomaso, Nancy; Parks-Yancy, Rochelle; Post, Corinne

    2003-01-01

    Offers several suggestions about how educators' efforts have gone wrong and makes recommendations about what they need to teach students about ethics and management to prepare students more adequately. Concludes that ethics are about structures, processes, and the relationships that endure, get reproduced, and that generate outcomes that affect…

  12. Centrality measures for networks with community structure

    NASA Astrophysics Data System (ADS)

    Gupta, Naveen; Singh, Anurag; Cherifi, Hocine

    2016-06-01

    Understanding the network structure, and finding out the influential nodes is a challenging issue in large networks. Identifying the most influential nodes in a network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is being done to devise centrality measures which could efficiently identify the most influential nodes in a network. There are two major approaches to this problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are of prime importance. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed here that requires information only at the community level. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies, an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.

  13. Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition

    NASA Astrophysics Data System (ADS)

    Main, C. E.; Ruhl, H. A.; Jones, D. O. B.; Yool, A.; Thornton, B.; Mayor, D. J.

    2015-06-01

    Accidental oil well blowouts have the potential to introduce large quantities of hydrocarbons into the deep sea and disperse toxic contaminants to midwater and seafloor areas over ocean-basin scales. Our ability to assess the environmental impacts of these events is currently impaired by our limited understanding of how resident communities are affected. This study examined how two treatment levels of a water accommodated fraction of crude oil affected the oxygen consumption rate of a natural, deep-sea benthic community. We also investigated the resident microbial community's response to hydrocarbon contamination through quantification of phospholipid fatty acids (PLFAs) and their stable carbon isotope (δ13C) values. Sediment community oxygen consumption rates increased significantly in response to increasing levels of contamination in the overlying water of oil-treated microcosms, and bacterial biomass decreased significantly in the presence of oil. Multivariate ordination of PLFA compositional (mol%) data showed that the structure of the microbial community changed in response to hydrocarbon contamination. However, treatment effects on the δ13C values of individual PLFAs were not statistically significant. Our data demonstrate that deep-sea benthic microbes respond to hydrocarbon exposure within 36 h.

  14. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities.

    PubMed

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community

  15. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. PMID:27267720

  16. Making the links between community structure and individual well-being: community quality of life in Riverdale, Toronto, Canada.

    PubMed

    Raphael, D; Renwick, R; Brown, I; Steinmetz, B; Sehdev, H; Phillips, S

    2001-09-01

    An inquiry into community quality of life was carried out within a framework that recognizes the complex relationship between community structures and individual well-being. Through use of focus groups and key informant interviews, community members, service providers, and elected representatives in a Toronto community considered aspects of their community that affected quality of life. Community members identified strengths of access to amenities, caring and concerned people, community agencies, low-cost housing, and public transportation. Service providers and elected representatives recognized diversity, community agencies and resources, and presence of culturally relevant food stores and services as strengths. At one level, findings were consistent with emerging concepts of social capital. At another level, threats to the community were considered in relation to the hypothesized role neo-liberalism plays in weakening the welfare state. PMID:11439254

  17. Does a decade of elevated [CO2] affect a desert perennial plant community?

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. PMID:24117700

  18. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.

    PubMed

    Kominoski, John S; Marczak, Laurie B; Richardson, John S

    2011-01-01

    Cross-boundary flows of energy and nutrients link biodiversity and functioning in adjacent ecosystems. The composition of forest tree species can affect the structure and functioning of stream ecosystems due to physical and chemical attributes, as well as changes in terrestrial resource subsidies. We examined how variation in riparian canopy composition (coniferous, deciduous, mixed) affects adjacent trophic levels (invertebrate and microbial consumers) and decomposition of organic matter in small, coastal rainforest streams in southwestern British Columbia. Breakdown rates of higher-quality red alder (Alnus rubra) litter were faster in streams with a greater percentage of deciduous than coniferous riparian canopy, whereas breakdown rates of lower-quality western hemlock (Tsuga heterophylla) litter were independent of riparian forest composition. When invertebrates were excluded using fine mesh, breakdown rates of both litter species were an order of magnitude less and were not significantly affected by riparian forest composition. Stream invertebrate and microbial communities were similar among riparian forest composition, with most variation attributed to leaf litter species. Invertebrate taxa richness and shredder biomass were higher in A. rubra litter; however, taxa evenness was greatest for T. heterophylla litter and both litter species in coniferous streams. Microbial community diversity (determined from terminal restriction fragment length polymorphisms) was unaffected by riparian forest or litter species. Fungal allele richness was higher than bacterial allele richness, and microbial communities associated with lower-quality T. heterophylla litter had higher diversity (allele uniqueness and richness) than those associated with higher-quality A. rubra litter. Percent variation in breakdown rates was mostly attributed to riparian forest composition in the presence of invertebrates and microbes; however, stream consumer biodiversity at adjacent trophic levels

  19. [Effect of environmental factors on fish community structure in the Huntai River Basin at multiple scales].

    PubMed

    Li, Yan-li; Li, Yan-fen; Xu, Zong-xue

    2014-09-01

    In June 2012, fishes was investigated at 65 sampling sites in the Huntai River basin in Northeast of China. Forty species were collected, belonging to 9 orders, 14 families,33 genera. Cobitidae and Cyprinidae were the dominant fishes in the community structure in the Huntai River basin, accounting for 13. 21% and 65. 83% of the fish community, respectively. There were two types of spatial distribution of fish community, one was distributed in the head water and tributaries in the upstream, and the other was in the plain rivers. Nemachilus nudus, Cobitis granoei and Phoxinus lagowskii dominated the local community in the upper reaches of the Dahuofang Reservoir and shenwo River, while Carassius ayratus and Hemiculter leucisculdus dominated the local community in the plain rivers. CCA (canonical correspondence analysis) was used to distinguish the primary environmental variables that affected the fish community structure. The results indicated fish community was mainly affected by environment factors at watershed and reach scales. Proportions of woodland and urban land, and altitude were three important environmental factors affecting the fish community at the watershed scale. Dissolved oxygen, total nitrogen, pH and habitat inhomogeneity significantly affected the fish community at the reach scale, whereas substrate didn't show significant influence at the microhabitat scale. Environmental factors at watershed scale explained 7. 66% of the variation of fish community structure, environmental factors at reach scale explained 10. 57% of the variation of fish community structure. Environmental factors at reach scale influenced the fish community more significantly.

  20. Characterization of bacterial community structure on a weathered pegmatitic granite.

    PubMed

    Gleeson, Deirdre B; Kennedy, Nabla M; Clipson, Nicholas; Melville, Karrie; Gadd, Geoffrey M; McDermott, Frank P

    2006-05-01

    This study exploited the contrasting major element chemistry of a pegmatitic granite to investigate mineralogical influences on bacterial community structure. Intact crystals of variably weathered muscovite, plagioclase, K-feldspar, and quartz were extracted, together with whole-rock granite. Environmental scanning electron microscopy revealed a diversity of bacterial structures, with rods and cocci clearly visible on surfaces of all mineral types. Bacterial automated ribosomal intergenic spacer analysis was used to generate a ribotype profile for each mineral. A randomization test revealed that community fingerprints differed between different mineral types, whereas canonical correspondence analysis (CCA) showed that mineral chemistry affected individual bacterial ribotypes. CCA also revealed that Al, Si, and Ca had a significant impact on bacterial community structure within the system, which contrasts with the finding within fungal communities that although Al and Si also had a significant impact, K rather than Ca was important. The bacterial populations associated with different minerals were different. Members of each of these populations were found almost exclusively on a single mineral type, as was previously reported for fungal populations. These results show that bacterial community structure was driven by the chemical composition of minerals, indicating selective pressure by individual chemical elements on bacterial populations in situ.

  1. Characterization of fungal community structure on a weathered pegmatitic granite.

    PubMed

    Gleeson, Deirdre B; Clipson, Nicholas; Melville, Karrie; Gadd, Geoffrey M; McDermott, Frank P

    2005-10-01

    This study exploited the contrasting major element chemistry of adjacent, physically separable crystals of framework and sheet silicates in a pegmatitic granite to investigate the mineralogical influences of fungal community structure on mineral surfaces. Large intact crystals of variably weathered muscovite, plagioclase, K-feldspar, and quartz were individually extracted, together with whole-rock granite. Environmental scanning electron microscopy (ESEM) revealed a diversity of fungal structures, with microcolonial fungi and fungal hyphae clearly visible on surfaces of all mineral types. Fungal automated ribosomal intergenic spacer analysis (FARISA) was used to generate a ribotype profile for each mineral sample and a randomization test revealed that ribotype profiles, or community fingerprints, differed between different mineral types. Canonical correspondence analysis (CCA) revealed that mineral chemistry affected individual fungal ribotypes, and strong relationships were found between certain ribotypes and particular chemical elements. This finding was further supported by analysis of variance (ANOVA) of the 16 most abundant ribotypes within the community. Significantly, individual ribotypes were largely restricted to single mineral types and ribotypes clustered strongly on the basis of mineral type. CCA also revealed that Al, Si, and Ca had a significant impact on fungal community structure within this system. These results show that fungal community structure was driven by the chemical composition of mineral substrates, indicating selective pressure by individual chemical elements on fungal populations in situ.

  2. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  3. Deteriorating Farm Finances Affect Rural Banks and Communities.

    ERIC Educational Resources Information Center

    Milkove, Daniel L.; And Others

    1986-01-01

    Problem farm debts may translate into slow growth for rural communities, with local banks unable to offer credit even to credit worthy borrowers. Communities served by branches of large banking organizations are probably better off than communities served only by small independent banks. (Author)

  4. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model.

  5. School, Community Leadership, and Election Structure

    ERIC Educational Resources Information Center

    Allen, Ann

    2008-01-01

    This article examines how the political structure of school elections contributes to leadership perspectives related to school-community engagement. Interview data from school superintendents, school board presidents, and city mayors across four cities and two election types were analyzed to determine if differences in school election structure…

  6. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. PMID:26231415

  7. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities.

    PubMed

    Chapleur, Olivier; Madigou, Céline; Civade, Raphaël; Rodolphe, Yohan; Mazéas, Laurent; Bouchez, Théodore

    2016-02-01

    Performance stability is a key issue when managing anaerobic digesters. However it can be affected by external disturbances caused by micropollutants. In this study the influence of phenol on the methanization of cellulose was evaluated through batch toxicity assays. Special attention was given to the dynamics of microbial communities by means of automated ribosomal intergenic spacer analysis. We observed that, as phenol concentrations increased, the different steps of anaerobic cellulose digestion were unevenly and progressively affected, methanogenesis being the most sensitive: specific methanogenic activity was half-inhibited at 1.40 g/L of phenol, whereas hydrolysis of cellulose and its fermentation to VFA were observed at up to 2.00 g/L. Depending on the level of phenol, microbial communities resisted either through physiological or structural adaptation. Thus, performances at 0.50 g/L were maintained in spite of the microbial community's shift. However, the communities' ability to adapt was limited and performances decreased drastically beyond 2.00 g/L of phenol. PMID:26614490

  8. Geologic structures that affect Appalachian coal mines

    SciTech Connect

    Chase, F.E. )

    1993-01-01

    Hazardous geologic structures found in Appalachian coal mines have been responsible for numerous injuries and fatalities. In addition, these structures have been responsible for downtime and in some instances have even resulted in mine closures. For these reasons, the US Bureau of Mines has investigate the physical characteristics, occurrences, and support strategies to help anticipate and better control these structures. Structures that are addressed in this paper include slips, slickensides, clay veins, kettlebottoms, and sandstone channels.

  9. The nested structure of a scavenger community

    PubMed Central

    Selva, Nuria; Fortuna, Miguel A

    2007-01-01

    Scavenging is a widespread phenomenon in vertebrate communities which has rarely been accounted for, in spite of playing an essential role in food webs by enhancing nutrient recycling and community stability. Most studies on scavenger assemblages have often presented an oversimplified view of carrion foraging. Here, we applied for the first time the concept of nestedness to the study of a species-rich scavenger community in a forest ecosystem (Białowieża Primeval Forest, Poland) following a network approach. By analysing one of the most complete datasets existing up to now in a pristine environment, we have shown that the community of facultative scavengers is not randomly assembled but highly nested. A nested pattern means that species-poor carcasses support a subset of the scavenger assemblage occurring at progressively species-rich carcasses. This result contradicts the conventional view of facultative scavenging as random and opportunistic and supports recent findings in scavenging ecology. It also suggests that factors other than competition play a major role in determining community structure. Nested patterns in scavenger communities appear to be promoted by the high diversity in carrion resources and consumers, the differential predictability of the ungulate carcass types and stressful environmental conditions. PMID:17301021

  10. Phylogenetic structure in tropical hummingbird communities

    PubMed Central

    Graham, Catherine H.; Parra, Juan L.; Rahbek, Carsten; McGuire, Jimmy A.

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world. PMID:19805042

  11. Community structure influences species' abundance along environmental gradients.

    PubMed

    Eloranta, Antti P; Helland, Ingeborg P; Sandlund, Odd T; Hesthagen, Trygve; Ugedal, Ola; Finstad, Anders G

    2016-01-01

    Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations. We used a space-for-time approach to study how local community structure interact with lake morphometric and climatic characteristics (i.e. temperature and catchment productivity) to affect brown trout (Salmo trutta L.) yield in 283 Norwegian lakes located in different biogeographical regions. Brown trout yield (based on data from standardized survey gill net fishing; g 100 m(-2) gill net night(-1)) was generally lower in lakes where other fish species were present than in lakes with brown trout only. The yield showed an overall negative relationship with increasing temperature and a positive relationship with lake shoreline complexity. Brown trout yield was also negatively correlated with DOC load (measured using Normalized Difference Vegetation Index as a proxy) and lake size and depth (measured using terrain slope as a proxy), but only in lakes where other fish species were present. The observed negative response of brown trout yield to increasing DOC load and proportion of the pelagic open-water area is likely due to restricted (littoral) niche availability and competitive dominance of more pelagic fishes such as Arctic charr (Salvelinus alpinus (L.)). Our study highlights that, through competitive interactions, the local community structure can influence the response of a species' abundance to variation in abiotic conditions. Changes in biomass and niche use of top predators (such as the brown

  12. Does sustained participation in an online health community affect sentiment?

    PubMed

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members' behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members.

  13. Does sustained participation in an online health community affect sentiment?

    PubMed

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members' behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members. PMID:25954470

  14. Does Sustained Participation in an Online Health Community Affect Sentiment?

    PubMed Central

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members’ behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members. PMID:25954470

  15. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  16. Effects of Community Structure on Search and Ranking in Information Networks

    NASA Astrophysics Data System (ADS)

    Xie, Huafeng; Yan, Koon-Kiu; Maslov, Sergei

    2005-03-01

    The World-Wide Web (WWW) is characterized by a strong community structure in which communities of webpages (e.g. those sharing a common keyword) are densely interconnected by hyperlinks. We study how such network architecture affects the average Google ranking of individual webpages in the community. It is shown that the Google rank of community webpages could either increase or decrease with the density of inter-community links depending on the exact balance between average in- and out-degrees in the community. The magnitude of this effect is described by a simple analytical formula and subsequently verified by numerical simulations of random scale-free networks with a desired level of the community structure. A new algorithm allowing for generation of such networks is proposed and studied. The number of inter-community links in such networks is controlled by a temperature-like parameter with the strongest community structure realized in ``low-temperature'' networks.

  17. Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities.

    PubMed

    Velzeboer, I; Peeters, E T H M; Koelmans, A A

    2013-07-01

    To date, chronic effect studies with manufactured nanomaterials under field conditions are scarce. Here, we report in situ effects of 0, 0.002, 0.02, 0.2, and 2 g/kg multiwalled carbon nanotubes (MWCNTs) in sediment on the benthic community composition after 15 months of exposure. Effects observed after 15 months were compared to those observed after 3 months and to community effects of another carbonaceous material (activated carbon; AC), which was simultaneously tested in a parallel study. Redundancy analysis with variance partitioning revealed a total explained variance of 51.7% of the variation in community composition after 15 months, of which MWCNT dose explained a statistically significant 9.9%. By stepwise excluding the highest MWCNT concentrations in the statistical analyses, MWCNT effects were shown to be statistically significant already at the lowest dose investigated, which can be considered environmentally relevant. We conclude that despite prolonged aging, encapsulation, and burial, MWCNTs can affect the structure of natural benthic communities in the field. This effect was similar to that of AC observed in a parallel experiment, which however was applied at a 50 times higher maximum dose. This suggests that the benthic community was more sensitive to MWCNTs than to the bulk carbon material AC.

  18. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood.

    PubMed

    Valentín, Lara; Rajala, Tiina; Peltoniemi, Mikko; Heinonsalo, Jussi; Pennanen, Taina; Mäkipää, Raisa

    2014-01-01

    Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates. PMID:24904544

  19. Modularity and community structure in networks.

    PubMed

    Newman, M E J

    2006-06-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as "modularity" over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

  20. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  1. Identifying community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  2. Factors Affecting Drug Abuse in Adolescent Females in Rural Communities

    ERIC Educational Resources Information Center

    Renes, Susan L.; Strange, Anthony T.

    2009-01-01

    This article explores factors influencing adolescent female substance use in rural communities. Self-reported data gathered from females 12 to 15 years of age in two northwestern communities in the United States showed an association among gender identity, peer and parental relationships, and substance use. Aggressive masculinity had the strongest…

  3. The ecology of rubble structures of the South Atlantic Bight: A community profile. [Jetties

    SciTech Connect

    Hay, M.E.; Sutherland, J.P.

    1988-09-01

    This community profile provides an introduction to the ecology of the communities living on and around rubble structures in the South Atlantic Bight (Cape Hatteras to Cape Canaveral). The most prominent rubble structures in the bight are jetties built at the entrances to major harbors. After an initial discussion of the various kinds of rubble structures and physical factors that affect the organisms associated with them, the major portion of the text is devoted to the ecology of rubble structure habitats. Community composition, distribution, seasonality, and the recruitment patterns of the major groups of organisms are described. The major physical and biological factors affecting the organization of intertidal, sunlit subtidal, and shaded subtidal communities are presented and the potential effects of complex interactions in structuring these communities are evaluated. The profile concludes with a general review of the effects of rubble structures on nearshore sediment dynamics and shoreline evolution. 295 refs., 33 figs., 4 tabs.

  4. A cheating limit for structured communities

    SciTech Connect

    Perelson, Alan S; Gerrish, Philip J

    2008-01-01

    The constructive creativity of natural selection originates from its paradoxical ability to foster cooperation through competition. Cooperating communities ranging from complex societies to somatic tissue are constantly under attack, however, by non-cooperating mutants or transformants, called 'cheaters'. Structure in these communities promotes the formation of cooperating clusters whose competitive superiority can alone be sufficient to thwart outgrowths of cheaters and thereby maintain cooperation. But we find that when cheaters appear too frequently -- exceeding a threshold mutation or transformation rate -- their scattered outgrowths infiltrate and break up cooperating clusters, resulting in a cascading loss of community integrity, a switch to net positive selection for cheaters, and ultimately in the loss of cooperation. We find that this threshold mutation rate is directly proportional to the fitness support received from each cooperating neighbor minus the individual fitness benefit of cheating. When mutation rate also evolves, this threshold is crossed spontaneously after thousands of generations, at which point cheaters rapidly invade. In a structured community, cooperation can persist only if the mutation rate remains below a critical value.

  5. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  6. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.

    PubMed

    Einzmann, Helena J R; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2014-11-11

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests.

  7. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  8. Taxonomies of networks from community structure

    PubMed Central

    Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2014-01-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977

  9. Do land utilization patterns affect methanotrophic communities in a Chinese upland red soil?

    PubMed

    Zheng, Yong; Liu, Xinzhan; Zhang, Limei; Zhou, Zhifeng; He, Jizheng

    2010-01-01

    Soil samples were collected from three plots under different land utilization patterns including degradation, farming, and restoration. The abundances of methanotrophs were quantified using real-time polymerase chain reaction (PCR) based on the pmoA and 16S rRNA genes, and the community fingerprint was analyzed using denaturing gradient gel electrophoresis (DGGE) aiming at pmoA gene. Significantly lower 16S rRNA and pmoA genes copies were found in the degradation treatment than in farming and restoration. Higher abundances of Type I than those of Type II methanotrophs were detected in all treatments. The treatment of farming was clearly separated from degradation and restoration according to the DGGE profile by cluster analysis. The lowest diversity indices were observed in the F (farming plot), suggesting that the community structure was strongly affected by farming activities. There were significantly positive correlations between the copy numbers of pmoA also Type II-related 16S rRNA genes and soil available K content. Strong negative and positive correlations were found between Type I and soil pH, and available P content, respectively. We concluded that the vegetation cover or not, soil characteristics including pH and nutrients of P and K as a result of anthropogenic disturbance may be key factors affecting methanotrophic communities in upland soil.

  10. The Role of Community in Meeting the Needs of African-American HIV Affected Families.

    ERIC Educational Resources Information Center

    Mason, Sally

    2002-01-01

    Assessed the service needs of HIV-affected families in an inner city African American community with a high HIV/AIDS seroprevalence. Data from focus group interviews indicated a lack of family-sensitive HIV/AIDS community services. Participants noted the problem with stigma and identified community awareness and education as critical to serving…

  11. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  12. Epidemic spreading on complex networks with community structures

    NASA Astrophysics Data System (ADS)

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-07-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities.

  13. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  14. Epidemic spreading on complex networks with community structures.

    PubMed

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S H

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  15. Lichen-Associated Fungal Community in Hypogymnia hypotrypa (Parmeliaceae, Ascomycota) Affected by Geographic Distribution and Altitude.

    PubMed

    Wang, Yanyan; Zheng, Yong; Wang, Xinyu; Wei, Xinli; Wei, Jiangchun

    2016-01-01

    Lichen-associated fungal species have already been investigated in almost all the main growth forms of lichens, however, whether or not they are homogeneous and constant within each lichen species are still inconclusive. Moreover, the related ecological factors to affect and structure the fungal composition have been poorly studied. In order to answer these questions, we took Hypogymnia hypotrypa as a model to study the relationship between the lichen-associated fungal composition and two ecological factors, i.e., site and altitude, using the method of IlluminaMiSeq sequencing. Four different sites and two levels of altitude were included in this study, and the effects of site and altitude on fungal community composition were assessed at three levels, i.e., operational taxonomic unit (OTU), class and phylum. The results showed that a total of 50 OTUs were identified and distributed in 4 phyla, 13 classes, and 20 orders. The lichen-associated fungal composition within H. hypotrypa were significantly affected by both site and altitude at OTU and class levels, while at the phylum level, it was only affected by altitude. While the lichen associated fungal communities were reported to be similar with endophytic fungi of the moss, our results indicated the opposite results in some degree. But whether there exist specific OTUs within this lichen species corresponding to different sites and altitudes is still open. More lichen species and ecological factors would be taken into the integrated analyses to address these knowledge gaps in the near future. PMID:27547204

  16. Lichen-Associated Fungal Community in Hypogymnia hypotrypa (Parmeliaceae, Ascomycota) Affected by Geographic Distribution and Altitude

    PubMed Central

    Wang, Yanyan; Zheng, Yong; Wang, Xinyu; Wei, Xinli; Wei, Jiangchun

    2016-01-01

    Lichen-associated fungal species have already been investigated in almost all the main growth forms of lichens, however, whether or not they are homogeneous and constant within each lichen species are still inconclusive. Moreover, the related ecological factors to affect and structure the fungal composition have been poorly studied. In order to answer these questions, we took Hypogymnia hypotrypa as a model to study the relationship between the lichen-associated fungal composition and two ecological factors, i.e., site and altitude, using the method of IlluminaMiSeq sequencing. Four different sites and two levels of altitude were included in this study, and the effects of site and altitude on fungal community composition were assessed at three levels, i.e., operational taxonomic unit (OTU), class and phylum. The results showed that a total of 50 OTUs were identified and distributed in 4 phyla, 13 classes, and 20 orders. The lichen-associated fungal composition within H. hypotrypa were significantly affected by both site and altitude at OTU and class levels, while at the phylum level, it was only affected by altitude. While the lichen associated fungal communities were reported to be similar with endophytic fungi of the moss, our results indicated the opposite results in some degree. But whether there exist specific OTUs within this lichen species corresponding to different sites and altitudes is still open. More lichen species and ecological factors would be taken into the integrated analyses to address these knowledge gaps in the near future. PMID:27547204

  17. Landscape structure affects specialists but not generalists in naturally fragmented grasslands.

    PubMed

    Miller, Jesse E D; Damschen, Ellen I; Harrison, Susan P; Grace, James B

    2015-12-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural habitats become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. We asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, USA, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure, defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index), had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats. PMID:26909437

  18. Landscape structure affects specialists but not generalists in naturally fragmented grasslands

    USGS Publications Warehouse

    Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.

    2015-01-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  19. Landscape structure affects specialists but not generalists in naturally fragmented grasslands.

    PubMed

    Miller, Jesse E D; Damschen, Ellen I; Harrison, Susan P; Grace, James B

    2015-12-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural habitats become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. We asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, USA, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure, defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index), had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  20. Ethical Issues Affecting Human Participants in Community College Research

    ERIC Educational Resources Information Center

    Wurtz, Keith

    2011-01-01

    The increasing demand of constituents to conduct analyses in order to help inform the decision-making process has led to the need for Institutional Research (IR) guidelines for community college educators. One method of maintaining the quality of research conducted by IR staff is to include professional development about ethics. This article…

  1. How Military Service Affects Student Veteran Success at Community Colleges

    ERIC Educational Resources Information Center

    O'Rourke, Patrick C., Jr.

    2013-01-01

    Increasingly more service members are separating from the military as the United States draws down the force and moves towards a post-war era. Tens of thousands of these veterans will leverage their GI Bill tuition and housing benefits in an attempt to access Southern California community colleges and bolster their transition into mainstream…

  2. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly. PMID:25000761

  3. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria. PMID:25077920

  4. Structural Factors Affecting Health Examination Behavioral Intention.

    PubMed

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  5. Structural Factors Affecting Health Examination Behavioral Intention

    PubMed Central

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-01-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  6. Light availability affects stream biofilm bacterial community composition and function, but not diversity.

    PubMed

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R; Battin, Tom J; Bengtsson, Mia M

    2015-12-01

    Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph-derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure-function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes.

  7. Light availability affects stream biofilm bacterial community composition and function, but not diversity.

    PubMed

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R; Battin, Tom J; Bengtsson, Mia M

    2015-12-01

    Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph-derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure-function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  8. Structured decision making as a framework for linking quantitative decision support to community values

    EPA Science Inventory

    Community-level decisions can have large impacts on production and delivery of ecosystem services, which ultimately affects community well-being. But engaging stakeholders in a process to explore these impacts is a significant challenge. The principles of Structured Decision Ma...

  9. Phylogenetic structure and host abundance drive disease pressure in communities.

    PubMed

    Parker, Ingrid M; Saunders, Megan; Bontrager, Megan; Weitz, Andrew P; Hendricks, Rebecca; Magarey, Roger; Suiter, Karl; Gilbert, Gregory S

    2015-04-23

    Pathogens play an important part in shaping the structure and dynamics of natural communities, because species are not affected by them equally. A shared goal of ecology and epidemiology is to predict when a species is most vulnerable to disease. A leading hypothesis asserts that the impact of disease should increase with host abundance, producing a 'rare-species advantage'. However, the impact of a pathogen may be decoupled from host abundance, because most pathogens infect more than one species, leading to pathogen spillover onto closely related species. Here we show that the phylogenetic and ecological structure of the surrounding community can be important predictors of disease pressure. We found that the amount of tissue lost to disease increased with the relative abundance of a species across a grassland plant community, and that this rare-species advantage had an additional phylogenetic component: disease pressure was stronger on species with many close relatives. We used a global model of pathogen sharing as a function of relatedness between hosts, which provided a robust predictor of relative disease pressure at the local scale. In our grassland, the total amount of disease was most accurately explained not by the abundance of the focal host alone, but by the abundance of all species in the community weighted by their phylogenetic distance to the host. Furthermore, the model strongly predicted observed disease pressure for 44 novel host species we introduced experimentally to our study site, providing evidence for a mechanism to explain why phylogenetically rare species are more likely to become invasive when introduced. Our results demonstrate how the phylogenetic and ecological structure of communities can have a key role in disease dynamics, with implications for the maintenance of biodiversity, biotic resistance against introduced weeds, and the success of managed plants in agriculture and forestry.

  10. How Identification Processes and Inter-Community Relationships Affect Sense of Community

    ERIC Educational Resources Information Center

    Mannarini, Terri; Rochira, Alessia; Talo, Cosimo

    2012-01-01

    Based on the Social Identity and Social Categorization Theory framework, this study investigated how identification with the physical component of a community (i.e., the place identity), the perception of a community (i.e., the ingroup) in terms of cohesion and entitativity, and the perception of one or more territorial communities as laying…

  11. Submesoscale dynamics and planktonic community structure

    NASA Astrophysics Data System (ADS)

    Franks, P. J.; Taniguchi, D. A.

    2012-12-01

    The vertical velocities associated with submesoscale dynamics occur on time scales that are resonant with planktonic growth and grazing rates. This resonance may cause submesoscale dynamics to be disproportionately important to planktonic productivity and carbon sequestration. To investigate the role of submesoscale motions on planktonic community structure, we used a continuum size-structured planktonic ecosystem model. The model is based on a traditional NPZ framework, but allows for size dependence of all biological processes. The model was carefully parameterized with data from the literature, and reproduces realistic planktonic size spectra. Perturbing the model with a nutrient pulse similar to that driven by submesoscale upwelling leads to significant perturbations to the ecosystem. Pulses of enhanced biomass propagate from small to large organisms over time scales of days to weeks. We explore the model stability and dynamics, and their dependence on the parameter values, to gain understanding of the potential for submesoscale physical motions to influence planktonic ecosystem dynamics.

  12. [Structural variability of the lithorheophile macrobenthos communities].

    PubMed

    Chertoprud, M V

    2007-01-01

    The relationship between the abundance of taxa and life forms of lithorheophile macrobenthos and its variability were studied based on 200 quantitative samples from six territories of the Palaearctic (Moscow province, northwestern Caucasus, eastern Carpathians, northern Karelia, South Urals, and Altai mountains). The set of taxa predominant in the communities and their ecology are described. It is found that community structure varies strongly, depending on the characteristics of each region, on the size of the watercourse, and on the season. Six types of biocenoses are recognized by means of the Braun-Blanquet method, each characterized by its peculiar set of predominant life forms and families rather similar in different territories. The differences between these types are related to the size and the hydrological conditions of the watercourse. Biocenosis 1 is typical to smal brooks (up to 0.01-0.1 m3/s), characterised by the predominance of detritophagous animals non-specific to the type of food (Gammarus, Nemoura, Limnephilidae). In biocenosis 2a (large brooks with water flow 0.03-0.3 m3/s and velocity 0.1-0.3 m/s), almost immobile shell scrapers (Ancylus, Silo, Agapetes, Glossosoma) are predominant. Biocenosis 2b (large brooks with velocity 0.3-0.5 m/s) have a more or less balanced set of fundamental lithorheophile life forms. Biocenosis 2c (large mountain brooks with velocity 0.5-1 m/s) is characterised by specialized scrapers of the rapids (Epeorus and Diomesa) and filterers (Simuliidae). In biocenosis 3 (small rivers), sedentary filterers (Hydropsychidae, Simulliidae) are predominant; scrapers also play a significant role. Biocenosis 4 (rivers with water flow more than 3 m3/s, thick incrustations, and silted stones on the bottom) has predominant filterers (Hydropsychidae) and vermiform algophagous animals inside the incrustations (Orthocladius, Psychomyia). Significant variability in community structure unrelated to the environmental factors is revealed

  13. [Structural variability of the lithorheophile macrobenthos communities].

    PubMed

    Chertoprud, M V

    2007-01-01

    The relationship between the abundance of taxa and life forms of lithorheophile macrobenthos and its variability were studied based on 200 quantitative samples from six territories of the Palaearctic (Moscow province, northwestern Caucasus, eastern Carpathians, northern Karelia, South Urals, and Altai mountains). The set of taxa predominant in the communities and their ecology are described. It is found that community structure varies strongly, depending on the characteristics of each region, on the size of the watercourse, and on the season. Six types of biocenoses are recognized by means of the Braun-Blanquet method, each characterized by its peculiar set of predominant life forms and families rather similar in different territories. The differences between these types are related to the size and the hydrological conditions of the watercourse. Biocenosis 1 is typical to smal brooks (up to 0.01-0.1 m3/s), characterised by the predominance of detritophagous animals non-specific to the type of food (Gammarus, Nemoura, Limnephilidae). In biocenosis 2a (large brooks with water flow 0.03-0.3 m3/s and velocity 0.1-0.3 m/s), almost immobile shell scrapers (Ancylus, Silo, Agapetes, Glossosoma) are predominant. Biocenosis 2b (large brooks with velocity 0.3-0.5 m/s) have a more or less balanced set of fundamental lithorheophile life forms. Biocenosis 2c (large mountain brooks with velocity 0.5-1 m/s) is characterised by specialized scrapers of the rapids (Epeorus and Diomesa) and filterers (Simuliidae). In biocenosis 3 (small rivers), sedentary filterers (Hydropsychidae, Simulliidae) are predominant; scrapers also play a significant role. Biocenosis 4 (rivers with water flow more than 3 m3/s, thick incrustations, and silted stones on the bottom) has predominant filterers (Hydropsychidae) and vermiform algophagous animals inside the incrustations (Orthocladius, Psychomyia). Significant variability in community structure unrelated to the environmental factors is revealed

  14. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  15. Community violence as it affects child development: issues of definition.

    PubMed

    Trickett, Penelope K; Durán, Lorena; Horn, John L

    2003-12-01

    The state of the art of definition of community violence as it relates to child development was examined in terms of the definitions used in 23 empirical studies. In all cases community violence was defined in terms of what were assumed to be measurements obtained as linear combinations of a priori numerical weighting of responses to questions--asked either of a child or of the parent of a child--about experiencing and/or witnessing and/or hearing about instances of violence. Thus, the definitions can be seen to represent the perspectives of 2 kinds of observers--the child or the child's parent--and 3 levels of closeness to violence--experiencing, witnessing, or hearing about violence. Combining these perspectives and levels, the following 8 different definitions could be seen to be used in the practice of 1 or more of the 23 empirical studies: Child Self-Report (perception) of either (1) experiencing, or (2) witnessing, or (3) experiencing and witnessing, and hearing about violence; or Parent Report (perception) of the Child (4) experiencing, or (5) witnessing, or (6) experiencing and witnessing and hearing about violence, or (7) = (1) + (4), or (8) = (3) + (6). In almost all the examples of research definitions it was assumed implicitly and without test of the assumption that different violent events were interchangeable, and usually it was assumed (again without test) that the magnitudes of different violence events were equal. Usually, an unstated theory of stress appeared to guide the measurement definition, but in one study definitions were developed and tested in terms of a clearly-stated theory of learning. It was concluded that definition of community violence is a measurement problem; that very likely it is multidimensional; that it could be more nearly solved if better attention were given to specifying it in terms of theory that can be put to test and by attending to basic assumptions and principles of measurement.

  16. Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents.

    PubMed

    Corcoll, Natàlia; Acuña, Vicenç; Barceló, Damià; Casellas, Maria; Guasch, Helena; Huerta, Belinda; Petrovic, Mira; Ponsatí, Lidia; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2014-10-01

    We assessed the tolerance acquired by stream biofilms to two non-steroidal anti-inflammatory-drugs (NSAIDs), ibuprofen and diclofenac. Biofilms came from a stream system receiving the effluent of a wastewater treatment plant (WWTP). The response of biofilms from a non-polluted site (upstream the WWTP) was compared to that of others downstream with relevant and decreasing levels of NSAIDs. Experiments performed in the laboratory following the pollution-induced community tolerance (PICT) approach determined that both algae and microbial communities from biofilms of the sites exposed at the highest concentrations of ibuprofen and diclofenac acquired tolerance to the mixture of these NSAIDs occurring at the sites. It was also observed that the chronic pollution by the WWTP effluent affected the microbial metabolic profile, as well as the structure of the algal community. The low (at ng L(-1) level) but chronic inputs of pharmaceuticals to the river ecosystem result in tolerant communities of lower diversity and altered microbial metabolism.

  17. Climate change effects on soil microarthropod abundance and community structure

    SciTech Connect

    Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J; Classen, Aimee T

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil

  18. Feeding type affects microplastic ingestion in a coastal invertebrate community.

    PubMed

    Setälä, Outi; Norkko, Joanna; Lehtiniemi, Maiju

    2016-01-15

    Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.

  19. Microbial Community Structure in the Rhizosphere of Rice Plants.

    PubMed

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G

    2015-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  20. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  1. Opinion Dynamics in Populations with Implicit Community Structure

    NASA Astrophysics Data System (ADS)

    Si, Xiameng; Liu, Yun; Zhang, Zhenjiang

    Web encounter facilitate contacts between people from different communities outside space and time. Implicit Community Structure is exhibited because of highly connected links within community and sparse encounters between communities. Considering the imperceptible influence of encounter on opinions, Sznajd updating rules are used to mimic people's behaviors after encountering a stranger in another community. We introduce a model for opinion evolution, in which the interconnectivity between different communities is represented as encounter frequency, and leadership is introduced to control the strength of community's opinion guide. In this scenario, the effects of Implicit Community Structure of contact network on opinion evolution, for asymmetric and random initial distribution but with heterogeneous opinion guide, are investigated respectively. It is shown that large encounter frequency favors consensus of the whole populations and successful opinion spreading, which is qualitatively agree with the results observed in Majority model defined on substrates with predefined community structure.

  2. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-01-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  3. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed Central

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-01-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities. PMID:24811826

  4. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    USGS Publications Warehouse

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  5. Community Structure and Vietnamese Refugee Adaptation: The Significance of Context.

    ERIC Educational Resources Information Center

    Starr, Paul D.; Roberts, Alden E.

    1982-01-01

    Describes research investigating the effects of community structure on the adjustment of Vietnamese refugees in America. Emphasizes how congruence between individual characteristics and characteristics of the receiving community determine successful refugee adaptation to a new environment. (MJL)

  6. Bipartite Community Structure of eQTLs

    PubMed Central

    Platig, John; DeMeo, Dawn; Quackenbush, John

    2016-01-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network “hub” SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits. PMID:27618581

  7. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  8. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits. PMID:27618581

  9. PERCEIVED RACISM AND NEGATIVE AFFECT: ANALYSES OF TRAIT AND STATE MEASURES OF AFFECT IN A COMMUNITY SAMPLE.

    PubMed

    Brondolo, Elizabeth; Brady, Nisha; Thompson, Shola; Tobin, Jonathan N; Cassells, Andrea; Sweeney, Monica; McFarlane, Delano; Contrada, Richard J

    2008-02-01

    Racism is a significant psychosocial stressor that is hypothesized to have negative psychological and physical health consequences. The Reserve Capacity Model (Gallo & Matthews, 2003) suggests that low socioeconomic status may influence health through its effects on negative affect. We extend this model to study the effects of racism, examining the association of lifetime perceived racism to trait and daily negative affect. A multiethnic sample of 362 American-born Black and Latino adults completed the Perceived Ethnic Discrimination Questionnaire-Community Version (PEDQ-CV). Trait negative affect was assessed with the Positive and Negative Affect Schedule (PANAS), and state negative affect was measured using ecological momentary assessments (EMA), in the form of an electronic diary. Analyses revealed a significant relationship of lifetime perceived racism to both daily negative affect and trait negative affect, even when controlling for trait hostility and socioeconomic status. The relationship of perceived racism to negative affect was moderated by education, such that the relationships were strongest for those with less than a high school education. The findings support aspects of the Reserve Capacity Model and identify pathways through which perceived racism may affect health status.

  10. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    a significant decrease in belowground allocation of C in plants during drought, but was likely also related to a reduced connectivity. Interestingly, fungal PLFAs incorporated almost the same amount of 13C in drought as compared to control plots. Finally, drought led to an accumulation of EOC in the soil and to a higher amount of 13C in EOC. In conclusion, our results suggest that in mountain grassland drought 1) affects microbial community structure, favouring fungal over bacterial communities, 2) reduces C transfer to bacterial communities more strongly than to fungal communities, and 3) leads to an accumulation of extractable organic C in the soil, which is most likely driven by a microbial die-off and by reduced diffusion of available C to microbes.

  11. The Affects of Internet-Mediated Social Networking on Christian Community

    ERIC Educational Resources Information Center

    Lighari, Joyce Ann Johannesen

    2013-01-01

    This study examined the relationship of Internet-Mediated Social Network, the formation of adult Christian community, and its affect on adult Christian growth. The researcher compared and analyzed three types of adult Christian learning communities: traditional, hybrid, and virtual. Each week over the course of six weeks, the three types of…

  12. Institutional Practices Affecting First-Year Hispanic Students at Two Texas Community Colleges

    ERIC Educational Resources Information Center

    Samuel, Karissa Robinson

    2013-01-01

    The purpose of this study was to identify current institutional practices at two Hispanic-serving community colleges that may have caused attrition and affected retention among first-year Hispanic students. The objective was to determine which programs and services have been most effective at the respective community college campuses in assisting…

  13. Beyond the Patch: Disturbance Affects Species Abundances in the surrounding Community

    PubMed Central

    Dudgeon, Steve R.

    2009-01-01

    The role of disturbance in community ecology has been studied extensively and is thought to free resources and reset successional sequences at the local scale and create heterogeneity at the regional scale. Most studies have investigated effects on either the disturbed patch or on the entire community, but have generally ignored any effect of or on the community surrounding disturbed patches. We used marine fouling communities to examine the effect of a surrounding community on species abundance within a disturbed patch and the effect of a disturbance on species abudance in the surrounding community. We varied both the magnitude and pattern of disturbance on experimental settlement plates. Settlement plates were dominated by a non-native bryozoan, which may have established because of the large amount of initial space available on plates. Percent cover of each species within the patch were affected by the surrounding community, confirming previous studies’ predictions about edge effects from the surrounding community on dynamics within a patch. Disturbance resulted in lower percent cover in the surrounding community, but there were no differences between magnitudes or spatial patterns of disturbance. Disturbance lowered population growth rates in the surrounding community, potentially by altering the abiotic environment or species interactions. Following disturbance, the recovery of species within a patch may be affected by species in the surrounding community, but the effects of a disturbance can extend beyond the patch and alter abundances in the surrounding community. The dependence of patch dynamics on the surrounding community and the extended effects of disturbance on the surrounding community, suggest an important feedback of disturbance on patch dynamics indirectly via the surrounding community. PMID:20161249

  14. Woody stem galls interact with foliage to affect community associations.

    PubMed

    Cooper, W R; Rieske, L K

    2009-04-01

    Gall wasps (Hymenoptera: Cynipidae) hijack the physiology of their host plant to produce galls that house wasps throughout their immature stages. The gall-maker-host plant interaction is highly evolved, and galls represent an extended phenotype of the gall wasp. We evaluated two-way interactions between stem galls produced by Dryocosmus kuriphilus Yasumatsu on Castanea spp. (Fagales: Fagaceae) and foliage directly attached to galls (gall leaves) using gall leaf excision experiments and herbivore bioassays. Early season gall leaf excision decreased the dry weight per chamber (nutritive index) and thickness of the protective schlerenchyma layer and increased the number of empty chambers and the occurrence and size of exterior fungal lesions. Leaf excision also caused a modestly significant (alpha = 0.1) increase in the incidence of feeding chamber fungi and herbivory by Curculio sayi Gyllenhal (Coleoptera: Curculionidae), and a modest decrease in parasitoids. This study shows that gall leaves are important for stem gall development, quality, and defenses, adding support for the nutrient and enemy hypotheses. We also evaluated the effects of stem galls on the suitability of gall leaves to Lymantria dispar L. (Lepidoptera: Lymantriidae) herbivory to assess the extent of gall defenses in important source leaves. Relative growth rate of L. dispar larvae was greater on gall leaves compared with normal leaves, indicating that, despite their importance, gall leaves may be more suitable to generalist insect herbivores, suggesting limitations to the extended phenotype of the gall wasp. Our results improve our knowledge of host-cynipid interactions, gall source-sink relations, and D. kuriphilus community interactions.

  15. Mass media influence spreading in social networks with community structure

    NASA Astrophysics Data System (ADS)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  16. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  17. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  18. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  19. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure.

    PubMed

    Wimp, G M; Wooley, S; Bangert, R K; Young, W P; Martinsen, G D; Keim, P; Rehill, B; Lindroth, R L; Whitham, T G

    2007-12-01

    With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

  20. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    PubMed Central

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  1. Growing networks of overlapping communities with internal structure.

    PubMed

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks. PMID:27627327

  2. Growing networks of overlapping communities with internal structure

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.

  3. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  4. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  5. Pinning controllability of complex networks with community structure.

    PubMed

    Miao, Qingying; Tang, Yang; Kurths, Jürgen; Fang, Jian-an; Wong, W K

    2013-09-01

    In this paper, we study the controllability of networks with different numbers of communities and various strengths of community structure. By means of simulations, we show that the degree descending pinning scheme performs best among several considered pinning schemes under a small number of pinned nodes, while the degree ascending pinning scheme is becoming more powerful by increasing the number of pinned nodes. It is found that increasing the number of communities or reducing the strength of community structure is beneficial for the enhancement of the controllability. Moreover, it is revealed that the pinning scheme with evenly distributed pinned nodes among communities outperforms other kinds of considered pinning schemes. PMID:24089950

  6. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy.

  7. The Community Structure of the Global Corporate Network

    PubMed Central

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  8. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  9. Determinants of community structure of zooplankton in heavily polluted river ecosystems

    PubMed Central

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-01-01

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level. PMID:26912391

  10. Enhancing community detection by using local structural information

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  11. A new dynamic null model for phylogenetic community structure

    PubMed Central

    Pigot, Alex L; Etienne, Rampal S

    2015-01-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion – often attributed to negative biotic interactions – are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure. PMID:25560516

  12. A new dynamic null model for phylogenetic community structure.

    PubMed

    Pigot, Alex L; Etienne, Rampal S

    2015-02-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.

  13. Environmental heterogeneity affects the location of modelled communities along the niche–neutrality continuum

    PubMed Central

    Bar-Massada, Avi; Kent, Rafi; Carmel, Yohay

    2014-01-01

    The continuum hypothesis has been proposed as a means to reconcile the contradiction between the niche and neutral theories. While past research has shown that species richness affects the location of communities along the niche–neutrality continuum, there may be extrinsic forces at play as well. We used a spatially explicit continuum model to quantify the effects of environmental heterogeneity, comprising abundance distribution and spatial configuration of resources, on the degree of community neutrality. We found that both components of heterogeneity affect the degree of community neutrality and that species' dispersal characteristics affect the neutrality–heterogeneity relationship. Narrower resource abundance distributions decrease neutrality, while spatial configuration, which is manifested by spatial aggregation of resources, decreases neutrality at higher aggregation levels. In general, the degree of community neutrality was affected by complex interactions among spatial configuration of resources, their abundance distributions and the dispersal characteristics of species in the community. Our results highlight the important yet overlooked role of the environment in dictating the location of communities along the hypothesized niche–neutrality continuum. PMID:24671973

  14. Factors affecting screening for diabetic complications in the community: a multilevel analysis

    PubMed Central

    2016-01-01

    OBJECTIVES: The objective of the present study was to identify the factors that affect screening for diabetic complications by sex in the community. METHODS: This study used individual-level data from the 2013 Community Health Survey (CHS) for 20,806 (male, 9,958; female, 10,848) adults aged 30 years or older who were diagnosed with diabetes. Community-level data for 253 communities were derived from either CHS or national statistics. A chi-square test and multilevel logistic regression analysis was performed. RESULTS: There were significant differences in the rate of screening for diabetic complications according to individual-level and community-level variables. In the multilevel analysis, the community-level variance ratio of the null model was 7.4% and 9.2% for males and females, respectively. With regard to community-level variables, males were affected by the city type, number of physicians, and their living environment, while females were affected by number of physicians, natural and living environments, and public transportation. CONCLUSIONS: The factors that influenced individual willingness to undergo screening for diabetic complications differed slightly by sex; however, both males and females were more likely to undergo screening when they recognized their health status as poor or when they actively sought to manage their health conditions. Moreover, in terms of community-level variables, both males and females were affected by the number of physicians. It is essential to provide sufficient and ongoing opportunities for education on diabetes and its management through collaboration with local communities and primary care medical centers. PMID:27156347

  15. Similarity between community structures of different online social networks and its impact on underlying community detection

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  16. Benthic infaunal community structuring in an acidified tropical estuarine system

    PubMed Central

    2014-01-01

    and community structuring is more strongly influenced by sediment particle characteristics than by the chemical properties of the water (pH and salinity). Conclusions Infaunal estuarine communities, which are typically adapted to survive relatively acidic conditions, may be less exposed, less sensitive, and less vulnerable than epibenthic or pelagic communities to further acidification of above-sediment waters. These data question the extent to which all marine infaunal communities, including oceanic communities, are likely to be affected by future global CO2-driven acidification. PMID:25396048

  17. Dominant meat ants affect only their specialist predator in an epigaeic arthropod community.

    PubMed

    Gibb, Heloise

    2003-08-01

    Ants are thought to exert an important influence on the structure of arthropod assemblages through predation and competition. I examined the effect of a dominant ant, Iridomyrmex purpureus, on epigaeic arthropod assemblages on rock outcrops using an exclusion experiment. I compared arthropod assemblages on four replicate outcrops allocated to each of the following treatments: I. purpureus present; I. purpureus absent; I. purpureus excluded; and procedural control. Nests of I. purpureus were caged in summer 2001 and epigaeic arthropod assemblages were sampled at all sites using pitfall traps in autumn and spring 2001 and summer 2002. I also collected items from foraging workers to determine the diet of I. purpureus. Exclusion cages successfully reduced the abundance of I. purpureus workers in pitfall traps by more than 97%. Exclusion of I. purpureus did not affect the size distribution, biomass or abundance of arthropod predators or non-predatory arthropods, although the total biomass of ants was greater at sites with I. purpureus. Spider biomass, species richness, abundance and composition were also not affected by the presence of I. purpureus, although the I. purpureus mimic and specialist predator, Habronestes bradleyi, became less abundant at sites from which I. purpureus was excluded. Predation by I. purpureus on other arthropods may not have a significant effect on epigaeic arthropod communities, but the complex role of I. purpureus in this ecosystem and the high diversity of species belonging to multiple trophic levels may obscure its effects in this system.

  18. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  19. Effects of a synthetic oil on zooplankton community structure

    SciTech Connect

    Hook, L.A.

    1988-01-01

    This study assessed the effects of a coal-derived oil on the structure of zooplankton communities of laboratory pond microcosms and outdoor experimental ponds. Several measures of community structure and multivariate statistical techniques were used to reveal changes in the patterns of zooplankton community structure caused by the perturbation. From these results the basic ecological mechanisms responsible for maintenance of zooplankton community structure were inferred. The comparison of the field, laboratory microcosm, and laboratory bioassay results for the effects of oil provided an empirical basis for predicting pollutant effects on aquatic ecosystems. The responses of the microcosm and pond zooplankton communities to oil treatment were quite similar. Changes in cladoceran densities were the most sensitive indicators of stress in the zooplankton communities. Copepods were slightly less sensitive, and rotifers were least sensitive to oil treatment.

  20. Bacterial Community Structure Response to Petroleum Concentration in Groundwater

    NASA Astrophysics Data System (ADS)

    Kitts, C. L.; Wrighton, K. C.; Phillips, W. A.; Cano, R. J.; Lundegard, P. D.

    2004-12-01

    This study characterized the bacterial community present in groundwater samples from the Guadalupe Dunes Restoration Project on the central California coast. The purpose of the study was to determine the changes in bacterial community structure and function in response to variations in the concentration of dissolved phase total petroleum hydrocarbons (TPH) in groundwater plumes at the site. For the purpose of this study groundwater samples were collected at varying distance from TPH source zones in 10 different plumes. All samples were analyzed for ammonia, phosphate, TPH, methane, oxygen, carbon dioxide, nitrate, sulfate, and dissolved iron levels. Chemical analysis revealed that the groundwater chemistry varied between plumes and on a well-to-well basis within a plume. Principle component analyses (PCA) demonstrated that TPH degradation related parameters explained 28% of the variation in the groundwater chemistry. In addition to the physical and chemical analyses, four liters of each groundwater sample were filtered and bacterial DNA was isolated to determine the relationship between groundwater chemistry and bacterial community structure and function. Specific Polymerase Chain Reaction (PCR) primers were used to characterize populations of Eubacteria, and Archaea, as well as function genes for sulfate reducing, methanotrophic, and methanogenic bacteria. Terminal Restriction Fragment (TRF) Length Polymorphisms (or T-RFLP) were used to analyze community structure. Eubacterial and Archaeal groundwater communities were separated into distinct clusters which did not clearly reflect changes in groundwater chemical parameters unless individual plumes were analyzed separately. However, specific Eubacterial and Archaeal TRF peaks did correspond to known petroleum degrading organisms and methanogenic bacteria, respectively. Only one sample produced a positive result for the sulfite reductase gene (dsrAB), indicating that sulfate reduction may not be a dominant process at

  1. Structure and Affect: The Influence of Social Structure on Affective Meaning in American Kinship

    ERIC Educational Resources Information Center

    Malone, Martin J.

    2004-01-01

    Structural variables differentiating kinship identities, such as sex, generation, and type of relationship (lineal, collateral, conjugal), are reflected in sentiments about family identities. In particular, componential variations in kinship terms predict Evaluation, Potency, and Activity ratings of the terms fairly accurately. Between 44 and 92…

  2. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    USGS Publications Warehouse

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  3. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source.

  4. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source. PMID:25929062

  5. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  6. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    ERIC Educational Resources Information Center

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  7. The diversity of coral associated bacteria and the environmental factors affect their community variation.

    PubMed

    Zhang, Yan-Ying; Ling, Juan; Yang, Qing-Song; Wang, You-Shao; Sun, Cui-Ci; Sun, Hong-Yan; Feng, Jing-Bin; Jiang, Yu-Feng; Zhang, Yuan-Zhou; Wu, Mei-Lin; Dong, Jun-De

    2015-10-01

    Coral associated bacterial community potentially has functions relating to coral health, nutrition and disease. Culture-free, 16S rRNA based techniques were used to compare the bacterial community of coral tissue, mucus and seawater around coral, and to investigate the relationship between the coral-associated bacterial communities and environmental variables. The diversity of coral associated bacterial communities was very high, and their composition different from seawater. Coral tissue and mucus had a coral associated bacterial community with higher abundances of Gammaproteobacteria. However, bacterial community in seawater had a higher abundance of Cyanobacteria. Different populations were also found in mucus and tissue from the same coral fragment, and the abundant bacterial species associated with coral tissue was very different from those found in coral mucus. The microbial diversity and OTUs of coral tissue were much higher than those of coral mucus. Bacterial communities of corals from more human activities site have higher diversity and evenness; and the structure of bacterial communities were significantly different from the corals collected from other sites. The composition of bacterial communities associated with same coral species varied with season's changes, geographic differences, and coastal pollution. Unique bacterial groups found in the coral samples from more human activities location were significant positively correlated to chemical oxygen demand. These coral specific bacteria lead to coral disease or adjust to form new function structure for the adaption of different surrounding needs further research.

  8. The structure and evolution of plankton communities

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  9. Analysis of Structural and Physiological Profiles To Assess the Effects of Cu on Biofilm Microbial Communities

    PubMed Central

    Massieux, B.; Boivin, M. E. Y.; van den Ende, F. P.; Langenskiöld, J.; Marvan, P.; Barranguet, C.; Admiraal, W.; Laanbroek, H. J.; Zwart, G.

    2004-01-01

    We investigated the effects of copper on the structure and physiology of freshwater biofilm microbial communities. For this purpose, biofilms that were grown during 4 weeks in a shallow, slightly polluted ditch were exposed, in aquaria in our laboratory, to a range of copper concentrations (0, 1, 3, and 10 μM). Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community in all aquaria. The extent of change was related to the concentration of copper applied, indicating that copper directly or indirectly caused the effects. Concomitantly with these changes in structure, changes in the metabolic potential of the heterotrophic bacterial community were apparent from changes in substrate use profiles as assessed on Biolog plates. The structure of the phototrophic community also changed during the experiment, as observed by microscopic analysis in combination with DGGE analysis of eukaryotic microorganisms and cyanobacteria. However, the extent of community change, as observed by DGGE, was not significantly greater in the copper treatments than in the control. Yet microscopic analysis showed a development toward a greater proportion of cyanobacteria in the treatments with the highest copper concentrations. Furthermore, copper did affect the physiology of the phototrophic community, as evidenced by the fact that a decrease in photosynthetic capacity was detected in the treatment with the highest copper concentration. Therefore, we conclude that copper affected the physiology of the biofilm and had an effect on the structure of the communities composing this biofilm. PMID:15294780

  10. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests.

    PubMed

    Kembel, Steven W

    2009-09-01

    Patterns of phylogenetic relatedness within communities have been widely used to infer the importance of different ecological and evolutionary processes during community assembly, but little is known about the relative ability of community phylogenetics methods and null models to detect the signature of processes such as dispersal, competition and filtering under different models of trait evolution. Using a metacommunity simulation incorporating quantitative models of trait evolution and community assembly, I assessed the performance of different tests that have been used to measure community phylogenetic structure. All tests were sensitive to the relative phylogenetic signal in species metacommunity abundances and traits; methods that were most sensitive to the effects of niche-based processes on community structure were also more likely to find non-random patterns of community phylogenetic structure under dispersal assembly. When used with a null model that maintained species occurrence frequency in random communities, several metrics could detect niche-based assembly when there was strong phylogenetic signal in species traits, when multiple traits were involved in community assembly, and in the presence of environmental heterogeneity. Interpretations of the causes of community phylogenetic structure should be modified to account for the influence of dispersal.

  11. Community structure of foraminiferal communities within temporal biozones from the western Arctic Ocean

    USGS Publications Warehouse

    Hayek, Lee-Ann C.; Buzas, Martin A.; Osterman, Lisa A.

    2007-01-01

    Community structure is often an overlooked dimension of biodiversity. Knowledge of community structure, the statistical distribution of the relative species abundance vector, makes possible comparisons and contrasts across time, space, and/or environmental conditions. Our results indicate that species of Arctic foraminifera in age-correlated cores from abyssal depths are each best described by log-series distributions. Using this structural information, we were able to determine that structural stability exists for at least 50 ka. The foraminiferal communities in this study show remarkable concordance, distributional similarity and support the neutral theory of biodiversity.

  12. Detecting Community Structure by Using a Constrained Label Propagation Algorithm

    PubMed Central

    Ratnavelu, Kuru

    2016-01-01

    Community structure is considered one of the most interesting features in complex networks. Many real-world complex systems exhibit community structure, where individuals with similar properties form a community. The identification of communities in a network is important for understanding the structure of said network, in a specific perspective. Thus, community detection in complex networks gained immense interest over the last decade. A lot of community detection methods were proposed, and one of them is the label propagation algorithm (LPA). The simplicity and time efficiency of the LPA make it a popular community detection method. However, the LPA suffers from instability detection due to randomness that is induced in the algorithm. The focus of this paper is to improve the stability and accuracy of the LPA, while retaining its simplicity. Our proposed algorithm will first detect the main communities in a network by using the number of mutual neighbouring nodes. Subsequently, nodes are added into communities by using a constrained LPA. Those constraints are then gradually relaxed until all nodes are assigned into groups. In order to refine the quality of the detected communities, nodes in communities can be switched to another community or removed from their current communities at various stages of the algorithm. We evaluated our algorithm on three types of benchmark networks, namely the Lancichinetti-Fortunato-Radicchi (LFR), Relaxed Caveman (RC) and Girvan-Newman (GN) benchmarks. We also apply the present algorithm to some real-world networks of various sizes. The current results show some promising potential, of the proposed algorithm, in terms of detecting communities accurately. Furthermore, our constrained LPA has a robustness and stability that are significantly better than the simple LPA as it is able to yield deterministic results. PMID:27176470

  13. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  14. Generic criticality of community structure in random graphs

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Lipowska, Dorota

    2014-09-01

    We examine a community structure in random graphs of size n and link probability p /n determined with the Newman greedy optimization of modularity. Calculations show that for p <1 communities are nearly identical with clusters. For p =1 the average sizes of a community sav and of the giant community sg show a power-law increase sav˜nα' and sg˜nα. From numerical results we estimate α'≈0.26(1) and α ≈0.50(1) and using the probability distribution of sizes of communities we suggest that α'=α/2 should hold. For p >1 the community structure remains critical: (i) sav and sg have a power-law increase with α'≈α<1 and (ii) the probability distribution of sizes of communities is very broad and nearly flat for all sizes up to sg. For large p the modularity Q decays as Q˜p-0.55, which is intermediate between some previous estimations. To check the validity of the results, we also determine the community structure using another method, namely, a nongreedy optimization of modularity. Tests with some benchmark networks show that the method outperforms the greedy version. For random graphs, however, the characteristics of the community structure determined using both greedy and nongreedy optimizations are, within small statistical fluctuations, the same.

  15. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure

    PubMed Central

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  16. Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation.

    PubMed

    Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D

    2014-05-01

    In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling.

  17. What Community College Students Value: Delineating a Normative Structure for Community College Students

    ERIC Educational Resources Information Center

    Akin, Renea; Park, Toby J.

    2016-01-01

    This manuscript delineates a normative structure for community college students, outlines how this structure varies by student characteristics, and compares this structure to that of a previously established normative structure identified at a 4-year institution. A total of 512 student survey responses on the College Student Behaviors Inventory…

  18. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation.

    PubMed

    Guan, Xiangyu; Xie, Yuxuan; Wang, Jinfeng; Wang, Jing; Liu, Fei

    2015-04-01

    Although microbial reduction of perchlorate (ClO4(-)) is a promising and effective method, our knowledge on the changes in microbial communities during ClO4(-) degradation is limited, especially when different electron donors are supplied and/or other contaminants are present. Here, we examined the effects of acetate and hydrogen as electron donors and nitrate and ammonium as co-contaminants on ClO4(-) degradation by anaerobic microcosms using six treatments. The process of degradation was divided into the lag stage (SI) and the accelerated stage (SII). Quantitative PCR was used to quantify four genes: pcrA (encoding perchlorate reductase), cld (encoding chlorite dismutase), nirS (encoding copper and cytochrome cd1 nitrite reductase), and 16S rRNA. While the degradation of ClO4(-) with acetate, nitrate, and ammonia system (PNA) was the fastest with the highest abundance of the four genes, it was the slowest in the autotrophic system (HYP). The pcrA gene accumulated in SI and played a key role in initiating the accelerated degradation of ClO4(-) when its abundance reached a peak. Degradation in SII was primarily maintained by the cld gene. Acetate inhibited the growth of perchlorate-reducing bacteria (PRB), but its effect was weakened by nitrate (NO3(-)), which promoted the growth of PRB in SI, and therefore, accelerated the ClO4(-) degradation rate. In addition, ammonia (NH4(+)), as nitrogen sources, accelerated the growth of PRB. The bacterial communities' structure and diversity were significantly affected by electron donors and co-contaminants. Under heterotrophic conditions, both ammonia and nitrate promoted Azospira as the most dominant genera, a fact that might significantly influence the rate of ClO4(-) natural attenuation by degradation.

  19. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  20. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  1. Schools, Families, and Communities Affecting the Dropout Rate: Implications and Strategies for Family Counselors

    ERIC Educational Resources Information Center

    Ziomek-Daigle, Jolie

    2010-01-01

    Serious social and economic consequences affect the local and national levels when students drop out of school. Research has shown that collaboration among schools, families, and communities in the academic progression of students can decrease their drop out probability. The author presents findings related to a qualitative study conducted in…

  2. Minimum Wage and Community College Attendance: How Economic Circumstances Affect Educational Choices

    ERIC Educational Resources Information Center

    Williams, Betsy

    2013-01-01

    How do changes in minimum wages affect community college enrollment and employment? In particular, among adults without associate's or bachelor's degrees who may earn near the minimum wage, do endowment effects of a higher minimum wage encourage school attendance? Among adults without associate's or bachelor's degrees who may earn near the minimum…

  3. Community structure in traffic zones based on travel demand

    NASA Astrophysics Data System (ADS)

    Sun, Li; Ling, Ximan; He, Kun; Tan, Qian

    2016-09-01

    Large structure in complex networks can be studied by dividing it into communities or modules. Urban traffic system is one of the most critical infrastructures. It can be abstracted into a complex network composed of tightly connected groups. Here, we analyze community structure in urban traffic zones based on the community detection method in network science. Spectral algorithm using the eigenvectors of matrices is employed. Our empirical results indicate that the traffic communities are variant with the travel demand distribution, since in the morning the majority of the passengers are traveling from home to work and in the evening they are traveling a contrary direction. Meanwhile, the origin-destination pairs with large number of trips play a significant role in urban traffic network's community division. The layout of traffic community in a city also depends on the residents' trajectories.

  4. Convergent structure of multitrophic communities over three continents.

    PubMed

    Segar, Simon T; Pereira, Rodrigo A S; Compton, Steve G; Cook, James M

    2013-12-01

    Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonisation and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75MYA, do not show long-term 'inheritance' of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonisations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.

  5. Aphid–parasitoid community structure on genetically modified wheat

    PubMed Central

    von Burg, Simone; van Veen, Frank J. F.; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-01-01

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore–natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid–parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited. PMID:21247941

  6. Relative roles of niche and neutral processes in structuring a soil microbial community.

    PubMed

    Dumbrell, Alex J; Nelson, Michaela; Helgason, Thorunn; Dytham, Calvin; Fitter, Alastair H

    2010-03-01

    Most attempts to identify the processes that structure natural communities have focused on conspicuous macroorganisms whereas the processes responsible for structuring microbial communities remain relatively unknown. Two main theories explaining these processes have emerged; niche theory, which highlights the importance of deterministic processes, and neutral theory, which focuses on stochastic processes. We examined whether neutral or niche-based mechanisms best explain the composition and structure of communities of a functionally important soil microbe, the arbuscular mycorrhizal (AM) fungi. Using molecular techniques, we surveyed AM fungi from 425 individual plants of 28 plant species along a soil pH gradient. There was evidence that both niche and neutral processes structured this community. Species abundances fitted the zero-sum multinomial distribution and there was evidence of dispersal limitation, both indicators of neutral processes. However, we found stronger support that niche differentiation based on abiotic soil factors, primarily pH, was structuring the AM fungal community. Host plant species affected AM fungal community composition negligibly compared to soil pH. We conclude that although niche partitioning was the primary mechanism regulating the composition and diversity of natural AM fungal communities, these communities are also influenced by stochastic-neutral processes. This study represents one of the most comprehensive investigations of community-level processes acting on soil microbes; revealing a community that although influenced by stochastic processes, still responded in a predictable manner to a major abiotic niche axis, soil pH. The strong response to environmental factors of this community highlights the susceptibility of soil microbes to environmental change.

  7. Ice cream structural elements that affect melting rate and hardness.

    PubMed

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  8. Great Barrier Reef butterflyfish community structure: the role of shelf position and benthic community type

    NASA Astrophysics Data System (ADS)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.; Osborne, K.

    2010-09-01

    The extent to which fish communities are structured by spatial variability in coral reef habitats versus stochastic processes (such as larval supply) is very important in predicting responses to sustained and ongoing habitat degradation. In this study, butterflyfish and benthic communities were surveyed annually over 15 years on 47 reefs (spanning 12° of latitude) of the Great Barrier Reef (GBR). Spatial autocorrelation in the structure of butterflyfish communities versus key differences in reef habitats was investigated to assess the extent to which the structure of these fish communities is influenced by habitat conditions. Benthic communities on each of the 47 reefs were broadly categorised as either: 1. Poritidae/Alcyoniidae, 2. mixed taxa, 3. soft coral or 4. Acropora-dominated habitats. These habitat types most reflected increases in water clarity and wave exposure, moving across the GBR shelf from coastal to outer-shelf environments. In turn, each habitat type also supported very distinct butterflyfish communities. Hard coral feeders were always the dominant butterflyfish species in each community type. However, the numerically dominant species changed according to habitat type, representing spatial replacement of species across the shelf. This study reveals clear and consistent differences in the structure of fish communities among reefs associated with marked differences in habitat structure.

  9. Community structural instability, anomie, imitation and adolescent suicidal behavior.

    PubMed

    Thorlindsson, Thorolfur; Bernburg, Jón Gunnar

    2009-04-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and values (anomie), and contact with suicidal others (suggestion-imitation). The data comes from a national survey of 14-16 years old adolescents. Valid questionnaires were obtained from 7018 students (response rate about 87%). The findings show that the community level of residential mobility has a positive, contextual effect on adolescent suicidal behavior. The findings also indicate that the contextual effect of residential mobility is mediated by both anomie and suggestion-imitation. The findings offer the possibility to identify communities that carry a substantial risk for adolescent suicide as well as the mechanisms that mediate the influence of community structural characteristics on adolescent risk behavior.

  10. The influence of feedlot pen surface layers on microbial community structure and diversity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological and chemical characteristics of feedyard pen surfaces have the potential to affect environmental conditions with respect to air and water quality. Little is known about feedyard pen surface chemistry and biology, especially that of the underlying microbial community structure. The f...

  11. Change in fish community structure in the Barents Sea.

    PubMed

    Aschan, Michaela; Fossheim, Maria; Greenacre, Michael; Primicerio, Raul

    2013-01-01

    Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992-2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996-1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.

  12. Faculty Scholarship at Community Colleges: Culture, Institutional Structures, and Socialization

    ERIC Educational Resources Information Center

    Morest, Vanessa Smith

    2015-01-01

    This chapter looks at community college faculty engagement in scholarship. Community college faculty spend the majority of their time engaged in teaching, and therefore their scholarship typically focuses on strengthening curriculum and instruction. The paper identifies some of the structural and cultural challenges and supports to scholarship at…

  13. Exploratory Visualization of Graphs Based on Community Structure

    ERIC Educational Resources Information Center

    Liu, Yujie

    2013-01-01

    Communities, also called clusters or modules, are groups of nodes which probably share common properties and/or play similar roles within a graph. They widely exist in real networks such as biological, social, and information networks. Allowing users to interactively browse and explore the community structure, which is essential for understanding…

  14. Field-based experimental acidification alters fouling community structure and reduces diversity.

    PubMed

    Brown, Norah E M; Therriault, Thomas W; Harley, Christopher D G

    2016-09-01

    Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e. decreased pH) and reductions in calcium carbonate saturation state. Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification (OA) among species will likely result in important changes in community structure and diversity. To characterize the potential impacts of OA on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. Acidification significantly altered the community structure by altering the relative abundance of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect the mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after 8 weeks. Conversely, the percentage cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after 6 weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. Overall, our findings support the

  15. Field-based experimental acidification alters fouling community structure and reduces diversity.

    PubMed

    Brown, Norah E M; Therriault, Thomas W; Harley, Christopher D G

    2016-09-01

    Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e. decreased pH) and reductions in calcium carbonate saturation state. Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification (OA) among species will likely result in important changes in community structure and diversity. To characterize the potential impacts of OA on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. Acidification significantly altered the community structure by altering the relative abundance of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect the mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after 8 weeks. Conversely, the percentage cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after 6 weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. Overall, our findings support the

  16. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  17. Genetic and environmental determinants of insect herbivore community structure in a Betula pendula population

    PubMed Central

    Silfver, Tarja

    2014-01-01

    A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22 Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes. B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure. B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in B. pendula forest ecosystems. PMID:24715977

  18. Structure and stability of the midsummer fish communities in Chequamegon Bay, Lake Superior, 1973-1996

    USGS Publications Warehouse

    Hoff, M.H.; Bronte, C.R.

    1999-01-01

    We analyzed the structure and stability of the summer fish communities of Chequamegon Bay, Lake Superior, during 1973-1996 from data collected with bottom trawls at 39 stations. Fifty-three taxa were collected during the study, but we found that relative abundances for 20 taxa described most of the internal variability of the data for all taxa. Abundance data for the 20 species showed that two communities existed in the bay; one inhabited shallow water (3.0 m) whereas the other inhabited deeper water (>3.0 m). No temporal patterns of change were found in the structure of the shallow-water community, whose variation was best described by abundances of 12 taxa. The deepwater community, whose variation was best described by eight taxa, underwent three periods ofstability; 1973-1978, 1979-1988, and 1989-1996. We conclude that the shallow-water community was stable throughout the 24 years studied. Dynamics of the deepwater community were greatly affected by changes in stocking rates of lake troutSalvelinus namaycush and splake (hybrid of brook trout Salvelinus fontinalis × lake trout) and by rehabilitation of populations of lake herring Coregonus artedi and lake whitefish Coregonus clupeaformis. Information on the existence, structure, stability, and habitats of fish communities in the bay will be useful for assessing changes in those communities that result from further changes in the bay or lake ecosystems.

  19. Silicified structures affect leaf optical properties in grasses and sedge.

    PubMed

    Klančnik, Katja; Vogel-Mikuš, Katarina; Gaberščik, Alenka

    2014-01-01

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

  20. Context matters: Community characteristics and mental health among war-affected youth in Sierra Leone

    PubMed Central

    Betancourt, Theresa S.; McBain, Ryan; Newnham, Elizabeth A.; Brennan, Robert T.

    2013-01-01

    Background Worldwide, over one billion children and adolescents live in war-affected settings. At present, only limited research has investigated linkages between disrupted social ecology and adverse mental health outcomes among war-affected youth. In this study, we examine three community-level characteristics—social disorder and collective efficacy within the community, as reported by caregivers, and perceived stigma as reported by youth—in relation to externalizing behaviors and internalizing symptoms among male and female former child soldiers in post-conflict Sierra Leone. Methods 243 former child soldiers (30% female, mean age at baseline: 16.6 years) and their primary caregivers participated in interviews in 2004 and 2008, as part of a larger prospective cohort study of war-affected youth in Sierra Leone. Two-point growth models were estimated to examine the relationship between community-level characteristics and externalizing and internalizing outcomes across the time points. Results Both social disorder within the community, reported by caregivers, and perceived stigma, reported by youth, positively co-varied with youths’ externalizing and internalizing scores—indicating that higher levels of each at baseline and follow-up were associated with higher levels of mental health problems at both time points (p<0.05). The relationship between collective efficacy and mental health outcomes was non-significant (p>0.05). Conclusions This study offers a rare glimpse into the role that the post-conflict social context plays in shaping mental health among former child soldiers. Results indicate that both social disorder and perceived stigma within the community demonstrate an important relationship to externalizing and internalizing problems among adolescent ex-combatants. Moreover, these relationships persisted over a four-year period of follow up. These results underscore the importance of the post-conflict social environment and the need to develop post

  1. Edge ratio and community structure in networks

    NASA Astrophysics Data System (ADS)

    Cafieri, Sonia; Hansen, Pierre; Liberti, Leo

    2010-02-01

    A hierarchical divisive algorithm is proposed for identifying communities in complex networks. To that effect, the definition of community in the weak sense of Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] is extended into a criterion for a bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges. A mathematical program is used within a dichotomous search to do this in an optimal way for each bipartition. This includes an exact solution of the problem of detecting indivisible communities. The resulting hierarchical divisive algorithm is compared with exact modularity maximization on both artificial and real world data sets. For two problems of the former kind optimal solutions are found; for five problems of the latter kind the edge ratio algorithm always appears to be competitive. Moreover, it provides additional information in several cases, notably through the use of the dendrogram summarizing the resolution. Finally, both algorithms are compared on reduced versions of the data sets of Girvan and Newman [Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)] and of Lancichinetti [Phys. Rev. E 78, 046110 (2008)]. Results for these instances appear to be comparable.

  2. A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities.

    PubMed

    Relyea, Rick A

    2009-03-01

    The ubiquity of anthropogenic chemicals in nature poses a challenge to understanding how ecological communities are impacted by them. While we are rapidly gaining an understanding of how individual contaminants affect communities, communities are exposed to suites of contaminants yet investigations of the effects of diverse contaminant mixtures in aquatic communities are rare. I examined how a single application of five insecticides (malathion, carbaryl, chlorpyrifos, diazinon, and endosulfan) and five herbicides (glyphosate, atrazine, acetochlor, metolachlor, and 2,4-D) at low concentrations (2-16 p.p.b.) affected aquatic communities composed of zooplankton, phytoplankton, periphyton, and larval amphibians (gray tree frogs, Hyla versicolor, and leopard frogs, Rana pipiens). Using outdoor mesocosms, I examined each pesticide alone, a mix of insecticides, a mix of herbicides, and a mix of all ten pesticides. Individual pesticides had a wide range of direct and indirect effects on all trophic groups. For some taxa (i.e., zooplankton and algae), the impact of pesticide mixtures could largely be predicted from the impacts of individual pesticides; for other taxa (i.e., amphibians) it could not. For amphibians, there was an apparent direct toxic effect of endosulfan that caused 84% mortality of leopard frogs and an indirect effect induced by diazinon that caused 24% mortality of leopard frogs. When pesticides were combined, the mix of herbicides had no negative effects on the survival and metamorphosis of amphibians, but the mix of insecticides and the mix of all ten pesticides eliminated 99% of leopard frogs. Interestingly, these mixtures did not cause mortality in the gray tree frogs and, as a result, the gray tree frogs grew nearly twice as large due to reduced competition with leopard frogs. In short, wetland communities can be dramatically impacted by low concentrations of pesticides (both separate and combined) and these results offer important insights for the

  3. Artificial neural networks and ecological communities (Book Review: Modelling community structure in freshwater ecosystems)

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2005-01-01

    Review info: Modeling community structure in freshwater ecosystems. Edited by Sovan Lek, Michele Scardi, Piet F.M. Verdonschot, Jean-Pierre Descy, and Young-Seuk Park, 2005. ISBN: 3-540-23940-5, 518 pp.

  4. Community structure of a microbial mat: The phylogenetic dimension

    USGS Publications Warehouse

    Risatti, J.B.; Capman, W.C.; Stahl, D.A.

    1994-01-01

    Traditional studies of microbial communities are incomplete because of the inability to identify and quantify all contributing populations. In the present study, we directly determine the abundance and distribution of sulfate-reducing bacterial populations in a microbial mat community by using hybridization probes complementary to the 16S-like rRNAs of major phylogenetic groups. Most of the major groups were found in this single community, distributed for the most part in nonoverlapping depth intervals of the mat. The reflection of the phylogenetic structure in the community structure suggests that those species making up the major phylogenetic groups perform specific interrelated metabolic functions in the community. Comparison of population profiles to previously observed rates of sulfate reduction suggests there are additional populations of sulfate-reducing bacteria both within the photooxic zone and deeper in the mat.

  5. Growing network model for community with group structure

    NASA Astrophysics Data System (ADS)

    Noh, Jae Dong; Jeong, Hyeong-Chai; Ahn, Yong-Yeol; Jeong, Hawoong

    2005-03-01

    We propose a growing network model for a community with a group structure. The community consists of individual members and groups, gatherings of members. The community grows as a new member is introduced by an existing member at each time step. The new member then creates a new group or joins one of the groups of the introducer. We investigate the emerging community structure analytically and numerically. The group size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution follows an exponential or a power law depending on the details of the growth rule. We also present an analysis of empirical data from online communities the “Groups” in http://www.yahoo.com and the “Cafe” in http://www.daum.net, which show a power-law distribution for a wide range of group sizes.

  6. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance.

  7. Using photovoice to examine community level barriers affecting maternal health in rural Wakiso district, Uganda.

    PubMed

    Musoke, David; Ekirapa-Kiracho, Elizabeth; Ndejjo, Rawlance; George, Asha

    2015-05-01

    Uganda continues to have poor maternal health indicators including a high maternal mortality ratio. This paper explores community level barriers affecting maternal health in rural Wakiso district, Uganda. Using photovoice, a community-based participatory research approach, over a five-month period, ten young community members aged 18-29 years took photographs and analysed them, developing an understanding of the emerging issues and engaging in community dialogue on them. From the study, known health systems problems including inadequate transport, long distance to health facilities, long waiting times at facilities and poor quality of care were confirmed, but other aspects that needed to be addressed were also established. These included key gender-related determinants of maternal health, such as domestic violence, low contraceptive use and early teenage pregnancy, as well as problems of unclean water, poor sanitation and women's lack of income. Community members appreciated learning about the research findings precisely hence designing and implementing appropriate solutions to the problems identified because they could see photographs from their own local area. Photovoice's strength is in generating evidence by community members in ways that articulate their perspectives, support local action and allow direct communication with stakeholders.

  8. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  9. Affective journeys: the emotional structuring of medical tourism in India.

    PubMed

    Solomon, Harris

    2011-04-01

    This paper examines the grid of sentiment that structures medical travel to India. In contrast to studies that render emotion as ancillary, the paper argues that affect is fundamental to medical travel's ability to ease the linked somatic, emotional, financial, and political injuries of being ill 'back home'. The ethnographic approach follows the scenes of medical travel within the Indian corporate hospital room, based on observations and interviews among foreign patients, caregivers, and hospital staff in Mumbai, New Delhi, Chennai, and Bangalore. Foreign patients conveyed diverse sentiments about their journey to India ranging from betrayal to gratitude, and their expressions of risk, healthcare costs, and cultural difference help sustain India's popularity as a medical travel destination. However, although the affective dimensions of medical travel promise a remedy for foreign patients, they also reveal the fault lines of market medicine in India.

  10. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  11. Iron affects the structure of cell membrane molecular models.

    PubMed

    Suwalsky, M; Martínez, F; Cárdenas, H; Grzyb, J; Strzałka, K

    2005-03-01

    The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions. PMID:15752465

  12. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  13. Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae).

    PubMed

    Cooper, W Rodney; Rieske, Lynne K

    2010-06-01

    Gall wasps (Hymenoptera: Cynipidae) induce structures (galls) on their host plants that house developing wasps and provide them with protection from natural enemies. The Asian chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu, is an invasive pest that is destructive to chestnut (Castanea spp.). An improved understanding of the interactions among D. kuriphilus, its host, and its natural enemies is critical for the development of effective management strategies against this pest. The objective of our study was to evaluate the D. kuriphilus community interactions, and relate these interactions to variations among gall traits. Galls were collected from four locations throughout the eastern United States from May (gall initiation) through August (after gall wasp emergence), and January. Gall characteristics (volume, weight, and schlerenchyma layer thickness), gall inhabitants (D. kuriphilus, parasitoids, and chamber fungi), and other community associates (insect herbivores and lesions thought to be caused by endophytes) were evaluated and correlated using canonical correlation analyses. The primary mortality factors for D. kuriphilus were parasitism, gall chamber-invading fungi, and failure of adult gall wasps to emerge. Larger gall size and thicker schlerenchyma layers surrounding the larval chambers were negatively correlated with parasitoids and chamber fungi, indicating these gall traits are important defenses. External fungal lesions and insect herbivory were positively correlated with the absence of D. kuriphilus within galls. This study provides support for the protective role of cynipid galls for the gall inducer, identifies specific gall traits that influence gall wasp mortality, and improves our knowledge of D. kuriphilus ecology in North America.

  14. Body Dissatisfaction and Eating Disturbances in Early Adolescence: A Structural Modeling Investigation Examining Negative Affect and Peer Factors

    ERIC Educational Resources Information Center

    Hutchinson, Delyse M.; Rapee, Ronald M.; Taylor, Alan

    2010-01-01

    This study tested five proposed models of the relationship of negative affect and peer factors in early adolescent body dissatisfaction, dieting, and bulimic behaviors. A large community sample of girls in early adolescence was assessed via questionnaire (X[overbar] age = 12.3 years). Structural equation modeling (SEM) indicated that negative…

  15. Communities are not all created equal: Strategies to prevent violence affecting youth in the United States.

    PubMed

    Cohen, Larry; Davis, Rachel; Realini, Anna

    2016-09-01

    We describe violence in the United States (US) and solutions the Urban Networks to Increase Thriving Youth (UNITY) Initiative has developed, led by Prevention Institute, a US non-governmental organization (NGO) and authors of this article, with initial funding from the US Centers for Disease Control and Prevention (CDC). Safety distribution across populations is unequal, while public health research has identified aspects of community environments that affect the likelihood of violence, or risk and resilience factors. An overwhelming number of risk factors have accumulated in some US communities, disproportionately impacting young people of color. US policies, systems, and institutions powerfully shape how and where these factors manifest. Violence is preventable, not inevitable. We argue that comprehensive strategies for improving community environments can reduce violence and promote health equity. We present lessons, tools, and frameworks that UNITY cities use to adapt for international application, including multi-sector collaboration, strategies for influencing policy and legislation, and strengthening local violence prevention efforts. PMID:27638244

  16. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill.

    PubMed

    Alonso-Gutiérrez, Jorge; Figueras, Antonio; Albaigés, Joan; Jiménez, Núria; Viñas, Marc; Solanas, Anna M; Novoa, Beatriz

    2009-06-01

    The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected

  17. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity

    PubMed Central

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  18. Stream invertebrate communities of Mongolia: current structure and expected changes due to climate change

    PubMed Central

    2012-01-01

    Background Mongolia’s riverine landscape is divided into three watersheds, differing in extent of permafrost, amount of precipitation and in hydrological connectivity between sub-drainages. In order to assess the vulnerability of macroinvertebrate communities to ongoing climate change, we consider the taxonomic and functional structures of stream communities in two major watersheds: The Central Asian Internal Watershed (CAIW) and the Arctic Ocean Watershed (AOW), together covering 86.1% of Mongolia’s surface area. We assess the consequences of the hydrological connectivity between sub-drainages on the nestedness and distinctness of the stream communities. And accordingly, we discuss the expected biotic changes to occur in each watershed as a consequence of climate change. Results Gamma and beta diversities were higher in the CAIW than the AOW. High community nestedness was also found in the CAIW along with a higher heterogeneity of macroinvertebrate assemblage structure. Assemblages characteristic of cold headwater streams in the CAIW, were typical of the drainages of the Altai Mountain range. Macroinvertebrate guilds of the CAIW streams exhibited traits reflecting a high stability and low resilience capacity for eutrophication. In contrast, the community of the AOW had lower nestedness and a combination of traits reflecting higher stability and a better resilience capacity to disturbances. Conclusion Higher distinctness of stream communities is due to lower connectivity between the drainages. This was the case of the stream macroinvertebrate communities of the two major Mongolian watersheds, where connectivity of streams between sub-drainages is an important element structuring their communities. Considering differences in the communities’ guild structure, hydrological connectivity and different magnitudes of upcoming impacts of climate change between the two watersheds, respective stream communities will be affected differently. The hitherto different

  19. How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?

    PubMed

    Krashevska, Valentyna; Maraun, Mark; Scheu, Stefan

    2012-06-01

    Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure and mixed litter of two abundant tree species at the study sites (Graffenrieda emarginata and Purdiaea nutans) differing in nitrogen concentrations were exposed in the field for 12 months. The density and diversity of testate amoebae were higher in the nitrogen-rich Graffenrieda litter suggesting that nitrogen functions as an important driving factor for soil protist communities. No additive effects of litter mixing were found, rather density of testate amoebae was reduced in litter mixtures as compared to litterbags with Graffenrieda litter only. However, adding of high-quality litter to low-quality litter markedly improved habitat quality, as evaluated by the increase in diversity and density of testate amoebae. The results suggest that local factors, such as litter quality, function as major forces shaping the structure and density of decomposer microfauna that likely feed back to decomposition processes.

  20. Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects

    PubMed Central

    Lazzaro, Anna; Hilfiker, Daniela; Zeyer, Josef

    2015-01-01

    Microbial communities in alpine environments are exposed to several environmental factors related to elevation and local site conditions and to extreme seasonal variations. However, little is known on the combined impact of such factors on microbial community structure. We assessed the effects of seasonal variations on soil fungal and bacterial communities along an elevational gradient (from alpine meadows to a glacier forefield, 1930–2519 m a.s.l.) over 14 months. Samples were taken during all four seasons, even under the winter snowpack and at snowmelt. Microbial community structures and abundances were investigated using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR (qPCR) of the 16S and 18S rRNA genes. Illumina sequencing was performed to identify key bacterial groups in selected samples. We found that the soil properties varied significantly with the seasons and along the elevational gradient. For example, concentrations of soluble nutrients (e.g., NH4+-N, SO42−-S, PO43−-P) significantly increased in October but decreased drastically under the winter snowpack. At all times, the alpine meadows showed higher soluble nutrient concentrations than the glacier forefield. Microbial community structures at the different sites were strongly affected by seasonal variations. Under winter snowpack, bacterial communities were dominated by ubiquitous groups (i.e., beta-Proteobacteria, which made up to 25.7% of the total reads in the glacier forefield). In the snow-free seasons, other groups (i.e., Cyanobacteria) became more abundant (from 1% under winter snow in the glacier forefield samples to 8.1% in summer). In summary, elevation had a significant effect on soil properties, whereas season influenced soil properties as well as microbial community structure. Vegetation had a minor impact on microbial communities. At every elevation analyzed, bacterial, and fungal community structures exhibited a pronounced annual cycle. PMID:26635785

  1. Epilithic community metabolism as an indicator of impact and recovery in streams affected by acid mine drainage.

    PubMed

    DeNicola, Dean M; Layton, Lee; Czapski, Tiffaney R

    2012-12-01

    We measured biomass and metabolism of epilithic communities on five dates in different seasons at four sites in a watershed that has received extensive restoration for acid mine drainage (AMD) through the construction of passive treatment systems. Chlorophyll a biomass and productivity directly corresponded to AMD stress from coal mining. The site downstream of extensive passive treatment had significantly greater biomass and gross primary productivity rates than the site receiving only untreated AMD, but values were below those for two reference sites, indicating incomplete recovery. The degree of difference in these metrics among sites varied seasonally, primarily related to differences in canopy cover changes, but the ranking of sites in terms of stress generally was consistent. Reference sites had a significantly greater chlorophyll a/pheophytin ratio than untreated and treated sites, also indicating AMD stressed the communities. Community respiration was less affected by AMD stress than productivity or chlorophyll a. Productivity measures are not widely used to assess AMD impacts, and have been shown to both increase and decrease with AMD stress. The elimination of herbivores in AMD-impacted streams can increase productivity in the benthic algal community. Our study found productivity decreased with increasing AMD stress. Although sites with AMD stress had reduced herbivore populations, light, nutrients and metal precipitates appear to have limited growth of AMD-tolerant algal taxa. Therefore, it appears changes in food web structure due to AMD stress had less of an effect on epilithic productivity than environmental conditions within the stream.

  2. Structure and function of fish communities in the southern Lake Michigan basin with emphasis on restoration of native fish communities

    USGS Publications Warehouse

    Simon, Thomas P.; Stewart, Paul M.

    1999-01-01

    The southern Lake Michigan basin in northwest Indiana possesses a variety of aquatic habitats including riverine, palustrine, and lacustrine systems. The watershed draining this area is a remnant of glacial Lake Chicago and supports fish communities that are typically low in species richness. Composition of the presettlement Lake Michigan fish community near the Indiana Dunes has been difficult to reconstruct. Existing data indicate that the number of native species in the Lake Michigan watershed, including nearshore Lake Michigan, has declined by 22% since the onset of European settlement. Few remnants of natural fish communities exist, and those occur principally in the ponds of Miller Woods, the Grand Calumet Lagoons, and the Little Calumet River. These communities have maintained a relatively diverse assemblage of fishes despite large-scale anthropogenic disturbances in the area, including channelization, massive river redirection, fragmentation, habitat alteration, exotic species invasions, and the introduction of toxic chemicals. Data that we collected from 1985 to 1996 suggested that the Grand Calumet River has the highest proportion of exotic fish species of any inland wetland in northwest Indiana. Along the Lake Michigan shoreline, another group of exotics (e.g., round goby, alewife, and sea lamprey) have affected the structure of native fish communities, thereby altering lake ecosystem function. Stocking programs contribute to the impairment of native communities. Nonindigenous species have restructured the function of Lake Michigan tributaries, causing disruptions in trophic dynamics, guild structure, and species diversity. Several fish communities have been reduced or eliminated by the alteration and destruction of spawning and nursery areas. Degradation of habitats has caused an increase in numbers and populations of species able to tolerate and flourish when confronted with hydrologic alteration. Fish communities found on public lands in northwest

  3. Factors Likely to Affect Community Acceptance of a Malaria Vaccine in Two Districts of Ghana: A Qualitative Study

    PubMed Central

    Meñaca, Arantza; Tagbor, Harry; Adjei, Rose; Bart-Plange, Constance; Collymore, Yvette; Ba-Nguz, Antoinette; Mertes, Kelsey; Bingham, Allison

    2014-01-01

    Malaria is a leading cause of morbidity and mortality among children in Ghana. As part of the effort to inform local and national decision-making in preparation for possible malaria vaccine introduction, this qualitative study explored community-level factors that could affect vaccine acceptance in Ghana and provides recommendations for a health communications strategy. The study was conducted in two purposively selected districts: the Ashanti and Upper East Regions. A total of 25 focus group discussions, 107 in-depth interviews, and 21 semi-structured observations at Child Welfare Clinics were conducted. Malaria was acknowledged to be one of the most common health problems among children. While mosquitoes were linked to the cause and bed nets were considered to be the main preventive method, participants acknowledged that no single measure prevented malaria. The communities highly valued vaccines and cited vaccination as the main motivation for taking children to Child Welfare Clinics. Nevertheless, knowledge of specific vaccines and what they do was limited. While communities accepted the idea of minor vaccine side effects, other side effects perceived to be more serious could deter families from taking children for vaccination, especially during vaccination campaigns. Attendance at Child Welfare Clinics after age nine months was limited. Observations at clinics revealed that while two different opportunities for counseling were offered, little attention was given to addressing mothers’ specific concerns and to answering questions related to child immunization. Positive community attitudes toward vaccines and the understanding that malaria prevention requires a comprehensive approach would support the introduction of a malaria vaccine. These attitudes are bolstered by a well-established child welfare program and the availability in Ghana of active, flexible structures for conveying health information to communities. At the same time, it would be important to

  4. Linking community size structure and ecosystem functioning using metabolic theory

    PubMed Central

    Yvon-Durocher, Gabriel; Allen, Andrew P.

    2012-01-01

    Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change. PMID:23007088

  5. Immigration rates and species niche characteristics affect the relationship between species richness and habitat heterogeneity in modeled meta-communities.

    PubMed

    Bar-Massada, Avi

    2015-01-01

    The positive relationship between habitat heterogeneity and species richness is a cornerstone of ecology. Recently, it was suggested that this relationship should be unimodal rather than linear due to a tradeoff between environmental heterogeneity and population sizes. Increased environmental heterogeneity will decrease effective habitat sizes, which in turn will increase the rate of local species extinctions. The occurrence of the unimodal richness-heterogeneity relationship at the habitat scale was confirmed in both empirical and theoretical studies. However, it is unclear whether it can occur at broader spatial scales, for meta-communities in diverse and patchy landscapes. Here, I used a spatially explicit meta-community model to quantify the roles of two species-level characteristics, niche width and immigration rates, on the type of the richness-heterogeneity relationship at the landscape scale. I found that both positive and unimodal richness-heterogeneity relationships can occur in meta-communities in patchy landscapes. The type of the relationship was affected by the interactions between inter-patch immigration rates and species' niche widths. Unimodal relationships were prominent in meta-communities comprising species with wide niches but low inter-patch immigration rates. In contrast, meta-communities consisting of species with narrow niches and high immigration rates exhibited positive relationships. Meta-communities comprising generalist species are therefore likely to exhibit unimodal richness-heterogeneity relationships as long as low immigration rates prevent rescue effects and patches are small. The richness-heterogeneity relationship at the landscape scale is dictated by species' niche widths and inter-patch immigration rates. These immigration rates, in turn, depend on the interaction between species dispersal capabilities and habitat connectivity, highlighting the roles of both species traits and landscape structure in generating the richness

  6. Measuring the significance of community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Nie, Yuchao; Yang, Hua; Cheng, Jie; Fan, Ying; di, Zengru

    2010-12-01

    Many complex systems can be represented as networks, and separating a network into communities could simplify functional analysis considerably. Many approaches have recently been proposed to detect communities, but a method to determine whether the detected communities are significant is still lacking. In this paper, an index to evaluate the significance of communities in networks is proposed based on perturbation of the network. In contrast to previous approaches, the network is disturbed gradually, and the index is defined by integrating all of the similarities between the community structures before and after perturbation. Moreover, by taking the null model into account, the index eliminates scale effects. Thus, it can evaluate and compare the significance of communities in different networks. The method has been tested in many artificial and real-world networks. The results show that the index is in fact independent of the size of the network and the number of communities. With this approach, clear communities are found to always exist in social networks, but significant communities cannot be found in protein interactions and metabolic networks.

  7. Diversity, decoys and the dilution effect: how ecological communities affect disease risk.

    PubMed

    Johnson, P T J; Thieltges, D W

    2010-03-15

    Growing interest in ecology has recently focused on the hypothesis that community diversity can mediate infection levels and disease ('dilution effect'). In turn, biodiversity loss--a widespread consequence of environmental change--can indirectly promote increases in disease, including those of medical and veterinary importance. While this work has focused primarily on correlational studies involving vector-borne microparasite diseases (e.g. Lyme disease, West Nile virus), we argue that parasites with complex life cycles (e.g. helminths, protists, myxosporeans and many fungi) offer an excellent additional model in which to experimentally address mechanistic questions underlying the dilution effect. Here, we unite recent ecological research on the dilution effect in microparasites with decades of parasitological research on the decoy effect in macroparasites to explore key questions surrounding the relationship between community structure and disease. We find consistent evidence that community diversity significantly alters parasite transmission and pathology under laboratory as well as natural conditions. Empirical examples and simple transmission models highlight the diversity of mechanisms through which such changes occur, typically involving predators, parasite decoys, low competency hosts or other parasites. However, the degree of transmission reduction varies among diluting species, parasite stage, and across spatial scales, challenging efforts to make quantitative, taxon-specific predictions about disease. Taken together, this synthesis highlights the broad link between community structure and disease while underscoring the importance of mitigating ongoing changes in biological communities owing to species introductions and extirpations.

  8. pH affects bacterial community composition in soils across the Huashan Watershed, China.

    PubMed

    Huang, Rui; Zhao, Dayong; Zeng, Jin; Shen, Feng; Cao, Xinyi; Jiang, Cuiling; Huang, Feng; Feng, Jingwei; Yu, Zhongbo; Wu, Qinglong L

    2016-09-01

    To investigate soil bacterial richness and diversity and to determine the correlations between bacterial communities and soil properties, 8 soil samples were collected from the Huashan watershed in Anhui, China. Subsequently, 454 high-throughput pyrosequencing and bioinformatics analyses were performed to examine the soil bacterial community compositions. The operational taxonomic unit richness of the bacterial community ranged from 3664 to 5899, and the diversity indices, including Chao1, Shannon-Wiener, and Faith's phylogenetic diversity ranged from 7751 to 15 204, 7.386 to 8.327, and 415.77 to 679.11, respectively. The 2 most dominant phyla in the soil samples were Actinobacteria and Proteobacteria. The richness and diversity of the bacterial community were positively correlated with soil pH. The Mantel test revealed that the soil pH was the dominant factor influencing the bacterial community. The positive modular structure of co-occurrence patterns at the genus level was discovered by network analysis. The results obtained in this study provide useful information that enhances our understanding of the effects of soil properties on the bacterial communities. PMID:27374919

  9. Measuring the robustness of network community structure using assortativity

    PubMed Central

    Shizuka, Daizaburo; Farine, Damien R.

    2016-01-01

    The existence of discrete social clusters, or ‘communities’, is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems. PMID:26949266

  10. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes.

    PubMed

    Zhang, Ximei; Johnston, Eric R; Liu, Wei; Li, Linghao; Han, Xingguo

    2016-01-01

    Both 'species fitness difference'-based deterministic processes, such as competitive exclusion and environmental filtering, and 'species fitness difference'-independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) - (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) - (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional-based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism-dominated view.

  11. Past, Present, and Future Variations in Community College Organizational Structure.

    ERIC Educational Resources Information Center

    Underwood, James C.; Hammons, James O.

    1999-01-01

    Presents the results of a 1991 survey of 118 community college presidents, which elicited details about how their colleges were organized five years prior to and in 1991, as well as their preferred organization structures for the future. Reports variations in structure by three college size categories (enrollment levels) and indicates significant…

  12. Changing Community Structure and Income Distribution: A Structural Equation Model.

    ERIC Educational Resources Information Center

    Wheelock, Gerald C.

    A preliminary model of community economic development processes, consisting of a system of simultaneous equations, is used to describe how these processes influence changes in median family income and income inequality. The analysis was performed on 61 racially mixed counties in Alabama, using 1960-70 census data. Social and demographic variables…

  13. Post fumigation recovery of soil microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigants have been extensively used to control target soil-borne pathogens and weeds for the past few decades. It is known that the fumigants with broad biocidal activity can affect both target and non-target soil organisms, but the recovery of soil microbial communities are unknown until rece...

  14. Forest age influences oak insect herbivore community structure, richness, and density.

    PubMed

    Jeffries, June M; Marquis, Robert J; Forkner, Rebecca E

    2006-06-01

    Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity. PMID:16826990

  15. Earthworm ecology affects the population structure of their Verminephrobacter symbionts.

    PubMed

    Viana, Flávia; Jensen, Christopher Erik; Macey, Michael; Schramm, Andreas; Lund, Marie Braad

    2016-05-01

    Earthworms carry species-specific Verminephrobacter symbionts in their nephridia (excretory organs). The symbionts are vertically transmitted via the cocoon, can only colonize the host during early embryonic development, and have co-speciated with their host for about 100 million years. Although several studies have addressed Verminephrobacter diversity between worm species, the intra-species diversity of the symbiont population has never been investigated. In this study, symbiont population structure was examined by using a multi-locus sequence typing (MLST) approach on Verminephrobacter isolated from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and Eisenia fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils. Three distinct populations were investigated for both types and, according to MLST analysis of 193 Verminephrobacter isolates, the symbiont community in each worm individual was very homogeneous. The more solitary A. tuberculata carried unique symbiont populations in 9 out of 10 host individuals, whereas the symbiont populations in the social compost worms were homogeneous across host individuals from the same population. These data suggested that host ecology shaped the population structure of Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms led to the hypothesis that Verminephrobacter could be transferred bi-parentally or via leaky horizontal transmission in high-density, frequently mating worm populations. PMID:27040820

  16. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  17. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  18. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  19. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    PubMed

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.

  20. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  1. Alternative community structures in a kelp-urchin community: A qualitative modeling approach

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2007-01-01

    Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to

  2. Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities

    PubMed Central

    Deng, Ye; He, Zhili; Xu, Meiying; Qin, Yujia; Van Nostrand, Joy D.; Wu, Liyou; Roe, Bruce A.; Wiley, Graham; Hobbie, Sarah E.; Reich, Peter B.

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to examine impacts of elevated CO2 (eCO2) on soil microbial communities from 12 replicates each from ambient CO2 (aCO2) and eCO2 settings. The results suggest that the soil microbial community composition and structure significantly altered under conditions of eCO2, which was closely associated with soil and plant properties. PMID:22307288

  3. Parasitism, community structure and biodiversity in intertidal ecosystems.

    PubMed

    Mouritsen, K N; Poulin, R

    2002-01-01

    There is mounting evidence that parasites can influence the composition and structure of natural animal communities. In spite of this, it is difficult to assess just how important parasitism is for community structure because very few studies have been designed specifically to address the role of parasites at the community level, no doubt because it is difficult to manipulate the abundance of parasites in field experiments. Here, we bring together a large amount of published information on parasitism in intertidal communities to highlight the potential influence of parasites on the structure and biodiversity of these communities. We first review the impact of metazoan parasites on the survival, reproduction, growth and behaviour of intertidal invertebrates, from both rocky shores and soft-sediment flats. Published evidence suggests that the impact of parasites on individuals is often severe, though their effects at the population level are dependent on prevalence and intensity of infection. We then put this information together in a discussion of the impact of parasitism at the community level. We emphasize two ways in which parasites can modify the structure of intertidal communities. First, the direct impact of parasites on the abundance of key host species can decrease the importance of these hosts in competition or predator-prey interactions with other species. Second, the indirect effects of parasites on the behaviour of their hosts, e.g. burrowing ability or spatial distribution within the intertidal zone, can cause changes to various features of the habitat for other intertidal species, leading to their greater settlement success or to their local disappearance. Our synthesis allows specific predictions to be made regarding the potential impact of parasites in certain intertidal systems, and suggests that parasites must be included in future community studies and food web models of intertidal ecosystems. PMID:12396219

  4. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  5. Benchmark model to assess community structure in evolving networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Darst, Richard K.; Arenas, Alex; Fortunato, Santo; Gómez, Sergio

    2015-07-01

    Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterward the communities across layers. Alternatively, one can develop dedicated dynamic procedures so that multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on stochastic block models. In them, the time evolution consists of a periodic oscillation of the system's structure between configurations with built-in community structure. We also propose the extension of quality comparison indices to the dynamic scenario.

  6. Impact of Hurricane Sandy on community pharmacies in severely affected areas of New York City: A qualitative assessment.

    PubMed

    Arya, Vibhuti; Medina, Eric; Scaccia, Allison; Mathew, Cathleen; Starr, David

    2016-01-01

    Hurricane Sandy was one of the most severe natural disasters to hit the Mid-Atlantic States in recent history. Community pharmacies were among the businesses affected, with flooding and power outages significantly reducing services offered by many pharmacies. The objectives of our study were to assess the impact of Hurricane Sandy on community pharmacies, both independently owned and chain, in the severely affected areas of New York City (NYC), including Coney Island, Staten Island, and the Rockaways, using qualitative methods, and propose strategies to mitigate the impact of future storms and disasters. Of the total 52 solicited pharmacies, 35 (67 percent) responded and were included in our analysis. Only 10 (29 percent) of the pharmacies surveyed reported having a generator during Hurricane Sandy; 37 percent reported being equipped with a generator at the time of the survey approximately 1 year later. Our findings suggest that issues other than power outages contributed more toward a pharmacy remaining operational after the storm. Of those surveyed, 26 (74 percent) suffered from structural damage (most commonly in Coney Island). Most pharmacies (71 percent) were able to reopen within 1 month. Despite staffing challenges, most pharmacies (88 percent) had enough pharmacists/staff to resume normal operations. Overall, 91 percent were aware of law changes for emergency medication access, and 81 percent found the information easy to obtain. This survey helped inform our work toward improved community resiliency. Our findings have helped us recognize community pharmacists as important stakeholders and refocus our energy toward developing sustained partnerships with them in NYC as part of our ongoing preparedness strategy. PMID:27649748

  7. Impact of Hurricane Sandy on community pharmacies in severely affected areas of New York City: A qualitative assessment.

    PubMed

    Arya, Vibhuti; Medina, Eric; Scaccia, Allison; Mathew, Cathleen; Starr, David

    2016-01-01

    Hurricane Sandy was one of the most severe natural disasters to hit the Mid-Atlantic States in recent history. Community pharmacies were among the businesses affected, with flooding and power outages significantly reducing services offered by many pharmacies. The objectives of our study were to assess the impact of Hurricane Sandy on community pharmacies, both independently owned and chain, in the severely affected areas of New York City (NYC), including Coney Island, Staten Island, and the Rockaways, using qualitative methods, and propose strategies to mitigate the impact of future storms and disasters. Of the total 52 solicited pharmacies, 35 (67 percent) responded and were included in our analysis. Only 10 (29 percent) of the pharmacies surveyed reported having a generator during Hurricane Sandy; 37 percent reported being equipped with a generator at the time of the survey approximately 1 year later. Our findings suggest that issues other than power outages contributed more toward a pharmacy remaining operational after the storm. Of those surveyed, 26 (74 percent) suffered from structural damage (most commonly in Coney Island). Most pharmacies (71 percent) were able to reopen within 1 month. Despite staffing challenges, most pharmacies (88 percent) had enough pharmacists/staff to resume normal operations. Overall, 91 percent were aware of law changes for emergency medication access, and 81 percent found the information easy to obtain. This survey helped inform our work toward improved community resiliency. Our findings have helped us recognize community pharmacists as important stakeholders and refocus our energy toward developing sustained partnerships with them in NYC as part of our ongoing preparedness strategy.

  8. Seasonality Affects Macroalgal Community Response to Increases in pCO2

    PubMed Central

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M.

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  9. Seasonality affects macroalgal community response to increases in pCO2.

    PubMed

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  10. Random field Ising model and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Jeong, H.; Noh, J. D.

    2006-04-01

    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  11. Coded talk, scripted omissions: the micropolitics of AIDS talk in an affected community in South Africa.

    PubMed

    Wood, Kate; Lambert, Helen

    2008-09-01

    In this ethnographic article, we explore the character of local discourse about AIDS in an affected township community in South Africa, describing the "indirection" that characterized communication about suspected cases of AIDS. Through a case study of one affected family, the article first explores the diverse ways in which people came to "know" that specific cases of illness were AIDS related, and how this "knowledge" was communicated. We consider why communication was indirect and coded, arguing that this reflected nota "denial" of its presence in this community but, rather, a complex group of overlapping concerns far from unique to AIDS: first, a normative injunction on naming potentially fatal conditions; second, an interest in pursuing different therapeutic options and the need to maintain hope of recovery; and third, a wish to avoid the "disrespect" entailed in referring directly to the nature of the problem in a context where, discursively, stigma was still present. The coded and indirect character of HIV/AIDS-related talk underlines the importance of ethnographic inquiry in understanding community responses to this epidemic, demonstrating that the subtleties entailed by verbal silence and elision should not be interpreted naively as collective "denial" but rather be grounded within existing patterns of responses to dangerous sickness.

  12. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition.

  13. Functional structure of biological communities predicts ecosystem multifunctionality.

    PubMed

    Mouillot, David; Villéger, Sébastien; Scherer-Lorenzen, Michael; Mason, Norman W H

    2011-01-01

    The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages.

  14. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    PubMed

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  15. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    PubMed Central

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  16. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction.

  17. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates.

    PubMed

    Kivlin, Stephanie N; Treseder, Kathleen K

    2015-05-01

    Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change.

  18. Different communities, different perspectives: issues affecting residents' response to a volcanic eruption in southern Iceland

    NASA Astrophysics Data System (ADS)

    Bird, Deanne K.; Gísladóttir, Guðrún; Dominey-Howes, Dale

    2011-11-01

    This research investigates residents' knowledge and perception of the Katla volcano and emergency response procedures in all rural and urban communities located in the eastern and southern Katla hazard zones. Using a questionnaire survey conducted in 2008, we demonstrate that there is an apparent difference between rural and urban communities' knowledge and perceptions, and identify some of the issues influencing residents' perspectives and behaviour. All rural and most urban residents have an accurate knowledge of Katla, the proposed warning system and emergency response plan. Urban residents perceived the emergency response plan to be appropriate. In comparison, rural residents did not perceive the emergency response plan as appropriate. Rural residents stated that they would personally assess the situation before deciding on a course of action independent of the proposed plan. Livelihood connections and inherited knowledge affect rural residents' ability and willingness to comply with the recommended procedures. Factors such as hazard knowledge, sense of community and attachment to place indicate that rural residents are more resilient to volcanic hazards. Based on our findings we recommend that emergency management agencies consider issues such as personal responsibility, neighbourliness and community involvement and cooperation, to develop and implement more appropriate volcanic risk mitigation strategies. In light of the recent Eyjafjallajökull eruptions, we provide a brief discussion on the 2010 emergency response. Although our findings are Iceland-specific, our recommendations may be applied internationally to other volcanic and disaster-prone regions.

  19. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  20. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates.

    PubMed

    Kivlin, Stephanie N; Treseder, Kathleen K

    2015-05-01

    Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change. PMID:25331109

  1. Does prey community composition affect the way different behavioral types interact with their environment?

    PubMed

    Nannini, Michael A; Wahl, David H

    2016-10-01

    We examined how different exploratory behavioral types of largemouth bass responded to differing prey communities by determining effects on growth, survival and diet in experimental ponds. We found evidence that non-explorer largemouth bass target young-of-year bluegill early on in life, but bluegill were not an important diet item by late summer. The presence of young-of-year bluegill as prey does appear to affect the foraging strategy of the two exploring types differently. In the absence of small bluegill, both behavioral types feed primarily on benthic invertebrates and zooplankton. When small bluegill were present, we saw a shift away from zooplankton as prey for largemouth bass. However, that shift was toward more benthic invertebrates for non-exploring behavioral types and toward terrestrial insects for exploring behavioral types. Thus, it appears that prey community composition can have important effects on the way in which different behavioral types interact with their environment. PMID:27334870

  2. Does prey community composition affect the way different behavioral types interact with their environment?

    PubMed

    Nannini, Michael A; Wahl, David H

    2016-10-01

    We examined how different exploratory behavioral types of largemouth bass responded to differing prey communities by determining effects on growth, survival and diet in experimental ponds. We found evidence that non-explorer largemouth bass target young-of-year bluegill early on in life, but bluegill were not an important diet item by late summer. The presence of young-of-year bluegill as prey does appear to affect the foraging strategy of the two exploring types differently. In the absence of small bluegill, both behavioral types feed primarily on benthic invertebrates and zooplankton. When small bluegill were present, we saw a shift away from zooplankton as prey for largemouth bass. However, that shift was toward more benthic invertebrates for non-exploring behavioral types and toward terrestrial insects for exploring behavioral types. Thus, it appears that prey community composition can have important effects on the way in which different behavioral types interact with their environment.

  3. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient.

    PubMed

    Silva, Rogério R; Brandão, Carlos Roberto F

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20° of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  4. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient.

    PubMed

    Silva, Rogério R; Brandão, Carlos Roberto F

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20° of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  5. Governance and Management Structures for Community Partnerships: Experiences from the Robert Wood Johnson Foundation's Community Partnerships for Older Adults Program

    ERIC Educational Resources Information Center

    Bolda, Elise J.; Saucier, Paul; Maddux, George L.; Wetle, Terrie; Lowe, Jane Isaacs

    2006-01-01

    Purpose: This article describes early efforts of four community partnerships in Boston, El Paso, Houston, and Milwaukee to address governance and management structures in ways that promote the sustainability of innovative community-based long-term care system improvements. The four communities are grantees of the Community Partnerships for Older…

  6. Phylogenetic plant community structure along elevation is lineage specific.

    PubMed

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-12-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.

  7. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  8. Comparing factors of vulnerability and resilience of mountain communities affected by landslides in Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Sudmeier-Rieux, Karen; Dubois, Jerome; Jaboyedoff, Michel

    2010-05-01

    This paper describes a methodology for assessing and quantifying vulnerability and resilience of mountain communities in Eastern Nepal increasingly affected by landslides and flooding. We are interested in improving our understanding of the complex interactions between land use, landslides and multiple dimensions of risk, vulnerability and resilience to better target risk management strategies. Our approach is based on assessing underlying social, ecological and physical factors that cause vulnerability and on the other hand, those resources and capacities that increase resilience. Increasing resilience to disasters is frequently used by NGOs, governments and donors as the main goal of disaster risk reduction policies and practices. If we are to increase resilience to disasters, we need better guidance and tools for defining, assessing and monitoring its parameters. To do so, we are establishing a methodology for quantifying and mapping an index of resilience to compare resilience factors between households and communities based on interdisciplinary research methods: remote sensing, GIS, qualitative and quantitative risk assessments, participatory risk mapping, household questionnaires and focus groups discussions. Our study applied this methodology to several communities in Eastern Nepal where small, frequent landslides are greatly affecting rural lives and livelihoods. These landslides are not captured by headlines or official statistics but are examples of cumulative, hidden disasters, which are impacting everyday life and rural poverty in the Himalayas. Based on experience, marginalized populations are often aware of the physical risks and the limitations of their land. However, they continue to live in dangerous places out of necessity and for the economic or infrastructure opportunities offered. We compare two communities in Nepal, both affected by landslides but with different land use, migration patterns, education levels, social networks, risk reduction

  9. Community structural characteristics and the adoption of fluoridation.

    PubMed Central

    Smith, R A

    1981-01-01

    A study of community structural characteristics associated with fluoridation outcomes was conducted in 47 communities. A three-part outcome distinction was utilized: communities never having publicly considered the fluoridation issue, those rejecting it, and those accepting it. The independent variables reflect the complexity of the community social and economic structure, social integration, and the centralization of authority. Results of mean comparisons show statistically significant differences between the three outcome types on the independent variables. A series of discriminant analyses provides furtheor evidence of how the independent variables are associated with each outcome type. Non-considering communities are shown to be low in complexity, and high in social integration and the centralization of governmental authority. Rejecters are shown to be high in complexity, but low in social integration and centralized authority. Adopters are relatively high on all three sets of variables. Theretical reasoning is provided to support the hypothesis and why these results are expected. The utility of these results and structural explanations in general are discussed, especially for public/environmental health planning and political activities. PMID:7258427

  10. Subsidies to predators, apparent competition and the phylogenetic structure of prey communities.

    PubMed

    Helmus, Matthew R; Mercado-Silva, Norman; Vander Zanden, M Jake

    2013-11-01

    Ecosystems are fragmented by natural and anthropogenic processes that affect organism movement and ecosystem dynamics. When a fragmentation restricts predator but not prey movement, then the prey produced on one side of an ecosystem edge can subsidize predators on the other side. When prey flux is high, predator density on the receiving side increases above that possible by in situ prey productivity, and when low, the formerly subsidized predators can impose strong top-down control of in situ prey--in situ prey experience apparent competition from the subsidy. If predators feed on some evolutionary clades of in situ prey over others, then subsidy-derived apparent competition will induce phylogenetic structure in prey composition. Dams fragment the serial nature of river ecosystems by prohibiting movement of organisms and restricting flowing water. In the river tailwater just below a large central Mexican dam, fish density was high and fish gorged on reservoir-derived zooplankton. When the dam was closed, water flow and the zooplankton subsidy ceased, densely packed pools of fish formed, fish switched to feed on in situ prey, and the tailwater macroinvertebrate community was phylogenetic structured. We derived expectations of structure from trait-based community assembly models based on macroinvertebrate body size, tolerance to anthropogenic disturbance, and fish-diet selectivity. The diet-selectivity model best fit the observed tailwater phylogenetic structure. Thus, apparent competition from subsidies phylogenetically structures prey communities, and serial variation in phylogenetic community structure can be indicative of fragmentation in formerly continuous ecosystems.

  11. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants.

    PubMed

    Marques, Joana M; da Silva, Thais F; Vollu, Renata E; Blank, Arie F; Ding, Guo-Chun; Seldin, Lucy; Smalla, Kornelia

    2014-05-01

    The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere. Pyrosequencing analysis showed that the IPB-149 and IPB-052 (both with high starch content) displayed similar bacterial composition in the tuber rhizosphere, while IPB-137 with the lowest starch content was distinct. In comparison with bulk soil, higher 16S rRNA gene copy numbers (qPCR) and numerous genera with significantly increased abundance in the tuber rhizosphere of IPB-137 (Sphingobium, Pseudomonas, Acinetobacter, Stenotrophomonas, Chryseobacterium) indicated a stronger rhizosphere effect. The genus Bacillus was strongly enriched in the tuber rhizosphere samples of all sweet potato genotypes studied, while other genera showed a plant genotype-dependent abundance. This is the first report on the molecular identification of bacteria being associated with the tuber rhizosphere of different sweet potato genotypes.

  12. Characterizing changes in soil bacterial community structure in response to short-term warming.

    PubMed

    Xiong, Jinbo; Sun, Huaibo; Peng, Fei; Zhang, Huayong; Xue, Xian; Gibbons, Sean M; Gilbert, Jack A; Chu, Haiyan

    2014-08-01

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both +1 and +2 °C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at +1 °C, but a return to AT control relative abundance at +2 °C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  13. Roles of benthic algae in the structure, function, and assessment of stream ecosystems affected by acid mine drainage.

    PubMed

    Smucker, Nathan J; Drerup, Samuel A; Vis, Morgan L

    2014-06-01

    Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal-dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD-associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure-based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining. PMID:26988317

  14. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  15. Changes in trophic structure of a freshwater protozoan community subjected to cadmium.

    PubMed

    Fernández-Leborans, G; Novillo-Villajos, A

    1993-06-01

    The development of protozoan communities in laboratory microecosystems has been studied in order to observe the effect of cadmium on the trophic structure and dynamics of these communities. The effect of cadmium was evident on the species richness, density, and biomass. The most sensitive parameters seem to be biomass and species richness. In the controls, the trophic structure of the community was defined for bacterivore-detritivore, photautotroph, algivore, and in low proportion for nonselective species. In the fractions with cadmium there was a decrease in diversity in each trophic group; the bacterivore-detritivore and photosynthetic species were the most affected. Also, there was an appearance of saprotroph species. Species belonging to the control and others exclusively pertaining to microecosystems with cadmium were observed. PMID:7691521

  16. Changes in trophic structure of a freshwater protozoan community subjected to cadmium.

    PubMed

    Fernández-Leborans, G; Novillo-Villajos, A

    1993-06-01

    The development of protozoan communities in laboratory microecosystems has been studied in order to observe the effect of cadmium on the trophic structure and dynamics of these communities. The effect of cadmium was evident on the species richness, density, and biomass. The most sensitive parameters seem to be biomass and species richness. In the controls, the trophic structure of the community was defined for bacterivore-detritivore, photautotroph, algivore, and in low proportion for nonselective species. In the fractions with cadmium there was a decrease in diversity in each trophic group; the bacterivore-detritivore and photosynthetic species were the most affected. Also, there was an appearance of saprotroph species. Species belonging to the control and others exclusively pertaining to microecosystems with cadmium were observed.

  17. How Has the Economic Downturn Affected Communities and Implementation of Science-Based Prevention in the Randomized Trial of Communities That Care?

    PubMed Central

    Kuklinski, Margaret R.; Hawkins, J. David; Plotnick, Robert D.; Abbott, Robert D.; Reid, Carolina K.

    2013-01-01

    This study examined implications of the economic downturn that began in December 2007 for the Community Youth Development Study (CYDS), a longitudinal randomized controlled trial of the Communities That Care (CTC) prevention system. The downturn had the potential to affect the internal validity of the CYDS research design and implementation of science-based prevention in study communities. We used archival economic indicators and community key leader reports of economic conditions to assess the extent of the economic downturn in CYDS communities and potential internal validity threats. We also examined whether stronger economic downturn effects were associated with a decline in science-based prevention implementation. Economic indicators suggested the downturn affected CYDS communities to different degrees. We found no evidence of systematic differences in downturn effects in CTC compared to control communities that would threaten internal validity of the randomized trial. The Community Economic Problems scale was a reliable measure of community economic conditions, and it showed criterion validity in relation to several objective economic indicators. CTC coalitions continued to implement science-based prevention to a significantly greater degree than control coalitions 2 years after the downturn began. However, CTC implementation levels declined to some extent as unemployment, the percentage of students qualifying for free lunch, and community economic problems worsened. Control coalition implementation levels were not related to economic conditions before or after the downturn, but mean implementation levels of science-based prevention were also relatively low in both periods. PMID:23054169

  18. How has the economic downturn affected communities and implementation of science-based prevention in the randomized trial of communities that care?

    PubMed

    Kuklinski, Margaret R; Hawkins, J David; Plotnick, Robert D; Abbott, Robert D; Reid, Carolina K

    2013-06-01

    This study examined implications of the economic downturn that began in December 2007 for the Community Youth Development Study (CYDS), a longitudinal randomized controlled trial of the Communities That Care (CTC) prevention system. The downturn had the potential to affect the internal validity of the CYDS research design and implementation of science-based prevention in study communities. We used archival economic indicators and community key leader reports of economic conditions to assess the extent of the economic downturn in CYDS communities and potential internal validity threats. We also examined whether stronger economic downturn effects were associated with a decline in science-based prevention implementation. Economic indicators suggested the downturn affected CYDS communities to different degrees. We found no evidence of systematic differences in downturn effects in CTC compared to control communities that would threaten internal validity of the randomized trial. The Community Economic Problems scale was a reliable measure of community economic conditions, and it showed criterion validity in relation to several objective economic indicators. CTC coalitions continued to implement science-based prevention to a significantly greater degree than control coalitions 2 years after the downturn began. However, CTC implementation levels declined to some extent as unemployment, the percentage of students qualifying for free lunch, and community economic problems worsened. Control coalition implementation levels were not related to economic conditions before or after the downturn, but mean implementation levels of science-based prevention were also relatively low in both periods.

  19. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland.

    PubMed

    Ganzert, Lars; Bajerski, Felizitas; Wagner, Dirk

    2014-08-01

    Greenland is one of the regions of interest with respect to climate change and global warming in the Northern Hemisphere. Little is known about the structure and diversity of the terrestrial bacterial communities in ice-free areas in northern Greenland. These soils are generally poorly developed and usually carbon- and nitrogen-limited. Our goal was to provide the first insights into the soil bacterial communities from five different sites in Northeast Greenland using culture-independent and culture-dependent methods. The comparison of environmental and biological data showed that the soil bacterial communities are diverse and significantly pH-dependent. The most frequently detected OTUs belonged to the phyla Acidobacteria, Bacteroidetes and (Alpha-, Beta-, Delta-) Proteobacteria. Low pH together with higher nitrogen and carbon concentrations seemed to support the occurrence of (Alpha-, Beta-, Delta-) Proteobacteria (at the expense of Acidobacteria), whereas Bacteroidetes were predominant at higher values of soil pH. Our study indicates that pH is the main factor for shaping bacterial community, but carbon and nitrogen concentrations as well may become important, especially for selecting oligotrophic microorganisms.

  20. High Concentrations of Methyl Fluoride Affect the Bacterial Community in a Thermophilic Methanogenic Sludge

    PubMed Central

    Hao, Liping; Lü, Fan; Wu, Qing; Shao, Liming; He, Pinjing

    2014-01-01

    To precisely control the application of methyl fluoride (CH3F) for analysis of methanogenic pathways, the influence of 0–10% CH3F on bacterial and archaeal communities in a thermophilic methanogenic sludge was investigated. The results suggested that CH3F acts specifically on acetoclastic methanogenesis. The inhibitory effect stabilized at an initial concentration of 3–5%, with around 90% of the total methanogenic activity being suppressed, and a characteristic of hydrogenotrophic pathway in isotope fractionation was demonstrated under this condition. However, extended exposure (12 days) to high concentrations of CH3F (>3%) altered the bacterial community structure significantly, resulting in increased diversity and decreased evenness, which can be related to acetate oxidation and CH3F degradation. Bacterial clone library analysis showed that syntrophic acetate oxidizing bacteria Thermacetogenium phaeum were highly enriched under the suppression of 10% CH3F. However, the methanogenic community did not change obviously. Thus, excessive usage of CH3F over the long term can change the composition of the bacterial community. Therefore, data from studies involving the use of CH3F as an acetoclast inhibitor should be interpreted with care. Conversely, CH3F has been suggested as a factor to stimulate the enrichment of syntrophic acetate oxidizing bacteria. PMID:24658656

  1. Mission and Structure: The Community College in a Global Context.

    ERIC Educational Resources Information Center

    Levin, John S.

    This is an investigation of globalization and its effects upon seven community colleges in Canada and the U.S. As a study of organizational change, the investigation addresses the alteration of processes and structures over the 1990s, brought about in part by globalization and institutional responses to globalization. This report has 11 chapters,…

  2. Changes in Soil Microbial Community Structure with Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  3. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  4. Perception of Community Dissatisfaction and School Organizational Structures.

    ERIC Educational Resources Information Center

    Leiter, Jeffrey

    1983-01-01

    The effects of school personnel's perceptions of community dissatisfaction are examined on school structures of normative consensus, upward communication, and exchanges of help. The analysis uses questionnaire data from school personnel of 34 schools to compare the explanatory utility of four theoretical perspectives. (Author/PN)

  5. [Structure of reef fish communities in Catalinas Islands and Ocotal beach, North Pacific of Costa Rica].

    PubMed

    Espinoza, Mario; Salas, Eva

    2005-01-01

    The reefs are heterogeneous systems that maintain a high diversity of organisms. Fish community structure varies within and among reefs, so it would be expected that reef structure and heterogeneity should affect fish communities inhabiting reefs. Four reef patches at Catalinas Islands (Sur, La Pared, Roca Sucia and Sombrero) and one in Ocotal beach (10 degrees 28'45" N; 85 degrees 52'35" W) were studied with visual censuses (July-December 2003). The structure and composition of fishes between Catalinas islands and Ocotal beach were different, and habitat structure and composition explain most of the variance founded. The presence of the fleshy algae Caulerpa sertularioides in Ocotal, and the corals Tubastrea coccinea and Pocillopora spp. at Catalinas Island explained the variability among sites and how it affected fish community structure and composition. The butterfly fish Johnrandallia nigrirostris, damselfish Microspathodon dorsalis, and surgeon fish Prionurus punctatus were directly correlated with the ahermatipic coral Tubastrea coccinea in Roca Sucia reef, while the angel fish Holacanthus passer was associated to reefs with a major percentage of rocky substrate. Other species such as the damselfish Abudefduf troschelli and Halichoeres dispilus were more abundant at Ocotal, where the algae C sertularioides dominated. The number and abundance of reef fishes was directly correlated with the rugosity index at the reefs of Roca Sucia and Ocotal, but not at reefs of La Pared and Sombrero.

  6. Dissipation and effects of tricyclazole on soil microbial communities and rice growth as affected by amendment with alperujo compost.

    PubMed

    García-Jaramillo, M; Redondo-Gómez, S; Barcia-Piedras, J M; Aguilar, M; Jurado, V; Hermosín, M C; Cox, L

    2016-04-15

    The presence of pesticides in surface and groundwater has grown considerably in the last decades as a consequence of the intensive farming activity. Several studies have shown the benefits of using organic amendments to prevent losses of pesticides from runoff or leaching. A particular soil from the Guadalquivir valley was placed in open air ponds and amended at 1 or 2% (w/w) with alperujo compost (AC), a byproduct from the olive oil industry. Tricyclazole dissipation, rice growth and microbial diversity were monitored along an entire rice growing season. An increase in the net photosynthetic rate of Oryza sativa plants grown in the ponds with AC was observed. These plants produced between 1100 and 1300kgha(-1) more rice than plants from the unamended ponds. No significant differences were observed in tricyclazole dissipation, monitored for a month in soil, surface and drainage water, between the amended and unamended ponds. The structure and diversity of bacteria and fungi communities were also studied by the use of the polymerase chain reaction denaturing gel electrophoresis (PCR-DGGE) from DNA extracted directly from soil samples. The banding pattern was similar for all treatments, although the density of bands varied throughout the time. Apparently, tricyclazole did not affect the structure and diversity of bacteria and fungi communities, and this was attributed to its low bioavailability. Rice cultivation under paddy field conditions may be more efficient under the effects of this compost, due to its positive effects on soil properties, rice yield, and soil microbial diversity.

  7. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  8. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  9. Phylogenetic isolation of host trees affects assembly of local Heteroptera communities.

    PubMed

    Vialatte, A; Bailey, R I; Vasseur, C; Matocq, A; Gossner, M M; Everhart, D; Vitrac, X; Belhadj, A; Ernoult, A; Prinzing, A

    2010-07-22

    A host may be physically isolated in space and then may correspond to a geographical island, but it may also be separated from its local neighbours by hundreds of millions of years of evolutionary history, and may form in this case an evolutionarily distinct island. We test how this affects the assembly processes of the host's colonizers, this question being until now only invoked at the scale of physically distinct islands or patches. We studied the assembly of true bugs in crowns of oaks surrounded by phylogenetically more or less closely related trees. Despite the short distances (less than 150 m) between phylogenetically isolated and non-isolated trees, we found major differences between their Heteroptera faunas. We show that phylogenetically isolated trees support smaller numbers and fewer species of Heteroptera, an increasing proportion of phytophages and a decreasing proportion of omnivores, and proportionally more non-host-specialists. These differences were not due to changes in the nutritional quality of the trees, i.e. species sorting, which we accounted for. Comparison with predictions from meta-community theories suggests that the assembly of local Heteroptera communities may be strongly driven by independent metapopulation processes at the level of the individual species. We conclude that the assembly of communities on hosts separated from their neighbours by long periods of evolutionary history is qualitatively and quantitatively different from that on hosts established surrounded by closely related trees. Potentially, the biotic selection pressure on a host might thus change with the evolutionary proximity of the surrounding hosts.

  10. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  11. Drinking behavior among older adults at a continuing care retirement community: affective and motivational influences

    PubMed Central

    Sacco, Paul; Burruss, Karen; Smith, Cristan A.; Kuerbis, Alexis; Harrington, Donna; Moore, Alison A.; Resnick, Barbara

    2014-01-01

    Objectives The purpose of this pilot study was to describe patterns of alcohol consumption among continuing care retirement community(CCRC) residents and to explore the role of drinking motives and affective states on drinking context and consumption. Method We utilized a phone-based daily diary approach to survey older adults about their daily alcohol consumption, context of drinking (e.g. drinking alone), positive and negative affect, and their motives for drinking. Data were analyzed descriptively, and regression models were developed to examine associations between sociodemographic factors, affect, drinking context and motives, and alcohol consumption. Results CCRC residents drank most frequently at home and were alone almost half of drinking days on average, although the context of drinking varied considerably by participant. Problem alcohol use was rare, but hazardous use due to specific comorbidities, symptoms and medications, and the amount of alcohol consumption was common. Respondents endorsed higher social motives for drinking and lower coping motives. Social motives were associated with decreased likelihood of drinking alone, but negative affect was associated with decreased likelihood of drinking outside one’s home. Coping and social motives were associated with greater consumption, and higher positive affect was associated with lower consumption. Conclusion Among CCRC residents, alcohol use may be socially motivated rather than motivated by coping with negative affect. Future research should examine other motives for drinking in older adulthood. Evaluation of older adults living in CCRCs should include attention to health factors beyond problem use as other forms of hazardous use may be common in CCRCs. PMID:25010351

  12. Structure of Benthic Communities along the Taiwan Latitudinal Gradient.

    PubMed

    Ribas-Deulofeu, Lauriane; Denis, Vianney; De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  13. Structure of Benthic Communities along the Taiwan Latitudinal Gradient

    PubMed Central

    De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  14. Structure of Benthic Communities along the Taiwan Latitudinal Gradient.

    PubMed

    Ribas-Deulofeu, Lauriane; Denis, Vianney; De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed.

  15. Mutualistic Interactions and Community Structure in Biological Metacommunities

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Filotas, Elise; Grant, Martin; Parrott, Lael

    2011-03-01

    The role of space in determining species coexistence and community structure is well established. However, previous studies mainly focus on simple competition and predation systems, and the role of mutualistic interspecies interactions is not well understood. Here we use a spatially explicit metacommunity model, in which new species enter by a mutation process, to study the effect of fitness-dependent dispersal on the structure of communities with interactions comprising mutualism, competition, and exploitation. We find that the diversity and interaction network undergo a nonequilibrium phase transition with increasing dispersal rate. Low dispersion rate favors spontaneous emergence of many dissimilar, strongly mutualistic and species-poor local communities. Due to the local dissimilarities, the global diversity is high. High dispersion rate promotes local biodiversity and supports similar, species-rich local communities with a wide range of interactions. The strong similarity between neighboring local communities leads to reduced global diversity. Supported by NSERC (Canada), FQRNT (Québec), NSF (U.S.A.)

  16. Floral colour versus phylogeny in structuring subalpine flowering communities

    PubMed Central

    McEwen, Jamie R.; Vamosi, Jana C.

    2010-01-01

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chance. However, coflowering species were not phylogenetically dispersed, in part due to our finding that floral colour is a labile trait with a weak phylogenetic signal. Furthermore, while we found that locally rare and common species exhibited equivalent floral colour distances from their coflowering neighbours, frequent species (those found in more communities) exhibited higher colour distances from their coflowering neighbours. Our findings support recent studies, which have found that (i) plant lineages exhibit frequent floral colour transitions; and (ii) traits that influence local population dynamics contribute to community structure. PMID:20484236

  17. Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil.

    PubMed

    Rooney, Deirdre C; Clipson, Nicholas J W

    2009-01-01

    Agricultural improvement (addition of fertilizers, liming) of seminatural acidic grasslands across Ireland and the UK has resulted in significant shifts in floristic composition, soil chemistry, and microbial community structure. Although several factors have been proposed as responsible for driving shifts in microbial communities, the exact causes of such changes are not well defined. Phosphate was added to grassland microcosms to investigate the effect on fungal and bacterial communities. Plant species typical of unimproved grasslands (Agrostis capillaris, Festuca ovina) and agriculturally improved grasslands (Lolium perenne) were grown, and phosphate was added 25 days after seed germination, with harvesting after a further 50 days. Phosphate addition significantly increased root biomass (p < 0.001) and shoot biomass (p < 0.05), soil pH (by 0.1 U), and microbial activity (by 5.33 mg triphenylformazan [TPF] g(-1) soil; p < 0.001). A slight decrease (by 0.257 mg biomass-C g(-1) soil; p < 0.05) in microbial biomass after phosphate addition was found. The presence of plant species significantly decreased soil pH (p < 0.05; by up to 0.2 U) and increased microbial activity (by up to 6.02 mg TPF g(-1) soil) but had no significant effect on microbial biomass. Microbial communities were profiled using automated ribosomal intergenic spacer analysis. Multidimensional scaling plots and canonical correspondence analysis revealed that phosphate addition and its interactions with upland grassland plant species resulted in considerable changes in the fungal and bacterial communities of upland soil. The fungal community structure was significantly affected by both phosphate (R = 0.948) and plant species (R = 0.857), and the bacterial community structure was also significantly affected by phosphate (R = 0.758) and plant species (R = 0.753). Differences in microbial community structure following P addition were also revealed by similarity percentage analysis. These data suggest

  18. Quantifying the response of structural complexity and community composition to environmental change in marine communities.

    PubMed

    Ferrari, Renata; Bryson, Mitch; Bridge, Tom; Hustache, Julie; Williams, Stefan B; Byrne, Maria; Figueira, Will

    2016-05-01

    Habitat structural complexity is a key factor shaping marine communities. However, accurate methods for quantifying structural complexity underwater are currently lacking. Loss of structural complexity is linked to ecosystem declines in biodiversity and resilience. We developed new methods using underwater stereo-imagery spanning 4 years (2010-2013) to reconstruct 3D models of coral reef areas and quantified both structural complexity at two spatial resolutions (2.5 and 25 cm) and benthic community composition to characterize changes after an unprecedented thermal anomaly on the west coast of Australia in 2011. Structural complexity increased at both resolutions in quadrats (4 m(2)) that bleached, but not those that did not bleach. Changes in complexity were driven by species-specific responses to warming, highlighting the importance of identifying small-scale dynamics to disentangle ecological responses to disturbance. We demonstrate an effective, repeatable method for quantifying the relationship among community composition, structural complexity and ocean warming, improving predictions of the response of marine ecosystems to environmental change. PMID:26679689

  19. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    NASA Astrophysics Data System (ADS)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  20. Agave salmiana plant communities in central Mexico as affected by commercial use.

    PubMed

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal (Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha(-1)) in the short-use areas and less (892 plants ha(-1)) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha(-1)) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  1. Teachers' Challenges, Strategies, and Support Needs in Schools Affected by Community Violence: A Qualitative Study

    ERIC Educational Resources Information Center

    Maring, Elisabeth F.; Koblinsky, Sally A.

    2013-01-01

    Background: Exposure to community violence compromises teacher effectiveness, student learning, and socioemotional well-being. This study examined the challenges, strategies, and support needs of teachers in urban schools affected by high levels of community violence. Methods: Twenty teachers from 3 urban middle schools with predominantly…

  2. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae.

    PubMed

    Ordoñez, Alexandra; Doropoulos, Christopher; Diaz-Pulido, Guillermo

    2014-06-01

    Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.

  3. Effects of community structure on the dynamics of random threshold networks

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Sheng; Albert, Réka

    2013-01-01

    Random threshold networks (RTNs) have been widely used as models of neural or genetic regulatory networks. Network topology plays a central role in the dynamics of these networks. Recently it has been shown that many social and biological networks are scale-free and also exhibit community structure, in which autonomous modules are wired together to perform relatively independent functions. In this study we use both synchronous and asynchronous models of RTNs to systematically investigate how community structure affects the dynamics of RTNs with scale-free topology. Extensive simulation experiments show that RTNs with high modularity have more attractors than those RTNs with low modularity, and RTNs with smaller communities tend to have more attractors. Damage resulting from perturbation of initial conditions spreads less effectively in RTNs with higher modularity and RTNs with smaller communities. In addition, RTNs with high modularity can coordinate their internal dynamics better than RTNs with low modularity under the synchronous update scheme, and it is the other way around under the asynchronous update. This study shows that community structure has a strong effect on the dynamics of RTNs.

  4. Mutualistic mimicry and filtering by altitude shape the structure of Andean butterfly communities.

    PubMed

    Chazot, Nicolas; Willmott, Keith R; Santacruz Endara, Paola G; Toporov, Alexandre; Hill, Ryan I; Jiggins, Chris D; Elias, Marianne

    2014-01-01

    Both the abiotic environment and abiotic interactions among species contribute to shaping species assemblages. While the roles of habitat filtering and competitive interactions are clearly established, less is known about how positive interactions, whereby species benefit from the presence of one another, affect community structure. Here we assess the importance of positive interactions by studying Andean communities of butterflies that interact mutualistically via Müllerian mimicry. We show that communities at similar altitudes have a similar phylogenetic composition, confirming that filtering by altitude is an important process. We also provide evidence that species that interact mutualistically (i.e., species that share the same mimicry wing pattern) coexist at large scales more often than expected by chance. Furthermore, we detect an association between mimicry structure and altitude that is stronger than expected even when phylogeny is corrected for, indicating adaptive convergence for wing pattern and/or altitudinal range driven by mutualistic interactions. Positive interactions extend far beyond Müllerian mimicry, with many examples in plants and animals, and their role in the evolution and assembly of communities may be more pervasive than is currently appreciated. Our findings have strong implications for the evolution and resilience of community structure in a changing world.

  5. Factors affecting the performance of community health workers in India: a multi-stakeholder perspective

    PubMed Central

    Sharma, Reetu; Webster, Premila; Bhattacharyya, Sanghita

    2014-01-01

    Background Community health workers (CHWs) form a vital link between the community and the health department in several countries. In India, since 2005 this role is largely being played by Accredited Social Health Activists (ASHAs), who are village-level female workers. Though ASHAs primarily work for the health department, in a model being tested in Rajasthan they support two government departments. Focusing on the ASHA in this new role as a link worker between two departments, this paper examines factors associated with her work performance from a multi-stakeholder perspective. Design The study was done in 16 villages from two administrative blocks of Udaipur district in Rajasthan. The findings are based on 63 in-depth interviews with ASHAs, their co-workers and representatives from the two departments. The interviews were conducted using interview guides. An inductive approach with open coding was used for manual data analysis. Results This study shows that an ASHA's motivation and performance are affected by a variety of factors that emerge from the complex context in which she works. These include various personal (e.g. education), professional (e.g. training, job security), and organisational (e.g. infrastructure) factors along with others that emerge from external work environment. The participants suggested various ways to address these challenges. Conclusion In order to improve the performance of ASHAs, apart from taking corrective actions at the professional and organisational front on a priority basis, it is equally essential to promote cordial work relationships amongst ASHAs and other community-level workers from the two departments. This will also have a positive impact on community health. PMID:25319596

  6. Drivers of macroinvertebrate community structure in unmodified streams

    PubMed Central

    2014-01-01

    Often simple metrics are used to summarise complex patterns in stream benthic ecology, thus it is important to understand how well these metrics can explain the finer-scale underlying environmental variation often hidden by coarser-scale influences. I sampled 47 relatively pristine streams in the central North Island of New Zealand in 2007 and (1) evaluated the local-scale drivers of macroinvertebrate community structure as well as both diversity and biomonitoring metrics in this unmodified landscape, and (2) assessed whether these drivers were similar for commonly used univariate metrics and multivariate structure. The drivers of community metrics and multivariate structure were largely similar, with % canopy cover and resource supply metrics the most commonly identified environmental drivers in these pristine streams. For an area with little to no anthropogenic influence, substantial variation was explained in the macroinvertebrate community (up to 70% on the first two components of a partial least squares regression), with both uni- and multivariate approaches. This research highlights two important points: (1) the importance of considering natural underlying environmental variation when assessing the response to coarse environmental gradients, and (2) the importance of considering canopy cover presence when assessing the impact of stressors on stream macroinvertebrate communities. PMID:25024926

  7. Evaluation of water sampling methodologies for amplicon-based characterization of bacterial community structure.

    PubMed

    Staley, Christopher; Gould, Trevor J; Wang, Ping; Phillips, Jane; Cotner, James B; Sadowsky, Michael J

    2015-07-01

    Reduction in costs of next-generation sequencing technologies has allowed unprecedented characterization of bacterial communities from environmental samples including aquatic ecosystems. However, the extent to which extrinsic factors including sampling volume, sample replication, DNA extraction kits, and sequencing target affect the community structure inferred are poorly explored. Here, triplicate 1, 2, and 6L volume water samples from the Upper Mississippi River were processed to determine variation among replicates and sample volumes. Replicate variability significantly influenced differences in the community α-diversity (P=0.046), while volume significantly changed β-diversity (P=0.037). Differences in phylogenetic and taxonomic community structure differed both among triplicate samples and among the volumes filtered. Communities from 2L and 6L water samples showed similar clustering via discriminant analysis. To assess variation due to DNA extraction method, DNA was extracted from triplicate cell pellets from four sites along the Upper Mississippi River using the Epicentre Metagenomic DNA Isolation Kit for Water and MoBio PowerSoil kit. Operational taxonomic units representing ≤14% of sequence reads differed significantly among all sites and extraction kits used, although differences in diversity and community coverage were not significant (P≥0.057). Samples characterized using only the V6 region had significantly higher coverage and lower richness and α-diversity than those characterized using V4-V6 regions (P<0.001). Triplicate sampling of at least 2L of water provides robust representation of community variability, and these results indicate that DNA extraction kit and sequencing target displayed taxonomic biases that did not affect the overall biological conclusions drawn. PMID:25956022

  8. Carbon Accumulation and Microbial Community Structure in Reclaimed Mine Soils

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Palumbo, A. V.; Tarver, J. D.; Fisher, S.; Cantu, J.; Brandt, C. C.

    2002-12-01

    The objective of this study was to investigate the potential for soil amendments to increase accumulation of carbon in reclaimed soils and the relationship between carbon and microbial community structure. Changes in community structure were determined by signature lipid biomarkers (SLBs) or phospholipid fatty acid methyl esters. PLFA provide estimates of the viable biomass, diversity of prokaryotic and eukaryotic diversity, and indications of physiological stress to the microbial community. Artificial neural network (ANN) analysis has been used to examine the relationship between microbial community structure and soil geochemistry. It was hypothesized that (1) soil amendments would cause changes in the structure of the microbial community and carbon content (2) changes in the structure of the microbial community would be vary between the types of amendments, and (3) analysis of the SLB with an artificial neural network (ANN) would distinguish treatment and provide a insight in to the relationship between changes in soil geochemistry and microbial community. Twenty soils samples from different field plots and at different soil horizon depths were analyzed. Biomass as estimated by PLFA analysis, ranged from 1.9 to 265 nmol/g, which corresponded to cell densities of 4.8 x107 to 6.6 x109 cells/g. In the Wall's Farm and Jenkin's Farm samples the microbial biomass decreased with depth. A horizon soils had biomass values of greater or equal to 120 nmol/g, followed by the A2 horizon,(70 to 100 nmol/g) and the weak B horizon at and (40 to 80 nmo/g). The A2 and B horizon samples showed higher relative abundance of mid-chain branched saturates that are indicative of gram positive prokaryotes and actinomycetes. At Well's Farm, the polyunsaturates indicative of eukaryotes were observed at higher abundances. These changes were related to both the prokaryotic and eukaryotic influences in the microbial community in response to the soil amendments. The correlation between

  9. Impacts of Size Structure on Intraguild Predation in Pond Communities

    NASA Astrophysics Data System (ADS)

    Crumrine, P. W.

    2005-05-01

    Size structure, the degree to which individuals in a population vary in size, can greatly influence the dynamics of intraguild predation (IGP) within ecological communities. I manipulated the degree of size structure within assemblages of IG predators and IG prey to examine impacts on the direction and intensity of IGP in communities of larval dragonflies and larval water beetles. In pond enclosure studies, Pachydiplax longipennis (IG prey) mortality was lower when exposed to size structured assemblages of Anax junius (IG predator) than when exposed to only large A. junius at the same density. Effects of size-structured assemblages of A. junius on shared prey, Ischnura verticalis, were similar to the effects each size class alone at the same density. Separate experiments with Dytiscid water beetle larvae as IG predators and size-structured assemblages of A. junius as IG prey suggest that IG prey size structure plays only a limited role in mediating shared prey survival. These experiments highlight the importance of size structure as a characteristic that may promote the coexistence of predators in IGP systems.

  10. Differential ant exclusion from canopies shows contrasting top-down effects on community structure.

    PubMed

    Mestre, Laia; Piñol, J; Barrientos, J A; Espadaler, X

    2016-01-01

    Predators have far-reaching effects on communities by triggering top-down trophic cascades that influence ecosystem functioning. Omnivory and intraguild interactions between predators give rise to reticulate food webs and may either strengthen or dampen trophic cascades depending on context. Disentangling the effects of multiple predator species is therefore crucial for predicting the influence of predators on community structure. We focused on ants as dominant generalist predators in arthropod communities and set up a differential ant exclusion from canopies to examine its effects on assemblage species composition and densities of five arthropod groups (psocopterans, aphids, spiders, heteropterans and beetles). We coupled a glue band with tubes allowing only the ant Lasius grandis to reach the canopies to isolate its effect from the rest of crawling predators (ants, earwigs) and compared it against a full exclusion and a control. L. grandis alone had widespread effects on assemblage species composition, with contrasting species-specific responses within groups, where some species affected by L. grandis presence were not further affected by the presence of the whole crawling predator assemblage, and vice versa. Overall, L. grandis caused two- to threefold decreases of generalist predators and a threefold increase of aphids. However, it lacked further top-down effects on primary consumers, which only emerged when all crawling predators were present. This differential exclusion demonstrates the distinctive and widespread intraguild effects on community structure of a single ant species that contrast with the top-down effects exerted by the whole crawling predator assemblage.

  11. Differential ant exclusion from canopies shows contrasting top-down effects on community structure.

    PubMed

    Mestre, Laia; Piñol, J; Barrientos, J A; Espadaler, X

    2016-01-01

    Predators have far-reaching effects on communities by triggering top-down trophic cascades that influence ecosystem functioning. Omnivory and intraguild interactions between predators give rise to reticulate food webs and may either strengthen or dampen trophic cascades depending on context. Disentangling the effects of multiple predator species is therefore crucial for predicting the influence of predators on community structure. We focused on ants as dominant generalist predators in arthropod communities and set up a differential ant exclusion from canopies to examine its effects on assemblage species composition and densities of five arthropod groups (psocopterans, aphids, spiders, heteropterans and beetles). We coupled a glue band with tubes allowing only the ant Lasius grandis to reach the canopies to isolate its effect from the rest of crawling predators (ants, earwigs) and compared it against a full exclusion and a control. L. grandis alone had widespread effects on assemblage species composition, with contrasting species-specific responses within groups, where some species affected by L. grandis presence were not further affected by the presence of the whole crawling predator assemblage, and vice versa. Overall, L. grandis caused two- to threefold decreases of generalist predators and a threefold increase of aphids. However, it lacked further top-down effects on primary consumers, which only emerged when all crawling predators were present. This differential exclusion demonstrates the distinctive and widespread intraguild effects on community structure of a single ant species that contrast with the top-down effects exerted by the whole crawling predator assemblage. PMID:26376660

  12. Redox Fluctuation Structures Microbial Communities in a Wet Tropical Soil

    PubMed Central

    Pett-Ridge, J.; Firestone, M. K.

    2005-01-01

    Frequent high-amplitude redox fluctuation may be a strong selective force on the phylogenetic and physiological composition of soil bacterial communities and may promote metabolic plasticity or redox tolerance mechanisms. To determine effects of fluctuating oxygen regimens, we incubated tropical soils under four treatments: aerobic, anaerobic, 12-h oxic/anoxic fluctuation, and 4-day oxic/anoxic fluctuation. Changes in soil bacterial community structure and diversity were monitored with terminal restriction fragment length polymorphism (T-RFLP) fingerprints. These profiles were correlated with gross N cycling rates, and a Web-based phylogenetic assignment tool was used to infer putative community composition from multiple fragment patterns. T-RFLP ordinations indicated that bacterial communities from 4-day oxic/anoxic incubations were most similar to field communities, whereas those incubated under consistently aerobic or anaerobic regimens developed distinctly different molecular profiles. Terminal fragments found in field soils persisted either in 4-day fluctuation/aerobic conditions or in anaerobic/12-h treatments but rarely in both. Only 3 of 179 total fragments were ubiquitous in all soils. Soil bacterial communities inferred from in silico phylogenetic assignment appeared to be dominated by Actinobacteria (especially Micrococcus and Streptomycetes), “Bacilli,” “Clostridia,” and Burkholderia and lost significant diversity under consistently or frequently anoxic incubations. Community patterns correlated well with redox-sensitive processes such as nitrification, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification but did not predict patterns of more general functions such as N mineralization and consumption. The results suggest that this soil's indigenous bacteria are highly adapted to fluctuating redox regimens and generally possess physiological tolerance mechanisms which allow them to withstand unfavorable redox periods. PMID

  13. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  14. Gastropod diversification and community structuring processes in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Albrecht, C.; Wilke, T.

    2015-09-01

    The Balkan Lake Ohrid is the oldest and most speciose freshwater lacustrine system in Europe. However, it remains unclear whether the diversification of its endemic taxa is mainly driven by neutral processes, environmental factors, or species interactions. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics. Such a unifying framework - the metacommunity speciation model - considers how community assembly affects diversification and vice versa by assessing the relative contribution of the three main community assembly processes, dispersal limitation, environmental filtering, and species interaction. The current study therefore used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process based metacommunity analyses. Specifically, the study aimed at (i) identifying the relative importance of the three community assembly processes and (ii) to test whether the importance of these individual processes changes gradually with lake depth or whether they are distinctively related to eco-zones. Based on specific simulation steps for each of the three processes, it could be demonstrated that dispersal limitation had the strongest influence on gastropod community structures in Lake Ohrid. However, it was not the exclusive assembly process but acted together with the other two processes - environmental filtering, and species interaction. In fact, the relative importance of the three community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter. The study thus corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community structure) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental

  15. Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure

    PubMed Central

    Hanemaaijer, Mark; Röling, Wilfred F. M.; Olivier, Brett G.; Khandelwal, Ruchir A.; Teusink, Bas; Bruggeman, Frank J.

    2015-01-01

    Microbial communities play important roles in health, industrial applications and earth's ecosystems. With current molecular techniques we can characterize these systems in unprecedented detail. However, such methods provide little mechanistic insight into how the genetic properties and the dynamic couplings between individual microorganisms give rise to their dynamic activities. Neither do they give insight into what we call “the community state”, that is the fluxes and concentrations of nutrients within the community. This knowledge is a prerequisite for rational control and intervention in microbial communities. Therefore, the inference of the community structure from experimental data is a major current challenge. We will argue that this inference problem requires mathematical models that can integrate heterogeneous experimental data with existing knowledge. We propose that two types of models are needed. Firstly, mathematical models that integrate existing genomic, physiological, and physicochemical information with metagenomics data so as to maximize information content and predictive power. This can be achieved with the use of constraint-based genome-scale stoichiometric modeling of community metabolism which is ideally suited for this purpose. Next, we propose a simpler coarse-grained model, which is tailored to solve the inference problem from the experimental data. This model unambiguously relate to the more detailed genome-scale stoichiometric models which act as heterogeneous data integrators. The simpler inference models are, in our opinion, key to understanding microbial ecosystems, yet until now, have received remarkably little attention. This has led to the situation where the modeling of microbial communities, using only genome-scale models is currently more a computational, theoretical exercise than a method useful to the experimentalist. PMID:25852671

  16. Overwintered Bullfrog tadpoles negatively affect Salamanders and Anurans in native amphibian communities

    USGS Publications Warehouse

    Boone, M.D.; Little, E.E.; Semlitsch, R.D.

    2004-01-01

    We examined the interactive effects of overwintered Bullfrog (Rana catesbeiana) tadpoles and pond hydroperiod on a community of larval amphibians in outdoor mesocosms including American Toads (Bufo americanus), Southern Leopard Frogs (Rana sphenocephala), and Spotted Salamanders (Ambystoma maculatum) - species within the native range of Bullfrogs. Spotted Salamanders and Southern Leopard Frogs were negatively influenced by the presence of overwintered Bullfrogs. Spotted Salamanders had shorter larval periods and slightly smaller masses at metamorphosis, and Southern Leopard Frogs had smaller masses at metamorphosis when reared with Bullfrogs than without. Presence of overwintered Bullfrogs, however, did not significantly affect American Toads. Longer pond hydroperiods resulted in greater survival, greater size at metamorphosis, longer larval periods, and later time until emergence of the first metamorphs for Southern Leopard Frog tadpoles and Spotted Salamander larvae. Our study demonstrated that overwintered Bullfrog tadpoles can respond to changing pond hydroperiods and can negatively impact metamorphosis of native amphibians.

  17. Historical changes in the structure and functioning of the benthic community in the lagoon of Venice

    NASA Astrophysics Data System (ADS)

    Pranovi, Fabio; Da Ponte, Filippo; Torricelli, Patrizia

    2008-03-01

    One of the main challenges in environmental management is how to manage the dynamics of natural environments. In this context, having information about historical changes of the structure of the biological communities could represent a useful tool to improve management strategies, contributing to refine the policy objectives, since it gives reference states with which to compare the present. The Venice lagoon represents an interesting case study, since it is a highly dynamic, but sensitive, environment which requires the adoption of prudent management. In its recent history the lagoon ecosystem has been exposed to different kinds of disturbance, from the discharge of pollutants and nutrients, to the invasion of alien species and the exploitation of its biological resources by using highly impacting fishing gears. The analysis of available data about the macro-benthic community, from 1935 to 2004, allows the description of changes of the community structure over almost 70 years, showing a sharp decrease in its diversity. In order to obtain information about its functioning, it is necessary to know how these changes have affected processes at the community and system level. In shallow water ecosystems, as the control is mainly due to the benthic compartment, variations in the structure of the benthic community can induce modifications in processes at different hierarchical levels. The trophic structure analysis has revealed major changes during the period; from a well-assorted structure in 1935, to an herbivore-detritivore dominated one in the 1990s, and finally to a filter feeder dominated structure during the last decade. This has produced variations in the secondary production and it has induced modifications in the type of the ecosystem control. These changes are discussed in the light of the dynamics of the main driving forces.

  18. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales

    PubMed Central

    Salani, Faezeh Shah; Arndt, Hartmut; Hausmann, Klaus; Nitsche, Frank; Scheckenbach, Frank

    2012-01-01

    Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales. PMID:22071346

  19. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    PubMed Central

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  20. Assets and Affect in the Study of Social Capital in Rural Communities

    PubMed Central

    Phillips, Martin

    2015-01-01

    Abstract Shucksmith (2012) has recently suggested that rural research might be refreshed by incorporating theoretical insights that have emerged through a renewal of class analysis. This article seeks to advance this proposed research agenda by exploring the concept of asset‐based class analysis and its association with the concept of social capital. The article explores connections between social capital, class analysis and understandings of community, noting how all have been associated with long running and unresolved debates. Attention is drawn to the problems of modernist legislative approaches to these debates and the value of adopting more interpretive perspectives. A distinction between ‘infrastructural’ and ‘culturalist’ interpretations of social capital is explored in relation to ‘asset‐based’ theorisations of class and culture. It is argued that an infrastructural conception of social capital might usefully be employed in association with a disaggregated conception of cultural capital that includes consideration of emotion and affect, as well as institutional, objectified and technical assets. These arguments are explored using studies of rural communities, largely within Britain. PMID:27563158

  1. Benthic macroinvertebrate communities affected by multiple stressors within tidal creeks in northeastern USA harbors

    SciTech Connect

    Papageorgis, C.; Murray, M.; Danis, C.; Yates, L.

    1995-12-31

    Surveys of water quality, substrate quality and benthic macroinvertebrates were conducted in a variety of tidal creeks located in the vicinity of a municipal solid waste landfill prior to the construction of a leachate collection system. In-Situ water quality data indicated high water temperatures and low dissolved oxygen values along with high turbidites. Sediment chemistry data indicated that all sediment within the study area exceed USEPA heavy metal criteria. Grain size and salinity data indicate that the study area lies within the Mesohaline Mud habitat class. Water quality data remained within similar concentrations with respect to indicators of leachate. The benthic macroinvertebrate community was consistently dominated by opportunistic Polychaete and Oligochaete worms. Both Shannon diversity and Rarefaction curves were used to evaluate trends in species diversity over time. The study includes a comparison to data obtained by USEPA R-EMAP monitoring programs. While large scale biomonitoring programs do not focus on small tidal creeks this study provides useful data regarding baseline benthic communities within tidal creeks affected by multiple stressors to include previous exposure and potential exposure to oil spills, continued point and non-point municipal and industrial wastewater discharges and physical stressors such as elevated water temperatures, homogeneous silt/clay substrate, and depressed dissolved oxygen values.

  2. Variability in a Community-Structured SIS Epidemiological Model.

    PubMed

    Hiebeler, David E; Rier, Rachel M; Audibert, Josh; LeClair, Phillip J; Webber, Anna

    2015-04-01

    We study an SIS epidemiological model of a population partitioned into groups referred to as communities, households, or patches. The system is studied using stochastic spatial simulations, as well as a system of ordinary differential equations describing moments of the distribution of infectious individuals. The ODE model explicitly includes the population size, as well as the variability in infection levels among communities and the variability among stochastic realizations of the process. Results are compared with an earlier moment-based model which assumed infinite population size and no variance among realizations of the process. We find that although the amount of localized (as opposed to global) contact in the model has little effect on the equilibrium infection level, it does affect both the timing and magnitude of both types of variability in infection level.

  3. How infectious disease outbreaks affect community-based primary care physicians

    PubMed Central

    Jaakkimainen, R. Liisa; Bondy, Susan J.; Parkovnick, Meredith; Barnsley, Jan

    2014-01-01

    Abstract Objective To compare how the infectious disease outbreaks H1N1 and severe acute respiratory syndrome (SARS) affected community-based GPs and FPs. Design A mailed survey sent after the H1N1 outbreak compared with the results of similar survey completed after the SARS outbreak. Setting Greater Toronto area in Ontario. Participants A total of 183 randomly selected GPs and FPs who provided office-based care. Main outcome measures The perceptions of GPs and FPs on how serious infectious disease outbreaks affected their clinical work and personal lives; their preparedness for a serious infectious disease outbreak; and the types of information they want to receive and the sources they wanted to receive information from during a serious infectious disease outbreak. The responses from this survey were compared with the responses of GPs and FPs in the greater Toronto area who completed a similar survey in 2003 after the SARS outbreak. Results After the H1N1 outbreak, GPs and FPs still had substantial concerns about the effects of serious infectious disease outbreaks on the health of their family members. Physicians made changes to various office practices in order to manage and deal with patients with serious infectious diseases. They expressed concerns about the effects of an infectious disease on the provision of health care services. Also, physicians wanted to quickly receive accurate information from the provincial government and their medical associations. Conclusion Serious community-based infectious diseases are a personal concern for GPs and FPs, and have considerable effects on their clinical practice. Further work examining the timely flow of relevant information through different health care sectors and government agencies still needs to be undertaken. PMID:25316747

  4. Comparison and validation of community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Gustafsson, Mika; Hörnquist, Michael; Lombardi, Anna

    2006-07-01

    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is believed to be NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.

  5. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests.

    PubMed

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-09-21

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.

  6. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

    NASA Astrophysics Data System (ADS)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-09-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.

  7. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    PubMed

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  8. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests.

    PubMed

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-01-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management. PMID:27650273

  9. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    PubMed

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community. PMID:21361009

  10. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

    PubMed Central

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-01-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management. PMID:27650273

  11. Microbial Community Structure of Three Traditional Zambian Fermented Products: Mabisi, Chibwantu and Munkoyo

    PubMed Central

    Schoustra, Sijmen E.; Kasase, Chitundu; Toarta, Cristian; Kassen, Rees; Poulain, Alexandre J.

    2013-01-01

    Around the world, raw materials are converted into fermented food products through microbial and enzymatic activity. Products are typically produced using a process known as batch culture, where small volumes of an old culture are used to initiate a fresh culture. Repeated over many years, and provided samples are not shared among producers, batch culture techniques allow for the natural evolution of independent microbial ecosystems. While these products form an important part of the diets of many people because of their nutritional, organoleptic and food safety properties, for many traditional African fermented products the microbial communities responsible for fermentation are largely unknown. Here we describe the microbial composition of three traditional fermented non-alcoholic beverages that are widely consumed across Zambia: the milk based product Mabisi and the cereal based products Munkoyo and Chibwantu. Using culture and non-culture based techniques, we found that six to eight lactic acid bacteria predominate in all products. We then used this data to investigate in more detail the factors affecting community structure. We found that products made from similar raw materials do not harbor microbial communities that are more similar to each other than those made from different raw materials. We also found that samples from the same product taken at the same location were as different from each other in terms of microbial community structure and composition, as those from geographically very distant locations. These results suggest that microbial community structure in these products is neither a simple consequence of the raw materials used, nor the particular suite of microbes available in the environment but that anthropogenic variables (e.g., competition among sellers or organoleptic preferences by different tribes) are important in shaping the microbial community structures. PMID:23691123

  12. Microbial community structure of three traditional zambian fermented products: mabisi, chibwantu and munkoyo.

    PubMed

    Schoustra, Sijmen E; Kasase, Chitundu; Toarta, Cristian; Kassen, Rees; Poulain, Alexandre J

    2013-01-01

    Around the world, raw materials are converted into fermented food products through microbial and enzymatic activity. Products are typically produced using a process known as batch culture, where small volumes of an old culture are used to initiate a fresh culture. Repeated over many years, and provided samples are not shared among producers, batch culture techniques allow for the natural evolution of independent microbial ecosystems. While these products form an important part of the diets of many people because of their nutritional, organoleptic and food safety properties, for many traditional African fermented products the microbial communities responsible for fermentation are largely unknown. Here we describe the microbial composition of three traditional fermented non-alcoholic beverages that are widely consumed across Zambia: the milk based product Mabisi and the cereal based products Munkoyo and Chibwantu. Using culture and non-culture based techniques, we found that six to eight lactic acid bacteria predominate in all products. We then used this data to investigate in more detail the factors affecting community structure. We found that products made from similar raw materials do not harbor microbial communities that are more similar to each other than those made from different raw materials. We also found that samples from the same product taken at the same location were as different from each other in terms of microbial community structure and composition, as those from geographically very distant locations. These results suggest that microbial community structure in these products is neither a simple consequence of the raw materials used, nor the particular suite of microbes available in the environment but that anthropogenic variables (e.g., competition among sellers or organoleptic preferences by different tribes) are important in shaping the microbial community structures.

  13. Detecting Community Structures in Networks by Label Propagation with Prediction of Percolation Transition

    PubMed Central

    Zhang, Aiping; Lin, Yejin; Jia, Baozhu; Cao, Hui; Zhang, Jundong; Zhang, Shubin

    2014-01-01

    Though label propagation algorithm (LPA) is one of the fastest algorithms for community detection in complex networks, the problem of trivial solutions frequently occurring in the algorithm affects its performance. We propose a label propagation algorithm with prediction of percolation transition (LPAp). After analyzing the reason for multiple solutions of LPA, by transforming the process of community detection into network construction process, a trivial solution in label propagation is considered as a giant component in the percolation transition. We add a prediction process of percolation transition in label propagation to delay the occurrence of trivial solutions, which makes small communities easier to be found. We also give an incomplete update condition which considers both neighbor purity and the contribution of small degree vertices to community detection to reduce the computation time of LPAp. Numerical tests are conducted. Experimental results on synthetic networks and real-world networks show that the LPAp is more accurate, more sensitive to small community, and has the ability to identify a single community structure. Moreover, LPAp with the incomplete update process can use less computation time than LPA, nearly without modularity loss. PMID:25110725

  14. Microbial community structure in vineyard soils across altitudinal gradients and in different seasons.

    PubMed

    Corneo, Paola E; Pellegrini, Alberto; Cappellin, Luca; Roncador, Marco; Chierici, Marco; Gessler, Cesare; Pertot, Ilaria

    2013-06-01

    Microbial communities living in nine vineyards distributed over three altitudinal transects were studied over 2 years. Fungal and bacterial community dynamics were explored using automated ribosomal intergenic spacer analysis (ARISA) and by determining bacterial cells and fungal colony-forming units (CFUs). Moreover, extensive chemical and physical analyses of the soils were carried out. Multivariate analyses demonstrated that bacterial and fungal communities are affected by altitude, which acts as a complex physicochemical gradient. In fact, soil moisture, Al, Mg, Mn and clay content are changing with altitude and influencing the bacterial genetic structure, while in the case of fungi, soil moisture, B and clay content are found to be the main drivers of the community. Moreover, other exchangeable cations and heavy metals, not correlating with altitude, are involved in the ordination of the sites, especially Cu. Qualitative ARISA revealed the presence of a stable core microbiome of operational taxonomic units (OTUs) within each transect, which ranged between 57% and 68% of total OTUs in the case of fungi and between 63% and 72% for bacteria. No seasonal effect on the composition of microbial communities was found, demonstrating that bacterial and fungal communities in vineyards are mostly stable over the considered seasons. PMID:23398556

  15. [Shrimp community structure and its influential factors in the Jiaojiang River estuary during spring and autumn].

    PubMed

    Qi, Hai-Ming; Sun, Yue; Xu, Zhao-Li; Sun, Lu-Feng; Gao, Qian; Que, Jiang-Long; Tian, Wei

    2013-12-01

    Based on the data from two oceanographic surveys during April and October 2010, the spatial and seasonal variations in composition, dominance, and diversity of shrimp communities, as well as the influential factors in the Jiaojiang River estuary were analyzed. A total of 16 species of shrimp were found, which belonged to 12 families under 8 genera. 14 species of shrimp were found in spring (April) and 12 species in autumn (October). With the employment of index of relative importance (IRI), in spring 6 dominant species were identified, as Acetes chinensis, Alpheus distinguendus, Parapenaeopsis hardwickii, Leptochela gracilis, Alpheus juponicus and Palaemon gravieri, and in autumn 3 dominant species were found as Solenocera crassicornis, Parapenaeopsis hardwickii and Metapenaeus joyneri. Eurythermal and eurysaline shrimp community prevailed in the Jiaojiang River estuary, followed by eurythermal and hyposaline shrimp community. Margalef index (D), Shannon index (H) and Pielou's evenness index were used to evaluate the diversity of shrimp community in the studied area. The stations with higher value of D and H were mainly located in the west of the Dachen Island, whereas the Pielou's evenness index was stable all across the Jiaojiang River estuary. By hierarchical cluster analysis and non-metric multidimensional scaling (NMDS) method, the results indicated that shrimp communities had significant seasonal and spatial variations. Depth was the most important factor that affected variations in the shrimp community structure in the Jiaojiang River estuary.

  16. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  17. Bacterial community structure in the Sulu Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihiro; Nishimura, Masahiko; Kogure, Kazuhiro

    2007-01-01

    The deep waters of the Sulu Sea are characterized by relatively high and constant water temperatures and low oxygen concentrations. To examine the effect of these characteristics on the bacterial community structure, the culture-independent molecular method was applied to samples from the Sulu Sea and the adjacent areas. DNA was extracted from environmental samples, and the analysis was carried out on PCR-amplified 16S rDNA; fragments were analyzed by denaturing gradient gel electrophoresis (DGGE) and nonmetric multidimensional scaling analysis. Stations in the Sulu Sea and the adjacent areas showed much more prominent vertical stratification of bacterial community structures than horizontal variation. As predominant sequences, cyanobacteria and α-proteobacteria at 10 m depth, δ-proteobacteria at 100 m depth, and green nonsulfur bacteria below 1000 m depth were detected in all sampling areas. High temperatures and low oxygen concentrations are thought to be minor factors in controlling community structure; the quantity and quality of organic materials supplied by the sinking particles, and hydrostatic pressure are believed to be important.

  18. Effects of soil water repellency on microbial community structure and functions in Mediterranean pine forests

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Grayston, Sue J.; Mataix-Solera, Jorge; Arcenegui, Victoria; Jimenez-Pinilla, Patricia; Mataix-Beneyto, Jorge

    2015-04-01

    Soil water repellency (SWR) is a property commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. SWR can greatly influence the hydrology and the ecology of forest soils. The capacity of soil microorganisms to degrade different organic compounds depends upon species composition, so this may affect changes in SWR on the microsite scale (such as the presence of soil water repellent patches; Mülleret al., 2010). In the Mediterranean forest context, SWR has been found to be related to microbial community composition. The accumulation of different hydrophobic compounds might be causing the shifts in microbial community structure (Lozano et al., 2014). In this study we investigated the effects of SWR persistence on soil microbial community structure and enzyme activity under Pinus halepensis forest in three different sites: Petrer, Gorga and Jávea (Alicante, E Spain). Soil samples were classified into three different water repellency classes (wettable, slight or strongly water repellent samples) depending on the SWR persistence. The soil microbial community was determined through phospholipid fatty acids (PLFAs). Enzyme activities chosen for this study were cellulase, β-glucosidase and N-acetyl-β-glucosaminide (NAG). The relationships between microbiological community structure and some soil properties such as pH, Glomalin Related Soil Protein, soil organic matter content and soil respiration were also studied. Redundancy analyses and decomposition of the variances were performed to clarify how microbial community composition and enzyme activities are affected by SWR and soil properties. The effect of SWR on microbial community composition differed between locations. This effect was clearer in the Petrer site. Enzyme activity varied considerably depending on SWR persistence. The highest activities were found in slightly SWR samples and the lowest mostly in the strongly water repellent ones. These preliminary

  19. Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Wang, Jingwei; Zhang, Zhaojing; Zhang, Xuwang; Zhou, Hao; Zhou, Jiti

    2015-01-01

    The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures. PMID:25909735

  20. The role of macrobiota in structuring microbial communities along rocky shores

    PubMed Central

    Gilbert, Jack A.; Gibbons, Sean M.

    2014-01-01

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota. PMID:25337459

  1. The role of macrobiota in structuring microbial communities along rocky shores

    SciTech Connect

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.

  2. The role of macrobiota in structuring microbial communities along rocky shores

    DOE PAGES

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  3. Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in southwest China.

    PubMed

    Mo, Xiao-Xue; Shi, Ling-Ling; Zhang, Yong-Jiang; Zhu, Hua; Slik, J W Ferry

    2013-01-01

    Tropical rainforests in Southeast Asia are facing increasing and ever more intense human disturbance that often negatively affects biodiversity. The aim of this study was to determine how tree species phylogenetic diversity is affected by traditional forest management types and to understand the change in community phylogenetic structure during succession. Four types of forests with different management histories were selected for this purpose: old growth forests, understorey planted old growth forests, old secondary forests (∼200-years after slash and burn), and young secondary forests (15-50-years after slash and burn). We found that tree phylogenetic community structure changed from clustering to over-dispersion from early to late successional forests and finally became random in old-growth forest. We also found that the phylogenetic structure of the tree overstorey and understorey responded differentially to change in environmental conditions during succession. In addition, we show that slash and burn agriculture (swidden cultivation) can increase landscape level plant community evolutionary information content. PMID:23936268

  4. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    PubMed

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  5. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  6. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  7. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  8. Diatom community structure on in-service cruise ship hulls.

    PubMed

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  9. Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands.

    PubMed

    Hartmann, Martin; Lee, Sangwon; Hallam, Steven J; Mohn, William W

    2009-12-01

    Disturbances caused by timber harvesting have critical long-term effects on the forest soil microbiota and alter fundamental ecosystem services provided by these communities. This study assessed the effects of organic matter removal and soil compaction on microbial community structures in different soil horizons 13 years after timber harvesting at the long-term soil productivity site at Skulow Lake, British Columbia. A harvested stand was compared with an unmanaged forest stand. Ribosomal intergenic spacer profiles of bacteria, archaea and eukarya indicated significantly different community structures in the upper three soil horizons of the two stands, with differences decreasing with depth. Large-scale sequencing of the ribosomal intergenic spacers coupled to small-subunit ribosomal RNA genes allowed taxonomic identification of major microbial phylotypes affected by harvesting or varying among soil horizons. Actinobacteria and Gemmatimonadetes were the predominant phylotypes in the bacterial profiles, with the relative abundance of these groups highest in the unmanaged stand, particularly in the deeper soil horizons. Predominant eukaryal phylotypes were mainly assigned to known mycorrhizal and saprotrophic species of Basidiomycetes and Ascomycetes. Harvesting affected Basidiomycetes to a minor degree but had stronger effects on some Ascomycetes. Archaeal profiles had low diversity with only a few predominant crenarchaeal phylotypes whose abundance appeared to increase with depth. Detection of these effects 13 years after harvesting may indicate a long-term change in processes mediated by the microbial community with important consequences for forest productivity. These effects warrant more comprehensive investigation of the effects of harvesting on the structure of forest soil microbial communities and the functional consequences. PMID:19659501

  10. Human Impacts Affect Tree Community Features of 20 Forest Fragments of a Vanishing Neotropical Hotspot

    NASA Astrophysics Data System (ADS)

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V.; Miranda, Pedro L. S.; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  11. Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot.

    PubMed

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  12. Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot.

    PubMed

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans. PMID:25344658

  13. Gut bacterial community structure (Porcellio scaber, Isopoda, Crustacea) as a measure of community level response to long-term and short-term metal pollution.

    PubMed

    Lapanje, Ales; Rupnik, Maja; Drobne, Damjana

    2007-04-01

    Prokaryotes are of high importance in the assessment of environmental pollution effects. Due to fast responsiveness of bacterial communities to environmental physicochemical factors, it is difficult to compare results of bacterial community investigations on the temporal and spatial scale. To reduce the effects of variable physicochemical environmental conditions on bacterial microbiota when investigating the specific impact of contaminants on bacterial communities, we investigated the bacterial community in the gut of terrestrial isopods (Porcellio scaber, Isopoda, Crustacea) from clean and metal-polluted environments. Animals were collected from a chronically mercury-polluted site, a chronically multiple metal-(Cd, Pb, Zn) polluted site, and two reference sites. In addition, animals from an unpolluted site were laboratory exposed to 5 microg Hg/g food in order to compare the effect of acute and chronic Hg exposure. The bacterial gut microbiota was investigated by temporal temperature gradient gel electrophoresis (TTGE) and clone library construction based on polymerase chain reaction amplified 16S rRNA genes. The major bacterial representatives of the emptied gut microbiota in the animals from the chronically polluted environments seemed not affected when analyzed by TTGE. The detailed bacterial community structure investigated by 16S rRNA clone library construction, however, showed that the community from the Hg-polluted site also was affected severely (242.4 operational taxonomic units [OTU] in the polluted and 650.6 OTU in the unpolluted environment). When animals were acutely exposed to mercury, changes of bacterial community structures already were seen on TTGE profiles and no additional analysis was needed. We suggest the use of P. scaber gut bacterial community structure as a measure of effects caused by both long- and short-term exposure to pollution.

  14. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  15. How Does Conversion of Natural Tropical Rainforest Ecosystems Affect Soil Bacterial and Fungal Communities in the Nile River Watershed of Uganda?

    PubMed Central

    Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  16. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  17. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    PubMed

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.

  18. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    PubMed

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects. PMID:27279551

  19. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    PubMed

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.

  20. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control.

  1. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    PubMed

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure. PMID:27506026

  2. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. PMID:26924756

  3. Conservation of acquired morphology and community structure in aged biofilms after facing environmental stress.

    PubMed

    Saur, T; Escudié, R; Santa-Catalina, G; Bernet, N; Milferstedt, K

    2016-01-01

    The influence of growth history on biofilm morphology and microbial community structure is poorly studied despite its important role for biofilm development. Here, biofilms were exposed to a change in hydrodynamic conditions at different growth stages and we observed how biofilm age affected the change in morphology and bacterial community structure. Biofilms were developed in two bubble column reactors, one operated under constant shear stress and one under variable shear stress. Biofilms were transferred from one reactor to the other at different stages in their development by withdrawing and inserting the support medium from one reactor to the other. The developments of morphology and microbial community structure were followed by image analysis and molecular tools. When transferred early in biofilm development, biofilms adapted to the new hydrodynamic conditions and adopted features of the biofilm already developed in the receiving reactor. Biofilms transferred at a late state of biofilm development continued their initial trajectories of morphology and community development even in a new environment. These biofilms did not immediately adapt to their new environment and kept features acquired during their early growth phase, a property we called memory effect.

  4. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.

  5. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    PubMed

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine.

  6. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing. PMID:27187432

  7. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  8. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  9. Measuring historical trauma in an American Indian Community Sample: Contributions of substance dependence, affective disorder, conduct disorder and PTSD

    PubMed Central

    Ehlers, Cindy L.; Gizer, Ian R.; Gilder, David A.; Ellingson, Jarrod M.; Yehuda, Rachel

    2013-01-01

    Background The American Indian experience of historical trauma is thought of as both a source of intergenerational trauma responses as well as a potential causative factor for long-term distress and substance abuse among communities. The aims of the present study were to evaluate the extent to which the frequency of thoughts of historical loss and associated symptoms are influenced by: current traumatic events, post traumatic stress disorder (PTSD), cultural identification, percent Native American Heritage, substance dependence, affective/anxiety disorders, and conduct disorder/antisocial personality disorder (ASPD). Methods Participants were American Indians recruited from reservations that were assessed with the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA), The Historical Loss Scale and The Historical Loss Associated Symptoms Scale (to quantify frequency of thoughts and symptoms of historical loss) the Stressful-Life-Events Scale (to assess experiences of trauma) and the Orthogonal Cultural Identification Scale (OCIS). Results Three hundred and six (306) American Indian adults participated in the study. Over half of them indicated that they thought about historical losses at least occasionally, and that it caused them distress. Logistic regression revealed that significant increases in how often a person thought about historical losses were associated with: not being married, high degrees of Native Heritage, and high cultural identification. Additionally, anxiety/affective disorders and substance dependence were correlated with historical loss associated symptoms. Conclusions In this American Indian community, thoughts about historical losses and their associated symptomatology are common and the presences of these thoughts are associated with Native American Heritage, cultural identification, and substance dependence. PMID:23791028

  10. Tillage Management and Seasonal Effects on Denitrifier Community Abundance, Gene Expression and Structure over Winter.

    PubMed

    Tatti, Enrico; Goyer, Claudia; Burton, David L; Wertz, Sophie; Zebarth, Bernie J; Chantigny, Martin; Filion, Martin

    2015-10-01

    Tillage effects on denitrifier communities and nitrous oxide (N2O) emissions were mainly studied during the growing season. There is limited information for the non-growing season, especially in northern countries where winter has prolonged periods with sub-zero temperatures. The abundance and structure of the denitrifier community, denitrification gene expression and N2O emissions in fields under long-term tillage regimes [no-tillage (NT) vs conventional tillage (CT)] were assessed during two consecutive winters. NT exerted a positive effect on nirK and nosZ denitrifier abundance in both winters compared to CT. Moreover, the two contrasting managements had an opposite influence on nirK and nirS RNA/DNA ratios. Tillage management resulted in different denitrifier community structures during both winters. Seasonal changes were observed in the abundance and the structure of denitrifiers. Interestingly, the RNA/DNA ratios were greater in the coldest months for nirK, nirS and nosZ. N2O emissions were not influenced by management but changed over time with two orders of magnitude increase in the coldest month of both winters. In winter of 2009-2010, emissions were mainly as N2O, whereas in 2010-2011, when soil temperatures were milder due to persistent snow cover, most emissions were as dinitrogen. Results indicated that tillage management during the growing season induced differences in denitrifier community structure that persisted during winter. However, management did not affect the active cold-adapted community structure.

  11. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover

    PubMed Central

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-01-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations. PMID

  12. School Structures: Transforming Urban Complex Schools into Better Learning Communities

    ERIC Educational Resources Information Center

    Haimendorf, Max; Kestner, Jacob

    2008-01-01

    This article, which forms part of the policy booklet "Lessons from the Front" written by participants and Ambassadors of the Teach First scheme, argues that educational outcomes are often adversely affected by the size and structure of many urban complex schools. Rather than multiplying the efforts of teachers, too often the organisational model…

  13. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    NASA Astrophysics Data System (ADS)

    Hay, Mark E.

    2009-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.

  14. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    PubMed Central

    Hay, Mark E.

    2012-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035

  15. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.

    PubMed

    Hay, Mark E

    2009-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.

  16. Structure of bacterial communities in diverse freshwater habitats.

    PubMed

    Aizenberg-Gershtein, Yana; Vaizel-Ohayon, Dalit; Halpern, Malka

    2012-03-01

    The structures and dynamics of bacterial communities from raw source water, groundwater, and drinking water before and after filtration were studied in four seasons of a year, with culture-independent methods. Genomic DNA from water samples was analyzed by the polymerase chain reaction - denaturing gradient gel electrophoresis system and by cloning of the 16S rRNA gene. Water samples exhibited complex denaturing gradient gel electrophoresis genetic profiles composed of many bands, corresponding to a great variety of bacterial taxa. The bacterial communities of different seasons from the four sampling sites clustered into two major groups: (i) water before and after filtration, and (ii) source water and groundwater. Phylogenetic analyses of the clones from the autumn sampling revealed 13 phyla, 19 classes, and 155 operational taxonomic units. Of the clones, 66% showed less than 97% similarities to known bacterial species. Representatives of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were found at all four sampling sites. Species belonging to the phylum Firmicutes were an important component of the microbial community in filtered water. Representatives of Enterobacteriaceae were not detected, indicating the absence of fecal pollution in the drinking water. Differences were found in the bacterial populations that were sampled from the same sites in different seasons. Each water habitat had a unique bacterial profile. Drinking water harbors diverse and dynamic microbial communities, part of which may be active and resilient to chlorine disinfection. This study provides, for the first time, basic data for uncultivable drinking water bacteria in Israel.

  17. Microbial abundance and community structure in a melting alpine snowpack.

    PubMed

    Lazzaro, Anna; Wismer, Andrea; Schneebeli, Martin; Erny, Isolde; Zeyer, Josef

    2015-05-01

    Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930-2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L(-1), 5-30 μg NH4 (+)-N L(-1)) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.

  18. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  19. Spatial analysis of early successional, temperate forest community structure

    NASA Astrophysics Data System (ADS)

    Walker, R. H.; Williams, C. A.; MacLean, R. G.; Epstein, H. E.; Vanderhoof, M. K.

    2013-12-01

    The global importance of sequestration of carbon by temperate forests makes characterizing the regrowth of these forests post-disturbance both ecologically and economically important. High intensity disturbances, such as logging, result in substantial alteration of community composition post-disturbance, creating the potential for alterations to the cycling of carbon, water, and nutrients in the ecosystem. Because logging pressure in New England continues to increase, understanding how forest ecosystems in this region respond to disturbance is crucial. This study aims to characterize interspecies interactions within New England forests by identifying synchronous and asynchronous colocation of species following a disturbance. To accomplish this, line-intercept surveys of vegetation were conducted in a clearcut forest stand located within the Harvard Forest LTER site. Survey data collected two (2010) and five (2013) years post-clearcut were analyzed using a one-dimensional Ripley's K. From 2010 to 2013, an increase in the number of interspecies relationships was observed, indicating the development of community structure. Additionally, the analysis found an increase in total vegetative cover from 2010 to 2013, and also found the majority of observed interspecies relationships to be asynchronous relationships. Together, these results imply an increase in resource competition that had the potential to drive the increase in community structure. Specifically, an increase in community structure led to the development of three distinct sub-communities: homogenous fern, tree seedling canopy over ground cover, and shrub dominated. This creates a patchy landscape in the early successional forest that allows for high species diversity (Shannon's H = 2.455). Based on the results of the Ripley's K analyses, species demonstrated definite patterns of synchronicity and asynchronicity based on both specific species interactions as well as functional group interactions. These

  20. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload

    SciTech Connect

    Lerm, S.; Kleyboecker, A.; Miethling-Graff, R.; Alawi, M.; Kasina, M.; Liebrich, M.; Wuerdemann, H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study

  1. Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides.

    PubMed

    Fernández-Gómez, Manuel J; Nogales, Rogelio; Insam, Heribert; Romero, Esperanza; Goberna, Marta

    2011-10-01

    The relationships between vermicompost chemical features, enzyme activities, community-level physiological profiles (CLPPs), fungal community structures, and its microbial respiratory response to pesticides were investigated. Fungal community structure of vermicomposts produced from damaged tomato fruits (DT), winery wastes (WW), olive-mill waste and biosolids (OB), and cattle manure (CM) were determined by denaturing gradient gel electrophoresis of 18S rDNA. MicroResp™ was used for assessing vermicompost CLPPs and testing the microbial response to metalaxyl, imidacloprid, and diuron. Vermicompost enzyme activities and CLPPs indicated that WW, OB, and DT had higher microbial functional diversity than CM. The microbiota of the former tolerated all three pesticides whereas microbial respiration in CM was negatively affected by metalaxyl and imidacloprid. The response of vermicompost microbiota to the fungicide metalaxyl was correlated to its fungal community structure. The results suggest that vermicomposts with higher microbial functional diversity can be useful for the management of pesticide pollution in agriculture.

  2. Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experiments

    PubMed Central

    Shi, Y.; Zwolinski, M. D.; Schreiber, M. E.; Bahr, J. M.; Sewell, G. W.; Hickey, W. J.

    1999-01-01

    This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the

  3. Disturbance Alters the Phylogenetic Composition and Structure of Plant Communities in an Old Field System

    PubMed Central

    Dinnage, Russell

    2009-01-01

    The changes in phylogenetic composition and structure of communities during succession following disturbance can give us insights into the forces that are shaping communities over time. In abandoned agricultural fields, community composition changes rapidly when a field is plowed, and is thought to reflect a relaxation of competition due to the elimination of dominant species which take time to re-establish. Competition can drive phylogenetic overdispersion, due to phylogenetic conservation of ‘niche’ traits that allow species to partition resources. Therefore, undisturbed old field communities should exhibit higher phylogenetic dispersion than recently disturbed systems, which should be relatively ‘clustered’ with respect to phylogenetic relationships. Several measures of phylogenetic structure between plant communities were measured in recently plowed areas and nearby ‘undisturbed’ sites. There was no difference in the absolute values of these measures between disturbed and ‘undisturbed’ sites. However, there was a difference in the ‘expected’ phylogenetic structure between habitats, leading to significantly lower than expected phylogenetic diversity in disturbed plots, and no difference from random expectation in ‘undisturbed’ plots. This suggests that plant species characteristic of each habitat are fairly evenly distributed on the shared species pool phylogeny, but that once the initial sorting of species into the two habitat types has occurred, the processes operating on them affect each habitat differently. These results were consistent with an analysis of correlation between phylogenetic distance and co-occurrence indices of species pairs in the two habitat types. This study supports the notion that disturbed plots are more clustered than expected, rather than ‘undisturbed’ plots being more overdispersed, suggesting that disturbed plant communities are being more strongly influenced by environmental filtering of conserved niche

  4. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure.

    PubMed

    Estrela, Nídia; Franquelim, Henri G; Lopes, Carlos; Tavares, Evandro; Macedo, Joana A; Christiansen, Gunna; Otzen, Daniel E; Melo, Eduardo P

    2015-11-01

    Amyloid fibers, implicated in a wide range of diseases, are formed when proteins misfold and stick together in long rope-like structures. As a natural mechanism, osmolytes can be used to modulate protein aggregation pathways with no interference with other cellular functions. The osmolyte sucrose delays fibrillation of the ribosomal protein S6 leading to softer and less shaped-defined fibrils. The molecular mechanism used by sucrose to delay S6 fibrillation was studied based on the two-state unfolding kinetics of the secondary and tertiary structures. It was concluded that the delay in S6 fibrillation results from stabilization and compaction of the slightly expanded tertiary native structure formed under fibrillation conditions. Interestingly, this compaction extends to almost all S6 tertiary structure but hardly affects its secondary structure. The part of the S6 tertiary structure that suffered more compaction by sucrose is known to be the first part to unfold, indicating that the native S6 has entered the unfolding pathway under fibrillation conditions.

  5. Water stratification affects the microeukaryotic community in a subtropical deep reservoir.

    PubMed

    Yu, Zheng; Yang, Jun; Zhou, Jing; Yu, Xiaoqing; Liu, Lemian; Lv, Hong

    2014-01-01

    Producers, consumers, and decomposers are the three key functional groups that form the basis of all ecosystems. But, little is known about how these functional groups coexist with each other in aquatic environments, particularly in subtropical reservoirs. In this study, we describe the nature of microeukaryotic communities in a subtropical deep reservoir during the strongly stratified period. Denaturing gradient gel electrophoresis gel band sequencing, pyrosequencing, and light microscopy were used together to facilitate an in-depth investigation of the community structure of phytoplankton, zooplankton, and fungi. Our results showed that thermal and oxygen stratification shaped the composition of the phytoplankton, zooplankton, and fungi populations in the reservoir. Stratification was evident among ecological functional groups in autumn: producers and consumers were overwhelmingly dominant in the epilimnion characterized by high temperatures and oxygen levels, whereas decomposers were inclined to inhabit the hypolimnion. These results contribute to our understanding of the relationship of ecosystem functional groups in the man-made aquatic systems and have important practical implications for reservoir management. Results suggest that the strategies for the control of eutrophication and harmful algal bloom prevention should focus on a fuller understanding of the consequences of both thermal stratification and vertical distribution of microplankton. PMID:24373024

  6. How Knowledge Management Is Affected by Organizational Structure

    ERIC Educational Resources Information Center

    Mahmoudsalehi, Mehdi; Moradkhannejad, Roya; Safari, Khalil

    2012-01-01

    Purpose: Identifying the impact of organizational structure on knowledge management (KM) is the aim of this study, as well as recognizing the importance of each variable indicator in creating, sharing and utility of knowledge. Design/methodology/approach: For understanding relationships between the main variables (organizational structure-KM), the…

  7. Securing the Future: Retention Models in Community Colleges--Study of Community College Structures for Student Success (SCCSSS)

    ERIC Educational Resources Information Center

    College Board Advocacy & Policy Center, 2012

    2012-01-01

    The Study of Community College Structures for Student Success (SCCSSS) was launched in 2010 with three goals at its center: (1) To explore a set of promising institutional practices and organizational structures identified through theory and research as having the potential to support community college student success; (2) To present a synthesized…

  8. Effect of paddy-upland rotati