Science.gov

Sample records for affected soil microbial

  1. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  2. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  3. Loss in microbial diversity affects nitrogen cycling in soil

    PubMed Central

    Philippot, Laurent; Spor, Aymé; Hénault, Catherine; Bru, David; Bizouard, Florian; Jones, Christopher M; Sarr, Amadou; Maron, Pierre-Alain

    2013-01-01

    Microbial communities have a central role in ecosystem processes by driving the Earth's biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated. PMID:23466702

  4. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  5. Do long-lived ants affect soil microbial communities?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to test the hypothesis that desert ant species that build nests that remain viable at a particular point in space for more than a decade produce soil conditions that enhance microbial biomass and functional diversity. We studied the effects of a seed-harvester ant, Pogonomyrm...

  6. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  7. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  8. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  9. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  10. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  11. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  12. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils.

    PubMed

    Kuske, C R; Ticknor, L O; Busch, J D; Gehring, C A; Whitham, T G

    2003-05-01

    In terrestrial ecosystems, changes in environmental conditions that affect plant performance cause a cascade of effects through many trophic levels. In a 2-year field study, seasonal abundance measurements were conducted for fast-growing bacterial heterotrophs, humate-degrading actinomycetes, fungal heterotrophs, and fluorescent pseudomonads that represent the decomposers in soil. Links between plant health and soil microbiota abundance in pinyon rhizospheres were documented across two soil types: a dry, nutrient-poor volcanic cinder field and a sandy-loam soil. On the stressful cinder fields, we identified relationships between soil decomposer abundance, pinyon age, and stress due to insect herbivory. Across seasonal variation, consistent differences in microbial decomposer abundance were identified between the cinders and sandy-loam soil. Abundance of bacterial heterotrophs and humate-degrading actinomycetes was affected by both soil nutritional status and the pinyon rhizosphere. In contrast, abundance of the fungal heterotrophs and fluorescent pseudomonads was affected primarily by the pinyon rhizosphere. On the cinder field, the three bacterial groups were more abundant on 150-year-old trees than on 60-year-old trees, whereas fungal heterotrophs were unaffected by tree age. Fungal heterotrophs and actinomycetes were more abundant on insect-resistant trees than on susceptible trees, but the opposite was true for the fluorescent pseudomonads. Although all four groups were present in all the environments, the four microbial groups were affected differently by the pinyon rhizosphere, by tree age, and by tree stress caused by the cinder soil and insect herbivory.

  13. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. PMID:24796872

  14. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  15. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  16. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils.

    PubMed

    Smolders, Erik; Buekers, Jurgen; Oliver, Ian; McLaughlin, Mike J

    2004-11-01

    The effects of soil properties and zinc (Zn) availability on the toxicity of Zn to soil microbial processes are poorly understood. Three soil microbial processes--potential nitrification rate (PNR), substrate (glucose)-induced respiration (SIR), and a maize residue respiration (MRR)--were measured in 15 European topsoils (pH 3.0-7.5; total Zn 7-191 mg/kg) that were freshly spiked with ZnCl2. The Zn toxicity thresholds of 20 to 50% effective concentrations (EC20s and EC50s) based on total concentrations of Zn in soil varied between 5- and 26-fold among soils, depending on the assay. The Zn toxicity thresholds based on Zn concentrations in soil solution varied at least 10-fold more than corresponding total metal thresholds. Soil pH had no significant effect on soil total Zn toxicity thresholds, whereas significant positive correlations were found between these thresholds and background Zn for the PNR and SIR test (r = 0.74 and 0.71, respectively; log-log correlations). No such trend was found for the MRR test. Soil solution-based thresholds showed highly significant negative correlations with soil pH for all assays that might be explained by competition of H+ for binding sites, as demonstrated for aquatic species. The microbial assays were also applied to soils collected under galvanized pylons (three sites) where concentrations of total Zn were up to 2,100 to 3,700 mg Zn/kg. Correlations between concentrations of total Zn and microbial responses were insignificant at all sites even though spiking reference samples to equivalent concentrations reduced microbial activities up to more than 10-fold. Differences in response between spiked and field soils are partly but not completely attributed to the large differences in concentrations of Zn in soil solution. We conclude that soil pH has no significant effect on Zn toxicity to soil microbial processes in laboratory-spiked soils, and we suggest that community tolerance takes place at both background and elevated Zn

  17. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  18. Microbial response following straw application in a soil affected by a wildfire

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Lombao, Alba; Díaz-Raviña, Montserrat; Martin, Angela; Fontúrbel, Maria Teresa; Vega, Jose Antonio; Fernández, Cristina; Carballas, Tarsy

    2015-04-01

    Mulching treatment is often recommended to reduce post-fire erosion and sediments yields but information concerning their effects on soil microorganisms is scarce. In the present investigation the evolution of several parameters related with the mass and activity of soil microorganisms was examined in a hillslope shrubland located in Saviñao (Lugo, NW Spain) and susceptible to suffer post-fire erosion (38% slope). In this area, affected by a medium-high severity wildfire in September 2012, different treatments with wheat straw applied to the burnt soil in mulch strips (800 and 1000 kg ha-1) were established by quadruplicate (10 m x 40 m plots) and compared with the corresponding burnt untreated control. Soil samples were collected from the A horizon (0-2.5 cm depth) at different sampling times over one year after the wildfire and different soil biochemical properties (microbial biomass C, soil respiration, bacterial activity, -glucosidase, urease and phosphatase activities) were analyzed. The results showed large variation among the four field replicates of the same treatment (spatial variability), which makes difficult to evaluate the effect of mulch treatment. The evolution of the different biochemical properties in the post-fire stabilization treatments with the wheat straw applied in mulch strips were mainly related to the time passed after the fire (short- and medium- term changes in soil physical and chemical properties induced by both fire and climatic conditions) rather than to the straw mulching effects; in addition, a different temporal pattern was observed depending on the variable considered. The results pointed out the usefulness of examining intra-annual natural variability (spatial variation, seasonal fluctuations) when different indices of mass and activity of microorganisms were used as monitoring tools in soil ecosystems affected by fire. Acknowledgements. A. Barreiro and A. Lombao are recipients of FPU grants from Spanish Ministry of

  19. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  20. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

  1. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen.

    PubMed

    Lesaulnier, Celine; Papamichail, Dimitris; McCorkle, Sean; Ollivier, Bernard; Skiena, Steven; Taghavi, Safiyh; Zak, Donald; van der Lelie, Daniel

    2008-04-01

    The effects of elevated atmospheric CO(2) (560 p.p.m.) and subsequent plant responses on the soil microbial community composition associated with trembling aspen was assessed through the classification of 6996 complete ribosomal DNA sequences amplified from the Rhinelander WI free-air CO(2) and O(3) enrichment (FACE) experiments microbial community metagenome. This in-depth comparative analysis provides an unprecedented, detailed and deep branching profile of population changes incurred as a response to this environmental perturbation. Total bacterial and eukaryotic abundance does not change; however, an increase in heterotrophic decomposers and ectomycorrhizal fungi is observed. Nitrate reducers of the domain bacteria and archaea, of the phylum Crenarchaea, potentially implicated in ammonium oxidation, significantly decreased with elevated CO(2). These changes in soil biota are evidence for altered interactions between trembling aspen and the microorganisms in its surrounding soil, and support the theory that greater plant detritus production under elevated CO(2) significantly alters soil microbial community composition.

  2. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    PubMed

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  3. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  4. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    PubMed

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  5. Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of glyphosate-based weed control systems has led to increased use of the herbicide with continued use of additional pesticides. Combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. Research was conducted to evaluate the influence of glypho...

  6. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate.

    PubMed

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-04-01

    We tested whether the presence of plant roots would impair the uptake of ammonium ([Formula: see text]), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of (15)NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial [Formula: see text] uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the [Formula: see text] uptake by F. gigantea, despite more than 60% increase in the soil concentration of [Formula: see text]. At the same time, the amino acid and [Formula: see text]-N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower [Formula: see text] acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition.

  7. Salinity affects microbial activity and soil organic matter content in tidal wetlands.

    PubMed

    Morrissey, Ember M; Gillespie, Jaimie L; Morina, Joseph C; Franklin, Rima B

    2014-04-01

    Climate change-associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0-2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C : N, but unrelated to the other studied environmental parameters (pH, redox, and above- and below-ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon-degrading extracellular enzymes (β-1, 4-glucosidase, 1, 4-β-cellobiosidase, β-D-xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate-limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T-RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4-β-cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates

  8. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  9. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  10. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  11. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers

    PubMed Central

    Simonin, Marie; Richaume, Agnès; Guyonnet, Julien P.; Dubost, Audrey; Martins, Jean M. F.; Pommier, Thomas

    2016-01-01

    Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg−1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function. PMID:27659196

  12. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers

    NASA Astrophysics Data System (ADS)

    Simonin, Marie; Richaume, Agnès; Guyonnet, Julien P.; Dubost, Audrey; Martins, Jean M. F.; Pommier, Thomas

    2016-09-01

    Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg‑1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.

  13. Biogas digestates affect crop P uptake and soil microbial community composition.

    PubMed

    Hupfauf, Sebastian; Bachmann, Silvia; Fernández-Delgado Juárez, Marina; Insam, Heribert; Eichler-Löbermann, Bettina

    2016-01-15

    Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes.

  14. Biogas digestates affect crop P uptake and soil microbial community composition.

    PubMed

    Hupfauf, Sebastian; Bachmann, Silvia; Fernández-Delgado Juárez, Marina; Insam, Heribert; Eichler-Löbermann, Bettina

    2016-01-15

    Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes. PMID:26410342

  15. Does the preferential microbial colonisation of ferromagnesian minerals affect mineral weathering in soil?

    PubMed

    Wilson, Michael J; Certini, Giacomo; Campbell, Colin D; Anderson, Ian C; Hillier, Stephen

    2008-09-01

    Fungal activity is thought to play a direct and effective role in the breakdown and dissolution of primary minerals and in the synthesis of clay minerals in soil environments, with important consequences for plant growth and ecosystem functioning. We have studied primary mineral weathering in volcanic soils developed on trachydacite in southern Tuscany using a combination of qualitative and quantitative mineralogical and microbiological techniques. Specifically, we characterized the weathering and microbiological colonization of the magnetically separated ferromagnesian minerals (biotite and orthopyroxene) and non-ferromagnesian constituents (K-feldspar and volcanic glass) of the coarse sand fraction (250-1,000 microm). Our results show that in the basal horizons of the soils, the ferromagnesian minerals are much more intensively colonized by microorganisms than K-feldspar and glass, but that the composition of the microbial communities living on the two mineral fractions is similar. Moreover, X-ray diffraction, optical and scanning electron microscope observations show that although the ferromagnesian minerals are preferentially associated with an embryonic form of the clay mineral halloysite, they are still relatively fresh. We interpret our results as indicating that in this instance microbial activity, and particularly fungal activity, has not been an effective agent of mineral weathering, that the association with clay minerals is indirect, and that fungal weathering of primary minerals may not be as important a source of plant nutrients as previously claimed.

  16. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  17. Dissipation and effects of tricyclazole on soil microbial communities and rice growth as affected by amendment with alperujo compost.

    PubMed

    García-Jaramillo, M; Redondo-Gómez, S; Barcia-Piedras, J M; Aguilar, M; Jurado, V; Hermosín, M C; Cox, L

    2016-04-15

    The presence of pesticides in surface and groundwater has grown considerably in the last decades as a consequence of the intensive farming activity. Several studies have shown the benefits of using organic amendments to prevent losses of pesticides from runoff or leaching. A particular soil from the Guadalquivir valley was placed in open air ponds and amended at 1 or 2% (w/w) with alperujo compost (AC), a byproduct from the olive oil industry. Tricyclazole dissipation, rice growth and microbial diversity were monitored along an entire rice growing season. An increase in the net photosynthetic rate of Oryza sativa plants grown in the ponds with AC was observed. These plants produced between 1100 and 1300kgha(-1) more rice than plants from the unamended ponds. No significant differences were observed in tricyclazole dissipation, monitored for a month in soil, surface and drainage water, between the amended and unamended ponds. The structure and diversity of bacteria and fungi communities were also studied by the use of the polymerase chain reaction denaturing gel electrophoresis (PCR-DGGE) from DNA extracted directly from soil samples. The banding pattern was similar for all treatments, although the density of bands varied throughout the time. Apparently, tricyclazole did not affect the structure and diversity of bacteria and fungi communities, and this was attributed to its low bioavailability. Rice cultivation under paddy field conditions may be more efficient under the effects of this compost, due to its positive effects on soil properties, rice yield, and soil microbial diversity.

  18. Analysis of matrix effects critical to microbial transport in organic waste-affected soils across laboratory and field scales

    NASA Astrophysics Data System (ADS)

    Unc, Adrian; Goss, Michael J.; Cook, Simon; Li, Xunde; Atwill, Edward R.; Harter, Thomas

    2012-06-01

    Organic waste applications to soil (manure, various wastewaters, and biosolids) are among the most significant sources of bacterial contamination in surface and groundwater. Transport of bacteria through the vadose zone depends on flow path geometry and stability and is mitigated by interaction between soil, soil solution, air-water interfaces, and characteristics of microbial surfaces. After initial entry, the transport through soil depends on continued entrainment of bacteria and resuspension of those retained in the porous structure. We evaluated the retention of bacteria-sized artificial microspheres, varying in diameter and surface charge and applied in different suspending solutions, by a range of sieved soils contained in minicolumns, the transport of hydrophobic bacteria-sized microspheres through undisturbed soil columns as affected by waste type under simulated rainfall, and the field-scale transport of Enterococcus spp. to an unconfined sandy aquifer after the application of liquid manure. Microsphere retention reflected microsphere properties. The soil type and suspending solution affected retention of hydrophilic but not hydrophobic particles. Retention was not necessarily facilitated by manure-microsphere-soil interactions but by manure-soil interactions. Undisturbed column studies confirmed the governing role of waste type on vadose-zone microsphere transport. Filtration theory applied as an integrated analysis of transport across length scales showed that effective collision efficiency depended on the distance of travel. It followed a power law behavior with the power coefficient varying from ˜0.4 over short distances to >0.9 over 1 m (i.e., very little filtration for a finite fraction of biocolloids), consistent with reduced influence of soil solution and biocolloid properties at longer travel distances.

  19. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    NASA Astrophysics Data System (ADS)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  20. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  1. Spatial pattern formation of microbes at the soil microscale affect soil C and N turnover in an individual-based microbial community model

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie

    2016-04-01

    At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these

  2. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  3. [Dynamics of microbial biomass C in a black soil under long-term fertilization and related affecting factors].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Zhu, Ping; Ren, Jun; Peng, Chang; Liang, Chenghua

    2004-08-01

    The effect of long-term fertilization on the dynamics of microbial biomass C in a typical black soil of Northeastern China was studied in a field trail treated by different fertilizations. The results showed that the amount of soil microbial biomass C under different fertilizations varied significantly with growth stages. It was the highest in farmyard manure (M2 and M4) treatments, with a less seasonal fluctuation, second in NPK treatment, the peak at sowing period, and the lowest in CK, the peak at wax maturity stage. No significant correlation was found between the dynamic changes of soil microbial biomass C and soil biological, physical and chemical properties in all treatments, but the correlation of soil microbial biomass C with the contents of N, P and K in plants and that of crude protein in grain was significantly positive. PMID:15573983

  4. DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy

    NASA Astrophysics Data System (ADS)

    Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo

    2014-05-01

    plots, whereas an opposite trend for basal respiration was observed, thus evidencing a stressful condition for nitrifying microbial population. After 57 and 71 DAS, when fertilizer was applied as 30 kg N ha-1, the microbial biomass was similar between C and DMPP plots, whereas basal respiration resulted statistically lower in DMPP plots than C plots. During these periods, average DMPP N2O fluxes were also comparable or lower. In conclusion, our data evidence a stressful condition for soil microbes and in particular for nitrifiers when a higher DMPP quantity is supplied. On the contrary, when lower quantities of DMPP-added fertilizers are supplied (e.s. 30 kg N ha-1) effectiveness of DMPP in reducing soil N2O emission is guaranteed by reducing the nitrifiers activity without negatively affecting their growth.

  5. [Variations of microbial biomass and hydrolase activities in purple soil under different cropping modes as affected by ginger planting].

    PubMed

    Wang, Xu-Xi; Wu, Fu-Zhong; Yang, Wan-Qin; Wang, Ao

    2012-02-01

    This paper studied the variations of soil microbial biomass C, N, and P contents and soil hydrolase activities under different cropping modes, i.e., corn + sweet potato intercropping (CS), soybean mono-cropping (SM), continuous cropping of ginger (CG), and rice-milk vetch rotation (RM) , after ginger planting in the purple soil area at the lower reaches of Minjiang River. Ginger planting decreased the soil microbial biomass C, N and P contents significantly. The decrement of the soil microbial biomass C and N contents after ginger planting was lesser under CS and RM than under SM and CG, but the soil microbial biomass P content was in adverse. Ginger planting also decreased the soil acid phosphatase activity significantly, and the decrement was the greatest under CS but the least under RM. The soil invertase activity decreased significantly under CG, and the soil urease activity had a significant decrease under SM, CG and RM. After ginger planting, the soil urease and intervase activities under CS were higher, as compared with those under the other cropping modes.

  6. Biochar addition impacts soil microbial community in tropical soils

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel

    2014-05-01

    Studies on the effect of biochar on soil microbial activity and community structure in tropical areas are scarce. In this study we report the effect of several types of biochar (sewage sludge biochar, paper mill waste biochar, miscanthus biochar and pinewood biochar) in the soil microbial community of two tropical soils, an Acrisol and an Oxisol. In addition we study the effect of the presence or absence of earthworms in soil microbial community. Soil microbial community was more strongly affected by biochar than by the presence or absence of macrofauna.

  7. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  8. Biological soil crusts: a microenvironment characterized by complex microbial interrelations affected by the presence of the exopolysaccharidic matrix.

    NASA Astrophysics Data System (ADS)

    De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are complex microbial communities, commonly found in arid and semiarid areas of the world. The capability of the microorganisms residing in BSCs to withstand the harsh environmental conditions typical of these habitats, namely drought and high solar irradiation, is related with the presence of a matrix constituted by microbial-produced extracellular polysaccharides (EPSs), which also accomplish for a wide array of key ecological roles. EPSs represent a huge carbon source directly available to heterotrophic organisms, affect soil characteristics, water regimes, and establish complex interactions with plants. The induction of BSCs on degraded soils is considered a feasible approach to amend and maintain land fertility, as it was reported in a number of recent studies. It was recently shown that BSC induction is beneficial in enhancing SOC (Soil Organic Carbon) and in increasing the abundance of phototrophic organisms and vegetation cover. This lecture will describe the results of a study showing that cyanobacterial-EPS resulted advantageous to the growth and metabolism of seedlings of Caragana korshinskii, a desert sub-shrub widely diffused in the area under study, also contributing a defensive effect against the damaging effects of reactive oxygen species (ROS), generated under UV-irradiation, salt stress and desiccation. A study aimed at investigating the possible correlation between the chemical composition and the macromolecular features of the EPS matrix of induced BSCs of different age, collected in the hyper-arid plateau of Hobq desert, Inner Mongolia, China, will be also presented. The results of this study showed that the characteristics of the EPS of the matrix of the investigated IBSCs cannot be put only in relation with the age of the crusts and the activity of phototrophic microorganisms but, more properly, it has to be taken into account the biotic interactions ongoing between EPS producers (cyanobacteria, green microalgae

  9. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed at a nominal concentration of 50 μg/mL over 4 months under aerobic conditions in three different soil types. Rates and products of transformation were measured, as wel...

  10. Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.

    PubMed

    McDaniel, M D; Kaye, J P; Kaye, M W; Bruns, M A

    2014-04-01

    Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.

  11. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season

    PubMed Central

    Zhou, Dinggang; Xu, Liping; Gao, Shiwu; Guo, Jinlong; Luo, Jun; You, Qian; Que, Youxiong

    2016-01-01

    Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes. PMID:27014291

  12. Soil Microbial Mineralization of Cellulose in Frozen Soils

    NASA Astrophysics Data System (ADS)

    Segura, J.; Haei, M.; Sparrman, T.; Nilsson, M. B.; Schleucher, J.; Oquist, M. G.

    2014-12-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon pool. In boreal forests, the mineralization of soil organic matter (SOM) during winter by soil heterotrophic activity can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances depend on whether soil microorganisms can utilize the more complex, polymeric substrates in SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). The [13C]-CO2 production rate in the samples at +4°C were 0.524 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.008 mg CO2 SOM -1 day-1. Thus, freezing of the soil markedly reduced microbial utilization of the cellulose. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming microbial growth also in the frozen soil matrix. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero. This also involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of soils of high-latitude ecosystems.

  13. Do Chernobyl-like contaminations with (137)Cs and (90)Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil?

    PubMed

    Niedrée, Bastian; Berns, Anne E; Vereecken, Harry; Burauel, Peter

    2013-04-01

    (137)Cs and (90)Sr are the main radionuclides responsible for contamination of agricultural soils due to core melts in nuclear power plants such as Chernobyl or Fukushima. The present study focused on effects of Chernobyl-like contaminations on the bacterial and fungal community structure, the fungal biomass and the formation of soil organic matter in native and in sterilized and reinoculated soils. 2% wheat straw [m/m] was applied to a typical agricultural soil, artificially contaminated with (137)Cs and (90)Sr, and it was then incubated in microcosms for three months at 20 °C and 50% of the water-holding capacity. The development of the microbial communities was monitored with 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The quantification of the ergosterol content was used as a proxy for changes in the fungal biomass. Changes in the soil organic matter were determined using the (13)C cross polarization/magic angle spinning nuclear magnet resonance technique ((13)C-CP/MAS NMR). Slight but significant population shifts in the DGGE gel patterns could be related to the applied radionuclides. However, radiation-induced impacts could not be seen in either the chemical composition of the soil organic matter or in the development of the fungal biomass. Impacts caused by sterilization and reinoculation prevailed in the microcosms of the present study. Contaminations with (137)Cs or (90)Sr up to 50-fold that of the hotspots occurring in Chernobyl led to minor changes in soil microbial functions suggesting a strong resilience of natural soils with respect to radioactive contamination.

  14. Short-time effect of salvage harvesting on microbial soil properties in a Mediterranean area affected by a wildfire: preliminary results

    NASA Astrophysics Data System (ADS)

    Moltó, Jorge; Mataix-Solera, Jorge; Arcenegui, Victoria; Morugan, Alicia; Girona, Antonio; Garcia-orenes, Fuensanta

    2014-05-01

    In the Mediterranean region, wildfires are considered one of the main ecological factors, which, in addition to and in relation to changes in soil use, may cause soil loss and degradation, one of the most important environmental problems that humanity must face up to. As is well known, the soil-plant system is one of the key factors determining ecological recovery after the occurrence of a wildfire. Traditionally, a variety of forestry practices have been implemented on spanish sites after the incidence of a wildfire. Among them stands out the complete extraction of the burned wood, which consist in getting rid of the branches and other wooden debris using small controlled bonfires, splintering or mechanical extraction. This set of post-fire management practices is known as salvage logging or salvage harvesting. Despite the remarkable relevance and influence that this conjunction of techniques has on land management after a wildfire, very little experimental research focused on assessing the impact of salvage logging on the vegetal community has been done. Furthermore, even less research inquiring into the mode and grade of incidence that the salvage logging produces on soil properties has taken place. The aim of this research is to assess the effects that the salvage harvesting has on different soil microbial properties and other related properties. The study area is located in the Natural Park of the "Sierra de Mariola" in the province of Alicante, southeastern Spain. This location was affected by a wildfire whose extension reached more than 500 Ha in July 2012. Different post-fire treatments were proposed by the authorities, including salvage harvesting in some areas. Two different treatments were distinguished for the study, "control" (without any kind of burned wood removal) and "harvest" (where salvage logging was carried out), in each area three 4 m2 sampling plots were set up. These two treatments were established on the same slope with the same orography

  15. Factors affecting soil cohesion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  16. Microbial effect on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  17. Freezing skeletal muscle tissue does not affect its decomposition in soil: evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples.

    PubMed

    Stokes, Kathryn L; Forbes, Shari L; Tibbett, Mark

    2009-01-10

    The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (-20 degrees C) or refrigerated (4 degrees C). Portions of skeletal muscle tissue (approximately 1.5 g) were interred in microcosms (72 mm diameter x 120 mm height) containing sieved (2mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a

  18. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    and soil organic matter levels. Correlations between soil organic matter and total PLFA contents showed highly positive correlations at all sites (with R-values between 0.72 and 0.88). To find out whether sewage sludge through its metal impurities could impose stress on the microbial biomass, we compared the correlations between all different fertilisers used and PLFAs. The slopes of these comparisons revealed that sludge did not differ from other fertiliser treatments, which means that our results contrast earlier reports on negative effects of metals in sludge on soil microbes. The microbial community structure, studied with principal component analysis of individual PLFAs, was strongly affected by changes in soil pH, and at those sites where sewage sludge had caused a low pH, Gram-positive bacteria were more dominant than in the other treatments. However, differences in community structure were larger between sites than between the treatments investigated in this study, thus indicating that the original soil properties were more important for the microbial community structure than the fertiliser treatments.

  19. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics.

    PubMed

    Lombard, Nathalie; Prestat, Emmanuel; van Elsas, Jan Dirk; Simonet, Pascal

    2011-10-01

    Metagenomics approaches represent an important way to acquire information on the microbial communities present in complex environments like soil. However, to what extent do these approaches provide us with a true picture of soil microbial diversity? Soil is a challenging environment to work with. Its physicochemical properties affect microbial distributions inside the soil matrix, metagenome extraction and its subsequent analyses. To better understand the bias inherent to soil metagenome 'processing', we focus on soil physicochemical properties and their effects on the perceived bacterial distribution. In the light of this information, each step of soil metagenome processing is then discussed, with an emphasis on strategies for optimal soil sampling. Then, the interaction of cells and DNA with the soil matrix and the consequences for microbial DNA extraction are examined. Soil DNA extraction methods are compared and the veracity of the microbial profiles obtained is discussed. Finally, soil metagenomic sequence analysis and exploitation methods are reviewed.

  20. Post fumigation recovery of soil microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigants have been extensively used to control target soil-borne pathogens and weeds for the past few decades. It is known that the fumigants with broad biocidal activity can affect both target and non-target soil organisms, but the recovery of soil microbial communities are unknown until rece...

  1. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  2. Microbial growth responses upon rewetting dry soil

    NASA Astrophysics Data System (ADS)

    Meisner, Annelein; Rousk, Johannes; Bååth, Erland

    2015-04-01

    Increased rainfall and drought periods are expected to occur with current climate change, leading to fluctuations in soil moisture. Changes in soil moisture are known to affect carbon cycling. A pulse of carbon dioxide release (respiration) is often observed after rewetting a dry soil and a drying threshold is observed before this pulse emerges. Increased microbial activity is often assumed to be the cause for the pulse in respiration. Yet, the microbial growth responses that underlie this pulse are often not studied. The following questions will be addressed in this presentation. 1) Do fungal and bacterial growth explain the pulse in respiration upon rewetting a dry soil? 2) How does microbial growth respond to different drying intensities before rewetting? To answer the research questions, soils from Sweden, U.K. and Greenland were put in microcosms, air-dried for four days, a prolonged period or to different moisture content before rewetting. We measured soil respiration, fungal growth rates and/or bacterial growth rates at high temporal resolution during one week after rewetting. Our results suggest that the respiration pulse upon rewetting dry soil is not due to high microbial growth rates. During the first hours after rewetting, bacterial and fungal growth rates were low whereas the respiration rates were high. As such, there was a decoupling between the pulse in respiration and microbial growth rates. Two patterns of bacterial growth were observed upon rewetting the three different soils. In "pattern 1", bacteria started growing immediately in a linear pattern up to values similar as the moist control. In "pattern 2", bacteria started growing exponentially after a lag period of no growth with a second pulse of respiration occurring at the start of bacterial growth. Manipulating the drying intensity changed the patterns. Soils with "pattern 1" were changed to "pattern 2" when subjected to more extensive drying periods whereas soils with "pattern 2" were

  3. Soil water fluctuations: microbial community responses and CO2 production

    NASA Astrophysics Data System (ADS)

    Placella, S.; Brodie, E. L.; Firestone, M. K.; Lennon, J. T.

    2012-12-01

    Water availability is one of the primary controllers of microbial activity in soils. Likely even more important to microbial activity than static values of soil water potential are changes in soil water potential; changes in soil water potential may trigger pulses of or cross thresholds for microbial activity. How do increases and declines in soil water potential affect microbial activity and rates of carbon dioxide (CO2) production from soil? While extremely dry soils have very low rates of CO2 production, wetting of dry soil is known to initiate a large CO2 pulse known as the Birch effect. We studied this pulse in two California annual grassland soils while concurrently monitoring microbial resuscitation. We also examined the impacts of reduced rainfall in a successional grassland in Michigan, with a focus on changes in microbial activity during a dry down period. In both systems we used relative RNA quantity to identify when different microorganisms were relatively more active. Upon wetting of dry soil, we found that the large CO2 pulse occurred during the resuscitation of the microbial community. We identified three resuscitation strategies (rapid, intermediate and delayed responders) and found that they are phylogenetically conserved, with related organisms displaying the same strategy. During a soil dry down event, we found a decline in the rate of CO2 production from soils and examined the concurrent change in the microbial community during this 7-day period. We also investigated how a summer of greater water potential fluctuation, due to reduced rainfall, impacted the stability of the microbial community. Our results demonstrate that changes in water potential can drive changes in microbial activity, leading to serious implications for soil CO2 production.

  4. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to understand how soil microorganisms interact with cover crop-derived allelochemicals to suppress weed germination and growth following cover crop residue incorporation. We conducted a time series experiment by crossing sterilized and non-sterilized soil with four dif...

  5. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  6. Soil microbial communities as affected by organic fertilizer and sunn hemp as a cover crop in organic sweet pepper production in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production in Puerto Rico is at an early stage and research is needed to validate the sustainability of different management practices. This research initiated evaluation of selected soil properties including the microbial communities to evaluate the effects of Tropic sunn (Crotalaria juncea...

  7. Experimental warming effects on the microbial community of a temperate mountain forest soil.

    PubMed

    Schindlbacher, A; Rodler, A; Kuffner, M; Kitzler, B; Sessitsch, A; Zechmeister-Boltenstern, S

    2011-07-01

    Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO(2) (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency.

  8. Out of sight - Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide

    2016-04-01

    Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and

  9. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen. PMID:25391237

  10. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  11. Distribution of Prokaryotic Abundance and Microbial Nutrient Cycling Across a High-Alpine Altitudinal Gradient in the Austrian Central Alps is Affected by Vegetation, Temperature, and Soil Nutrients.

    PubMed

    Hofmann, Katrin; Lamprecht, Andrea; Pauli, Harald; Illmer, Paul

    2016-10-01

    Studies of the altitudinal distributions of soil microorganisms are rare or have led to contradictory results. Therefore, we studied archaeal and bacterial abundance and microbial-mediated activities across an altitudinal gradient (2700 to 3500 m) on the southwestern slope of Mt. Schrankogel (Central Alps, Austria). Sampling sites distributed over the alpine (2700 to 2900 m), the alpine-nival (3000 to 3100 m), and the nival altitudinal belts (3200 to 3500 m), which are populated by characteristic plant assemblages. Bacterial and archaeal abundances were measured via quantitative real-time PCR (qPCR). Moreover, microbial biomass C, microbial activity (dehydrogenase), and enzymes involved in carbon (CM-cellulase), nitrogen (protease), phosphorus (alkaline phosphatase), and sulfur (arylsulfatase) cycling were determined. Abundances, microbial biomass C, and activities almost linearly decreased along the gradient. Archaeal abundance experienced a sharper decrease, thus pointing to pronounced sensitivity toward environmental harshness. Additionally, abundance and activities were significantly higher in soils of the alpine belt compared with those of the nival belt, whereas the alpine-nival ecotone represented a transitional area with intermediate values, thus highlighting the importance of vegetation. Archaeal abundance along the gradient was significantly related to soil temperature only, whereas bacterial abundance was significantly related to temperature and dissolved organic carbon (DOC). Soil carbon and nitrogen concentrations explained most of the variance in enzyme activities involved in the cycling of C, N, P, and S. Increasing temperature could therefore increase the abundances and activities of microorganisms either directly or indirectly via expansion of alpine vegetation to higher altitudes and increased plant cover. PMID:27401822

  12. Direct Evidence Linking Soil Organic Matter Development to Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kallenbach, C.; Grandy, S.

    2013-12-01

    transformation of added substrates into complex SOM and stability is measured biologically using 13C isotopes. The first 4 mo of the incubation demonstrate a significant influence of both soil mineralogy and substrate quality on microbial physiology with subsequent effects on total newly formed soil C concentrations. However, treatment differences in total C changed when only the biologically stable fraction was considered. There was an interaction between mineralogy and substrate with soil respiration, enzyme activity and microbial biomass. Py-GC/MS results show a transformation of simple substrates into chemically complex SOM, rich in proteins, lipids, and phenolics. The abundances of proteins and lipids varied however, across soil and substrate treatments, suggesting divergent SOM chemistries due to substrate quality and organo-mineral interactions. Preliminary results from this long-term study demonstrate the microbial production of complex SOM where difference in accumulation and stability are influenced by the conditions and microbial community in which it is formed. From this work, we can develop a better understanding of the ecological context in which SOM is formed and how altering microbial community function and resource inputs may affect the development of stable SOM.

  13. Linking microbial carbon utilization with microbially-derived soil organic matter

    NASA Astrophysics Data System (ADS)

    Kallenbach, Cynthia M.; Grandy, A. Stuart

    2014-05-01

    , microbial activity and biomass, and SOM accumulation rates are monitored. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is used to track the microbial transformation of added substrates into complex SOM and stability is measured biologically using 13C isotopes. The first 6 mo of the incubation demonstrate a significant influence of both soil mineralogy and substrate quality on microbial physiology with subsequent effects on total newly formed soil C concentrations. However, treatment differences in total C changed when only the biologically stable fraction was considered. There was an interaction between mineralogy and substrate with soil respiration, enzyme activity and microbial biomass. Py-GC/MS results show a transformation of simple substrates into chemically complex SOM, rich in proteins, lipids, and phenolics. The abundances of proteins and lipids varied however, across soil and substrate treatments, suggesting divergent SOM chemistries due to substrate quality and organo-mineral interactions. Preliminary results from this long-term study demonstrate the microbial production of complex SOM where difference in accumulation and stability are influenced by the interactions between resources and the microbial community. From this work, we can develop a better understanding of the ecological context in which SOM is formed and how altering microbial community function and resource inputs may affect the development of stable SOM.

  14. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils.

    PubMed

    Waldrop, M P; Firestone, M K

    2006-10-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  15. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  16. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  17. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  18. Soil microbial communities respond differently to three chemically defined polyphenols.

    PubMed

    Schmidt, Michael A; Kreinberg, Allison J; Gonzalez, Javier M; Halvorson, Jonathan J; French, Elizabeth; Bollmann, Annette; Hagerman, Ann E

    2013-11-01

    High molecular weight polyphenols (e.g. tannins) that enter the soil may affect microbial populations, by serving as substrates for microbial respiration or by selecting for certain microbes. In this study we examined how three phenolic compounds that represent some environmentally widespread tannins or their constituent functional groups were respired by soil microorganisms and how the compounds affected the abundance and diversity of soil bacteria and archaea, including ammonia oxidizers. An acidic, silt loam soil from a pine forest was incubated for two weeks with the monomeric phenol methyl gallate, the small polyphenol epigallocatechin gallate, or the large polyphenol oenothein B. Respiration of the polyphenols during the incubation was measured using the Microresp™ system. After incubation, metabolic diversity was determined by community level physiological profiling (CLPP), and genetic diversity was determined using denaturing gradient gel electrophoresis (DGGE) analysis on DNA extracted from the soil samples. Total microbial populations and ammonia-oxidizing populations were measured using real time quantitative polymerase chain reaction (qPCR). Methyl gallate was respired more efficiently than the higher molecular weight tannins but not as efficiently as glucose. Methyl gallate and epigallocatechin gallate selected for genetically or physiologically unique populations compared to glucose. None of the polyphenols supported microbial growth, and none of the polyphenols affected ammonia-oxidizing bacterial populations or ammonia-oxidizing archaea. Additional studies using both a wider range of polyphenols and a wider range of soils and environments are needed to elucidate the role of polyphenols in determining soil microbiological diversity.

  19. Arctic soil microbial diversity in a changing world.

    PubMed

    Blaud, Aimeric; Lerch, Thomas Z; Phoenix, Gareth K; Osborn, A Mark

    2015-12-01

    The Arctic region is a unique environment, subject to extreme environmental conditions, shaping life therein and contributing to its sensitivity to environmental change. The Arctic is under increasing environmental pressure from anthropogenic activity and global warming. The unique microbial diversity of Arctic regions, that has a critical role in biogeochemical cycling and in the production of greenhouse gases, will be directly affected by and affect, global changes. This article reviews current knowledge and understanding of microbial taxonomic and functional diversity in Arctic soils, the contributions of microbial diversity to ecosystem processes and their responses to environmental change. PMID:26275598

  20. Arctic soil microbial diversity in a changing world.

    PubMed

    Blaud, Aimeric; Lerch, Thomas Z; Phoenix, Gareth K; Osborn, A Mark

    2015-12-01

    The Arctic region is a unique environment, subject to extreme environmental conditions, shaping life therein and contributing to its sensitivity to environmental change. The Arctic is under increasing environmental pressure from anthropogenic activity and global warming. The unique microbial diversity of Arctic regions, that has a critical role in biogeochemical cycling and in the production of greenhouse gases, will be directly affected by and affect, global changes. This article reviews current knowledge and understanding of microbial taxonomic and functional diversity in Arctic soils, the contributions of microbial diversity to ecosystem processes and their responses to environmental change.

  1. Irrigation Practice Affects Soil Phosphorus Chemistry

    NASA Astrophysics Data System (ADS)

    Ippolito, J.; Bjorneberg, D.

    2011-12-01

    It is expected, given the same water source applied to the same soil, that changes in soil chemistry would be subtle when comparing furrow and sprinkler irrigation practices. From four paired fields, we collected soil (after similar crops were harvested in September) from the 0-5 cm depth. Samples were analyzed for changes in soil P chemistry due to sprinkler or furrow irrigation using: 1) the Olsen soil test P extraction; 2) the alkaline phosphatase enzyme assay; 3) a sequential extraction technique which fractionated inorganic and organic soil P pools; and 4) a measure of the amorphous soil Al and Fe mineral phases. Olsen-extractable soil P was lower under sprinkler irrigation; however, this was not due to a reduction in microbial phosphatase activity. Soils under sprinkler irrigation contained lower inorganic P concentrations in soluble/Al-bound/Fe-bound and in the occluded phases, lesser amounts of organic P present in the moderately labile and non-labile fractions, and contained lower amorphous Fe concentrations. These results indicate that the method of water application affects soil chemistry and nutrient cycling.

  2. Role of soil microbial processes in integrated pest management

    SciTech Connect

    Francis, A.J.

    1987-01-01

    Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenic microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.

  3. Microbial Remediation of Metals in Soils

    NASA Astrophysics Data System (ADS)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  4. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    NASA Astrophysics Data System (ADS)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  5. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    PubMed

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage.

  6. Microbial activity in soils following steam treatment.

    PubMed

    Richardson, Ruth E; James, C Andrew; Bhupathiraju, Vishvesh K; Alvarez-Cohen, Lisa

    2002-01-01

    Steam enhanced extraction (SEE) is an aquifer remediation technique that can be effective at removing the bulk of non-aqueous phase liquid (NAPL) contamination from the subsurface, particularly highly volatile contaminants. However, low volatility compounds such as polynuclear aromatic hydrocarbons (PAHs) are less efficiently removed by this process. This research evaluated the effects of steam injection on soil microbial activity, community structure, and the potential for biodegradation of contaminants following steam treatment. Three different soils were evaluated: a laboratory-prepared microbially-enriched soil, soil from a creosote contaminated field site, and soil from a chlorinated solvent and waste oil contaminated field site. Results from field-scale steaming are also presented. Microbial activity before and after steam treatment was evaluated using direct epifluorescent microscopy (DEM) using the respiratory activity dye 5-cyano-2,3, ditolyl tetrazolium chloride (CTC) in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to yield a quantitative assessment of active and total microbial numbers. DEM results indicate that steamed soils that were analyzed while still hot exhibited microbial activity levels that were below detection. However, soil samples that were slowly cooled, more closely reflecting the conditions of applied SEE, exhibited microbial activity levels that were comparable to presteamed soils. Samples from a field-site where steam was applied continuously for 6 weeks also showed high levels of microbial activity following cooling. The metabolic capabilities of the steamed communities were investigated by measuring cell growth in enrichment cultures on various substrates. These studies provided evidence that organisms capable of biodegradation were among the mesophilic populations that survived steam treatment. Fluorescent in situ hybridization (FISH) analysis of the soils with domain-level rRNA probes suggest

  7. Substrate and nutrient limitation regulating microbial growth in soil

    NASA Astrophysics Data System (ADS)

    Bååth, Erland

    2015-04-01

    Microbial activity and growth in soil is regulated by several abiotic factors, including temperature, moisture and pH as the most important ones. At the same time nutrient conditions and substrate availability will also determine microbial growth. Amount of substrate will not only affect overall microbial growth, but also affect the balance of fungal and bacterial growth. The type of substrate will also affect the latter. Furthermore, according to Liebig law of limiting factors, we would expect one nutrient to be the main limiting one for microbial growth in soil. When this nutrient is added, the initial second liming factor will become the main one, adding complexity to the microbial response after adding different substrates. I will initially describe different ways of determining limiting factors for bacterial growth in soil, especially a rapid method estimating bacterial growth, using the leucine incorporation technique, after adding C (as glucose), N (as ammonium nitrate) and P (as phosphate). Scenarios of different limitations will be covered, with the bacterial growth response compared with fungal growth and total activity (respiration). The "degree of limitation", as well as the main limiting nutrient, can be altered by adding substrate of different stoichiometric composition. However, the organism group responding after alleviating the nutrient limitation can differ depending on the type of substrate added. There will also be situations, where fungi and bacteria appear to be limited by different nutrients. Finally, I will describe interactions between abiotic factors and the response of the soil microbiota to alleviation of limiting factors.

  8. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools

  9. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that

  10. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition.

  11. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  12. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    PubMed

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. PMID:26410698

  13. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    PubMed

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability.

  14. Soil microbial response to waste potassium silicate drilling fluid.

    PubMed

    Yao, Linjun; Naeth, M Anne; Jobson, Allen

    2015-03-01

    Potassium silicate drilling fluids (PSDF) are a waste product of the oil and gas industry with potential for use in land reclamation. Few studies have examined the influence of PSDF on abundance and composition of soil bacteria and fungi. Soils from three representative locations for PSDF application in Alberta, Canada, with clay loam, loam and sand textures were studied with applications of unused, used once and used twice PSDF. For all three soils, applying ≥40 m3/ha of used PSDF significantly affected the existing soil microbial flora. No microbiota was detected in unused PSDF without soil. Adding used PSDF to soil significantly increased total fungal and aerobic bacterial colony forming units in dilution plate counts, and anaerobic denitrifying bacteria numbers in serial growth experiments. Used PSDF altered bacterial and fungal colony forming unit ratios of all three soils. PMID:25766028

  15. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  16. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Li-Juan; Feng, Qi; Li, Chang-Sheng; Song, You-Xi; Liu, Wei; Si, Jian-Hua; Zhang, Bao-Gui

    2016-05-01

    Spatial variations of soil microbial activities and its relationship with environmental factors are very important for estimating regional soil ecosystem function. Based on field samplings in a typical saline groundwater-irrigated region, spatial variations of soil microbial metabolic activities were investigated. Combined with groundwater quality analysis, the relationship between microbial activities and water salinity was also studied. The results demonstrated that moderate spatial heterogeneity of soil microbial activities presented under the total dissolved solids (TDS) of groundwater ranging from 0.23 to 12.24 g L-1. Groundwater salinity and microbial activities had almost opposite distribution characteristics: slight saline water was mainly distributed in west Baqu and south Quanshan, while severe saline and briny water were dominant in east Baqu and west Huqu; however, total AWCD was higher in the east-center and southwest of Baqu and east Huqu, while it was lower in east Baqu and northwest Huqu. The results of correlation analyses demonstrated that high-salinity groundwater irrigation had significantly adverse effects on soil microbial activities. Major ions Ca2+, Mg2+, Cl_, and SO4 2- in groundwater decisively influenced the results. Three carbon sources, carbohydrates, amines, and phenols, which had minor utilization rates in all irrigation districts, were extremely significantly affected by high-salinity groundwater irrigation. The results presented here offer an approach for diagnosing regional soil ecosystem function changes under saline water irrigation.

  17. [Effects of biochar on microbial ecology in agriculture soil: a review].

    PubMed

    Ding, Yan-Li; Liu, Jie; Wang, Ying-Ying

    2013-11-01

    Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.

  18. Non-microbial methane emissions from soils

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and <53 μm, M2). Results show that applying autoclaving to pre-treat soils is effective to inhibit methanogenic activity, ensuring the CH4 emitted being non-microbial. Responses of non-microbial CH4 emissions to temperature, water, and H2O2 were almost identical between aerobic and anaerobic conditions. Increasing temperature, water of proper amount, and H2O2 could significantly enhance CH4 emissions. However, the emission rates were inhibited and enhanced by anaerobic conditions without and with the existence of H2O2, respectively. As regards the aggregates, aggregate-based emission presented an order of M1 > A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished

  19. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  20. [Soil microbial biomass in Larix gmelinii forests along a latitudinal gradient during spring soil thawing].

    PubMed

    Ding, Shuang; Wang, Chuan-kuan

    2009-09-01

    The 8-year-old Larix gmelinii forests were transplanted from four sites (Tahe, Songling, Sunwu, and Dailing) comprising a latitudinal gradient across the distribution range of L. gmelinii in Northeastern China, and the soil microbial biomass carbon (Cmic) and nitrogen (Nmic) in spring soil thawing period were measured after 3-year transplanting. Under the similar soil substrates and the same climate conditions, the mean values of soil Cmic and Nmic in the L. gmelinii forests transplanted from the four sites differed significantly, being decreased with increasing latitude and soil depth. The Cmic for Tahe, Songling, Sunwu, and Dailing averaged 554.63, 826.41, 874.81, and 1246.18 mg x kg(-1), and the Nmic averaged 70.63, 96.78, 79.76, and 119.66 mg x kg(-1), respectively. The Cmic and Nmic peaked before soil thawing, declined rapidly at the early stage of soil thawing, and had less change and maintained at a lower level during the period of soil freezing-thawing. By the end of soil thawing, the Cmic for lower latitudinal soils (i.e., Dailing and Sunwu) recovered faster. Soil temperature and moisture content during spring soil thawing affected the temporal patterns of Cmic and Nmic significantly, but the affecting degree depended on the stages of soil thawing. The Cmic and Nmic were negatively correlated to the soil temperature at the early stage of soil thawing, and exponentially related to the soil moisture content during the whole soil thawing period.

  1. Bioremediation of petroleum contaminated soil using vegetation. A microbial study

    SciTech Connect

    Lee, E.; Banks, M.K. )

    1993-12-01

    The degradation of selected petroleum hydrocarbons in the rhizosphere of alfalfa was investigated in a greenhouse experiment. Petroleum contaminated and uncontaminated soils were spiked with 100 ppm of polynuclear aromatic and aliphatic hydrocarbons. Unspiked, uncontaminated soil was used as a control. Microbial counts for soils with and without plants for each soil treatment were performed 4, 8, 16, and 24 weeks after planting. Microbial numbers were substantially greater in soil with plants when compared to soil containing no plants, indicating that plant roots enhanced microbial populations in contaminated soil. Soil treatments had no effect on microbial numbers in the presence of plants. 12 refs., 3 figs., 1 tab.

  2. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  3. [Effect of long-term fertilization on microbial community functional diversity in black soil].

    PubMed

    Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku

    2015-10-01

    In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer. PMID:26995915

  4. [Effect of long-term fertilization on microbial community functional diversity in black soil].

    PubMed

    Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku

    2015-10-01

    In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.

  5. Soil microbial toxicity assessment of a copper-based fungicide in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Dober, Melanie; Deltedesco, Evi; Jöchlinger, Lisa; Schneider, Martin; Gorfer, Markus; Bruckner, Alexander; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz; Keiblinger, Katharina Maria

    2016-04-01

    The infestation with the fungus downy mildew (Plasmopara viticola) causes dramatic losses in wine production. Copper (Cu) based fungicides have been used in viticulture since the end of the 19th century, and until today both conventional and organic viticulture strongly rely on Cu to prevent and reduce fungal diseases. Consequently, Cu has built up in many vineyard soils and it is still unclear how this affects soil functioning. The aim of the present study is the evaluation of the soil microbial toxicity of Cu contamination. Two contrasting agricultural soils, an acidic sandy soil and a calcareous loamy soil, were sampled to conduct an eco-toxicological greenhouse pot experiment. The soils were spiked with a commonly used fungicide based on copper hydroxid in seven concentrations (0, 50, 100, 200, 500, 1500 and 5000 mg Cu kg-1 soil) and Lucerne (Medicago sativa L. cultivar. Plato) was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test copper's soil microbial toxicity in total microbial biomass and basal respiration, as well as enzyme activities, such as exoglucanase, β-glucosidase, exochitinase, phosphatase, protease, phenol-, peroxidase and urease. Additionally, DOC, TN, Cmic, Nmic, NO3 and NH4 were determined to provide further insight into the carbon and nitrogen cycle. Microbial community structure was analysed by phospholipid fatty acids (PLFAs), and ergosterol as a fungal biomarker. In addition, molecular tools were applied by extracting soil DNA and performing real time quantitative polymerase chain reaction (qPCR) and a metagenomic approach using 16S and ITS amplification and sequencing with MiSeq platform for the second sampling. Hydrolytic extracellular enzymes were not clearly affected by rising Cu concentrations, while a trend of increasing activity of oxidative enzymes (phenol- and peroxidase) was observed. Microbial respiration rate as well as the amount of Cmic and Nmic decreased with

  6. Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redox states affect substrate availability and energy transformation, and, thus, play a crucial role in regulating soil microbial abundance, diversity, and community structure. We evaluated microbial communities in soils under oxic, intermittent, and anoxic conditions along a river floodplain conti...

  7. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    SciTech Connect

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  8. Primary succession of soil enzyme activity and heterotrophic microbial communities along the chronosequence of Tianshan Mountains No. 1 Glacier, China.

    PubMed

    Zeng, Jun; Wang, Xiao-Xia; Lou, Kai; Eusufzai, Moniruzzaman Khan; Zhang, Tao; Lin, Qing; Shi, Ying-Wu; Yang, Hong-Mei; Li, Zhong-Qing

    2015-02-01

    We investigated the primary successions of soil enzyme activity and heterotrophic microbial communities at the forefields of the Tianshan Mountains No. 1 Glacier by investigating soil microbial processes (microbial biomass and nitrogen mineralization), enzyme activity and community-level physiological profiling. Soils deglaciated between 1959 and 2008 (0, 5, 17, 31 and 44 years) were collected. Soils >1,500 years in age were used as a reference (alpine meadow soils). Soil enzyme activity and carbon-source utilization ability significantly increased with successional time. Amino-acid utilization rates were relatively higher in early, unvegetated soils (0 and 5 years), but carbohydrate utilization was higher in later stages (from 31 years to the reference soil). Discriminant analysis, including data on microbial processes and soil enzyme activities, revealed that newly exposed soils (0-5 years) and older soils (17-44 years) were well-separated from each other and obviously different from the reference soil. Correlation analysis revealed that soil organic carbon, was the primary factor influencing soil enzyme activity and heterotrophic microbial community succession. Redundancy analysis suggested that soil pH and available P were also affect microbial activity to a considerable degree. Our results indicated that glacier foreland soils have continued to develop over 44 years and soils were significantly affected by the geographic location of the glacier and the local topography. Soil enzyme activities and heterotrophic microbial communities were also significantly influenced by these variables. PMID:25472706

  9. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  10. Substrate-induced changes in microbial community-level physiological profiles and their application to discriminate soil microbial communities.

    PubMed

    Chen, Jian; Xie, Huijun; Zhuang, Xuliangli; Zhuang, Guoqiang; Bai, Zhihui; Zhang, Hongxun

    2008-01-01

    The addition of simple substrates could affect the microbial respiration in soils. This substrate-induced respiration is widely used to estimate the soil microbial biomass, but little attention has been paid to its influence on the changes of community-level physiological profiles. In this study, the process of microbial communities responding to the added substrate using sole-carbon-source utilization (BIOLOG) was investigated. BIOLOG is biased toward fast-growing bacteria; this advantage was taken to detect the prompt response of the active microbial communities to the added substrate. Four soil samples from agricultural fields adjacent to heavy metal mines were amended with L-arginine, citric acid, or D-glucose. Substrate amendments could, generally, not only increase the metabolic activity of the microbial communities, but also change the metabolic diverse patterns compared with no-substrate control. By tracking the process, it was found that the variance between substrate-induced treatment and control fluctuated greatly during the incubation course, and the influences of these three substrates were different. In addition, the application of these induced changes to discriminate soil microbial communities was tested. The distance among all samples was greatly increased, which further showed the functional variance among microbial communities in soils. This can be very useful in the discrimination of microbial communities even with high similarity.

  11. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    PubMed

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  12. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  13. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. PMID:27376993

  14. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil.

    PubMed

    Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan

    2015-01-01

    The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions. PMID:25410123

  15. Mechanisms Controlling the Plant Diversity Effect on Soil Microbial Community Composition and Soil Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Mellado Vázquez, P. G.; Lange, M.; Griffiths, R.; Malik, A.; Ravenek, J.; Strecker, T.; Eisenhauer, N.; Gleixner, G.

    2015-12-01

    Soil microorganisms are the main drivers of soil organic matter cycling. Organic matter input by living plants is the major energy and matter source for soil microorganisms, higher organic matter inputs are found in highly diverse plant communities. It is therefore relevant to understand how plant diversity alters the soil microbial community and soil organic matter. In a general sense, microbial biomass and microbial diversity increase with increasing plant diversity, however the mechanisms driving these interactions are not fully explored. Working with soils from a long-term biodiversity experiment (The Jena Experiment), we investigated how changes in the soil microbial dynamics related to plant diversity were explained by biotic and abiotic factors. Microbial biomass quantification and differentiation of bacterial and fungal groups was done by phospholipid fatty acid (PLFA) analysis; terminal-restriction fragment length polymorphism was used to determine the bacterial diversity. Gram negative (G-) bacteria predominated in high plant diversity; Gram positive (G+) bacteria were more abundant in low plant diversity and saprotrophic fungi were independent from plant diversity. The separation between G- and G+ bacteria in relation to plant diversity was governed by a difference in carbon-input related factors (e.g. root biomass and soil moisture) between plant diversity levels. Moreover, the bacterial diversity increased with plant diversity and the evenness of the PLFA markers decreased. Our results showed that higher plant diversity favors carbon-input related factors and this in turn favors the development of microbial communities specialized in utilizing new carbon inputs (i.e. G- bacteria), which are contributing to the export of new C from plants to soils.

  16. Antibiotic effects on microbial community characteristics in soils under conservation management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotics (VAs) administered to livestock are introduced to agroecosystems via land application of manure, posing a potential human and environmental health risk. These Antibiotics may adversely affect soil microbial communities. The objectives of this research were to investigate poten...

  17. Environmental Controls of Microbial Resource Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Kandeler, Ellen; Poll, Christian; Kramer, Susanne; Mueller, Karolin; Marhan, Sven

    2015-04-01

    The mineralization and flow of plant-derived carbon in soils is relevant to global carbon cycling. Current models of organismic carbon fluxes in soil assume that separate bacterial and fungal energy channels exist in soil. Recent studies disentangle the herbivore and detritivore pathways of microbial resource use, identify the key players contributing to these two different pathways, and determine to what extent microbial substrate use is affected by environmental controls. To follow the kinetics of litter and root decomposition and to quantify the contribution of key players, it is necessary to use isotopic approaches like PLFA-SIP and ergosterol-SIP. It was shown that bacteria and sugar consuming fungi initiated litter decomposition in an incubation experiment during the first two weeks, whereas higher fungi started to grow after the depletion of low molecular weight substrates. Analyses of PLFA-SIP revealed, for example, that fungi assimilated C directly from the litter, whereas bacteria took up substrates in the soil and therefore depended more on external transport processes than fungi. In addition, we will present data from a field experiment showing the incorporation of root and shoot litter C into organic and microbial C pools under field conditions over a period of two years. Similar amounts of C derived from the two resources differing in substrate quality and amount were incorporated into microbial C and ergosterol pools over time, indicating the importance of root-derived C for the soil food web. High incorporation of maize C (up to 76%) into ergosterol suggests fast and high assimilation of maize C into fungal biomass. Nevertheless, there is still a debate whether bacteria, archaea and fungi start feeding on new substrates at the same time or if their activity occurs at different successional stages. This presentation gives a summery of current knowledge on microbial resource partitioning under lab and field conditions.

  18. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    PubMed Central

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  19. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains.

    PubMed

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  20. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil.

    PubMed

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)-the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  1. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils.

    PubMed

    Chaer, Guilherme; Fernandes, Marcelo; Myrold, David; Bottomley, Peter

    2009-08-01

    Degradation of soil properties following deforestation and long-term soil cultivation may lead to decreases in soil microbial diversity and functional stability. In this study, we investigated the differences in the stability (resistance and resilience) of microbial community composition and enzyme activities in adjacent soils under either native tropical forest (FST) or in agricultural cropping use for 14 years (AGR). Mineral soil samples (0 to 5 cm) from both areas were incubated at 40 degrees C, 50 degrees C, 60 degrees C, or 70 degrees C for 15 min in order to successively reduce the microbial biomass. Three and 30 days after the heat shocks, fluorescein diacetate (FDA) hydrolysis, cellulase and laccase activities, and phospholipid-derived fatty acids-based microbial community composition were measured. Microbial biomass was reduced up to 25% in both soils 3 days after the heat shocks. The higher initial values of microbial biomass, enzyme activity, total and particulate soil organic carbon, and aggregate stability in the FST soil coincided with higher enzymatic stability after heat shocks. FDA hydrolysis activity was less affected (more resistance) and cellulase and laccase activities recovered more rapidly (more resilience) in the FST soil relative to the AGR counterpart. In the AGR soil, laccase activity did not show resilience to any heat shock level up to 30 days after the disturbance. Within each soil type, the microbial community composition did not differ between heat shock and control samples at day 3. However, at day 30, FST soil samples treated at 60 degrees C and 70 degrees C contained a microbial community significantly different from the control and with lower biomass regardless of high enzyme resilience. Results of this study show that deforestation followed by long-term cultivation changed microbial community composition and had differential effects on microbial functional stability. Both soils displayed similar resilience to FDA hydrolysis, a

  2. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils.

    PubMed

    Chaer, Guilherme; Fernandes, Marcelo; Myrold, David; Bottomley, Peter

    2009-08-01

    Degradation of soil properties following deforestation and long-term soil cultivation may lead to decreases in soil microbial diversity and functional stability. In this study, we investigated the differences in the stability (resistance and resilience) of microbial community composition and enzyme activities in adjacent soils under either native tropical forest (FST) or in agricultural cropping use for 14 years (AGR). Mineral soil samples (0 to 5 cm) from both areas were incubated at 40 degrees C, 50 degrees C, 60 degrees C, or 70 degrees C for 15 min in order to successively reduce the microbial biomass. Three and 30 days after the heat shocks, fluorescein diacetate (FDA) hydrolysis, cellulase and laccase activities, and phospholipid-derived fatty acids-based microbial community composition were measured. Microbial biomass was reduced up to 25% in both soils 3 days after the heat shocks. The higher initial values of microbial biomass, enzyme activity, total and particulate soil organic carbon, and aggregate stability in the FST soil coincided with higher enzymatic stability after heat shocks. FDA hydrolysis activity was less affected (more resistance) and cellulase and laccase activities recovered more rapidly (more resilience) in the FST soil relative to the AGR counterpart. In the AGR soil, laccase activity did not show resilience to any heat shock level up to 30 days after the disturbance. Within each soil type, the microbial community composition did not differ between heat shock and control samples at day 3. However, at day 30, FST soil samples treated at 60 degrees C and 70 degrees C contained a microbial community significantly different from the control and with lower biomass regardless of high enzyme resilience. Results of this study show that deforestation followed by long-term cultivation changed microbial community composition and had differential effects on microbial functional stability. Both soils displayed similar resilience to FDA hydrolysis, a

  3. Microbial Mechanisms Enhancing Soil C Storage

    SciTech Connect

    Zak, Donald

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  4. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces.

    PubMed

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  5. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    PubMed Central

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  6. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  7. Soil amendments yield persisting changes in the microbial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are sensitive to carbon amendments and largely control the decomposition and accumulation of soil organic matter. In this study, we evaluated whether the type of carbon amendment applied to wheat-cropped or fallow soil imparted lasting effects on the microbial community w...

  8. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  9. Manipulating soil microbial communities in extensive green roof substrates.

    PubMed

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition.

  10. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless

  11. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    PubMed

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  12. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  13. Microbial mobilization of plutonium and other actinides from contaminated soil.

    PubMed

    Francis, A J; Dodge, C J

    2015-12-01

    We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments. PMID:26406590

  14. Microbial mobilization of plutonium and other actinides from contaminated soil.

    PubMed

    Francis, A J; Dodge, C J

    2015-12-01

    We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.

  15. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits.

    PubMed

    Lau, Jennifer A; Lennon, Jay T

    2011-10-01

    • Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? • Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. • In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. • Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.

  16. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits.

    PubMed

    Lau, Jennifer A; Lennon, Jay T

    2011-10-01

    • Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? • Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. • In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. • Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes. PMID:21658184

  17. [Microbial response mechanism for drying and rewetting effect on soil respiration in grassland ecosystem: a review].

    PubMed

    He, Yun-Long; Qi, Yu-Chun; Dong, Yun-She; Peng, Qin; Sun, Liang-Jie; Jia, Jun-Qiang; Guo, Shu-Fang; Yan, Zhong-Qing

    2014-11-01

    As one of the most important and wide distribution community type among terrestrial ecosystems, grassland ecosystem plays a critical role in the global carbon cycles and climate regulation. China has extremely rich grassland resources, which have a huge carbon sequestration potential and are an important part of the global carbon cycle. Drying and rewetting is a common natural phenomenon in soil, which might accelerate soil carbon mineralization process, increase soil respiration and exert profound influence on microbial activity and community structure. Under the background of the global change, the changes in rainfall capacity, strength and frequency would inevitably affect soil drying and wetting cycles, and thus change the microbial activity and community structure as well as soil respiration, and then exert important influence on global carbon budget. In this paper, related references in recent ten years were reviewed. The source of soil released, the trend of soil respiration over time and the relationship between soil respiration and microbial biomass, microbial activity and microbial community structure during the processes of dry-rewetting cycle were analyzed and summarized, in order to better understand the microbial response mechanism for drying and rewetting effecting on soil respiration in grassland ecosystem, and provide a certain theoretical basis for more accurate evaluation and prediction of future global carbon balance of terrestrial ecosystems and climate change.

  18. Microbial carbon recycling: an underestimated process controlling soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-07-01

    The mean residence times (MRT) of different compound classes of soil organic matter (SOM) do not match their inherent recalcitrance to decomposition. One reason for this is the stabilisation within the soil matrix, but recycling, i.e. the reuse of "old" organic material to form new biomass may also play a role as it uncouples the residence times of organic matter from the lifetime of discrete molecules in soil. We analysed soil sugar dynamics in a natural 30 years old labelling experiment after a~wheat-maize vegetation change to determine the extent of recycling and stabilisation in plant and microbial derived sugars: while plant derived sugars are only affected by stabilisation processes, microbial sugars may be subject to both, stabilisation and recycling. To disentangle the dynamics of soil sugars, we separated different density fractions (free particulate organic matter (fPOM), light occluded particulate organic matter (≤1.6 g cm-3; oPOM1.6), dense occluded particulate organic matter (≤2 g cm-3; oPOM2) and mineral-associated organic matter (>2 g cm-3; Mineral)) of a~silty loam under long term wheat and maize cultivation. The isotopic signature of sugars was measured by high pressure liquid chromatography coupled to isotope ratio mass spectrometry (HPLC/IRMS), after hydrolysis with 4 M Trifluoroacetic acid (TFA). While apparent mean residence times (MRT) of sugars were comparable to total organic carbon in the bulk soil and mineral fraction, the apparent MRT of sugars in the oPOM fractions were considerably lower than those of the total carbon of these fractions. This indicates that oPOM formation was fuelled by microbial activity feeding on new plant input. In the bulk soil, mean residence times of the mainly plant derived xylose (xyl) were significantly lower than those of mainly microbial derived sugars like galactose (gal), rhamnose (rha), fucose (fuc), indicating that recycling of organic matter is an important factor regulating organic matter dynamics

  19. SOIL ORGANIC AMENDMENT AS AFFECTING HERBICIDE FATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments or organic wastes to soils have been shown to affect the fate of soil applied herbicides, although it is an issue very seldom considered when making the decision of fertilizing soil or disposing organic wastes. The addition of organic wastes to soils is viewed as v...

  20. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    PubMed Central

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-01-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities. PMID:26195343

  1. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  2. Water regime history drives responses of soil Namib Desert microbial communities to wetting events.

    PubMed

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A

    2015-01-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities. PMID:26195343

  3. Soil microbial community and endemic earthworm Allolobophora hrabei in soils of steppe fragments of central Europe

    NASA Astrophysics Data System (ADS)

    Elhottová, Dana; Jirout, Jiří; Pižl, Václav

    2016-04-01

    The earthworm activity is generally recognized as an important factor changing the intrinsic heterogeneity of soil environment including the microbial constituents. In central Europe, about 40% of earthworm species are endemic to this region, some of them dominating forest and grassland ecosystems and playing a keystone role in the soil food-web. However, current knowledge about the effects of earthworms on soil microorganisms derives from studies on a few peregrine species only. Our study brought a view on the microbial component of the steppe soil affected by the activity of Allolobophora hrabei, an endemic earthworm fragmentary distributed in the border regions of the Czech Republic, Austria, Slovakia and Hungary. The study was carried out in three steppe fragments, where A. hrabei represented a key earthworm species. Comprehensive approach based on bio-indicating quantitative and qualitative options of extended phospholipid fatty acids analysis (PLFA) of bulk soil, drilosphere sensu lato and casts was used on data from two-years monitoring. In situ observation was completed by detailed observation of the casts-microbiota succession under controlled laboratory conditions. Our results showed that A. hrabei significantly affected soil microorganisms mainly via its extremely high casting activity. The doubled biomass, new qualitative composition, better growth and nutritional status of microbial community together with significantly higher availability of phosphorus and organic carbon in casts in contrast to bulk soil confirmed beneficial impact of A. hrabei on the soil environment. A. hrabei has burrowed up to more than one metre depths and produced more than 3 kg . m-2 of casts per year.

  4. Measurement of microbial biomass and activity in landfill soils.

    SciTech Connect

    Bogner, J. E.; Miller, R. M.; Spokas, K.; Environmental Research

    1995-01-01

    Two complementary techniques, which have been widely used to provide a general measure of microbial biomass or microbial activity in natural soils, were evaluated for their applicability to soils from the Mallard North and Mallard Lake Landfills, DuPage County, Illinois, U.S.A. Included were: (1) a potassium sulphate extraction technique with quantification of organic carbon for measurement of microbial biomass; and (2) an arginine ammonification technique for microbial activity. Four profiles consisting of replaced soils were sampled for this study; units included topsoil (mixed mollisol A and B horizons), compacted clay cover (local calcareous Wisconsinan age glacial till), and mixed soil/refuse samples. Internally consistent results across the four profiles and good correlations with other independent indicators of microbial activity (moisture, organic matter content, nitrogen, and phosphorus) suggest that, even though these techniques were developed mainly for natural mineral soils, they are also applicable to disturbed landfill soils.

  5. Soil-carbon response to warming dependent on microbial physiology

    NASA Astrophysics Data System (ADS)

    Allison, Steven D.; Wallenstein, Matthew D.; Bradford, Mark A.

    2010-05-01

    Most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing a positive feedback to rising global temperatures. Although field experiments document an initial increase in the loss of CO2 from soils in response to warming, in line with these predictions, the carbon dioxide loss from soils tends to decline to control levels within a few years. This attenuation response could result from changes in microbial physiological properties with increasing temperature, such as a decline in the fraction of assimilated carbon that is allocated to growth, termed carbon-use efficiency. Here we explore these mechanisms using a microbial-enzyme model to simulate the responses of soil carbon to warming by 5∘C. We find that declines in microbial biomass and degradative enzymes can explain the observed attenuation of soil-carbon emissions in response to warming. Specifically, reduced carbon-use efficiency limits the biomass of microbial decomposers and mitigates the loss of soil carbon. However, microbial adaptation or a change in microbial communities could lead to an upward adjustment of the efficiency of carbon use, counteracting the decline in microbial biomass and accelerating soil-carbon loss. We conclude that the soil-carbon response to climate warming depends on the efficiency of soil microbes in using carbon.

  6. Microbial life in variably saturated soil aggregates - upscaling gaseous fluxes across distributed aggregate sizes in a soil profile

    NASA Astrophysics Data System (ADS)

    Or, D.; Ebrahimi, A.

    2015-12-01

    Recent studies revealed highly dynamic and rich behavior of microbial communities inhabiting soil aggregates. Modeling of these processes in three dimensional (unsaturated) pore networks provided insights into the unique conditions essential for coexistence of oxic and anoxic microsites that shape (and respond to) aerobic and anaerobic microbial communities. Soil hydration dynamics continuously alter the spatial extent of anoxic niches (hotspots) that flicker in time (hot moments) and support anaerobic microbial activity even in unsaturated and oxic soil profiles. We extend a model for individual-based microbial community growth in 3-D angular pore networks mimicking soil aggregates of different sizes placed in different ambient boundary conditions reflecting profiles of water, carbon, and oxygen in soil. An upscaling scheme was developed to account for aerobic and anaerobic activity within each aggregate class size and soil depth integrated over the aggregate size distribution in the soil for a range of hydration conditions. Results show that dynamic adjustments in microbial community composition affect CO2 and N2O production rates in good agreement with experimental data. The modeling approach addresses a long-standing challenge of linking hydration conditions to dynamic adjustments of microbial communities within "hotspots" with the emergence of "hot moments" reflecting high rates of denitrification and organic matter decomposition.

  7. Soil microbial biomass nitrogen and Beta-Glucosaminidase activity response to compaction, poultry litter application and cropping in a claypan soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compaction-induced changes in soil physical properties may significantly affect soil microbial activity, especially nitrogen-cycling processes, in many agroecosystems. The objective of this study was to determine the effect of soil compaction on soil microbiological properties related to N in a clay...

  8. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    SciTech Connect

    Cusack, Daniela F.; Silver, Whendee; Torn, Margaret S.; Burton, Sarah D.; Firestone, Mary

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  9. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  10. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types. PMID:21608471

  11. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands.

  12. Soil microbial properties under different vegetation types on Mountain Han.

    PubMed

    Wang, Miao; Qu, Laiye; Ma, Keming; Yuan, Xiu

    2013-06-01

    This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China. Soil samples were taken at 0-5, 5-10 and 10-20 cm depths from four vegetation types at different altitudes, which were characterized by poplar (Populus davidiana) (1250-1300 m), poplar (P. davidiana) mixed with birch (Betula platyphylla) (1370-1550 m), birch (B. platyphylla) (1550-1720 m), and larch (Larix principis-rupprechtii) (1840-1890 m). Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid (PLFA) analysis, and soil fungal community level physiological profiles (CLPP) were characterized using Biolog FF Microplates. It was found that soil properties, especially soil organic carbon and water content, contributed significantly to the variations in soil microbes. With increasing soil depth, the soil microbial biomass, fungal biomass, and fungal catabolic ability diminished; however, the ratio of fungi to bacteria increased. The fungal ratio was higher under larch forests compared to that under poplar, birch, and their mixed forests, although the soil microbial biomass was lower. The direct contribution of vegetation types to the soil microbial community variation was 12%. If the indirect contribution through soil organic carbon was included, variations in the vegetation type had substantial influences on soil microbial composition and diversity.

  13. The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition.

    PubMed

    Carvalho, Sabrina; van der Putten, Wim H; Hol, W H G

    2016-01-01

    Reliable information on soil status and crop health is crucial for detecting and mitigating disasters like pollution or minimizing impact from soil-borne diseases. While infestation with an aggressive soil pathogen can be detected via reflected light spectra, it is unknown to what extent hyperspectral reflectance could be used to detect overall changes in soil biodiversity. We tested the hypotheses that spectra can be used to (1) separate plants growing with microbial communities from different farms; (2) to separate plants growing in different microbial communities due to different land use; and (3) separate plants according to microbial species loss. We measured hyperspectral reflectance patterns of winter wheat plants growing in sterilized soils inoculated with microbial suspensions under controlled conditions. Microbial communities varied due to geographical distance, land use and microbial species loss caused by serial dilution. After 3 months of growth in the presence of microbes from the two different farms plant hyperspectral reflectance patterns differed significantly from each other, while within farms the effects of land use via microbes on plant reflectance spectra were weak. Species loss via dilution on the other hand affected a number of spectral indices for some of the soils. Spectral reflectance can be indicative of differences in microbial communities, with the Renormalized Difference Vegetation Index the most common responding index. Also, a positive correlation was found between the Normalized Difference Vegetation Index and the bacterial species richness, which suggests that plants perform better with higher microbial diversity. There is considerable variation between the soil origins and currently it is not possible yet to make sufficient reliable predictions about the soil microbial community based on the spectral reflectance. We conclude that measuring plant hyperspectral reflectance has potential for detecting changes in microbial

  14. The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition

    PubMed Central

    Carvalho, Sabrina; van der Putten, Wim H.; Hol, W. H. G.

    2016-01-01

    Reliable information on soil status and crop health is crucial for detecting and mitigating disasters like pollution or minimizing impact from soil-borne diseases. While infestation with an aggressive soil pathogen can be detected via reflected light spectra, it is unknown to what extent hyperspectral reflectance could be used to detect overall changes in soil biodiversity. We tested the hypotheses that spectra can be used to (1) separate plants growing with microbial communities from different farms; (2) to separate plants growing in different microbial communities due to different land use; and (3) separate plants according to microbial species loss. We measured hyperspectral reflectance patterns of winter wheat plants growing in sterilized soils inoculated with microbial suspensions under controlled conditions. Microbial communities varied due to geographical distance, land use and microbial species loss caused by serial dilution. After 3 months of growth in the presence of microbes from the two different farms plant hyperspectral reflectance patterns differed significantly from each other, while within farms the effects of land use via microbes on plant reflectance spectra were weak. Species loss via dilution on the other hand affected a number of spectral indices for some of the soils. Spectral reflectance can be indicative of differences in microbial communities, with the Renormalized Difference Vegetation Index the most common responding index. Also, a positive correlation was found between the Normalized Difference Vegetation Index and the bacterial species richness, which suggests that plants perform better with higher microbial diversity. There is considerable variation between the soil origins and currently it is not possible yet to make sufficient reliable predictions about the soil microbial community based on the spectral reflectance. We conclude that measuring plant hyperspectral reflectance has potential for detecting changes in microbial

  15. The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition.

    PubMed

    Carvalho, Sabrina; van der Putten, Wim H; Hol, W H G

    2016-01-01

    Reliable information on soil status and crop health is crucial for detecting and mitigating disasters like pollution or minimizing impact from soil-borne diseases. While infestation with an aggressive soil pathogen can be detected via reflected light spectra, it is unknown to what extent hyperspectral reflectance could be used to detect overall changes in soil biodiversity. We tested the hypotheses that spectra can be used to (1) separate plants growing with microbial communities from different farms; (2) to separate plants growing in different microbial communities due to different land use; and (3) separate plants according to microbial species loss. We measured hyperspectral reflectance patterns of winter wheat plants growing in sterilized soils inoculated with microbial suspensions under controlled conditions. Microbial communities varied due to geographical distance, land use and microbial species loss caused by serial dilution. After 3 months of growth in the presence of microbes from the two different farms plant hyperspectral reflectance patterns differed significantly from each other, while within farms the effects of land use via microbes on plant reflectance spectra were weak. Species loss via dilution on the other hand affected a number of spectral indices for some of the soils. Spectral reflectance can be indicative of differences in microbial communities, with the Renormalized Difference Vegetation Index the most common responding index. Also, a positive correlation was found between the Normalized Difference Vegetation Index and the bacterial species richness, which suggests that plants perform better with higher microbial diversity. There is considerable variation between the soil origins and currently it is not possible yet to make sufficient reliable predictions about the soil microbial community based on the spectral reflectance. We conclude that measuring plant hyperspectral reflectance has potential for detecting changes in microbial

  16. Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergii DC.).

    PubMed

    Coats, V C; Pelletreau, K N; Rumpho, M E

    2014-03-01

    The soil microbial community acts as a reservoir of microbes that directly influences the structure and composition of the aboveground plant community, promotes plant growth, increases stress tolerance and mediates local patterns of nutrient cycling. Direct interactions between plants and rhizosphere-dwelling microorganisms occur at, or near, the surface of the root. Upon introduction and establishment, invasive plants modify the soil microbial communities and soil biochemistry affecting bioremediation efforts and future plant communities. Here, we used tag-encoded FLX amplicon 454 pyrosequencing (TEFAP) to characterize the bacterial and fungal community diversity in the rhizosphere of Berberis thunbergii DC. (Japanese barberry) from invasive stands in coastal Maine to investigate effects of soil type, soil chemistry and surrounding plant cover on the soil microbial community structure. Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia were the dominant bacterial phyla, whereas fungal communities were comprised mostly of Ascomycota and Basidiomycota phyla members, including Agaricomycetes and Sordariomycetes. Bulk soil chemistry had more effect on the bacterial community structure than the fungal community. An effect of geographic location was apparent in the rhizosphere microbial communities, yet it was less significant than the effect of surrounding plant cover. These data demonstrate a high degree of spatial variation in the rhizosphere microbial communities of Japanese barberry with apparent effects of soil chemistry, location and canopy cover on the microbial community structure.

  17. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert.

    PubMed

    Stomeo, Francesca; Valverde, Angel; Pointing, Stephen B; McKay, Christopher P; Warren-Rhodes, Kimberley A; Tuffin, Marla I; Seely, Mary; Cowan, Don A

    2013-03-01

    The Namib Desert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East-West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East-West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68-97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert. PMID:23397517

  18. Microbial communities of alluvial soils in the Volga River delta

    NASA Astrophysics Data System (ADS)

    Sal'Nikova, N. A.; Polyanskaya, L. M.; Tyugai, Z. N.; Sal'Nikov, A. N.; Egorov, M. A.

    2009-01-01

    The number and biomass of the microbial community in the upper humus horizon (0-20 cm) were determined in the main types of alluvial soils (mucky gley, desertified soddy calcareous, hydrometamorphic dark-humus soils) in the Volga River delta. Fungal mycelium and alga cells predominate in the biomass of the microorganisms (35-50% and 30-47%, respectively). The proportion of prokaryotes in the microbial biomass of the alluvial soils amounts to 2-6%. No significant seasonal dynamics in the number and biomass of microorganisms were revealed in the alluvial soils. The share of carbon of the microbial biomass in the total carbon content of the soil organic matter is 1.4-2.3% in the spring. High coefficients of microbial mineralization and oligotrophy characterize the processes of organic matter decomposition in the alluvial soils of the mucky gley, desertified soddy calcareous, and hydrometamorphic dark humus soil types.

  19. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  20. Response of soil microbial communities during changes in land management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of soil microbial communities to restoration following disturbances is poorly understood. We studied the soil microbial communities in a forest disturbance-restoration series comprising a native deciduous forest (DF), conventionally tilled cropland (CT) and mid-succession forest (SF) re...

  1. Microbial responses to southward and northward Cambisol soil transplant.

    PubMed

    Wang, Mengmeng; Liu, Shanshan; Wang, Feng; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2015-12-01

    Soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity at both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO3 ¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO3 ¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.

  2. Connecting soil microbial communities to soil functioning and soil health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most important functions soils perform, is the capacity to buffer anthropogenic disturbances to sustain productivity while improving water and air quality. At the core of a healthy soil is a biological active and diverse community that provides internal nutrient cycling and is resilient t...

  3. Flooding Effects on Soil Microbial Communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding of a riparian forest affects the ecosystem both above- and below-ground. While the below-ground changes may be hidden from sight, they are no less important than the above-ground changes that are readily visible. Similar to their above-ground counterparts, soil microorganisms are sensitive...

  4. Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland

    NASA Astrophysics Data System (ADS)

    Qin, K.; Peay, K.

    2015-12-01

    Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.

  5. Influence of geogenic factors on microbial communities in metallogenic Australian soils

    PubMed Central

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-01-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  6. Influence of geogenic factors on microbial communities in metallogenic Australian soils.

    PubMed

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-11-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  7. Effects of soil water repellency on microbial community structure and functions in Mediterranean pine forests

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Grayston, Sue J.; Mataix-Solera, Jorge; Arcenegui, Victoria; Jimenez-Pinilla, Patricia; Mataix-Beneyto, Jorge

    2015-04-01

    Soil water repellency (SWR) is a property commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. SWR can greatly influence the hydrology and the ecology of forest soils. The capacity of soil microorganisms to degrade different organic compounds depends upon species composition, so this may affect changes in SWR on the microsite scale (such as the presence of soil water repellent patches; Mülleret al., 2010). In the Mediterranean forest context, SWR has been found to be related to microbial community composition. The accumulation of different hydrophobic compounds might be causing the shifts in microbial community structure (Lozano et al., 2014). In this study we investigated the effects of SWR persistence on soil microbial community structure and enzyme activity under Pinus halepensis forest in three different sites: Petrer, Gorga and Jávea (Alicante, E Spain). Soil samples were classified into three different water repellency classes (wettable, slight or strongly water repellent samples) depending on the SWR persistence. The soil microbial community was determined through phospholipid fatty acids (PLFAs). Enzyme activities chosen for this study were cellulase, β-glucosidase and N-acetyl-β-glucosaminide (NAG). The relationships between microbiological community structure and some soil properties such as pH, Glomalin Related Soil Protein, soil organic matter content and soil respiration were also studied. Redundancy analyses and decomposition of the variances were performed to clarify how microbial community composition and enzyme activities are affected by SWR and soil properties. The effect of SWR on microbial community composition differed between locations. This effect was clearer in the Petrer site. Enzyme activity varied considerably depending on SWR persistence. The highest activities were found in slightly SWR samples and the lowest mostly in the strongly water repellent ones. These preliminary

  8. Microbial communities play important roles in modulating paddy soil fertility

    PubMed Central

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-01-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production. PMID:26841839

  9. Microbial communities play important roles in modulating paddy soil fertility

    NASA Astrophysics Data System (ADS)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  10. Stoichiometry of Microbial Decomposition Priming in Plant Litter and Soil

    NASA Astrophysics Data System (ADS)

    Schaefer, D.; Qiao, N.

    2011-12-01

    Microbial priming is accelerated conversion of plant residues and soil organic carbon to CO2. It is caused by small additions of labile carbon and nitrogen compounds, but microbial stoichiometry suggests that this description is incomplete. The temperature dependence of soil organic carbon cycling models may be related to diffusion of labile resources to microbial cells. Incomplete treatment of stoichiometrically significant elements in these models may also limit their ability to predict carbon fluxes if plant species, diseases or defoliators are affected by climate changes. We explore this by incubating decomposable substrates (leaves, wood, humus and mineral soil) with resources added as dissolved inorganic nitrogen (ammonium and nitrate separately), phosphorus and sugar, added in different amounts and proportions. We measure CO2 production by infrared absorption. Contribution of sugar to CO2 production is assessed by mass spectrometry. High concentrations for each resource are 16X the low, and middle concentrations are 4X the low. The ratios are centered on 200:10:1. We explore C:N:P resource ratios and additions over wide ranges; subsequently to examine narrower ranges of interest. For C:N:P incubations, C and N effects are always significant on CO2 production, with P in only half of the treatments. Literature suggests that leaf-litter decomposition is stimulated by N (occasionally P) additions, but results for soils have been mixed. We find N to be inhibitory only when added in "stoichiometic excess" to added C. Stimulation of microbial respiration is generally strongest with C:N:P additions in "Redfield-like" ratios, but the response is far below linear. Humus has a stronger response to C than do leaves and wood. This is consistent with a chronic energy limitation for soil microbes, even where their environments contain large amounts of total C. For all substrates, the addition of N as nitrate leads to significantly more CO2 than the same amount of ammonium

  11. Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity

    NASA Astrophysics Data System (ADS)

    Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

    2014-05-01

    Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  12. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China.

    PubMed

    Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming

    2014-01-01

    The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0-20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus

  13. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China

    PubMed Central

    Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming

    2014-01-01

    The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus

  14. Microbial-based inoculants impact nitrous oxide emissions from an incubated soil medium containing urea fertilizers.

    PubMed

    Calvo, Pamela; Watts, Dexter B; Ames, Robert N; Kloepper, Joseph W; Torbert, H Allen

    2013-01-01

    There is currently much interest in developing crop management practices that will decrease NO emissions from agricultural soils. Many different approaches are being investigated, but to date, no studies have been published on how microbial inoculants affect NO emissions. This study was conducted to test the hypothesis that microbial-based inoculants known to promote root growth and nutrient uptake can reduce NO emissions in the presence of N fertilizers under controlled conditions. Carbon dioxide and CH fluxes were also measured to evaluate microbial respiration and determine the aerobic and anaerobic conditions of the incubated soil. The microbial-based treatments investigated were SoilBuilder (SB), a metabolite extract of SoilBuilder (SBF), and a mixture of four strains of plant growth-promoting spp. Experiments included two different N fertilizer treatments, urea and urea-NHNO 32% N (UAN), and an unfertilized control. Emissions of NO and CO were determined from soil incubations and analyzed with gas chromatography. After 29 d of incubation, cumulative NO emissions were reduced 80% by SB and 44% by SBF in soils fertilized with UAN. Treatment with spp. significantly reduced NO production on Days 1 and 2 of the incubation in soils fertilized with UAN. In the unfertilized treatment, cumulative emissions of NO were significantly reduced 92% by SBF. Microbial-based treatments did not reduce NO emissions associated with urea application. Microbial-based treatments increased CO emissions from soils fertilized with UAN, suggesting a possible increase in microbial activity. Overall, the results demonstrated that microbial-based inoculants can reduce NO emissions associated with N fertilizer application, and this response varies with the type of microbial-based inoculant and fertilizer.

  15. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover

    PubMed Central

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-01-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations. PMID

  16. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions.

  17. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols.

    PubMed

    Yu, Huili; Si, Peng; Shao, Wei; Qiao, Xiansheng; Yang, Xiaojing; Gao, Dengtao; Wang, Zhiqiang

    2016-08-01

    Changes in microbial community structure are widely known to occur after soil amendment with low-molecular-weight organic compounds; however, there is little information on concurrent changes in soil microbial functional diversity and enzyme activities, especially following sorbitol and mannitol amendment. Soil microbial functional diversity and enzyme activities can be impacted by sorbitol and mannitol, which in turn can alter soil fertility and quality. The objective of this study was to investigate the effects of sorbitol and mannitol addition on microbial functional diversity and enzyme activities. The results demonstrated that sorbitol and mannitol addition altered the soil microbial community structure and improved enzyme activities. Specifically, the addition of sorbitol enhanced the community-level physiological profile (CLPP) compared with the control, whereas the CLPP was significantly inhibited by the addition of mannitol. The results of a varimax rotated component matrix demonstrated that carbohydrates, polymers, and carboxylic acids affected the soil microbial functional structure. Additionally, we found that enzyme activities were affected by both the concentration and type of inputs. In the presence of high concentrations of sorbitol, the urease, catalase, alkaline phosphatase, β-glucosidase, and N-acetyl-β-d-glucosaminidase activities were significantly increased, while invertase activity was decreased. Similarly, this increase in invertase, catalase, and alkaline phosphatase and N-acetyl-β-d-glucosaminidase activities was especially evident after mannitol addition, and urease activity was only slightly affected. In contrast, β-glucosidase activity was suppressed at the highest concentration. These results indicate that microbial community diversity and enzyme activities are significantly affected by soil amendment with sorbitol and mannitol. PMID:27005019

  18. Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities

    PubMed Central

    Deng, Ye; He, Zhili; Xu, Meiying; Qin, Yujia; Van Nostrand, Joy D.; Wu, Liyou; Roe, Bruce A.; Wiley, Graham; Hobbie, Sarah E.; Reich, Peter B.

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to examine impacts of elevated CO2 (eCO2) on soil microbial communities from 12 replicates each from ambient CO2 (aCO2) and eCO2 settings. The results suggest that the soil microbial community composition and structure significantly altered under conditions of eCO2, which was closely associated with soil and plant properties. PMID:22307288

  19. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  20. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers

    PubMed Central

    Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa

    2012-01-01

    The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972

  1. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide. PMID:22773147

  2. Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils.

    PubMed

    Long, Xi-En; Wang, Juan; Huang, Ying; Yao, Huaiying

    2016-08-01

    Landfills are always the most important part of solid waste management and bear diverse metabolic activities involved in element biogeochemical cycling. There is an increasing interest in understanding the microbial community and activities in landfill cover soils. To improve our knowledge of landfill ecosystems, we determined the microbial physiological profiles and communities in three landfill cover soils (Ninghai: NH, Xiangshan: XS, and Fenghua: FH) of different ages using the MicroResp(TM), phospholipid fatty acid (PLFA), and high-throughput sequencing techniques. Both total PLFAs and glucose-induced respiration suggested more active microorganisms occurred in intermediate cover soils. Microorganisms in all landfill cover soils favored L-malic acid, ketoglutarate, and citric acid. Gram-negative bacterial PLFAs predominated in all samples with the representation of 16:1ω7, 18:1ω7, and cy19:0 in XS and NH sites. Proteobacteria dominated soil microbial phyla across different sites, soil layers, and season samples. Canonical correspondence analysis showed soil pH, dissolved organic C (DOC), As, and total nitrogen (TN) contents significantly influenced the microbial community but TN affected the microbial physiological activities in both summer and winter landfill cover soils. PMID:27117156

  3. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    SciTech Connect

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  4. Priming and turnover of soil microbial biomass C and N

    NASA Astrophysics Data System (ADS)

    Voroney, Paul; Paul, Eldor

    2015-04-01

    Priming is the altered rate of mineralization of native soil organic matter (SOM) induced by an organic substrate and, depending on the nature of the amendment, can be either positive or negative. Coupled with the use of tracer (14C, 13C, 15N) techniques, measurements of the rates of CO2 evolution and organic N mineralization are typically used to assess priming effects. In this study priming was also assessed from measurements of soil microbial biomass. Soil was amended with 14C-glucose and 15N-nitrate and incubated for 42 d during which unlabelled and labelled microbial biomass C and N were measured using the chloroform-incubation method. All of the 14C-glucose was metabolized within 24-30 h at a C-use efficiency of ~60%, and resulted in a labelled biomass C:N of 9. After this period of rapid microbial growth, labelled microbial biomass C decayed at a rate of 19.3 x 10-3 d-1. Unlabelled microbial biomass C in the amended treatment decayed at 8.6 x 10-3 d-1 whereas in the unamended soil microbial biomass C decayed at half this rate (4.9 x 10-3 d-1). These data suggest that ~25% of the native microbial biomass C responded to the addition of glucose-C and when it was depleted the newly formed microbial biomass, comprised of both labelled and unlabelled- C, collapsed and subsequently was mineralized. The period of rapid microbial biomass decay coincided with an increased evolution of soil (unlabelled) CO2 and accumulation of (unlabelled) mineral N compared to that in the unamended soil. Thus, the apparent priming of soil C and N following addition of glucose can be attributed to biological recycling and increased turnover of native microbial biomass C and N. There was no evidence of priming of native soil organic matter during the first 21 days of the incubation.

  5. Precipitation regime drives soil microbial responses to warming in temperate steppes

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xia, J.; Liu, L.; Wan, S.

    2014-12-01

    Although numerous warming experiments have been done to examine the impacts of elevated temperature on soil microbial actives, most of them were based on responses from a single site. To investigate how precipitation regime regulate warming's effects on carbon cycle, field manipulative warming experiments were conducted at 3 types of steppes (desert, typical and meadow steppe) along a precipitation gradient in northern China. Soil temperature, moisture, dissolved organic C (DOC), inorganic nitrogen (N) concentration, microbial biomass C (MBC), N (MBN) and respiration (MR) were measured once a year from 2006 to 2009. The results showed that soil moisture was significantly decreased in the typical steppe whereas not affected in the desert and meadow steppe, respectively. Across the 4 years, warming decreased MBC and MR in the desert and typical steppe while did not affect them in the meadow steppe. The magnitude of reductions in warming-induced MBC and MR declined with increasing precipitation gradient at a regional scale. Across the precipitation gradient, all changes in soil MBC, MBN and MR were positively correlated with both annual precipitation and changes in belowground net primary productivity (BNPP), suggesting that soil microbial responses to warming may be regulated by annual precipitation and substrate availability. However, the lab-incubation revealed that soil moisture is more important in regulating soil microbial activities than substrate across the 3 steppes. In addition, soil microbial responses to warming showed year-to-year variations during the first 4 years coincided with the fluctuations in annual precipitation across the 3 steppes. Our results suggested that precipitation regime controls the spatial and interannual responses of soil microbes to warming, mainly by regulating soil moisture and substrate availability. With the increase in precipitation, the positive responses of soil microbes to warming started to outweigh the negative impacts

  6. Soil organic matter transformation in cryoturbated horizons of permafrost affected soils

    NASA Astrophysics Data System (ADS)

    Capek, Petr; Diakova, Katerina; Dickopp, Jan-Erik; Barta, Jiri; Santruckova, Hana; Wild, Birgit; Schnecker, Joerg; Guggenberg, Georg; Gentsch, Norman; Hugelius, Gustaf; Kuhry, Peter; Lashchinsky, Nikolaj; Gittel, Antje; Schleper, Christa; Mikutta, Robert; Palmtag, Juri; Shibistova, Olga; Urich, Tim; Zimov, Sergey; Richter, Andreas

    2014-05-01

    Cryoturbated soil horizons are special feature of permafrost affected soils. These soils are known to store great amount of organic carbon and cryoturbation undoubtedly contribute to it to large extent. Despite this fact there is almost no information about soil organic matter (SOM) transformation in cryoturbated horizons. Therefore we carried out long term incubation experiment in which we inspect SOM transformation in cryoturbated as well as in organic and mineral soil horizons under different temperature and redox regimes as potential drivers. We found out that lower SOM transformation in cryoturbated horizons compared to organic horizons was mainly limited by the amount of microbial biomass, which is extremely low in absolute numbers or expressed to SOM concentration. The biochemical transformation ensured by extracellular enzymes is relatively high leading to high concentrations of dissolved organic carbon in cryoturbated horizons. Nevertheless the final step of SOM transformation leading to C mineralization to CO2 or CH4 seems to be restricted by low microbial biomass. Critical step of biochemical transformation of complex SOM is dominated by phenoloxidases, which break down complex organic compounds to simple ones. Their oxygen consumption greatly overwhelms oxygen consumption of the whole microbial community. However the phenoloxidase activity shows strong temperature response with optimum at 13.7° C. Therefore we suggest that apparent SOM stability in cryoturbated horizons, which is expressed in old C14 dated age, is caused by low amount of microbial biomass and restricted diffusion of oxygen to extracellular enzymes in field.

  7. Soil microbial communities of postpyrogenic pine forests (case study in Russia)

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina

    2015-04-01

    Soil microbial communities of postpyrogenic pine forests (case study in Russia) Ekaterina Maksimova Saint-Petersburg State University, Department of Applied Ecology, Saint-Petersburg, Russian Federation Institute of Ecology of Volga basin, Togljatty city, Russian Federation Soils, affected by catastrophic wildfires in 2010, were investigated in pine woods of Togljatty city, Samara region with the special reference to soil biological parameters. The analysis of microbial community of pine wood soils was carried out. It was revealed that wildfires have a negative impact on structure and functional activity of the microbial community postpyrogenic soils. In particular, they influence on values of eukaryotes-prokaryotes ratios, on CO2 emission intensity and on microorganisms functional state (as it was determined by microbial metabolic quotient) after wildfires. It has been revealed that microbial biomass values and basal respiration rate shows the trend to decrease in case of postfire sites compared with control (in 6.5 and 3.4 times respectively). The microbial biomass and basal respiration values have annual natural variability that testifies to a correlation of this process with soil hydrothermal conditions. However, it was also noted that wildfires don't affect on measured microbiological parameters in layers situated deeper than top 10 cm of soil. An increasing of the values, mentioned above, was observed 2-3 years after wildfires. Zone of microorganisms' activity has been moved to the lowermost soil layers. A disturbance of soil microbial communities' ecophysiological status after the fire is diagnosed by an increase of microbial metabolic quotient value. The metabolic activity of the microbial community decreases in a row: control→crown fire→ground fire. That testifies to certain intensive changes in the microbial community. High-temperature influence on microbial community has a significant effect on a total amount of bacteria, on a length of actinomycetes

  8. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    PubMed Central

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  9. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar.

    PubMed

    Leite, D C A; Balieiro, F C; Pires, C A; Madari, B E; Rosado, A S; Coutinho, H L C; Peixoto, R S

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  10. [Diversity of carbon source metabolism of microbial community in farmland soils in an arsenic mining area].

    PubMed

    Hua, Jian-Feng; Lin, Xiang-Gui; Jiang, Qian; Zhang, Hua-Yong; Chen, Qian; Yin, Yun-Long

    2013-02-01

    By using Biolog technique, this paper studied the diversity of carbon source metabolism of microbial community in three farmland soils with different levels of arsenic (As) in an As mining area, and the relationships between the diversity of the carbon source metabolism and the main soil chemical properties. The total N (TN), total P (TP), total K (TK), organic matter (OM), total Cu, and total Zn contents in the three soils were in the order of medium level As > high level As > low level As. The average well color development (AWCD), Shannon index (H'), Simpson index (D), and McIntosh index (U) of soil microbes were significantly higher in the soils with medium and high levels As than in the soil with low level As. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community in the three soils demonstrated that the microbes in the soils with medium and high levels As had a significantly higher (P<0. 05) utilization rate in carbohydrates and amino acids than the microbes in the soil with low level As. The correlation analysis showed that the AWCD, H', D, and U were significantly positively correlated with the contents of soil TN, TP, OM, total As, total Cu, total Pb, and total Zn (P<0.05), and the canonical correspondence analysis revealed that soil TP, OM, total Pb, total Zn, TN, and pH rather than soil total As were the main soil chemical properties affecting the carbon source metabolism of soil microbial community. It was considered that soil nutrients could be the main factors affecting the community structure and functions of soil microbes in long-term contaminated soils.

  11. Effects of soil type and farm management on soil ecological functional genes and microbial activities

    SciTech Connect

    Reeve, Jennifer; Schadt, Christopher Warren; Carpenter-Boggs, Lynne; Kang, S.; Zhou, Jizhong; Reganold, John P.

    2010-01-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

  12. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  13. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration

  14. Soil microbial biomass and mineralizable carbon as a function of crop rotation and soil acidity amendment in a no-tillage system in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical climate and weathered soil conditions create significant challenges for increasing soil organic matter content. However, crop management strategies could affect short-term dynamics of active fractions of soil organic matter. Thus, our aim was to evaluate the microbial biomass and mineraliza...

  15. Short-term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest.

    PubMed

    Waring, Bonnie G; Hawkes, Christine V

    2015-05-01

    Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.

  16. Enhanced microbial degradation of deethylatrazine in atrazine-history soils

    SciTech Connect

    Kruger, E.L.; Chaplin, J.A.; Anderson, T.A.

    1995-12-01

    Persistence and degradation of deethylatrazine, the primary metabolite of atrazine, was measured in soil with atrazine history (15 consecutive years of atrazine application) and no atrazine history (no atrazine application for 15 consecutive years). Uniformly ring-labeled {sup 14}C-deethylatrazine was applied to surface and subsurface soils for metabolism studies. After 60 d of incubation, mineralization of deethylatrazine to {sup 14}CO{sub 2} in the atrazine-history surface soil was twice that in the no-history surface soils (34% and 17% of the applied {sup 14}C, respectively). In surface soils, 25% of the applied {sup 14}C remained as deethylatrazine in the atrazine-history soil, compared with 35% in the no-history soil. Microbial plate counts indicated an increase in numbers of bacteria and fungi in soils incubated with deethylatrazine compared to control soils. Total microbial biomass of soils incubated with deethylatrazine, as determined by CO{sub 2} efflux using an infrared (IR) gas analyzer, showed no significant difference between atrazine-history, and no-history soil, but did show an increase above untreated control soils. Prior to treating soils with deethylatrazine, specific deethylatrazine degraders were quantified using a {sup 14}C-most-probable-number procedure. Deethylatrazine degraders were more numerous in atrazine-history surface soil compared to no-history surface soil. After incubation of soils with deethylatrazine, deethylatrazine degraders were more numerous in both history soils as compared to control soils. From these studies, it appears that deethylatrazine is degraded microbially to a greater extent in soils that have had long-term exposure to atrazine at field application rates compared to soils with no long-term exposure. Decreased persistence of this major metabolite of atrazine in atrazine-history soils is important in that there will be less available for movement in surface runoff and to groundwater.

  17. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    PubMed

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  18. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  19. [Genetic diversity of microbial communities in tea orchard soil].

    PubMed

    Xue, Dong; Yao, Huai-Ying; Huang, Chang-Yong

    2007-04-01

    In this paper, the total microbial DNA was extracted from the soils in 8-, 50- and 90 years old tea orchards, adjacent wasteland, and 90 years old forestland in Meijiawu tea area of Hangzhou. The 16S rDNA V3 fragment was amplified by PCR, and the polymorphism of this fragment was analyzed by DGGE. The results indicated that both the tea orchard age and the land use type had significant effects on soil microbial genetic diversity. There was a significant difference (P < 0.05) in the microbial genetic diversity index among wasteland, tea orchards and forestland, which was decreased in the order of wasteland > tea orchard > forestland. For the tea orchards of different ages, the soil microbial genetic diversity index, microbial biomass C, and basal respiration were significantly higher in 50 years old than in 8 and 90 years old tea orchards.

  20. Explicitly Representing Soil Microbial Processes In Earth System Models

    SciTech Connect

    Wieder, William R.; Allison, Steven D.; Davidson, Eric A.; Georgiou, Katrina; Hararuk, Oleksandra; He, Yujie; Hopkins, Francesca; Luo, Yiqi; Smith, Mathew J.; Sulman, Benjamin; Todd-Brown, Katherine EO; Wang, Ying-Ping; Xia, Jianyang; Xu, Xiaofeng

    2015-10-26

    Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

  1. Explicitly representing soil microbial processes in Earth system models

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Allison, Steven D.; Davidson, Eric A.; Georgiou, Katerina; Hararuk, Oleksandra; He, Yujie; Hopkins, Francesca; Luo, Yiqi; Smith, Matthew J.; Sulman, Benjamin; Todd-Brown, Katherine; Wang, Ying-Ping; Xia, Jianyang; Xu, Xiaofeng

    2015-10-01

    Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models, we suggest the following: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

  2. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2016-04-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Mechanistic models of microbial processes in unsaturated aggregate pore networks revealed dynamic interplay between oxic and anoxic microsites that are jointly shaped by hydration and by aerobic and anaerobic microbial communities. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support significant anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3-D angular pore networks with profiles of water, carbon, and oxygen that vary with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain biogeochemical fluxes over the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of interest for hydrological and climate models.

  3. Stabilization of microbial biomass in soils: Implications for SOM formation and xenobiotics degradation

    NASA Astrophysics Data System (ADS)

    Miltner, A.; Kindler, R.; Achtenhagen, J.; Nowak, K.; Girardi, C.; Kästner, M.

    2012-04-01

    Soil organic matter (SOM) plays an important role in soils. It is the carbon source and the habitat of many soil microorganisms, its quality and quantity thus affect soil microbial activity. Therefore, the amount and composition of SOM determines soil quality, but SOM formation and stabilization are not yet sufficiently understood. Recently, microbial biomass residues could be identified as a significant source of SOM. We incubated 13C-labelled bacterial cells for 224 days in an agricultural soil and traced the fate of the 13C label of bacterial biomass in soil by isotopic analysis. The data were combined to a mass balance, and the biomass residues were visualized by scanning electron microscopy (SEM). A high percentage of the biomass-derived carbon (in particular from proteins) remained in soil, mainly in the non-living part of SOM, after extended incubation. The SEM micrographs only rarely showed intact cells. Instead, organic patchy fragments of 200-500 nm size were abundant. These fragments were associated with all stages of cell envelope decay and fragmentation, indicating specific disintegration processes of cell walls. Similar fragments developed on initially clean and sterile in situ microcosms during exposure in groundwater, thus providing clear evidence for their microbial origin. Microbial cell envelope fragments thus contribute significantly to SOM formation. A significant contribution of cell envelope fragments to SOM formation provides a simple explanation for the development of the small, nano-scale patchy organic materials observed in soil electron micrographs. It also suggests that microstructures of microbial cells and of small plant debris provide the molecular architecture of SOM attached to particle surfaces. This origin and macromolecular architecture of SOM is consistent with most observations on SOM, e.g. the abundance of microbial-derived biomarkers, the low C/N ratio, the water repellency and the stabilization of microbial biomass. The

  4. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P.; Nottingham, Andrew T.; Stott, Andrew W.; Bardgett, Richard D.; Salinas, Norma; Ccahuana, Adan J. Q.; Meir, Patrick

    2014-01-01

    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., “positive priming effects” that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding 13C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils. PMID:25566230

  5. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru.

    PubMed

    Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P; Nottingham, Andrew T; Stott, Andrew W; Bardgett, Richard D; Salinas, Norma; Ccahuana, Adan J Q; Meir, Patrick

    2014-01-01

    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils. PMID:25566230

  6. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  7. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  8. Positive climate feedbacks of soil microbial communities in a semi-arid grassland.

    PubMed

    Nie, Ming; Pendall, Elise; Bell, Colin; Gasch, Caley K; Raut, Swastika; Tamang, Shanker; Wallenstein, Matthew D

    2013-02-01

    Soil microbial communities may be able to rapidly respond to changing environments in ways that change community structure and functioning, which could affect climate-carbon feedbacks. However, detecting microbial feedbacks to elevated CO(2) (eCO(2) ) or warming is hampered by concurrent changes in substrate availability and plant responses. Whether microbial communities can persistently feed back to climate change is still unknown. We overcame this problem by collecting microbial inocula at subfreezing conditions under eCO(2) and warming treatments in a semi-arid grassland field experiment. The inoculant was incubated in a sterilised soil medium at constant conditions for 30 days. Microbes from eCO(2) exhibited an increased ability to decompose soil organic matter (SOM) compared with those from ambient CO(2) plots, and microbes from warmed plots exhibited increased thermal sensitivity for respiration. Microbes from the combined eCO(2) and warming plots had consistently enhanced microbial decomposition activity and thermal sensitivity. These persistent positive feedbacks of soil microbial communities to eCO(2) and warming may therefore stimulate soil C loss.

  9. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil.

    PubMed

    Weaver, Mark A; Krutz, L Jason; Zablotowicz, Robert M; Reddy, Krishna N

    2007-04-01

    Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (<7 days) changes in the soil microbial community. After incubation for 42 days, 32-37% of the applied glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates.

  10. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  11. Combinational effects of sulfomethoxazole and copper on soil microbial community and function.

    PubMed

    Liu, Aiju; Cao, Huansheng; Yang, Yan; Ma, Xiaoxuan; Liu, Xiao

    2016-03-01

    Sulfonamides and Cu are largely used feed additives in poultry farm. Subsequently, they are spread onto agricultural soils together with contaminated manure used as fertilizer. Both sulfonamides and Cu affect the soil microbial community. However, an interactive effect of sulfonamides and Cu on soil microorganisms is not well understood. Therefore, a short-time microcosm experiment was conducted to investigate the interaction of veterinary antibiotic sulfomethoxazole (SMX) and Cu on soil microbial structure composition and functions. To this end, selected concentrations of SMX (0, 5, and 50 mg kg(-1)) and Cu (0, 300, and 500 mg kg(-1)) were combined, respectively. Clear dose-dependent effects of SMX on microbial biomass and basal respiration were determined, and these effects were amplified in the presence of additional Cu. For activities of soil enzymes including β-glucosidase, urease, and protease, clear reducing effects were determined in soil samples containing 5 or 50 mg kg(-1) of SMX, and the interaction of SMX and Cu was significant, particularly in soil samples containing 50 mg kg(-1) SMX or 500 mg kg(-1) Cu. SMX amendments, particularly in combination with Cu, significantly reduced amounts of the total, bacterial, and fungal phospholipid fatty acids (PLFAs) in soil. Moreover, the derived ratio of bacteria to fungi decreased significantly with incremental SMX and Cu, and principal component analysis of the PLFAs showed that soil microbial composition was significantly affected by SMX interacted with Cu at 500 mg kg(-1). All of these results indicated that the interaction of SMX and Cu was synergistic to amplify the negative effect of SMX on soil microbial biomass, structural composition, and even the enzymatic function. PMID:26122574

  12. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  13. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    PubMed

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P < 0.01) linear regression function, which suggested that invertase was a good indicator of the magnitude of soil microbial respiration.

  14. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    PubMed

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P < 0.01) linear regression function, which suggested that invertase was a good indicator of the magnitude of soil microbial respiration. PMID:26164932

  15. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  16. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable. PMID:26631020

  17. Distinct microbial communities associated with buried soils in the Siberian tundra.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Capek, Petr; Santrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-04-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.

  18. Long-term forest soil warming alters microbial communities in temperate forest soils

    PubMed Central

    DeAngelis, Kristen M.; Pold, Grace; Topçuoğlu, Begüm D.; van Diepen, Linda T. A.; Varney, Rebecca M.; Blanchard, Jeffrey L.; Melillo, Jerry; Frey, Serita D.

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming. PMID:25762989

  19. Long-term forest soil warming alters microbial communities in temperate forest soils.

    PubMed

    DeAngelis, Kristen M; Pold, Grace; Topçuoğlu, Begüm D; van Diepen, Linda T A; Varney, Rebecca M; Blanchard, Jeffrey L; Melillo, Jerry; Frey, Serita D

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.

  20. Response of soil microbial respiration to varying temperature and moisture in three soils from the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Dunn, S.; Bunn, A. G.; Schade, J. D.; Polaris Project

    2011-12-01

    The climate of the Arctic is warming at a disproportionately higher rate as compared to the lower latitudes. Temperature and, by association, soil moisture are two of the most important variables that affect the respiration of soil microbial communities. The long-term storage of carbon in terrestrial systems relies upon low rates of soil microbial respiration at high latitudes, and an increase in temperature is thought to increase these rates. However, different ecosystems should respond uniquely to changes in temperature and moisture because of their historic microbial communities. Using mason jars in the laboratory, I experimentally manipulated the temperature and moisture of soils from three distinct arctic ecosystem types (tundra, taiga, and grazed floodplain). The goal of this experimental manipulation was to see if there are differences between these systems in their response to changes in their environment. I found that temperature significantly impacts microbial respiration (μg CO2 gOM-1 min-1) at all sites (p<0.001). In addition, there is a significant interaction between temperature and moisture at each site (p<0.001). However, the tundra site showed a stronger response in respiration with changes to temperature than the other two sites, as well as the strongest interaction between temperature and moisture (βtemperature= 1.5E10 -3; βinteraction= 1.9E10 -3). These findings are consistent with other observations that the soil microbial communities of the tundra grassland might be especially sensitive to warming.

  1. [Effects of irrigation and fertilization on soil microbial properties in summer maize field].

    PubMed

    Liu, Zhen-xiang; Liu, Peng; Jia, Xu-cun; Cheng, Yi; Dong, Shu-ting; Zhao, Bin; Zhang, Ji-wang; Yang, Jin-sheng

    2015-01-01

    In order to investigate the effects of different irrigation and fertilization on soil microbial properties of summer maize field, we used ZN99 with high nitrogen use efficiency as the test material. The experiment adopted the split plot design which included two irrigation levels (526 mm and 263 mm) as the main plots, three fertilizer types (U, M, UM) and two fertilizer levels (N 100 kg . hm-2 and 200 kg . hm-2) as the subplots. The results showed that the irrigation level affected the regulating effects of fertilizer on soil microbial biomass (carbon and nitrogen) and microbial di- versity. The organic fertilizer application must be under the sufficient irrigation level to increase the soil MBC (14.3%-33.6%), MBN (1.8-2.3 times) and abundance significantly. A moderate rate of irrigation, higher rates of organic fertilizer application or organic manure combined with inorganic fertilizer could increase the nitrogen-fixation species and quantity of Firmicutes, γ-Proteobacteria and α-Proteobacteria in the soil. Under the same N level, there was no significant difference of grain yield between organic manure and inorganic fertilizer treatments. Considering sustainable production, proper organic manure application with moderate irrigation could increase the quantity of the soil microbial biomass and microbial diversity, and improve the capacity of soil to supply water and nutrients.

  2. The Effect of Biochar and Its Interaction with the Earthworm Pontoscolex corethrurus on Soil Microbial Community Structure in Tropical Soils

    PubMed Central

    Paz-Ferreiro, Jorge; Liang, Chenfei; Fu, Shenglei; Mendez, Ana; Gasco, Gabriel

    2015-01-01

    Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] at a rate of 3% (w/w) to two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA) measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2) resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4). Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects. PMID:25898344

  3. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils.

    PubMed

    Paz-Ferreiro, Jorge; Liang, Chenfei; Fu, Shenglei; Mendez, Ana; Gasco, Gabriel

    2015-01-01

    Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] at a rate of 3% (w/w) to two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA) measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2) resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4). Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects.

  4. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils.

    PubMed

    Paz-Ferreiro, Jorge; Liang, Chenfei; Fu, Shenglei; Mendez, Ana; Gasco, Gabriel

    2015-01-01

    Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] at a rate of 3% (w/w) to two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA) measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2) resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4). Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects. PMID:25898344

  5. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  6. Impact of fungicide mancozeb at different application rates on soil microbial populations, soil biological processes, and enzyme activities in soil.

    PubMed

    Walia, Abhishek; Mehta, Preeti; Guleria, Shiwani; Chauhan, Anjali; Shirkot, C K

    2014-01-01

    The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0-2000 ppm) at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8) collected from apple orchards of Shimla in Himachal Pradesh (India). Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm) were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required. PMID:25478598

  7. Impact of Fungicide Mancozeb at Different Application Rates on Soil Microbial Populations, Soil Biological Processes, and Enzyme Activities in Soil

    PubMed Central

    Mehta, Preeti; Guleria, Shiwani; Chauhan, Anjali; Shirkot, C. K.

    2014-01-01

    The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0–2000 ppm) at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8) collected from apple orchards of Shimla in Himachal Pradesh (India). Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm) were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required. PMID:25478598

  8. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  9. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils.

    PubMed

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A S; Wu, Jinshui

    2016-01-22

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  10. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  11. Microbial ecology and transformations associated with munitions contaminated soils

    SciTech Connect

    Martin, J.L.; Li, Z.; Kokjohn, T.A.; Shea, P.J.; Comfort, S.D.

    1994-12-31

    Many acres of soil at the former Nebraska Ordnance Plant (NOP) are contaminated with TNT and other munitions residues. In some areas, solid phase TNT is present and controls the concentration of the soil solution. Native microbial populations in uncontaminated soils similar to those at the NOP site were severely reduced when solid phase TNT was allowed to control the soil solution TNT concentration. However, examination of NOP soil revealed an active population of Pseudomonas sp. A single species that could utilize TNT as a sole C source was isolated from the contaminated soil and tentatively identified as Pseudomonas corrugata through the BIOLOG system. Subsequent growth and characterization experiments indicate that the Pseudomonad metabolizes TNT while in the exponential phase of growth in medium containing glucose as a sole N source. Low TNT mineralization rates (measured by CO{sub 2} evolution) in soil and media using the various isolates suggest reduced availability due to sorption and incorporation of transformation intermediates into the organic matrix and microbial biomass. Pretreatment of TNT by acid-metal catalyzed reduction resulted in an initially higher rate of mineralization following addition to TNT-contaminated soil. Observations indicate more rapid microbial utilization of the 2,4,6-triaminotoluene (TAT) reduction product and its spontaneous decay product, methylphloroglucinol (2,4,6-trihydroxytoluene), than TNT. Abiotic pretreatment may be useful in enhancing microbial transformation and detoxification of TNT in highly contaminated soils.

  12. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    PubMed

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. PMID:27100017

  13. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  14. Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils

    NASA Astrophysics Data System (ADS)

    Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of

  15. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2015-12-01

    The constantly changing soil hydration status affects gas and nutrient diffusion through soil pores and thus the functioning of soil microbial communities. The conditions within soil aggregates are of particular interest due to limitations to oxygen diffusion into their core, and the presence of organic carbon often acting as binding agent. We developed a model for microbial life in simulated soil aggregates comprising of 3-D angular pore network model (APNM) that mimics soil hydraulic and transport properties. Within these APNM, we introduced individual motile (flagellated) microbial cells with different physiological traits that grow, disperse, and respond to local nutrients and oxygen concentrations. The model quantifies the dynamics and spatial extent of anoxic regions that vary with hydration conditions, and their role in shaping microbial community size and activity and the spatial (self) segregation of anaerobes and aerobes. Internal carbon source and opposing diffusion directions of oxygen and carbon within an aggregate were essential to emergence of stable coexistence of aerobic and anaerobic communities (anaerobes become extinct when carbon sources are external). The model illustrates a range of hydration conditions that promote or suppress denitrification or decomposition of organic matter and thus affect soil GHG emissions. Model predictions of CO2 and N2O production rates were in good agreement with limited experimental data. These limited tests support the dynamic modeling approach whereby microbial community size, composition, and spatial arrangement emerge from internal interactions within soil aggregates. The upscaling of the results to a population of aggregates of different sizes embedded in a soil profile is underway.

  16. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    PubMed Central

    Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy E.; Parker, Alexander E.; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, Stephen C.

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm3 for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas. PMID:25674080

  17. Response of soil microbial community composition to afforestation with pure and mixed tree species

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Smith, Andrew; Godbold, Douglas; Kuzyakov, Yakov; Jones, Davey

    2016-04-01

    Afforestation of agricultural land affects soil ecosystem functions by inducing carbon (C) and nitrogen (N) sequestration and promoting shifts in microbial community structure. Soil C and N stocks undergo progressive changes over several decades after forest establishment, particularly in successional forests. In contrast, microbial community structure can be shifted already in the first decade and thus, direct effect of tree species can be revealed. Thus, the aim of this study was to determine how soil microbial community composition is altered by afforestation with either one, two or three species mixtures of trees, which possess strongly contrasting functional traits. The study was conducted at the BangorDIVERSE temperate forest experiment established in 2004 on a former arable soil. Soil samples were collected under single, two and three species mixtures of alder, birch, beech and oak, while contiguous field was chosen as a control. Soil samples were analysed for key quality indicators (total C and N, pH, nitrate and ammonium), and microbial community structure was determined by phospholipid fatty acids (PLFAs) analysis. Ten years after afforestation, total soil C, N and C/N ratios were not strongly affected, with the highest positive changes (up to 20%) for the birch, alder+oak and birch+beech plots. Decrease of C and N contents were observed for the pure beech plot. pH decreased by 1-1.2 units for all forest plots compare to the control soil. Total PLFAs content (370-630 nmol g‑1 soil) increased in comparison to the control (315 nmol g‑1 soil), resulting in the changes in total PLFAs content from 20 to 100%. Thus, changes of chemical properties (C, N) occur slower than changes of microbial biomarkers at the early stage of afforestation. Bacterial PLFA content was shifted by 20-120%, whereas fungal PLFAs were changed by 50-300%, reflecting stronger impact of afforestation on the recovery of fungal communities than on bacterial. Principal component analysis

  18. Response of soil microbial community composition to afforestation with pure and mixed tree species

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Smith, Andrew; Godbold, Douglas; Kuzyakov, Yakov; Jones, Davey

    2016-04-01

    Afforestation of agricultural land affects soil ecosystem functions by inducing carbon (C) and nitrogen (N) sequestration and promoting shifts in microbial community structure. Soil C and N stocks undergo progressive changes over several decades after forest establishment, particularly in successional forests. In contrast, microbial community structure can be shifted already in the first decade and thus, direct effect of tree species can be revealed. Thus, the aim of this study was to determine how soil microbial community composition is altered by afforestation with either one, two or three species mixtures of trees, which possess strongly contrasting functional traits. The study was conducted at the BangorDIVERSE temperate forest experiment established in 2004 on a former arable soil. Soil samples were collected under single, two and three species mixtures of alder, birch, beech and oak, while contiguous field was chosen as a control. Soil samples were analysed for key quality indicators (total C and N, pH, nitrate and ammonium), and microbial community structure was determined by phospholipid fatty acids (PLFAs) analysis. Ten years after afforestation, total soil C, N and C/N ratios were not strongly affected, with the highest positive changes (up to 20%) for the birch, alder+oak and birch+beech plots. Decrease of C and N contents were observed for the pure beech plot. pH decreased by 1-1.2 units for all forest plots compare to the control soil. Total PLFAs content (370-630 nmol g-1 soil) increased in comparison to the control (315 nmol g-1 soil), resulting in the changes in total PLFAs content from 20 to 100%. Thus, changes of chemical properties (C, N) occur slower than changes of microbial biomarkers at the early stage of afforestation. Bacterial PLFA content was shifted by 20-120%, whereas fungal PLFAs were changed by 50-300%, reflecting stronger impact of afforestation on the recovery of fungal communities than on bacterial. Principal component analysis of

  19. Copper speciation and microbial activity in long-term contaminated soils.

    PubMed

    Dumestre, A; Sauvé, S; McBride, M; Baveye, P; Berthelin, J

    1999-02-01

    Most soil quality guidelines do not distinguish among the various forms of metals in soils; insoluble, nonreactive, and nonbioavailable forms are deemed as hazardous as highly soluble, reactive, and toxic forms. The objective of this study was to better understand the long-term effects of copper on microorganisms in relation to its chemical speciation in the soil environment. Carbon mineralization processes and the global structure of different microbial communities (fungi, eubacteria, actinomycetes) are still affected after more than 50 years of copper contamination in 20 soils sampled from two different agricultural sites. The microbial respiration lag period (LP) preceding the beginning of mineralization process increases with the level of soil copper contamination and is not significantly affected by other environmental factors such as soil pH and soil organic matter (SOM) content. The total copper concentration showed the best correlation with the LP when each site is considered separately. However, when considering the whole set of data, soil solution free Cu2+ activity (pCu2+) is the best predictor of Cu toxicity determined by LP (quite likely because pCu2+ integrates the soil physicochemical variability). The maximum mineralization rate (MMR), even if well correlated with the pCu2+, appears not to be a good biomonitor of copper contamination in soils since it is highly sensitive to soil characteristics such as SOM content. This study emphasizes the importance of the physicochemical properties of the environment on soil heavy metal toxicity and on soil toxicological measurements. These properties must be characterized in soil toxicological studies with respect to (1) their interactions with heavy metals, and (2) their direct impact on the selected biological test. The measurement of pCu2+ to characterize the level of soil contamination and of lag period as a bioindicator of metal effects in the soil are recognized as useful tools for the evaluation of the

  20. Relationships between soil microbial communities and soil carbon turnover along a vegetation and moisture gradient in interior Alaska

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.; Turetsky, M. R.; Petersen, D. G.; McGuire, A. D.; Briones, M. J.; Churchill, A. C.; Doctor, D. H.; Pruett, L. E.

    2010-12-01

    Boreal landscapes are characterized by a mosaic of uplands and lowlands, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Boreal ecosystems, from upland black spruce stands to lowland fens, are structured largely by water table position and contain quantitatively and qualitatively different forms of soil organic matter. Differences in carbon (C) availability among ecosystems likely translate to differences in the structure of soil microbial communities, which in turn could affect rates of organic matter decomposition and turnover. We examined relationships between microbial communities and soil C turnover in near-surface soils along a topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that upland black spruce sites would be dominated by soil fungi and have slow rates of C turnover, whereas lowland ecosystems would be dominated by bacteria and mesofauna (enchytraeids) and have more rapid rates of C turnover. We utilized several isotopic measures of soil C turnover including bomb radiocarbon techniques, the δ15N of SOM, and the difference between δ13C of SOM, DOC, and respired CO2. All three measures indicated greater C turnover rates in the surface soils of the lowland fen sites compared to the more upland locations. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraed counts, confirmed that surface soils from the lowland fen ecosystems had the highest abundances of these functional groups. Fungal biomass was highly variable and tended to be more abundant in the upland forest sites. Soil enzymatic results were mixed: potential cellulase activities were higher in the more upland soils even though rates of microbial activity were generally lower. Oxidative enzyme activities were higher in fens, even though these ecosystems are saturated and partly anaerobic. Overall our data support soil food web theory which argues that rapidly cycling systems

  1. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure. PMID:26962674

  2. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  3. Rhizosphere effect of Scirpus triqueter on soil microbial structure during phytoremediation of diesel-contaminated wetland.

    PubMed

    Wei, Jing; Liu, Xiaoyan; Zhang, Xinying; Chen, Xueping; Liu, Shanshan; Chen, Lisha

    2014-01-01

    Though phytoremediation has been widely used to restore various contaminated sites, it is still unclear how soil microbial communities respond microecologically to plants and pollutants during the process. In this paper, batch microcosms imitating in situ phytoremediation of petroleum-contaminated wetland by Scirpus triqueter were set up to monitor the influence of plant rhizosphere effect on soil microbes. Palmitic acid, one of the main root exudates of S. triqueter, was added to strengthen rhizosphere effect. Abundances of certain microbial subgroups were quantified by phospholipid fatty acid profiles. Results showed that diesel removal extents were significantly higher in the rhizosphere (57.6 +/-4.2-65.5 +/- 6.9%) than those in bulk soil (27.8 +/-6.5-36.3 +/- 3.2%). In addition, abundances of saturated, monounsaturated, and polyunsaturated fatty acids were significantly higher (P < 0.05) in planted soil than those in the bulk soil. When it was less than 15,000 mg diesel kg soil-1, increasing diesel concentration led to higher abundances of fungi, Gram-positive and Gram-negative bacteria. The addition of palmitic acid amplified the rhizosphere effect on soil microbial populations and diesel removal. Principal component analysis revealed that plant rhizosphere effect was the dominant factor affecting microbial structure. These results provided new insights into plant-microbe-pollutant coactions responsible for diesel degradation, and they were valuable to facilitate phytoremediation of diesel contamination in wetland habitats.

  4. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  5. Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure

    NASA Astrophysics Data System (ADS)

    Wang, Jinhua; Lu, Yitong; Shen, Guoqing

    2007-02-01

    The combined effects of cadmium (Cd, 10 mg/kg of soil) and butachlor (5, 10 and 50 mg/kg of soil) on enzyme activities and microbial community structure were assessed in phaeozem soil. The result showed that phosphatase activities were decreased in soils with Cd (10 mg/kg of soil) alone whereas urease acitivities were unaffected by Cd. Urease and phosphatase activities were significantly reduced by high butachlor concentration (50 mg/kg of soil). When Cd and butachlor concentrations in soils were added at milligram ratio of 2:1 or 1:2, urease and phosphatase activities were decreased, while enzyme activities were greatly improved at the ratio of 1:5. This study indicates that the combined effects of Cd and butachlor on soil urease and phosphatase activities depend largely on the addition concentration ratios to soils. The random amplified polymorphic DNA (RAPD) analysis showed that the changes occurring in RAPD profiles of different treated samples included variation in loss of normal bands and appearance of new bands compared with the control soil. The RAPD fingerprints showed substantial differences between the control and treated soil samples, with apparent changes in the number and size of amplified DNA fragments. The results showed that the addition of high concentration butachlor and the combined applied Cd and butachlor significantly affected the diversity of microbial community. The present results suggest that RAPD analysis in conjunction with other biomarkers such as soil enzyme parameter etc. would prove a powerful ecotoxicological tool.

  6. Microbial functional diversity in a mediterranean forest soil: impact of soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Dalmonech, D.; Lagomarsino, A.; Moscatelli, M. C.

    2009-04-01

    Beneficial or negative effects of N deposition on forest soil are strongly linked to the activity of microbial biomass and enzyme activities because they regulate soil quality and functioning due to their involvement in organic matter dynamics, nutrient cycling and decomposition processes. Moreover, because the ability of an ecosystem to withstand serious disturbances may depend in part on the microbial component of the system, by characterizing microbial functional diversity we may be able to better understand and manipulate ecosystem processes. Changes in the biodiversity of the soil microbial community are likely to be important in relation to maintenance of soil ecosystem function because the microbial communities influence the potential of soils for enzyme-mediated substrate catalysis. Objective of this study was to evaluate how soil N availability affected microbial functional diversity in a 4 months laboratory experiment. The incubation experiment was carried out with an organo-mineral soil collected in a Quercus cerris forest at the Roccarespampani site (Central Italy, Viterbo). All samples were incubated at 28°C and were kept to a water content between 55 and 65% of the water holding capacity. Different amount of N (NH4NO3) were added as solution once a week in order to mimic the N wet deposition and to let microbial community deal with a slow increase in time of inorganic N content. The amount of nutrient solutions was chosen depending on the average soil-water loss due to evaporation in one week. The total amount of N-NH4NO3 was chosen to be comparable with the range of N depositions currently reported in European forests, i.e. between 1 and 75 kg N ha-1 y-1. The total amount added at the end of incubation varied from 0, 10, 25, 50 and 75 kg N ha-1. Distilled water was added in the control soil in order to provide the same amount of solution as the treated soils. In order to discriminate the effect of N, the NH4NO3 solutions were adjusted to soil pH and

  7. Development of soil microbial communities during tallgrass prairie restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities were examined in a chronosequence of four different land-use treatments at the Konza Prairie Biological Station, Kansas. The time series comprised a conventionally tilled cropland (CTC) developed on former prairie soils, two restored grasslands that were initiated on forme...

  8. Measurements of microbial community activities in individual soil macroaggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for ß-glucosidase, N-acetyl-ß-D-glucosaminidase, lipase, and leucine...

  9. Soil microbial communities following bush removal in a Namibian savanna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the grazing value of the land and hence the carrying capacity for wildlife and livestock. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil at a chronose...

  10. Rototillage, disking, and subsequent irrigation: effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux.

    PubMed

    Calderón, Francisco J; Jackson, Louise E

    2002-01-01

    Spring and summer tillage are usually followed by irrigation before planting crops in California's summer-dry Mediterranean-type climate. Tillage treatments such as rototillage or disking are known to disturb the soil structure to different extents, but little is known about how the intensity of a tillage event and subsequent irrigation affect the microbial biomass, respiration, CO2 efflux, and mineral N of agricultural soils. We carried out an experiment with a Yolo silt loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent) with two tilled treatments (rototillage and disked and rolled) and a nontilled control. The soil was subsequently sampled throughout a 17-d period. Nine days after tillage, all treatments were lightly sprinkler-irrigated to bring the soil water potential above -10 kPa. After tillage, the soil ammonium and nitrate content increased rapidly relative to the control with highest increases in the disked soil. Mineral N remained higher in the tilled treatments after irrigation. Rototillage and disking increased the CO2 efflux of the soil within 24 h of the disturbance. The increase was higher in the disked soil, which was more than three times the CO2 efflux of the control soil at 0.25 h after tillage. This effect may be due to degassing of dissolved CO2 since microbial respiration did not increase in tilled soils. Irrigation increased the CO2 efflux of all treatments but this was most pronounced in the control soil, which had an order of magnitude increase in CO2 efflux after irrigation. An ancillary experiment carried out under similar conditions but with more frequent sampling showed that increases in CO2 efflux after irrigation were accompanied by increases in soil respiration. This study shows that different tillage implements affect CO2 efflux, nitrate accumulation, and microbial activity, and thus have different effects on soil and atmospheric environmental quality. PMID:12026078

  11. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    PubMed

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  12. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. PMID:23625707

  13. Soil microbial responses to temporal variations of moisture and temperature in a chihuahuan desert grassland.

    PubMed

    Bell, Colin; McIntyre, Nancy; Cox, Stephen; Tissue, David; Zak, John

    2008-07-01

    Global climate change models indicate that storm magnitudes will increase in many areas throughout southwest North America, which could result in up to a 25% increase in seasonal precipitation in the Big Bend region of the Chihuahuan Desert over the next 50 years. Seasonal precipitation is a key limiting factor regulating primary productivity, soil microbial activity, and ecosystem dynamics in arid and semiarid regions. As decomposers, soil microbial communities mediate critical ecosystem processes that ultimately affect the success of all trophic levels, and the activity of these microbial communities is primarily regulated by moisture availability. This research is focused on elucidating soil microbial responses to seasonal and yearly changes in soil moisture, temperature, and selected soil nutrient and edaphic properties in a Sotol Grassland in the Chihuahuan Desert at Big Bend National Park. Soil samples were collected over a 3-year period in March and September (2004-2006) at 0-15 cm soil depth from 12 3 x 3 m community plots. Bacterial and fungal carbon usage (quantified using Biolog 96-well micro-plates) was related to soil moisture patterns (ranging between 3.0 and 14%). In addition to soil moisture, the seasonal and yearly variability of soil bacterial activity was most closely associated with levels of soil organic matter, extractable NH(4)-N, and soil pH. Variability in fungal activity was related to soil temperatures ranging between 13 and 26 degrees C. These findings indicate that changes in soil moisture, coupled with soil temperatures and resource availability, drive the functioning of soil-microbial dynamics in these desert grasslands. Temporal patterns in microbial activity may reflect the differences in the ability of bacteria and fungi to respond to seasonal patterns of moisture and temperature. Bacteria were more able to respond to moisture pulses regardless of temperature, while fungi only responded to moisture pulses during cooler seasons with

  14. Microbial ecology and biogeochemistry of continental Antarctic soils

    PubMed Central

    Cowan, Don A.; Makhalanyane, Thulani P.; Dennis, Paul G.; Hopkins, David W.

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities. PMID:24782842

  15. Evaluation of pasture soil productivity in the semi-arid zone of Brazil by microbial analyses

    PubMed Central

    de Luna, Rômulo Gil; Coutinho, Henrique Douglas Melo; Grisi, Breno Machado

    2008-01-01

    The productivity of a pasture soil (caatinga) located in the region of São João do Cariri, PB, Brazil was evaluated based an the following microbiological parameters: biomass (measured by fumigation-incubation method), activity (estimated from basal respiration and cellulose decomposition rate), qCO2, and Cmic : Corg ratio. This analysis demonstrated that livestock management in the ‘caatinga’ is probably causing environment damage by affecting the soil properties, reducing the microbial biomass and soil respiration and increasing the qCO2, affecting the recovery of this ecosystem. PMID:24031238

  16. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.

    PubMed

    Wang, YuanPeng; Shi, JiYan; Wang, Hui; Lin, Qi; Chen, XinCai; Chen, YingXu

    2007-05-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China. PMID:16828162

  17. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

    PubMed

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C; Singh, Brajesh K

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil

  18. [Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry].

    PubMed

    Yang, Kai; Yao, Xiao-yan; Chen, Chen; Shen, Chao-feng; Qin, Zhi-hui; Huang, Rong-lang

    2015-10-01

    We studied the dechlorination process of Aroclor1260, a high-chlorinated polychlorinated biphenyls (PCBs) mixture in an anaerobic paddy soil slurry, and further analyzed the related microbial community structures. The Aroclor1260 was reduced up to 55.5% in the natural paddy soil slurry in 128 days, and the reduction percentage dropped to 46.9% after incoculating the paddy soil slurry with a PCBs-dechlorination enrichment culture. The dechlorination mainly occurred in congeners of pentachlorobiphenyl, hexachlorobiphenyl, and specially, the heptachlorobiphenyl, with pentachlorobiphenyl accumulated as dechlorination intermediate. Hydrogen gas produced from fermentation of organic matters was maintained at a lower partial pressure due to its consumption during the dechlorination process, so that the methanogens was suppressed as well. The microbial community structure was significantly different between natural and inoculated paddy soils. Introducing the PCBs-dechlorination enrichment culture changed the local microbial community by the competition between the exogenetic dchlorinators and the indigenous bacteria, overall decreasing the dechlorination activity.

  19. Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach.

    PubMed

    Baptist, F; Zinger, L; Clement, J C; Gallet, C; Guillemin, R; Martins, J M F; Sage, L; Shahnavaz, B; Choler, Ph; Geremia, R

    2008-03-01

    In alpine ecosystems, tannin-rich-litter decomposition occurs mainly under snow. With global change, variations in snowfall might affect soil temperature and microbial diversity with biogeochemical consequences on ecosystem processes. However, the relationships linking soil temperature and tannin degradation with soil microorganisms and nutrients fluxes remain poorly understood. Here, we combined biogeochemical and molecular profiling approaches to monitor tannin degradation, nutrient cycling and microbial communities (Bacteria, Crenarcheotes, Fungi) in undisturbed winter time soil cores exposed to low temperature (0 degrees C/-6 degrees C), amended or not with tannins, extracted from Dryas octopetala. No toxic effect of tannins on microbial populations was found, indicating that they withstand phenolics from alpine vegetation litter. Additionally at -6 degrees C, higher carbon mineralization, higher protocatechuic acid concentration (intermediary metabolite of tannin catabolism), and changes in fungal phylogenetic composition showed that freezing temperatures may select fungi able to degrade D. octopetala's tannins. In contrast, negative net nitrogen mineralization rates were observed at -6 degrees C possibly due to a more efficient N immobilization by tannins than N production by microbial activities, and suggesting a decoupling between C and N mineralization. Our results confirmed tannins and soil temperatures as relevant controls of microbial catabolism which are crucial for alpine ecosystems functioning and carbon storage.

  20. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    SciTech Connect

    Deng, Ye; He, Zhili; Xiong, Jinbo; Yu, Hao; Xu, Meiying; Hobbie, Sarah E.; Reich, Peter B.; Schadt, Christopher W.; Kent, Angela; Pendall, Elise; Wallenstein, Matthew; Zhou, Jizhong

    2015-10-23

    Although elevated CO2 (eCO2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO2 conditions, but declined significantly (P<0.05) faster at eCO2 with a slope of -0.0250 than at ambient CO2 (aCO2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO2 continues to increase.

  1. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE PAGES

    Deng, Ye; He, Zhili; Xiong, Jinbo; Yu, Hao; Xu, Meiying; Hobbie, Sarah E.; Reich, Peter B.; Schadt, Christopher W.; Kent, Angela; Pendall, Elise; et al

    2015-10-23

    Although elevated CO2 (eCO2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO2 conditions, but declined significantly (P<0.05) faster at eCO2 with a slope of -0.0250 than at ambient CO2 (aCO2) with a slope of -0.0231more » although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO2 continues to increase.« less

  2. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Zhou, Huakun; Ganjurjav, Hasbagan; Wang, Xuexia

    2016-08-15

    Alpine ecosystems are known to be sensitive to climate change and human disturbances. However, the knowledge about the changes of their underground microbial communities is inadequate. We explored the diversity and structure of soil bacterial and fungal communities using Ilumina MiSeq sequencing in native alpine grasslands (i.e. the alpine meadow, alpine steppe) and cultivated grassland of the Qinghai-Tibetan Plateau (QTP) under three-year treatments of overgrazing, warming and enhanced rainfall. Enhanced rainfall rather than warming significantly reduced soil microbial diversity in native alpine grasslands. Variable warming significantly reduced it in the cultivated grassland. Over 20% and 40% variations of microbial diversity could be explained by soil nutrients and moisture in the alpine meadow and cultivated grassland, separately. Soil microbial communities could be clustered into different groups according to different treatments in the alpine meadow and cultivated grassland. For the alpine steppe, with the lowest soil nutrients and moistures, <10% variations of microbial diversity was explained by soil properties; and the soil microbial communities among different treatments were similar. The soil microbial community in the cultivated grassland was varied from it in native grasslands. Over 50% variations of soil microbial communities among different treatments were explained by soil nutrients and moisture in each grassland type. Our results suggest that climate change and human activities strongly affected soil microbial communities by changing soil nutrients and moistures in alpine grassland ecosystems. PMID:27100015

  3. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Zhou, Huakun; Ganjurjav, Hasbagan; Wang, Xuexia

    2016-08-15

    Alpine ecosystems are known to be sensitive to climate change and human disturbances. However, the knowledge about the changes of their underground microbial communities is inadequate. We explored the diversity and structure of soil bacterial and fungal communities using Ilumina MiSeq sequencing in native alpine grasslands (i.e. the alpine meadow, alpine steppe) and cultivated grassland of the Qinghai-Tibetan Plateau (QTP) under three-year treatments of overgrazing, warming and enhanced rainfall. Enhanced rainfall rather than warming significantly reduced soil microbial diversity in native alpine grasslands. Variable warming significantly reduced it in the cultivated grassland. Over 20% and 40% variations of microbial diversity could be explained by soil nutrients and moisture in the alpine meadow and cultivated grassland, separately. Soil microbial communities could be clustered into different groups according to different treatments in the alpine meadow and cultivated grassland. For the alpine steppe, with the lowest soil nutrients and moistures, <10% variations of microbial diversity was explained by soil properties; and the soil microbial communities among different treatments were similar. The soil microbial community in the cultivated grassland was varied from it in native grasslands. Over 50% variations of soil microbial communities among different treatments were explained by soil nutrients and moisture in each grassland type. Our results suggest that climate change and human activities strongly affected soil microbial communities by changing soil nutrients and moistures in alpine grassland ecosystems.

  4. Microbial community composition in soils of Northern Victoria Land, Antarctica.

    PubMed

    Niederberger, Thomas D; McDonald, Ian R; Hacker, Amy L; Soo, Rochelle M; Barrett, John E; Wall, Diana H; Cary, S Craig

    2008-07-01

    Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher

  5. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2015-04-01

    Global environmental factors impact soil microbial communities and further affect organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about the relative contributions of climate factors, soil properties, vegetation types, land management practices and spatial structure (which serves as a proxy for underlying effects of temperature and precipitation for spatial variation) on soil microbial community composition and biomass at large spatial scales. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 50 km). The results showed that soil moisture and land use changes were most closely related to microbial community composition and biomass at the regional scale, while soil total C content and climate effects were weaker but still significant. Factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Higher contributions of gram-positive bacteria were found in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties were not the most important drivers governing microbial community composition and biomass because of inclusion of irrigated and managed practices, and thus soil moisture and land use appear to be primary determinants of microbial community composition and biomass at the regional scale in northeastern China.

  6. Microbial Decomposition of Extracellular DNA in Clay Soils

    NASA Astrophysics Data System (ADS)

    Morrissey, E. M.; McHugh, T. A.; Schwartz, E.; Preteska, L.; Hayer, M.; Hungate, B. A.

    2014-12-01

    Genomic analysis of soil communities can only be useful in predicting ecosystem processes if the genetic data gathered is representative of the microbial community. Consequently, extracellular DNA (eDNA) represents a pool of unexpressed genetic information that may skew genomic analyses. To date, our understanding of the representation of eDNA in metagenomic data and its decomposition in soil is very limited. To address this deficit, we performed a laboratory experiment wherein soils were amended with eDNA and/or clay minerals in a full factorial design. Specifically, the decomposition of 13C labeled E. coli DNA was monitored over a 30-day period in control, Kaolinite-amended, and Montmorillonite-amended soils. The amount of added eDNA carbon (C) remaining in the soil declined exponentially over time, with the majority of decomposition occurring in the first two weeks. Kaolinite significantly decreased eDNA decomposition rates and retained a higher fraction of eDNA-C (~70% remaining) than unamended and Montmorillonite-soils (~40% remaining) after 30 days. Phylogenetic (16S rRNA) sequencing of DNA extracted over the course of the incubation period enabled detection of the added eDNA. The relative abundance of added E. coli DNA decreased ~10-100 fold over 30 days. These results indicate that while a significant fraction of eDNA-C remained in the soil, this carbon was likely no longer in the form of intact strands of DNA amenable to sequencing. In addition, the eDNA affected the composition of the bacterial community. Specifically, the relative abundance of Planctomycetes and TM7 were elevated in soils that received eDNA regardless of clay addition, suggesting these phyla may be particularly effective at degrading eDNA and using it for growth. In conclusion these results indicate that the representation of eDNA in metagenomic sequence data declines rapidly, likely due to fragmentation. However, a fraction of eDNA material was resistant to decomposition, suggesting a

  7. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

    NASA Astrophysics Data System (ADS)

    Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; Fischer, Joseph C.

    2016-06-01

    There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.

  8. [Soil microbial functional diversity of different altitude Pinus koraiensis forests].

    PubMed

    Han, Dong-xue; Wang, Ning; Wang, Nan-nan; Sun, Xue; Feng, Fu-juan

    2015-12-01

    In order to comprehensively understand the soil microbial carbon utilization characteristics of Pinus koraiensis forests, we took the topsoil (0-5 cm and 5-10 cm) along the 700-1100 m altitude in Changbai Mountains and analyzed the vertical distributed characteristics and variation of microbial functional diversity along the elevation gradient by Biolog microplate method. The results showed that there were significant differences in functional diversity of microbial communities at different elevations. AWCD increased with the extension of incubation time and AWCD at the same soil depth gradually decreased along with increasing altitude; Shannon, Simpson and McIntosh diversity index also showed the same trend with AWCD and three different diversity indices were significantly different along the elevation gradient; Species diversity and functional diversity showed the same variation. The utilization intensities of six categories carbon sources had differences while amino acids were constantly the most dominant carbon source. Principal component analysis (PCA) identified that soil microbial carbon utilization at different altitudes had obvious spatial differentiation, as reflected in the use of carbohydrates, amino acids and carboxylic acids. In addition, the cluster of the microbial diversity indexes and AWCD values of different altitudes showed that the composition of vegetation had a significant impact on soil microbial composition and functional activity. PMID:27112001

  9. Soil microbial communities following bush removal in a Namibian savanna

    NASA Astrophysics Data System (ADS)

    Buyer, J. S.; Schmidt-Küntzel, A.; Nghikembua, M.; Maul, J. E.; Marker, L.

    2015-12-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  10. [Soil microbial functional diversity of different altitude Pinus koraiensis forests].

    PubMed

    Han, Dong-xue; Wang, Ning; Wang, Nan-nan; Sun, Xue; Feng, Fu-juan

    2015-12-01

    In order to comprehensively understand the soil microbial carbon utilization characteristics of Pinus koraiensis forests, we took the topsoil (0-5 cm and 5-10 cm) along the 700-1100 m altitude in Changbai Mountains and analyzed the vertical distributed characteristics and variation of microbial functional diversity along the elevation gradient by Biolog microplate method. The results showed that there were significant differences in functional diversity of microbial communities at different elevations. AWCD increased with the extension of incubation time and AWCD at the same soil depth gradually decreased along with increasing altitude; Shannon, Simpson and McIntosh diversity index also showed the same trend with AWCD and three different diversity indices were significantly different along the elevation gradient; Species diversity and functional diversity showed the same variation. The utilization intensities of six categories carbon sources had differences while amino acids were constantly the most dominant carbon source. Principal component analysis (PCA) identified that soil microbial carbon utilization at different altitudes had obvious spatial differentiation, as reflected in the use of carbohydrates, amino acids and carboxylic acids. In addition, the cluster of the microbial diversity indexes and AWCD values of different altitudes showed that the composition of vegetation had a significant impact on soil microbial composition and functional activity.

  11. Soil microbial communities following bush removal in a Namibian savanna

    NASA Astrophysics Data System (ADS)

    Buyer, Jeffrey S.; Schmidt-Küntzel, Anne; Nghikembua, Matti; Maul, Jude E.; Marker, Laurie

    2016-03-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  12. Microbial response to increasing temperatures during winter in arable soils

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Potthoff, Martin; Joergensen, Rainer Georg

    2014-05-01

    Climate scenarios predict increasing temperatures and higher precipitation rates in late fall to early spring, both holding the potential to modify carbon and nutrient dynamics in soils by altering snow pack thickness and soil frost events. When soils are frozen, a small amount of unfrozen water allows microorganisms to remain active at temperatures down to -10 °C. We carried out a field experiment on the microbial use of maize straw. We compared soils of two different clay contents and used latitude as a proxy for climate. Microcosms with sieved soil were mixed with chopped maize leaf straw (C/N 17) at a rate of 1 mg C g-1 dry soil, un-amended microcosms served as control. Results indicated that C-mineralization rates were independent from clay content. However, the microbial use of maize derived nitrogen was only increased in the soil with 13% clay compared to 33% clay in the other soil. Microbial responses to climate changes can be expected to be very specific due to characteristics of the soil and/or the location.

  13. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  14. Global biogeography of microbial nitrogen-cycling traits in soil

    PubMed Central

    Nelson, Michaeline B.; Martiny, Jennifer B. H.

    2016-01-01

    Microorganisms drive much of the Earth’s nitrogen (N) cycle, but we still lack a global overview of the abundance and composition of the microorganisms carrying out soil N processes. To address this gap, we characterized the biogeography of microbial N traits, defined as eight N-cycling pathways, using publically available soil metagenomes. The relative frequency of N pathways varied consistently across soils, such that the frequencies of the individual N pathways were positively correlated across the soil samples. Habitat type, soil carbon, and soil N largely explained the total N pathway frequency in a sample. In contrast, we could not identify major drivers of the taxonomic composition of the N functional groups. Further, the dominant genera encoding a pathway were generally similar among habitat types. The soil samples also revealed an unexpectedly high frequency of bacteria carrying the pathways required for dissimilatory nitrate reduction to ammonium, a little-studied N process in soil. Finally, phylogenetic analysis showed that some microbial groups seem to be N-cycling specialists or generalists. For instance, taxa within the Deltaproteobacteria encoded all eight N pathways, whereas those within the Cyanobacteria primarily encoded three pathways. Overall, this trait-based approach provides a baseline for investigating the relationship between microbial diversity and N cycling across global soils. PMID:27432978

  15. Global biogeography of microbial nitrogen-cycling traits in soil.

    PubMed

    Nelson, Michaeline B; Martiny, Adam C; Martiny, Jennifer B H

    2016-07-19

    Microorganisms drive much of the Earth's nitrogen (N) cycle, but we still lack a global overview of the abundance and composition of the microorganisms carrying out soil N processes. To address this gap, we characterized the biogeography of microbial N traits, defined as eight N-cycling pathways, using publically available soil metagenomes. The relative frequency of N pathways varied consistently across soils, such that the frequencies of the individual N pathways were positively correlated across the soil samples. Habitat type, soil carbon, and soil N largely explained the total N pathway frequency in a sample. In contrast, we could not identify major drivers of the taxonomic composition of the N functional groups. Further, the dominant genera encoding a pathway were generally similar among habitat types. The soil samples also revealed an unexpectedly high frequency of bacteria carrying the pathways required for dissimilatory nitrate reduction to ammonium, a little-studied N process in soil. Finally, phylogenetic analysis showed that some microbial groups seem to be N-cycling specialists or generalists. For instance, taxa within the Deltaproteobacteria encoded all eight N pathways, whereas those within the Cyanobacteria primarily encoded three pathways. Overall, this trait-based approach provides a baseline for investigating the relationship between microbial diversity and N cycling across global soils. PMID:27432978

  16. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    SciTech Connect

    Myrold, David D.; Bottomely, Peter J.; Jumpponen, Ari; Rice, Charles W.; Zeglin, Lydia H.; David, Maude M.; Jansson, Janet K.; Prestat, Emmanuel; Hettich, Robert L.

    2014-09-17

    Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C deposited into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems

  17. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; Nottingham, Andrew T; Ccahuana, Adan; Salinas, Norma; Bardgett, Richard D; Meir, Patrick; McNamara, Niall P; Austin, Amy

    2014-01-01

    1. The Andes are predicted to warm by 3–5 °C this century with the potential to alter the processes regulating carbon (C) cycling in these tropical forest soils. This rapid warming is expected to stimulate soil microbial respiration and change plant species distributions, thereby affecting the quantity and quality of C inputs to the soil and influencing the quantity of soil-derived CO2 released to the atmosphere. 2. We studied tropical lowland, premontane and montane forest soils taken from along a 3200-m elevation gradient located in south-east Andean Peru. We determined how soil microbial communities and abiotic soil properties differed with elevation. We then examined how these differences in microbial composition and soil abiotic properties affected soil C-cycling processes, by amending soils with C substrates varying in complexity and measuring soil heterotrophic respiration (RH). 3. Our results show that there were consistent patterns of change in soil biotic and abiotic properties with elevation. Microbial biomass and the abundance of fungi relative to bacteria increased significantly with elevation, and these differences in microbial community composition were strongly correlated with greater soil C content and C:N (nitrogen) ratios. We also found that RH increased with added C substrate quality and quantity and was positively related to microbial biomass and fungal abundance. 4. Statistical modelling revealed that RH responses to changing C inputs were best predicted by soil pH and microbial community composition, with the abundance of fungi relative to bacteria, and abundance of gram-positive relative to gram-negative bacteria explaining much of the model variance. 5. Synthesis. Our results show that the relative abundance of microbial functional groups is an important determinant of RH responses to changing C inputs along an extensive tropical elevation gradient in Andean Peru. Although we do not make an experimental test of the effects of climate

  18. Assessment of the state of soil microbial cenoses in the forest-tundra zone under conditions of airborne industrial pollution

    NASA Astrophysics Data System (ADS)

    Bogorodskaya, A. V.; Ponomareva, T. V.; Shapchenkova, O. A.; Shishikin, A. S.

    2012-05-01

    The quantitative and functional responses of soil microbial cenoses in the forest-tundra zone to pollution have been studied in the area exposed to emissions from the Norilsk Mining and Metallurgical Works. The strongest structural and functional disturbances of the soil biota have been recorded on the plots with completely destroyed vegetation. A decrease in the content of microbial carbon and an elevated respiration rate in the technogenically transformed soils provide evidence for the functioning of the microbial communities under stress caused by the continuous input of aggressive pollutants. The degree of transformation and the contents of technogenic elements (Ni, Cu, Co, Pb, and S) in the organic horizons of the forest-tundra soils are the major factors affecting the development and functioning of the soil microbial cenoses.

  19. Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro

    2013-04-01

    The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to

  20. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    It has been demonstrated previously that hydrocarbon addition to soil provokes soil organic matter priming (Zyakun et al., 2011). It has further been shown that petroleum hydrocarbons deposit to roadside soils bound to fine mineral particles and together with vehicle spray (Mykhailova et al., 2014), and that hydrocarbon concentrations decrease to safe levels within the first 15 m from the road, reaching background concentrations at 60-100 m distance (Mykhailova et al., 2013). It was the aim of this study to (I) identify the bioavailability of different petroleum hydrocarbon fractions to degradation and to (II) identify the native (i.e. pedogenic) C fraction affected by hydrocarbon-mediated soil organic matter priming during decay. To address this aim, we collected soil samples at distances from 1 to 100 m (sampling depth 15 cm) near the Traktorostroiteley avenue and the Pushkinskaya street in Kharkov, as well as near the country road M18 near Kharkov, Ukraine. The roads have been under exploitation for several decades, so microbial adaptation to enhanced hydrocarbon levels and full expression of effects could be assumed. The following C fractions were quantified using 13C-CP/MAS-NMR: Carbohydrates, Proteins, Lignin, Aliphates, Carbonyl/Carboxyl as well as black carbon according to Nelson and Baldock (2005). Petroleum hydrocarbons were determind after hexane extraction using GC-MS and divided into a light fraction (chain-length C27, Mykhailova et al., 2013). Potential soil respiration was determined every 48 h by trapping of CO2 evolving from 20 g soil in NaOH at 20 ° C and at 60% of the maximum water holding capacity and titration after a total incubation period of 4 weeks in the lab. It was found that soil respiration positively correlated with the ratio of the light fraction to the sum of medium and heavy fractions of petroleum hydrocarbons, which indicates higher biodegradation primarily of the light petroleum hydrocarbon fraction. Further, soil respiration was

  1. Correlations between soil microbial and physicochemical variations in a rice paddy: implications for assessing soil health.

    PubMed

    Doi, Ryoichi; Ranamukhaarachchi, Senaratne Leelananda

    2009-12-01

    This study was conducted to test the hypothesis that spatial variations in soil microbial variables in a Thai rice paddy are accurately described by multivariate profiles of the soil bacterial communities. We found that community-level physiological profiles of soil bacterial communities could better describe the population density of Rhizoctonia solani in soil than the physicochemical profi les do. However, soil dehydrogenase levels were closely correlated with soil fertility (P<0.05), and these were better described by the physicochemical profiles. Hence, the hypothesis was rejected, and we suspect that soil microbial variables react differently to the same physicochemical changes. The average population density of R. solani (35 colony-forming units/g dry soil) was relatively high in the soil we studied, and the soil fertility was found to be among the poorest in Thailand. The soil quality was comparable to the most degraded bare ground soil in an adjacent bioreserve in terms of Shannon diversity index based on the communitylevel physiological profile as well as values of soil fertility indices. Overall, the soil microbial and physicochemical indicators showed that the paddy soil needs to be supplemented with soil nutrients. Otherwise, R. solani may cause a significant reduction in rice production. PMID:20093750

  2. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    NASA Astrophysics Data System (ADS)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  3. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators

    PubMed Central

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C.; Singh, Brajesh K.

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil’s capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as ‘biomarker’ indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and

  4. Assessing the soil microbial carbon budget: Probing with salt stress

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Rousk, Johannes

    2014-05-01

    The amount of carbon stored as soil organic matter (SOM) constitutes a pool more than double the size of the atmospheric carbon pool. Soil respiration represents one of the largest fluxes of carbon between terrestrial ecosystems and the atmosphere. A large fraction of the CO2 released by soils is produced by the microbial decomposition of SOM. The microbial carbon budget is characterized by their carbon use efficiency, i.e. the partitioning of substrate into growth and respiration. This will shape the role of the soil as a net source or sink for carbon. One of the canonical factors known to influence microbial processes in soil is pH. In aquatic systems salinity has been found to have a comparably strong influence as pH. However salinity remains understudied in soil, despite its growing relevance due to land use change and agricultural practices. The aim of this project is to understand how microbial carbon dynamics respond to disturbance by changing environmental conditions, using salinity as a reversible stressor. First, we compiled a comparative analysis of the sensitivity of different microbial processes to increasing salt concentrations. Second, we compared different salts to determine whether salt toxicity depended on the identity of the salt. Third, we used samples from a natural salinity gradient to assess if a legacy of salt exposure can influence the microbial response to changing salt concentrations. If salt had an ecologically significant effect in shaping these communities, we would assume that microbial processes would be less sensitive to an increase in salt concentrations. The sensitivity of microbial processes to salt was investigated by establishing inhibition curves in order to estimate EC50 values (the concentration resulting in 50% inhibition). These EC50 values were used to compare bacterial and fungal growth responses, as well as catabolic processes such as respiration and nitrogen mineralisation. Initial results suggest that growth related

  5. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    PubMed

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed.

  6. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    PubMed Central

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-01-01

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity. PMID:27170469

  7. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale.

    PubMed

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-05-12

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity.

  8. Effects of butachlor on microbial enzyme activities in paddy soil.

    PubMed

    Min, Hang; Ye, Yang-Fang; Chen, Zhong-Yun; Wu, Wei-Xiang; Du, Yu-Feng

    2002-07-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethl-chloro-2', 6'-diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 micrograms/g dried soil, 11.0 micrograms/g dried soil and 22.0 micrograms/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 micrograms/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  9. Microbial carbon turnover in the plant-rhizosphere-soil continuum

    NASA Astrophysics Data System (ADS)

    Malik, Ashish; Dannert, Helena; Griffiths, Robert; Thomson, Bruce; Gleixner, Gerd

    2014-05-01

    Soil microbial biomass contributes significantly to maintenance of soil organic matter (SOM). It is well known that biochemical fractions of soil microorganisms have varying turnover and therefore contribute differentially to soil C storage. Here we compare the turnover rates of different microbial biochemical fractions using a pulse chase 13CO2 plant labelling experiment. The isotope signal was temporally traced into rhizosphere soil microorganisms using the following biomarkers: DNA, RNA, fatty acids and chloroform fumigation extraction derived microbial biomass size classes. C flow into soil microbial functional groups was assessed through phospholipid and neutral lipid fatty acid (PLFA/NLFA) analyses. Highest 13C enrichment was seen in the low molecular weight (LMW) size class of microbial biomass (Δδ13C =151) and in nucleic acids (DNA: 38o RNA: 66) immediately after the pulse followed by a sharp drop. The amount of 13C in the high molecular weight (HMW) microbial biomass (17-81) and total fatty acids (32-54) was lower initially and stayed relatively steady over the 4 weeks experimental period. We found significant differences in turnover rates of different microbial biochemical and size fractions. We infer that LMW cytosolic soluble compounds are rapidly metabolized and linked to respiratory C fluxes, whereas mid-sized products of microbial degradation and HMW polymeric compounds have lower renewal rate in that order. The turnover of cell wall fatty acids was also very slow. DNA and RNA showed faster turnover rate; and as expected RNA renewal was the fastest due to its rapid production by active microorganisms independent of cell replication. 13C incorporation into different functional groups confirmed that mutualistic arbuscular mycorrhizal fungi rely on root C and are important in the initial plant C flux. We substantiated through measurements of isotope incorporation into bacterial RNA that rhizosphere bacteria are also important in the initial C conduit

  10. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-01

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.

  11. Biotic interactions mediate soil microbial feedbacks to climate change

    PubMed Central

    Crowther, Thomas W.; Thomas, Stephen M.; Maynard, Daniel S.; Baldrian, Petr; Covey, Kristofer; Frey, Serita D.; van Diepen, Linda T. A.; Bradford, Mark A.

    2015-01-01

    Decomposition of organic material by soil microbes generates an annual global release of 50–75 Pg carbon to the atmosphere, ∼7.5–9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle–climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle–climate feedbacks. PMID:26038557

  12. Impact of some selected insecticides application on soil microbial respiration.

    PubMed

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation. PMID:19266909

  13. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-01

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks. PMID:26038557

  14. Sterol-inhibiting fungicide impacts on soil microbial ecology in Atlantic Coastal Plain soils

    NASA Astrophysics Data System (ADS)

    White, P. M.; Potter, T. L.; Strickland, T. C.

    2008-12-01

    Seventy-five percent of the peanuts (Arachus hypogaia) produced in the United States are grown in the Atlantic Coastal Plain region. Portions of this area, including Alabama and Georgia, exhibit a subtropical climate that promotes soil-borne plant fungal diseases. Most fields receive repeated fungicide applications during the growing season to suppress the disease causing organisms, such as Sclerotium rolfsii, Rhizoctonia solani, and Cylindrocladium parasiticum. Information regarding fungicide effects on the soil microbial community, with components principally responsible for transformation and fate of fungicides and other soil-applied pesticides, is limited. The objectives of the study were to assess soil microbial community response to (1) varying rates of the sterol-inhibiting fungicide tebuconazole (0, single application, season max, 2x season max), and (2) field rates of the sterol-inhibitors cyproconazole, prothioconazole, tebuconazole, and flutriafol, and thiol-competitor chlorothalonil. The sterol-inhibitors exhibited different half lives, as listed in the FOOTPRINT database, ranging from <1 day to >1300 d. Chlorothalonil was chosen because it is the most frequently applied fungicide to peanut. Shifts in the fungi, gram positive and gram negative bacteria, were monitored during the experiments using phospholipid fatty acid (PLFA) profiles. Ergosterol levels and pesticide decay rates were also monitored to evaluate the effectiveness of the fungicide and soil residence time, respectively. In the rate study, the highest rate of tebuconazole reduced the fungal biomarker 18:2ω6,9c to 2.6 nmol g-1 dry soil at 17 d, as compared to the control (4.1 nmol g-1 dry soil). However, levels of the fungal PLFA biomarker were similar regardless of rate at 0 and 32 d. The gram negative bacterial PLFA mole percent was greater at 17 d for the two highest rates of tebuconazole, but was similar at 0 and 32 d. Gram positive and fungal mole percents were not affected at any time

  15. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  16. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China.

    PubMed

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  17. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  18. Recovery of soil microbial communities after fumigation with time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past few decades, soil fumigants have been extensively used to control target soil borne pathogens and weeds for high value cash crops. However, the fumigants with broad biocidal activity can affect both target and non-target or beneficial microorganisms in soil, but the recovery of soil micr...

  19. Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil.

    PubMed

    Rooney, Deirdre C; Clipson, Nicholas J W

    2009-01-01

    Agricultural improvement (addition of fertilizers, liming) of seminatural acidic grasslands across Ireland and the UK has resulted in significant shifts in floristic composition, soil chemistry, and microbial community structure. Although several factors have been proposed as responsible for driving shifts in microbial communities, the exact causes of such changes are not well defined. Phosphate was added to grassland microcosms to investigate the effect on fungal and bacterial communities. Plant species typical of unimproved grasslands (Agrostis capillaris, Festuca ovina) and agriculturally improved grasslands (Lolium perenne) were grown, and phosphate was added 25 days after seed germination, with harvesting after a further 50 days. Phosphate addition significantly increased root biomass (p < 0.001) and shoot biomass (p < 0.05), soil pH (by 0.1 U), and microbial activity (by 5.33 mg triphenylformazan [TPF] g(-1) soil; p < 0.001). A slight decrease (by 0.257 mg biomass-C g(-1) soil; p < 0.05) in microbial biomass after phosphate addition was found. The presence of plant species significantly decreased soil pH (p < 0.05; by up to 0.2 U) and increased microbial activity (by up to 6.02 mg TPF g(-1) soil) but had no significant effect on microbial biomass. Microbial communities were profiled using automated ribosomal intergenic spacer analysis. Multidimensional scaling plots and canonical correspondence analysis revealed that phosphate addition and its interactions with upland grassland plant species resulted in considerable changes in the fungal and bacterial communities of upland soil. The fungal community structure was significantly affected by both phosphate (R = 0.948) and plant species (R = 0.857), and the bacterial community structure was also significantly affected by phosphate (R = 0.758) and plant species (R = 0.753). Differences in microbial community structure following P addition were also revealed by similarity percentage analysis. These data suggest

  20. Switchgrass cultivars differentially affect soil carbon stabilization

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Jastrow, J. D.; Wullschleger, S. D.; De Graaff, M.

    2012-12-01

    Soil organic carbon (SOC) storage depends on the amount and quality of plant-derived carbon (C) inputs to soil, which is largely regulated by plant roots via the processes of root turnover and exudation. While we know that plant roots mediate SOC stabilization, we do not fully understand which root characteristics specifically promote soil C storage. With this study we asked whether roots with coarse root systems versus roots with finely branched root systems differentially affect soil C stabilization. In order to answer this question, we collected soil cores (4.8 cm diameter, to a depth of 30 cm) from directly over the crown of six switchgrass (Panicum virgatum L.) cultivars that differed in root architecture. Specifically, three cultivars had fibrous root systems (i.e. high specific root length) and three had coarse root systems (i.e. low specific root length). The cultivars (C4 species) were grown in a C3 grassland for four years, allowing us to use isotopic fractionation techniques to assess differences in soil C input and stabilization. The cores were divided into depth increments of 10 cm and the soils were sieved (2mm). Soil from each depth increment was dispersed by shaking for 16 hours in a NaHMP solution to isolate coarse particulate organic matter (C-POM), fine particulate organic matter (F-POM), silt, and clay-sized fractions. Samples of soil fractions across all depths were analyzed for C and N contents as well as δ13C signature. We found that the relative abundance of the different soil fractions and associated δ13C signatures differed significantly among cultivars. These results indicate that switchgrass cultivars can differentially impact soil carbon inputs and stabilization. We hypothesize that these differences may be driven by variability in root architectures.

  1. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems.

    PubMed

    Throckmorton, Heather M; Bird, Jeffrey A; Dane, Laura; Firestone, Mary K; Horwath, William R

    2012-11-01

    The source of microbial C is thought to impact its stability in soil due to variations in cellular biochemistry. It has been hypothesised that a fungal-dominated community stabilises more C than a bacterial-dominated community, in part due to chemical recalcitrance of their non-living biomass, particularly cell wall components and pigments. We compared the turnover of (13)C-labelled (99.9 atom %) temperate and tropical microbial isolates [i.e. fungi, Gram-positive bacteria (including actinobacteria) and Gram-negative bacteria] in temperate (California) and tropical (Puerto Rico) forest soils. While significant differences in (13)C recovery and mean residence times occurred among some microbial additions, similar turnover rates were observed, and in general, results do not support the view that microbial biochemistry affects soil C maintenance. Different effects by microbial necromass additions in California and Puerto Rico suggest that ecosystem-specific effects may be as important to microbial C stabilisation as its macromolecular composition and recalcitrance. PMID:22897121

  2. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    SciTech Connect

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J.

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  3. Effects of Picoxystrobin and 4-n-Nonylphenol on Soil Microbial Community Structure and Respiration Activity

    PubMed Central

    Stenrød, Marianne; Klemsdal, Sonja S.; Norli, Hans Ragnar; Eklo, Ole Martin

    2013-01-01

    There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as

  4. Soil microbial responses to elevated CO₂ and O₃ in a nitrogen-aggrading agroecosystem.

    PubMed

    Cheng, Lei; Booker, Fitzgerald L; Burkey, Kent O; Tu, Cong; Shew, H David; Rufty, Thomas W; Fiscus, Edwin L; Deforest, Jared L; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO₂) and ozone (O₃) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO₂- or O₃-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO₂ and O₃ in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO₂ but not O₃ had a potent influence on soil microbes. Elevated CO₂(1.5×ambient) significantly increased, while O₃ (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO₂ significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO₂ largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO₂-stimulation of symbiotic N₂ fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO₂ by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO₂. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO₂ scenarios.

  5. Modeling microbial dynamics in heterogeneous environments: Growth on soil carbon sources

    SciTech Connect

    Resat, Haluk; Bailey, Vanessa L.; McCue, Lee Ann; Konopka, Allan

    2012-01-01

    We have developed a new hybrid model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment. The modeling framework can represent porous media such as soil. The individual based biological model can explicitly simulate microbial diversity, and cell metabolism is regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions and by the functional attributes of individual microbes. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences may suggest different functional roles for these two classes of microbes in cellulose utilization. Our model predicted an emergent behavior in which co-existence led to higher cellulose utilization efficiency and reduced stochasticity. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20 {micro}m size portions of the soil physical structure and in 111 {micro}m size soil aggregates with a random pore structure. Trends in dynamic properties were very similar at these two scales, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied.

  6. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  7. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    PubMed

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  8. Microbial composition affects the functioning of estuarine sediments

    PubMed Central

    Reed, Heather E; Martiny, Jennifer BH

    2013-01-01

    Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. PMID:23235294

  9. Carbon and Nitrogen Use Efficiency in Microbial Communities in Antarctic Soils

    NASA Astrophysics Data System (ADS)

    Prommer, Judith; Spohn, Marie; Klaus, Karoline; Kusch, Stephanie; Wanek, Wolfgang; Dercon, Gerd; Richter, Andreas

    2016-04-01

    Terrestrial ecosystems in the Antarctic experience harsh environmental conditions including very low temperatures and a low carbon input leading to poorly developed ecosystems with low diversity and a low soil organic matter content, which may be vulnerable to perturbations in a future climate. Microbial transformation and decomposition of soil organic matter under the extreme climatic conditions in the Antarctic has received little attention so far. Specifically, little is known about microbial process rates and how they might be affected by climate warming. We here report on C and N transformation rates and their corresponding microbial use efficiencies in two soil horizons of two sites on King George Island, the maritime Antarctica. We used novel isotope techniques to estimate microbial carbon use efficiency (CUE; based on incorporation of 18O from water into DNA) and nitrogen use efficiency (NUE; based on a 15N isotope pool dilution assays). The investigated two contrasting sites at marine terraces on basaltic rocks that were characterized by a stable surface. While both sites were similar in exposition, distance from sea and elevation, they differed in their vegetation cover and several biogeochemical parameters, such as soil pH and soil organic carbon and nitrogen content. Surprisingly, we found low soil C:N ratios at both sites and for both horizons, i.e. below 12 in the organic crust and below 8 in the first mineral horizon. This indicates a low carbon availability relative to nitrogen and would thus imply a high microbial CUE. However, our results showed also a low CUE at both sites and in both horizons (CUE of 24% and 9% in the organic crust and mineral layer, respectively). In contrast, NUE was very high in organic layers (98%), pointing towards a strong nitrogen limitation, while in the mineral horizons, NUE was lower (between 84% and 72%), as expected for soil horizons with a C:N ratio below 8. Thus, the NUE pattern followed stoichiometric theory (i

  10. Small-scale spatial variability of soil microbial community composition and functional diversity in a mixed forest

    NASA Astrophysics Data System (ADS)

    Wang, Qiufeng; Tian, Jing; Yu, Guirui

    2014-05-01

    Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.

  11. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial diversity of agricultural soils is well documented, but information on leafy green producing soils is limited. Our goal was to assess bacterial composition and diversity in leafy green producing soils using pyrosequencing, and to identify factors affecting bacterial community structures. C...

  12. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  13. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    SciTech Connect

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  14. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng.

    PubMed

    Wu, Zhaoxiang; Hao, Zhipeng; Zeng, Yan; Guo, Lanping; Huang, Luqi; Chen, Baodong

    2015-11-01

    Rhizosphere and root-associated microbial communities are known to be related to soil-borne disease and plant health. In the present study, the microbial communities in rhizosphere soils and roots of both healthy and diseased Panax notoginseng were analyzed by high-throughput sequencing of 16S rRNA for bacteria and 18S rRNA internal transcribed spacer for fungi, to reveal the relationship of microbial community structure with plant health status. In total, 5593 bacterial operational taxonomic units (OTUs) and 963 fungal OTUs were identified in rhizosphere soils, while 1794 bacterial and 314 fungal OTUs were identified from root samples respectively. Principal coordinate analysis separated the microbial communities both in the rhizosphere soils and roots of diseased P. notoginseng from healthy plants. Compared to those of healthy P. notoginseng, microbial communities in rhizosphere soils and roots of diseased plants showed a decrease in alpha diversity. By contrast, bacterial community dissimilarity increased and fungal community dissimilarity decreased in rhizosphere soils of diseased plants, while both bacterial and fungal community dissimilarity in roots showed no significant difference between healthy and diseased plants. Redundancy analysis at the phylum level showed that mycorrhizal colonization and soil texture significantly affected microbial community composition in rhizosphere soils, whereas shoot nutrition status had a significant effect on microbial community composition in root samples. Our study provided strong evidence for the hypothesis that microbial diversity could potentially serve as an indicator for disease outbreak of medicinal plants, and supported the ecological significance of microbial communities in maintaining plant healthy and soil fertility. PMID:26296378

  15. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng.

    PubMed

    Wu, Zhaoxiang; Hao, Zhipeng; Zeng, Yan; Guo, Lanping; Huang, Luqi; Chen, Baodong

    2015-11-01

    Rhizosphere and root-associated microbial communities are known to be related to soil-borne disease and plant health. In the present study, the microbial communities in rhizosphere soils and roots of both healthy and diseased Panax notoginseng were analyzed by high-throughput sequencing of 16S rRNA for bacteria and 18S rRNA internal transcribed spacer for fungi, to reveal the relationship of microbial community structure with plant health status. In total, 5593 bacterial operational taxonomic units (OTUs) and 963 fungal OTUs were identified in rhizosphere soils, while 1794 bacterial and 314 fungal OTUs were identified from root samples respectively. Principal coordinate analysis separated the microbial communities both in the rhizosphere soils and roots of diseased P. notoginseng from healthy plants. Compared to those of healthy P. notoginseng, microbial communities in rhizosphere soils and roots of diseased plants showed a decrease in alpha diversity. By contrast, bacterial community dissimilarity increased and fungal community dissimilarity decreased in rhizosphere soils of diseased plants, while both bacterial and fungal community dissimilarity in roots showed no significant difference between healthy and diseased plants. Redundancy analysis at the phylum level showed that mycorrhizal colonization and soil texture significantly affected microbial community composition in rhizosphere soils, whereas shoot nutrition status had a significant effect on microbial community composition in root samples. Our study provided strong evidence for the hypothesis that microbial diversity could potentially serve as an indicator for disease outbreak of medicinal plants, and supported the ecological significance of microbial communities in maintaining plant healthy and soil fertility.

  16. Abiotic factors shape microbial diversity in Sonoran Desert soils.

    PubMed

    Andrew, David R; Fitak, Robert R; Munguia-Vega, Adrian; Racolta, Adriana; Martinson, Vincent G; Dontsova, Katerina

    2012-11-01

    High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundant Crenarchaeota class Thermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, Chloroflexi, and Acidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments. PMID:22885757

  17. Abiotic Factors Shape Microbial Diversity in Sonoran Desert Soils

    PubMed Central

    Fitak, Robert R.; Munguia-Vega, Adrian; Racolta, Adriana; Martinson, Vincent G.; Dontsova, Katerina

    2012-01-01

    High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundant Crenarchaeota class Thermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, Chloroflexi, and Acidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments. PMID:22885757

  18. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  19. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  20. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    PubMed Central

    2013-01-01

    The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research. PMID:23957006

  1. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    PubMed Central

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  2. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation.

    PubMed

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  3. Contribution of microbial carbon to soil fractions: significance of diverse microbial group biochemistry

    NASA Astrophysics Data System (ADS)

    Throckmorton, H.; Bird, J. A.; Dane, L.; Firestone, M. K.; Horwath, W. R.

    2011-12-01

    The importance of diverse microbial groups to soil C maintenance is still a matter of debate. This study follows the turnover of 13C labeled nonliving residues from diverse microbial groups into soil physical fractions in situ in a temperate forest in California (CA) and a tropical forest in Puerto Rico (PR), during 5 sampling points per site- over a 3 and 2 year period, respectively. Microbial groups include fungi, actinomycetes, Gm(+) bacteria, and Gm(-) bacteria, isolated from CA and PR soils to obtain temperate and tropical isolates composited of 3-4 species per group. The selected density fractionation approach isolated: a "light fraction" (LF), non-mineral aggregate "occluded fraction" (OF), and a "mineral bound fraction" (MF). Pyrolysis gas chromatography mass spectrometry (Py-GC-MS) was employed to characterize microbial group isolates, whole soils, and fractions. Microbial isolates contained unique biochemical fingerprints: temperate and tropical fungi and tropical Gm(-) were characterized by a low abundance of phenol, benzene, and N-compounds compared with other microbial group isolates. Py-GC-MS revealed compositional differences among soil fractions at both sites, likely attributed to differences in the decomposition stage and C source material (ie. plant vs. microbial). For both sites, benzene and N-compounds were greatest in the MF; lignin and phenol compounds were greatest in the LF; and lipids were greatest in the OF. The trend for polysaccharides differed between sites, with the greatest concentration in the CA OF; and for PR with the lowest concentration in the OF, and similar concentrations in the LF and MF. SOM chemistry was most similar between sites in the LF, compared with the OF and MF, suggesting that differences in SOM chemistry between sites may be more attributed to differential decomposition processes than unique litter quality inputs. A substantial portion of microbial C moved from the LF into the OF, and the MF by the first sampling

  4. Carbon Accumulation and Microbial Community Structure in Reclaimed Mine Soils

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Palumbo, A. V.; Tarver, J. D.; Fisher, S.; Cantu, J.; Brandt, C. C.

    2002-12-01

    The objective of this study was to investigate the potential for soil amendments to increase accumulation of carbon in reclaimed soils and the relationship between carbon and microbial community structure. Changes in community structure were determined by signature lipid biomarkers (SLBs) or phospholipid fatty acid methyl esters. PLFA provide estimates of the viable biomass, diversity of prokaryotic and eukaryotic diversity, and indications of physiological stress to the microbial community. Artificial neural network (ANN) analysis has been used to examine the relationship between microbial community structure and soil geochemistry. It was hypothesized that (1) soil amendments would cause changes in the structure of the microbial community and carbon content (2) changes in the structure of the microbial community would be vary between the types of amendments, and (3) analysis of the SLB with an artificial neural network (ANN) would distinguish treatment and provide a insight in to the relationship between changes in soil geochemistry and microbial community. Twenty soils samples from different field plots and at different soil horizon depths were analyzed. Biomass as estimated by PLFA analysis, ranged from 1.9 to 265 nmol/g, which corresponded to cell densities of 4.8 x107 to 6.6 x109 cells/g. In the Wall's Farm and Jenkin's Farm samples the microbial biomass decreased with depth. A horizon soils had biomass values of greater or equal to 120 nmol/g, followed by the A2 horizon,(70 to 100 nmol/g) and the weak B horizon at and (40 to 80 nmo/g). The A2 and B horizon samples showed higher relative abundance of mid-chain branched saturates that are indicative of gram positive prokaryotes and actinomycetes. At Well's Farm, the polyunsaturates indicative of eukaryotes were observed at higher abundances. These changes were related to both the prokaryotic and eukaryotic influences in the microbial community in response to the soil amendments. The correlation between

  5. Switchgrass ecotypes alter microbial contribution to deep-soil C

    NASA Astrophysics Data System (ADS)

    Roosendaal, Damaris; Stewart, Catherine E.; Denef, Karolien; Follett, Ronald F.; Pruessner, Elizabeth; Comas, Louise H.; Varvel, Gary E.; Saathoff, Aaron; Palmer, Nathan; Sarath, Gautam; Jin, Virginia L.; Schmer, Marty; Soundararajan, Madhavan

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a C4, perennial grass that is being developed as a bioenergy crop for the United States. While aboveground biomass production is well documented for switchgrass ecotypes (lowland, upland), little is known about the impact of plant belowground productivity on microbial communities down deep in the soil profiles. Microbial dynamics in deeper soils are likely to exert considerable control on ecosystem services, including C and nutrient cycles, due to their involvement in such processes as soil formation and ecosystem biogeochemistry. Differences in root biomass and rooting characteristics of switchgrass ecotypes could lead to distinct differences in belowground microbial biomass and microbial community composition. We quantified root abundance and root architecture and the associated microbial abundance, composition, and rhizodeposit C uptake for two switchgrass ecotypes using stable-isotope probing of microbial phospholipid fatty acids (PLFAs) after 13CO2 pulse-chase labeling. Kanlow, a lowland ecotype with thicker roots, had greater plant biomass above- and belowground (g m-2), greater root mass density (mg cm-3), and lower specific root length (m g-1) compared to Summer, an upland ecotype with finer root architecture. The relative abundance of bacterial biomarkers dominated microbial PLFA profiles for soils under both Kanlow and Summer (55.4 and 53.5 %, respectively; P = 0.0367), with differences attributable to a greater relative abundance of Gram-negative bacteria in soils under Kanlow (18.1 %) compared to soils under Summer (16.3 %; P = 0.0455). The two ecotypes also had distinctly different microbial communities process rhizodeposit C: greater relative atom % 13C excess in Gram-negative bacteria (44.1 ± 2.3 %) under the thicker roots of Kanlow and greater relative atom % 13C excess in saprotrophic fungi under the thinner roots of Summer (48.5 ± 2.2 %). For bioenergy production systems, variation between switchgrass

  6. Comparative Toxicities of Salts on Microbial Processes in Soil

    PubMed Central

    Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-01

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO42− than Cl− salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO42− salts but not to Cl− salts; no evidence was found to distinguish K+ and Na+ salts. PMID:26801570

  7. Comparative Toxicities of Salts on Microbial Processes in Soil.

    PubMed

    Rath, Kristin M; Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-22

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO4(2-) than Cl(-) salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO4(2-) salts but not to Cl(-) salts; no evidence was found to distinguish K(+) and Na(+) salts.

  8. Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments

    PubMed Central

    Alves, Priscila Divina Diniz; Siqueira, Flávia de Faria; Facchin, Susanne; Horta, Carolina Campolina Rebello; Victória, Júnia Maria Netto; Kalapothakis, Evanguedes

    2014-01-01

    Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports. PMID:24847390

  9. Treating Soil Solution Samplers To Prevent Microbial Removal of Analytes

    PubMed Central

    Lewis, David L.; Simons, Alex P.; Moore, W. Bruce; Gattie, David K.

    1992-01-01

    Soil microorganisms colonizing soil water sampling devices (lysimeters) reduced concentrations of biodegradable organic chemicals, including 2,4-dichlorophenoxyacetic acid methyl ester, alachlor, methyl m-chlorobenzoate, and metolachlor as water entered through porous ceramic cups. In some cases, losses exceeded 99%. Additions of either a biocide (sodium hypochlorite) or a bacteriostat (copper salt) prevented microbial activity so that concentrations of test chemicals inside lysimeters equaled those outside. Field studies further indicated that treating lysimeters with a copper salt effectively prevented microbial activity. Thus, chemically treating soil water samplers could improve the accuracy of soil water data for a wide variety of analytes, including environmentally important organics, such as pesticides and industrial wastes, and inorganics, such as ammonia and nitrate. Images PMID:16348616

  10. Variations in Soil Microbial Communities and Residues Along an Altitude Gradient on the Northern Slope of Changbai Mountain, China

    PubMed Central

    Zhang, Bin; Liang, Chao; He, Hongbo; Zhang, Xudong

    2013-01-01

    Altitudinally-defined climate conditions provide specific vegetation types and soil environments that could influence soil microbial communities, which in turn may affect microbial residues. However, the knowledge is limited in terms of the degree to which microbial communities and residues present and differ along altitude. In this study, we examined the soil microbial communities and residues along the northern slope of Changbai Mountain, China using phospholipid fatty acid (PLFA) and amino sugar analysis, respectively. Soil samples were taken from five different vegetation belts defined by climates. Principal component analysis (PCA) revealed substantial differences in soil microbial community composition among study sites, appeared to be driven primarily by soil pH and C/N ratio on the first principal component (PC1) which accounted for 50.7% of the total sample variance. The alpine tundra was separated from forest sites on the second principal component (PC2) by a signifiscantly higher amount of fungal PLFA (18:2ω6,9). Soil pH and C/N ratio were also correlated with the ratios of Gram-positive to Gram-negative bacteria (Gm+/Gm−), glucosamine to galactosamine (GluN/GalN), and glucosamine to muramic acid (GluN/MurA). Both total PLFAs and amino sugars were positively correlated with soil organic carbon, inorganic nitrogen, available phosphorus and potassium. We concluded that soil pH and C/N ratio were the most important drivers for microbial community structure and amino sugar pattern, while substrate availability was of great importance in determining the concentrations of microbial communities and residues. These findings could be used to facilitate interpretation of soil microbial community and amino sugar data derived from measurements in latitude or managed forests. PMID:23776630

  11. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  12. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    PubMed

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance.

  13. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils.

    PubMed

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  14. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils

    PubMed Central

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  15. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    PubMed

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  16. Soil erosion increases soil microbial activity at the depositional position of eroding slopes

    NASA Astrophysics Data System (ADS)

    Meng, Xu; Cardenas, Laura M.; Donovan, Neil; Zhang, Junling; Murray, Phil; Zhang, Fusuo; Dungait, Jennifer A. J.

    2016-04-01

    Soil erosion is the most widespread form of soil degradation. Estimation of the impact of agricultural soil erosion on global carbon cycle is a topic of scientific debate, with opposing yet similar magnitude estimates of erosion as a net source or sink of atmospheric carbon. The transport and deposition of eroded agricultural soils affects not only the carbon cycle but other nutrient cycles as well. It has been estimated that erosion-induced lateral fluxes of nitrogen (N) and phosphorus (P) could be similar in magnitude to those from fertilizer application and crop removal (Quinton et al., 2010). In particular, the dynamics of soil N in eroding slopes need to be considered because the management of soil N has profound influences on the functioning of soil microorganisms, which are generally considered as the main biotic driver of soil C efflux. Carbon dioxide (CO2) emissions tend to increase in deposition positions of eroded slopes, diminishing the sink potential of eroded soils C (. As the global warming potential of nitrous oxide (N2O) is 310 times relative to that of CO2, the sink potential of agricultural erosion could easily be negated with a small increase in N2O emissions. Therefore, an investigation of the potential emissions of greenhouse gases, and especially N2O from soils affected by agricultural erosion, are required. In the present study, a field experiment was established with contrasting cultivation techniques of a C4 crop (Zea mays; δ13C = -12.2‰) to introduce 13C-enriched SOC to a soil previously cropped with C3 plants (δ13C = -29.3‰). Soils sampled from the top, middle, bottom and foot slope positions along a distinct erosion pathway were analyzed using 13C-phospholipid fatty acid (PLFA) analysis and incubated to investigate the responses of microorganisms and associated potential emissions of greenhouse gases (GHG). The total C and N contents were greatest in soils at the top slope position, whereas soil mineral N (NO3--N and NH4+-N

  17. [Establishment of ARDRA system for Panax ginseng cultivated soil microbial community study].

    PubMed

    Ying, Yixin; Ding, Wanlong; Li, Yong

    2011-02-01

    In this study, ARDRA system was established for Panax ginseng cultivated soil microbial community analysis. In the process of soil analysis we found that, ARDRA can not only distinguish soil microbial communities, proportion of each microbial type in total microorganisms can be calculated based on profiles of restricted enzyme digested 16S rDNA, also. Results indicated that, ARDRA system established was able to analyze microbial communities of P. ginseng cultivated soil samples.

  18. Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination.

    PubMed

    Chen, Qinglin; Yang, Baoshan; Wang, Hui; He, Fei; Gao, Yongchao; Scheel, Ryan A

    2015-01-01

    Intensive use of atrazine and extensive dispersal of lead (Pb) have occurred in farmland with chemical agriculture development. However, the toxicological effect of their presence on soil microorganism remains unknown. The objective of this study was to investigate the impacts of atrazine or Pb on the soil microbiota, soil net nitrogen mineralization, and atrazine residues over a 28-day microcosm incubation. The Shannon-Wiener diversity index, typical microbe species, and a Neighbor-joining tree of typical species from sequencing denaturing gradient gel electrophoresis (DGGE) bands were determined across periodical sampling times. The results showed that the existence of atrazine or Pb (especially high concentration) in soils reduced microbial diversity (the lowest H value is 2.23) compared to the control (H = 2.59) after a 28-day incubation. The species richness reduced little (from 17~19 species to 16~17 species) over the research time. But soil microbial community was significantly affected by the incubation time after the exposure to atrazine or Pb. The combination of atrazine and Pb had a significant inhibition effect on soil net nitrogen nitrification. Atrazine and Pb significantly stimulated soil cumulative net nitrogen mineralization and nitrification. Pb (300 and 600 mg kg(-1)) accelerated the level of atrazine dissipation. The exposure might stimulate the significant growth of the autochthonous soil degraders which may use atrazine as C source and accelerate the dissipation of atrazine in soils. PMID:25106517

  19. Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination.

    PubMed

    Chen, Qinglin; Yang, Baoshan; Wang, Hui; He, Fei; Gao, Yongchao; Scheel, Ryan A

    2015-01-01

    Intensive use of atrazine and extensive dispersal of lead (Pb) have occurred in farmland with chemical agriculture development. However, the toxicological effect of their presence on soil microorganism remains unknown. The objective of this study was to investigate the impacts of atrazine or Pb on the soil microbiota, soil net nitrogen mineralization, and atrazine residues over a 28-day microcosm incubation. The Shannon-Wiener diversity index, typical microbe species, and a Neighbor-joining tree of typical species from sequencing denaturing gradient gel electrophoresis (DGGE) bands were determined across periodical sampling times. The results showed that the existence of atrazine or Pb (especially high concentration) in soils reduced microbial diversity (the lowest H value is 2.23) compared to the control (H = 2.59) after a 28-day incubation. The species richness reduced little (from 17~19 species to 16~17 species) over the research time. But soil microbial community was significantly affected by the incubation time after the exposure to atrazine or Pb. The combination of atrazine and Pb had a significant inhibition effect on soil net nitrogen nitrification. Atrazine and Pb significantly stimulated soil cumulative net nitrogen mineralization and nitrification. Pb (300 and 600 mg kg(-1)) accelerated the level of atrazine dissipation. The exposure might stimulate the significant growth of the autochthonous soil degraders which may use atrazine as C source and accelerate the dissipation of atrazine in soils.

  20. Integrating microbial physiology and physiochemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Bonan, G. B.

    2014-01-01

    Previous modeling efforts document divergent responses of microbial explicit soil biogeochemistry models when compared to traditional models that implicitly simulate microbial activity, particularly following environmental perturbations. However, microbial models are needed that capture current soil biogeochemical theories emphasizing the relationships between litter quality, functional differences in microbial physiology, and the physical protection of microbial byproducts in forming stable soil organic matter (SOM). To address these limitations we introduce the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. In MIMICS, the turnover of litter and SOM pools are governed by temperature sensitive Michaelis-Menten kinetics and the activity of two physiologically distinct microbial functional types. The production of microbial residues through microbial turnover provides inputs to SOM pools that are considered physically or chemically protected. Soil clay content determines the physical protection of SOM in different soil environments. MIMICS adequately simulates the mean rate of leaf litter decomposition observed at a temperate and boreal forest sites, and captures observed effects of litter quality on decomposition rates. Initial results from MIMICS suggest that soil C storage can be maximized in sandy soils with low-quality litter inputs, whereas high-quality litter inputs may maximize SOM accumulation in finely textured soils that physically stabilize microbial products. Assumptions in MIMICS about the degree to which microbial functional types differ in the production, turnover, and stabilization of microbial residues provides a~mechanism by which microbial communities may influence SOM dynamics in mineral soils. Although further analyses are needed to validate model results, MIMICS allows us to begin exploring theoretical interactions between substrate quality, microbial community abundance, and the formation of stable SOM.

  1. Benchmarking and improving microbial-explicit soil biogeochemistry models

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Bonan, G. B.; Hartman, M. D.; Sulman, B. N.; Wang, Y.

    2015-12-01

    Earth system models that are designed to project future carbon (C) cycle - climate feedbacks exhibit notably poor representation of soil biogeochemical processes and generate highly uncertain projections about the fate of the largest terrestrial C pool on Earth. Given these shortcomings there has been intense interest in soil biogeochemical model development, but parallel efforts to create the analytical tools to characterize, improve and benchmark these models have thus far lagged behind. A long-term goal of this work is to develop a framework to compare, evaluate and improve the process-level representation of soil biogeochemical models that could be applied in global land surface models. Here, we present a newly developed global model test bed that is built on the Carnegie Ames Stanford Approach model (CASA-CNP) that can rapidly integrate different soil biogeochemical models that are forced with consistent driver datasets. We focus on evaluation of two microbial explicit soil biogeochemical models that function at global scales: the MIcrobial-MIneral Carbon Stabilization model (MIMICS) and Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment (CORPSE) model. Using the global model test bed coupled to MIMICS and CORPSE we quantify the uncertainty in potential C cycle - climate feedbacks that may be expected with these microbial explicit models, compared with a conventional first-order, linear model. By removing confounding variation of climate and vegetation drivers, our model test bed allows us to isolate key differences among different soil model structure and parameterizations that can be evaluated with further study. Specifically, the global test bed also identifies key parameters that can be estimated using cross-site observations. In global simulations model results are evaluated with steady state litter, microbial biomass, and soil C pools and benchmarked against independent globally gridded data products.

  2. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  3. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  4. Metagenomic analysis of microbial community in uranium-contaminated soil.

    PubMed

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.

  5. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  6. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    NASA Astrophysics Data System (ADS)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  7. Soil microbial response to photo-degraded C60 fullerenes.

    PubMed

    Berry, Timothy D; Clavijo, Andrea P; Zhao, Yingcan; Jafvert, Chad T; Turco, Ronald F; Filley, Timothy R

    2016-04-01

    Recent studies indicate that while unfunctionalized carbon nanomaterials (CNMs) exhibit very low decomposition rates in soils, even minor surface functionalization (e.g., as a result of photochemical weathering) may accelerate microbial decay. We present results from a C60 fullerene-soil incubation study designed to investigate the potential links between photochemical and microbial degradation of photo-irradiated C60. Irradiating aqueous (13)C-labeled C60 with solar-wavelength light resulted in a complex mixture of intermediate products with decreased aromaticity. Although addition of irradiated C60 to soil microcosms had little effect on net soil respiration, excess (13)C in the respired CO2 demonstrates that photo-irradiating C60 enhanced its degradation in soil, with ∼ 0.78% of 60 day photo-irradiated C60 mineralized. Community analysis by DGGE found that soil microbial community structure was altered and depended on the photo-treatment duration. These findings demonstrate how abiotic and biotic transformation processes can couple to influence degradation of CNMs in the natural environment.

  8. A GPU Reaction Diffusion Soil-Microbial Model

    NASA Astrophysics Data System (ADS)

    Falconer, Ruth; Houston, Alasdair; Schmidt, Sonja; Otten, Wilfred

    2014-05-01

    Parallelised algorithms are frequent in bioinformatics as a consequence of the close link to informatics - however in the field of soil science and ecology they are less prevalent. A current challenge in soil ecology is to link habitat structure to microbial dynamics. Soil science is therefore entering the 'big data' paradigm as a consequence of integrating data pertinent to the physical soil environment obtained via imaging and theoretical models describing growth and development of microbial dynamics permitting accurate analyses of spatio-temporal properties of different soil microenvironments. The microenvironment is often captured by 3D imaging (CT tomography) which yields large datasets and when used in computational studies the physical sizes of the samples that are amenable to computation are less than 1 cm3. Today's commodity graphics cards are programmable and possess a data parallel architecture that in many cases is capable of out-performing the CPU in terms of computational rates. The programmable aspect is achieved via a low-level parallel programming language (CUDA, OpenCL and DirectX). We ported a Soil-Microbial Model onto the GPU using the DirectX Compute API. We noted a significant computational speed up as well as an increase in the physical size that can be simulated. Some of the drawbacks of such an approach were concerned with numerical precision and the steep learning curve associated with GPGPU technologies.

  9. [Microbial metabolism in typical flooded paddy soils ].

    PubMed

    Cai, Yuanfeng; Wu, Yucheng; Wang, Shuwei; Yan, Xiaoyuan; Zhu, Yongguan; Jia, Zhongjun

    2014-09-01

    [OBJECTIVE] The object of this study is to reveal the composition of active microorganism and their metabolic activities in flooded paddy soils with long-term fertilization ( Mineral nitrogen, phosphorus, and potassium, NPK) and without fertilizer (Control check, CK) by environmental transcriptomics. [METHODS] Flooded soil microcosms were incubated in the laboratory for two weeks, then total RNA were extracted from the soil for transcriptome sequencing. Resulting fastq files were uploaded to the Metagenomics Analysis Server (MG-RAST) for taxonomic analysis, gene annotation and function classification. [RESULTS] Transcripts from diverse active microorganism, including bacteria ( > 95% ) , archaea, eukaryotes and viruses, were detected in both flooded paddy soils of CK and NPK treatments. Most of the transcripts (active genes) of bacteria and archaea were derived from Proteobacteria (more than 50% of total bacterial transcripts) and Thaumarchaaeota (about 70% of total archaeal transcripts ) respectively in both treatments. Transcriptional activity of Acidobacteria in NPK treatment paddy soil was significantly higher than that in CK treatment paddy soil. As for other phyla of bacteria and archaea, there were no significant differences of transcriptional activity of them between CK and NPK treatment paddy soils. The highest expressed gene in both CK and NPK treatment paddy soils is ABC transporter encoding gene which related to the transmembrane transport of substances. Based on gene function category of COG (Clusters of Orthologous Genes), Subsystem and KEGG (Kyoto Encyclopedia of Genes and Genomes) database, we found that the main metabolic activities of microorganisms in both CK and NPK treatment paddy soils were related to energy production and conversion, carbohydrate metabolism, protein metabolism and amino acid metabolism, and the dominant KEGG pathways were oxidative phosphorylation and aminoacyl-tRNA biosynthesis. [ CONCLUSION] Composition of active

  10. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  11. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.

    PubMed

    Burton, Edward D; Johnston, Scott G; Kocar, Benjamin D

    2014-12-01

    In floodplain soils, As may be released during flooding-induced soil anoxia, with the degree of mobilization being affected by microbial redox processes such as the reduction of As(V), Fe(III), and SO4(2-). Microbial SO4(2-) reduction may affect both Fe and As cycling, but the processes involved and their ultimate consequences on As mobility are not well understood. Here, we examine the effect of microbial SO4(2) reduction on solution dynamics and solid-phase speciation of As during flooding of an As-contaminated soil. In the absence of significant levels of microbial SO4(2-) reduction, flooding caused increased Fe(II) and As(III) concentrations over a 10 week period, which is consistent with microbial Fe(III)- and As(V)-reduction. Microbial SO4(2-) reduction leads to lower concentrations of porewater Fe(II) as a result of FeS formation. Scanning electron microscopy with energy dispersive X-ray fluorescence spectroscopy revealed that the newly formed FeS sequestered substantial amounts of As. Bulk and microfocused As K-edge X-ray absorption near-edge structure spectroscopy confirmed that As(V) was reduced to As(III) and showed that in the presence of FeS, solid-phase As was retained partly via the formation of an As2S3-like species. High resolution transmission electron microscopy suggested that this was due to As retention as an As2S3-like complex associated with mackinawite (tetragonal FeS) rather than as a discrete As2S3 phase. This study shows that mackinawite formation in contaminated floodplain soil can help mitigate the extent of arsenic mobilization during prolonged flooding. PMID:25346449

  12. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.

    PubMed

    Burton, Edward D; Johnston, Scott G; Kocar, Benjamin D

    2014-12-01

    In floodplain soils, As may be released during flooding-induced soil anoxia, with the degree of mobilization being affected by microbial redox processes such as the reduction of As(V), Fe(III), and SO4(2-). Microbial SO4(2-) reduction may affect both Fe and As cycling, but the processes involved and their ultimate consequences on As mobility are not well understood. Here, we examine the effect of microbial SO4(2) reduction on solution dynamics and solid-phase speciation of As during flooding of an As-contaminated soil. In the absence of significant levels of microbial SO4(2-) reduction, flooding caused increased Fe(II) and As(III) concentrations over a 10 week period, which is consistent with microbial Fe(III)- and As(V)-reduction. Microbial SO4(2-) reduction leads to lower concentrations of porewater Fe(II) as a result of FeS formation. Scanning electron microscopy with energy dispersive X-ray fluorescence spectroscopy revealed that the newly formed FeS sequestered substantial amounts of As. Bulk and microfocused As K-edge X-ray absorption near-edge structure spectroscopy confirmed that As(V) was reduced to As(III) and showed that in the presence of FeS, solid-phase As was retained partly via the formation of an As2S3-like species. High resolution transmission electron microscopy suggested that this was due to As retention as an As2S3-like complex associated with mackinawite (tetragonal FeS) rather than as a discrete As2S3 phase. This study shows that mackinawite formation in contaminated floodplain soil can help mitigate the extent of arsenic mobilization during prolonged flooding.

  13. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure

    PubMed Central

    Rizvi, Fariha Z.; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J.; Krumholz, Lee R.

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  14. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  15. Changes in Soil Microbial Community Structure with Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  16. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  17. Long-term effect on some chemical parameter and microbial diversity in a conifer forest soil

    NASA Astrophysics Data System (ADS)

    Iglesias, T.; Iglesias, M.; Francisco-Álvarez, R.; Ramírez, M.; Fernández-Bermejo, M. C.

    2009-04-01

    Soil microbiota are one of the soil components most affected by wildfires. The data from the present study were obtained from a conifer forest soil at Sierra de Gredos (Ávila, central Spain) twenty years after fire of low-to-moderate intensity. A set of soil characteristics indicated the extent to which the spontaneous recovery of the soil is produced as a result of vegetation regrowth. Ten months after fire a strong increase in soil pH, organic C and N, and exchangeable Ca and K, with respect the control soil. Eighteen years after this fire it was observed a decrease of soil organic C and N, whereas other variables such as pH, exchangeable Ca and K were slightly increased with respect to control soil. Is summe a change in soil microbiota was observed due to wildfire, with a decrease in fungi and bacteria population, Also some changes in microbial community was detected, Key words: Forest Fire, soil microbiology, chemical soil properties

  18. Accessing the Soil Metagenome for Studies of Microbial Diversity▿ †

    PubMed Central

    Delmont, Tom O.; Robe, Patrick; Cecillon, Sébastien; Clark, Ian M.; Constancias, Florentin; Simonet, Pascal; Hirsch, Penny R.; Vogel, Timothy M.

    2011-01-01

    Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome. PMID:21183646

  19. Soil Mineralogy and Substrate Quality Effects on Microbial Priming

    NASA Astrophysics Data System (ADS)

    Finley, B. K.; Rasmussen, C.; Dijkstra, P.; Schwartz, E.; Mau, R. L.; Liu, X. J. A.; Hungate, B. A.

    2014-12-01

    Soil carbon (C) cycling can slow or accelerate in response to new C inputs from fresh organic matter. This change in native C mineralization, known as the "microbial priming effect," is difficult to predict because the underlying mechanisms of priming are still poorly understood. We hypothesized that soil mineral assemblage, specifically short-range-order (SRO) minerals, influences microbial responses to different quality C substrate inputs. To test this, we added 350 μg C g-1soil weekly of an artificial root exudates mixture primarily comprised of glucose, sucrose, lactate and fructose (a simple C source) or ground ponderosa pine litter (a complex C source) for six weeks to three soil types from similar ecosystems derived from different parent material. The soils, from andesite, basalt, and granite parent materials, had decreasing abundance in SRO minerals, respectively. We found that the simple C substrate induced 63 ±16.3% greater positive priming than the complex C across all soil types. The quantity of soil SRO materials was negatively correlated with soil respiration, but positively correlated with priming. The lowest SRO soil amended with litter primed the least (14 ± 11 μgCO2-C g-1), while the largest priming effect occurring in the highest SRO soil amended with simple substrate (246 ± 18 μgCO2-C g-1). Our results indicate that higher SRO mineral content could accelerate microorganisms' capacity to mineralize native soil organic carbon and respond more strongly to labile C inputs. However, while all treatments exhibited positive priming, the amount of C added over the six-week incubation was greater than total CO2 respired. This suggests that despite a relative stimulation of native C mineralization, these soils act as C sinks rather than sources in response to fresh organic matter inputs.

  20. Climate change-driven treeline advances in the Urals alter soil microbial communities

    NASA Astrophysics Data System (ADS)

    Djukic, Ika; Moiseev, Pavel; Hagedorn, Frank

    2016-04-01

    Climatic warming may affect microbial communities and their functions either directly through increased temperatures or indirectly by changes in vegetation. Treelines are temperature-limited vegetation boundaries from tundra to forests. In unmanaged regions of the Ural mountains, there is evidence that the forest-tundra ecotone has shifted upward in response to climate warming during the 20th century. Little is known about the effects of the treeline advances on the microbial structure and function and hence they feedbacks on the belowground carbon and nitrogen cycling In our study, we aimed to estimate how ongoing upward shifts of the treeline ecotone might affect soil biodiversity and its function and hence soil carbon (C) and nitrogen (N) dynamics in the Southern and Polar Ural mountains. Along altitudinal gradients reaching from the tundra to forests, we determined the soil microbial community composition (using Phospholipid Fatty Acids method) and quantified the activity of several extracellular enzymes involved in the C and nutrient cycling. In addition, we measured C pools in biomass and soils and quantified C and N mineralization. The results for the top soils, both in South Urals and in the Polar Ural, indicate a close link between climate change driven vegetation changes and soil microbial communities. The observed changes in microbial structure are induced through the resulting more favorable conditions than due to a shift in litter quality. The activities of chitinase were significantly higher under trees than under herbaceous plants, while activities of cellulase and protease declined with altitude from the tundra to the closed forest. In contrast to enzymatic activities, soil carbon stocks did not change significantly with altitude very likely as a result of a balancing out of increased C inputs from vegetation by an enhanced C output through mineralization with forest expansion. The accelerated organic matter turnover in the forest than in the tundra

  1. Distinct microbial communities associated with buried soils in the Siberian tundra

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-01-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. PMID:24335828

  2. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil.

    PubMed

    Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J Eloy; Barsukov, Pavel; Bárta, Jiří; Capek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Santrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas

    2014-08-01

    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of (13)C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant

  3. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil.

    PubMed

    Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J Eloy; Barsukov, Pavel; Bárta, Jiří; Capek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Santrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas

    2014-08-01

    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of (13)C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant

  4. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil

    PubMed Central

    Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas

    2014-01-01

    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased

  5. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  6. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  7. Microbial Succession in Glacial Foreland Soils of the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Kazemi, S.; Lanoil, B. D.

    2014-12-01

    The Canadian arctic has experienced increasing temperatures over the past century leading to heightened rate of glacial retreat. Glacial retreat leads to subsequent exposure of foreland soils to atmospheric conditions, thus creating a sequence of change in these ecosystems. Microbes are critical for soil development and nutrient dynamics in glacial systems as they are the primary colonizers of these soils and have been demonstrated to play a role in geochemical weathering and nutrient cycling beneath the glacier. Although viable microbial communities exist beneath glaciers and are known to be important for the glacial ecosystem, the impact of glacial retreat on these communities and development of the resulting foreland ecosystem is not well understood. Here, we investigate how microbial communities respond to changing conditions brought on by glacial retreat and whether a pattern of succession, such as those found in well characterized plant systems, occurs along a soil foreland in these microbial communities. We hypothesis that time since deglaciation is the major determinant of structure and composition of microbial assemblages. To test this, soil samples were collected along two glacier forelands, Trapridge Glacier and Duke River Glacier, located in Kluane National Park, Yukon Territory. Chronosequence dating of satellite images using geographic information system software revealed sampling sites have been ice-free from ~30 years to over 60 years. Soil chemistry analysis of major nutrients revealed no change in chemical parameters along the chronosequence, suggesting that presence of microbes after exposure from subglacial environments does not significantly alter soil characteristics in the timeframe observed. Furthermore, next-generation IonTorrentTM sequencing performed on soil samples revealed over five million sequencing reads, suggesting prominent microbial presence within these soils. Further analysis on sequencing data is needed to establish the

  8. [Characteristics of soil microbial populations in depressions between karst hills under different land use patterns].

    PubMed

    Song, Min; Zou, Dong-Sheng; Du, Hu; Peng, Wan-Xia; Zeng, Fu-Ping; Tan, Qiu-Jin; Fan, Fu-Jing

    2013-09-01

    Based on the investigation and analysis of six soil microbial indices, eight soil conventional nutrient indices, six soil mineral nutrient indices, and 15 vegetation indices in the farmland, grassland, scrub, forest plantation, secondary forest, and primary forest in the depressions between karst hills, this paper analyzed the main soil microbial populations, soil microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP) and their fractal characteristics, and the relationships of the soil microbes with vegetation, soil nutrients, and soil mineral components under different land use patterns. The soil microbial populations differed in their quantity and composition under different land use patterns. Primary forest and farmland had the highest quantity of soil microbial populations, while forest plantation had the lowest one. The three forests had a higher proportion of soil bacteria, the farmland, grassland, and scrub had a higher proportion of actinomycetes, and all the six land use patterns had a low proportion of soil fungi. Under the six land use patterns, the soil MBC, MBN, and MBP were all high, with the maximum in primary forest. There was a good fractal relationship between the soil MBC and microbial populations, but no fractal relationships between the soil MBN and MBP and the microbial populations. Significant relationships were observed between the soil microbes and the vegetation, soil nutrients, and soil mineral components, and the soil MBC had the closest relationships with the Shannon index of tree layer and the soil total nitrogen, Fe2O3, and CaO contents.

  9. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    PubMed

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations.

  10. Microbial degradation of propoxur in turfgrass soil.

    PubMed

    Ou, L T; Nkedi-Kizza, P; Cisar, J L; Snyder, G H

    1992-10-01

    This study was conducted to determine the degradation rates in turfgrass soil over a 12-month period after a single field application of propoxur and to isolate microorganisms from the soil capable of degrading the insecticide. Soil samples were collected from a turfgrass experimental site near Fort Lauderdale, FL one week before the field application of propoxur, and over a 12-month period after the field application. Mineralization rates in surface (0-15 cm depth) and subsurface (15-30 cm depth) soil samples collected before the field application were low. Mineralization in surface and subsurface samples collected 1, 6 and 8 months after the field application was much higher than for corresponding samples collected before the field application. Mineralization in the subsurface samples collected 12 months after the field application had reverted back to the similar rate for the corresponding sample collected before field application. Half-life values (t1/2) for propoxur showed similar trends to the results of mineralization. After a single application of propoxur, degradation in turfgrass soil was enhanced. Such enhancement lasted less than 12 months for the subsurface, but more than 12 months for the surface. A strain of Arthrobacter sp. capable of degrading propoxur was isolated from the soil.

  11. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities.

    PubMed

    Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan

    2015-06-01

    The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.

  12. Silver Nanoparticles, Ions, and Shape Governing Soil Microbial Functional Diversity: Nano Shapes Micro

    PubMed Central

    Zhai, Yujia; Hunting, Ellard R.; Wouters, Marja; Peijnenburg, Willie J. G. M.; Vijver, Martina G.

    2016-01-01

    Silver nanoparticles (AgNPs) affect microbial metabolic processes at single cell level or lab-culture strains. However, the impact of different AgNPs properties such as the particle, ion release, and shape on functional responses of natural soil microbial communities remain poorly understood. Therefore, we assessed the relative importance of particles and ions of AgNPs in bacterial toxicity and how the functional diversity of soil microbial communities were impacted by AgNPs shapes (i.e., plates, spheres, and rods) in laboratory incubations. Our results showed that the relative contribution of AgNPs(particle) increased with increasing exposure concentrations (accounted for about 60–68% of the total toxicity at the highest exposure level). In addition, the functional composition of the microbial community differed significantly according to different AgNPs shapes. The various properties of AgNPs thus can significantly and differentially affect the functional composition of microbial communities and associated ecosystem processes depending on the level of environmental exposure. PMID:27504108

  13. Silver Nanoparticles, Ions, and Shape Governing Soil Microbial Functional Diversity: Nano Shapes Micro.

    PubMed

    Zhai, Yujia; Hunting, Ellard R; Wouters, Marja; Peijnenburg, Willie J G M; Vijver, Martina G

    2016-01-01

    Silver nanoparticles (AgNPs) affect microbial metabolic processes at single cell level or lab-culture strains. However, the impact of different AgNPs properties such as the particle, ion release, and shape on functional responses of natural soil microbial communities remain poorly understood. Therefore, we assessed the relative importance of particles and ions of AgNPs in bacterial toxicity and how the functional diversity of soil microbial communities were impacted by AgNPs shapes (i.e., plates, spheres, and rods) in laboratory incubations. Our results showed that the relative contribution of AgNPs(particle) increased with increasing exposure concentrations (accounted for about 60-68% of the total toxicity at the highest exposure level). In addition, the functional composition of the microbial community differed significantly according to different AgNPs shapes. The various properties of AgNPs thus can significantly and differentially affect the functional composition of microbial communities and associated ecosystem processes depending on the level of environmental exposure. PMID:27504108

  14. Effects of temperature on microbial C metabolism in peat and mineral soil

    NASA Astrophysics Data System (ADS)

    Hagerty, S.; Dijkstra, P.; Miller, E.; Schwartz, E.; KOCH, G. W.; Hungate, B. A.

    2013-12-01

    Microbial metabolism, the main mechanism responsible for soil CO2 emissions, plays an important role in the global C cycle. Increased temperature generally stimulates decomposition and respiration, indicative of increased microbial C metabolism and possibly greater energy demand by microbes for growth and maintenance. Changes in microbial metabolism with temperature may manifest differently in microbial communities from soils with different C availability because it is generally expected that when more organic C is present, carbon use efficiency (CUE) will be lower and more CO2 will be released per unit C assimilated by microbes than when less C substrate is available. In this study we examined the effect of temperature on C processing in peat and mineral soil from the Marcel Experimental Forest in Minnesota. Samples were incubated for 7 days at 5, 10, 15, and 20°C. We used position-specific 13C-labeled tracers to model C flux through the central C metabolic network (i.e. glycolysis, pentose phosphate pathway, and the citric acid cycle) and to asses the CUE of microbial communities. We also measured total CO2 production and microbial biomass, and we calculated the metabolic quotient (qCO2), which is the rate of CO2, respired per unit of microbial biomass. We found that temperature and soil type did not affect CUE and patterns of C flow through the central C metabolic network. Increased temperature stimulated respiration and decreased qCO2 in peat more than the mineral soil. These results suggest temperature affects rate of C cycling, but does not alter the relative demand for energy production and biosynthesis per unit substrate-C. This implies, in contrast to expectations that at higher temperatures more substrate will be used to offset greater demand for maintenance energy, warmer temperatures will not alter the balance of growth and maintenance energy by soil microbes. Moreover, substrate availability did not result in ';wasteful' C use, but increased C cycling

  15. Degradation and impact of phthalate plasticizers on soil microbial communities

    SciTech Connect

    Cartwright, C.D.; Thompson, I.P.; Burns, R.G.

    2000-05-01

    To assess the impact of phthalates on soil microorganisms and to supplement the environmental risk assessment for these xenobiotics, soil was treated with diethyl phthalate (DEP) or di (2-ethyl hexyl) phthalate (DEHP) at 0.1 to 100 mg/g. Bioavailability and membrane disruption were proposed as the characteristics responsible for the observed fate and toxicity of both compounds. Diethyl phthalate was biodegraded rapidly in soil with a half-life of 0.75 d at 20 C, and was not expected to persist in the environment. The DEHP, although biodegradable in aqueous solution, was recalcitrant in soil, because of poor bioavailability and was predicted to account for the majority of phthalate contamination in the environment. Addition of DEP or DEHP to soil at a concentration similar to that detected in nonindustrial environments had no impact on the structural diversity or functional diversity (BIOLOG) of the microbial community. At concentrations representative of a phthalate spill, DEP reduced numbers of both total culturable bacteria and pseudomonads within 1 d. This was due to disruption of membrane fluidity by the lipophilic phthalate, a mechanism not previously attributed to phthalates. However, DEHP had no effect on the microbial community or membrane fluidity, even at 100 mg/g, and was predicted to have no impact on microbial communities in the environment.

  16. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  17. Precipitation pulse size effects on Sonoran Desert soil microbial crusts.

    PubMed

    Cable, Jessica M; Huxman, Travis E

    2004-10-01

    Deserts are characterized by low productivity and substantial unvegetated space, which is often covered by soil microbial crust communities. Microbial crusts are important for nitrogen fixation, soil stabilization and water infiltration, but their role in ecosystem production is not well understood. This study addresses the following questions: what are the CO2 exchange responses of crusts to pulses of water, does the contribution of crusts to ecosystem flux differ from the soil respiratory flux, and is this contribution pulse size dependent? Following water application to crusts and soils, CO2 exchange was measured and respiration was partitioned through mixing model analysis of Keeling plots across treatments. Following small precipitation pulse sizes, crusts contributed 80% of soil-level CO2 fluxes to the atmosphere. However, following a large pulse event, roots and soil microbes contributed nearly 100% of the soil-level flux. Rainfall events in southern Arizona are dominated by small pulse sizes, suggesting that crusts may frequently contribute to ecosystem production. Carbon cycle studies of arid land systems should consider crusts as important contributors because of their dynamic responses to different pulse sizes as compared to the remaining ecosystem components.

  18. Regulation of Soil Microbial Carbon-use Efficiency by Soil Moisture, Substrate Addition, and Incubation Time

    NASA Astrophysics Data System (ADS)

    Stark, J.

    2015-12-01

    Microbial carbon-use efficiency (CUE) is a key variable in biogeochemical cycling that regulates soil C sequestration, greenhouse gas emissions, and retention of inorganic nutrients. Microbial CUE is the fraction of C converted to biomass rather than respired as CO2. Biogeochemical models have been shown to be highly sensitive to variation in CUE; however, we currently have a poor understanding of how CUE responds to environmental variables such as soil moisture and nutrient limitations. We examined the effect of soil moisture and C supply on CUE in soil from a western hemlock / sitka spruce forest in Oregon, USA, using a novel technique which supplies 13C and 15N substrates through the gas phase so that water addition is not necessary. Soil samples (28 g oven-dry equiv. wt) at two water potentials (-0.03 and -3.55 MPa) were exposed to 13C-acetic acid vapor for either 6 or 30 sec to provide two different concentrations of acetate to soil microbial communities. The soils were also injected with small amounts of 15NH3 gas to allow quantification of microbial N assimilation rates and to provide an alternate method of calculating CUE. Rates of 13CO2 respiration were measured continuously during a 48-h incubation using cavity ring-down spectroscopy. Soil samples were extracted at seven time intervals (0, 0.5, 1.5, 4.5, 12, 24, and 48 h) in 0.5 M K2SO4 and analyzed for DO13C, microbial 13C, DO15N, inorganic 15N, and microbial 15N to calculate how gross rates of C and N assimilation and microbial CUE change with incubation time. As expected, microbial C and N assimilation rates and CUE increased with soil moisture and the quantity of acetate added; however, C:N assimilated was higher at lower soil moisture, suggesting that either C-storage compounds were being created, or that fungal communities were responsible for a greater proportion of the assimilation in drier soils. Assimilation rates and CUE also changed with incubation time, demonstrating that estimates of CUE

  19. Contribution of microbial activity to virus reduction in saturated soil.

    PubMed

    Nasser, A M; Glozman, R; Nitzan, Y

    2002-05-01

    Application of wastewater to soil may result in the contamination of groundwater and soil with pathogenic microorganisms and other biological and chemical agents. This study was performed to determine the antiviral microbial activity of soil saturated with secondary effluent. Low concentrations (0.05mg/ml) of protease pronase resulted in the inactivation of more than 90% of seeded Cox-A9 virus, whereas Poliovirus type 1, Hepatitis A virus (HAV) and MS2 bacteriophages were found to be insensitive to the enzyme activity. Exposure of Cox A9 virus to P. aeruginosa extracellular enzymes resulted in 99% inactivation of the seeded virus. Hepatitis A virus was found to be as sensitive as the Cox A9 virus, whereas Poliovirus 1 and MS2 were found to be insensitive to P. aeruginosa extracellular enzymatic activity. Furthermore, the time required for 99% reduction (T99) of Cox A9 and MS-2 Bacteriophage, at 15 degrees C, in soil saturated with secondary effluent was found to be 7 and 21 days, respectively. Faster inactivation was observed for MS2 and Cox A9 in soil saturated with secondary effluent incubated at 30 degrees C, T99 of 2 and 0.3 days, respectively. Although the concentration of the total bacterial count in the soil samples increased from 10(3) cfu/g to 10(5) cfu/g after 20 days of incubation at 30 degrees C, the proteolytic activity was below the detection level. The results of this study indicate that the virucidal effect of microbial activity is virus type dependent. Furthermore microbial activity in the soil material can be enhanced by the application of secondary effluent at higher temperature. The results also showed that MS2 bacteriophage can be used to predict viral contamination of soil and groundwater.

  20. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  1. Soil resources area affects herbivore health.

    PubMed

    Garner, James A; Ahmad, H Anwar; Dacus, Chad M

    2011-06-01

    Soil productivity effects nutritive quality of food plants, growth of humans and animals, and reproductive health of domestic animals. Game-range surveys sometimes poorly explained variations in wildlife populations, but classification of survey data by major soil types improved effectiveness. Our study evaluates possible health effects of lower condition and reproductive rates for wild populations of Odocoileus virginianus Zimmerman (white-tailed deer) in some physiographic regions of Mississippi. We analyzed condition and reproductive data for 2400 female deer from the Mississippi Department of Wildlife, Fisheries, and Parks herd health evaluations from 1991-1998. We evaluated age, body mass (Mass), kidney mass, kidney fat mass, number of corpora lutea (CL) and fetuses, as well as fetal ages. Region affected kidney fat index (KFI), which is a body condition index, and numbers of fetuses of adults (P≤0.001). Region affected numbers of CL of adults (P≤0.002). Mass and conception date (CD) were affected (P≤0.001) by region which interacted significantly with age for Mass (P≤0.001) and CD (P<0.04). Soil region appears to be a major factor influencing physical characteristics of female deer.

  2. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  3. Soil suppressiveness to Rhizoctonia solani and microbial diversity.

    PubMed

    Bakker, Y; Van Loon, F M J; Schneider, J H M

    2005-01-01

    Rhizoctonia solani anastomosis group 2-2IIIB causes damping-off, black root rot and crown rot in sugar beet (Beta vulgaris). Based on experiences of growers and field experiments, soils can become suppressive to R. solani. The fungus may be present in the soil, but the plant does not show symptoms. Understanding the mechanisms causing soil suppressiveness to R. solani is essential for the development of environmentally friendly control strategies of rhizoctonia root rot in sugar beet. A bioassay that discriminates soils in their level of disease suppressiveness was developed. Results of bioassays were in accordance with field observations. Preliminary results indicate an active role of microbial communities. Our research is focused on the disentanglement of biological mechanisms causing soil suppressiveness to R. solani in sugar beet. Therefore, we are handling a multidisciplinary approach through experimental fields, bioassays, several in vitro techniques and molecular techniques (PCR-DGGE).

  4. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere

    PubMed Central

    Xiong, Jingbo; Li, Jiabao; He, Zhili; Zhou, Jizhong; Yannarell, Anthony C.; Mackie, Roderick I.

    2014-01-01

    Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds. PMID:25383887

  5. Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA

    PubMed Central

    Yu, Shen; Ehrenfeld, Joan G.

    2010-01-01

    Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID

  6. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils

  7. Effects of biochar blends on microbial community composition in two Coastal Plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated both positive and negative effects on soil microbial communities. These effect...

  8. STABLE CARBON ISOTOPE RATIO AND COMPOSITION OF MICROBIAL FATTY ACIDS IN TROPICAL SOILS

    EPA Science Inventory

    The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on: (1) soil microbial community structure and (2) the contribution o...

  9. Synthetic fuel oil effects on microbial activity and nitrogen transformations in soil

    SciTech Connect

    Ward, M.H.; Saylor, G.S.; Luxmoore, R.J.

    1984-12-01

    The effects of a solvent refined coal oil (SRC-II) on microbial processes in a Captina silt loam soil were examined. The soil samples were maintained under environmental conditions favorable for most aerobic microbial activities. Soil was treated with four oil concentrations ranging from 0.2 to 8.6% (wt/wt). Oxygen uptake rates, total viable cell counts, numbers of nitrifying bacteria, and inorganic nitrogen concentrations were monitored before oil addition and at regular intervals for three months thereafter. Organic carbon, total nitrogen, and soil pH were also measured before and after application of the oil. The SRC-II coal oil effected soil processes at all treatment levels. The lowest oil concentration (0.2%) decreased numbers of nitrifying bacteria while increasing total viable cell numbers and net nitrogen mineralization. The higher oil concentrations reduced oxygen uptake rates and total viable cells as well as nitrifier numbers. Soil treated with a 1.7% oil concentration showed significant increases in respiration rates and cell densities after two months, while no significant increases were observed at oil levels of 3.4 and 8.6%. The application of the coal oil to soil samples raised the carbon to nitrogen ratio of the soil. The sum of nitrate and ammonium nitrogen in the oil-treated soils was never significantly lower than the control soil levels, indicating that nitrogen was not limiting to decomposition. However, the toxicity of the oil toward the nitrifying bacteria resulted in an accumulation of ammonium in treated soils. This may affect plant establishment on soils contaminated with a synthetic fuel oil. 104 references, 7 figures, 15 tables.

  10. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  11. Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects

    PubMed Central

    Lazzaro, Anna; Hilfiker, Daniela; Zeyer, Josef

    2015-01-01

    Microbial communities in alpine environments are exposed to several environmental factors related to elevation and local site conditions and to extreme seasonal variations. However, little is known on the combined impact of such factors on microbial community structure. We assessed the effects of seasonal variations on soil fungal and bacterial communities along an elevational gradient (from alpine meadows to a glacier forefield, 1930–2519 m a.s.l.) over 14 months. Samples were taken during all four seasons, even under the winter snowpack and at snowmelt. Microbial community structures and abundances were investigated using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR (qPCR) of the 16S and 18S rRNA genes. Illumina sequencing was performed to identify key bacterial groups in selected samples. We found that the soil properties varied significantly with the seasons and along the elevational gradient. For example, concentrations of soluble nutrients (e.g., NH4+-N, SO42−-S, PO43−-P) significantly increased in October but decreased drastically under the winter snowpack. At all times, the alpine meadows showed higher soluble nutrient concentrations than the glacier forefield. Microbial community structures at the different sites were strongly affected by seasonal variations. Under winter snowpack, bacterial communities were dominated by ubiquitous groups (i.e., beta-Proteobacteria, which made up to 25.7% of the total reads in the glacier forefield). In the snow-free seasons, other groups (i.e., Cyanobacteria) became more abundant (from 1% under winter snow in the glacier forefield samples to 8.1% in summer). In summary, elevation had a significant effect on soil properties, whereas season influenced soil properties as well as microbial community structure. Vegetation had a minor impact on microbial communities. At every elevation analyzed, bacterial, and fungal community structures exhibited a pronounced annual cycle. PMID:26635785